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Long-Run Money Demand†
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We present a monetary model with segmented asset markets that 
implies a persistent fall in interest rates after a once-and-for-all 
increase in liquidity. The gradual propagation mechanism produced 
by our model is novel in the literature. We provide an analytical 
characterization of this mechanism, showing that the magnitude 
of the liquidity effect on impact, and its persistence, depend on 
the ratio of two parameters: the long-run interest rate elasticity of 
money demand and the intertemporal substitution elasticity. The 
model simultaneously explains the short-run “instability” of money 
demand estimates as well as the stability of long-run interest-elastic 
money demand. (JEL E13, E31, E41, E43, E52, E62)

This paper unifies two main views, or theories, on money demand. One is the 
transactions-based money demand that emerges in the models of, e.g., Baumol-

Tobin or Sidrauski. This theory predicts a stable downward sloping relationship 
between real balances and interest rates. This relationship is apparent in the low-
frequency data, e.g., those describing decade to decade movements. The second 
theory is the so called “liquidity effect,” namely that a central bank’s purchase of 
bonds, which increases the amount of money, creates a transitory but persistent 
decrease in interest rates. These patterns are apparent in high-frequency data, such 
as those used in the VAR literature for the identification of monetary shocks. This 
paper presents an analytically tractable model with segmented asset markets that 
unifies both ideas, displaying a stable long-run money demand, and explaining its 
short-term “instability” in terms of the liquidity effect. A new element of our model 
is a full characterization of the gradual propagation mechanism of monetary shocks 
in terms of a few structural parameters.
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We develop the model building on the ideas proposed by Grossman and Weiss 1983; 
Rotemberg (1984); Lucas (1990); Fuerst (1992); Christiano and Eichenbaum (1992); 
and others. In order to keep the analysis tractable these models, as well as the more 
recent search models using Lagos and Wright (2005) mechanism, abstract from the 
“lingering distributional effects” that follow an injection of liquidity.1, 2 Our model is 
simple enough to include these effects and yet to allow us to completely characterize 
its solution, including a full analysis of the dynamic transmission of monetary shocks, 
in terms of three primitive parameters: a measure of the segmentation of the bond mar-
kets, and two parameters related to the households’ intertemporal and intratemporal 
elasticity of substitution between real balances and consumption. A novel feature of the 
model is that as long as only a fraction of agents has access to open market operations, 
i.e., the bond market is segmented, the model displays a persistent liquidity effect even 
after a once-and-for-all increase in the money supply for any value of the parameters. 
The basic mechanism for the persistent liquidity effect is the redistribution of wealth 
that is caused by the operation. At the same time, and also novel in the segmented mar-
ket models applied to monetary shocks, we show that if the changes in money growth 
are nearly permanent, the model delivers a standard money demand function with a 
positive relationship between velocity and interest rates. These three parameters dictate 
the long-run elasticity of money demand, the strength and persistence of the liquidity 
effect, and the amplitude of the interest rates response to monetary shocks.

We give an explicit characterization of the central bank open market operations in 
terms of money supply changes and a corresponding fiscal policy. While monetary and 
fiscal policy are always intertwined, we show that monetary policy has a distributional 
component in the presence of segmented asset markets, a role that typically belongs 
to fiscal policy. We find this characterization both useful for the construction of equi-
librium, which gets simplified a lot, as well as for the substantive issue of interpreting 
open market operation as having a distributional impact toward the financial sector.

The model is useful to interpret several empirical facts about money demand. By 
combining the results for the dynamics of money growth, inflation and, interest rates, 
it provides a novel interpretation of the money demand data across low and high fre-
quencies. Assuming that the money growth rate is driven by both permanent and tran-
sitory shocks, our theory implies that the low-frequency changes in monetary growth 
rates will generate a time series revealing an interest-elastic money demand such as 
the one estimated by Lucas (2000), Ireland (2009), and Lucas and Nicolini (2012). 
Instead, the high-frequency changes of money growth will generate data points that do 
not lie on this money demand curve because of the liquidity effect. This assumption 
allows us to reconcile low-frequency US data on interest rate and velocity, displaying 

1 See, for instance, Lucas (1990): “In [2] and [13], (referring to Grossman and Weiss (1983), and Rotemberg 
(1984)) an open market operation that induces a liquidity effect will also alter the distribution of wealth [...]. These 
distributional effects linger on indefinitely (as they no doubt do in reality), a fact that vastly complicates the analy-
sis [...]. This paper studies this same liquidity effect using a simple device that abstracts from these distributional 
effects.” Fuerst (1992) uses the same assumption and comments: “This methodology is not without cost. By entirely 
eliminating these wealth effects, the model loses the persistent and lingering effects of a monetary injection cap-
tured, for example, in Grossman and Weiss (1983).”

2 The more recent “new monetary economics” literature likewise resorts to ingenious assumptions to achieve 
tractability. The quasi-linear preferences and the decentralized versus centralized markets a la Lagos-Wright make 
the equilibrium distribution of asset holdings degenerate. See Williamson and Wright (2010) for a review.
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an interest-elastic money demand, with the high-frequency data, featuring persistent 
deviations from it and very small (even positive) interest elasticities.3 Several authors 
have used high frequency data to document a persistent liquidity effect as well as 
a small interest elasticity after a monetary shock, see, for example, section 4.2.2 in 
Christiano, Eichenbaum, and Evans (1999) and our survey in online Appendix E. In 
Section IV, we interpret these facts using our model. In Section V, we evaluate the 
predictions of the model quantitatively by simulating a process for the growth rate of 
M1 compounding both a low- and a high-frequency component, and comparing the 
model predictions with the US data over the twentieth century.

Second, the predictions concerning the effects of transitory and persistent monetary 
shocks are useful to interpret the evidence in Sargent and Surico (2011) and Cogley, 
Sargent, and Surico (2011). They estimate that the correlation between interest rates 
and money growth is smaller than the one between inflation and money growth, and 
also show that these correlations vary from decade to decade.4 They also provide an 
interpretation of these facts in terms of changes in the systematic response of mon-
etary policy. Our model provides a complementary explanation of why, due to the 
liquidity effect, the correlation between money growth and interest rates is systemati-
cally smaller than the correlation between money growth and inflation.

Our model is closely related to the literature, both empirical and theoretical, 
where shocks to different “segments” of the asset market have mean reverting but 
persistent effects on relative prices because, due to frictions, capital moves slowly 
between them, e.g., Duffie (2010); Duffie and Strulovici (2012); Mitchell, Pedersen, 
and Pulvino (2007); or Edmond and Weill (2011). The model in this paper describes 
an economy with slow-moving capital and provides an analytical characterization 
of the link between the long-run behavior and the speed of adjustment. This mecha-
nism can likewise be used to study the effects of shocks to the wealth of the financial 
intermediaries (ω, defined below), a topical issue in current research and policy 
discussions, and how those relative wealth shocks will transmit onto interest rates.

The Setup and Main Results.—Our model is a version of the segmented market 
model in Alvarez, Lucas, and Weber (2001) where, instead of using a binding cash in 
advance constraint, we use a Sidrauski money in the utility function set-up. Markets 
are segmented in the sense that only a fraction λ of households (the “traders”) par-
ticipates in the open market operations implemented by the central bank to control 
the money supply. Our model further allows for heterogeneity in the wealth of trad-
ers and nontraders as measured by ω, the ratio of the steady-state consumption of 
each trader relative to the average across all agents. We show that the effect of seg-
mentation is completely summarized by the product of these variables: λω, which  
measures the fraction of long-term wealth of the economy commanded by the traders. 

3 Indeed the reconciliation between the high- and low-frequency fluctuations of money demand is one of the 
challenges discussed by Lucas (2000, 250): “The interest elasticity needed to fit the long-term trends (and very 
sharply estimated by these trends) is much too high to permit a good fit on a year-to-year basis. Of course, it is 
precisely this difficulty that has motivated much of the money demand research of the last 30 years, and has led to 
distributed lag formulations of money demand that attempt to reconcile the evidence at different frequencies. In my 
opinion, this reconciliation has not yet been achieved [...].” 

4 See e.g., the first row of table 1 and the solid lines in figure 5 of Sargent and Surico (2011).
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The household preferences are defined over a bundle h(c, m) made of consumption c 
and real money balances m. The intratemporal substitution elasticity between c and m 
is ρ, the intertemporal substitution elasticity for h is γ. We show analytically how the 
three parameters λ ω, ρ, γ determine the properties of the model steady-state and the 
economy’s response, in terms of interest rates and inflation, to money supply shocks.

We begin by showing that velocity is a function of an appropriately expected dis-
counted value of future monetary expansions, as occurs in the Sidrauski’s model as 
well as in related monetary models (i.e., cash-credit, shopping time, etc). This implies 
that the price levels (and hence the inflation rate) are also functions of future expected 
paths of money (and hence of the growth of money). Surprisingly, the relationship 
between inflation and money is, up to a first order, exactly the same regardless of the 
degree of segmentation, as measured by λ and ω, and, hence, it is the same as in an 
otherwise standard monetary model. Instead, the equilibrium nominal interest rate 
is determined by the real trader’s liquid asset, m/c, with an interest elasticity of −ρ.

The effects on interest rates of monetary shocks depend on whether they are tem-
porary or permanent. We illustrate this result considering two extreme cases. The 
first is a permanent increase in the growth rate of money supply. This immediately 
increases expected inflation and produces a persistent increase in nominal interest 
rates and no liquidity effect. The second is a once-and-for-all increase of the money 
supply. In this case there is a jump on impact in the price level, and no effect on 
expected inflation. The model with segmented markets necessarily produces a per-
sistent decrease in nominal interest rates: since the shock temporarily increases the 
m/c ratio of traders, they will only absorb the increase in money holdings at a lower 
interest rate. The size of the effect of a monetary expansion on interest rates is mea-
sured by the ratio of the total steady-state income of nontraders relative to the total 
steady-state income of traders, (1 − λ ω)/(λ ω). More segmented markets produce 
bigger liquidity effects at all horizons because the monetary expansion, which has 
to be absorbed by traders, is larger relative to the wealth of the traders. The param-
eter λ and ω have no other effect on the response of interest rates. The persistence 
of the liquidity effect is increasing in ρ/γ, the ratio of the interest-elasticity of the 
money demand relative to the intertemporal substitution elasticity. The ratio ρ/γ 
governs how long it takes to the m/c ratio of traders to return to its steady-state 
value. Intuitively, the convergence of m/c is slow when the intertemporal substi-
tutability of h is low (small γ), so that agents dislike fluctuations in the bundle of 
h(c, m), or when m and c are good substitutes (large ρ), so that agents do not mind 
to have the m/c ratio different from its steady-state value.

For temporary but persistent shocks to the growth rate of the money supply the 
impulse responses of the nominal interest rate ranges between the two extreme cases 
described above, depending on the assumed persistence of the growth rate of money. 
We show analytically that impulse response of the nominal interest rate to a persis-
tent shock is characterized by two eigenvalues. One is inherited from the persistence 
of the shock process itself. This component creates the classic “fisherian” response 
of the interest rate to changes in money growth and inflation. The other eigenvalue 
is related to the gradualism of the traders’ adjustment rule for m/c, which was  
discussed above and is determined by ρ/γ. This component creates the “liquidity” 
effect which can, at least temporarily, dominate the fisherian effect.
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Our model displays a liquidity effect for both unanticipated and anticipated mon-
etary shocks, although these effects may differ. In the model in Lucas (1990), and 
in versions of Christiano and Eichenbaum (1992) and Fuerst (1992), only unan-
ticipated shocks display liquidity effects. On the other hand, in Alvarez, Lucas, and 
Weber (2001); Occhino (2004); and Alvarez, Atkeson, and Kehoe (2002), there is 
no distinction between the effect of expected and unexpected monetary shocks on 
interest rates. The fact that both anticipated and unanticipated monetary shocks have 
an effect on interest rates, and that these effects differ, can be used in future applied 
work to estimate the impulse responses of interest rates by applying the identifica-
tion strategy proposed by Cochrane (1998).

Related Literature on the Liquidity Effect.—The model in this paper is a descen-
dent of the monetary models with segmented markets of Grossman and Weiss 
(1983) and Rotemberg (1984). These models are motivated by the hypothesis that, 
as described in Friedman’s presidential address, and in contrast with the working 
of simpler neoclassical monetary models, an open market operation that increases 
the quantity of money once and for all produces a protracted decrease of the nomi-
nal interest rate.5 In the models in these two papers agents are subject to a cash in 
advance constraint, but access to asset markets where open market operation takes 
place is restricted to a fraction of the agents. This fraction of agents, who holds 
only half of the money stock, have to absorb the entire increase on the money sup-
ply associated with the open market operation, which will be absorbed only with a 
lower real interest rate. Moreover, if this effect is large enough, the nominal interest 
rate decreases also. Mostly for tractability, these two papers assume that agents have 
access to the asset markets every other period. Not surprisingly, with this pattern of 
visits to the asset market, the effect of a once-and-for-all increase in money supply 
on interest rates are short lived. The largest effect is in the first two periods, after 
which there are small lingering echo effects.

Several monetary models of segmented asset markets have been written to ana-
lyze a variety of related questions since the seminal work of Grossman and Weiss, 
and Rotemberg. In all of them, some carefully chosen assumptions are used to avoid 
keeping track of the lingering effects on the cross-section distribution of asset hold-
ings produced by an open market operation. The simplifications have the advantage 
of allowing a sharper analytical characterization of the equilibrium. Examples of 
these are Lucas (1990); Alvarez and Atkeson (1997); Fuerst (1992); Christiano and 
Eichenbaum (1992); Alvarez, Atkeson, and Kehoe (2002); Alvarez, Lucas, and Weber 
(2001); and Occhino (2004), which are discussed briefly in online Appendix E.2. 
All these models have in common that an open market operation that produces a 
once-and-for-all increase in the money supply decreases interest rate on impact, but 

5 For instance, pages 5 and 6 of Friedman’s 1968 presidential address: “Let the Fed set out to keep interest rates 
down. How will it try to do so? By buying securities. This raises their prices and lowers their yields. In the process, it 
also increases the quantity of reserves available to banks, hence the amount of bank credit, and, ultimately the total 
quantity of money. That is why central bankers in particular, and the financial community more broadly, generally 
believe that an increase in the quantity of money tends to lower interest rates. [...] The initial impact of increasing 
the quantity of money at a faster rate than it has been increasing is to make interest rates lower for a time than they 
would otherwise have been. [...] after a somewhat longer interval, say, a year or two, [they will tend] to return interest 
rates to the level they would otherwise have had.”
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then the interest rate returns immediately to its previous level. These models also 
have in common that they produce a version of the quantity theory in which different 
permanent values of the growth rate of money supply are associated with different 
inflation rates, and, hence, via a Fisher equation, different nominal interest rates, 
but with the same level of velocity. In this sense, these models have an interest rate 
inelastic long-run money demand. In this paper, we introduce a modification of the 
setup in which a once-and-for-all increase in the money supply produces a persistent 
liquidity effect, due to the persistent redistribution effects of the open market opera-
tion, and additionally it implies a long-run, interest-elastic money demand.

There are a few models where a once-and-for-all increase in the money sup-
ply produces a persistent decline in interest rates. These models feature a different 
mechanism to generate persistence. An early example is the model in Christiano and 
Eichenbaum (1992). In their basic setup firms face a CIA constraint and, given the 
assumption on when the households have to decide their cash holdings, asset mar-
kets are segmented. In this setup, as well as in the closely related set-up of Fuerst 
(1992), liquidity effects are short lived.6 Christiano and Eichenbaum (1992) add 
to this basic setup a convex adjustment cost applied to changes in the households’ 
cash holdings. The adjustment cost naturally retards the adjustments, producing a 
persistent liquidity effect. Another example is Williamson (2008), who combines a 
segmented asset market model similar to Alvarez, Lucas, and Weber (2001), with 
persistent but mean reverting segmentation in the goods markets. In this setup, 
money spent by those connected to the asset market leaks slowly to the rest of the 
economy, spreading the effect of a once-and-for-all increase in money. A differ-
ent mechanism proposed in the literature for persistent liquidity effects is sticky 
prices, á la Calvo. Several papers focus on the conditions under which liquidity 
effects emerge in simple versions of these models, such as Gali (2002) and Andrés, 
López-Salido, and Vallés (2002). A shortcoming of these models is that they are 
unable to generate a liquidity effect and to be consistent with the features of long-
run money demand, such as a unit income elasticity and an interest elasticity around 
−1/2 (see online Appendix C for a more detailed discussion).

I.  The Model

Let U​( c, m )​ be the period utility function, where ​c​ i​ is consumption and ​m​ i​ are 
beginning-of-period real balances. We assume that U is strictly increasing and con-
cave. Let i = T, N be the type of agents: traders, of which there are λ, and nontrad-
ers, of which there are ​( 1 − λ )​, respectively. While the focus of the paper is on the  
analysis of the behavior of interest rates due to the unequal access to asset mar-
ket at the time of open market operations, we first describe the equilibrium in a 

6 Fuerst (1992) explains the lack of propagation in terms of his model very clearly: “As for the failures, the most 
glaring is that the model is lacking a strong propagation mechanism. The real effects of monetary injections are a 
result of (serially uncorrelated) forecast errors. These effects will therefore be strongest during the initial period of 
the shock.”...” This failure to achieve persistence is more a criticism of my particular modeling strategy than of this 
class of models as a whole. If it takes more than one period for the economy to re-balance its portfolio and ‘undo’ 
the monetary injection, then the effects of monetary shocks will of course persist. While this assumption may be the 
most natural, it is also somewhat intractable...”
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model without a bond market, and hence without open market operations. We do 
so because it is easier, and it highlights the logic of the determination of different 
equilibrium variables.

Time is discrete and starts at t = 0. The timing within a period is as follows: 
agents start with nominal beginning-of-period cash balances ​M​ t​ i​, they receive nomi-
nal income ​P​t​ ​y​ i​, and choose real consumption ​c​ t​ i​ and end-of-period nominal bal-
ances ​N​ t​ i​. Next period nominal cash balances, ​M​ t+1​ i

  ​, are given by this period nominal 
balances plus the nominal lump-sum transfer from the government, ​P​t+1​ ​τ​ t+1​  i

  ​. Their 
budget constraint at t ≥ 0 are

(1) 	​  N​ t​ i​  + ​ P​t​ ​c​ t​ i​  = ​ P​t​ ​y​ i​  + ​ M​ t​ i​ , ​ M​ t+1​ i
  ​  = ​ N​ t​ i​  + ​ P​t+1​​τ​ t+1​  i

  ​.

Our choice of the timing convention for this problem is standard and is consistent 
with an interpretation of U as a cash-credit good, as in Lucas and Stokey (1987). 
We use a Sidrauski money-in-the-utility function specification because, relative to a 
cash-in-advance model, it allows more flexibility to accommodate a stock m and a 
flow c, albeit in a mechanical way. We will return to the discussion of the specifica-
tion, and the relation between stocks and flows, below.

The problem of an agent of type i is

 	​   max   
​​{ ​N​ t​ i​ }​​ t=0​ 

∞  ​
​ ​E​0​​[ ​∑ ​ 

t=0
 ​ 

∞

 ​​β​ t​U​( ​c​ t​ i​ , ​M​ t​ i​/​P​t​ )​ ]​,
subject to (1) given ​M​0​. Notice that while we labeled the agents traders and nontraders, 
the budget constraint in (1) indicates that neither type of agent is allowed to trade 
in bonds or any other security. Their only intertemporal choice is the accumulation 
of cash balances. Yet, in Section IA, we show that the equilibrium of the model will 
be the same as one in which traders and the government participate in a market for 
nominal bonds.

Market clearing of goods and money is given by

 	  λ​c​ t​ T​  + ​ ( 1  −  λ )​ ​c​ t​ N​  =  λ​y​T​  +  (1  −  λ)​y​ N​,

 	  λ​M​ t​ T​  + ​ ( 1  −  λ )​ ​M​ t​ N​  = ​ M​t​

for all t ≥ 0. The government budget constraint is given by

 	​  M​t​  − ​ M​t−1​  = ​ P​t​​( λ​τ​ t​  T​  + ​ ( 1  −  λ )​ ​τ​ t​  N​ )​

for all t ≥ 1. Notice that the government budget constraint does not apply for 
t = 0, since our timing convention is that we start the period with the cash after 
transfers. To simplify the notation, in this section we assume that the government 
does not trade in bonds, an assumption that we remove in Section IA. We note 
for future reference that the budget constraint of the agents and market clearing 
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imply that aggregate beginning-of-period and end-of-period money balances are 
the same,

 	​  M​t​  = ​ N​t​  ≡  λ​N​ t​ T​  + ​ ( 1  −  λ )​ ​N​ t​ N​,

for all t ≥ 0. Notice that using the definition of ​N​t​ the budget constraint of the gov-
ernment follows from the budget constraint of the households:

 	​  M​t+1​  = ​ M​t​  + ​ P​t+1​​[ λ​τ​ t+1​ T
  ​  + ​ ( 1  −  λ )​ ​τ​ t+1​  N

  ​ ]​

 	  = ​ N​t​  + ​ P​t+1​​[ λ​τ​ t+1​ T
  ​  + ​ ( 1  −  λ )​ ​τ​ t+1​  N

  ​ ]​.

We define inflation ​π​t​ , growth rate of money, ​μ​t​ , beginning-of-period real balances, 
​m​t​, and end-of-period real balances, ​n​t​ as

 	​  π​t+1​  = ​ 
​P​t+1​

 _ ​P​t​
 ​ , ​ μ​t+1​  = ​ 

​M​t+1​
 _ ​M​t​

 ​ , ​ m​t​  = ​ 
​M​t​ _ ​P​t​

 ​, ​ m​ t​ i​  = ​ 
​M​ t​ i​ _ ​P​t​

 ​, ​ n​ t​ i​  = ​ 
​N​ t​ i​ _ ​P​t​

 ​,

for i = T, N, and t ≥ 0. With these definitions we write the budget constraints as

(2) 	​  c​ t​ i​  + ​ n​ t​ i​  = ​ y​ i​  + ​ m​ t​ i​    and   ​ m​ t+1​ i
  ​  = ​ n​ t​ i​/​π​t+1​  + ​ τ​ t+1​  i

  ​,  t  ≥  0,

market clearing as

(3) 	  λ​m​ t​ T​  + ​ ( 1  −  λ )​ ​m​ t​ N​  = ​ m​t​,

 	  λ​c​ t​ T​  + ​ ( 1  −  λ )​ ​c​ t​ N​  =  λ​y​T​  + ​ ( 1  −  λ )​ ​y​ N​,

 	  t  ≥  0

the money-growth identity as

(4) 	​  π​t​  = ​ μ​t​ ​ 
​m​t−1​ _ ​m​t​ ​ ,  t  ≥  0,

and the government budget constraint as

(5) 	​  m​t​  − ​ 
​m​t−1​ _ ​π​t​ ​   =  λ​τ​ t​ T​  + ​ ( 1  −  λ )​ ​τ​ t​  N​,  t  ≥  1.

The exogenous random processes for this economy are given by ​s​t​ ≡ (​μ​t​, ​τ​ t​  T​, ​τ​ t​  N​). 
We use ​s​t​ for the histories of such shocks, but we avoid this notation when it is clear 
from the context. The first-order condition for the agent’s problem with respect to ​
n​ t​ i​ , i = T, N is

(6) 	​  U​1​​( ​c​ t​ i​, ​m​ t​ i​ )​  = ​ E​t​​{ ​  β
 _ ​π​t+1​

 ​​[ ​U​1​​( ​c​ t+1​ i
  ​, ​m​ t+1​ i

  ​ )​  + ​ U​2​​( ​c​ t+1​ i
  ​, ​m​ t+1​ i

  ​ )​ ]​ }​,



Vol. 6 No. 2� 79Alvarez and Lippi: Persistent Liquidity Effects

for t ≥ 0, where the expectation is with respect to the realization of inflation and the 
lump-sum subsidy ​τ​ t+1​  i

  ​. The perturbation corresponding to this Euler equation con-
cerns a one-period increase in real balances. As in the case of a one period bond (with a 
real return equal to minus the inflation rate), the condition equates the current marginal 
utility of consumption with the discounted expected future utility of consumption plus, 
in this model with money in the utility function, the additional benefit of holding an 
extra amount of money for one period. We can now define an equilibrium:

Definition 1: Given initial conditions {​M​ 0​ 
i
 ​} and a monetary and fiscal policy 

described by stochastic processes { ​μ​t+1​, ​τ​ t+1​ 
T
  ​, ​τ​ t+1​ 

 N
  ​​}​ t = 0​ 

∞  ​, an Equilibrium is an initial 
price level ​P​0​, inflation rates {​π​t+1​​}​ t = 0​ 

∞  ​ , and stochastic processes {​n​ t​ 
i​, ​m​ t​ 

i​, ​c​ t​ 
i​, ​m​t​​}​ t = 0​ 

∞  ​ for  
i = T, N, such that: the budget constraints (2), market clearing (3), identity (4), the 
government budget constraint (5), and the Euler equations (6) hold.

We conclude this section with two comments on the setup. The first is that our 
convention for the timing of the model is one where the initial conditions ​M​ 0​ i

 ​ contain 
the period zero monetary injection, and thus ​τ​ 0​  i ​ and ​μ​0​ are not part of the setup. For 
instance, our convention entails that {​μ​1​, ​τ​ 1​  i ​} are random variables, whose realization 
is not known as of time t = 0. Second, in the monetary-fiscal policy described by (5), 
the resources obtained by monetary expansions can be used for redistribution across 
agents, since the lump sum transfers ​τ​ t​  T​ and ​τ​ t​  N​ are allowed to differ across types.

A. Interest Rates in an Equilibrium with an Active Bond Market

In this section, we introduce a bond market in which traders participate to the open mar-
ket operation. We show an equivalence result for the equilibrium with and without an active 
bond market, and analyze how the interest rate depends on the equilibrium allocation.

We assume that traders at time t have access to a bond market and a set of Arrow 
securities that pay contingent on the realization of ​s​t+1,​ which opens at the beginning 
of the period, before utility is realized (including money holdings), at the same time of 
the money transfer ​τ​ t​  T​. Thus, if a trader buys one nominal zero coupon bond in period t 
he reduces his money holdings ​M​ t​ T​ by ​Q​t​ dollars (the bond price), and increases next 
period holding of money in all states by $1. Let ​W​t​ be the beginning-of-period money 
stock, after the current period lump-sum transfer from the government but before par-
ticipating in the bond market. Let ​B​ t​ T​ be the number of nominal bonds purchased, and ​
A​t​(​s​t+1​) the quantity of Arrow securities that pay $1 contingent on the realization of ​
s​t+1​. The price of each of these securities at the beginning of period t is denoted by ​
q​t​(​s​t+1​). In this case we can write the budget constraint of the trader at time t and his-
tory ​s​ t​, which we omit to simplify the notation, as

 ​ ∑​ 
​s​t+1​

​ 
 

  ​ ​A​ t​ T​(​s​t+1​)​q​t​(​s​t+1​) + ​ Q​t​ ​B​ t​ T​ + ​ M​ t​ T​ = ​ W​t​,

 	​N  ​ t​ T​ + ​ P​t​ ​c​ t​ T​ = ​ M​ t​ T​ + ​ P​t​ ​y​ T​

 	​  W​t+1​(​s​t+1​) = ​ N​ t​ T​ + ​ B​ t​ T​ + ​ A​ t​ T​(​s​t+1​)+ ​ P​t+1​(​s​t+1​) ​τ​ t+1​  T
  ​(​s​t+1​)



80	 American Economic Journal: Macroeconomics� April 2014

for t ≥ 0. The interpretation is that during the period the agent chooses bond hold-
ings ​B​ t​ T​ and consumption ​c​ t​ T​, and given the budget constraint, this gives next-period 
cash balances before transfers ​N​ t​ T​. The last line shows the beginning-of-next-period 
cash balances, which include the cash from the bonds purchased this period and the 
cash transfer from the government. Equivalently, we can write the budget constraint 
in real terms as

(7) ​ ∑​ 
​s​t+1​

​ 
 

  ​ ​a​ t​ T​(​s​t+1​)​q​t​(​s​t+1​)  + ​ Q​t​ ​b​ t​ T​  + ​ m​ t​ T​  = ​ w​t​ ,

 	​  n​ t​ T​  + ​ c​ t​ T​  = ​ m​ t​ T​  + ​ y​T​, 

 	​  w​t+1​(​s​t+1​)  = ​ 
​n​ t​ T​  + ​ b​ t​ T​  + ​ a​ t​ T​(​s​t+1​)  __  

​π​t+1​(​s​t+1​)
 ​   + ​ τ​ t+1​ T

  ​(​s​t+1​),

where ​w​t​ = ​W​t​/​P​t​, ​a​t​ = ​A​t​/​P​t​, ​b​t​ = ​B​t​/​P​t​ and t ≥ 0. The government budget con-
straint is

(8) ​ ∑​ 
​s​t+1​

​ 
 

  ​ ​A​t​(​s​t+1​)​q​t​(​s​t+1​) + ​Q​t​ ​B​t​ + ​M​t​ − ​M​t−1​ = ​B​t−1​ + ​A​t−1​ + ​P​t​​[ λ​τ​ t​  T​ + ​( 1 − λ )​​τ​ t​   N​ ]​,

for t ≥ 1 or in real terms:

(9) ​ ∑​ 
​s​t+1​

​ 
 

  ​ ​a​t​(​s​t+1​)​q​t​(​s​t+1​) + ​Q​t​ ​b​t​ + ​m​t​ = ​ 
​b​t−1​ + ​a​t−1​ + ​m​t−1​  __ ​π​t​ ​  + λ​τ​ t​ T​ + ​( 1 − λ )​​τ​ t​  N​,

for t ≥ 1. The trader’s problem is to maximize utility by choice of  
​​{ ​n​ t​ T​, ​b​ t​ T​, ​a​ t​ T​ }​​ t=0​ 

∞
 ​ subject to (7), and given an initial condition ​w​0​.

The first-order condition for the choice of ​n​ t​ T​ was given in (6). The first-order con-
ditions for the choice of nominal bond holdings ​B​ t​ T​ and Arrow securities ​A​ t​ T​(​s​t+1​) are

(10) 	​  Q​t​​[ ​U​1​​( ​c​ t​ T​, ​m​ t​ T​ )​  + ​ U​2​​( ​c​ t​ T​, ​m​ t​ T​ )​ ]​

 	      = ​ E​t​​[ ​  β
 _ ​π​t+1​

 ​​[ ​U​1​​( ​c​ t+1​ T
  ​, ​m​ t+1​ T

  ​ )​  + ​ U​2​​( ​c​ t+1​ T
  ​, ​m​ t+1​ T

  ​ )​ ]​ ]​
 	​  q​t​(​s​t+1​)​[ ​U​1​​( ​c​ t​ T​, ​m​ t​ T​  )​  + ​ U​2​​( ​c​ t​ T​, ​m​ t​ T​  )​ ]​

  	     = ​ 
β Pr(​s​t+1​|​s​ t​ )  _ ​π​t+1​

 ​​ [ ​U​1​​( ​c​ t+1​ T
  ​, ​m​ t+1​ T

  ​ )​  + ​ U​2​​( ​c​ t+1​ T
  ​, ​m​ t+1​ T

  ​ )​ ]​,

where Pr(​s​t+1​|​s​ t​ ) is the probability of state ​s​t+1​ conditional on the history ​s​ t​. As 
standard in the money-in-the-utility models, the difference between the first-order 
conditions for bonds, i.e., equation (10), and the one for money, i.e., equation (6), 
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is that bonds have a price ​Q​t​ as well as a higher cost of acquiring them, since the 
agent can use money during period t, a feature captured by the term ​U​2​(c, m) in the 
left-hand side of equation (10).

Combining this first-order condition with the Euler equation (6), we obtain

(11) 	​  Q​t​  = ​ 
​U​1​​( ​c​ t​ T​, ​m​ t​ T​ )​

  __   
​U​1​​( ​c​ t​ T​, ​m​ t​ T​ )​  + ​ U​2​​( ​c​ t​ T​, ​m​ t​ T​ )​

 ​ ,

or, by letting ​r​t​ be the nominal interest rate, 1 + ​r​t​ ≡ ​Q​ t​ −1​, we can write

 	​  r​t​  = ​ 
​U​2​​( ​c​ t​ T​, ​m​ t​ T​ )​

 _ 
​U​1​​( ​c​ t​ T​, ​m​ t​ T​ )​

 ​ .

Notice that, given the timing assumptions for the bond market, interest rates are 
functions of the time t allocation, i.e., they do not involve any expected future val-
ues. For instance consider the utility function

(12) 	 U​( c, m )​ = ​ 
h​​( c, m )​​1−1/γ​ −  1

  __  
1 −  1/γ

 ​ ,  where  h​( c, m )​ = ​​[ ​c​1−1/ρ​ + ​​−1​​m​1−1/ρ​ ]​​​ 
ρ
 _ ρ−1 ​
​,

which has a constant elasticity of substitution ρ between c and m, a constant  
intertemporal substitution elasticity γ between the consumption-money bundles, 
and is a parameter. This case yields the constant elasticity, unitary income, money 
demand

(13) 	​  r​t​  = ​ 
​U​2​​( ​c​ t​ T​, ​m​ t​ T​ )​

 _ 
​U​1​​( ​c​ t​ T​, ​m​ t​ T​ )​

 ​  = ​  1 _ 


 ​ ​​( ​ ​m​ t​ T​
 _ 

​c​ t​ T​
 ​ )​​− ​ 1 _ ρ ​

​.

Finally, market clearing for Arrow securities and bonds, under the assumption 
that only traders participate in these markets, is

(14) 	​  b​t​  =  λ ​b​ t​ T​  and ​ a​t​(​s​t+1​)  =  λ ​a​ t​ T​(​s​t+1​),  ∀​s​t+1​

for all t ≥ 0. Next, we give an equilibrium definition for the model with an active 
nominal bond market:

Definition 2: Given initial conditions ​{ ​​ ˜ M​​ 0​ N​, ​W​0​ }​ and a monetary and fiscal 
policy described by stochastic processes ​​{ ​​  μ​​t+1​, ​​ τ ​​ t+1​ T

  ​, ​​ τ ​​ t+1​ N
  ​, ​​  b​​t​, ​​ a ​​t​ }​​ t=0​ 

∞
 ​, an Equilibrium 

with an active bond market is an initial price level ​​   P​​0​, inflation rate pro-
cess ​​{ ​​ π ​​t+1​ }​​ t=0​ 

∞ ​, stochastic processes  ​​{ ​​ n ​​ t​ i​, ​​  m​​ t​ i​, ​​ c ​​ t​ i​, ​​  m​​t​ }​​ t=0​ 
∞
 ​ for i = T, N, and stochastic 

processes ​​{ ​w​t​ , ​b​ t​ T​, ​a​ t​ T​, ​q​t​, ​Q​t​ }​​ t=0​ 
∞
 ​ that satisfy: the budget constraints for nontraders 

(2) and traders (7), identity (4), Euler equations for end-of-period cash balances 
(6), the government budget constraint (9), the first-order condition for bonds and 
Arrow securities (10), and market clearing (3) and (14).
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As in the equilibrium described in Definition 1, our convention for the initial con-
ditions ​W​0​, ​M​ 0​ N​ include the time zero money injection, and so neither ​τ​ 0​  i ​ nor ​μ​0​ are 
part of the definition. Instead ​B​ 0​ T​ and ​M​ 0​ T​ are choices for the traders, and, hence, bond 
prices ​Q​t​ are determined starting from period t = 0 on. The following proposition 
shows the sense in which the equilibrium with and without an active bond market 
are equivalent (see online Appendix A for all proofs).

Proposition 1: Consider an equilibrium in the model without bond mar-
ket: ​< ​P​0​, ​​{ ​π​t+1​ }​​ t=0​ ∞ ​, ​​{ ​n​ t​ i​, ​c​ t​ i​, ​m​ t​ i​, ​m​t​ }​​ t=0​ 

∞
 ​ >​, for initial conditions ​{ ​M​ 0​ i

 ​ }​ and pol-
icy ​​{ ​μ​t+1​, ​τ​ t+1​ T

  ​, ​τ​ t+1​  N
  ​ }​​ t=0​ 

∞
 ​  for i = T, N. Then, for any stochastic process of transfers to 

traders, {​​ τ ​​ t+1​  T
  ​​}​ t=0​ ∞ ​, there is an equilibrium with an active bond market that satisfies:

 	​ < ​​   P​​0​, ​​{ ​​ π ​​t+1​ }​​ t=0​ ∞ ​, ​​{ ​​ n ​​ t​ i​, ​​ c ​​ t​ i​, ​​  m​​ t​ i​, ​​  m​​t​ }​​ t=0​ 
∞
 ​ >​  = ​ < ​P​0​, ​​{ ​π​t+1​ }​​ t=0​ ∞ ​, ​​{ ​n​ t​ i​, ​c​ t​ i​, ​m​ t​ i​, ​m​t​ }​​ t=0​ 

∞
 ​ >​,

�with bond and Arrow prices {​Q​t​, ​q​t​​}​ t=0​ ∞ ​ given by (10) for all t ≥ 0, the fiscal and mon-
etary policy given by ​​{ ​​ τ ​​ t​  N​, ​​  μ​​t​ }​​ t=1​ 

∞
 ​ = ​​{ ​τ​ t​  N​, ​μ​t​ }​​ t=1​ 

∞
 ​, and ​​{ ​a​t​, ​b​t​ }​​ t=1​ 

∞ ​ satisfying (14) and:

 	​  
​a​t−1​  + ​ b​t−1​ _ ​​ π ​​t​

 ​   − ​ Q​t​ ​b​t​  − ​ ∑​ 
​s​t+1​

​ 
 

  ​ ​q​t​(​s​t+1​)​a​t​(​s​t+1​)  =  λ​( ​τ​ t​  T​  −  ˜ τ​​ t​  T​  )​,  t  ≥  1,

�with initial conditions ​​   M​​ 0​ N​ = ​M​ 0​ N​, ​W​0​ = ​M​ 0​ T​ − ​Q​0​(​a​0​ + ​b​0​)/λ, where ​a​0​ + ​b​0​ sat-
isfies an appropriately chosen present value.

The proposition shows that it is only the combination of monetary and fiscal trans-
fers that matters. While monetary and fiscal policy are always intertwined, as in the 
standard model with λ = 1, the fiscal policy that mimics an open market operation 
has a clear distributional component in the presence of segmented asset markets. We 
use this proposition to analyze an equilibrium where all monetary injections are car-
ried out through open market operations. To see this, first consider an equilibrium 
without an active bond market and where ​τ​ t​  N​ = 0. In this case, the budget constraint 
of the government is

 	​  M​t​  − ​ M​t−1​  =  λ​P​t​ ​τ​ t​ T​.

Then, using the previous proposition, we can construct an equilibrium 
where ​​   τ​​ t​  T​ = 0 for all t ≥ 0. The government budget constraint is

 	​  ∑​ 
​s​t+1​

​ 
 

  ​​q​t​(​s​t+1​)​A​t​(​s​t+1​)  + ​ Q​t​ ​B​t​  + ​ M​t​  − ​ M​t−1​  = ​ B​t−1​  + ​ A​t−1​,

which, in the case of a time varying but deterministic policy, is

 	​  Q​t​ ​B​t​ + ​M​t​ − ​M​t−1​ = ​B​t−1​,  t ≥ 1    or   ​ ∑​ 
t=1

 ​ 
∞

 ​​( ​M​t​ − ​M​t−1​ )​​( ​Π​ i=1​ t
  ​​Q​i​ )​ = ​B​0​.

In this equilibrium traders start with an initial value of government bonds that 
enables them to buy the present value of the future seigniorage. The equivalence 
of real allocations, in the equilibrium where transfers differ across agents and in 
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the one where money injections are carried out through open market operations,  
illustrates the sense in which open market operations with segmented asset markets 
have redistributive effects.

In Section  IV we will consider a fiscal monetary policy that is similar to the 
one described above. We will assume ​​τ​​ t​​ N​ = ​​ τ ​​ t​ N​ = ​​_ τ ​​ N​ and ​​ τ ​​ t​ T​ = 0. In this case non-
traders receive a transfer with constant real value ​​

_
 τ ​​ N​ and the government budget  

constraint is

 	​ ∑​ 
​s​t+1​

​ 
 

  ​​q​t​ (​s​t+1​)​A​t​(​s​t+1​)  + ​ Q​t​ ​B​t​  + ​ M​t​  − ​ M​t−1​  = ​ B​t−1​  + ​ A​t−1​  + ​ P​t​​( 1  −  λ )​ ​​_ τ ​​ N​.

We will discuss the choice of the steady state ​​
_
 τ ​ ​N​ in Section II.

II.  Approximate Aggregation with Segmented Markets

This section studies the determination of inflation in the model with segmenta-
tion, i.e., when the fraction of traders is λ ∈ (0, 1) and where each trader’s income 
relative to the average in the economy is ω ∈ (0, 1/λ). Given the equivalence estab-
lished by Proposition 1, the argument is developed using the simpler framework 
without an active bond market. In particular, we allow traders and nontraders to 
be subject to different arbitrary processes for ​​{ ​τ​ t​  N​ }​​ t=1​ 

∞
 ​ and ​​{ ​τ​ t​  T​  }​​ t=1​ 

∞
 ​. We show that, 

somewhat surprisingly, up to a linear approximation the relation between aggregate 
inverse velocity ​m​t​/y and money growth rates {​ μ​t​​}​ t=1​ ∞ ​ is independent of the degree 
of segmentation measured by λ and ω, and, hence, that it is the same one obtained 
in a model with a representative agent, where λ = 1 and ω = 1.

Consider the steady state with constant money growth at rate ​
_
 μ ​ = ​_ π ​ and a rep-

resentative agent with constant real income y, so aggregate seignorage and real bal-
ances solve

 	​  _ τ ​  = ​ _ m ​​(  ​_ μ ​  −  1 )​, ​ U​1​​( y, ​_ m ​ )​  = ​ 
β
 _ ​_ μ ​ ​​[ ​U​1​​( y, ​_ m ​ )​  + ​ U​2​​( y, ​_ m ​ )​ ]​.

We assume that per capita before tax real income for agents of each type is con-
stant and given by

 	​  y​ T​  =  ω y    and  ​  y​ N​  = ​  1  −  λ ω _ 
1  −  λ

 ​  y.

Furthermore we assume that the steady-state per capita share of seignorage of 
each type is proportional to their income share, i.e.

(15) 	​​  _ τ ​​T​  =  ω  ​_ m ​(​_ π ​  −  1)    and  ​​ 
_
 τ ​​ N​  = ​  1  −  λ ω _ 

1  −  λ
 ​ ​ _ m ​(​_ π ​  −  1).

We define an approximate equilibrium by replacing the Euler equations of each 
agent and the budget constraints by linear approximations around the values that 
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correspond to the steady-state consumption and real balances for each type. In this 
steady state, inflation satisfies ​

_
 μ ​ = ​_ π ​ and

 	​​
_
 m ​​T​  =  ω ​_ m ​, ​​ _ c ​​ T​  =  ω ​_ c ​    and  ​​ 

_
 m ​​ N​  = ​  1  −  λ ω _ 

1  −  λ
 ​ ​ _ m ​, ​​ _ c ​​ N​  = ​  1  −  λ ω _ 

1  −  λ
 ​ ​ _ c ​.

Let ​​  x ​​t​ ≡ x − ​_ x ​ denote the deviation of the variable x from its steady-state value ​
_
 x ​. 

The linearization of the Euler equation (6) gives

(16) ​​
_
 U ​​ 11​ i
  ​​​​  c ​​ t​ i​ + ​​

_
 U ​​ 12​ i
  ​ ​​  m​​ t​ i​

	     = ​ 
β
 _ ​_ π ​ ​ ​E​t​​[ ​( ​​

_
 U ​​ 11​ i
  ​ + ​​

_
 U ​​ 21​ 
i
  ​ )​​​  c ​​ t+1​ i  ​ + ​( ​​

_
 U ​​ 12​ i
  ​ + ​​

_
 U ​​ 22​ 
i
  ​ )​​​  m​​ t+1​ i  ​ ]​ − ​ 

β
 _ 

​​_ π ​​ 2​
 ​ ​E​t​ ​[ ​​

_
 U ​​ 1​ i
 ​ + ​​

_
 U ​​ 2​ 
i
 ​ ]​​​  π​​t+1,​

where the derivatives ​U​ i​ are evaluated at (​​_ m ​​ i​, ​​_ c ​​ i​). The linearization of the identity in 
(4), and the budget constraints in (2) and (5) give

(17) 	​​    π​​t​ = ​​  μ​​t​ − ​ 
​_ μ ​
 _ ​_ m ​
 ​ ​( ​​  m​​t​ − ​​  m​​t−1​ )​,

 	​​    m​​ t​ i​ = ​ 
​​  n ​​ t−1​ i

  ​
 _ ​_ π ​ ​  − ​ ​​

_
 n ​​i​ _ 

​​_ π ​​2​
 ​​ ​​  π​​t​ + ​​  τ ​​ t​ i​ ,

 	​​    m​​t​ − ​ 
​​  m​​t−1​ _ ​_ π ​ ​  + ​ ​

_
 m ​ _ 

​​_ π ​​2​
 ​ ​​  π​​t​ = λ​​  τ ​​ t​ T​ + (1 − λ)​​  τ ​​ t​ N​,

for i = N, T. We are now ready to define an approximate equilibrium.

Definition 3: Given initial conditions ​{ ​M​ 0​ i
 ​ }​ and a fiscal and monetary 

policy described by ​​{ ​μ​t+1​, ​τ​ t+1​  i
  ​ }​​ t=0​ 

∞
 ​  an Approximate Equilibrium is given by  

​​{ ​n​ t​ i​, ​m​ t​ i​, ​c​ t​ i​, ​m​t​ }​​ t=0​ 
∞
 ​  for i = T, N, and ​P​0​, ​​{ ​π​t+1​ }​​ t=0​ ∞ ​ that satisfy: market clearing (3), 

the linearized Euler equation (16), and the linearized constraints (17).

Using this definition we state our main result on aggregation:

Proposition 2: In an approximate equilibrium the processes for aggregate real 
balances and inflation ​​{ ​m​t​, ​π​t+1​ }​​ t=0​ 

∞ ​ and the initial price level ​P​0​ are the same for any 
λ ∈ ​[ 0, 1 ]​ and any ω ∈ ​( 0, 1/λ )​.

The proof of this result relies on linearity (see online Appendix A for details). 
In the equilibrium (without active bond markets) traders’ and nontraders’ deci-
sions are characterized by the same Euler equation, evaluated at different shocks for  
{​τ​ t​  i​ }, and the same inflation process. Linearizing these equations and using market 
clearing one obtains the aggregation result. This result is important for two reasons. 
First, substantively, it says that the relation between inflation and money growth, 
to a first-order approximation, is independent of the fraction of traders λ or their 
relative wealth ​ω​i​. Second, it shows that the equilibrium has a recursive nature. One 
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can determine first the path of aggregate real balances obtaining the process for 
inflation, as we do in Section  III, and then solve for the decision problem of the 
nontrader, obtaining the process for the nontrader consumption and real balances. 
Using feasibility and the process for aggregate real balances, one can finally solve 
for the traders’ real balances and consumption, which in turns gives us the interest 
rate from equation (11). Since the problem of the nontrader is a key intermediate 
step to determine the behavior of interest rates, Section IV analyzes it in detail. The 
reader who is not interested in the details of the derivation of the aggregate money 
demand, which due to the approximate aggregation are standard, can jump directly 
to Section IV. The relevant notation is summarized in equations (26)–(28).

III.  Velocity and Money Growth

In this section, we consider a model with one type of agent, or λ = 1, to obtain a 
description of inverse velocity and inflation as functions of future expected money 
growth rates, as in the representative-agent model of Sidrauski, or in Cagan’s. Our 
interest in the setup with λ = 1 comes from Proposition 2, which shows that the 
equilibrium path for aggregate inverse velocity and inflation is the same irrespective 
of λ ∈ (0, 1).

Using market clearing (​c​t​ = y) into the first order condition for m, and the infla-
tion identity ​π​t+1​ = ​μ​t+1​ ​m​t​/​m​t+1​ we can write

(18) 	​U  ​1​​( y, ​m​t​ )​ ​m​t​  = ​ E​t​ ​{ ​  β
 _ ​μ​t+1​

 ​​[ ​U​1​​( y, ​m​t+1​ )​  + ​ U​2​​( y, ​m​t+1​ )​ ]​ ​m​t+1​ }​.
Our next task is to analyze the behavior of this system. We first consider the 

steady state, the case where money supply grows at a constant rate ​
_
 μ ​ and ​

_
 r ​ is the net 

interest rate that corresponds to a constant money growth rate and inflation ​
_
 μ ​:

(19) 	​  
​U​2​​( y, ​_ m ​ )​

 _ ​U​1​​( y, ​_ m ​ )​
 ​  = ​ _ r ​  = ​ 

​_ μ ​
 _ 

β
 ​  −  1.

As in Lucas (2000) we interpret the function ​
_
 m ​ of ​

_
 r ​ = ​_ μ ​/β − 1, solving  

equation (19), as the “long run” money demand. For the case where U is given by 
equation (12), this money demand has a constant interest rate elasticity −ρ.

In what follows, we analyze a linearized version of the difference equation (18), 
expanded around a constant μ = ​_ μ ​ and m = ​_ m ​. We seek a solution for real balances 
as a function of the future expected growth of the money supply.

PrOposition 3: Let ​​  m​​t​ ≡ ​m​t​ − ​_ m ​, ​​  μ​​t​ ≡ ​μ​t​ − ​_ μ ​. Linearizing (18) around (19), 
we have:

(20) 	​​    m​​t​  =  α​E​t​​[ ​​  μ​​t+1​ ]​  + ​ ϕE​t​​[ ​​  m​​t+1​ ]​,  where

(21) 	  α  ≡  − ​ ​
_
 m ​ _ ​_ μ ​ ​ ​ 

​​
_
 U ​​1​ _  

​​
_
 U ​​1​  + ​ _ m ​​​

_
 U ​​12​

 ​	 and    ϕ  ≡ ​ 
β
 _ ​_ μ ​ ​ ​[ 1  + ​ 

​​
_
 U ​​2​  + ​ _ m ​ ​​

_
 U ​​22​ _  

​​
_
 U ​​1​  + ​ _ m ​ ​​

_
 U ​​12​

 ​ ]​,
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�and where  ​​
_
 U ​​i​, ​​
_
 U ​​ij​ are the derivatives of U​( · )​evaluated at ​( y, ​

_
 m ​ )​. With 0 < ϕ < 1, 

we can express its unique bounded solution as

(22) 	​​    m​​t​  =  α​∑​ 
i=1

 ​ 
∞

 ​ ​ϕ​i−1​​E​t​​[ ​​  μ​​t+i​ ]​,  t  ≥  0.

Thus, if 0 < ϕ < 1 and α < 0, future expected money growth reduces current 
real money balances. We briefly discuss sufficient conditions for this configuration. 
Equation (21) shows that the condition for α < 0 requires that ​U​1​ + m​U​12​ > 0, 
which is always the case if ​U​12​ > 0. The assumption of ​U​12​ > 0 has the interpreta-
tion that real balances are a complement to the consumption of nondurable con-
sumption, and will be maintained for the rest of the paper. Notice that −α( ​_ μ ​/​_ m ​) is 
decreasing in ​U​12​ > 0, starting from a value of 1 at ​U​12​ = 0.

When U is given by (12), the requirements for ϕ can be written in terms of con-
ditions on: γ, ρ, ​_ r ​, and ​

_
 m ​/y. Lemma 1 in online Appendix A.A4 shows that when 

ρ < ∞, a sufficient condition for ϕ < 1 and α < 0 is

(23) 	​   1 _ γ ​  <  1  + ​  1 _ ρ ​  + ​ 
y
 _ ​_ r ​  · ​ _ m​

 ​ ,

(otherwise if ρ = ∞, then ϕ = 1). Notice that condition (23) holds for a wide 
range of parameters of interest.7 For instance, with an annual nominal interest rate 
of 4 percent, annual money-income ratio of 1/4, and an elasticity of substitution 
between consumption and real balances of 1/2, so that ​

_
 r ​ = 0.04, ​_ m ​/y = 1/4, and 

ρ = 1/2, then γ has to be larger than 1/103, a condition that is satisfied by any rea-
sonable estimate of the intertemporal elasticity of substitution γ.

Lemma 1 also shows that the condition 0 < ϕ, which ensures monotone dynam-
ics, is:

 	​   1 _ γ ​  < ​   1 _ 
1  + ​ _ r ​

 ​ ​( 1  + ​  1 _ ρ ​  + ​ 
y
 _ ​_ r ​ ​_ m ​

 ​  + ​ _ r ​  − ​ 
​( 1/ρ  −  1 )​y

 _ 
​
_
 m ​
 ​  )​,

which is implied by (23) as long as the length of a time period is sufficiently small.

A. Linear State Space Representation for Velocity and Inflation

We specify a linear time series process for { ​​  μ​​t​} and rewrite the initial conditions 
exclusively in terms of real variables. We use a representation for inflation as a function 
of future money growth rates (as obtained from the linearization used in Proposition 3 
and the initial aggregate money balances. Using (17) and (22), we obtain

(24) 	​​​    π​​t​  = ​​   μ​​t​  + ​ 
​_ μ ​
 _ ​_ m ​
 ​ ​​  m​​t−1​  − ​ 

​_ μ ​
 _ ​_ m ​
 ​ α ​∑​ 

i=1
 ​ 

∞

 ​​ϕ​i−1​​E​t​​[ ​​  μ​​t+i​ ]​ ,  t ≥ 0.

7 Note that when U is given by (12) a sufficient condition for ​U​12​ > 0 is that the intertemporal elasticity of sub-
stitution, γ, is higher than the intratemporal elasticity of substitution between c and m, given by ρ.
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Notice that equation (17) is defined for ​π​0​ ≡ ​P​0​/​P​−1​ and ​μ​0​. This representation 
avoids us having to carry a nominal level variable, such as ​M​0​, as the initial state. 
Instead, the initial state is the real level of money balances, ​​  m​​−1​. We assume that the 
detrended growth of money supply ​​  μ​​t​ is a linear function of an exogenous state ​z​t​:

(25) 	​​    μ​​t+1​  =  ν ​z​t+1​, ​ z​t+1​  =  Θ​z​t​  + ​ ϵ​t+1​

for t ≥ 0, where ​z​0​ is given, ν is a k × 1 vector, Θ is a k × k matrix with k stables 
eigenvalues, and ​ϵ​t+1​ is a k × 1 vector of innovations. In this case,

	​​   m​​t​  =  α ​∑​ 
i=1

 ​ 
∞

 ​ ​ϕ​i−1​​E​t​​[ ​​  μ​​t+i​ ]​  =  α ν Θ​​[ I  −  ϕΘ ]​​−1​​z​t​,  t  ≥  0.

Replacing (25) into (24) we obtain

 	​​    π​​t​  =  ν ​z​t​  + ​ 
​_ μ ​
 _ ​_ m ​
 ​​​  m​​t−1​  −  α​ 

​_ μ ​
 _ ​_ m ​
 ​ ν Θ​​[ I  −  ϕΘ ]​​−1​​z​t​,  t  ≥  0.

For example, if ​z​t​ is a scalar that follows the AR(1) process ​z​t+1​ = θ​z​t​ + ​ϵ​t+1​ and 
ν = 1, then k = 1, ​​  μ​​t​ = ​z​t​, and Θ = θ, so that for t ≥ 0:

 	​​    m​​t​  =  α ​  θ _ 
1  −  ϕθ

 ​ ​​  μ​​t​ ,   ​​   π​​t​  = ​ 
​_ μ ​
 _ ​_ m ​
 ​ ​​  m​​t−1​  + ​ [ 1  −  α ​ 

​_ μ ​
 _ ​_ m ​
 ​ ​  θ _ 
1  −  ϕθ

 ​ ]​ ​​  μ​​t​ ,

given ​​  m​​−1​. Recall that α < 0 if (23) holds, so that real balances are decreasing in ​​  μ​​t​ 
and, hence, inflation increases more than one for one with ​​  μ​​t​. This is a well-known 
feature of the standard variable-velocity model.

We summarize the linear equilibrium representation for the aggregate economy 
as a function of the innovations ​​{ ​ϵ​t​ }​​ t=1​ 

∞ ​, the parameters ​{  ​_ μ ​/​_ m ​, α, ϕ, ν, Θ }​, and 
initial conditions ​z​0​ and ​​  m​​−1​ as follows:

(26) 	​​    m​​t​  =  κ ​z​t​, ​​   π​​t​  = ​ ( ​ ​
_
 μ ​
 _ ​_ m ​
 ​ )​ ​​  m​​t−1​  +  ζ ​z​t​,  ​  z​t+1​  =  Θ ​z​t​  + ​ ϵ​t+1​,

for all t ≥ 0, where the vectors ζ and κ are given by

(27) 	  ζ  ≡  ν ​( I  −  α​ 
​_ μ ​
 _ ​_ m ​
 ​ Θ​​[ I  −  ϕΘ ]​​−1​ )​,  κ  ≡  α ν Θ​​[ I  −  ϕΘ ]​​−1​.

For future reference, we also provide a formula for expected inflation:

(28) 	​  E​t​​[ ​​  π​​t+j​ ]​  = ​
_

 Π​ ​Θ​  j−1​ ​z​t​ ,  where ​
_

 Π​  ≡ ​ 
​_ μ ​
 _ ​_ m ​
 ​ κ  +  ζΘ.

As a special case, let ​z​t​ be a scalar and assume that ν = 1 and Θ = θ = 0, so that ​​  μ​​t​ is 
independently and identically distributed, we then have that real money balances are 
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constant (κ = 0), inflation is equal to money growth (ζ = 1), and, hence, expected 
inflation is constant (​

_
 Π​ = 0), or:

(29) 	  κ = ​
_

 Π​ = 0,    and    ζ = 1.

Finally, we examine the behavior of interest rates in the case of λ = 1 for the utility 
function in (12). Denoting ​​  r ​​t​ = ​r​t​ − ​_ r ​ and linearizing equation (13), we have: ​​  r ​​t​  
= −(1/ρ)​( ​_ r ​/​_ m ​ )​ ​​  m​​t​. Replacing ​​  m​​t​ by (26) and using ​

_
 μ ​ = ​_ π ​ to express shocks in 

percentage, we have:

(30) 	​  
​​  r ​​t​ _ ​_ r ​

 ​  =  − ​ 1 _ ρ ​ ​ κ ​_ π ​ _ ​_ m ​
 ​  ​ 

​z​t​ _ ​_ μ ​ ​ ,    t ≥ 0.

For instance, in the scalar case, where ​z​t+1​ = θ​z​t​ + ​ϵ​t+1​ and ν = 1, we have

(31) 	​  
​​  r ​​t​ _ ​_ r ​

 ​  = ​  1 _ ρ ​​( ​ −α _ ​_ m ​
 ​  )​ ​  θ ​_ π ​ _ 

1  −  ϕθ
 ​ ​ 
​​  μ​​t​ _ μ ​ .

Since α < 0 under our maintained assumptions, interest rates move in the same 
direction than ​​  μ​​t​, and, hence, there is no liquidity effect in the standard model. 
Additionally, nominal interest rates inherit the persistence of ​​  μ​​t​: in the case where 
θ = 0, so that ​​  μ​​t​ is independently and identically distributed, then the nominal inter-
est rate is constant.

IV.  Interest Rates with Segmented Markets

This section analyzes interest rates for the following fiscal-monetary policy. We 
consider a steady state, i.e., a value of ​

_
 m ​ for the aggregate balances that corresponds 

to a constant money growth rate ​
_
 μ ​ (the unconditional mean of the process for money 

growth). We set the fiscal policy as follows: ​τ​ t​  N​ = ​​_ τ ​​ N​ as described in (15), and endow 
the traders with an initial bond position that allows them to buy the seignorage not 
allocated to the nontraders, as outlined in Section IA, while giving them no direct 
transfers: ​τ​ t​  T​ = 0. In the absence of shocks, in a steady state, traders’ and nontrad-
ers’ allocations are proportional to their income. Yet, when there are shocks, traders 
must absorb all innovations to the money supply.

While our focus is on interest rates for simplicity, we analyze the equilibrium where 
there is no active bond markets, which in Section IA was shown to be equivalent to 
one where all the money injections are carried out through open market operations. In 
particular, as explained above, the nature of the equilibrium is recursive: we first solve 
for the process for inflation in the aggregate model, then we solve for the nontrader’s 
problem, which is done in the next subsection, and finally, using the equivalence of the 
allocations with and without an active bond market, we solve for interest rates.

We characterize analytically the response of interest rates to money growth shocks 
with different persistence by computing a linear approximation of the equilibrium. 
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Proposition 8 gives a closed-form solution for the impulse response of interest rates 
to a monetary shock, and Proposition 9 specializes the formula for the case of an 
independently and identically distributed money growth rate shock, expressing all 
the coefficients in terms of structural parameters. Section IVB further analyzes the 
cases with persistent increases in money growth. These results allow us to discuss 
the conditions under which interest rate responses are Fisherian or display a liquid-
ity effect, and if so, how persistent. Furthermore, we show that in the presence of 
segmentation the short-run interest elasticity of the money demand is much smaller 
than the long-run elasticity.  Section IVB also defines the short- and long-term inter-
est rate elasticity of money demand. Both the presence of a persistent liquidity effect 
after a monetary shock, and the small interest elasticity of money demand over the 
short run, have been documented by several authors, see, for example, section 4.2.2 
in Christiano, Eichenbaum, and Evans (1999).

A. The Nontrader Problem

We consider the problem of a nontrader choosing ​​{ ​n​ t​ N​ }​​ t=0​ 
∞
 ​, facing a constant 

real lump-sum transfer ​​
_
 τ ​​ N​, a given process for inflation ​​{ ​π​t+1​ }​​ t=0​ 

∞ ​, and given initial 
condition ​m​ 0​ N​ = ​n​ −1​ N

  ​/​π​0​ + ​​_ τ ​​ N​. We start by studying the nontrader problem assum-
ing inflation is constant at ​

_
 π ​ ≥ 1. In this case, the state of the problem is given 

simply by ​n​ t−1​ N
  ​. We solve for the optimal decision rule g​( · )​, that gives ​n​ t​ N​ = g​( ​n​ t−1​ N

  ​ )​,  
and find conditions under which it has a unique steady state  ​​

_
 n ​​N​ = g​( ​​_ n ​​ N​ )​ that is 

globally stable. Furthermore, we characterize the local dynamics of this problem, 
i.e., the value of ​g′​​( ​​_ n ​​N​ )​. In the second part of this section we use these results to 
characterize the solution of the linearized Euler equation when inflation follows an 
arbitrary process.

Assume inflation is constant at ​
_
 π ​ > 1, and consider the Bellman equation for the 

nontrader problem:

(32)  V​( n )​ = ​  max     
0 ≤ ​  n​ ≤ ​y​ N​ + ​​_ τ ​​ N​ + n/​_ π ​

​​{ U​( ​y​ N​ + ​​_ τ ​​ N​ + n/​   π​ − ˜ n​,  n/​
_
 π ​ + ​​_ τ ​​ N​ )​ + βV​( ​   n​ )​ }​.

The next proposition uses this equation to characterize the policy function ​   n​ = g(n), 
the uniqueness and stability of the steady state, and the value of ​g′​​( ​​_ n ​​ N​ )​, which is 
important to determine the speed of convergence to the steady state for the nontrader 
problem.

Proposition 4: Assume ​
_
 π ​ > 1, ​​

_
 τ ​​ N​ > 0, that U is strictly concave and bounded 

above, and 0 < ​U​12​ < −​U​11​. Then the function g(·) is strictly increasing, it 
has a unique interior steady state  ​​

_
 n ​​ N​ = g(​​_ n ​​ N​) that is globally stable, with 0 <  

​g′​​(  ​​_ n ​​ N​ )​ < 1.

Using the decision rule g​( · )​ and the budget constraint, we can define the optimal 
consumption rule. For future reference, it turns out to be more convenient to use m 
(real cash balances after the transfer) as the state.
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The budget constraint of the agent is given by ​m​ N​ = ​n​ N​/π + ​​_ τ ​​ N​ and ​m​N​ + ​y​ N​  
= ​c​ N​ + g​( ​n​ N​ )​. Thus, c​( ​m​ N​ )​ ≡ ​m​ N​ + ​y​ N​ − g​( ​[ ​m​ N​ − ​​_ τ ​​ N​ ]​ π )​ and ​c′​ ​( ​m​ N​ )​ is given 
by 1 − π ​g′​​( ​n​ N​ )​. The elasticity of the ratio ​m​ N​/c​( ​m​ N​ )​ with respect to ​m​ N​ is:

(33) 	 χ​( ​m​N​ )​  ≡ ​   ​m​N​ _ 
​m​N​/c​( ​m​N​ )​

 ​ ​ 
∂​( ​m​N​/c​( ​m​N​ )​ )​

  _ 
∂​m​N​

 ​   =  1  − ​   ​m​N​ _ 
c​( ​m​N​ )​

 ​ ​( 1  −  π ​g′​​( ​n​N​ )​ )​.

We are interested in this elasticity because the interest rate response to money 
shocks depends on the changes of the m/c ratio. Equation (33) shows that the eigen-
value ​g′​(​​_ n ​​N​), determining the persistence of the response to monetary shocks, also 
determines the impact effect of the monetary shock χ. Since the nominal interest 
rate is proportional to the m/c ratio of traders, see equation (13), a zero value of χ 
yields no liquidity effect, a positive value yields a liquidity effect.

In the next proposition, we specialize the utility function to U CRRA and h CES, as 
described in equation (12), and characterize the slope ​g′​(​​_ n ​​N​) and the elasticity χ​( ​​_ m ​ ​N​ )​.

Proposition 5: Assume ​
_
 π ​ > 1 and the utility function U with parameter  as 

given by equation (12), satisfying 0 < ​U​12​ < −​U​11​. For any values of the triplet  
ρ, r = ​_ π ​/β − 1 and ​​

_
 m ​​N​/​​_ c ​​N​ = ​_ m ​/​_ c ​ > 1, let  be such that r = ​U​2​/​U​1​ evaluated 

at ​
_
 m ​/​_ c ​. Then ​g′​​( ​​_ n ​​N​ )​ and χ​( ​​_ m ​​N​ )​ depend only on ​

_
 m ​/​_ c ​, ρ/γ, ​

_
 π ​, β. Moreover:  

0 < ​g′​​( ​​_ n ​​N​ )​ < 1, 0 ≤ χ​( ​​_ m ​​N​ )​. Finally ​g′​​( ​​_ n ​​N​ )​ and χ​( ​​_ m ​​N​ )​ are increasing in the ratio 
ρ/γ. Moreover, ​g′​​( ​​_ n ​​N​ )​ and χ​( ​​_ m ​​N​ )​ are independent of ω and λ.

This proposition is important because it characterizes the determinants of the per-
sistence of a liquidity shock: high values of ​g′​ (say close to 1) will make the adjust-
ment very slow and, hence, the effect of a shock very persistent. The proposition 
states that, somewhat surprisingly, the value of ​g′​ depends only on the ratio between 
the elasticities, ρ/γ, as opposed to the elasticities γ and ρ separately.8 That ​g′​ and χ 
are independent of ω and λ, the relative long-run level of wealth of the nontraders, 
follows immediately from the homotheticity of preferences and our assumptions 
on ​y​ N​ and ​​

_
 τ ​​ N​. Further, the proposition establishes that ​g′​ is increasing in the ratio: 

ρ/γ, so that convergence is fast (i.e., ​g′​ small) when the intertemporal substitution 
elasticity is high, and/or the intratemporal elasticity is small. To see why this is the 
case, consider the behavior of an agent who starts with cash balances below the 
steady state ​

_
 m ​. To reach the steady state, the agent must reduce consumption. If the 

reduction in consumption is large, then convergence to the steady state is fast, and 
the liquidity effect is short lived. It is easy to see that a fast adjustment could happen 
because of two reasons. First, if real balances and consumption are poor substitutes, 
so that ρ ≈ 0 and ρ/γ ≈ 0. In this case, the agent would like to keep m/c almost 
constant, which implies that ​g′​ is small. Alternatively, if the intertemporal substitu-
tion elasticity γ is very high and so ρ/γ ≈ 0. Since the agent substitutes intertempo-
rally very easily then the speed of convergence is high, or ​g′​ is small.

8 Recall that γ is the intertemporal elasticity of substitution of the bundle h, and that ρ is the intratemporal elas-
ticity of substitution between real balances and consumption.
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We conclude this part with a comment on the role of the steady-state value of  ​
_
 m ​/​_ c ​ 

in Proposition 5: the dependence of the speed of convergence on the ratio m/c is not 
standard, but it should be clear in this context. If the stock of money is very small 
relative to consumption, the effect of starting with a stock below the steady state can 
be quickly corrected: if  ​

_
 m ​/​_ c ​ = 1 then ​g′​​( ​​_ n ​​N​ )​ = 0, so the steady state is attained 

immediately. In other words, if the stock m is small relative to the flow c, it must be 
that the length of the model period is so big that it makes the analysis of convergence 
uninteresting. Indeed, in a continuous-time version of the nontrader problem, that 
deals more naturally with the stock/flow distinction, this condition is not needed.

So far we have analyzed the problem for a nontrader when inflation is constant. 
Now we move to the problem of the nontrader facing the (linearized) equilibrium 
process for inflation. We use the steady state ​​

_
 n ​​N​ to define ​​  n ​​ t​ N​, the deviations of the 

end-of-period real cash balances ​​  n ​​ t​ N​ ≡ ​n​ t​ N​ − ​​_ n ​​N​. Notice that a bounded process  
​​{ ​n​ t​ N​ }​​ t=0​ 

∞
 ​ satisfying the Euler equation (6) is a solution to the nontrader’s problem. Now 

we are ready to state a characterization of the linearized solution to the nontraders’ 
Euler equation. Replacing the budget constraint (2) into the Euler equation (6) for 
nontraders with constant lump sum transfers ​τ​ t​  N​ = ​​_ τ ​​ N​, and linearizing with respect 
to ​( c, m, π )​ around the values ​( ​​_ c ​​N​, ​​

_
 m ​​N​, ​

_
 π ​ )​ we obtain

(34) 	​  E​t​​[ ​​  n ​​ t+1​ N  ​ ]​  = ​ ξ​0​ ​​  n ​​ t​ N​  − ​  1 _ 
β
 ​ ​​  n ​​ t−1​ N

  ​  + ​ ξ​1​ ​​  π​​t​  + ​ ξ​2​ ​E​t​​[ ​​  π​​t+1​ ]​,

where the coefficients ​ξ​i​ are functions of the second derivatives of U evaluated at the 
steady state as well as β and ​

_
 π ​, given by equation (A.10) in online Appendix A.7. 

The next proposition assumes that inflation is governed by the linearized equilib-
rium described in Section III.

Assumption 1: The deviation of inflation and real balances from their steady-state 
value ​​{ ​​  π​​t​, ​​  m​​t​ }​​ t=0​ 

∞
 ​ are given by the linear stochastic difference equation with exogenous 

driving shocks ​​{ ​z​ t+1​ }​​ t=0​ 
∞ ​ described by the matrix and vectors ​{ Θ, ζ, κ }​ as detailed in 

equation (26). They imply that ​E​t​​[ ​​  π​​t+1​ ]​ = ​
_

 Π​ ​z​t​ as given in equation (28).

The state for the dynamic program of the nontrader problem is given by the last 
period real balances ​​  n ​​ t−1​ N  ​, and the variables needed to forecast inflation, which given 
the linear representation in Section III, are ​( ​z​t​, ​​  m​​t−1​ )​. The next proposition charac-
terizes the solution ​​  n ​​ t​ N​ = ​  g ​​( ​​  n ​​ t−1​ N  ​, ​z​t​, ​​  m​​t−1​ )​ for the linearized Euler equation.

Proposition 6: Assume that U is bounded from above, that 0 < ​U​12​ < −​U​11​, 
and that the deviation of inflation and real balances from their steady-state 
value ​​{ ​​  π​​t​, ​​  m​​t​ }​​ t=0​ 

∞
 ​ are given by Assumption 1. The unique bounded solution of the 

linearized Euler equation is given by

(35) 	​​    n ​​ t​ N​  = ​   g ​​( ​​  n ​​ t−1​ N  ​, ​z​t​, ​​  m​​t−1​ )​  = ​ φ​0​ ​​  n ​​ t−1​ N
  ​  + ​ φ​1​ ​z​t​  + ​ φ​2​ ​​  m​​t−1​ ,

�where the ​φ​0​ coefficient satisfies: 0 < ​φ​0​ = g′​( ​​_ n ​​N​ )​ < 1, and where the coefficients ​
φ​i​ , given in equation (A.11) in the online Appendix A.7 are functions of the coef-
ficients ​ξ​i​ of equation (34), the parameters β, ​_ π ​, ​_ m ​, and the coefficients κ, θ, ζ, and ​
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_
 π​ in equation (26)–(28). Finally, while ​φ​0​ is independent of ω and λ, ​φ​1​ and ​φ​2​ are 

proportional to (1 − λω)/(1 − λ).

The result that the slope of the linear optimal policy ​  g ​​( · )​ that solves the linear-
ized Euler ∂​  g ​/∂​  n ​ ≡ ​φ​0​ is the same as the slope at the steady state of the optimal 
decision rule for the nonlinear problem ​g′​​( ​​_ n ​​N​ )​, is a standard one. As it is standard, ​
φ​0​ is the (stable) solution of a quadratic equation with coefficients defined by ​ξ​0​ and 
β. That the relative wealth of a nontrader, (1 − λω)(1 − λ), scales ​φ​1​ and ​φ​2​ is a 
direct consequence of homotheticity of preferences; that ​φ​0​ is independent of ω and 
λ follows because it is the slope of g. Recall that if the growth rate of money ​​  μ​​t​ is 
independently and identically distributed then real balances are constant (see equa-
tion (29)), inflation is independently and identically distributed, and, hence, expected  
inflation is constant or: Θ = κ = ​

_
 Π​ = 0, ζ = 1. In this case, using our notation for ​  g ​​( · )​  

and the expression (A11) for the coefficients ​φ​i​ in online Appendix A.7, we obtain that

 	​  φ​1​  =  −β​φ​0​​ξ​1​  =  −​φ​0​​ 
​​
_
 n ​​N​ _ ​_ π ​ ​ ,

so that for all t ≥ 0, we have ​​  m​​t​ = 0, and thus ​​  n ​​ t​ N​ = ​φ​0​ ​( ​​  n ​​ t−1​ N  ​ − ​ ​​
_
 n ​​N​ _ 

​
_
 π ​ ​ ​​  u ​​t​ )​ + ​φ​2​ ​​  m​​t−1​. If 

the economy starts with ​​  m​​−1​ = 0:

 	​​    n ​​ t​ N​  = ​ g′​​( ​​_ n ​​N​ )​ ​​  n ​​ t−1​ N
  ​  − ​ g′​​( ​​_ n ​​N​ )​ ​ ​​

_
 n ​​N​ _ ​_ π ​ ​ ​​  μ​​t​ ,

so ​​  n ​​ t​ N​ follows an autoregressive process of order one, with parameter ​g′​​( ​​_ n ​​N​ )​, and 
innovations that are proportional to inflation ​​  π​​t​ = ​​  μ​​t​ with a (negative) coefficient 
given by −​g′​​( ​​_ n ​​N​ )​ ​​_ n ​​N​/​_ π ​.

As a summary, we describe the evolution of the state of the economy and its 
dynamics in the next proposition.

Proposition 7: The state of the (linearized) equilibrium for economy at time t 
is (​​  n ​​ t−1​ N

  ​, ​​  m​​t−1​, ​z​t​). The law of motion is given by equations (26) for (​​  m​​t​, ​z​t​) and (35) 
for ​​  n ​​ t​ N​. The eigenvalues of the system are given by those on the exogenous state ​z​t​ , 
i.e., the eigenvalues of the matrix Θ, and by the pair (0, ​φ​0​).

The zero endogenous eigenvalue comes from the long-run money demand, since 
we can write ​​  m​​t​ = 0 ​​  m​​t−1​ + κ​z​t​. The other endogenous stable eigenvalue ​φ​0​ = ​g′​ 
comes from the dynamics of the nontrader’s problem and depends only on the ratio 
of the elasticities. Thus, the dynamics of any equilibrium variable, including interest 
rates, depends only on these eigenvalues.

B. Interest Rates in a Linearized Equilibrium

In this section, we use the aggregation result of Section II, the inflation dynam-
ics of Section III and the characterization of the nontrader’s dynamic problem of  
Section IVA to solve for the effect of open market operations on interest rates.
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We are interested in the following particular monetary-fiscal policy. Nontraders 
receive a constant real transfer per period, equal to the steady-state value of 
seigniorage. Traders receive the remaining part of the seigniorage. The deviation 
from the steady-state growth of money supply evolves according to ​​  μ​​t​ = ν ​z​t​,  
for an exogenous process ​z​t​, as described in (25). Equivalently, as shown in 
Section  IA, we can regard this equilibrium as one in which nontraders receive a 
constant real tax rebate ​τ​ t​  N​ and traders receive no lump-sum rebate, but participate 
in open market operations. Returning to the equilibrium without an active bond mar-
ket, the values of ​τ​ t​  N​ and ​τ​ t​ T​ are given as follows. Let ​

_
 m ​​( ​_ μ ​ − 1 )​/​_ μ ​ be the average  

seigniorage

 ​τ​ t​  N​  = ​​ _ τ ​​ N​  ≡ ​ 
​_ m ​​( ​_ μ ​ − 1 )​

 _ ​_ μ ​ ​ ​  1 − λω _ 
1 − λ

 ​   and ​ τ​ t​  T​  = ​  1 _ 
λ
 ​ ​[ ​ ​M​t​ − ​M​t−1​ _ ​P​t​

 ​  ]​  − ​  ​
( 1 − λ )​ _ 

λ
 ​ ​​ _ τ ​​ N​ ,

where ​
_
 m ​ solves ​ 

​U​2​​( y, ​
_
 m ​ )​
 _ 

​U​1​​( y, ​
_
 m ​ )​ ​ = ​

_
 r ​ ≡ ​ 

​
_
 μ ​
 _ β ​ − 1. In steady state (i.e., when ​μ​t​ = ​_ μ ​ all t), the 

value of ​τ​ t​  T​ is also constant, and, hence, ​τ​ t​ T​ = ω ​_ m ​​(  ​_ μ ​ − 1 )​/​_ μ ​. It is straightforward 
to verify that these choices satisfy the government budget constraint (5). Also it is 
easy to verify that with these choices for ​τ​ t​  N​ and ​τ​ t​ T​ if ​M​t​ grows at a constant rate ​

_
 μ ​,  

then traders and nontraders will have the same consumption and money holdings as 
in (15).

Now we turn to the determination of the path of interest rates. To do so, let’s 
use a first-order approximation around ​μ​t​ = ​π​t​ = ​_ μ ​ and ​m​t​ = ​_ m ​, ​m​ t​ i​ = ​​_ m ​​ i​, ​c​ t​ i​ = ​​_ c ​​ i​ 
for i = N, T, where ​​  r ​​t​ = ​r​t​ − ​_ r ​. Linearizing the first-order condition of the trad-
ers (11) with respect to ​c​T​ and ​m​T​, replacing ​​  c ​​ t​ T​, ​​  m​​ t​ T​ using market clearing for 
goods and money equation (3) to write the resulting expression in terms of ​​  c ​​ t​ N​,  
​​  m​​ t​ N​, and using that the elasticity of substitution between m and c is given by ρ,  
we obtain

 	​  
​​  r ​​t​ _ ​_ r ​

 ​  =  − ​ 1 _ ρ ​ ​( ​ ​​  m​​ t​ T​
 _ 

​​_ m ​​T​
 ​  − ​ 

​​  c ​​ t​ T​
 _ 

​​_ c ​​ t​ T​
 ​ )​  =  − ​  1 _ 

ρ λω
 ​ ​( ​ ​​  m​​t​ _ ​_ m ​

 ​  − ​ ( 1  −  λω )​ ​( ​ ​m​ t​ N​
 _ 

​​_ m ​​N​
 ​  − ​ 

​​  c ​​ t​ N​
 _ 

​​_ c ​​N​
 ​ )​ )​.

Finally, we use this equation to solve for interest rates as follows. The 
term ​​  m​​t​ is determined by the equilibrium in the aggregate economy, i.e., ​​  m​​t​ = κ ​z​t​ . 
The terms ​​  m​​ t​ N​, ​​  c ​​ t​ N​ are determined by the solution of the nontrader problem. Using 
the budget constraint of the nontrader, we have ​m​ t​ N​ = ​n​ t−1​ N

  ​/​π​t​ + ​​_ τ ​​ N​ and ​c​ t​ N​ = ​​_ c ​​N​ + ​
n​ t−1​ N

  ​/​π​t​ + ​​_ τ ​​N​ − ​n​ t​ N​. Linearizing these expressions gives

 	​  
​​  m​​ t​ N​

 _ 
​​_ m ​​N​

 ​  − ​ 
​​  c ​​ t​ N​

 _ 
​​_ c ​​N​

 ​  = ​​   n ​​ t−1​ 
N
  ​ ​ 1 _ ​_ π ​ ​​( ​ 1 _ 

​​_ m ​​N​
 ​  − ​  1 _ 

​​
_
 c ​​N​
 ​ )​  + ​  ​​

_
 n ​​N​ _ 

​​_ π ​​2​
 ​​( ​ 1 _ 

​​_ c ​​N​
 ​  − ​  1 _ 

​​
_
 m ​​N​
 ​ )​ ​​  π​​t​  + ​  1 _ 

​​_ c ​​N​
 ​ ​​  n ​​ t​ N​.
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Using the decision rule of nontraders: ​​  n ​​ t​ N​/​​_ n ​​N​ = ​φ​0​ ​​  n ​​ t−1​ N
  ​/​​_ n ​​N​ + ​φ​1​/​​_ n ​​N​ ​z​t​ + 

​φ​2​/​​_ n ​​N​​​  m​​t−1​, to replace ​​  n ​​ t​ N​, and that inflation dynamics are given by ​​  π​​t​ = ​( ​ ​
_
 μ ​
 _ ​_ m ​ ​ )​ ​​  m​​t−1​ + 

ζ ​z​t​ and ​​  m​​t​ = κ​z​t​, we obtain the following result:

Proposition 8: Interest rates evolve according to:

(36)  ​ 
​​  r ​​t​

 _ ​_ r ​
 ​ = − ​ 1 _ ρ ​ ​ κ ​_ π ​ _ ​_ m ​

 ​  ​ 
​z​t​ _ ​_ μ ​ ​

	     −  ​ 1 _ ρ ​ ​ 
(1 − λω)
 _ 

λω
 ​  ​[ ​  ​_ n ​ _ 

​
_
 m ​ ​
_
 π ​ ​ ​( ​( 1 − ​ ​

_
 m ​ _ ​_ c ​
 ​ )​ ζ − ​ ​

_
 m ​ _ ​_ c ​
 ​ ​ 

​​
_
 π ​​2​​φ​1​ _ 
​​
_
 n ​​N​
 ​  )​ + ​ κ ​_ π ​ _ ​_ m ​

 ​  ]​ ​ ​z​t​ _ 
​
_
 μ ​ ​

	     + ​ 1 _ ρ ​  ​ 
(1 − λω)
 _ 

λω
 ​  ​  ​_ n ​ _ 

​
_
 m ​ ​
_
 π ​ ​ ​[ ​( 1 − ​ ​

_
 m ​ _ 

​
_
 c ​
 ​ + ​ ​

_
 m ​ _ 

​
_
 c ​
 ​  ​
_
 π ​​φ​0​ )​ ​ ​​  n ​​ t−1​ N  ​

 _ 
​​_ n ​​N​

 ​  + ​( ​ 1 _ ​_ c ​
 ​ − 1 + 

​ _ m​
 
​
_
 π ​​φ​2​ _ 

​_ n ​​
 
​
_
 c ​​N​
 ​  )​​​  m​​t−1​ ]​,

�where {​z​t​} evolves according to equation (25), {​​  m​​t​} evolves according to equation 
(26), and {​​  n ​​ t​ N​/​​_ n ​​N​} evolves according to equation (35). The only dependence of the 
evolution of interest rates on the segmentation parameters ω and λ is given by the 
term (1 − λω)/λω.

The first term in equation (36) is the interest rate that obtains in the absence of 
segmentation (λω = 1), which was discussed in equation (30) and in which, as 
we noticed, there is no liquidity effect. The “liquidity effect,” the difference com-
pared to the nonsegmented case, is given by the terms in the second and third line 
of the expression. The interest rate is a function of ​( ​​  n ​​ t−1​ N  ​/​​_ n ​​N​, ​z​ t​ , ​​  m​​t−1​ )​. The vari-
ables ​​  m​​t−1​ and ​​  n ​​ t−1​ N  ​/​​_ n ​​N​ contain all the information needed to compute the time path 
of the distributional effects between traders and nontraders. Note that, as shown in 
Proposition 6, the ratios ​φ​2​/​​

_
 c ​​N​ and ​φ​1​/​​

_
 n ​​N​ do not depend on λ or ω. For the same 

reasons, the law of motion of ​​  n ​​ t​ N​/​​_ n ​​N​ is also independent of ω and λ. As explained 
in Section III, the law of motion for the aggregate variables ​​  m​​t​ is independent of λ 
and ω. Thus, the only dependence of these two parameters indexing segmentation 
on the evolution of interest rates is given by the ratio (1 − λω)/λω, which measures 
the steady state ratio of the total wealth of nonmarket participants to the wealth of 
market participants. This result simplifies substantially the comparative statics with 
respect to the degree of segmentation: different steady-state wealth ratios scale the 
“liquidity effect.”

Unexpected Once-and-for-All Increase in the Money Supply.—This section stud-
ies the impulse-response of nominal interest rates when the growth rate of money 
supply follows an independently and identically distributed process. Equivalently, 
we analyze the effect of starting the system at the steady state corresponding  
to ​

_
 μ ​ and then shock it with an unexpected transitory one time increase in the 

growth rate of the money supply at t, i.e., ​μ​t​ > ​_ μ ​ and ​μ​t+s​ = ​_ μ ​ for all s ≥ 1, i.e.,  
a once-and-for-all permanent increase in the level of the money supply.
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Let the initial conditions ​​  m​​t−1​ = ​​  n ​​ t−1​ N
  ​ = 0. If ​​  μ​​t​ is independently and identically 

distributed we have that, as shown in (29), κ = Θ = 0, ν = ζ = 1. This gives

 	​​   π​​t​  = ​​   μ​​t​  >  0, ​​   π​​t+s​  = ​​   μ​​t+s​  =  0  all  s  ≥  1,  and ​​   m​​t+s​  =  0, s  ≥  0.

For the nontraders, we have that for all s ≥ 0:

 	​​    n ​​ t+s​ N  ​  = ​ φ​0​ ​​  n ​​ t+s−1​ N
  ​  + ​ φ​1​​​  z ​​t+s​  + ​ φ​2​ ​​  m​​t+s−1​  = ​ φ​0​ ​​  n ​​ t+s−1​ N

  ​  = ​ φ​ 0​ s
 ​ ​​  n ​​ t​ N​  = ​ φ​ 0​ s

 ​ ​φ​1​​z​t​.

Using ​
_
 π ​ = ​_ μ ​ and for independently and identically distributed shocks ​φ​1​  

= −​φ​0​ ​ ​​
_
 n ​​N​ _ ​_ π ​ ​ we derive the following proposition, which assumes that m/c > 1 (a con-

dition related to the choice of time units discussed in the comment to Proposition 5).

Proposition 9: The effect of an unexpected once-and-for-all increase in the 
money supply at time t of size ( ​μ​t​ − ​

_
 μ ​)/​_ μ ​ is to decrease interest rates on impact, 

and gradually return to the steady state value ​
_
 r ​, according to

(37) 	​  
​​  r ​​t + s​

 _ ​_ r ​ 
 ​   =  − ​ 1 _ ρ ​ ​ 

(1 − λω)
 _ 

λω
 ​ ​   ​_ n ​ _ 

​
_
 m ​ ​
_
 π ​ ​ χ(​_ m ​)​φ​ 0​ s

 ​ ​ 
​  μ​t

 _ μ ​

�for all s = 0, 1, 2, … , where χ(​_ m ​) = 1 − ​ ​
_
 m ​ _ y ​ ​( 1 − ​

_
 π ​ ​φ​0​ )​.

Equation (37) shows that the sign and persistence of the liquidity effect depend 
on the magnitude of ​φ​0​. The impact effect is negative, i.e., the nominal interest 
rate decreases when money increases, if χ(​_ m ​) > 0 a condition established in 
Proposition 5.

To understand the mechanics of the liquidity effect, note that the effect of an 
independently and identically distributed shock to money supply to the nontrader is 
to increase the price level, thus decreasing the post-transfer real money balances m 
of the nontrader. If the consumption elasticity is smaller than one, then the ratio of 
money to consumption for the nontraders decreases, i.e., χ(​_ m ​) > 0. Since with an 
independently and identically distributed shock aggregate real balances remain the 
same, this implies that the ratio of money to consumption must increase for traders. 
In turn, a higher m/c ratio for traders implies, by equation (11), that the nominal 
interest rate must decrease.

The decrease on impact of the interest rate after a once-and-for-all increase in 
money increases with χ(​_ m ​) > 0. Recall that Proposition 5 establishes that χ is an 
increasing function of ρ/γ. The persistence of the liquidity effect also depends on 
the magnitude of ​φ​0​ = ​g′​​( ​​_ n ​​N​ )​, which is also increasing in ρ/γ. The closer the value 
of ​φ​0​ is to one, the more persistent the liquidity effect is. Finally, more segmented 
markets have larger amplitude of variation on interest rates. The strength of the seg-
mentation is measured by the ratio of steady-state wealth of the nontraders relative 
to steady-state wealth of the traders, i.e., (1 − λω)/(λ ω). When this ratio becomes 
larger, the liquidity effect is larger at all horizons. The parameters λ and ω do not 
enter in any of the other terms in this impulse response.
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To illustrate this proposition, we compute the impulse response to a once-and-for-all 
shock to the money supply for different parameter values. In all the impulse responses 
we use annual inflation and real rate of 2 percent, U given by (12) and choose the 
value of the parameter  to obtain a steady-state value of ​

_
 m ​/​_ c ​ equal to 0.25 at annual 

frequency. We let the model period to be a month. In Figure 1, we plot the impulse 
response for a once-and-for-all shock to the money supply which implies a 1 percent 
increase in the price level on impact.9 In the figure, we use λ ω = 0.5,  γ = 1/4 and 
we vary the value of ρ. As it is clear from Proposition 9, different values of λω scale 
the distance to the steady state by the same proportion at all horizons.

Figure 1 shows that for lower elasticity of the long-run money demand ρ, there 
are smaller liquidity effects at impact, with shorter lifetimes. The value of ρ has 
two opposite effects on the impulse response of interest rates, as can be seen from 
(37). The first is a direct effect of the preferences. A smaller value of the elasticity 
of substitution ρ means that for a given change in the money-consumption ratio m/c 
of traders there is a larger effect effect on interest rates. The second effect operates 
through the equilibrium determination of the elasticity χ, that was discussed in 
Proposition 5. For a fixed value of γ smaller values of ρ decrease χ and, hence, imply 
a smaller decrease at impact on the ratio m/c. The impulse responses in Figure 1 
show that the first effect almost completely dominates the second one, since the 
vertical distance between the impulse responses at t = 0, is almost proportional to 

9 In the case considered in this section, where the money supply follows an independently and identically dis-
tributed process, this requires shocking the money supply by the same amount, namely (​​μ​0​ − ​_ μ ​)/​_ μ ​ = 0.01, see 
Section IIIA for details.

Figure 1. Response to a Once-and-for-All Money Supply Shock

Notes: The shock is an unanticipated increase of money causing a 1 percent increase of the 
price level. The other parameters are γ = 1/4, λω = 0.5.
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the change in the value of 1/ρ. Additionally, different values of ρ correspond to dif-
ferent persistence of the liquidity effect, through changes in ​g′​​( ​​_ n ​​N​ )​. Lower values of 
ρ, as shown in Proposition 5, imply faster convergence, as the figure shows.

Table  1 complements Figure  1 by computing two of the determinants of the 
impulse response of interest rates after a once-and-for-all change in the money 
supply for different combinations of intertemporal elasticity of substitution γ, and 
intratemporal elasticity of substitution ρ. The half-life of the shock is a simple trans-
formation of ​φ​0​ given by τ ≡ ​[ log ​( 1/2 )​/ log ​( ​φ​0​ )​ ]​, expressed in years. The other 
determinant, denoted by χ, is the impact elasticity of m/c with respect to a change 
in m, which is also a simple function of ​φ​0​.

The values for ρ and γ for Table 1 are chosen so that the ratio ρ/γ is constant on 
the diagonal. The range of values of ρ and γ are chosen to bracket most empirical 
estimates of the interest rate elasticity and of the intertemporal elasticity of substitu-
tion. The values of τ and χ across the diagonal of Table 1 are the same, which fol-
lows from Proposition 5, where it is shown that the decision rules c​( · )​ and g​( · )​ are 
functions of the ratio of the elasticities ρ/γ. The value of χ has the interpretation 
of the elasticity of the ratio m/c with respect to an unanticipated once-and-for-all 
shock to the price level (hence to m). The values for this elasticity varies between 
0.82 and 0.95 across the values of ρ/γ reported in the table. The range of half-lives 
across the values of ρ/γ reported in Table 1 is between a bit less than a year, to more 
than 3.5 years.

In online Appendix D, we compare the approximate linear solution with the 
numerical solution of the nonlinear system. It is shown that for the examples con-
sidered in this section the approximation is very precise.

Persistent Increase in the Growth Rate of the Money Supply.—This section ana-
lyzes the effect of a persistent increase in the growth rate of the money supply on 
interest rates. We use the general expression for ​r​t​ in (36), the evolution of the state ​
m​t​ given by (26), and the evolution of ​n​t​ given by (35).

Figure 2 plots the impulse responses of interest rates to money shocks under the 
assumption that the growth rate of the money supply is an AR(1) with autocorrelation 
θ, as opposed to independently and identically distributed. Otherwise the parameters 
are the ones used in Figure 1 in the case where ρ = 1/2 (so the long run elasticity of 

Table 1—Once-and-for-All Shock to μ: Half-Life (τ, in Years), 
and Elasticity of m/c (χ)

γ ρ ​ 1 _ 2 ​ ​ 1 _ 4 ​ ​ 1 _ 8 ​

​ 1 _ 2 ​ ​ χ = 0.91
             τ = 1.77 ​ ​ χ = 0.87

             τ = 1.25 ​ ​ χ = 0.82
             τ = 0.89 ​

​ 1 _ 4 ​ ​ χ = 0.94
             τ = 2.53 ​ ​ χ = 0.91

             τ = 1.77 ​ ​ χ = 0.87
             τ = 1.25 ​

​ 1 _ 8 ​ ​ χ = 0.96
             τ = 3.63 ​ ​ χ = 0.94

             τ = 2.53 ​ ​ χ = 0.91
             τ = 1.77 ​

Note: τ = log(1/2)/log(​φ​0​) half-life of the interest shock, χ(​_ m ​) = 1 − ​ ​
_
 m ​ _ ​_ c ​ ​ ​ 

dc _ dm ​ elasticity of  
​ m _ c ​ with respect to m on impact.



98	 American Economic Journal: Macroeconomics� April 2014

the money demand is 1/2). We plot the impulse response for four values of θ, corre-
sponding to a half life of 0 months, 1 month, 13 months, and 10 years. The zero half 
life coincides with the independently and identically distributed case of Figure 1, 
and is included to help in the comparisons. The size of the initial shock to money is 
chosen so that the effect on the price level on impact is an increase of 1 percent, as 
in the case of independently and identically distributed money growth.

As can be seen from the impulse responses in Figure 2, the monetary shocks with 
a shorter half-life produce a liquidity effect. If the monetary shock is very persistent, 
instead, the Fisherian aspects of the model take over, expected inflation rises consid-
erably on impact, and there is no liquidity effect. Notice that for intermediate values 
of θ the impulse response has a hump shape, attaining an extreme some periods after 
the impact effect. The hump shape of the impulse response is due to the fact that 
the dynamic system has two eigenvalues: θ, governing aggregate real balances and 
inflation; and ​φ​0​, governing the nontraders adjustment of their real balances. Note 
that for the three smallest values of θ, the impulse responses eventually converge 
to the same line, since the short-run behavior is dominated by θ and the long-run 
behavior by ​φ​0​. Instead, for the case where θ is near one, the Fisherian effect domi-
nates and the impulse response is almost identical to the one where markets are not 
segmented.

To identify the effect of segmented markets on interest rates, Figure 3 displays the 
impulse response (to the same shocks) for the model with λ = 1, which has no liquid-
ity effects (Section III). When shocks are short lived, so that there are no movements 
in the expected growth rate of money, interest rates remain almost constant at the 
steady-state level. Comparing Figure 2 and 3 shows that when monetary shocks are 
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Figure 2. Response to a Persistent Increase in Money Supply

Notes: The shock is an unanticipated increase of money, causing a 1 percent increase of the 
price level. The other parameters are γ = 1/4 and λω = 0.5.
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very persistent the behavior of interest rates in the model with segmented markets 
(λ ω = 0.5) is similar to the one in the model with homogenous agents (λ = 1).

In online Appendix D, it is shown that the approximate linear solution is very 
close to the exact numerical solution of the nonlinear system for all experiments 
displayed in Figure 2 and Figure 3.

Short- versus Long-Run Money Demand Elasticities and the Liquidity Effect.—
We conclude the section with a comment on the relation between the liquidity effect 
and the interest elasticity of money demand. The thought experiment that reveals a 
liquidity effect on interest rate is an open market operation, i.e., an increase of the 
money supply. Instead, the slope of the money demand is a relationship between 
real money balances, or velocity, and interest rates. As explained, in this model, the 
“long-run” interest-elasticity of the money demand is −ρ. The liquidity effect of an 
increase in the (nominal) money supply, too, depends on ρ, among other parameters.

As done in the literature, see e.g., Christiano, Eichenbaum, and Evans (1999), 
we define as the “short-run money demand elasticity” the ratio of the impact effect 
on real balances relative to the impact effect on interest rates following a mon-
etary shock. We argue that there is no “constant” short-run elasticity of the money 
demand in the model.10 We emphasize that this is consistent with the unstable 

10 More precisely, while the long-run elasticity depends solely on the preference parameter ρ, the “short-run 
elasticity” also depends on the eigenvalues that determine the gradual adjustment of real balances, i.e., the prefer-
ence parameters governing the speed of adjustment (ρ/γ) as well as those governing the money supply.
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Figure 3. Response with No Segmentation (λ = 1)

Notes: The shock is an unanticipated increase of money causing a 1 percent increase of the 
price level. The other parameters are γ = 1/4, λ = 1.0 (i.e., no segmentation).
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estimates of the interest-elasticity of money demand equations that are obtained 
using high-frequency data.

To fix ideas consider the case where the growth rate of the money supply follows 
an AR(1) process with parameter θ. From our previous analysis we have that the 
decrease on impact of aggregate real balances after a shock to the money supply is 
given by (26):

 	​   1 _ m ​ ​ dm _ 
d​  μ​

 ​​|​
m = ​_ m ​, ​   μ​ = 0

​  = ​  κ _ ​_ m ​
 ​  = ​  α _ ​_ m ​

 ​ ​  θ _ 
1  −  ϕθ

 ​ ,

where α < 0 and 0 < ϕ < 1. Hence, real balances decrease after a money growth 
shock, the more so the more persistent is the shock. From our analysis of the impact 
on interest rates of a monetary shock, (36), we have that

​​
​
 ​ 1 _ r ​ ​ dr _ 

d​  μ​
 ​ |​​

m =  ​_ m ​, ​  μ​ = 0, n =  ​_ n ​

​ = − ​ 1 _ ρ ​​[ ​ (1  −  λω)
 _ 

λω
 ​ ​   ​_ n ​ _ 

​_ m ​ ​​
_
 π ​​2​
 ​ ​( ​( 1 − ​ ​

_
 m ​ _ 

​
_
 c ​
 ​ )​ζ − ​ ​

_
 m ​ _ ​_ c ​
 ​ ​ 

​​
_
 π ​​2​​φ​1​ _ 
​​_ n ​​N​

 ​  )​ + ​  κ _ 
λω ​_ m ​

 ​  ]​ ,
where ζ is given in (27) and the expression for ​φ​1​ is given in online Appendix A.7 
by equation (A11). Thus, we define the short-run elasticity of the money demand 
as the ratio:

	 η  ≡ ​  r _ m ​ ​ dm _ 
dr

 ​  = ​ 
​ 1 _ m ​ ​ dm _ 

d​  μ​ ​
 _ 

​ 1 _ r ​ ​ 
dr _ 
d​  μ​ ​

 ​​|​
m = ​_ m ​, ​  μ​ = 0, n = ​_ n ​

​.

To sign this expression notice that ​( 1/m )​ ​( dm/dμ )​ < 0, so the sign of the elastic-
ity η depends on whether there is a liquidity effect or not. If there is a liquidity effect 
then the elasticity is positive on impact, otherwise, it is negative. We consider two 
interesting special cases:

 	  η  ≡ ​  r _ m ​ ​ dm _ 
dr

 ​  =  0  if  θ  =  0,    η  ≡ ​  r _ m ​ ​ dm _ 
dr

 ​  =  −ρ  if  λ  =  1.

In the case of a once-and-for-all increase in the money supply (θ = 0), expected 
inflation is constant, and thus aggregate real balances remain constant (κ = 0, 
and ​​  m​​t​ = 0). Thus, the impulse response of a purely transitory shock on the growth 
rate of the money supply ​μ​t​ will display a short-run interest elasticity of the money 
demand equal to zero. By inspecting Figure  4 one can see that nominal interest 
rates and real balances move in the same direction on impact (and in subsequent 
horizons) since the shock is not persistent. As the shock becomes permanent, i.e., 
as θ → 1, numerical simulations show that the impact elasticity converges to −ρ. 
Instead, in the case where λ = 1, i.e., when markets are not segmented, the short-
run and long-run elasticities are the same, since the standard interest elastic money 
demand equation holds at all frequencies.
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V.  A Calibration of the Model on the US Data

In this section, we present a calibration of the model on the US data. The scat-
ter plot in Figure 4 shows the annual US data on the money/income ratio and the 
nominal interest rate over the period 1900–2010 discussed, among others, by Lucas 
(2000) and Ireland (2009). The dots and stars denote, respectively, the pre- and  
post-1980 subsamples. This sample split follows Ireland (2009) who, as is apparent 
from the figure, estimates a significantly flatter (as well as lower) money demand 
schedule for the post 1980 sample. The goal is to use the model to simultaneously 
fit the apparent pattern of the money demand displayed by the lines in Figure 4 as 
well as the deviations from these schedules. In terms of the theory, the fitted lines 
correspond (roughly) to what we referred to as the long-run money demand, and the 
deviations correspond to the liquidity effects. Thus, the novelty is to use the dynam-
ics of the model to account for the “errors” in the regression. Moreover, we will use 
the theory to quantify the downward bias on the estimation of the elasticity ρ using 
a standard regression analysis.

Table 2 presents regression estimates of the US money demand based on actual 
as well as on simulated data (described below). The estimates in the upper panel are 
obtained by regressing the (log) of inverse velocity on the (log) of the net nominal 
interest rate for three subsamples using US annual data over the 1900–2010 period. 
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Figure 4. US Money Demand 1900–2010

Notes: Annual data denoted by dots refer to 1900–1980, stars refer to 1981–2010. The dashed 
lines plot a log-log money demands with a 1/3 and 1/14 interest elasticity respectively, which 
pass through the mean of both variables for each subperiod.

Source: Ireland (2009), updated to 2010
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We report the regression coefficient, the ​R​ 2​ of the regression, and the DW statistic. 
The first column reports the full sample estimates, while the second and third present 
the estimates on the pre- and post-1980 subsamples. It is apparent that the regres-
sion coefficient ​​  b ​​1​ has become smaller (in absolute value). Its estimate goes from 
around 1/4 in the first part of the sample to about 1/14 in the more recent sample. 
In all regressions the residuals display a positive autocorrelation, as indicated by 
the low positive values of the Durbin-Watson statistic. The ​R​2​ statistic appears high 
for such a simple model with only one explanatory variable and, consistently with 
the hypothesis of structural change put forward by Ireland (2009), the fit improves 
significantly in the subsamples.

The bottom panel of the table presents regression estimates based on artificial 
data produced by three different calibrations, one for each subsample. All calibra-
tions assume that U(c, m) is CRRA and h(c, m) CES as in equation (12). We set 
the intertemporal substitution elasticity equal to γ = 1/4, as is common in the lit-
erature and within the range of estimates by Ogaki and Reinhart (1998) and oth-
ers. The values of β and ​

_
 μ ​ are chosen so that the (unconditional mean) annual real 

interest rates and inflation rates are 2 percent (the values for our monthly model are 
β = 0.9983, and ​

_
 μ ​ = 1.0017). Likewise, we impose a common statistical process 

for the money growth rate on all samples, given by the sum of two independent 
AR(1)’s to the monthly growth of M1 over the period of 1959–2009 estimated by 
maximum likelihood. We have chosen the sum of two AR(1)’s to capture the relative 
importance of high and low frequencies for money growth, a difference that is high-
lighted by our theory.11 The estimates and their stability on the postwar subsamples 
are discussed in online Appendix B. One component is persistent, with a monthly 

11 In particular, the effect of each AR(1) can be understood by analyzing Figure 1 and Figure 2. Different mea-
sures of persistence are used in the literature, see, for example, the discussion in Marques (2004). Among them are 

Table 2—Actual versus Simulated Money Demand Regressions

US data

1900–2010 1900–1980 1980–2010

​​  b ​​1​ −0.23 −0.26 −0.06

​R​2​ 0.28 0.56 0.69
DW 0.06 0.15 0.51
N 111 81 31

Model simulations

λω = 0.5, ρ = 1/2 λω = 0.60, ρ = 1/3 λω = 0.65, ρ = 1/14

​​  b ​​1​ −0.22 −0.28 −0.07

​R​2​ 0.22 0.54 0.67
DW 0.36 0.21 0.21
N 111 × 500 81 × 500 31 × 500

Notes: All regressions include a constant. The dependent variable is the inverse velocity: 
M1/GDP in the data, m/c in the model. The R2 is the squared errors of fit statistic, DW is the 
Durbin-Watson statistic. All coefficients are statistically different from 0 at the 1 percent level. 
The model statistics are the mean value obtained from 500 simulations.

Source: US annual data on M1 and interest rates are from Ireland (2009), updated to 2010.
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autocorrelation equal to 0.95, which corresponds to a half-life of about 1.1 years. 
The other component is transitory, with a monthly autocorrelation of 0.1, i.e., a 
half-life of a third of a month. The standard deviation of these innovations are 0.001 
and 0.005, respectively, so that a large part of the year-to-year variation in money 
growth is explained by the more transitory component.

We calibrate two of the key parameters of the model, the interest rate elastic-
ity ρ and the degree of segmentation λω, to match the values of the regression 
coefficient ​​  b ​​1​ and the ​R​2​ in each of the three subsamples. As mentioned, it is appar-
ent in Figure 4 that the post 1980s period features a lower interest rate elasticity and 
higher velocity. In our model, this low frequency change can only be accommodated 
by shifts in ρ and , since segmentation does not affect the shape of the long run 
money demand. While ρ and  are preference parameters in our money in the utility 
function setup, other models can be used to produce a more structural explanation 
for these changes.12 Likewise, the degree of segmentation λω is important to match 
the regression ​R​2​. To see why, recall that in the case of no segmentation, λ = 1, there 
is no liquidity effect, so that the model-generated data obey the “long-run” money 
demand at each point in time and the regression fit is perfect (i.e., ​R​2​ = 1). The two 
parameters have to be chosen jointly because, as explained below, lower values of 
λω imply a larger liquidity effect, which not only reduces the ​R​2,​ but also increases 
the bias of ​​  b ​​1​ as an estimate of ρ. Such a calibration produces that the intratemporal 
elasticity of substitution is ρ = 1/2, 1/3, and 1/14 for each subsample, and that the 
fraction of wealth owned by the traders is, respectively, λ ω = 0.5, 0.6, and 0.65.13

In particular, to calibrate the model for each parameterization we produce 500 
simulations of monthly data, which we aggregate to yearly, for real balances m and 
the nominal interest rate r. Each simulation has the same length as the three cor-
responding samples. For each simulation we run the same linear regression as in 
the data: log(​m​t​) = ​​  b ​​0​ + ​​  b ​​1​ log(​r​t​) + ​ϵ​t​. The three columns in the bottom panel of 
Table 2 report the mean of the estimated values of each statistic (the medians are vir-
tually identical). The calibrated values are close, but not identical to the target values 
because we wanted to keep round values for the parameters ρ and λω. As mentioned 

the sum of the roots of an AR( p) process, and the largest root (or the dominant eigenvalue), which is the one we 
will use.

12 Mechanisms that can give rise to these shifts are explored in Lucas and Nicolini (2012), Reynard (2004), and 
Alvarez and Lippi (2009), among others. In particular Lucas and Nicolini (2012) explore the effect of changes in 
banking regulations for demand deposits, and Alvarez and Lippi (2009) explore the effect of transaction technolo-
gies, such as availability and diffusion of ATM cards and terminals.

13 Looking for direct empirical evidence on this parameter is not easy. To gauge the magnitude of it we used 
data from the US distribution of wealth to construct a relative wealth measure, ​ω​i​, and a measure of households 
participation, ​λ​i​ , in bond (and/or equity) markets across the different quartiles of the financial wealth distribution. 
Our measure of household participation ​λ​i​ is the fraction of households in the quartile i with nonnegative holding 
on the relevant class (i.e., say bonds, equity directly held, etc.). The source data were taken from Guiso and Sodini 
(2012). We then measure the fraction of financial wealth owned by traders by computing λω = ​∑​ i=1​ 

4
  ​​λ​i​ ​ω​i​/4. The 

estimates vary depending on whether one considers bonds only, equity only and whether stockholding is measured 
as “direct” holding or includes “indirect holding” (say through mutual funds). Our model is about segmented bond 
markets, and hence participation refers to the holding and trading of the asset which are on the other side of an open 
market operation. Yet if households delegate their wealth management to financial intermediaries and have access 
to liquidity through them, one can consider that they participate through the holdings of their delegated portfolio. 
Overall, the estimates of λω range from a lower bound of 0.4 (when only direct equity holdings is considered) to an 
upper bound of 0.8 (when direct and indirect equity holdings are considered). We see the benchmark value used in 
the simulation as a reasonable starting benchmark to be used in the quantitative assessment.
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above, the novel feature of model is its ability to explain both the long-run money 
demand, i.e., the fitted regression line, as well as its deviations, i.e., an ​R​2​ less than 
one, even though it has only monetary shocks.

Table 2 also reports the mean value of the Durbin-Watson statistic, which we 
interpret as a measure of the persistence of the liquidity effect. The low value of 
the Durbin-Watson statistics points to a large positive autocorrelation of the residu-
als both in the data and in the model simulations. Interestingly, the model is able 
to produce highly autocorrelated deviations even though the persistent component 
of the exogenous money growth process has a much shorter half life.14 This effect 
is due to the endogenous propagation caused by the liquidity effect as displayed in 
Figure 2, as well as in Table 1. Interestingly, the table shows that the fitted regres-
sion coefficient on simulated data produces a downward-biased estimator of the 
elasticity ρ, especially so in the whole sample and in the first subsample. This is due 
to the short-lived liquidity effect on our model, which produces changes in interest 
rates (the right-hand side variable) that are unrelated to velocity (the left- hand side 
variable in the regression). The liquidity effect ends up working as if it were mea-
surement error in the interest rates, and thus produces the classical attenuation bias 
in the coefficient as an estimate of ρ. Instead, the persistent component gives rises 
to movement in velocity, which trace the long-run money demand. This is the same 
phenomenon as the difference between short- and long-run money demand elastici-
ties studied in Section IVB. On comparing the two subsamples, note that the fit to 
the post 1980 US data has a higher ​R​2​, which for the calibration requires a slightly 
higher value of λω, a feature that we find plausible. Finally, this higher λω implies 
a very small bias in the estimate of ρ.

We conclude this section with a remark. Our estimated process for the growth rate 
of money supply has a relatively small variance of the low frequency component, 
which we use as the sole exogenous forcing process to solve for equilibrium infla-
tion, real balances, and interest rates. Given the small estimated permanent compo-
nent in the growth rate of money supply our simulated model produces a too small 
low-frequency variability in velocity compared to the data—a feature that was also 
apparent in Hodrick, Kocherlakota, and Lucas (1991). Modeling structural shocks 
that shift the money demand will also improve the fit in this dimension.15

VI.  Concluding Remarks

This paper presented a theoretical model that gives rise to a persistent liquid-
ity effect, and characterized its relationship with a long-run interest-elastic money 
demand. One key feature of our model is that the presence and the persistence of the 
liquidity effect is determined by a simple combination of the intertemporal elastic-
ity of substitution and of the intratemporal elasticity of substitution of cash versus  

14 The persistent root of the growth rate of the monthly money supply is 0.95, while the autocorrelation of the 
residuals for the model is of the order of 0.9 in annual terms.

15 Proposition 5 on the approximate aggregation in our model implies that it has the same implications for veloc-
ity and inflation, except at zero interest rates, as the cash-credit version of the model Hodrick, Kocherlakota, and 
Lucas (1991). Hence, we share the feature that the model produces a small variability of velocity for a process for 
money supply that resemble the one in the US data.



Vol. 6 No. 2� 105Alvarez and Lippi: Persistent Liquidity Effects

consumption. It was shown that the log-run (i.e., low frequency) properties of 
money demand determine strength and persistence of the short-run liquidity effects. 
This provided a unified theory for the low- and high-frequency movements of inter-
est rates. The simplicity of the logic of the argument for the presence of a liquidity 
effect can be seen by noticing that a once-and-for-all increase of money supply must 
necessarily imply a liquidity effect.

Our interest in monetary models that feature liquidity effects based on segmented 
asset markets is to provide a framework for studying policy questions on the effects 
of monetary shocks, such as those analyzed in e.g., Lahiri, Singh, and Végh (2007); 
Nakajima (2006); Lama and Medina Guzman (2007); Khan and Thomas (2007); 
King and Thomas (2008); Bilbiie (2008); Cúrdia and Woodford (2008); and Zervou 
(2013). Comparing with this literature, we have deliberately kept the model as sim-
ple as possible. The simplicity allowed us to give a sharp characterization of the the-
oretical results, such as the relationship between money and prices in the presence of 
segmentation, and the impact effect and persistence of the liquidity effect as a func-
tion of simple elasticities. The disadvantage of this simplicity is that this version of 
the model lacks some features that may be interesting for some policy questions. For 
instance, the model has exogenous endowment, flexible prices, and constant exog-
enous participation rates in the bond markets. In this regard, we view the result of 
the model as applying to the aggregate nominal demand. We think that it is feasible 
and interesting to extend the model in several dimensions: to have variable inputs 
and to introduce nominal rigidities, so that the model can be used to study the “real” 
effects of monetary shocks and whether the liquidity effects produced by segmented 
markets are substitutes or complements to the nominal rigidities.

Another interesting use of the model will be to study impact on the strength and 
persistence of the liquidity effects of changes to the relative wealth of asset market 
participants, as well as of changes in participation rates, i.e., variations in ω λ. This 
requires careful measures of both segmentation as well as strength and persistence 
of liquidity effects either across time or across countries. Furthermore, we can study 
the effect of shocks to ω. This will allow to guide empirical research similar to the 
one conducted in the “slow moving capital literature” such as the one in Mitchell, 
Pedersen, and Pulvino (2007) or Duffie (2010) and to study the welfare implications 
of different monetary policies designed to offset the effect of these shocks.
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