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Shopping Cost and Brand Exploration in Online Grocery†

By Andrea Pozzi*

This paper compares consumers’ brand exploration when shopping 
online versus in a brick-and-mortar store. I use a new scanner dataset 
to compare the behavior of households shopping online and in-store 
at the same chain, for identical items and prices. I find that brand 
exploration is more prevalent in-store. My model quantifies the role of 
features of e-commerce, like the existence of “favorites lists” and the 
difficulty in verifying item quality. Limited exploration online implies 
higher barriers to entry on the Internet channel. Counterfactual exer-
cises suggest that online advertising could make the Internet channel 
more competitive. (JEL D12, L11, L81, M31, M37)

Brand exploration—that is, purchasing a brand not tried in the past—is an impor-
tant phenomenon in retail markets. Learning how much consumers can be 

induced to explore new products is key for manufacturers because it informs their 
pricing (Klemperer 1995) and marketing strategies (Bayus 1992). It also has policy 
implications, given that markets where brand exploration is low have higher de facto 
barriers to entry (Schmalensee 1974). In this paper, I study how the choice of the 
shopping channel (online or brick-and-mortar store) affects buyers’ propensity to 
explore new brands. I show that customers tend to try new products less often when 
they shop online. I then estimate a structural model that quantifies this result. My 
findings imply that firms can exploit their customer base on the online channel, and 
that they also can minimize the threat of successful entry from outsiders.

Typically, the Internet is characterized as reducing the cost of search. Such online 
tools as shopbots and price search engines make it easy to gather information on 
alternative products and to compare them (Bakos 1997; Brynjolfsson and Smith 
2000; Clemons, Hann, and Hitt 2002). More search may mean a higher probability 
of trying a new item. Therefore, we should expect e-commerce to foster exploration 
and competition (Brown and Goolsbee 2002).

On the other hand, it is recognized that Internet and brick-and-mortar retailing 
are different beyond their search costs. For example, the online shopper cannot 
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physically inspect the product, which makes it harder to verify the quality of 
online purchases. Furthermore, the features of e-shopping Web sites affect con-
sumers’ choices in ways that cannot be replicated in a store. E-retailers provide 
recommendations based on customers profiling, or they may create personalized 
lists of favorite goods. These features can affect product exploration and the com-
petitive environment more generally. Although the outcome will depend on the 
Web site design, these practices are becoming ubiquitous, and firms frequently 
adopt them.1 Still, we do not know much about the impact of these features on 
consumers’ choice.

Identifying the effect of online shopping on consumer behavior is challenging 
because it involves many confounding factors. First, the choice of becoming an 
online shopper is endogenous. To disentangle the effect of the channel from self-
selection, we must ask how an Internet customer would behave if shopping instead 
in a brick-and-mortar store. Additional complications arise from the different pric-
ing policies across the two channels (goods are typically cheaper online). On the 
supply side, there are also more new entrants with little or no brand name online.

I explore a growing online shopping market: groceries (Goettler and Clay 2011). I 
analyze new scanner data for two years of grocery purchases made by a panel of some 
11,000 households who shop both online and in-store at the same supermarket chain. 
The store purchases are tracked through use of a loyalty card. The card information is 
also required when the customer registers for the online service on the grocer’s Web 
site, which allows me to link in-store and online trips for the same household.

This is an attractive setting for isolating the effect of online shopping. I can 
observe the same household shopping on both channels, whereas most previous 
studies compared a sample of online shoppers with a different sample of traditional 
shoppers.2 My data then reduces concerns related to sample selection. Moreover, 
both the in-store and online purchases occur at the same supermarket chain. This 
ensures that the set of brands carried, prices and promotions, and loyalty to the retail 
chain are identical in both channels.

The focus of my analysis is the breakfast cereals product category. This category 
is highly concentrated (Nevo 2001) and presents a classic example of niche fill-
ing strategy (Schmalensee 1978; Scherer 1979). Each manufacturer markets a large 
number of differentiated brands. As a consequence, there is great potential for brand 
exploration. I document that, in my sample, households are 8 percentage points 
more likely to try a cereal brand they have not purchased before when they shop in 
a brick-and-mortar store than when they are shopping online. This finding is robust 
to different specifications and is consistent with previous results.3 My goal is to 
understand the causal mechanisms behind this finding. I consider three potential 
explanations of the pattern seen in the data.

1 In 2006, Netflix, an online video rental company, offered a $1M prize to those who could achieve a substantial 
improvement on their algorithm for rental recommendations. Contestants were granted access to proprietary data 
on previous customer rentals.

2 Exceptions are Chu, Chintagunta, and Cebollada (2008) and Brynjolfsson, Hu, and Simester (2007) who also 
use a panel of cross-channel purchases, but with a different focus.

3 Degeratu, Rangaswamy, and Wu (2000) use data from Peapod and observe that brand switching is lower in 
Peapod orders than in brick and mortar stores. Danaher, Wilson, and Davis (2003), with data from a grocery chain 
that also offers online delivery, find that brand loyalty is higher when customers choose to purchase on the Internet.
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First, households may sort their transactions. When everybody shops both online 
and offline, selection is less of a concern. However, the decision of when to shop 
online is probably endogenous: purchasing groceries online is time efficient, so cus-
tomers might be more likely to choose the online channel when they are short of 
time. In that case, they may also be less likely to explore new brands.

Second, certain features of the Internet environment, including list of favorite or 
recommended items, may reduce the cost of shopping and make the online shopping 
experience less flexible. In my analysis, the grocer’s Web site offers the option of 
saving time browsing by purchasing from a “one click” list of items already selected 
by customers in the past. This time-cost reduction comes at the expenses of the free-
dom to browse, and potentially to uncover new brands. In fact, by design, this option 
reduces the amount of online exploration. A past shopping history list may have an 
effect given the evidence that the cost of browsing a Web page, or typing, can be 
substantial (Hann and Terwiesch 2003). For online goods that are seldom purchased 
and expensive, such as airplane tickets or electronics, this option is unlikely to be 
relevant. But in the case of a repeated activity involving relatively cheap items, like 
groceries, the appeal of a reduction in shopping costs can be much greater.

Finally, quality verification is more difficult online than in-store (Bhatnagar, Misra, 
and Rao 2000; Jin and Kato 2007). The information content of online searches is not 
as good as in the in-store setting. Exploration of new brands is by definition the search 
for items with more desirable attributes than those currently in the consumer’s basket. 
If assessing the attributes of new brands is more difficult online, then the probability 
of successful exploration is lower for online purchases. As a result, a consumer will be 
less inclined to buy new brands when she shops on the Internet.

I quantify the importance of these three effects by estimating a structural model 
of consumer behavior. In the model, consumers first select the channel where they 
want to shop. Conditional on that choice, they pick a cereal brand. My identification 
of the channel selection equation exploits the supermarket chain’s policy of offering 
discounted delivery fees for Internet orders, which introduces exogenous variation 
in the cost of shopping online. My results indicate that the sorting element definitely 
plays a role. The residuals from the channel selection equation are negatively cor-
related with unobserved shocks to the taste for unknown brands. In other words, 
specific circumstances that make it more likely for an agent to go online (e.g., lack 
of time) similarly make her less likely to try new brands. The reduction in shopping 
cost from a past shopping history list is also an important factor in explaining why 
consumers avoid exploring new brands on the Internet. My estimates imply that the 
benefit of not having to browse the Web site—by resorting to the past shopping his-
tory list—is worth about $4 to the typical consumer.

Some counterfactual exercises provide additional insights on the economic sig-
nificance of my results. For example, altering the design of the grocer’s Web site to 
remove the past shopping history list boosts online brand exploration by 23 percent. 
I also show that new entrants’ penetration rate is slower online. Within 18 months, a 
new brand achieves 60 percent of its potential in-store market share but only reaches 
40 percent of its target market share online. This finding indicates additional entry 
barriers that online technology creates in this environment. At the same time, the 
introduction of features that facilitate the exploration of new brands online (for 
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example, context ads or recommendations), results in the entrant penetrating the 
market much more quickly on the Internet.

My research is tied to the literature on the impact of popular features of e-com-
merce Web sites, including Ellison and Ellison’s (2009) study of obfuscation tech-
niques and Ackerberg, Hirano, and Shahriar’s (2006) analysis of the Buy-it-now 
option in eBay auctions. This paper is also related to work that tests the “friction-
less commerce” paradigm (Brynjolfsson and Smith 2000; Chen and Hitt 2002; 
Brynjolfsson, Dick, and Smith 2010).

The remainder of the paper is organized as follows. Section I presents the data 
and provides institutional details on the online grocery business. In Section II, I 
describe the cross-channel rate of trial of new brands. Section III develops a struc-
tural model of channel choice and demand for brands. I explain the estimation 
strategy in Section IV. Section V reports the results; Section VI presents the coun-
terfactuals. Section VII concludes.

I.  Data and Institutional Background

My data come from a national supermarket chain that operates more than 1,500 
stores across the United States. This chain also offers the option of shopping for 
groceries online, through the company Web site, and having them delivered to your 
home. I observe scanner-level data for each purchase made by the 11,640 house-
holds who shopped at least once in a supermarket store and at least once through the 
online service between June 2004 and June 2006. For each one of those 1,829,254 
shopping trips, I observe the date, the list of all items purchased (as identified by 
their bar code or UPC), price, and quantity purchased. Coupons and discounts are 
also recorded in the data. Finally, I have information on whether the purchase took 
place in a brick-and-mortar store or online. Customers are identified through their 
loyalty card number;4 the chain matches cards belonging to different members of 
the same household under the same identifier.

A. The Online Service

The online service was first offered in 1999 but was substantially re-organized in 
2002. The option of buying online is only available in selected metropolitan areas. 
Nevertheless, in areas reached by the service, the online channel plays a significant 
role. In my sample, Internet trips account for 9 percent of the total and generate 
about 25 percent of the revenues. Online orders are fulfilled using stock available in 
regular stores for each area covered by the service. Thus, the stockout process and 

4 Purchases made by households without a loyalty card are not recorded in the data. This is not a 
big concern, because the chain encourages use of the loyalty card (that entitles buyers to discounts 
and special offers on many items) and estimates that more than 85 percent of the customers have one. 
As for use of the loyalty card, the figures are also very high. Einav, Leibtag, and Nevo (2010) analyze shopping trips 
reported by Homescan households for a particular retailer who tracks customers through loyalty cards. Less than 20 
percent of the shopping trips recorded by a household in Homescan do not find a match in the retailer’s data. This 
is an upper bound, since the difference can be explained by trips where the card was not used but also by mistakes 
made by the consumer while recording the trip. For example, she can erroneously report the identifier of the store 
she visited, or the date of the trip.
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the variety offered should not have any systematic impact on differences between 
the two channels.5 The online service runs seven days a week, customers pay a 
delivery fee; and they can pick the delivery time, conditional on availability.

To access the online service, customers must register with their address, phone 
number, and loyalty card number. That allows me to link a customer’s online trans-
actions with in-store purchases. Online, the customer can choose how to shop: she 
can browse the online store, where aisles are represented as a series of nested links, 
and consider items displayed in alphabetical order or by price. Alternatively, she 
can shop from the list of items bought during her last visit or in her entire shop-
ping history. The items’ descriptions include characteristics, price and presence of 
discounts, a photograph of the item, and nutrition information. The retailer commits 
to offering goods at the same price online and in-store; therefore, customers face 
identical prices in the two environments.6

B. Trip Characteristics: Online versus In-Store

I focus on the breakfast cereal category. Because of the large number of exist-
ing brands, breakfast cereals represent an excellent category for analyzing product 
choice and brand switching decisions by households. Furthermore, they are popular 
and frequently purchased, and feature prominently in both online and in in-store 
sales. In my data, over 140,000 trips include the purchase of one item from this cat-
egory. Finally, this product choice eases the bias from relying on data from a single 
retailer, because this grocery chain is a major player in this product category7.

In the data, one observation refers to purchase of a good identified by its Universal 
Product Classification (UPC) code. For example, a UPC description might be 
“Kellogg’s Cocoa Krispies, 18 oz. box.” My definition of brand requires aggregat-
ing over multiple UPCs; therefore, UPCs referring to Rice Krispies sold in different 
sizes (18 ounce versus 12.5 ounce boxes) and varieties (Frosted versus Berries) 
identify the same brand in my analysis.

Table 1 reports descriptive statistics for trips involving cereal purchases, by dis-
tribution channels. The average size of the basket and the net expenditure are higher 
online, reflecting both the $50 minimum order constraint to access the online service 
and the incentive to stock-up in online orders, because of the fixed cost of delivery. 
Once we focus on cereal purchasing behavior, though, the differences are less marked. 
The number of cereal boxes purchased per trip is just higher when the customer orders 
online; the difference in the number of distinct cereal brands purchased in an online 
versus offline trip is even smaller. Both online and in-store trips appear to be compara-
ble in terms of the most popular product categories purchased in each channel. Table 2 
shows that nine out of the top ten categories purchased are the same.

5 Online customers can specify instructions to be followed in case one item in their shopping list is not available. 
The options offered are: “no substitution”; “same size, different brand”; and “same brand, different size.”

6 Note that this does not imply that prices are the same in all stores. The retailer’s price strategy is based on loca-
tion, and the online customer is offered prices that match those in the area of her IP address.

7 Based on a sample of Homescan data for 2004, the chain is among the top three retailers, both for market share 
and for the number of trips, in the breakfast cereal category in the United States. If we restrict the analysis to mar-
kets where the chain is actually operating, it becomes by far the largest retailer in the product category.
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C. Pricing of the Online Service

The supermarket offers the same prices for goods sold online and in-store. 
However, Internet shoppers must also pay a delivery fee. Variation in the charge 
for delivery will be an important source of identification in the model; therefore, I 
describe the main features of the pricing of the online service here.

In the period under examination, the full price for delivery was $9.95. In an 
attempt to promote the relatively new and still expanding online service the grocer 
issued frequent coupons, sent by mail and entitling shoppers to a discount on the 
delivery fee or waiving it altogether. Instead of targeting specific customers for 
the discount, the coupons were mailed to all registered shoppers in a given area, 
roughly corresponding to a zip code. Such a policy has two important implica-
tions for this analysis. First, it makes ownership of a coupon exogenous from the 
point of view of an individual household. Second, it allows me to back out coupon 

Table 2—Product Categories Most Frequently Purchased in In-store and Online 
Trips

In-store Online

Milk and substitutes Milk and substitutes
Carbonated soft drinks Fresh bread
Fresh bread Bananas
Bananas Carbonated soft drinks
Refrigerated yogurt Salad vegetables
Salad vegetables Cold cereals
Cold cereals Eggs and substitutes
Cooking vegetables Refrigerated yogurt
Still water Still water

Note: The ranking is computed by counting the number of trips in which at least one item of a 
given product category has been purchased.

Table 1—Trip Descriptive Statistics by Channel of Purchase,  
for All the Trips Involving Purchase of Breakfast Cereals

In-store Online

Total expenditure 110.9 179.2
(78.6) (89.5)

Basket size 40.5 66.3
(27.8) (35.1)

Number of unique items 30.6 41.6
(20) (19)

Number of unique categories 23.3 30.4
(14.4) (12.7)

Number of cereal boxes 1.5 1.9
(0.9) (1.5)

Number of unique cereal brands 1.3 1.4
(0.56) (.80)

Observations 106,378 35,647

Notes: Total expenditure is net of any discount and expressed in dollars. Basket size refers to 
the total number of items purchased in the trip, including multiple purchases of the same good. 
Standard deviations are reported in parentheses.
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holding even for customers who did not use one. In fact, whenever I observe a 
household using a coupon in a given week, I can assume that all the other house-
holds living in the same area had received one. For each in-store trip, I can impute 
a “potential fee”—that is, the fee the household would have paid had it decided to 
make that order online.

Table 3 presents summary statistics for the potential fee for all grocery trips in 
the sample and for trips involving cereal purchase only. The most common fees paid 
are $9.95, $7.95, and $4.95; free deliveries are also fairly common. In general, the 
couponing strategy generates a substantial amount of variation in the cost of the 
online service. Only half of the trips are charged the full delivery price, even fewer 
if we focus only on cereal trips. More importantly, there is significant within-house-
hold variation. Customers see the potential price of Internet orders vary over time, 
according to whether their area was targeted for coupon distribution. Some of the 
variation in the delivery fee could still be endogenous because shoppers also obtain 
discounts in case of large orders. However, knowing the rules that trigger such dis-
counts, I can isolate them from the truly exogenous variation coming from coupons. 
In Table 3, I also present the distribution of potential fee when size discounts are 
excluded from the sample.

Coupons aim at promoting use of the new online service to create critical mass. 
Over 75 percent of the zip codes reached by the Internet service are targeted for a 
delivery fee discount at least once. Table 4 column 1 reports correlations between 
the potential delivery fee and the characteristics of the market. In column 2, a similar 
exercise is repeated for the probability of issuing coupons in the zip code. The most 
significant results are a slight preference for areas where younger households are 
prevalent and for markets characterized by higher income customers. Both groups 
are more likely to become regular e-shoppers. My analysis of the month fixed effects 
(not reported in the Table) reveals that discount campaigns are more likely to occur 
between March and June.

The last two columns of Table 4 indicate that these promotions are effective. I fit 
a linear probability model to detect the correlation between households’ choice of 
shopping channel for a particular trip and the potential fee (column 3) or a coupon-
holding indicator (column 4). The coefficient on the potential fee variable implies 
that moving from full price to free delivery increases the probability of selecting the 

Table 3—Distribution of Internet Delivery Fee

Mean Variance Free $4.95 $7.95 $9.95
(percent)

All trips
All discounts 7.14 13.99 17.38 14.89 11.87 52.81
Only coupons 7.27 14.41 18.24 10.09 12.50 55.92

Cereal trips
All discounts 6.69 12.69 15.57 28.35 10.22 43.24
Only coupons 7.14 14.71 19.00 11.09 12.59 53.98

Notes: The figures refer to the potential delivery fee; that is the one the household would have paid if it had decided 
to shop online. The mean fee is expressed in dollars. The All discounts rows include fee reductions granted to large 
orders. The Only coupons rows only consider discounts originated by mailed coupons.
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online channel by almost 25 percent. Similarly, conditional on holding a coupon for 
discounted delivery, an online shopping trip is 6 percent more likely.

D. Demographic Information

For a random subsample of households in my data, the grocer has provided 
information on the address, edited to prevent identification of the specific house-
hold. I have this information for 6,155 of the households who purchased breakfast 
cereals at least once. I match those households with demographic data from the 
Census 2000 at the block-group level8. The demographic data include the share of 
African-American and Hispanic people in the block, the share of families, the frac-
tion of the population with a college degree, the fraction employed, the age of the 

8 Matching at the block-group level, rather than the five-digit zip code level, has two main advantages. Block 
groups are smaller: their boundaries never cross county or state limits (as opposed to census tract boundaries), and 
are designed to include relatively homogeneous population. Hence, I am not only averaging demographic charac-
teristics over a smaller set of people, but also over a set of people that is more likely to be similar.

Table 4—Correlation of the Delivery Fee with Zip Code Characteristics and 
with Choice of the Shopping Channel

Dependent variable Fee Coupon Online Online
dummy dummy dummy

(1) (2) (3) (4)

Black 0.014 −0.002
(0.0012) (0.0002)

Hispanic −0.004 0.000
(0.0011) (0.0000)

Age 35–54 −0.041 0.007
(0.0037) (0.0005)

Age 55–64 0.017 −0.002
(0.0045) (0.0006)

Age  ≥  65 −0.014 0.004
(0.0020) (0.0003)

Income −0.013 0.001
(0.0010) (0.0001)

Fee −0.007
(0.0010)

Coupon 0.015
(0.0040)

Fixed effects
Household No No Yes Yes
Month Yes Yes No No
Day of the week No No Yes Yes

N 64,771 64,771 141,396 141,396
​R​2​ 0.02 0.02 0.03 0.02

Notes: All coefficients are significant at the 1 percent level. The unit of observation is a zip 
code-week in columns 1 and 2 and a trip in columns 3 and 4. Standard errors are reported in 
parentheses.



104	 American Economic Journal: Microeconomics�a ugust 2012

head of the household, and average income per capita. Table 5 provides an overview 
of the demographics for the households in the sample.

II.  Descriptive Results

I first document the relationship between the choice of the shopping channel for 
the grocery purchase and brand exploration. I define brand exploration as a house-
hold buying a cereal brand that it has not bought previously. Under this definition, 
even a cereal brand that was introduced long ago can be the object of exploration, as 
long as it is new to this buyer.

It is difficult to identify brand exploration using transaction data because of left-
truncation. I do not observe the brands the household purchased before the begin-
ning of my data series. Therefore, I cannot know definitively when a consumer is 
purchasing a brand for the first time. To address this problem, I define “brand trial” 
as the purchase of a cereal brand that the household has not bought in the past three 
months. This way, I can use the first three months of data to simulate the set of 
brands known to the consumer at time ​t​0​, and then exploit the remaining 21 months 
for the estimation. The rolling three-month window ensures that, at any point in 
time, trials are defined with respect to a past history of the same length. The choice 
of the three-month period is arbitrary and is subject to the usual problems faced in 
defining initial conditions (Erdem and Keane 1996). In the online Appendix, I show 
that a three-month window provides a good approximation of past choices, and that 
the results are robust to varying the length of this interval.

I observe 142,025 supermarket trips involving the purchase of breakfast cereals, 
performed by 9,175 different households. In 52,461 trips, the customer buys a cereal 

Table 5—Demographic Information

Percentiles

5th 25th 50th 75th 95th 

Number of trips 48 102 164 250 451
Number of cereal trips 4 12 23 38 70
Trips online (percent) 0.4 1.7 5.3 16.2 50.6
Cereal trips online (percent) 0 2.4 12.5 38.5 86.4
Black 0 0.2 1.7 4.5 19.7
Hispanic 0.4 3.8 7.4 14.4 36.6
College degree 18.8 35 49.6 63.2 78.7
Employed 49.7 60.4 66.7 71.9 79.2
Age 15-34 0 4.6 9.7 17 31.6
Age 35-54 27.1 44.5 53.6 62.5 75.1
Age 55-64 0 10.4 16.1 22.1 32.9
 Age ≥ 65 0 8.2 15.8 25 42.2
Commute  ≤  30 minutes 36.18 49.3 57.3 66 79.3
Commute 30 to 59 minutes 14.7 25.1 32.2 38.6 49.3
Commute  >  60 minutes 1.5 5 8.9 14.3 23.7
Per capita income 16,261 23,837 30,791 41,884 69,045
Distance 0.26 0.65 1.09 1.72 3.38

Notes: Information on number of trips, number of cereal trips and number of online trips are constructed from the 
scan data provided from the grocer. Distance is calculated as miles between the domicile of the household and the 
closest brick-and-mortar store of the supermarket chain and was also provided by the retailer. All the other variables 
(black, Hispanic, college degree, employed, per capita income, age, and commuting time) are shares for the 9-digit 
zip code of residency of the household, with the exception of per capita income, which is expressed in dollars.
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brand she has never tried before. In 42,957 transactions, she buys more than one 
brand of cereal is bought, which allows for multiple brand explorations in the same 
transaction. Separately considering multiple cereal purchases in the same shopping 
trip, I obtain 61,216 trials of new brands in 184,982 purchases.9

A look at the raw data (Table 6, top panel) suggests that the average amount of 
brand exploration is significantly higher in stores than in online trips. This differ-
ence persists when I consider only “large” trips, making online and offline trips 
more comparable. To assess whether the result is robust to the inclusion of controls, 
I estimate the following linear probability model of trials:

(1)	 Tria​l​it​  =  α  +  βOnlin​e​it​  + ​ τ​i​  + ​ ε​it​ ,

where Tria​l​it​ is a dummy variable that equals one if consumer i explores a new brand 
in shopping trip t. Onlin​e​it​ is an indicator variable for online trips, ​τ​i​ is a household-
specific indicator that controls for time-invariant unobserved heterogeneity. I find 
(Table 7, column 1) that consumers are 8 percentage points less likely to try a new 
brand of cereals when they are shopping online, a 20 percent reduction.

9 This implies a 33 percent probability of exploration for each trip. To understand whether this figure is plau-
sible, it may be useful to compare it to measures of state dependence from other studies on scanner data. Brand 
exploration and simple brand switching are different phenomenon. However, we know that the former should be 
less frequent than the latter. Consistent with that, several studies report switching probabilities much higher than the 
probability of exploration observed in my sample. (Dube, Hitsch, and Rossi 2009) uses six products (distinguishing 
between different sizes within a brand) of frozen orange juice and four brands of margarine and observe that the 
probability of repeated purchase for a given brand oscillates between 77 percent and 90 percent. (Shin, Misra, and 
Horsky 2012) restricts analysis to seven toothpaste brands whose probability of repeated purchase ranges between 
46 percent and 57 percent. Shum’s (2004) study of the cereal market adopts a measure of brand loyalty similar to 
my definition of exploration. He finds that the probability of switching is around 50 percent.

Table 6—Brand and UPC Exploration for In-store versus Online Trips

In-store Online p-value

Panel A. Brand exploration
All trips 0.36 0.26 0.000

(0.001) (0.002)
Trips worth > $100 0.35 0.26 0.000

(0.002) (0.002)
Basket size > 50 0.36 0.26 0.000

(0.002) (0.002)

Panel B. UPC exploration

Same brand, same UPC
Number of trips 56,296 29,630
Share (percent) 65.4 80.2

Same brand, different UPC
Number of trips 29,824 7,314
Share (percent) 34.6 19.2

Notes: Brand trial is defined as purchase of a brand not bought in the previous three months; 
UPC exploration is analogously defined. Panel B conditions on trips in which the house-
hold purchased a known brand. P-values refer to t-test where the hypothesis is equality of the 
means. Standard deviations are reported in parentheses.
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Potential Explanations for Lower Brand Exploration Online.—The features of 
my sample make it unlikely that sample selection, differences in price or quality, and 
reputation of the retailer can create the wedge between online and in-store behavior. 
There are some other potential explanations:

Sorting of Trips.—The choice of ordering groceries online is endogenous and can 
be determined by factors correlated with the probability of exploring a new brand. 
For example, if the customer views online shopping as a time-saving technology, 
then she will be more likely to do it when she feels under time pressure. In this 
sense, the quote here from a user of the online service which was collected by the 
grocer in a customer survey, is enlightening: “I can’t do without this service. It is a 
necessity for busy families.”

However, being short of time does not favor experimentation, and thus would 
generate a spurious negative correlation between brand exploration and online 
shopping.

The evidence in Figure 1 appears consistent with this story. On the left, it shows 
the share of in-store10 trips in which customers try a new brand, by day of the week. 
The second plot displays the share of online orders, also by day of the week.11 The 
two series are negatively correlated. The amount of new brand trials spike during 
weekends, when people have more time to do their grocery shopping. In contrast, 
the share of online orders is lower on weekends.

To provide a first assessment of the importance of the bias induced by sorting, col-
umn 2 of Table 7 presents an instrumental-variables estimate of the linear probability 
model of brand trial. The instrument I use is the dollar amount of the delivery fee 
that the household would have paid if she had decided to order online. The strategy 
adopted by this retailer gives us a strong reasons to consider this variation as an exog-
enous shifter for the appeal of online shopping. My results indicate that trip sorting 

10 Online orders are excluded to avoid composition effects.
11 Figures refer to the delivery day. However, most orders are placed for quick delivery: either same day or next day.

Table 7—Probability of Exploration

Dependent variable:
New brand dummy

Dependent variable:
New UPC dummy

OLS IV OLS IV

(1) (2) (3) (4)

Online −0.08*** −0.04*** −0.11*** −0.95***
(0.004) (0.010) (0.004) (0.008)

N 163,324 162,625 129,333 101,644

Notes: Trial of a new brand is defined as purchase of a brand not bought in the previous three 
months; trial of a new UPC is analogously defined. Specifications for new UPC’s trial only 
include trips in which the household did not try a new brand. All specifications include house-
holds and day of the week fixed effects. The estimates come from a linear probability model. 
In column 2 and 4 the instrument is the “potential” fee that would be paid for an online order. 
Standard errors are clustered at the household level and reported in parentheses.
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is responsible for half of the wedge in the probability of brand exploration between 
the online and the in-store context. In the model, I explicitly take this problem into 
account by modeling the household’s decision on the shopping channel. 

Uncertainty over Quality.—While the consumer knows the utility she will derive 
from consuming a brand she has already tried, she can only have expectations about 
the quality of new brands (Erdem and Keane 1996; Crawford and Shum 2005). This 
uncertainty can lead her to discount the utility she would derive from switching. Of 
course, this cost is not specific to the online environment, but verifying the quality 
of a good is harder online. The higher cost of experimentation online may justify the 
lower inclination toward brand trial when shopping on the Internet.12

Design of the Website and Shopping Cost.—Many e-commerce Web sites feature 
a favorites list, recommendations, banners or pop-ups, knowing that Web site design 
can affect consumer behavior (Burke, Harlam, Kahn, and Lodish 1992; Ellison 
and Ellison 2009). The supermarket chain in this study has a Web site that offers 
the option of shopping from the list of items (UPCs) already bought in the past. 
Consumers can save on time spent browsing the site but cannot search for new 
items this way. Opting for a recommendation system or pop-ups, the chain may have 
achieved the opposite effect, stimulating brand exploration.

Together, uncertainty over quality and Web site design will bias customers 
towards purchasing only known brands online. I can separately identify these two 
stories by exploiting the fact that the “shopping history list” includes UPCs, not 
brands. Thus, if lack of brand exploration online is caused by web design, then it 
should lead the customer to not only stick to previously purchased brands, but also 
to choose the same variety and size of the package. This latter would not occur if 

12 It is worth noting, though, that Mazar, Herrmann, and Johnson (2007) provide experimental evidence that 
customers evaluate fruit cereals based on non-sensory attributes. They also seem more accurate in matching their 
declared preferences when they shop for cereals online.
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Figure 1. Propensity to Brand Exploration and Online Shopping, by Day of the Week

Notes: Confidence intervals are displayed on top of each bar. For online orders, the day of the week is intended as 
the day of delivery.
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behavior were driven by uncertainty over brand quality. In Table 6 (panel B), I con-
dition on instances in which the household decided to purchase a known brand; I ask 
whether persistence in purchase of the same UPC differs across channels. Indeed, I 
find that the fraction of consumers choosing to purchase the same brand in the same 
size and variety is much higher for online purchases.

Column 3 in Table 7 formalizes this point by showing that online shoppers 
are 11 percentage points less likely to try new varieties, or box sizes, of a known 
brand. I interpret this as evidence that households use the past shopping history 
list to reduce their cost of shopping, which in turn affects brand exploration. Once 
I account for the endogeneity in the choice of the shopping channel (column 4) 
again using the delivery fee as an instrument, I find that the cross-channel differ-
ence in UPC stickiness is even stronger. This finding is not surprising. Existing 
estimates of the monetary cost of searching online are quite large (Hong and Shum 
2006; Brynjolfsson, Dick, and Smith 2010). It also squares with the evidence that 
consumers with more experience in Internet shopping tend to develop routines and 
to cut the length of their transactions (Johnson, Bellman, and Lohse 2003). The 
logic of these arguments is reinforced in the context of a frequent activity, such as 
grocery shopping.

III.  Model

I develop a model of consumer behavior to disentangle the effect of sorting from 
the causal impact of the online channel. I assume that households face two sequen-
tial decisions. First, they have to select the channel where they want to shop: each 
trip can take either of the two forms; a visit to a brick-and-mortar supermarket or an 
online order through the chain’s Web site. Conditional on the choice of the channel, 
consumers select a brand of cereal.

I index each of the N consumers with i, each of the J UPCs with j, and each of the ​
T​i​ trips made by customer i with t. With the notation ​Ω​it​ I refer to the set of cereal 
brands purchased in the past by consumer i, as of trip t. Finally, ​h​it​ indicates the set 
of UPCs purchased by consumer i prior to trip t.13

A. Choice of the Shopping Channel

The latent utility from making trip t online for consumer i is

(2)	​ c​ it​ * ​  = ​ C​it​γ  + ​ μ​i​  + ​ θ​it​ .

The vector of regressors ​C​it​ includes variables relevant for the decision between 
shopping online and in-store. The fee (in dollars) that the household would have 

13 Construction of both ​Ω​it​ and ​h​it​ involves the initial-conditions problem discussed at length in the online 
Appendix. I adopt here the same approach as in Section II by defining ​Ω​it​ as the set of brands purchased by house-
hold i in the three months prior to the time t trip and ​h​it​ as the set of UPCs purchased by household i in the same 
period. This potentially allows for some “forgetting”: consumers treat a brand that they purchased farther back in 
the past as new to them. However, such instances are of little empirical relevance. In my data, fewer than three per-
cent of the cases involve purchase of a brand which the consumer has bought before but forgotten.
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to pay for home delivery if it were to order online plays an important role in the 
decision about the channel. Moreover, that fee is the only variable that varies both 
in time for the same household and across households at a given point in time. I 
also include the distance in miles between the house of the customer and the clos-
est grocery store in the chain. I expect that households living further away from a 
store would be more likely to shop online. A dummy for weekends further captures 
the fact that time pressure is lower on non-working days, which makes e-commerce 
less valuable. The other controls are census demographics on the block-group of 
residence of the household, including education, employment status and age of the 
head of the household. ​μ​i​ is a random effect accounting for unobservable taste for 
online trips by agent i, which would make this choice correlated over time. The ran-
dom effect is normally distributed with zero-mean and variance ​σ​ μ​ . Moreover, it is 
independent from the i.i.d. error ​θ​it​ which is also a zero-mean normally distributed 
disturbance whose variance is normalized to one.

In the data, I observe the choice of the shopping channel (where, with c = 1, I 
refer to an online order) which follows the rule

	 1    if ​c​ it​ * ​ ≥ 0
	​ c​it​  =  {	 0    if ​c​ it​ * ​ < 0.

B. Demand for Cereals

The utility consumer i derives from purchasing UPC j in trip t on channel c is 
modeled as follows for in-store purchases:

(3)	​U ​ ijt​ store​  = ​ β​0​  + ​ β​1​ Pric​e​jt​  + ​ β​ 2​ store​  ×  1{ j  ∉ ​ h​it​}

	 + ​ M​ j​ store​  +  (δ  + ​ ξ​it​)  ×  1{ j  ∉ ​ Ω​it​}  + ​ v​ijt​ .

Similarly, for an online trip:

(4)	​U ​ ijt​ online​  = ​ β​0​  + ​ β​1​ Pric​e​jt​  + ​ β​ 2​ online​  ×  1{ j  ∉ ​ h​it​}

	 + ​ M​ j​ online​  +  (δ  + ​ ξ​it​)  ×  1{ j  ∉ ​ Ω​it​}  + ​ v​ijt​ ,

where Price is the price per ounce paid by the household, net of discounts. To sim-
plify notation, I only indexed the price with subscripts for product and time, as if 
the same product were available at the same price for every household in a particu-
lar week. As pointed out before, there is some price variation even within week, 
because the retailer may post different prices for the same good in different price 
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areas. The indicator 1{ j ∉ ​h​it​} singles out UPCs that consumer i has not bought in 
the past three months. Therefore, ​β​2​ represents the impact on utility from purchasing 
a box of cereals whose UPC did not belong to the shopping history of the household. 
I allow this effect to be different according to whether the consumer shops online or 
in a store. ​M​ j​ is a UPC-fixed effects that also is interacted with the channel dummy. 
The unobserved shock ​ξ​it​ only hits brands with which the customer is not familiar 
(1{ j ∉ ​Ω​it​}), representing an instantaneous taste for variety. Finally, ​v​ijt​ is the usual 
logit error which is assumed to be uncorrelated with ​ξ​it​ . The model is estimated 
using only grocery trips involving purchase of breakfast cereals. The outside good 
is represented by a basket of all the cereal brands outside the top 100 according to 
revenues generated in the time period under consideration.

The link between the two parts of the model is given by the generating process of 
the unobserved shock ​ξ​it​ . I assume that ​ξ​it​ and ​θ​it​ , the disturbances in equation (2), 
are jointly distributed according to a bivariate normal

(5)	 ( ​​θ   ξ ​​ )  ∼  BN[( ​​0   
0​
​ ), Σ]    Σ  =  [ ​​ 1   

ρ​σ​ξ​​
​ ​
​
ρ​σ​ξ​   
​σ​ ξ​ 2​

 
​
​ ] .

The parameter δ can be interpreted as the mean of the ​ξ​it​ shock. In some specifica-
tions, I assume that the mean taste for new goods can vary according to the channel 
selected and the time of the week (weekend versus weekday) imposing the follow-
ing parametric form:

(6)	 δ  = ​ α​0​  + ​ α​1​ Internet  + ​ α​2​ Weekend.

C. Discussion

The model captures the salient features presented in the descriptive section of the 
paper. The potential bias deriving from the sorting of trips is addressed by allowing 
correlation between ​θ​it​ and ​ξ​it​ . This acknowledges the fact that unobserved determi-
nants of the choice of shopping online (e.g., lack of time) also can affect the attitude 
towards brand experimentation.

The change in utility derived from purchase of a new UPC (​β​2​) can differ for online 
and in-store trips. Inertia in the choice of the UPC operates both online and in-store: 
customers tend to purchase the same box size or variety of their brand of choice over 
time. For this reason both ​β​ 2​ online​ and ​β​ 2​ store​ should be negative. If distaste for UPCs 
never purchased before is only driven by habits or unobservable characteristics, 
then it should be the same for online and in-store purchases. That is, ​β​ 2​ online​ = ​β​ 2​ store​. 
I interpret the additional stickiness in the choice of the UPC online (i.e., any differ-
ence between ​β​ 2​ online​ and ​β​ 2​ store​) as the effect of Web site design.

Finally, allowing the mean of the ​ξ​it​ shock (δ) to vary according to the channel 
of purchase, I capture structural differences in the taste for new brands for in-store 
versus Internet orders. This difference can be interpreted as coming from higher 
uncertainty, which makes exploration less attractive online.
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D. Identification

The detailed information in the scanner data provide several sources of variation 
that help me to identify the model. Time invariant factors, such as distance from 
the closest store and household characteristics, help to explain heterogeneity across 
individuals in inclination toward online shopping. Availability of data from more 
than 1,000 stores ensures plenty of variation in household location when estimating 
these parameters.

However, disentangling the sorting effect requires a variable that changes the 
individual propensity to shop online through time. One such key shifter is the deliv-
ery fee. Recall that I can recover coupon-holding even for customers who do not use 
them. Therefore, I can construct the expected delivery fee that a household faces 
when deciding where to shop. Because of frequent couponing, there is much varia-
tion in the cost of online shopping for the same household through time. This identi-
fies the selection effect under the assumption that a discount on the delivery fee does 
not affect product choice in the second stage.14

The correlation between cost-of-delivery fee and the household’s choice of 
shopping channel is informative about its current utility of time. For example, a 
customer deciding to shop in-store despite being entitled to free delivery signals 
that she is not under extreme time pressure. Conversely, a household that pays full 
price for home delivery must need it enough to accept the extra cost. The weekend 
dummy is another variable that affects the propensity to shop online and varies 
through time. However, it also influences the taste for brand trial in some specifi-
cations of the demand model. Therefore, it would not represent a valid exclusion 
restriction in those cases.

Identification of the price coefficient exploits variation across different price areas 
in the same week as well as changes in price through time within a price area. Once 
again, the large number of price areas and the frequency of sales provide plenty of 
this type of variation. The panel structure of the data also allows for including brand 
dummies that account for quality and ease the problem of endogeneity of price. I 
allow brand quality to differ across channels acknowledging that differences in the 
environment (e.g., absence of preferential display) can induce differences between 
mean utility online and in-store for the same brand.

Finally, the effect of the shopping history list is identified separately from the ease 
of evaluation, exploiting differential stickiness at the UPC and brand level across 
shopping channels. Most brands are available in different box sizes or varieties, and 
I can observe whether the customer purchases the same brand in the same format. 
Comparing individual persistence in repurchase of brand and UPC online versus 
in-store identifies the lack of online brand exploration that is due to the higher cost 
of evaluating new brands on the Internet. Comparison of the stickiness of purchases 

14 This amounts to assuming that the within-category income effect as documented by Gicheva, Hastings, 
and Villas-Boas (2010) is not too strong or, at least, does not systematically concern cereals in all the categories 
included in the shopping basket. Milkman and Beshears (2009) uses data from an online grocery Web site to show 
that receiving a $10 coupon increases grocery spending by $1.59. The surge seems to be related to inclusion in the 
basket of product categories that the household does not usually purchase, rather than to adjustments in regularly 
bought product categories.
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of the same UPC across channels is informative instead about the role of the re-
purchase feature of the Web site in lowering brand trial.

IV.  Estimation

In this section, I describe the procedure for estimating the parameters of the shop-
ping-channel-selection equation and the demand equation.

The data consist of a series of observed channel and product choices for each 
individual, ​c​i​ and ​y​i​ respectively, as well as observables entering the channel selec-
tion and demand equations (C and X). The model has a complex heterogeneity 
structure. The richest version requires integrating out two random coefficients and 
a time-specific shock for each household in the demand equation, as well as the 
random effect in the channel selection equation. For the case of the mixed logit, 
which represents the second stage of this model, Train (2001) has shown that 
Bayesian methods deliver significant advantages in terms of computation time. 
Therefore, I choose a Bayesian approach for the estimation rather than using sim-
ulated maximum likelihood.

I present below the hierarchical Bayes model that is used to estimate the model 
with random coefficients; the version with fixed coefficients is a simplified case of 
this model. The details are left to the online Appendix.

A. Specification of the Priors

The parameter to estimate in the channel-selection equation is the vector γ. I 
assume it is normally distributed with mean ​_ γ​ and covariance matrix ​_ V​. In the 
Bayesian approach, the random effect is also treated as a parameter: the prior on 
it is μ ∼ N(0, ​σ​μ​). In the demand equation, the parameters of interest are divided 
into a set of random coefficients ​β​i​ and a set of fixed coefficients ​   β​. I assume that ​
β​i​ | b, W ∼ N(b, W) where b is normally distributed with mean ​_ b​ and covariance ​
_ B​ and W is distributed according to an inverse Wishart with parameters ​w​1​ and ​
w​2​. Finally, the distribution of the unobserved shocks ​ξ​it​ is implied by the joint 
distribution in equation (5). The covariance matrix of that bivariate normal (Σ) is 
distributed as an inverse Wishart with two degrees of freedom and identity inverse 
scale matrix.

B. Sampling Scheme

Let C and X be the matrices of the covariates included in the channel selection 
and demand equation respectively, and recall that c is the vector of observed channel 
choices.

Iteration k of the algorithm unfolds as follows:

	 (i)	 Apply data augmentation (Tanner and Wong 1987) to the channel selection 
equation and draw ​c​*(k)​ conditional on C, c and μ(k−1).

	 (ii)	 Draw γ conditional on ​c​*(k)​, C.
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	 (iii)	 Draw ​μ​ i​ (k)​ for each i conditional on ​σ​ μ​ (k−1)​. Now implied residuals ​θ​ it​ (k)​ can be 
calculated.

	 (iv)	 Draw ​σ​ μ​ (k)​ conditional on μ(k).

	 (v)	 Draw ​ξ​ it​ (k)​ for each i conditional on ​θ​ it​ (k)​ and ​Σ​(k−1)​.

	 (vi)	 Draw ​β​ i​ (k)​ conditional on ​b​(k−1)​, ​W​(k−1)​, ​​   β​​(k−1)​, ​ξ​ i​ (k)​.

	 (vii)	 Draw ​b​(k)​ conditional on ​β​ i​ (k)​, ​W​(k−1)​.

	(viii)	 Draw ​W​(k)​ conditional on ​b​(k)​, ​β​ i​ (k)​.

	 (ix)	 Draw ​​   β​​(k)​ conditional on ​β​ i​ (k)​, ​ξ​(k)​.

	 (x)	 Draw ​Σ​(k)​ conditional on ​θ​(k)​, ​ξ​(k)​.

	 (xi)	 Obtain ​α​(k)​ by Bayesian regression, conditional on ​θ​(k)​, ​ξ​(k)​, ​Σ​(k)​.

V.  Results

The model is estimated using a random subsample of 500 households15, for a 
total of 2,778 trips16, of which 783 are online orders. The results are displayed in 
Table 8 and Table 9 for channel selection and demand respectively. I set a burn-in 
period of 10,000 draws for the MCMC algorithm and estimate parameters using 
another 10,000 draws. The chain is thinned to reduced autocorrelation by retaining 
only one out of every ten draws. A Geweke (1992) test fails to reject that the chain 
has converged.

The covariates enter the channel selection equation (Table 8) with the expected 
signs. Higher delivery fees make it less appealing to shop on the Internet. Wealth 
positively affects preference for online shopping, whereas the weekend dummy is 
negative and large (the implied elasticity is 57 percent). Both results are consis-
tent with the utility of time playing a role in the selection of the shopping channel. 
As observed in the previous literature (Chiou 2009), customers living farther away 
from a grocery store in the chain are likelier to order online. The variables related to 
age enter with a negative coefficient because the reference group is 18 to 35 years of 
age; that is the youngest and most likely to be at ease with technology.

Column 1 of Table 9 presents estimates of the parameters of the demand function 
obtained by assuming that the mean of the ξ shock to the taste for new brands (δ) 

15 This is aimed at saving computation time. Given the large number of brands included in my analysis, each 
shopping situation implies listing the covariates for more than 100 brands. This requires to limit the number of trips 
considered to avoid the matrix of regressors becoming too large and slowing down the estimation routine.

16 Because demand is modeled as a discrete choice problem and estimated using household level data, I cannot 
handle trips where multiple brands of cereal were purchased. This leads me to discard about 20 percent of the trips 
in the sample. Descriptive statistics for single and multibrand trips are similar, especially when it comes to brand 
exploration. Average rate of brand exploration is .328 in single brand trips and .338 in multibrand trips.
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is the same for each trip. I relax this assumption in column 2, where δ is parameter-
ized as in equation (6). The coefficient on price is negative and changes little across 
specifications. Estimation of the demand parameters offers one way to highlight 
the competitive consequences of the gap in the cross-channel rate of brand trial. In 
Table 10, I report the ratio between the in-store and online values of both own and 

Table 9—Demand Estimates

Variable (1) (2) (3)

Price −0.21 −0. 21 −0.15
(0.02) (0.02) (0.03)

1{ j ∉ ​h​it​} × Onlin​e​t​ (​β​ 2​ online​) −6.96 −6.88 −4.33
(0.12) (0.13) (0.11)

1{ j ∉ ​h​it​} × (1 − Onlin​e​t​) (​β​ 2​ store​) −6.11 −5.94 −3.35
(0.07) (0.07) (0.10)

δ 0.93
(0.05)

​α​0​ 0. 54 0.61
(0.04) (0.04)

​α​1​ −0.70 −0.47
(0.17) (0.17)

​α​2​ 0.07 0.08
(0.04) (0.04)

​σ​ξ​ 1.13 1.58 2.11
(0.06) (0.06) (0.34)

ρ −0.13 −0.16 −0.26
(0.06) (0.06) (0.06)

Notes: The unit of observation is a cereal trip (2,778 observations). Standard deviation of the 
posterior is reported in parentheses. Burn-in period: 10,000 draws, mean and standard devia-
tion of the posterior are computed on the basis of 10,000 draws of which 1 out of 10 is retained. 
UPC fixed effects are included in the specification and interacted with the channel dummy. The 
specification in column 3 includes random coefficients for the β ’s.

Table 8—Estimates of the Parameters of the Channel Selection Equation

Variable Coefficient Variable Coefficient

Items count 0.0002 Income per capita 0.0049
(0.0002) (0.0004)

Distance 0.0087 Age 35–54 −0.0030
(0.0009) (0.0002)

Fee −0.1001 Age 55–64 −0.0071
(0.0006) (0.0003)

Weekend −0.4929 Age  ≥  65 −0.0028
(0.0002) (0.0002)

Married −0.0086 College −0.0036
(0.0001) (0.0045)

Employed −0.0003  ​σ​μ​ 0.124
(0.0001) (0.0011)

Notes: The unit of observation is a trip (2,778 trips). The dependent variable is an indicator equal 
to one if the trip is made online. Burn-in period: 10,000 draws, mean and standard deviation 
of the posterior are computed on the basis of the next 10,000 draws. Marginal effects reported.
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cross-price elasticities implied by the estimates in column 2 of Table 9.17 On aver-
age, competitive effects are much stronger in-store: own-price elasticity online is 50 
percent higher and cross-price elasticity is almost three times greater in-store than 
in the online context. Further insights can be gained by comparing similar figures 
for popular brands (the top ten most sold), which are likely to be in the Ω set of a 
large number of households, with products that are unknown to many (between the 
thirtieth and fortieth spot in the sales ranking). The gap between in-store and online 
elasticity is wider for the lesser known brands; this suggests that it is, at least in part, 
due to differences in the attitude towards brand exploration across channels.

The difference between the estimates of the disutility from purchasing a new 
UPC online and in-store—that is, the difference between ​β​ 2​ online​ and ​β​ 2​ store​ in equa-
tions (3) and (4)—identifies the effect of web design on brand choice. This estimate 
ranges between −0.85 and −0.91. None of the retained draws is positive: the 1 per-
cent symmetric Bayesian confidence interval for the difference is [−1.26; −0.55]. 
Using the estimated coefficient for price, I can compute the dollar value of the effect 
of web design as

(7)	 Dollar value of the list  = ​  ​β​ 2​ online​  − ​ β​ 2​ store​
  __ ​β​1​

 ​ .

This comes to roughly four dollars which is a large number, given that the average 
cereal box in my dataset costs $3.55. 

The parameter δ represents the mean of the unobserved shock to taste for new 
brands. The estimate is positive, which is not totally surprising, since the brand prolif-
eration in the industry is consistent with consumers having a taste for variety. However, 
its impact on utility is tiny compared to that of web-design driven state dependence. 
Allowing the parameter to vary according to some trip characteristics, I find that 
that the mean taste for variety is lower on the Internet, possibly capturing the higher 
uncertainty over quality that is part of online exploration. The parameter ​α​2​ is posi-
tive, implying that customers are more likely to value new brands on weekends. This 
would be the case if, for example, parents are more likely to shop with children during 
weekends. Finally ρ, the correlation between the unobserved shock to new brands ​ξ​it​ 
and the residual from the shopping channel selection, is negative. Large shocks to the 

17 For a market with J products, each product’s own price elasticity and J − 1 cross-price elasticities can be 
computed for each of the settings. The figures for the cross-price elasticity online and in-store are averages.

Table 10—In-store vs. Online Price Elasticity

 ​ε​ xx​ store​/​ε​ xx​ online​  ​ε​ xy​ store​/​ε​ xy​ online​ 

All brands 1.69 2.98

Top 10 brands 1.7 2.6

Brands 30 to 40 1.69 5.66

Notes: The first column reports the ratio between own price elasticity in-store and own price 
elasticity online, as implied by demand estimates (Table 9, column 2) for a different subset 
of brands. The second column analogously displays the ratio between cross elasticity in-store 
and online.
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instantaneous utility of time (which drive the agent to shop online) are associated with 
negative shocks to the taste for new brands. This is consistent with online trips being 
more likely to occur in instances when utility of time is higher.

Because in my model utility derived from consumption of a brand is a function 
of whether the agent has bought it before, ultimately I am estimating a form of state 
dependence. It is well known (Heckman 1981; Dube, Hitsch, and Rossi 2010) that 
unobserved heterogeneity can be confounded with state dependence, but this caveat 
should not apply in the present context. I am interested in estimating the difference 
between the level of state dependence online and in-store, whereas the aforemen-
tioned bias would affect the level of state dependence. Unless we allow consumers 
to have different preferences for brands on the two distribution channels (i.e., liking 
Rice Krispies more online than in-store), the estimates of the cross-channel gap in 
state dependence should not be affected by unobserved heterogeneity. Nevertheless, 
I directly address this concern by estimating the demand model including random 
coefficients for ​β​ 2​ online​ and ​β​ 2​ store​ (Table 9, column 3). As expected, the level of state 
dependence changes with respect to the baseline model, but the gap between state 
dependence online and in-store is not altered significantly.

VI.  Counterfactual Exercises

In this section, I present some counterfactual experiments that help in understand-
ing the practical implications of the estimates of the structural model. In each counter-
factual, each agent’s initial shopping history of is based on purchases in the first three 
months of data. After each simulated trip, the customer’s shopping list is updated to 
include any new brand she could have picked. The parameters used for the simulations 
are displayed in Table 9, column 2. The results are averages over 10,000 simulations.

A. Shopping Cost and Brand Exploration

The estimates of the structural model pointed to the fact that features reducing the 
cost of shopping online are a major hurdle to online brand exploration. Furthermore, 
these features are the most relevant to both the players in the industry and to policy-
makers. In fact, their very existence depends on a choice about the design of the Web 
site which is completely under the control of the retailer, much unlike instantaneous 
shocks to the utility of time, or the intrinsic uncertainty over quality of new items.18

How much additional brand exploration would take place online if the past shop-
ping history list feature were not available? Recall that I interpret the difference in 
the estimate of ​β​ 2​ online​ and ​β​ 2​ store​ as the effect of this list. Therefore, simulating a world 
in which the list does not exist implies running the model setting ​β​ 2​ online​ at the same 
level as ​β​ 2​ store​.19 Although brand exploration online is still lower than in the store, the 

18 Lewis (2011) argues that extensive use of text and pictures, as measured in megabytes allocated to the descrip-
tion of an item, can reduce information asymmetries in the case of a buyer unable to personally inspect a car. In this 
spirit, some design changes also could have the effect of reducing the gap in uncertainty over new brands between 
the online and the traditional channel.

19 Changing the design of the Web site could affect agents’ selection of the shopping channel. This is not cap-
tured in the counterfactuals, as the selection of the shopping channel is not simulated. Performing this extra step is 
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total number of brand trials in online purchases over the two-years period increases 
by 23 percent in this simulation.

B. Barriers to Entry

Low online brand exploration may mean higher entry barriers for new brands 
on the Internet distribution channel. If consumers often use features such as the 
“shopping history” to save on time spent browsing, then new entrants—which by 
definition do not show up on such lists—will struggle to capture Internet customers. 
There are challenges to measure the relevance of this effect using sales data. First, 
I do not observe entry of any major cereal brand during the period under analysis. 
Furthermore, even if I did, the results would be hard to interpret. Finding that the 
new cereal sells more in-store than online would not constitute compelling evidence 
because it might be a natural result of the traditional channel being more popular.

So, I instead illustrate the presence of entry barriers using a counterfactual exer-
cise. I remove Cinnamon Toast Crunch from the initial shopping histories of all 
consumers in the sample and then observe the evolution of its market share in-
store and online compared to the same figures in the baseline. This is equivalent to 
observing the performance of a new brand with the same price and characteristics 
as Cinnamon Toast Crunch but lacking any installed base.20 The original market 
share of Cinnamon Toast Crunch serves as a normalization factor, accounting for 
the performance the brand should achieve, given its characteristics. Therefore, any 

unfeasible because nothing in the data identifies the impact of changes in design on taste for the online channel. In 
fact, the grocer’s Web site maintained the same structure throughout the sample period. The changes considered in the 
counterfactuals probably would reduce the appeal of the Internet service, because they limit its potential to reduce the 
cost of shopping. Therefore, the reported increases in the amount of online exploration can be seen as upper bounds.

20 To be precise, the exercise simulates the entry of such a brand in a world where Cinnamon Toast Crunch did 
not exist.

Figure 2. Simulation of the Entry of a New Brand

Notes: The bars represent the ratio between the market share of a new entrant with the same price and characteris-
tics as Cinnamon Toast Crunch and Cinnamon Toast Crunch’s market shares in the baseline. Figures are averages 
of 10,000 simulations.
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deviation of the counterfactual market share from the original share can be inter-
preted as attributable to the existence of entry barriers.

Figure 2 shows the ratio of the counterfactual to the baseline market share over 
time on the two channels (online and in-store). The new brand performs similarly 
over the two channels in the first semester. However, this new entrant eventually 
recovers more than 60 percent of its “potential” market share in-store. On the other 
hand, its online market share after 18 months is still less than half of what it was in 
the baseline case. I interpret this as evidence that entry barriers faced by the entrant 
are higher online than in-store.

C. Recommendation Systems

Contextual advertising and customer recommendations are popular forms of adver-
tising and are customer-loyalty enhancing for online businesses. Context ads are 
individually targeted promotions, based on the content of the page the consumer is 
browsing. For example, they are regularly displayed along with the results from a search 
on a search engine. Recommendation systems offer suggestions to a customer based 
on her previous shopping history. The firm uses purchases by other customers with a 
similar shopping history to forecast the goods or offers that may be of interest to her. 
This system has been made popular by Amazon.com and Netflix. Inclusion of recom-
mendations or context ads in the design of the Web site can make it easy for consumers 
to notice brands that they have not tried before, and thus to encourage exploration.

I simulate the effect of introducing a recommendation system on the grocer’s 
Web site and then assess its impact on brand competition. Once again, I remove 
Cinnamon Toast Crunch from the brand history of every household. However, in this 
simulation, I set, only for this brand, ​β​ 2​ online​ at the same level as ​β​ 2​ store​. This means 
that the effort required of a household to purchase the new entrant is the same as the 
effort needed to purchase another brand that is already part of the household’s shop-
ping history list. This would be the case if the brand appeared in a recommendation 
box that pops up when the household is browsing its shopping history list.

I find that the evolution of brick-and-mortar market share for the new entrant 
resembles that of the previous counterfactual. However, there is a marked difference 
in its performance in the online channel. The new cereal now reaches a higher market 
share than that of by Cinnamon Toast Crunch in the baseline case within six months 
of its introduction. This implies that if a recommendation system were in place, it 
would take just a short time for a new entrant to make up for its lack of customer 
base. The introduction of customer recommendations thus completely changes the 
bottom line for the competitive effect of online shopping. In this scenario, the new 
entrant is more visible and performs better online. In fact, by the end of the simula-
tion period, the online market share is 50 percent higher than its benchmark.

VII.  Conclusions

In this paper, I compare brand exploration in brick-and-mortar stores versus 
Internet shopping. I document that brand exploration is more prominent in-store 
and I quantify the role of three different explanations for this result. My estimates 

Amazon.com
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suggest that Web site features that reduce the time spent shopping (such as “favor-
ites lists”) play a major role in limiting online brand exploration. The fact that the 
Internet allows for such reductions in the cost of shopping is especially relevant 
in certain contexts, and leads customers to more repetitive behavior, lower search 
cost notwithstanding. The counterfactual exercises confirm that this result implies 
higher barriers to entry online. However, the introduction of pop-up ads or customer 
recommendations can foster brand trial on the Internet, making it easier for new 
entrants to succeed online.
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