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Abstract

This paper studies optimal monetary policy under dynamic debt deleveraging once
the zero bound is binding. Unlike much of the existing literature, the natural rate
of interest is endogenous and depends on macroeconomic policy. We provide micro-
foundation for debt deleveraging based both on household over accumulation of debt
and leverage constraint on banks; and show that they are isomorphic in our proposed
post-crisis New Keynesian model, thus integrating two popular narrative for the crisis.
Optimal monetary policy successfully raises the natural rate of interest by creating an
environment that speeds up deleveraging, thus endogenously shortening the duration
of the crisis and a binding zero bound. Inflation should be front loaded. Fiscal-policy
multipliers can be even higher than in existing models, but depend on the way in which
public spending is financed.
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1 Introduction

This paper proposes a tractable post-crisis version of the canonical New Keynesian model.
By post-crisis we mean the period after 2008 when several central banks had to cut their
short-term interest rate to zero. While all models involve shortcomings, the standard New
Keynesian model came under criticism for a few key abstractions which turned out to be
important omissions to understand some elements of the crisis. First, in its most basic form
it features only a single risk-free short-term interest rate. Second, there is no explicit banking
in the model and there is only a single representative agent without a meaningful distinction
between borrowers and savers. Finally, the shocks are somewhat reduced form which makes
it difficult to pinpoint what – exactly – was the trigger of the crisis that started in 2008.
These omissions are among the elements we wish to integrate into a standard New Keynesian
post-crisis model. We propose to do so with only minor addition in complexity.

Our model builds on a rich literature developed before and after the crisis. The zero
lower bound on short-term nominal interest was certainly not an unfamiliar concept to
economists prior to the crisis. Moreover, right after it, the literature has expanded very
quickly on the basis of what had already been developed. There is, for example, a relatively
large literature on monetary and fiscal policy subject to the zero interest rate bound (see
for example Eggertsson and Woodford (2003), Adam and Billi (2006), Eggertsson (2008) as
pre-crisis examples and Eggertsson (2011), Christiano, Eichenbaum and Rebelo (2011) and
Werning (2011) for post crisis examples). Generally, however, these papers take the shock
that leads the economy to the zero bound – shock to the “natural rate of interest” – as given.
Hence the duration of the trap under some basic policy specifications is purely exogenous and
the duration of the exogenous forces that perturb the economy – usually given by preference
shocks – does not have much meaningful interaction with the policy chosen. Here, instead,
we wish to model this origin in a more explicit and tractable way and make the duration of
the negative natural rate of interest – and therefore the crisis – endogenous and a function
of policy.

Recently a literature has started to emerge that tries to model in greater detail how
the economy finds itself up against the zero bound, the very origin of the current global
economic crisis. We see the literature as focusing mainly on two narratives. One powerful
narrative is that the source is a deleveraging cycle on the household side (for recent theoretical
contributions inspired by the crisis see e.g. Eggertsson and Krugman (2012), Hall (2011),
Guerrieri and Lorenzoni (2012) and Rognlie, Shleifer and Simsek (2014), while Mian and
Sufi (2011) provide extensive empirical evidence for this mechanism).1 Another powerful
narrative traces the origin of the crisis to turbulences in the banking sector (see e.g. Curdia
and Woodford, 2010, Gertler and Kiyotaki, 2010).2

Consider first the household debt-deleveraging story: We have a period of too much
optimism about debt, in which debtors borrow and spend aggressively via a process of
leveraging (piling up debt). Since one person’s debt is another’s asset, creditors have to

1See also Geanakoplos (2010), and references therein, although he, and the literature cited, does not
emphasize the connection of the leverage cycle to the interest rate channel as we do here and as the literature
above does. Thus he does not focus as much on the interaction of the leverage cycle and the zero bound
which is the central focus here.

2See also Andrès et al. (2013) and De Fiore and Tristani (2012, 2013) for alternative approaches.
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be induced to spend less via high real interest rates. Then there is a “Minsky moment”
(Eggertsson and Krugman, 2012) in which people realize things have gone too far – that
all the newly issued debt may in fact not be sustainable – and we move from a process of
leveraging to deleveraging, i.e. the overextended agents need to pay down their debt. But
the problem is that this process is not symmetric, because the central bank may not be able
to cut the interest rate enough to induce sufficient spending by those that are not too deep
into debt because of the zero bound. Hence, one way to explain a drop in the natural rate of
interest is to say that debtors – as a group – are trying to deleverage very fast, so that the real
interest rate needs to fall to negative levels to get the savers to spend enough to sustain full
employment. A negative natural rate of interest rate can make the zero bound binding. This
in turns creates problems for macroeconomic policy. In earlier work on deleveraging, such
as Eggertsson and Krugman (2012), the deleveraging shock corresponds to a sudden drop
in borrowing capacity that the borrower must satisfy. Their main focus, however, is on an
example in which this adjustment takes place in only one period, “the short-run” because the
borrower is at a corner solution. Here, instead, our main focus is on relaxing this assumption
so that the process of deleveraging smoothly takes place over several periods – determined
endogenously – as a result of the optimal deleveraging decisions of the households.3

Consider now the banking turbulence story: There is a crisis in the interbank market
that increases the cost of funding that banks face. An example could include some shock to
the banks’ capital or a need to reduce leverage ratios. The banks’ capital constraint tightens
during a period of stress, leading banks to be less willing to lend, and thus triggering a
downturn. As it will turn out, however, the mechanism through which this affects the
macro economy will be largely analogous to the household debt deleveraging story already
outlined. Indeed we will show that in terms of aggregate variables such as output, inflation
and interest rate they are isomorphic. From the perspective of the most baseline New
Keynesian perspective, therefore, there is no particular reason to insist on choosing one over
the other, and we will refer to both as “dynamic deleveraging”. Our prior is that both played
an important role in the crisis.

Within our framework we generalize the standard New Keynesian (NK) prototype model
(such as for example illustrated in Clarida, Gal̀ı and Gertler, 1999, Woodford, 2003, and
Gal̀ı, 2008) as one that involves exactly the same pair of equations, familiar to many readers,
namely the IS and the AS equations which are typically summarized as follows (denoting
output in log deviation from steady state with, Ŷt, inflation with πt, the nominal interest
rate with it and steady state inflation by π)

Ŷt = EtŶt+1 − σ(it − Et(πt+1 − π)− rnt )

πt − π = κŶt + β(πt+1 − π)

3We indeed expound here one suggested extension discussed in the Web Appendix of Eggertsson and
Krugman (2012) which, however, delivers a less compact model due to a different specification of preferences
and production. Moreover, they do not provide explicit microfoundations for the banking sector which, in
our case, allows us to nest both the household deleveraging story as well as the banking story within a single
framework. Finally, they are silent on the welfare implications of alternative policies. Another closely related
paper is Curdia and Woodford (2010) which we also build upon. Their focus, however, is mostly on shocks
to the aggregate banking system, moreover they do not focus on sub-optimal monetary and fiscal policy at
the zero bound.
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where β, σ, κ > 0 are coefficients. The only difference between our current model and the
benchmark is that rnt (which has the interpretation of being the natural rate of interest) is
now an endogenous variable that depends on the level of private debt. In the paper we will
show how this variable is determined in equilibrium by a system of equations that depends on
the households’ level of indebtedness, among other things, as well as on the spread between
the risk-free interest rate and a risky, and accordingly higher, interest rate that borrowers
need to pay. In the case of household debt deleveraging shock it corresponds to a “shock” to
the “safe level” of debt, giving the household an incentive to pay down their debt to a new
steady state. In case of a banking shock, it corresponds to a shock to their required leverage
ratio or cost of equity financing which will curtail their lending to a new steady state. In
the transition period we show that the natural rate of interest can be temporarily negative.

One relatively minor difference between our model and the standard one is that it is
written in terms of inflation in deviation from steady-state inflation, π, which may be positive:
a reasonable number, for example, would be 2% in the US. What this implies is that the
recession at the zero-lower bound does not need to be associated with actual deflation,
only that inflation has to be below the target of the central bank. Some authors have
claimed that the lack of deflation during the crisis following 2008 suggested a major failure
of the canonical New Keynesian model. Our proposed model fixes this problem. A more
important advantage of our framework is that the explicit introduction of borrowing and
lending allows a more disciplined calibration of the shock triggering the Great Recession.
In much of the earlier literature (e.g. Eggertsson, 2011) the driving force is an unobserved
preference shock, calibrated so as to generate the Great Recession. Here, instead, we have
two more observables. First, there is an endogenous level of debt held by the households
(or alternatively some measure of bank leverage if one take a banking perspective). Second,
there is an interest rate for borrowing which is different from the risk free interest rate.
Those two variables allow for a relatively straightforward calibration of the shock as we will
see. We can then ask if the shocks calibrated to match these new observables can generate
the Great Recession. The short answer is yes.

The first main conclusion of the paper is that the duration of a negative natural rate
of interest is now endogenous – rather than depending only on exogenous preference shocks
or an implicitly specified “short-run” – and is dependent on the stance of policy. Under
a monetary policy regime that targets high enough inflation to avoid the zero bound, for
example, the economy will experience a shorter duration of a negative natural rate of interest
than if the policy regime is insufficiently stimulating. The intuition for this is simple: In a
recession there is a drop in overall income, hurting borrowers’ ability to pay down their debt,
which means that the process of deleveraging will be slower than if the recession is avoided
via aggressive enough monetary and fiscal policy. Since it is the deleveraging process that
drives the reduction in the natural rate of interest, this affects how long the natural rate of
interest stays below its steady state.

The second key result of the paper is to some extent a corollary of the first. Endogenous
deleveraging will in general amplify the effect of policy at the zero bound. Why? Policy will
now not only dampen the crisis today, as the previous literature has emphasized, but also
shorten its duration by directly affecting the natural rate of interest. Consider the nominal
interest rate path under a policy that tries to stabilize inflation, and the output gap assuming
either dynamic deleveraging or exogenous preference shocks. We find that optimal monetary
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policy under dynamic deleveraging prescribes a shorter duration at the zero bound than if
the crisis was driven by exogenous preference shocks, precisely because it will have a direct
effect on the natural rate of interest: Optimal policy is powerful enough to “jump start”
the economy and thus lead to a more rapid normalization of the nominal interest rate than
would otherwise have occurred.

Our third result is that we are able to explicitly derive a social welfare function inside our
heterogenous agent model. While the standard New Keynesian model involves only output
and inflation, the social welfare function in our model involves an additional term because we
have different agents in the model, i.e., both borrowers and savers, and we assume incomplete
insurance between the two. Relative to the standard objective, we find that this additional
term gives the government even further reason to engage in aggressive countercyclical policy.
A key reason for this is that borrowers tend to suffer more in a recession driven by debt
deleveraging and thus have higher marginal utility of income. Meanwhile borrowers have
more to gain from inflationary policy that savers as inflation lowers the real value of their
debt, lowers the real interest rate paid on that debt moving forward, and increases their
labor income when the marginal value of extra income in especially high for borrowers.

A fourth result that emerges is that we find that optimal monetary policy in a liquidity
trap under dynamic deleveraging will prescribe excess inflation, and possibly output above
potential, well above the inflation target, even during the period in which the zero bound is
binding and the natural rate of interest is negative. This is partly explained by the fact that
social welfare now takes account the social benefit of redistribution in response to the shock,
but also to some extent to the fact that an endogenous natural rate of interest prescribes
even more aggressive policy action than in the standard model so as to speed up the recovery.

Finally, we study the effects of fiscal policy under dynamic deleveraging. There we find
that it can be even more effective than has been found in the previous literature, since a
fiscal expansion speeds up the deleveraging cycle. Crucially, however, the effectiveness of
policy depends on how it is financed.

This work is organized as follows. Section 2 first describes dynamic deleveraging in a
simple endowment economy to clarify some key assumptions, then it presents two alternative
models of banking which are isomorphic in terms of their conclusions. Finally, it discusses
the general model. Section 3 illustrates the log-linear version of the general model. Section
4 presents the calibration of the model and studies the positive implications of dynamic debt
deleveraging in comparison with the standard NK model. Section 5 characterizes optimal
monetary policy under commitment and compares the result with the standard NK model.
Section 6 investigates fiscal-policy multipliers and finally Section 7 concludes.

2 Model

2.1 Dynamic deleveraging in an endowment economy

We start out by showing a simple example of dynamic deleveraging in an endowment econ-
omy. This is helpful to clarify the role of some key assumptions in the general environment we
propose in the next section. Imagine a closed-economy endowment model with two agents,
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a borrower and a saver. They have the following utility functions

Et

∞∑
T=t

(βj)T−t logCj
t where j = b or s

in which Cj
t is consumption of agent j and 0 < βj < 1 is the discount factor, with βs ≥ βb.

They make their consumption choices subject to a standard budget constraint

bjt

1 + rjt
= bjt−1 + Cj

t −
1

2
Y + T jt (1)

where bjt is one-period risk-free real debt of agent j and rjt is the associated interest rate and
Y is the endowment that remains constant. We adopt the notation that bjt−1 is the amount
of debt contracted in period t − 1 and repaid in period t (inclusive of interest payments)
expressed in units of the consumption good. Hence the real value of debt contracted in
period t is bjt/(1 + rjt ). We also adopt the notation that a positive number for bjt denotes
debt, while a negative one an asset. T jt is a lump-sum transfer out of the control of the
agent.

Let us define the risk-free real interest rate by 1 + rt. We now consider the following
function for the interest rate faced by each agent j

1 + rjt =

{
1 + rt if bjt ≤ b̄t

(1 + rt)(1 + φ(bjt − b̄t)) if bjt > b̄t
(2)

This relationship, shown in Figure 1, says that if the borrower’s debt level is below b̄t
then he faces the risk-free rate 1 + rt. If he borrows more than b̄t, however, he needs to pay
a premium above the risk-free rate given by 1 +φ(bbt − b̄t). Hence as the borrowing increases,
so does the rate the borrower needs to pay. This can be thought of as a generalization of
the strict borrowing-limit in Eggertsson and Krugman (2012) where bt ≤ b̄t. That constraint
is obtained in the limit as φ → ∞ since in that case the borrower will never exceed the
borrowing limit; while in our case the borrower may choose to do so but at the expenses of
paying some premium over the risk-free rate.

Given the simple structure outlined above an equilibrium is a collection of stochastic
processes {Cb

t , C
s
t , r

b
t , r

s
t , b

b
t} that satisfies the following five equations

1

Cs
t

= βs(1 + rst )Et
1

Cs
t+1

(3)

1

Cb
t

= βb(1 + rbt )Et
1

Cb
t+1

(4)

1 + rbt =

{
1 + rst if bbt ≤ b̄t

(1 + rst )(1 + φ(bbt − b̄t)) if bbt > b̄t
(5)

Cs
t + Cb

t = Y (6)
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bbt = (1 + rbt )[b
b
t−1 + Cb

t −
1

2
Y ] (7)

where the first two equations are the consumption Euler equations of the saver and the
borrower respectively. The third equation determines the spread between the rate faced by
the borrower and the lender; it follows directly from (2). The fourth equation is the resource
constraint and finally the last equation is the budget constraint of the borrower. Some details
on how we arrive at these equations are in the footnote.4

It should be apparent from the equations above that the steady state is relatively straight-
forward to derive. The first two equations imply that the real interest rate faced by each of
the agents is given by their respective discount factors in steady state, i.e., 1 + rs = (βs)−1

and 1 + rb = (βb)−1. This, then, is enough to pin down the steady-state equilibrium debt
given by equation (5) so that

bb = b̄+ φ−1

(
βs

βb
− 1

)
which is shown with bbhigh in Figure 1. The steady state debt just derived suggests that the

borrower will borrow above the threshold b̄ to an extent so that the borrowing rate rb equals
the borrower’s discount rate. Notice the contrast to Eggertsson and Krugman (2012), which
can be obtained as a special case when φ→∞ and the debt limit is binding so that bb = b̄
and the borrower is at a corner solution.

The key thought experiment we want to consider is the case when the debt limit b̄ goes
from some “high” level to a “low” one, i.e. b goes from b̄high to b̄low, an experiment sometimes
referred to as a Minsky moment. This is shown in Figure 1. In the previous literature, such
as Eggertsson and Krugman (2012), then by assumption the household pays down their debt
immediately. Here, however, the borrower is no longer at a corner, instead, he is satisfying
the consumption Euler equation (4). In the absence of any deleveraging, the borrower is
faced with a higher borrowing cost than before, as shown in point B in Figure 1. The higher
borrowing cost, however, gives the borrower the incentive to pay down his debt over time,
to deleverage. The optimal dynamic path of deleveraging – which is in sharp contrast to the
immediate deleveraging in Eggertsson and Krugman (2012) – can be explicitly derived by
solving the dynamic equations (3)-(7), the solution of which we turn to next. The dynamic
deleveraging is what moves the borrower from point B down to point C in Figure 1 where
once again he faces an interest rate that is equal to the inverse of his discount factor, (βb)−1.

Figure 2 shows the path of each of the endogenous variables for illustrative values of
the parameters which will generally take the same form for a finite φ.5 The deleveraging
is accomplished over a period of time, which is determined optimally by the borrower as
seen in the third panel on the first column, where private debt to output falls from 108%

4The first-order conditions are derived via writing up a Lagrangian. Here we make the simplifying
assumption that the borrower takes bbt in the interest-rate premium function as exogenous (corresponding
to aggregate debt in the economy). In the general model we allow the spread function to depend upon both
individual and aggregate debt. We also make the assumption that the spread between the two interest rates
is rebated lump sum to the saver which is why no lump sum transfer appears in (7). In the general model we
put a little more structure on this by creating notation for banks, and assuming that the banks are owned
by the savers.

5Illustrative parameters assumed: φ = 0.055, Y = 1, βb = 0.9796, βs = 0.9852, b̄high = .9773, b̄low = .78.
The model is log-linearized around the steady state to generate the figures.
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A

B←−

C

1 + rsss

1 + rbss

1 + rbt

b̄low bblow b̄high bbhigh bbt

Figure 1: Plot of the function characterizing the cost of borrowing: equation (2) when b̄ = b̄high and
when b̄ = b̄low with b̄high > b̄low. The initial steady state is A when b̄ = b̄high. As b̄ moves to b̄low, the
equilibrium moves to B and then to the final steady state C along the shifted line. Note that bbhigh (bblow) is

the steady-state level of debt when the threshold is b̄high (b̄low).

to 88%.6 The borrower deleverages by cutting consumption and gradually paying down his
debt. What induces the borrower to deleverage is the rise in the interest rate he faces given
by rbt as shown in the second panel on the first column of Figure 2. Meanwhile, to make up
for this drop in spending the saver needs to correspondingly increase his own spending (since
all output is consumed). For this to happen we observe that while the borrower’s interest
rate rises, the saver’s interest rate drops in order to induce the saver to make up for the
decline in spending by the borrower. The interest rate faced by the saver may even reach
negative levels for a large enough shock to b̄. Since the saver’s rate is the risk-free short-term
interest rate, which will correspond to the nominal interest rate set by the central bank in a
more general setting, this will have major implications for monetary policy as we will soon
see.

A few comments are now appropriate. First, observe that since the speed of deleveraging
– as determined by how long the agent takes to reach their new level of steady-state debt –
is optimally determined in this economy, it is perhaps not hard to imagine for the reader at
this point that this speed may be affected by macroeconomic policy, an insight we will soon
confirm once we introduce endogenous production and endogenous macroeconomic policy.
Crucially this implies that the duration of negative real interest rate for a risk-less asset will
be endogenous, and this will be critical to many of our results. Second, note that there is
nothing in our experiment that depends on the gap between βb and βs to be large, which is
vividly shown in Figure 1. Even if this gap is small, as long as b̄high falls to b̄low, then a spread

6It should be noted that the shock b̄ expressed as a ratio of output –the variable b̄gdp− moves from 97.73%
to 78%.
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Figure 2: Responses following a deleveraging shock, b̄ moves from b̄high to b̄low, in the endowment-economy
model. Variables are: consumption of borrowers (Cb), consumption of savers (Cs), real interest rate on
borrowing (rb), real interest rate on saving (rs), debt of borrowers with respect to output (bgdp), the risk-
free borrowing threshold with respect to output (b̄gdp). Cb, Cs, are in percentage deviation with respect to
the initial steady state; rb, rs, bgdp and b̄gdp are in percent and at annual rates.

will open to exactly the same extent and the borrower will deleverage. In other words, the
dynamics of the deleveraging are independent of the difference between βb and βs, only the
steady state depends on this difference. In fact, even if βb → βs exactly the same thought
experiment can be done as we have already done. The reason this observation is important
is that it is convenient to assume that βb → βs for some (though not all) aspects of our
analysis. In particular, this assumption means that we can derive social welfare in a more
tractable way as we will soon see.7 Note that in the case in which βb → βs borrowing and
lending is no longer motivated by differences in discount factors. What defines borrowers
and lenders in this case is the initial asset distribution, whereby some agents are born with
debt, and others with assets.8 Before moving on to a more general setting, we now provide
more microfoundations for the spread function between borrowing and lending.

2.2 Banking and deleveraging

The purpose of the last section was to illustrate a basic debt-deleveraging mechanism in
an endowment economy, to motivate our general environment coming in the next section.
A key input in the analysis was the presence of a borrowing cost, which was reflected in a

7Indeed when βb < βs aggregate welfare cannot be written in a recursive way.
8In our example we can assume that debtors start from a level of debt bb = b̄high. Observe that while

there are initial conditions for debt consistent with lower values of the debt, it can be no higher than this
value in steady state. Taking this initial value as given, then, and assuming a debt deleveraging shock, the
new steady state will be uniquely defined as bb = b̄low, precisely as in our exercise above.

9



spread the borrower had to pay relative to the return saver obtained on his savings in the
case debt went above a certain “safe” level. Left unstated, however, is where this spread
comes from. In the general model of next section, we will specify the spread function in a
relatively broad way. Here we put more microfounded structure on borrowing and lending,
with explicit banking technology, to help the reader interpreting the general function we
present in the next section.

Broadly, we think of the spread function as stemming from two main sources. One reflects
that there is only a certain “safe” level of debt over which lending to a particular group of
individuals is risky and default might result. The other reflects cost of capital constraints
faced by the financial system as a whole. As we will see, we do not need to take a stance on
which is the ultimate source. Let us start with the first interpretation.

A bank is a technology that transforms deposit contracts of some people into loan con-
tracts of others. We assume only banks can produce loan contracts (i.e. the household
cannot lend directly to one another). Consider the profits of a bank issuing loans to a group
of individuals j (it can be a continuum of measure one), which are financed via deposits to
individual(s) i (here the identity of the depositors is not important, they could be many or
one, for we assume all depositors receive the same risk-free deposit rate which is determined
in equilibrium and is independent of the identity of the depositor). Imagine that within
the group of loans j, there is a probability γt(lt(j), b̄

j
t , b

b
t) that each loan is not repaid so

that in aggregate γt(lt(j), b̄
j
t , b

b
t)lt(j) are the resources lost by the intermediary in the lending

activity. This extra costs can be already predicted at time t. Intermediaries are unable to
distinguish ex ante who among the borrowers of type j will default. Assume now that this
probability is higher the further away the loan is from what the bank deems to be “safe”,
i.e. b̄jt . Similarly the higher is the aggregate level of debt in the economy bbt , the higher is the
probability of default. The terms of both the loan and the deposit contracts are determined
in period t to be paid out in period t + 1. At the end of period t some people abscond
with the money, in a way we will be precise below. In period t + 1 the remaining loans are
collected and deposits paid.

The profit of a bank offering loan contracts of type j and issuing deposits i is

dt(i)− lt(j)− γt(lt(j), b̄jt , bbt)lt(j) + EtRt,t+1{(1 + rbt )lt(j)− (1 + rdt )dt(i)} (8)

where Rt,t+1 is a stochastic discount factor used to price the real value of next-period income
flows.

The problem of the bank can be greatly simplified by the following assumption: Suppose
that if there are profits of these loan contracts, then the bank pays the profits to its owner
(the representative saver) in period t and only holds enough assets at the end-of-period to
pay off the depositor(s) in period t+ 1. This implies that (1 + rbt )lt(j) = (1 + rdt )dt(i) so that
the last term of the profit function drops out. Furthermore, using this to substitute out for
dt(i), we can simplify (8) to{

rbt − rdt
1 + rdt

}
lt(j)− γt(lt(j), b̄jt , bbt)lt(j)

in which case the problem of the bank is simply to choose how much to lend to borrowers j
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(which is financed by “hiring” depositors at the rate rdt ). This yields the first order condition

rbt − rdt
1 + rdt

= γ1
t (9)

where γ1
t ≡

∂γt(lt(j),b̄
j
t ,b

b
t)

∂lt(j)
lt(j) + γt(lt(j), b̄

j
t , b

b
t). The above problem looks exactly the same as

in the previous section if we make one additional assumption: “Fraud opportunities” and
thus default arrives exogenously to the savers when they can “pose” as borrowers. In this
case the proceeds of the fraud show up in the exogenous lump sum term in equation (1),
while the borrowers budget constraint remains unchanged. A “Minsky moment” can then be
defined as a sudden reduction in b̄jt which is the perceived borrowing capacity of the group
of borrowers of type j, which is also the borrowing capacity of the economy as a whole and
it shows up exactly in the same fashion as we have already analyzed.9

Consider now an alternative environment, namely that the spread reflects some cost of
funding which the banks face, this was our second interpretation of the shock triggering the
crisis. One example of such a constraint is capital requirement, that is, the bank needs to
hold a certain capital, kst , as a fraction ζ of its outstanding borrowing, bbt , i.e.

kst ≥ ζ
bbt

1 + rbt

in which ζ is the inverse of the leverage ratio of the bank. The bank raises this capital from
savers, so we need to adjust the saver’s budget constraint to reflect this while the borrower’s
one remains unchanged.10 Suppose lending some capital to the bank is completely risk-free
from the perspective of the savers, so that rkt = rst . In writing the bank’s problem, let us
now imagine, as in Jermann and Quadrini (2012) or Justiniano et al (2014), that there is
some cost of equity financing by the bank beyond rkt . In particular suppose that there is
a function f(·) which is weakly convex and captures the cost of equity financing above a
certain threshold k̄, with the property that f(1) = 0. The profit of the bank can now be
written as

Ψt+1 = (1 + rbt )b̃
b
t + (1 + rst )b̃

s
t − (1 + rst )k

s
t

[
1 +

1

ζ
f

(
(1 + rst )k

s
t

k̄

)]
, (10)

where we have appropriately re-scaled the function f(·) by ζ and defined b̃bt ≡ bbt/(1+rbt ) and
b̃st ≡ bst/(1 + rst ). Considering that the capital-requirement constraint binds in equilibrium
and that b̃bt + b̃st = kst , it is easy to show that the first-order condition of the optimization
problem implies

(1 + rbt ) = (1 + rst )

[
1 + F

(
(1 + rst )k

s
t

k̄

)]
,

in which

F

(
(1 + rt)k

s
t

k̄

)
≡ f

(
(1 + rst )k

s
t

k̄

)
+

(1 + rst )k
s
t

k̄
f ′
(

(1 + rst )k
s
t

k̄

)
.

9The first order condition (9) is in fact equivalent to the type of friction we assumed in equation (2). To
see this rewrite (9) as 1 + rbt = (1 + rdt )(1 + γ1t ) which reduces to (5) if we assume that γt = bbt − b̄t.

10In particular the saver’s budget constraint (1) should be written as bst/(1 + rst ) − kst = bst−1 − (1 +
rkt−1)kst−1 + Cst − (1/2)Y + T st .
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Using again the fact that the capital requirement binds in equilibrium (1 + rst )k
s
t = ζbbt , we

can further write the above first-order condition as

(1 + rbt ) = (1 + rst )

[
1 + F

(
ζbbt
k̄

)]
.

This, once again, gives a spread between the lending and the deposit rate which is a
function of the aggregate level of debt in the economy as in (2). Here, however, it comes
about due to capital constraints of the banks. In particular we can see that this spread may
be rising either because of an abrupt change in the required leverage ratio of the banks (an
increase in ζ), or because of an increase in the cost of the bank’s equity financing (a fall in
k̄). Any of the interpretations outlined above is valid for the general spread function that
we choose in the setup of the next section.

We will now extend the simple example discussed in the past two subsections into a more
general setting. The main new elements of this environment relative to the simple example
are that we will introduce endogenous production and explicitly model monetary and fiscal
policy.

2.3 General Environment

Imagine a closed economy lived in by a continuum of agents on a unitary interval. People
are grouped into “savers” of mass 1−χ, denoted by the subscript s, and “borrowers” of mass
χ, denoted by the subscript b. Utility of a generic agent is given by

Et

∞∑
T=t

(βj)T−t

[
1− exp(−zCj)− (LjT )1+η

1 + η

]
where j = s or b (11)

in which Et denotes the standard expectation operator; z is a positive parameter, βj is the
intertemporal discount factor in preferences, with 0 < βj < 1, and C is a consumption
bundle

C ≡
[∫ 1

0

C(i)
θ−1
θ di

] θ
θ−1

where C(i) is the consumption of a generic good i. There is a continuum of goods produced
on the interval [0, 1]; θ is the intratemporal elasticity of substitution between goods with
θ > 1; Lj is hours worked. We have chosen an exponential utility in consumption, common
in applied finance (see e.g. Calvet, 2001), as it makes aggregation a bit simpler. In a
companion appendix we show how the model can be solved for GHH preferences. As we
already noted in section (2.1), it helps deriving a social welfare function to assume that
βs −→ βb, an abstraction we will maintain for the rest of the paper.

Agents are subject to the following budget constraint

Bj
t

1 + ijt
= Bj

t−1 + PtC
j
t −W

j
t L

j
t −Ψj

t − Γjt + T jt (12)

where Bj, if positive, is nominal debt and conversely asset if negative. Pt is the price index
associated with the consumption bundle C, W j denotes wage specific to labor of quality j;

12



Ψj are profits from operating firms which produce goods while Γjt are profits from financial
intermediation (and/or fraud of the kind we discussed in last section); T jt are lump-sum
taxes.

The nominal interest rate ijt is specific to the agent. We now write down a more general
function for their interest-rate costs motivated by the banking technology outlined in the
last section. Savers, which in equilibrium hold assets, will once again get the risk-free rate
which we now specify in nominal term it. Instead borrowers, which in equilibrium are going
to contract debt, face a borrowing cost

1 + ijt = (1 + it)φ̃

(
bjt
b̄t
,
bt
b̄t
, ζt

)
(13)

which is proportional to the saving rate through a premium captured by the function φ̃(·, ·, ·).
The borrowing premium depends on agent j’s real debt, defined as bjt ≡ Bj

t /Pt, in reference
to a level b̄t which represents the maximum amount of real debt that can be considered risk-
free at a certain point in time. The premium is also a function of the aggregate debt (per

borrowers) given by bt =
(∫

χ
bjtdj

)
/χ again in reference with the same level b̄t. Finally, we

may also have an exogenous shift in this function captured by ζt, which could be modeled as
the leverage ratio in our model of banking detailed in the previous section (the parameter ζ)
or the cost of equity financing (the parameter k̄). When the individual and aggregate debt
levels are equal to b̄t, borrowing and saving rates coincide, this is similar to the inflection
point in Figure 1. It is required that φ̃(1, 1, ζ) = 1 in which ζ is the initial steady state of ζt.
Furthermore, we assume that it is always the case that φ̃(·, ·, ·) ≥ 1. The borrowing premium
is also non-decreasing with the increasing borrowing of agent j, i.e. we assume that the
derivative of the function with respect to the first argument is non-negative, φ̃bj(·, ·, ·) ≥ 0.
Moreover, at the risk-free level b̄t, the marginal cost of increasing the individual borrowing
capacity is zero, i.e. φ̃bj(1, ·, ·) = 0, which is a sort of optimality condition at the individual
level when borrowing is at the risk–free threshold. Finally, the borrowing premium is also
non-decreasing with the increasing aggregate borrowing, meaning that the derivative of the
function with respect to the second argument is non-negative φ̃b(·, ·, ·) ≥ 0. 11

The above framework implies first-order conditions associated with the optimal choices
of consumption, labor and asset holdings of savers and borrowers which are left to the
Appendix.

On the production side, we assume that there is a continuum of firms of measure one,
each producing one of the goods in the economy. The production function is linear in labor,
Y (i) = L(i). Here we make another key simplifying assumption. We assume that produc-
tion is a Cobb-Douglas indexes of the two types of labor as L(i) = (Ls(i))1−χ(Lb(i))χ.12

Given this technology, labor compensation for each type of worker is equal to total com-
pensation WjLj = WL where the aggregate wage index is appropriately defined by W =

11We further assume that φ̃b(1, 1, ζ) > 0 and φ̃bi,b(1, 1, ζ) + φ̃bi,bi(1, 1, ζ) > 0 where φ̃bi,b(·, ·, ζ) and

φ̃bi,bi(·, ·, ζ) are second derivatives.
12This assumption makes our model a bit simpler than, for example, Curdia and Woodford (2011) and

Eggertsson and Krugman (2012). In the latter work there is a labor supply effect of deleveraging which this
assumption allows us to abstract from.
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(W s)1−χ(W b)χ. This structure will greatly facilitate the aggregation of the model together
with the assumption of exponential consumption utility.

Given preferences, each firm faces a demand of the form Y (i) = (P (i)/P )−θY where
aggregate output is

Yt = (1− χ)Cs
t + χCb

t . (14)

Firms are subject to price rigidities as in the Calvo model. A fraction of measure (1 − α)
of firms with 0 < α < 1 is allowed to change its price which is going to apply at a generic
future period T with a probability αT−t. Furthermore this price is going to be indexed to
the inflation target over the period given by ΠT−t. A constant subsidy τ on firms’ revenues
is in place. The implied first-order conditions of the firms are shown in the Appendix.

To complete the characterization of the model we specify fiscal policy and assume that

T jt = τPtYt (15)

for each agent j implying the government budget constraint

(1− χ)T st + χT bt = τPtYt. (16)

The model is closed with the specification of monetary policy. Details on the model’s non-
linear equilibrium conditions are given in the Appendix.

3 Characterization: Post-crisis New-Keynesian model

Once we take a log-linear approximation of the equilibrium conditions around the initial
steady state in which b̄t = b̄high and ζt = ζ, our model takes a simple form and can represent
a stylized version of New-Keynesian models with heterogenous agents and financial frictions.
We denote the steady state by omitting time subscript to the variable in question.

The Euler equations of savers implies

EtĈ
s
t+1 − Ĉs

t = σ[̂ıt − Et(πt+1 − π)] (17)

where we have defined ı̂t ≡ ln(1 + it)/(1 + i), πt ≡ ln Πt, π ≡ ln Π and σ ≡ 1/(zY ). In
particular, we set Ĉj

t ≡ (Cj
t − Cj)/Y for each j = s, b.

A first-order approximation of the Euler equation of the borrowers implies

EtĈ
b
t+1 − Ĉb

t = σ
[
ı̂bt + υ

(
b̂t − d̂t

)
− Et(πt+1 − π)

]
(18)

where we have further defined ı̂bt ≡ ln(1 + ibt)/(1 + i), b̂t ≡ (bt − b̄high)/b̄high, d̂t ≡ (b̄t −
b̄high)/b̄high + (ζt− ζ)/ζ while υ ≡ εb (1, ζ) > 0 in which ε

(
bt/b̄t, ζ

)
is a function discussed in

the Appendix.13

It is key to note that d̂t can vary both for shifts in b̄t and ζt in an isomorphic way
so that there is no clear distinction between the two interpretations given in Section 2.2

13Note that the assumption already made that φ̃bi,b(1, 1, ζ) + φ̃bi,bi(1, 1, ζ) > 0 implies that υ > 0. Fur-
thermore, without losing generality, we have assumed the normalization εb (1, ζ) = εζ (1, ζ) .
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stemming from either tighter borrowing or lending constraints. In what follows, we focus on
a deleveraging shock triggered by a fall in b̄t.

The spread between borrowing and saving rates can be approximated as

ı̂bt = ı̂t + ϕ(b̂t − d̂t) (19)

where ϕ ≡ φb (1, ζ) > 0 is the steady-state elasticity of the premium function φ(bt/b̄t, ζt)
with respect to real debt and φ(bt/b̄t, ζt) ≡ φ̃

(
bt/b̄t, bt/b̄t, ζt

)
.14

A first-order approximation of the budget constraint of the borrowers delivers

b̂t =
1

β
(b̂t−1 + βı̂bt − (πt − π)) +

(1 + i)

b̃
(Ĉb

t − Ŷt), (20)

where Ŷt ≡ (Yt − Y )/Y and b̃ ≡ b̄high/Y .
Goods market equilibrium implies

Ŷt = χĈb
t + (1− χ)Ĉs

t . (21)

Equations (17), (18) together with (19), (20) and (21) constitute the aggregate demand block
of the model.

In a log-linear approximation, the supply block can be derived to obtain the standard
New-Keynesian Phillips curve

πt − π = κŶt + βEt(πt+1 − π) (22)

where we have defined κ ≡ (1− α)(1− αβ)(η + σ−1)/α.15

Equations (17), (18) together with (19), (20), (21) and (22) determine the equilibrium

allocation for
{
πt, Ĉ

b
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t

}∞
t=t0

given the specification of monetary policy and

given exogenous process d̂t and initial condition b̂t0−1.

3.1 A parallel with the textbook New-Keynesian model

Before going further it is useful to now explore the interpretation of the results we have
already obtained in the linearized model. In particular we can now show that the model we
have just sketched out generalizes the standard New-Keynesian model common in economic
textbooks. To see this, let us combine equations (17), (18), (19) and (21) to yield

Ŷt = EtŶt+1 − σ(̂ıt − Et(πt+1 − π)− rnt ) (23)

where rnt is now given by

rnt ≡ −χ(υ + ϕ)
(
b̂t − d̂t

)
. (24)

14Note that φb (1, ζ) = φ̃bj (1, 1, ζ) + φ̃b (1, 1, ζ) . Since φ̃bj (1, 1, ζ) = 0, the assumption already made that
φ̃b (1, 1, ζ) > 0 is needed to obtain ϕ > 0.

15Given the preferences’ specification assumed, the way wealth is distributed across the two types of agents
does not enter directly into the log-linear version of the AS equation, as instead in Curdia and Woodford
(2010).
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Meanwhile the AS equation is exactly the same as in the standard model, as we see in
(22). However, in the New-Keynesian benchmark model rnt is exogenous so that given a
policy rule for the nominal interest rate one can characterize an equilibrium in the model.
Here, however, rnt is endogenously determined. Hence, even if demand is still determined by
the real interest rate and expected future income, the level of private indebtedness will now
shift this standard demand relationship. In particular if the real value of private debt, b̂t, is
above the “target” value d̂t then private debt is too high, triggering a negative shock to the
natural rate of interest, i.e., a negative shock to demand. Equivalently if b̂t is below d̂t then
there is extra room for the indebted agents to spend, which acts as a positive demand shock.

Observe, however, that although d̂t is exogenous in the model, b̂t is endogenously deter-
mined. To solve for this variable, however, we need to solve the entire model using the set
of equations summarized in the last section.

4 Dynamic debt deleveraging

4.1 Calibration

While the main contribution of the paper is not a quantitative evaluation, it is useful to
parameterize the model to organize the following discussion and get a rough sense of the order
of magnitudes the debt deleveraging mechanisms can deliver. One of the key attractions of
the standard New Keynesian model is the short distance between the prototype pre-crisis
model and medium-scale models estimated for policy simulations. As we hope is transparent,
our extension is tractable enough so that it can be easily scaled up to a estimated medium-
size model, e.g. in the tradition of Smets and Wouters (2007).

We choose the parameters of the model from the existing literature when possible. We
then pick the size of the shock (i.e. bhigh to blow), as well as two parameters specific to
our model, φ and υ, to match the degree of household debt deleveraging observed since
2008. The variables in the model we look to proxy in the data, are household debt, bt,
and the borrowing rate, ibt . To match the evolution of these model variables to their data
counterparts as closely as possible we use as a criterion mean squared errors. The strategy
and data details are described in the Appendix. The data series are shown in figure 3 with
the dashed lines showing the data and the solid line the model output once the shock and
the parameters φ and υ have been calibrated. Table 1 shows all the parameter values of our
calibration.
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Figure 3: Figure (a) shows the dynamic of nominal debt as a percentage of GDP implied by the model
(blue continuous line) in comparison with the historical values of US nominal debt as a percentage of GDP
(red dotted line). Figure (b) shows the dynamic of the borrowers’ interest rate implied the model (blue
continuous line) in comparison with the US borrowers’ interest rate (red dotted line). Both variables are in
%.

A typical calibration approach is to pick parameters and shocks to match some specific
features of the data, and then explore the implications for other observables. Figure 4 shows
an exercise of this kind, assuming that the central bank attempts to target two percent
inflation unless it is precluded from doing so due to the ZLB (in which case ist = 0). In this
figure we inserted the shocks calibrated as described above and explore transition dynamics
for the other key endogenous variables, given the parameters assumed in Table 1. The
top row of Figure 4 shows the output of the model while the bottom row shows US data
counterparts from 2007 to 2015.16 There are a few takeaways. First, we see that the debt
deleveraging shock, chosen to measure actual debt deleveraging in the US data, generates
strong enough downward pressures on the nominal interest rate for the zero bound to be
binding. Second, the resulting recession is roughly of the same order as seen in the data.
Third, the model generates a drop in inflation, with actual deflation only appearing in a
single quarter, but then remaining below target until the ZLB stops being binding. In short,
the model generates a benchmark that at least in broad strokes paints a picture of movements
of the key model variables that are of similar order as observed in the US economy following
the crisis of 2008. It now becomes interesting to explicitly uncover the underlying dynamics
that generate this outcome and also explore the possible role for policy.

Before moving on it is worth pointing out a key feature of the data the model misses.
The short term nominal interest rate starts to rise at the end of 2012 in the model, hence
the recession lasts roughly 3 years. While actually the recession (as measured in deviation
of output from trend) did not last much longer than this, the bottom panel shows that the
short term nominal interest rates remained at zero until the end of 2015, full three years
longer. One reason for this failure of the model, is that the spread between the borrowing
and lending rate largely subsided by 2012, which the model interprets as saying that there
is no longer need for negative real rates to achieve its inflation target. Adding more internal
propagation to the model may resolve this issue, since we are here only considering the
most stripped down variation of the New Keynesian model that in general fails to generate

16See details in Appendix B.
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persistent responses to most shocks. Another way to rationalize the fact that the lift-off in
the simulation is earlier than in the data is that our model disregards some long-run secular
forces which have the effect of lengthening the duration of zero-lower bound, a theme of the
recent literature on secular stagnation (see e.g. Eggertsson and Mehrotra, 2014, Benigno
and Fornaro, 2015). Under this interpretation, we can think of the dynamics documented in
this paper as those that were specific to the financial crisis that could be layered on top of
the slower moving forces that the secular stagnation literature is about.
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Figure 4: The first row plots the model impulse responses of inflation, output gap, and interest rates
(continuos line: savers’ rate; dashed line: borrowers’ rate) following the deleveraging shock. The second row
plots the respective data counterparts.

4.2 Deleveraging when there are no frictions

With an interesting numerical example as a benchmark, that at least captures the quantita-
tive movements in some key variables, we can now study the interaction between endogenous
deleveraging and policy. Figure 5 starts with an example in which the central bank success-
fully targets two percent inflation, and the zero bound is not imposed. Equivalently we can
interpret this as the equilibrium allocation if all prices were flexible. This experiment is
helpful to clarify the main forces in the model in response to a deleveraging shock if other
frictions play no role.

In response to a deleveraging shock we see that first there is an increase in the spread
between the borrowing and the saving rate, ibt and it respectively, that is triggered by the
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Figure 5: Responses following a deleveraging shock when the central bank can target constant inflation
(or prices are flexible) without taking in consideration the zero-lower bound (line “IT”). Variables are:
consumption of borrowers (Cb), consumption of savers (Cs), hours worked of borrowers (Lb), hours worked
of savers (Ls), nominal interest rate on borrowing (ib), nominal interest rate on saving (i). Cb, Cs, Lb, Ls
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percentage deviation with respect to the steady state; π, rn and bgdp are in percent and at annual rates.
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exogenous shock b̄t. In response to this the borrowers find it optimal to start paying down
their debt – deleverage – so we see a decline in their outstanding debt bt in Figure 6. How
do the borrowers deleverage? In equilibrium they do so in two ways: By cutting down
their consumption, Cb

t , and by increasing their hours worked, Lbt . Note, however, that this is
perfectly offset by a drop in hours by the savers and an increase in their consumption. It is
clear why the borrowers decide to deleverage – they are facing higher borrowing costs. But
why do the savers increase their consumption and cut back their hours? The reason is that
the risk-free interest rate, ist , declines, which means that consumption today is now relatively
less expensive than it was before. This price change is a key to understand the problem we
shall see once we add more frictions to the model, because if there is a bound on how much
this interest rate can decline (due to the zero bound) that can create serious problems for
macroeconomic management. We can also see that the saver finds it in his interest to cut
back hours. The reason is that the higher consumption of the saver reduces his marginal
utility of consumption, in turn reducing his incentive to supply work.17

Figure 6 shows by how much the real interest rate needs to drop for output to remain
unchanged: by about 6 percentage points. The real interest rates that are consistent with
this equilibrium, however, are negative. For a central bank that targets inflation at 2 percent
(as we assume here) this means that if the natural rate of interest is below -2% then the
zero bound becomes binding and the equilibrium adjustment we have just explored is not
feasible. This is the case we now turn to.

4.3 Dynamic deleveraging at the zero bound

The key to the adjustment mechanism in response to a deleveraging shock, outlined in the
last section, was that, in response to cutbacks in spending by the borrower, the risk-free
interest rate declines, which induced the savers to make up for this drop in spending. As
revealed in Figure 6, however, this adjustment implies a negative interest rate faced by the
saver, which we assume is the rate controlled by the central bank. At two percent inflation
target, the real saving rate can be at -2 percent, even if the nominal rate is zero. It can’t
go any further than that, however, which is needed in our example, as shown in Figure 6.
Hence the zero bound is violated.

The first row in Figure 4 already showed us the drop in output and inflation triggered
by the fact that the central bank cannot accommodate the shock.18 Figure 7 clarifies that
the fact that the central bank hits the ZLB introduces an important endogenous component
to the dynamic deleveraging relative to when the ZLB was not imposed. Because the ZLB
is now binding, this reduces output and thus the income of the borrowers. This, in turn,
implies a slowdown in the pace of deleveraging. A simple way of seeing this is to compute
the statistic (24) that maps into the natural rate of interest of the standard New-Keynesian
model. The key point is that this process is now endogenous and, as we can see in Figure
7, the crisis means that it recovers more slowly (green line) than if policy had been able
to accommodate it fully. What this means is that endogenous deleveraging increases the

17Real wages of savers increase following the shock, and offset in part the wealth effect on their labor
supply. Without the increase in real wages, labor supply would fall twice as low.

18In Figure 7, and in what follows, the inflation-targeting policy considering the zero lower bound is defined
as πt = π whenever it > 0 otherwise it = 0.
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Figure 7: Responses following a deleveraging shock if the central bank can target constant inflation by
taking in consideration (line “IT”) and without taking in consideration (line “IT without zlb”) the zero-
lower bound. Variables are: output (Y ), inflation rate (π), nominal interest rate on savings (i), natural rate
of interest defined as in (24) (rn). Y is in percentage deviation with respect to the steady state; π, rn, i and
are in percent and at annual rates.

persistence of the crisis by creating a feedback between falling in income and a slowdown in
deleveraging. This will have important policy implication, as we soon shall see.

Another way to see the feedback between the ZLB and debt deleveraging is to con-
duct a slightly different thought experiment by comparing our model to the standard New-
Keynesian one.

4.4 Zero inflation target with and without endogenous deleverag-
ing

Consider the following thought experiment: Let us extract the real interest rate – or the
natural rate of interest – from the model of Section 3. This is the natural rate of interest in
our model in the case that monetary policy is able to target inflation at two percent when
we ignore the zero bound. Putting it differently, we can directly back this variable out of
equation (24) and this variable is what is shown in Figure 6.

If we treat this sequence of numbers as an exogenous variable into the standard NK model
described in Section 3.1 and ignore the zero bound we obtain exactly the same solution as
before, namely no output gap and inflation at target. But we can now also impose the zero
bound in that model too, and compare with our previous solution of Section 4.3, and ask
what happens. In the standard NK model, we are keeping the natural rate of interest as
purely exogenous and it follows the path shown in Figure 6. By comparing the two outcomes
we are then seeing what making the natural rate of interest endogenous does to our solution.
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Figure 8: Comparison between the responses to a deleveraging shock in the deleveraging model, under
inflation targeting and considering the zero-lower bound (line “IT”), with those of the benchmark New-
Keynesian model of Section 3.1, under inflation targeting and considering the zero-lower bound (line “IT in
NK”). (The responses of the two models coincide under inflation targeting without considering the zero-lower
bound). Variables are: output (Y ), inflation rate (π), nominal interest rate on savings (i), natural rate of
interest defined as in (24) (rn). Y is in percentage deviation with respect to the steady state; π, i and rn

are in percent and at annual rates.

That is, we can infer to what extent it matters that in our new model the drop in output
leads to an endogenous propagation by making it harder for the borrowers to deleverage,
thus delaying the recovery of the natural rate of interest to its steady state and prolonging
the crisis.

Figure 8 shows the evolution of output, inflation, the natural interest rate and the nominal
interest rate in the standard NK model (orange dashed line) and compares it to the dynamic
deleveraging model (green line) where we have constructed the shocks as described above.
We parameterize the NK model exactly like our current one, using the mapping shown in
Section 3.1. We see that, with endogenous deleveraging, both the effects on output and
inflation are bigger than in the standard case (and note that in the absence of the zero
bound each of the variables would have behaved exactly the same). The reason is that under
dynamic deleveraging then the output slack lowers the natural rate of interest further, and
makes it more persistent, leading to the zero bound being even more binding. Since aggregate
demand depends on the current and expected future nominal interest rate, expected inflation
and expected output, this feeds into lower demand today, thus lower output and inflation
and so on. We see that quantitatively this effect is quite large, the inflation and output drop
is more than double what it is without dynamic debt deleveraging, and that the zero lower
bound is binding for several more quarters once the endogenous persistence of the natural
rate of interest is taken into account.

Hence we conclude that adding dynamic deleveraging can have large impacts on the
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actual dynamics at the zero bound, both in terms of the persistence of the crisis (for a
given shock as measured by the natural rate of interest) and its impact. But what is the
implication of this for policy? That is the issue we now analyze.

5 Optimal policy under dynamic deleveraging

To consider optimal monetary policy, we first need to study how social welfare looks in our
model. We consider a benevolent policymaker maximizing the utility of the households in
the economy

Wt = Et

{
∞∑
t=t0

βT−t
[
(1− χ̃) (U(Cs

t )− V (Lst)) + χ̃
(
U(Cb

t )− V (Lbt)
)]}

(25)

for a generic weight χ̃ ∈ (0, 1). The heterogeneity in the model give rise to some special
consideration relative to the prototype New Keynesian model. Recall that our deleveraging
experiment brings the economy from one distribution of wealth to another. We approximate
our model around the efficient steady state and make the assumption that the economy
will reach the efficient allocation in the long run. This allows us to cleanly focus on the
relevant short-run trade-offs triggered by debt deleveraging. We can rationalize the long run
allocation as efficient by making an appropriate choice of the weight χ̃. The efficient steady
state is implicitly defined by the first-order conditions of the maximization problem of (25)
under the resource constraint

Yt = (Lst)
1−χ(Lbt)

χ = (1− χ)Cs
t + χCb

t . (26)

implying the proportionality of the marginal utility of consumption between borrowers and
savers

Uc(C
s
t )

Uc(Cb
t )

=
χ̃

(1− χ̃)

(1− χ)

χ
, (27)

through the parameter χ̃ in relation to χ.
Once we plug into (27) the steady-state levels of consumption of borrowers and savers

(given respectively by (A.22) and (A.23) in the Appendix) reached at the end of the delever-
aging period, it is easy to see that there is only one value of χ̃ which makes (27) consistent
with this final steady state. This is the value we pick for our welfare weights in (25). It also
implies that the optimal inflation rate coincides with the inflation target Π.19

We take a second-order approximation of (25) around the efficient steady state. In the
Appendix, we show that it is equivalent to the following quadratic loss function

Lt0 =
1

2
Et

{
∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(C̃

b
t − C̃s

t )
2 + λπ(πt − π)2

]}
. (28)

19If we choose an alternative weight χ̃ the final steady state will be inefficient creating an incentive for
policy to deviate from the inflation target Π in order to correct for the inefficient – final – distribution of
wealth. The presence of this “long-run” incentive is not convenient since it will blur the understanding of the
optimal adjustment following a deleveraging shock. Moreover, to deal with a distorted steady state, we have
to take a more complex approximation procedure through a second-order approximations of the equilibrium
conditions implied by the optimization problem of private agents and by the resource constraints. This
procedure comes at the cost of a less neat analysis without the benefits of getting much additional insights.
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The benevolent policymaker is concerned about the deviations of output and inflation from
their respective steady states as is standard in the literature. However, there is an additional
and new term in the loss function capturing the deviations of consumption of the borrowers
and savers from their respective efficient steady state. We have defined C̃j

t ≡ (Cj
t − C̄j)/Y

for each j where C̄j is indeed the efficient steady-state level.
We can also write these latter terms with respect to the initial steady state obtaining

equivalently

Lt0 =
1

2
Et

{
∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}

(29)

where cR captures the relative difference between the initial and final steady-state consump-
tion of borrowers and savers defined as cR ≡ [(Cb − C̄b)− (Cs − C̄s)]/Y .
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Figure 9: Responses following a deleveraging shock under optimal monetary policy with commitment (line
“Optimal Policy”) in comparison to inflation-targeting policy (line “IT”) taking in consideration the zero-
lower bound. Variables are: consumption of borrowers (Cb), consumption of savers (Cs), hours worked of
borrowers (Lb), hours worked of savers (Ls), nominal interest rate on borrowing (ib), nominal interest rate
on saving (i). Cb, Cs, Lb, Ls are in percentage deviation with respect to the steady state; ib and i are in
percent and at annual rates.

Optimal monetary policy minimizes (29). The policymaker would like to keep inflation
and output on target and at the same time achieve the efficient levels of consumption for
the two agents. However, the three objectives can only be simultaneously reached in the
long run. As shown in Section 4 and in particular in Figure 5, a deleveraging shock under
an inflation-targeting policy produces short-run divergences between the consumption of
borrowers and savers which are in contrast with the objective (28), even without taking into
account the zero-lower bound. Adding the zero-lower bound makes things worse since output
drops as shown in Section 4.3 and Figure 7.
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Figure 10: Responses following a deleveraging shock under optimal monetary policy with commitment
(line “Optimal Policy”) in comparison to inflation-targeting policy (line “IT”) taking in consideration the
zero-lower bound. Variables are: output (Y ), inflation rate (π), natural rate of interest defined as in (24)
(rn), aggregate debt to GDP (bgdp). Y is in percentage deviation with respect to the steady state; π, rn and
bgdp are in percent and at annual rates.

Optimal policy under commitment minimizes the loss function (29) by choosing the

sequences
{
πt, Ĉ

b
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t

}∞
t=t0

under the constraints (17), (18),(19), (20), (21) and

(22) given exogenous process d̂t and initial condition b̂t0−1, taking into account the zero-
lower bound constraint on the nominal interest rate. Details on the first-order conditions of
the optimal policy problem are left to the Appendix.

Figures 9 and 10 show the responses of some variables of interest to a permanent shock
on b̄t, and therefore on d̂t, under both optimal policy and inflation targeting considering the
zero bound on nominal interest rates. Optimal policy has a larger effect in the model than
the case in which it targets constant inflation. The way optimal policy works is to a large
extent similar to that in the standard NK model (see e.g. Eggertsson and Woodford, 2003).
In particular, as shown in Figure 9, optimal policy involves committing to keep the nominal
interest rate low for a substantial period of time longer than if the central bank is an inflation
targeter.20 The result of this commitment is an output boom and inflation during and after
the trap. A key difference is that this commitment is even stronger than in the standard
model because it implies an accommodation that is forceful enough that inflation overshoots
the two-percent target throughout the duration of the zero bound. In our numerical example
we see that inflation never undershoots it target at the ZLB, instead, it reaches almost 3
percent. This feature of optimal policy is new and different relatively to the standard model,
which we will now elaborate on.

20In Section 5.3 we will provide an interesting counterexample.
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5.1 Comparison to optimal policy in the standard NK model
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Figure 11: Comparison between the responses to a deleveraging shock. “Optimal Policy”: optimal policy
under commitment in the deleveraging model. “IT”: inflation-targeting policy considering the zero-lower
bound in the deleveraging model coinciding with the same policy in the standard NK model. “Optimal Policy
in NK”: optimal policy in the standard NK model. Variables are: output (Y ), inflation rate (π), nominal
interest rate on savings (i), natural rate of interest defined as in (24) (rn). Y is in percentage deviation with
respect to the steady state; π, i and rn are in percent and at annual rates.

To compare the optimal policy in the standard NK model to ours, we compute the natural
rate of interest from equation (24) assuming that the central bank follows a strict inflation
target and hits the zero bound. This is the basic exercise we carried out in Figure 7. If we
feed this process into the standard NK model and assume that it is exogenous, it is easy to
see that the solution of the NK model, under inflation targeting and considering the zero-
lower bound, is exactly the same as we already have in our model as shown in Figure 7. To
see this, notice that both models satisfy exactly the same equations (22) and (23) and that
the process rnt across the two simulations is by construction exactly the same. This baseline
case – which is the same across the two models – is reported in Figure 11 via a blue dashed
line. It is interesting now to ask: How does the optimal monetary policy look across the two
models? And should we expect it to be different?

First, one important difference is that the loss function of the benchmark NK model
corresponds to (29) but with λc = 0. Second, in our setting, policy will take into account that
its actions will endogenously affect the deleveraging process (and the natural rate of interest)
a consideration not present in the standard model. Figure 11 shows that the implications
of the two optimal policies are quite different in terms of output and inflation. In our
dynamic deleveraging model, optimal policy (line “Optimal Policy”) is aggressive enough
to bring about an immediate increase in inflation, thus overshooting the implicit inflation
target of the central bank by a significant amount. In the benchmark New-Keynesian model
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Figure 12: Comparison between the responses to a deleveraging shock. “Optimal Policy λc = 0”: optimal
policy under commitment in the deleveraging model when λc = 0 in (29). “IT”: inflation-targeting policy
considering the zero-lower bound in the deleveraging model coinciding with the same policy in the standard
NK model. “Optimal Policy in NK”: optimal policy in the standard NK model. Variables are: output (Y ),
inflation rate (π), nominal interest rate on savings (i), natural rate of interest defined as in (24) (rn). Y is
in percentage deviation with respect to the steady state; π, i and rn are in percent and at annual rates.

(line “Optimal Policy in NK”), inflation overshoots the target less aggressively and with
some delay while recovery peaks later. The most interesting feature in the comparison is
the behavior of the nominal interest rate. Optimal policy in our model implies an earlier
lift-off than in the standard model, even if it is consistent with a smaller drop in output
and inflation. How is it possible then that there is more expansion in output and inflation
under our model than in the benchmark NK case? The endogeneity of the natural rate
of interest explains this. The zero bound policy in the deleveraging model speeds up the
deleveraging and mitigates the fall in the natural rate of interest (as shown in the right-
bottom panel) resulting in a more expansionary policy once evaluated in terms of output
and inflation. There are no such feedback effects between policy and the natural rate in the
New-Keynesian model.

The difference in optimal policy is partially explained by the endogenous feedback be-
tween policy and the natural rate of interest under debt deleveraging, and partially by the
different objective functions the government has in the two models. Figure 12 assumes that
policy is set using the same objective: as already noted our more general model has an objec-
tive that coincides with the standard one when λc = 0 in (29) (in which case the policymaker
does not care about the distribution of income across the two agents). As we can see, op-
timal policy (but with the same objective as the standard NK model, the line “Optimal
Policy λc = 0”) yields more similar dynamics to the standard NK model (the line “Optimal
Policy NK”) with three important differences remaining. First, both inflation and output
overshoot their long term value earlier than in the standard case (and before the zero bound
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stops being binding). Second, we see that the optimal policy has the effect of increasing the
natural rate of interest above the level we feed exogenously into the NK model (in the latter
it corresponds to the green-dotted line in the panel on the natural rate). Third, and this is
related to the second point, we see that the optimal policy now prescribes a substantially
shorter duration of the zero interest rate than in the NK model while achieving a similar
pattern of inflation and output. The reason for this last point is not that the policy is less
aggressive. Instead – it is again because it is successful in endogenously raising the natural
rate of interest and generating an output boom and inflation that the liftoff of rates is now
earlier than it was in the absence of the policy easing, a point we return to in Section 5.3.

An important conclusion that emerges from the analysis, then, is that incorporating
heterogeneity between borrowers and savers has important implication for optimal policy
due to its welfare evaluation. In particular inflation policy becomes more attractive than in
the standard model. This stems from the fact that borrowers are suffering more than savers
in a debt deleveraging cycle, and hence their marginal utility is higher, and from the fact that
the government cares about how the cost of the recession is shared across agents. The utility
of borrowers, in turn, can be improved with higher inflation relative to the standard model.
Even if it comes at the expense of the savers, a government maximizing welfare of the form
(28) will pursue stronger inflation policy. In our model the labor market is perfectly flexible
so that one way in which the borrower can react to the shock is by increasing labor supply.
With more realistic frictions it is likely that the borrowers ability to deleverage by increasing
labor supply significantly decreases, thus making the case for inflation even stronger.

One interesting implication of our results is that our model provides theoretical rationale
for inflation policy based upon special consideration for borrowers, beyond the traditional
case made in the modern ZLB literature. The improved welfare of borrowers as a conse-
quence of inflation was in fact a key rationale for the inflationary policy pursued by the US
government during the Great Depression in 1933 (see Eggertsson, 2008).

5.2 Real versus nominal debt

A common rationale for inflation policy during the Great Depression, was the fact that debt
was contracted in nominal terms, and thus its real value had increased as a result of the
deflation in 1929-33. Inflation, in contrast, would depreciate the real value of this debt back
to its original level if aggressive enough. While this provides one rationale for inflation, there
are two other forces in our model that work in the same direction. Inflation also reduces the
real interest rate of debt being rolled forward, moreover, it stimulates output thus increasing
the income of the borrowers. Both effects will improve the ability of the borrowers to repay
the debt. Which effect is stronger? To disentangle the importance of these channels we can
abstract from the fact that the debt is contracted in nominal terms and instead index it
to inflation. Figure 13 shows that the differences between the two cases is quite marginal
with inflation and output a bit lower when debt is real. This suggests that in our example
inflation is desirable mainly because it supports income and reduces real interest rate on debt
rolled forward. Hence from a quantitative point of view, the inflation policy just shown is
not being delivered so as to depreciate the real value of debt of the borrowers via unexpected
inflation.

It is worth noting, however, that a key abstraction of our model is that all debt is one
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Figure 13: Responses following a deleveraging shock under optimal monetary policy with commitment
when debt is nominal (line “Benchmark”) in comparison to the case in which debt is real (line “Real Debt”)
taking in consideration the zero-lower bound. Variables are: output (Y ), inflation rate (π), nominal interest
rate on savings (i), natural rate of interest defined as in (24) (rn). Y is in percentage deviation with respect
to the steady state; π, i and rn are in percent and at annual rates.

period debt. An interesting extension is to consider how the results are affected by instead
introducing long term debt, which is better consistent with the data. While this may provide
stronger incentives for the government to inflate –to generate redistribution– it will also lessen
the government incentive to keep the short-term real interest rate low on freshly issued debt
(as much of the interest rates are predetermined). Which effect is quantitatively stronger,
in a more general quantitative model, remains to be seen.

5.3 A special case of earlier liftoff under optimal policy than in-
flation targeting

An important result we documented is that optimal policy implies a shorter duration at the
ZLB when the natural rate of interest is endogenous, than in the standard model (see Section
5.1). This is because optimal policy leads to a faster normalization in the natural rate of
interest than otherwise would have occurred. One of the key lessons from the standard
literature is that the optimal commitment typically implies a longer duration at the ZLB
than if policy was set to hit the inflation target of the central bank as soon as the ZLB is
no longer binding. This result provided one rationale for several central banks announcing
that they would keep short rates low beyond where people had expected them prior to those
announcements. This has been often referred to as “forward guidance”. In some cases, for
example, central banks explicitly tied themselves not to raise rates until some calendar date
far into the future (e.g. the Bank of Canada). The objective was to increase demand.
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Figure 14: Responses following a deleveraging shock under optimal monetary policy with commitment
(line “Optimal Policy”) in comparison to inflation-targeting policy (line “IT”) taking in consideration the
zero-lower bound for the special parametrization of footnote 5.3. Variables are: output (Y ), inflation rate
(π), nominal interest rate on savings (i), natural rate of interest defined as in (24) (rn). Y is in percentage
deviation with respect to the steady state; π, i and rn are in percent and at annual rates.

One interesting aspect of our theory is that optimal policy may in principle no longer pre-
scribe a longer duration at the ZLB. This, in turn, might in principle suggest that “forward
guidance” in terms of longer duration of short-term nominal rates at zero is counterproduc-
tive.

While we have been unable to provide to settle this question, numerical experiments
suggest that we need relatively extreme parameter configuration for the optimal commitment
to imply shorter duration at the ZLB than an simple inflation target. In particular one needs
to assume very high degree of price flexibility. Figure 14 shows one such example.21 The
Figure shows that deflation under the inflation-targeting policy is quite deep and that the
substantial increase in inflation under optimal policy is key to reduce the costs of deleveraging
and contain significantly the fall in the natural rate of interest. This makes possible an
earlier liftoff for optimal policy than under inflation targeting. It remains to be seen if such
examples can be constructed under less extreme parameter configurations, but our theory
of endogenous natural rate of interest at least provides for this as a theoretical possibility,
unlike the standard model.

21The parametrization used in Figure 14 is: κ = 10, β = 0.9938, ϕ = 0.0055, υ = 0.0011, b̄high = 0.2601
corresponding to a debt-to-GDP ratio of 10%, b̄low = 0.0260 corresponding to a debt-to-GDP ratio of 1%.
All the other parameters are as in Table 1.
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6 Government Spending

Monetary policy works through a commitment to actions in the future that may be dy-
namically inconsistent. Accordingly, many are skeptical about the extent to which it has
an impact which, in any event, is highly dependent on the credibility of the central bank.
A policy that is not subject to this problem to the same extent is fiscal policy, because it
involves taking direct actions today. Moreover, it has been shown to be highly effective in
the standard model when monetary policy is not capable of generating the appropriate com-
mitment, with very high multipliers of government spending, see e.g. Eggertsson (2011) and
Christiano et al (2012). It is of interest to see how endogenous debt deleveraging affect these
conclusions. Here we consider a simple experiment in which monetary policy is constrained
by targeting the inflation target of two percent, while we model fiscal policy as being able to
react directly to the shock. We define G the public expenditure which now enters aggregate
demand

Yt = (1− χ)Cs
t + χCb

t +Gt.

We assume that public expenditure is financed with lump-sum taxes. In particular we set
the following distribution of taxes between borrowers and savers

T bt =
ω

χ
Gt + τPtYt

T st =
1− ω
1− χ

Gt + τPtYt

implying the government budget constraint

(1− χ)T st + χT bt = Gt + τPtYt.

The parameter ω, with 0 < ω < 1 determines who is paying for public spending. When
ω = 0, the savers pay. When ω = 1, the borrowers pay while when ω = χ all pay in equal
shares. There are a few changes to account for in our model, given the above specification,
which are detailed in the Appendix.

We repeat the experiment of Section 4.4 where our model and the standard NK model are
aligned in implying the same responses under inflation targeting assuming also the zero-lower
bound. In this environment, we study the effects of an increase of government expenditure
in both models. In particular we set Gt = ψYt and calibrate ψ, eventually with different
values in the two models, in a way that the response of public spending in the first period
is 3% in both models. Given this endogenous and same impulse of fiscal policy, Figure 15
shows the responses of output, inflation, nominal interest rate and the natural rate with and
without public spending in the two models. In Figure 15, for the deleveraging model, we
assume that public spending is financed equally across savers and borrowers, i.e. ω = χ. In
Figure 16, we repeat the experiment for only the deleveraging model when ω = 0, χ or 1.22

Looking at the first-period response of output, we see that in both models, by construc-
tion, output drops by 6.79%. With a 3% increase in public spending in the first period,
output drops by 3.15% in our model, when assuming that financing of public spending is

22It should be noted that the value of ψ depends on the different assumptions on ω.
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equally shared across borrowers and savers (ω = χ). This implies a first-period multiplier
equal to 1.21. In the standard New-Keynesian model, the drop in output with a 3% increase
in public spending is 3.62% implying a multiplier of 1.05. A model in which the dynamic of
the natural rate of interest is endogenous and agents pay for spending in equal shares thus
implies a larger multiplier than in the standard model. However, if considering a different
redistribution of taxes in our model, we obtain a drop in output of only 1.76% if savers fi-
nance it all, with a larger multiplier of 1.67. Instead, if taxes are levied on borrowers, output
drops by more, 4.58%, implying multiplier lower than one, 0.736.
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Figure 15: Comparison between the responses to a deleveraging shock with and without public spending.
Line “IT”: inflation-targeting policy in the model of this paper without public spending which coincides
with the same policy under the benchmark NK model. Line “IT plus G, ω = χ”: inflation-targeting policy
in the model of this paper with public spending and equal financing across agents (ω = χ). Line “IT plus
G in NK”: inflation-targeting policy in the NK model with public spending. Variables are: output (Y ),
inflation rate (π), nominal interest rate on savings (i), natural rate of interest defined as in (24) (rn). Y is
in percentage deviation with respect to the steady state; π, i and rn are in percent and at annual rates.
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Figure 16: Comparison between the responses to a deleveraging shock with and without public spending.
Line “IT”: inflation-targeting policy in the model of this paper without public spending. Line “IT plus
G, (ω = 0)”: inflation-targeting policy in the model of this paper with public spending and financing all
on savers (ω = 0). Line “IT plus G, (ω = χ)”: inflation-targeting policy in the model of this paper with
public spending and equal financing across savers and borrowers savers (ω = χ). Line “IT plus G, (ω = 1)”:
inflation-targeting policy in the model of this paper with public spending and financing all on borrowers
(ω = 1). Variables are: output (Y ), inflation rate (π), nominal interest rate on savings (i), natural rate of
interest defined as in (24) (rn). Y is in percentage deviation with respect to the steady state; π, i and rn

are in percent and at annual rates.

7 Conclusions

In this paper we have extended the standard New Keynesian model to take into account
dynamic deleveraging. In doing so we provide a relatively general framework which we hope
will be useful for further applications. We kept the analysis as simple as possible to provide
a workhorse post-crisis model.

We have largely limited our focus to deleveraging shocks at the household side but we
have also remarked on the isomorphism with credit shocks capturing changes in the degree
of leverage of intermediaries or other financial constraints. The analysis can be extended
to study other sources of disturbances, like the more standard productivity and cost-push
shocks.

One main extension, as we see it, is to take the framework we develop and enlarge it into
a medium scale DSGE model that can be estimated. We have chosen not to do so here, in
order to obtain a tractable model that allows sharp analytic predictions about optimal policy
and clearly generalizes the existing literature on the zero bound. We hope future research
takes this analysis one step further into a fully estimated model, e.g., along the lines recently
pursued by Justiniano et al. (2014).

Finally, there could be many applications of the approach developed here to open economies
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or currency areas, to study the endogeneity of a country’s deleveraging embedded in an in-
ternational transmission mechanism. Benigno and Romei (2014), Bhattarai et al. (2015)
and Fornaro (2014) are examples in this direction.
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A Details of the general model of section 2.3

Households choose consumption and working hours to maximize utility (11) under the flow
budget constraint (12) and an appropriate borrowing-limit condition. As outlined in Section
2.1 we now make the simplifying assumption that βs → βb = β, in which case borrowing
and lending are still well defined but determined by initial conditions.

The Euler’s equation of savers implies

Uc(C
s
t ) = β(1 + it)Et

{
Uc(C

s
t+1)

Pt
Pt+1

}
. (A.1)

Borrowers are not price takers with respect to the borrowing cost since they understand that
it will be affected by their individual debt decision. For each individual j belonging to the
class of borrowers the following Euler equation can be derived:

Uc(C
j
t ) = β

(1 + ijt)

1− ε̃
(
bjt
b̄t
, bt
b̄t
, ζt

)Et{Uc(Cj
t+1)

Pt
Pt+1

}
, (A.2)

where the function ε̃ (·; ·, ·) captures the elasticity of the premium with respect to individual
real debt and is defined by

ε̃

(
bjt
b̄t
,
bt
b̄t
, ζt

)
≡ bjt
b̄t

φ̃bj
(
bjt
b̄t
, bt
b̄t
, ζt

)
φ̃
(
bjt
b̄t
, bt
b̄t
, ζt

) .

In equilibrium, borrowers are identical and choose the same level of debt bjt = bt. The
Euler equation (A.2) can be simplified to

Uc(C
b
t ) = β

(1 + ibt)

1− ε
(
bt
b̄t
, ζt

)Et{Uc(Cb
t+1)

Pt
Pt+1

}
, (A.3)

where ε
(
bt/b̄t, ζt

)
≡ ε̃

(
bt/b̄t, bt/b̄t, ζt

)
. In the same way, the relationship between borrowing

and saving rates can be written as

(1 + ibt) = (1 + it) · φ
(
bt
b̄t
, ζt

)
where (1 + ijt) = (1 + ibt) for each j belonging to the mass of borrowers and where we have
further defined φ(bt/b̄t, ζt) ≡ φ̃(bt/b̄t, bt/b̄t, ζt).

The optimal supply of labor implies that the marginal rate of substitution between labor
and consumption is equated to the real wage

Vl(L
j
t)

Uc(C
j
t )

=
W j
t

Pt
. (A.4)

for each agent j.
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On the production side, we assume that there is a continuum of firms of measure one,
each producing one of the goods in the economy. The production function is linear in
labor, Y (i) = L(i). Here we make another key simplifying assumption.23 We assume that
production is a Cobb-Douglas indexes of the two types of labor as L(i) = (Ls(i))1−χ(Lb(i))χ.
Given this technology, this implies that labor compensation for each type of worker is equal
to total compensation WjLj = WL where the aggregate wage index is appropriately defined
by W = (W s)1−χ(W b)χ. This structure will greatly facilitate the aggregation of the model.

Given preferences, each firm faces a demand of the form Y (i) = (P (i)/P )−θY where
aggregate output is

Yt = (1− χ)Cs
t + χCb

t .

Firms are subject to price rigidities as in the Calvo model. A fraction of measure (1 − α)
of firms with 0 < α < 1 is allowed to change its price which is going to apply at a generic
future period T with a probability αT−t. Furthermore this price is going to be indexed to the
inflation target over the period given by ΠT−t. Adjusting firms choose prices to maximize
the presented discounted value of the profits under the circumstances that the prices chosen,
appropriately indexed to the inflation target, will remain in place

Et

∞∑
T=t

(αβ)T−tλT

[
(1 + τ)ΠT−tPt(i)

PT
YT (i)− WT

PT
YT (i)

]
where λt is a linear combination of the marginal utilities of real income of the two agents,
λt = [(1−χ)Uc(C

s
t ) +χUc(C

b
t )], which is used to evaluate profits, since these are risk-shared

across agents. Moreover τ is a constant subsidy on firms’ revenues. The first-order condition
of the optimal pricing problem implies

P ∗t
Pt

= µ

Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ
WT

PT
YT

}
Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ−1

YT

} (A.5)

where µ ≡ θ/[(θ − 1)(1 + τ)] and in equilibrium Pt(i) = P ∗t since all firms adjusting their
prices fix it at the same price. The remaining fraction α of firms, not chosen to adjust
their prices, indexes their previously adjusted prices to the inflation target Π̄. Calvo’s model
further implies the following law of motion for the general price index

P 1−θ
t = (1− α)P ∗1−θt + αP 1−θ

t−1 Π1−θ. (A.6)

We assume that utility from consumption is exponential u(Cj) = 1 − exp(−zCj) for some
positive parameter z while disutility of working is isoelastic v(Lj) = (Lj)1+η/(1 + η). These
are convenient assumptions for aggregation and tractability purposes. We can see this by
taking a weighted average of (A.4), for j = s, b, with weights 1− χ and χ, to obtain

Lηt
z exp(−zYt)

=
Wt

Pt
, (A.7)

23This assumption makes our model a bit simpler than, for example, Curdia and Woodford (2011) and
Eggertsson and Krugman (2012). In the latter work there is a labor supply effect of deleveraging which this
assumption allows us to abstract from.
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where aggregate output and labor are related through Yt∆t = Lt and ∆t is an index of price
dispersion defined as

∆t ≡
1∫

0

(
Pt(i)

Pt

)−θ
di,

which follows the law of motion

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

. (A.8)

To complete the characterization of the model we specify fiscal policy and assume that

T jt = τPtYt

for each agent j implying the government budget constraint

(1− χ)T st + χT bt = τPtYt.

The model is closed with the specification of monetary policy.

A.1 Equilibrium conditions: A summary

Here, we describe the equilibrium conditions of our model in a more synthetic way. On the
demand side, Euler equations of savers and borrowers are

Uc(C
s
t ) = β(1 + it)Et

{
Uc(C

s
t+1)

1

Πt+1

}
, (A.9)

Uc(C
b
t ) = β

(1 + ibt)

1− ε
(
bt
b̄t
, ζt

)Et{Uc(Cb
t+1)

1

Πt+1

}
, (A.10)

where Πt ≡ Pt/Pt−1.
Borrowing and saving rates are related through

(1 + ibt) = (1 + it) · φ
(
bt
b̄t
, ζt

)
. (A.11)

The dynamic of borrowing is described by the flow budget constraint of the borrowers

bt
1 + ibt

=
bt−1

Πt

+ Cb
t − Yt (A.12)

which follows from (12) where we have substituted in (15) and firms’ profits, given by
Ψj
t = (1 + τ)PtYt −WtLt noting that WtLt = W j

t L
j
t . Moreover, we have set Γjt = 0 since

intermediaries are held only by savers.24

24It should be noted that if profits of intermediation were also rebated to the borrowers, the relevant
interest rate in (A.12) would be an appropriately weighted average of borrowing and saving rates.
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Goods market equilibrium connects borrowers’ and savers’ consumption to real output

Yt = (1− χ)Cs
t + χCb

t . (A.13)

The supply side of the model is characterized by the standard New-Keynesian aggregate-
supply equation, written in a recursive form, obtained by combining equations (A.5), (A.6),
(A.7) together with Yt = ∆tLt (

1− α
(

Πt
Π

)θ−1

1− α

) 1
θ−1

=
Ft
Kt

, (A.14)

where Ft and Kt satisfy:

Ft = λtYt + αβEt

{
Ft+1

(
Πt+1

Π

)θ−1
}
, (A.15)

Kt = µ
λt∆

η
tY

1+η
t

z exp(−zYt)
+ αβEt

{
Kt+1

(
Πt+1

Π

)θ}
, (A.16)

in which
λt = z[(1− χ) exp(−zCs

t ) + χ exp(−zCb
t )], (A.17)

and

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

. (A.18)

The above set of 10 equations (A.9) to (A.18) determines the equilibrium allocation for the
following stochastic processes of 11 endogenous variables

{
Cb
t , C

s
t , it, i

b
t , bt, Yt,Πt, Ft, Kt, λt,∆t}∞t=t0

given initial condition on bt0−1 and ∆t0−1 together with a policy rule and for given exogenous
sequence

{
b̄t, ζt

}∞
t=t0

considering the zero lower bound on the nominal interest rate it ≥ 0.

A.2 Steady State

Of particular importance is the steady state implied by the above equilibrium conditions,
since we are approximating our model through log-linear approximations. We consider an
initial steady state in which b̄t = b̄high, ζt = ζ and monetary policy sets inflation rate to the
target Πt = Π. It clearly follows from (A.18) that ∆t = 1. In this steady state, the Euler
equations of the savers, (A.9), and borrowers, (A.10), imply, respectively, that

(1 + i) = β−1Π, (A.19)

and

(1 + ib) = β−1Π

(
1− ε

(
b

b̄high
, ζ

))
(A.20)

while the borrowing premium is given by

(1 + ib)

(1 + i)
= φ

(
b

b̄high
, ζ

)
, (A.21)
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following equation (A.11).
Combining (A.19) to (A.21) we get

φ
(

b
b̄high

, ζ
)

1− ε
(

b
b̄high

, ζ
) = 1

which implicitly defines the level of debt b, for each borrower, with respect to the risk-free
threshold b̄high. In particular, under minor restrictions on the functions φ(·) and ε(·), b can
be set equal to b̄high implying that φ(·) = 1 so that borrowing and saving rates are equal
in the steady state, ib = i, while ε(·) = 0. In terms of the original function describing the
borrowing premium, as shown in (13), these results are consistent with the assumptions
already made that φ̃(1, 1, ζ) = 1 and φ̃bj(1, 1, ζ) = 0, where the latter captures the fact that
for each single borrower a change in their debt position with respect to the risk-free threshold
has zero marginal effect on the premium.

Having determined the steady-state level of debt, we obtain the consumption of each
borrower from (A.12)

Cb = Y − (1− β)

Π
b̄high,

while from the aggregate resource constraint (A.13), we obtain consumption of savers

Cs = Y +
(1− β)

Π

χ

1− χ
b̄high.

Given the policy rule Πt = Π, the aggregate-supply block of the model, characterized by
equations (A.14)–(A.16), implies that steady-state output is determined by

Y η

z exp(−zY )
= 1,

where we have also assumed a subsidy on firms’ revenues equal to τ = 1/(θ − 1) such that
µ = 1.

An important implication of our preference specification is that the steady-state level of
output is independent of the distribution of wealth, and therefore of the debt deleveraging
process. In particular, we are interested in studying the effects of a permanent reduction in
b̄ from b̄high to b̄low. Following this shock consumption of savers and borrowers converge to
new levels defined by

C̄b = Y − (1− β)

Π
b̄low, (A.22)

C̄s = Y +
(1− β)

Π

χ

1− χ
b̄low. (A.23)

B Calibration

To find new observables to calibrate the shock, we rely on our interpretation of the model
as being driven by debt deleveraging on the household side, but an alternative would be
to look at measures of disturbances in the banking system. As an empirical proxy for the
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household debt, we build a series of household debt over GDP, using the nominal debt series
of Households and Nonprofit Organizations in the Fred website.25 It is shown in Figure 17.
For this figure we illustrate three basic trends, in order to assess what debt level can be
considered “reasonable” post crisis. As an empirical proxy for borrowers interest rate we use
the Commercial Bank Credit Card Interest Rate. We show the borrowing rate in Figure 3,
panel (b). 26
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Figure 17: Plot of US Private Debt over GDP in percent. The Figure also shows trends for different
subsamples.

25Following Eggertsson, Ferrero and Raffo (2014), we approximate the GDP with the sum of Consumption
and Gross Investment from the NIPA tables.

26We took the series for the Account Interest Assessed. We chose the Commercial Bank Credit Card
Interest Rate series as it features an opposite pattern of cyclicality with respect to Federal Funds Rate after
the 2008. This measure of spread was fluctuating around 10%. Since in our model the steady state spread
is zero, we demeaned the data spread using the historical mean from 1995 to the first quarter of 2009. To
compute the borrowers interest rate we add this demeaned spread to the Federal Funds rate. It is important
to underline that having a positive spread in the steady state will not influence our results.
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The model and data are at a quarterly frequencies. The calibrated parameters, shown in
Table 1, are largely standard and taken directly from the literature as cited in the table.27

Particular to our model are the parameters φ and υ which govern the spread function.
The main new element of the calibration is the choice of shock which will be a one time
reduction in b̄ from b̄high to b̄low and the implication this has for the new observables we have
introduced. We use the data on debt to discipline the choice of b̄high to b̄low. We set the
initial debt, b̄high = 4.0869 to match the value of the debt over GDP in the second quarter
of 2008.28 We set the final debt, b̄low = 3.3384 to match debt over GDP equal to 88%,
observed in last quarter of 2015 (when the Federal Reserve increased its benchmark rate).
This is also an interesting benchmark for a reason shown in Figure 17. This figure draws
a trend line for the increase in the private debt to output ratio estimated for the period
1987-2000. The date 2001 marks the break point at which we see a very rapid increase in
debt, a period many have associated with “bubble”. The value 88% corresponds, as seen in
the figures, to the value of this trend estimated on 1987-2000 data in 2015 which happens
to coincide exactly with the observed value of real debt over GDP at that time.29 While
this is only one illustrative we experiment with other values as further discussed below. The
two key parameters that are left to be determined are φ and υ. These parameters capture
the characteristics of the function (13) that determines the discrepancy between borrowing
and lending rates and the extent to which households internalize this in their optimizing
decisions (which in turn determine the speed of debt deleveraging). Our strategy is to pick
these two parameters to match as closely as we can the data in Figure 3 using as a criterion
Minimum Mean Square Error of the data relative to the model. This procedure results in
φ = .055 and υ = .159.30

By construction the model matches the data in Figure 3 relatively well since we have
chosen φ and υ to minimize the distance of the model from the data . Let us now look at
what happens to variables we have not tried explicitly to match, feeding the shock into the
model, i.e. bhigh falls to blow. Figure 4 in the text shows the model and data. As empirical
measure we use annual percentage change in CPI for inflation and detrended GDP, through
HP filter, for the deviation of output from potential. The short term nominal interest rate
– i.e. the risk-free rate paid by the saver – is the Federal Funds rate.The duration of the
output contraction is about three years, which is similar to our measure of the output gap

27Except for, perhaps, the fraction of borrowing and lending where we rely on Justiniano, Primiceri and
Tambalotti (2015).

28Debt over GDP was equal to 107.73%
29We consider private debt over GDP at quarterly frequency from the first quarter of 1952 to the third

quarter of 2015. We divide this series into four subsamples: i) from the first quarter of 1952 to the second
quarter of 1964, ii) from the third quarter of 1964 to the second quarter of 1984, iii) from the third quarter
of 1984 to the fourth quarter of 1986 and iv) from the first quarter of 1987 to the fourth quarter of 2000.
We choose these subsamples since they have different linear trends. Excluding the third subsample, we
compute the linear trend of all these subsamples. We take the stance to consider the third subsample as a
discontinuity jump due to the short time span. Finally, we expand the linear trend of the fouth subsample
up to the third quarter of 2015.

30We create a grid of φ and υ. For every couple we simulate our model, assuming that the central bank
targets the inflation and that the nominal interest rate cannot go below zero. We compute the square
difference of the deleveraging in our model and in data as well as the square difference of the borrowers’
interest rate in the data and in our model. We pick the couple that minimize the sum of these square
differences, that is φ = .055 and υ = .159.
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according to the HP filter, which shows output back at trend around 2012.31 As noted in
the text the key discrepancy between the model and the data is the Federal Funds rate. We
have also experimented with increasing the duration of the recession by having b̄low lower.
Another natural benchmark, relative to the one we choose, is the value of household debt
over GDP in 2001 which was 76.5%. Accordingly, we have re-estimated the values of υ and
φ. This adjustment does indeed lengthen the duration of the zero-lower bound by about
three quarters. While output and inflation moves are of similar order, this parametrization
does a little bit worse in terms of matching the spreads and the debt deleveraging which is
why we focus on the numerical example considered in the text.

C Derivation of the loss function (28)

In this section we show the derivations of the second-order approximation of the welfare (25).
The approximation is taken with respect to an efficient steady state. This efficient steady
state maximizes (25) under the resource constraint (26).

At the efficient steady state the following conditions hold

(1− χ̃)Ū s
c = (1− χ)λ̄;

χ̃Ū b
c = χλ̄;

(1− χ̃)V̄ s
l = (1− χ)λ̄

Ȳ

L̄s
;

χ̃V̄ b
l = χλ̄

Ȳ

L̄b

where all upper bars denote steady-state values and λ̄ is the steady-state value of the lagrange
multiplier associated with the constraint (26). Note that the above conditions imply Ū s

c /Ū
b
c =

(1 − χ)χ̃/[χ(1 − χ̃)] so that an appropriately chosen χ̃ determines the efficient distribution
of wealth.

By taking a second-order expansion of the utility flow around the efficient steady-state,
we obtain

Ut = Ū + (1− χ̃)

[
Ū s
c (Cs

t − C̄s) +
1

2
Ū s
cc(C

s
t − C̄s)2

]
+

+χ̃

[
Ū b
c (C

b
t − C̄b) +

1

2
Ū b
cc(C

b
t − C̄b)2

]
+

−(1− χ̃)

[
V̄ s
l (Lst − L̄s) +

1

2
V̄ s
ll (L

s
t − L̄s)2

]
−

−χ̃
[
V̄ b
l (Lbt − L̄b) +

1

2
V̄ b
ll (L

b
t − L̄b)2

]
+O(||ξ||3)

31To be clear, we do not think this is the most reasonable estimate of the output gap, but we use it here
since it is very transparent and widely used, and thus helpful for illustrative purposes. We took the series of
GDP as previously defined from 1990 till the last data available. We divided it by the CPI and we de-trend
it by using the HP filter. Since this series is at quarterly frequency we set the multiplier λHP equal to 1600.
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where an upper-bar variable denotes the efficient steady state while O(||ξ||3) collects terms
in the expansion which are of order higher than the second. We can use the steady-state
conditions to write the above equation as

Ut = Ū + (1− χ)λ̄

[
(Cs

t − C̄s) +
1

2

Ū s
cc

Ū s
c

(Cs
t − C̄s)2

]
+

+χλ̄

[
(Cb

t − C̄b) +
1

2

Ū b
cc

Ū b
c

(Cb
t − C̄b)2

]
+

−(1− χ)λ̄
Ȳ

L̄s

[
(Lst − L̄s) +

1

2

V̄ s
ll

V̄ s
l

(Lst − L̄s)2

]
−

−χλ̄ Ȳ
L̄b

[
(Lbt − L̄b) +

1

2

V̄ b
ll

V̄ b
l

(Lbt − L̄b)2

]
+O(||ξ||3).

Note that for a generic variable X, we have

Xt = X̄

(
1 + X̃t +

1

2
X̃2
t

)
+O(||ξ||3)

where X̃t ≡ lnXt/X̄ and moreover recall that

Yt = χCs
t + (1− χ)Cb

t .

We can write the above approximation as

Ut = Ū + λ̄Ȳ

[
Ỹt +

1

2
Ỹ 2
t

]
− 1

2
λ̄z
[
(1− χ)(Cs

t − C̄s)2 + χ(Cb
t − C̄b)2

]
+

−χλ̄Ȳ
[
L̃st +

1

2
(1 + η)(L̃st)

2

]
−(1− χ)λ̄Ȳ

[
L̃bt +

1

2
(1 + η)(L̃bt)

2

]
+O(||ξ||3), (C.24)

where we have also used the fact that with the preference specification used Ū s
cc/Ū

s
c =

Ū b
cc/Ū

b
c = −z and V̄ s

ll L̄
s/V̄ s

l = V̄ b
ll L̄

b/V̄ b
l = η. Note that the efficient steady state of output

is equal also to the intial steady state of output. Therefore, in what follows we can use the
fact that Ȳ = Y and also clearly Ỹt = Ŷt.

Notice that conditions (A.4) and (A.7) imply

(Lst)
1+η

z exp(−zCs
t )

=
(Lbt)

1+η

z exp(−zCb
t )

=
(∆tYt)

1+η

z exp(−zYt)

where we have used WtLt = W s
t L

s
t = W b

t L
b
t and Lt = ∆tYt. The above equations imply

exactly that

L̃st = ∆̃t + Ŷt −
z

1 + η
[(Cs

t − C̄s)− (Yt − Y )],

L̃bt = ∆̃t + Ŷt −
z

1 + η
[(Cb

t − C̄b)− (Yt − Y )].
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and therefore that

L̃st = ∆̃t + Ŷt −
σ−1

1 + η
(C̃s

t − Ŷt),

L̃bt = ∆̃t + Ŷt −
σ−1

1 + η
(C̃b

t − Ŷt).

where C̃b
t ≡ (Cb

t − C̄b)/Y and C̃s
t ≡ (Cs

t − C̄s)/Y . Moreover,

C̃s
t − Ŷt = −χ(C̃b

t − C̃s
t )

C̃b
t − Ŷt = (1− χ)(C̃b

t − C̃s
t )

which can be substituted into (C.24) to obtain

Ut = Ū − 1

2
λ̄Y
{

(η + σ−1) · Ŷ 2
t + χ(1− χ)σ−1(C̃b

t − C̃s
t )

2 +

+χ(1− χ)
σ−2

(1 + η)
(C̃b

t − C̃s
t )

2

}
− λ̄Y · ∆̂t +O(||ξ||3).

Note that

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α) ∗

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

By taking a second-order approximation of ∆̂t, as it is standard in the literature and inte-
grating appropriately across time, we obtain that

∞∑
t=t0

βt−t0∆̂t =
α

(1− α)(1− αβ)
θ
∞∑
t=t0

βt−t0
(πt − π)2

2
+ t.i.p.+O(||ξ||3)

We can therefore write

Wt0 = −λ̄(η + σ−1)Y · 1

2
Et

{
∞∑
t=t0

βt−t0Lt

}
+ t.i.p.+O(||ξ||3)

where
Lt = Ŷ 2

t + χ(1− χ)λc(C̃
b
t − C̃s

t )
2 + λπ(πt − π)2

where we have defined

λc ≡
σ−1(1 + η) + σ−2

(1 + η)(η + σ−1)

λπ ≡
θ

κ
.
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D First-order conditions of optimal policy under com-

mitment

In this section, we characterize the optimal policy problem in details.
Optimal monetary policy under commitment minimizes the loss function

Lt0 =
1

2
Et

{
∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}

(D.25)

where cR captures the relative difference between the initial and final steady-state consump-
tions of borrowers and savers defined as cR ≡ [(Cb − C̄b)− (Cs − C̄s)]/Y. The minimization
constrained by the following set of structural equations of the model:

Ŷt = χĈb
t + (1− χ)Ĉs

t (λ1) (D.26)

EtĈ
b
t+1 − Ĉb

t = σ[̂ıbt − Et(πt+1 − π) + υ(b̂t − d̂t)] (λ2) (D.27)

EtĈ
s
t+1 − Ĉs

t = σ[̂ıst − Et(πt+1 − π)] (λ3) (D.28)

Ĉb
t =

b̄

(1 + i)
(b̂t − (̂ıbt))−

b̄

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt (λ4) (D.29)

ı̂bt = ı̂st + ϕ
(
b̂t − d̂t

)
(λ5) (D.30)

πt − π = κŶt + βEt(πt+1 − π) (λ6) (D.31)

−ı̂st + ı̂ss,t ≤ 0. (λ7) (D.32)

Note that in each of the above equations we have written on the right the respective
Lagrange multiplier.

First-order conditions of the optimal policy problem are:

Ŷt : Ŷt + λ1,t − λ4,t − kλ6,t = 0 (D.33)

Ĉs
t : − (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
− (1− χ)λ1,t − λ3,t +

λ3,t−1

β
(D.34)

Ĉb
t : (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
− (χ)λ1,t − λ2,t +

λ2,t−1

β
+ λ4,t = 0 (D.35)

π̂t : λπ(πt − π) + σ
λ2,t−1

β
+ σ

λ3,t−1

β
− b̄

(1 + i)β
λ4,t + λ6,t − λ6,t−1 = 0 (D.36)

ı̂st : −λ3,tσ − λ5,t − λ7,t = 0 (D.37)

ı̂bt : −λ2,tσ +
b̄

(1 + i)
λ4,t + λ5,t = 0 (D.38)
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b̂t : − b̄

(1 + i)
λ4,t +

b̄

(1 + i)
Etλ4,t+1 − φλ5,t − συλ2,t = 0. (D.39)

λ7,t(−ı̂st + ı̂ss,t) = 0. (D.40)

The set of first-order conditions together with the equilibrium constraints is solved using a
solution method which takes into account the zero lower bound (see also Eggertsson and
Woodford, 2003).

E Model with public expenditure

In this section, we discuss in details the extension of Section 6, in which we add public
expenditure.

The steady state of consumption for borrowers and savers and output is now defined by
the following equations

Cs = Y +
(1− β)

Π

χ

1− χ
b̄high − T s

Cb = Y − (1− β)

Π
b̄high − T b

Y η

z exp(−z(Y −G))
= 1,

which can be written as

Cs = Y +
(1− β)

Π

χ

1− χ
b̃Y − 1− ω

1− χ
sgY

Cb = Y − (1− β)

Π
b̃Y − ω

χ
sgY.

Y η

z exp(−z(Y − sgY ))
= 1.

where sg = G/Y , b̃ = b̄high/Y.
We calibrate the share of public spending over GDP at sg = 0.3. Given the other

parameters of Table 1, we can compute the steady-state of the model.
In a log-linear approximation around the steady state, the model can be written through

the following set of equations

EtĈ
b
t+1 = Ĉb

t + σ
[
ı̂bt − Et(πt − π) + λ

(
b̂t − d̂t

)]
(E.41)

EtĈ
s
t+1 = Ĉs

t + σ(̂ıt − Etπ̂t+1) (E.42)

ı̂bt = ı̂t + υ(b̂t − d̂t) (E.43)

Ŷt = χĈb
t + (1− χ)Ĉs

t + gt (E.44)

Ĉb
t =

b̄

1 + i
(b̂t − ı̂bt)−

b̄

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt − t̂bt (E.45)
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πt − π = κ

(
Ŷt −

σ−1

σ−1 + η
gt

)
+ βEt(πt+1 − π) (E.46)

where
gt = t̂t (E.47)

t̂bt =
ω

χ
t̂t (E.48)

t̂st =
1− ω
1− χ

t̂t (E.49)

and we have further defined the following variables

gt =
(Gt −G)

Y
t̂t =

Tt − T
Y

.

Note that the parameter ω is between 0 and 1. When ω = 0, the burden of public-
spending financing is on the savers. When ω = 1 all the financing is on borrowers while
when ω = χ is uniform across agents.

In Figures (12) and (14), first we compute the natural rate of interest in the deleveraging
model under inflation targeting and assuming that gt = 0. This is given by

rnt = −χ(ϕ+ υ)
(
b̂t − d̂t

)
. (E.50)

We then input the same rnt in the following NK model with public spending

(πt+1 − π) = κ

(
Ŷt −

σ−1

σ−1 + η
gt

)
+ βEt(πt+1 − π) (E.51)

Ŷt+1 − gt+1 = Ŷt − gt + σ [̂ıt − Etπt+1 − rnt ] (E.52)

Given gt = 0, the inflation-targeting policy of our model under zero-lower bound is
equivalent to the inflation-targeting in the NK model under zero-lower bound, for the path
of inflation, output and nominal interest rate. This is shown in Figure (12) with the lines
IT and IT in NK.

We then assume the following process for gt

gt = −ψŶt.
and consider a deleveraging shock of the same magnitude as before, again in the case in
which the central bank targets inflation and hits the zero bound. Considering the same
deleveraging shock and same rnt computed above, we set the parameter ψ in both models
in such a way that the initial response of gt is 3% in the first period in both models. This
means eventually that ψ is chosen in a different way in both models. In particular we repeat
this experiment for the three different cases, i.e. when ω = 0, χ, 1, in the deleveraging model,
implying therefore different choices of ψ.

Finally, it should be noted that when gt 6= 0 the natural rate of interest is computed as

r̃nt = −χ(ϕ+ υ)
(
b̂t − d̂t

)
− σ−1(Etgt+1 − gt)

in the deleveraging model while is given by

r′nt = rnt − σ−1(Etgt+1 − gt)
in the NK model.
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