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Under which conditions do people cooperate? In this article we study this ques-
tion in the context of the infinitely repeated Prisoner’s Dilemma. Progress in 

this topic is important for game theory itself, but is also critical for the numerous 
applications of infinitely repeated games in economics, sociology, political science, 
biology, and other disciplines.

We propose an axiomatic approach that formulates (i) a minimal set of simple 
and intuitive conditions on the model primitives a sensible selection theory should 
satisfy and (ii) a more comprehensive set of conditions resulting in a unique coop-
eration criterion. While the parsimonious formulation (i) has implications for the 
qualitative question whether cooperation should increase or decrease when param-
eters change the more specific model (ii) based on a longer list of axioms comes up 
with a quantified parameter-frontier above which it predicts cooperation. An axiom-
atic approach can only convince with simple and intuitive axioms that build only on 
model primitives. The first part of the paper builds intuition for the novel axioms 
and derives their theoretical implications. The second part presents results from a 
laboratory experiment testing the implications from both the parsimonious (i) and 
comprehensive (ii) versions of the theory.
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Equilibrium Selection in the Repeated Prisoner’s Dilemma: 
Axiomatic Approach and Experimental Evidence†

By Matthias Blonski, Peter Ockenfels, and Giancarlo Spagnolo*

We propose an axiomatic approach for equilibrium selection in the 
discounted, infinitely repeated symmetric Prisoner’s Dilemma. Our 
axioms characterize a unique selection criterion that is also useful 
as a tool for applied comparative statics exercises as it results in a 
critical discount factor ​δ​ *​ strictly larger than ​_ δ​, the standard crite-
rion that has often been used in applications. In an experimental 
test we find a strong predictive power of our proposed criterion. For 
parameter changes where the standard and our criterion predict dif-
ferently, changes in observed cooperation follow predictions based 
on ​δ​ *​. (JEL C72, C73, C92, D81)
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Where Do We Stand?—The main emphasis of the theory of infinitely repeated 
games has been on folk theorems characterizing the payoff space if player’s patience 
approaches infinity. In particular it states that in this case there exist many equilib-
ria including cooperative ones and non-cooperative ones. There is broad consen-
sus in the profession that equilibrium multiplicity causes a big lack of predictive 
power in this theory.1 In the perfect monitoring context, equilibrium non-deviation 
constraints for cooperative equilibria are easier to be satisfied when gains from 
cooperation are larger, when short-run gains from “cheating” are smaller, when the 
severeness of punishment for cheating is larger, and when players are more patient 
or interact more frequently.

In a symmetric setting, the non-deviation conditions are identical for all players 
and their tightness is often quantified by the minimum discount factor ​_ δ​ for which 
cooperation is sustainable in equilibrium. Recent experimental evidence has mea-
sured cooperation frequencies against parameter variations within this inequality 
and appears to support the view that easier to satisfy non-deviation constraints 
lead to more cooperation.2 Applied theory has built on changes in ​_ δ​ when trying to 
design institutions or identify real world situations that are more or less conducive 
to cooperation, for example in macroeconomic (e.g., Narayana R. Kocherlakota 
1996; or Ethan Ligon, Jonathan P. Thomas, and Tim Worrall 2002) and in micro-
economic applications (e.g., David Gilo, Yossi Moshe, and Yossi Spiegel 2006; 
Susan Athey, Kyle Bagwell, and Chris Sanchirico 2004).3 All these applications 
implicitly interpret cooperation to be more likely when ​_ δ​ falls and less likely when 
it goes up. A theoretical foundation for this interpretation of ​_ δ​ is Pareto-dominance 
as an equilibrium selection criterion.4 From here, therefore, we simply call ​_ δ​ the 
standard criterion.5

Our Theoretical Contribution.—Equilibrium selection in the infinitely repeated 
Prisoners’ Dilemma can be organized into increasing layers of detail. The coars-
est question is whether players cooperate at all. If players do cooperate, one could 
ask how frequently they cooperate, which raises more particular questions about 
how players can learn and continue to cooperate. This, in turn, leads to the next 
level of detail about how cooperation is supported—i.e., how strategies react to  

1 James W. Friedman (1971) was among the first to formulate these observations formally. See e.g., George J. 
Mailath and Larry Samuelson (2006) and Drew Fudenberg and Jean Tirole (1991, chapter 5) for excellent surveys.

2 See e.g., Pedro Dal Bó (2005).
3 To name just a few other classic applications among many others, see Tirole (1988, chapter 6.3.2.1), B. Douglas 

Bernheim and Michael D. Whinston (1990), and Massimo Motta (2004, chapter 4.2.5).
4 Efficiency or Pareto-dominance is the most widely accepted criterion since it is motivated normatively and 

it is the relevant criterion to describe the boundary of the equilibrium payoff space. The risk-dominance criterion 
introduced by John C. Harsanyi and Reinhard Selten (1988) is not well defined for infinite games. In finite games it 
is based on the so called bicentric prior and the tracing procedure. In games bigger than 2×2-games Harsanyi and 
Selten’s (1988) concept has not been applied often since it is mathematically involved. See Blonski and Spagnolo 
(2004) for a more detailed discussion on this.

5 It should be pointed out that there exist many reasonable circumstances where the comparative statics of 
the standard criterion and our criterion coincide qualitatively. This will become clear after seeing our numerical 
example in Section I. The whole emphasis of this project is on those theoretical cases where the predictions differ. 
Since this article pursues the theoretical question when players select cooperative behavior here we do not attempt 
to identify those applications where our objection matters most and derive its implications. This, however, is a 
promising avenue of future research.
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off-equilibrium misbehavior. One of the puzzles in repeated game theory is that for 
each of these questions there exist not just more than one but a whole universe of 
possible and consistent answers. Intuitively, it is in the best interest of players to 
build up cooperation as fast as possible and then cooperate as much as possible if 
they can cooperate at all. This intuition emphasizes the first and most basic question 
whether players cooperate at all as the most crucial and consequential part of the 
problem. By identifying any equilibrium with cooperative actions on its outcome 
path as cooperation we concentrate here just on this basic question.

There are various possibilities to motivate selection criteria. For example, one 
could formulate an evolutionary model, introduce different kinds of robustness 
regarding information and mistakes, define the basin of attraction and stability in 
dynamic models, perform simulations as Robert Axelrod (1984) and so forth.6 
Although we are sympathetic to all these methods we favor even more a selection 
theory that is independent of the modeler’s taste with respect to theory. Our way 
to do this is, first, to formulate and motivate three minimal axioms any sensible 
theoretic selection model should satisfy. Second, we propose and motivate two addi-
tional axioms that are sufficient to end up in a unique prediction regarding whether 
or not to cooperate. This prediction from here is called the alternative selection 
criterion. Both sets of axioms—the minimal set and the full set of axioms—result in 
testable predictions later denoted as hypotheses.

The first axiom is most standard in the literature on equilibrium selection. It cor-
responds to Harsanyi and Selten’s (1988) invariance with respect to isomorphisms. 
The second axiom requires that once players cooperate increases in players’ dis-
count factor should not destroy cooperation. It implies that any selection criterion 
satisfying this axiom can be formulated in terms of critical discount factor depend-
ing on the stage game payoff parameters above which players cooperate and below 
which they don’t cooperate. This makes sure that any two selection criteria satisfy-
ing Axiom 2 are easily comparable through the two corresponding critical discount 
factors. This observation simplifies equilibrium selection theory for repeated games 
a great deal and will be used frequently in this article.

The crucial novel idea is Axiom 3. It reflects the intuitive idea that cooperation 
gets more and more risky if the sucker’s payoff—earned by cooperating when the 
opponent defects—gets smaller and smaller. Once it converges to minus infinity, 
any cooperation attempt gets deadly dangerous, hence real world players avoid this 
risk by never cooperating. Conversely, this kind of strategic risk for cooperation gets 
smaller if the sucker’s payoff gets larger and eventually approaches the defection 
equilibrium payoff, in which case the standard non-deviation constraints remain 
the only concern. In the parsimonious setting, Axiom 3 is the critical axiom that is 
violated by the standard selection criterion.7

6 Compared to Axelrod (1984), we are far less ambitious in the sense that we restrict our attention to the question 
whether people cooperate.

7 We have analyzed several possibilities to generalize the crucial Axiom 3 with respect to stage games. Given 
that there is a broad consensus in the profession that the Prisoner’s Dilemma is a relevant starting point to analyze 
cooperation, and at our current stage of understanding none of the possible generalizations is obviously superior to 
others, we decided to stay within the Prisoner’s Dilemma world in this article.
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Axioms 1 through 3 determine the qualitative comparative static properties of 
the selection criteria satisfying them. They do not quantify, however, the critical 
benchmark where cooperation breaks down. This is what the remaining two axioms 
incentive independence and equal weight accomplish. Together with the Axioms 1 
to 3 they induce a unique selection criterion and by Axiom 2 a critical lower bound 
on discount factors ​δ​ *​ below which cooperation breaks down. The latter two axioms 
will be motivated in detail in Sections I and II. They can be seen as one way to con-
tinuously and monotonously extend the two principles behind Axiom 3. In contrast 
to the standard criterion, the alternative criterion depends on all payoff-parameters, 
including the sucker’s payoff.

While various related criteria have been discussed or tested in the earlier litera-
ture8, we are not aware of theoretical foundations that single out one criterion over 
another as the relevant cooperation predictor.9

Our Experimental Contribution.—We test our criterion against the standard cri-
terion with a laboratory experiment that simulates infinitely repeated games with 
random continuation and matching rules and many experimental subjects. Our 
experimental setup tests our theory, changing parameters so that ​_ δ​ and ​δ​ *​ may 
change in different directions when comparing couples of treatments.10

We find that, in all cases in which changing parameters so that ​_ δ​ and ​δ​ *​ move 
in different directions, our criterion based on changes of ​δ​ *​ predicts correctly. This 
result is very robust since any equilibrium selection theory that satisfies only our 
first 3 axioms yields this same comparative statics prediction. The observed differ-
ences in cooperation frequencies are very large and significant at any confidence 
level. The standard criterion maintains some predictive power only in situations in 
which ​δ​ *​ remains constant, hence as a “residual” of the alternative criterion.

Our second hypothesis, derived from our alternative equilibrium selection crite-
rion, positively predicts under which conditions players cooperate in equilibrium. 
We compare cases where subjects’ discount factor—i.e., continuation probability 
—increases from δ < ​δ​ *​ to δ > ​δ​ *​�.We verify in our experiments whether this raises 
cooperation frequencies more than when it moves from δ < ​_ δ​ to δ > ​_ δ​. We find 
robust support also for this hypothesis. This latter observation is also consistent with 
recent independent experimental evidence in Dal Bó and Guillaume R. Fréchette 
(2011).11

8 See, for example, Anatol Rapoport and Albert M. Chammah (1965) for the finitely repeated Prisoner’s 
Dilemma or J. Keith Murnighan and Alvin E. Roth (1978, 1983) for the infinitely repeated Prisoner’s Dilemma.

9 In contrast, in one shot games several theory based experimental studies have shown that strategic risk has 
explanatory power. Efficient but risky equilibria are often not chosen if gains are small or coordination requirements 
high (see for example John B. Van Huyck, Raymond C. Battalio, and Richard O. Beil 1990 and Frank Heinemann, 
Rosemarie Nagel, and Ockenfels 2009). An exception for the repeated Prisoner’s Dilemma is Blonski and Spagnolo 
(2004) who build on Harsanyi and Selten’s (1988) concept of risk dominance and link this to infinitely repeated 
games. They identify the same criterion as this paper by a different method and thereby indirectly connect this 
axiomatic approach to Harsanyi and Selten’s (1988) risk dominance concept.

10 We are not aware of any other experimental studies that allow for this comparison. The closest is Dal Bó 
(2005) who compares one pair of parameter constellations where ​_ δ​ changes while ​δ​ *​ remains constant. We discuss 
Dal Bó (2005) in more detail in Section VI.

11 Our experiments were run independently and simultaneously in (2006) and happen to be complementary. Their 
focus is on learning effects and players’ strategies, while ours is on equilibrium selection and strategic risk. In Dal Bó 
and Fréchette’s (2011) experimental treatments payoffs always change such that ​_ δ​ and ​δ​ *​ are constant or change in 
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We first test our hypotheses against the full dataset. Then, in a second step—to 
improve the connection between theory and experiment—we investigate the ques-
tion to which extent the alternative selection criterion predicts the mode of behavior 
only among those observations that are consistent with equilibrium behavior. To do 
this we identify all the observed paths of play that are possible outcome paths of 
some equilibrium and those that cannot be the outcome paths of any equilibrium. 
The quality of the predictions of the alternative selection criterion further increases 
when we use this filtered dataset. We were surprised to see that more than 80 percent 
of our observed outcome paths—i.e., experimental subjects’ actual behavior—are 
indeed equilibrium outcome paths of the repeated game which conversely explains 
the predictive power of our criterion for the whole original dataset. Note that our 
hypotheses do not explain to which extent players behavior is actually consistent 
with equilibrium behavior. Among those players that did not play equilibrium out-
come paths were for example players who cooperated in parameter constellations 
where cooperation is not an equilibrium. This non-equilibrium behavior turns out to 
fade rapidly towards non-cooperation.

To sum up, our axiomatic approach predicts under which conditions players 
cooperate in the repeated Prisoner’s Dilemma. Our experimental evidence supports 
this novel theoretical prediction on a level of preciseness and robustness rarely seen 
in experiments testing game theory.

Many experimental studies have been undertaken before to investigate the 
determinants of cooperation and conflict between real world subjects in Prisoner’s 
Dilemma situations. Restricting focus to experiments on infinitely repeated games 
with complete information, which start with the pioneering work of Murnighan and 
Roth (1978, 1983) and include the recent work of Dal Bó (2005) and John Duffy 
and Jack Ochs (2009) among many others (see Section VI), these studies usually 
find that real players rarely cooperate for δ < ​_ δ​, i.e., if indefinite cooperation is not 
sustainable in equilibrium. This evidence suggests a reassuring degree of rationality 
in the sense that equilibrium nondeviation conditions indeed are robust necessary 
cooperation conditions for most real world players. However, in all studies there 
were many parameter constellations for which cooperation is supported as an equi-
librium but in which nevertheless real players rarely cooperate (see e.g., the conclu-
sions in Dal Bó 2005). In the last Section VI of the paper we reassess the previous 
experimental evidence in the light of our selection theory and show that not all of 
their unexplained variation can be captured by our theory. Nevertheless, given the 
methodological differences of some of the earlier studies we were still surprised to 
see how much unexplained variation can be captured by this alternative selection 
theory.

The rest of the paper is organized as follows. Section I presents a simple numeri-
cal example and motivates the critical Axioms 3 and 5. In Section II, we formulate 
and further discuss all axioms. In Section III, we show how the three first more gen-
eral axioms determine a general selection criterion, and together with two additional 
axioms the more specific criterion ​S​ *​. Based on these general and specific criteria 

the same direction. Further, they do not attempt to rule out group learning effects as their players meet again the same 
opponents with positive probability when they are re-matched. See again Section VI for a more detailed comparison.
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we formulate two hypotheses to be tested against the standard criterion. Section 
IV describes the experimental design, while Section V presents our experimental 
results. Section VI surveys previous experimental investigations within this setting 
and compares their evidence with ours where possible.

I.  Intuition for Critical Axioms

Consider the following two Prisoner’s Dilemma stage games ​Γ​1​ and ​Γ​2​ given by

​Γ​1​ C D

with

​Γ​2​ c d

 .
C

2 3
c

2 2.5

2 0.9 2 −99

D
0.9 1

d
−99 1

3 1 2.5 1

We compare the corresponding discounted infinitely repeated games denoted by  
​Γ​1​(δ) and ​Γ​2​(δ). Cooperation is not supportable as equilibrium behavior in ​Γ​1​​(δ)​ 
if the corresponding payoff ​  2

 _ 
1 − δ ​ is smaller than the payoff 3 + ​  δ _ 

1 − δ ​ from a sin-
gle deviation followed by indefinite defection of both players. This yields a lower 
bound δ ≥ ​δ _​​(​Γ​1​)​ = ​ 3 − 2

 _ 3 − 1 ​ = ​ 1 _ 2 ​ on discount factors in ​Γ​1​(δ). Correspondingly, this 
lower bound for ​Γ​2​(δ) is ​δ _​​(​Γ​2​)​ = ​ 1 _ 3 ​.

Those players for whom Pareto-efficiency is the relevant criterion should cooperate 
in ​Γ​2​(δ) but not in ​Γ​1​(δ) if δ ∈ [​ 1 _ 3 ​, ​ 

1
 _ 2 ​). The range of discount factors for which coopera-

tion can be supported as an equilibrium is larger in ​Γ​2​(δ). In absence of another crite-
rion, the applied literature building on the standard criterion ​δ _​, and its interpretation, has 
concluded that an environment or institution as in ​Γ​2​(δ) is more conductive to coopera-
tion. However, in this example, we intuitively expect that even for quite patient players 
it is far more difficult to cooperate in ​Γ​2​(δ) than in ​Γ​1​(δ). For example, real players 
with a discount factor of, say, δ = 0.9 may be able to build up cooperation in ​Γ​1​(0.9), 
whereas they most likely would not dare to cooperate in ​Γ​2​(0.9).

For the discount factor δ = 0.9, the long-run incentives to cooperate instead of 
defecting forever are identical for both infinitely repeated games ​Γ​1​(0.9) and ​Γ​2​(0.9) 
and are at most δ(​  2

 _ 1 − δ ​) − (​  1
 _ 1 − δ ​) = 9. This is an upper bound on what is at stake in 

the future in both games—sometimes called “the shadow of the future.”
In any cooperative equilibrium, a player in some period considers to play a coop-

erative rather than a defective action. This player faces two possibilities. Either the 
opponent cooperates as well in this period denoted as case (c) or defects denoted 
as case (d ). In a Prisoner’s Dilemma both cases yield immediate gains in favor of 
choosing the defective action. The short-run gains for case (c) are 3 − 2 = 2 in  
​Γ​1​(0.9) and 2.5 − 2 = 0.5 in ​Γ​2​(0.9), hence small in both examples compared to 
the “shadow of the future” given by 9. However, for case (d ) the short-run gains 
from defecting are 1 − 0.9 = 0.1, hence small in ​Γ​1​(0.9) but 1 + 99 = 100, i.e., 
overwhelming in ​Γ​2​(0.9). Obviously, the two examples differ most in the sucker’s 
payoff 0.9 versus 99.
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Our critical Axioms 3 and 5 build on the idea that in a game with cooperative 
and non-cooperative equilibria, players cannot know whether case (c) or case (d ) is 
relevant. Since equilibrium non-deviation constraints such as those defining ​δ _​ only 
depend on case (c) they do not take into account this sucker’s payoff. Axiom 3, 
called boundary conditions, intuitively formulates equilibrium selection for the two 
most obvious and extreme cases where incentive (d ) is overwhelming—i.e., con-
verges to infinity, and where it is negligible—i.e., converges to 0. Moreover, the 
intuition for equal weighting Axiom 5 is that both cases (c) and (d ) bear equal 
weight in comparing short-run and long-run incentives as long as both can be sup-
ported by equilibrium strategies. All other axioms are less critical in the sense that 
they are also satisfied by the classical criterion. We postpone the further discussion 
of the axioms to the following section once the notation is set up.

Both Axioms 3 and 5 relate to “strategic risk” which is not taken into account by 
equilibrium non-deviation constraints for a cooperative equilibrium. Harsanyi and 
Selten (1988) formulate axioms for equilibrium selection and define strategic risk 
in 2×2−coordination games with two equilibria. They emphasize the desirability 
of an axiomatic approach for more general settings.12 In this article we follow this 
route and propose such a theory for the infinitely repeated Prisoner’s Dilemma and 
thereby go a first step towards an equilibrium selection theory for repeated games.13

II.  Axiomatic Approach

Model Primitives.—Consider the symmetric Prisoner’s Dilemma stage game Γ 
given by

Γ C D

C
c b

c a

D
a d

b d

characterized by payoff parameters a, b, c, d with b > c > d > a and 2c > b + a.14 
Call Γ(a, b, c, d, δ ) the respective infinitely repeated game with common discount 
factor δ. The primitives of the model are given by the parameter set

	Q   =  {(a, b, c, d, δ ) | b  >  c  >  d  >  a, 2c  >  b  +  a, 0  <  δ  <  1}  ⊂ ​ 핉​5​.

12 Harsanyi and Selten’s (1988) more general definition for strategic risk, in contrast, is not based on axioms. 
It imposes more structure, i.e., the bicentric prior and the tracing procedure and is not defined for infinite games 
including infinitely repeated games.

13 Similarly as 2×2−coordination games are prototypical for equilibrium selection in one-shot games we 
believe that the equilibrium selection problem in the repeated Prisoner’s Dilemma is prototypical for equilibrium 
selection in more general repeated games. Though we hope for the contrary, it is well possible that similarly as in 
Harsanyi and Selten’s (1988) context there is no natural and obvious way to generalize this axiomatic approach 
without imposing a lot more structure.

14 It is possible to normalize parameters as c ≡ 1 and d ≡ 0 such that the relevant incentives only depend on 
two remaining parameters a < 0 < 1 < b. See for example Dale O. Stahl, II (1991). However, since this imposes an 
assumption on preferences related to our axioms we postpone here the discussion.
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In this section, ⊂ always means strict subset and we use ⊆ for weak subset.
Call any equilibrium of Γ(δ) a D-equilibrium if its outcome path is ((D, D),  

(D, D), …)—i.e., contains only defective actions. Conversely, any equilibrium 
with at least one cooperative action on its outcome path is called C-equilibrium. 
The set E of all equilibria is then a disjoint union E = ​E​C​ ∪ ​E​D​ of D-equilibria and 
C-equilibria.

A selection criterion for cooperation is defined as a subset S ⊆ Q of parameter 
values for which players play a C-equilibrium. Note that any selection criterion for 
cooperation S must be contained in the subset of parameter values for which there 
exist not only D-equilibria but also C-equilibria defined by

	 {(a, b, c, d, δ )  ∈  Q | δ  ≥ ​ _ δ​  ≔ ​  b  −  c _ 
b  −  d

 ​}.

The interesting question is, therefore, for which part of this set players indeed 
cooperate, i.e., select C-equilibria. We consider first the two extreme cases for coop-
eration criteria. The most “cooperation friendly” criterion denoted by ​S​C​ is defined 
by always selecting a C-equilibrium when there is one, i.e., ​S​C​ ≔ {(a, b, c, d, δ ) ∈  
Q | δ ≥ ​_ δ​ }. Conversely, in the least cooperation friendly criterion denoted by ​S​ D​ 
players always defect, hence ​S​ D​ = ∅. Any selection criterion for cooperation S must 
be “between” ​S​ D​ and ​S​C​ , i.e., ​S​ D​ ⊆ S ⊆ ​S​C​ .

Our axiomatic approach addresses the following question: Which properties 
should a sensible selection criterion for cooperation S satisfy? Later we will also be 
interested in formulating robust implications of these properties that can be tested in 
the lab, and can verify or falsify our properties.

A. Parsimonious Cooperation Axioms 1–3

Let S be a selection criterion for cooperation with ​S​ D​ ⊆ S ⊆ ​S​C​ .

Axiom 1: (Positive linear payoff transformation invariance) Let τ : 핉 → 핉 be a 
positive linear payoff transformation with τ (x) = αx + β where α > 0. Then

	 (a, b, c, d, δ )  ∈  S  ⇔  (τ (a), τ (b), τ (c), τ (d ), δ)  ∈  S.

Axiom 1 is well known in equilibrium selection theory. It corresponds to Harsanyi 
and Selten’s (1988) invariance with respect to isomorphisms.15 The interpretation 
of this axiom is that players’ payoffs are cardinal—for example, represent their 
von Neumann-Morgenstern utility functions—and thereby abstract away from all 
framing effects like the choice of the 0-level or any scaling. Adding an arbitrary 
constant β implies that for all cooperation selection criteria satisfying Axiom 1 

15 Harsanyi and Selten’s (1988) isomorphisms also allow for permutation of players’ names which do not matter 
in symmetric games as ours.
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only the payoff differentials rather than the absolute payoffs matter. For further 
reference, we call:

	 (i)	 ​  δ
 _ 1 − δ ​(c − d ) the long-run incentive to cooperate,

	 (ii)	 b − c the short-run incentive to defect if the opponent cooperates and

	 (iii)	 d − a the short-run incentive to defect if the opponent defects as well.

It turns out to be useful to normalize the first payoff differential c − d by mul-
tiplying it with ​  δ _ 

1 − δ ​ since this is what we called the shadow of the future in our 
numerical example. It defines an upper bound on what is lost by picking the defec-
tive continuation equilibrium, instead of a cooperative one, with a symmetric Pareto 
efficient outcome path.16 If Axiom 1 were the only axiom, the parameter set could 
even shrink by two degrees of freedom. Since players do not care about scaling, one 
could specify parameters α, β such that d = 0, c = 1 and thereby

	 (a, b, c, d, δ )  ∈  S  ⇔  (− ​ d  −  a _ 
c  −  d

 ​, ​ b  −  d _ 
c  −  d

 ​, 1, 0, δ)  ∈  S.

However, it is more intuitive to continue with all five parameters since all three 
incentives matter for the comprehensive set of axioms and in our experiments we 
also vary the long-run incentive and thereby the payoff difference c − d.

Axiom 2: (δ–Monotonicity) For any payoff parameters (a, b, c, d ) ∈ {(a, b, c, d ) |  
b > c > d > a, b + a < 2c} there exists a critical ​δ​S​(a, b, c, d ) ∈ (0, 1] such that

	 δ  ≥ ​ δ​S​(a, b, c, d )  ⇔  (a, b, c, d, δ)  ∈  S.

Axiom 2 is called δ–monotonicity since it implies the weaker condition

	 δ  >  δ ′, (a, b, c, d, δ ′ )  ∈  S  ⇒  (a, b, c, d, δ)  ∈  S.

It is a little stronger though, i.e., the latter monotonicity condition does not imply 
Axiom 2. The difference is that the weaker monotonicity condition does not 
specify a tie-breaking rule, i.e., whether players cooperate once δ = ​δ​S​(a, b, c, d ). 
However, we regard this as a purely technical matter. Beyond the latter δ–mono-
tonicity condition Axiom 2 simply picks one of two simple tie-breaking rules, 
namely, always cooperative behavior for δ = ​δ​S​(a, b, c, d ). The critical dis-
count factors for the two extreme cooperation selection criteria are given by  
​δ​​S​C​​ (a, b, c, d ) = ​_ δ​ and ​δ​​S​D​​(a, b, c, d ) = 1.

16 The symmetric Pareto-efficient cooperative outcome path can always be supported by maximal punish-
ment as grim trigger punishment or asymmetric punishments a la Eric van Damme (1989) if it is an equilibrium 
outcome path. More generally, a big variety of other off-equilibrium behavior supports cooperative equilibria 
once δ > ​_ δ​. By defining this upper bound, maximal punishment such as grim trigger plays a particular role in 
denying the long-run incentive.
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As mentioned before, the long-run incentive defines an upper bound on what is 
at stake in the future. This upper bound, in turn, is defined by the harshest possible 
subgame perfect punishment payoffs, i.e., grim trigger strategies. Any more forgiving 
strategy decreases the long-run incentive to cooperate by raising the future payoff of 
being punished. It is natural, therefore, that if a criterion selects defection with grim 
trigger strategy, it will also do so with any milder type of strategies. In this sense, grim 
trigger strategies naturally play a salient role for the critical discount factor of any 
selection criterion. For the motivation of the last two Axioms 4 and 5, it is very helpful 
to keep in mind here that for any cooperation selection criterion S that satisfies both 
Axioms 1 and 2 the function ​δ​S​(a, b, c, d ) could be written as ​δ​S​(c − d, b − c, d − a), 
i.e., only depends on the payoff differentials c − d, b − c, and d − a.

The next axiom is related to strategic risk and aims to formulate the least restrictive 
condition representing the intuition provided in our introductory example in Section I.

Axiom 3: (Boundary conditions)

	 (i)	 Lower Boundary Condition: If the sucker’s payoff gets extremely low 
S selects D-equilibria, i.e., players will defect. Formally, a → −∞ ⇒ ​
δ​S​ (a, b, c, d ) → 1.

	 (ii)	 Upper Boundary Condition: If there are C-equilibria then they are selected 
by S if the sucker’s payoff is high enough. Formally, a → d ⇒ ​δ​S​ (a, b, c, d ) → ​
_ δ​ = ​ b − c

 _ 
b − d

 ​.

The basic intuition for the boundary conditions, Axiom 3, was already discussed in 
Section I. The lower boundary condition of Axiom 3 requires that players refrain 
from cooperative actions if strategic risk gets overwhelming, while conversely the 
upper boundary condition of Axiom 3 makes sure that for payoff parameters where 
C-equilibria exist players indeed cooperate as strategic risk converges to 0. It is 
instructive to note that the lower and upper boundary conditions of Axiom 3 imply 
that equilibrium selection with respect to cooperation is “strictly between” the two 
extreme cooperation criteria ​S​D​ and ​S​C​. Formally, this is

	​S​ D​  ⊂  S  ⊂ ​ S​C​ ,

with strict subsets or ​ b − c
 _ b − d ​  < ​δ​S​ (a, b, c, d ) < 1. In particular, this means that ​S​C​ does 

not satisfy the lower boundary condition of Axiom 3, while ​S​D​ does not satisfy the 
upper boundary condition of Axiom 3.

B. Comprehensive Cooperation Axioms 4–5

The following incentive independence Axiom 4 builds on a more structured view 
of a repeated game as a trade-off between long-run and short-run incentives.17 As 

17 Mailath and Samuelson (2006) in their introductory chapter motivate repeated games by the trade-off between 
short-run and long-run incentives.
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mentioned before, it follows the logic of the linear payoff transformation invariance 
Axiom 1, together with the δ–monotonicity Axiom 2. In which sense? We have seen 
that the critical discount factor ​δ​S​ (c − d, b − c, d − a) is a function that depends 
only on the payoff differentials b − c, c − d, and d − a. Now suppose any of the 
three incentives changes. The following, Axiom 4, then requires that the relative 
weight between the other two incentives remains unaffected. Neither should any 
two of these three incentives reinforce or weaken each other. Mathematically, this 
means that (a, b, c, d, δ) ∈ S is representable by an additively separable function of 
the three incentives.18

Axiom 4: (Incentive independence) The three incentives, i.e., long-run coop-
eration incentive ​  δ

 _ 1 − δ ​(c − d ) and the two short-run incentives b − c and 
d − a, are independent. Formally, there exists an additively separable function 
σ(​ δ(c − d)

 _ 1 − δ  ​, b − c, d − a) of the three incentives such that

	 (a, b, c, d, δ )  ∈  S  ⇔  σ( ​ 
δ(c  −  d ) _ 

1 − δ ​ , b  −  c, d  −  a)  ≥  0.

It is interesting to note that both extreme cooperation criteria, the standard criterion ​
S​C​ and also ​S​D​ , do satisfy the incentive independence Axiom 4.

The final Axiom 5 quantifies the threshold that separates C-equilibria from 
D-equilibria. It builds on the more structured view of the incentive independence 
Axiom 4 and compares only the two short-run incentives b − c and d − a. In prin-
ciple ​δ​S​(c − d, b − c, d − a) could reflect any relative weighting between these two 
payoff differentials. Which of the two short-run incentives is more relevant actually 
depends on the action chosen by the other player. We argue that at the beginning 
of the game without prior knowledge beyond the primitives of the model any other 
than the equal weighting rule would impose an exogenous asymmetry and accord-
ingly arbitrariness to the problem in question—i.e., the equilibrium selection prob-
lem. Therefore, by a similar logic as Harsanyi and Selten’s (1988) motivation of 
their bicentric prior we also invoke here the Laplace principle of insufficient reason 
stating that without any further knowledge beyond the primitives of the model play-
ers should weight the anticipated actions of the other player and thereby the relevant 
short term incentives symmetrically.

Axiom 5: (Equal weight) The two short-run incentives, b − c and d − a carry 
equal weight. Formally, consider the two payoff parameter constellations a, b, c, d 
and a ', b′, c, d with similar long-run incentive c − d but exchanged short-run incen-
tives b − c = d − a′ and d − a = b′ − c. This implies

	 (a, b, c, d, δ )  ∈  S  ⇔  (a ′, b′, c, d, δ )  ∈  S.

The standard criterion ​S​C​ violates Axiom 5. It can be seen as the case where players 
compare the long-run incentive only with the first of the two short-run incentives, 

18 Note that, for any given delta, the long-run incentive ​ 
δ (c − d)
 _ 

1 − δ  ​ is proportional to the parameter difference c − d, 
so that the following independence Axiom 4 relates the three parameter differences to each other.
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since ​  δ
 _ 1 − δ ​(c − d ) ≥ b − c ⇔ δ ≥ ​ b − c

 _ b − d ​  = ​_ δ​. In other words, in the standard criterion, 
players put 100 percent weight on b − c—i.e., the short-run incentive to defect if 
the opponent cooperates—but fully neglect d − a and thereby the influence of the 
sucker’s payoff. According to our earlier interpretation this violates the principle of 
insufficient reason in the sense that by comparing long-run and short-run incentives a 
player only considers the case where the opponent cooperates once it is an equilibrium 
without any prior knowledge about the chosen equilibrium based on the primitives 
of the model. The standard criterion ​S​C​ thereby violates the boundary conditions 
Axiom 3 and the equal weighting Axiom 5 but satisfies Axioms 1, 2, and 4.

III.  Theoretical Results and Predictions

Theoretical Results.—Our first general result builds only on the first three axioms. 
By imposing less structure it is more robust. It generalizes our introductory example 
by comparing any selection criterion for co-operation ​   S​ that satisfies Axioms 1, 2, 
and 3 with the classical selection criterion for co-operation ​S​C​ and shows that the 
boundary condition Axiom 3 leads to opposing comparative static properties of ​   S​ 
and ​S​C​ .

Proposition 1: Let ​   S​ be a selection criterion for co-operation in the discounted 
infinitely repeated Prisoner’s Dilemma that satisfies Axioms 1, 2, and 3. Then 
there exist pairs of Prisoner’s Dilemma stage games specified by payoff param-
eters (a, b, c, d ), (a′, b′, c′, d ′ ) ∈ {(a, b, c, d ) | b > c > d > a, b + a < 2c} such that the 
comparative statics of selection criterion for co-operation ​   S​ and of the classic cri-
terion ​S​C​ point in opposite directions. Formally, ​δ​​   S​​(a, b, c, d ) > ​δ​​   S​​ (a′, b′,c′,d ′ ), but ​
δ​​S​C​​ (a, b, c, d ) < ​δ​​S​C​​ (a′, b′, c′, d ′ ).

Proof:
Pick payoff parameters d = d′ < c = c′ < b < b′ such that ​ b − c

 _ b − d ​  < ​ b′ − c
 _ 

b′ − d ​. This 
implies the second condition ​δ​​S​C​​(a, b, c, d ) < ​δ​​S​C​​ (a′, b′, c, d ). Now there are two fur-
ther degrees of freedom given by the sucker’s payoff parameters a, a′. The lower 
boundary condition of Axiom 3 makes sure that ∀δ there exists a < d such that 
(a, b, c, d, δ) ∉ ​   S​. Pick such parameters a, δ. By definition of ​δ​​   S​​ (a, b, c, d ) this implies ​
δ​​   S​​ (a, b, c, d ) > δ. Conversely, the upper boundary condition of Axiom 3 guaran-
tees that for any δ, in particular for the same δ as before, there exists a′ < d such 
that (a′, b′, c, d, δ ) ∈ ​   S​ or ​δ​​   S​​ (a, b, c, d ) < δ. Together this implies the first condition ​
δ​​   S​​ (a, b, c, d ) > ​δ​​   S​​ (a′, b′, c, d ).

Our second, more specific result, quantifies the cooperation-threshold and char-
acterizes a unique criterion ​S​ *​ that satisfies all Axioms 1 through 5.

Proposition 2: There is a unique selection criterion for co-operation ​S​ *​ that 
satisfies Axioms 1 through 5 characterized by

	 (a, b, c, d, δ )  ∈ ​ S​ *​  ⇔  δ  ≥ ​ δ​​S​ *​​(a, b, c, d )  = ​ δ​ *​  :  = ​  b  − a  − c  +  d  __  
 b  −  a

 ​  .
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Proof:
Axiom 4 implies that there are functions ​σ​1​(⋅), ​σ​2​(⋅) such that σ(⋅) can be written 

in the form

	 σ(​ δ(c  −  d )
 _ 1  −  δ ​  , b  −  c, d  −  a)  = ​ 

δ(c  −  d ) _ 
1  −  δ ​   − ​ σ​1​(b  −  c)  − ​ σ​2​(d  −  a)

with

	 (a, b, c, d, δ )  ∈  S  ⇔  σ(​ δ(c  −  d )
 _ 1  −  δ ​  , b  −  c, d  −  a)  ≥  0.

This implies

	 σ(⋅) ≥ 0  ⇔  δ  ≥ ​ 
​σ​1​(b  −  c)  + ​ σ​2​(d  −  a)   ___    

c  −  d  + ​ σ​1​(b  −  c)  + ​ σ​2​(d  −  a) ​ .

The upper boundary condition of Axiom 3 implies for a → d

	​   ​σ​1​(b  −  c)  + ​ σ​2​(0)   ___   
c  −  d  + ​ σ​1​(b  −  c)  + ​ σ​2​(0) ​  = ​  b  −  c _ 

b  −  d
 ​ 

or ​σ​1​(b − c) + ​σ​2​(0) = b − c. Further, the lower boundary condition of Axiom 3 
yields for a → −∞

	​   ​σ​1​(b  −  c)  + ​ σ​2​(d  −  a)   ___    
c  −  d  + ​ σ​1​(b  −  c)  + ​ σ​2​(d  −  a) ​  →  1

from the left since ​ 
​σ​1​(b − c) + ​σ​2​(d − a)

  __  
c − d + ​σ​1​(b − c) + ​σ​2​(d − a) ​ ∈ [0, 1). This implies that ​

σ​1​(b − c) + ​σ​2​(d − a) → ∞ for a → −∞. Finally, Axiom 5 together with ​ 
σ​1​(b − c) + ​σ​2​(0) = b − c implies ​σ​1​(b − c) + ​σ​2​(0) = ​σ​1​(0) + ​σ​2​(b − c) = b − c 
which implies ​σ​1​(x) = ​σ​2​(x) = x. These functional forms of ​σ​1​, ​σ​2​ yield

	 δ  ≥ ​ 
​σ​1​(b  −  c)  + ​ σ​2​(d  −  a)   ___    

c  −  d  + ​ σ​1​(b  −  c)  + ​ σ​2​(d  −  a) ​

	 = ​   b  −  c  +  d  −  a  ___   
c  −  d  +  b  −  c  +  d  −  a

 ​  = ​  b  −  a  −  c  +  d  __  
b  −  a

 ​   = ​ δ​ *​.

Predictions.—As real-world observers, we expect “unexplained noise” in our 
observed data. Subjects may differ in the way they evaluate monetary payoffs, in 
how they perceive the experimental design, in history and beliefs, and in other 
unobserved details. From the viewpoint of an experimentator, this is less of a prob-
lem since much of this unobserved noise can be filtered out by comparing pairs of 
experimental treatments with different payoff parameters, while keeping all other 
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unobserved details and the experimental design constant. In combination with our 
alternative criteria ​   S​, this leads us to the first of our main testable hypotheses. It 
rests on Proposition 1 predicting that, for a selection criterion for cooperation ​   S​ that 
satisfies Axioms 1, 2, and 3, there exist pairs of Prisoner’s Dilemma stage games 
with appropriately chosen payoff parameters, such that the comparative statics of 
selection criterion for cooperation ​   S​ and of the classic criterion ​S​C​ point in opposite 
directions. ​S​ *​ is a particular such criterion ​   S​ and the appropriately chosen payoff 
parameters for pairs of Prisoner’s Dilemma stage games depend on the selection 
criterion that is to be tested. Nevertheless, besides testing the comparative statics 
properties of selection criteria satisfying Axioms 1, 2, and 3 we also want to test 
the quantified prediction at which parameter threshold ​δ​ *​ cooperation frequencies 
should change contained in our criterion ​S​ *​. Our second hypothesis formulates a 
prediction that tests for the validity of ​δ​ *​ by again comparing cooperation frequen-
cies for pairs of parameter constellations. Clearly, we are more cautious in our 
expectations regarding the validity of the second of the following two hypotheses 
since it rests on two additional axioms.

Consider two similarly designed experimental treatments ​Γ​1​ and ​Γ​2​ that only dif-
fer in payoff parameters.

Hypothesis I: If ​δ​ *​(​Γ​1​) < ​δ​ *​(​Γ​2​) but ​δ _​(​Γ​1​) > ​δ _​(​Γ​2​) thereby predicting opposite 
changes in cooperation frequencies, more subjects will cooperate in ​Γ​1​. Hence, the 
change of cooperation frequencies will follow predictions based on ​δ​ *​.

Hypothesis II: If δ < ​δ​ *​(​Γ​1​) < ​δ​ *​(​Γ​2​) our second more specific criterion ​δ​ *​ pre-
dicts only little change in cooperation frequencies between the two games while for ​
δ​ *​(​Γ​1​) < δ < ​δ​ *​(​Γ​2​) it predicts a visible rise in cooperation frequency in ​Γ​1​ com-
pared to ​Γ​2​.

IV.  Experimental Design

Our experiments were conducted in the computer lab of the Economics and 
Business Department of the University of Frankfurt am Main in May, June, and 
November 2006. They were announced to all students with an e-mail account 
at the department. Most of the participants were business and economics under-
graduates. All sessions were computerized, using a program done with z-Tree 
(Urs Fischbacher 2007). Students were seated randomly at computer terminals. 
Instructions were given in written form and were read in public. Eventual questions 
in turn were answered in private. Before the experiment started, all subjects were 
asked questions on the screen to make sure and to make it common knowledge they 
all understood the important ingredients of the decision model. Only after all sub-
jects passed the test correctly the experiment was started. Throughout the sessions, 
students were not allowed to communicate and could not see each others’ screens. 
After the experiments, subjects had to answer a questionnaire and were paid out 
individually. Continuation probabilities were chosen such that the expected dura-
tion of a session was less than 75 minutes and the total payoff of a subject varied 
between 15 and 25 euro. Since this is a short time and subjects were paid out after 
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the session we suppose that within the time window of a session subjects do not 
further discount payoffs.

Simulating an Infinitely Repeated Game.—The infinitely repeated PD-game is 
an idealized model which is impossible to implement literally in an experiment 
with real subjects, as real subjects are aware to have finite lives. However, it is 
well known that the mathematical structure of this game allows for another inter-
pretation as a game with a stochastic break off. More precisely, after every stage 
(sometimes called round) the game ends with probability 1 − δ and the next round 
formed by the same stage game continues with probability δ. This interpretation 
was introduced into experimental research by Roth and Murnighan (1978), and 
meanwhile it has become mainstream since a large number of studies have fol-
lowed this route, including this one. In the instructions only the continuation prob-
ability was mentioned and it was explained that at every stage the expected number 
of future stages is given by ​  1

 _ 
1 − δ ​. Since in every session up to 19 repeated games 

were played, longer and shorter realizations of the same repeated game average 
out, and the event that an entire session lasts too long gets extremely unlikely. 
None of our subjects ever asked about potential time constraints, or the existence 
of a “last round” during the instruction phase, or commented on it during or after 
the experimental session.

Matching Procedure.—In all sessions, there participated exactly 20 students. We 
used an absolute stranger design, i.e., no subject played a repeated game more than 
once with the same opponent. After any repeated game, the 10 pairs of subjects 
were rematched. To improve the credibility of our matching design, every subject 
obtained an alias name. Only the alias name of the actual opponent was displayed 
on the screen, while subjects did not get to know their own alias names. By this 
information policy, we wanted to avoid that students could identify themselves after 
the experiment was over. Clearly, this matching procedure restricts the number of 
repeated games that any subject can play within a session up to maximally 19.

Payoffs and Treatments.—A repeated game is a repetition of stage games. In our 
experiments we tested the six different stage games displayed in Table 1.

Treatments differ not only in the stage game but also in the continuation probabil-
ity δ. Before every round t ≧ 2, the program picked a probability δ′ from a uniform 
distribution over [0, 1]. The next round started for all 10 matched pairs only for real-
izations δ ′ ≦ δ. After their decisions, the players were informed about the respective 
decision of their current opponent, about their own payoff of the current round, and 
about their own total profit of the actual repeated game.

In every session, we tested two treatments and changed from the first treatment to 
the second after repeated game 11. In the treatments with δ > 0.75, the change was 
after the repeated game 8 and we ran only 13 repeated games. Any subject’s over-
all monetary payoff is the sum of all realized stage game payoffs. While subjects 
were paid for all decisions in all repeated games, we did not use data from repeated 
games 1 to 3 for our statistical analysis. In total, we observe outcome paths of 1,700 
different repeated games.
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Learning.—As pointed out in the introduction in this paper, we are interested in 
cooperation as an equilibrium selection phenomenon per se. Therefore, we want to 
de-emphasize learning, as (i) learning within a repeated game and (ii) learning by 
playing many repeated games against an increasing sample of partners who gain 
their own experience from the same pool of partners. Both learning processes are 
involved in several respects. By observing an evolving outcome path, the within-
game-learning-process (i) step by step rules out potential equilibria.19 In this con-
text, our equal weight axiom is not innocuous, since over time players can base their 
beliefs on observed play which should affect their weighting. While this limitation 
decreases the predictive power of the comprehensive axioms, part of our theory over 
time, it does not affect the the initial period of any game and our parsimonious axi-
oms predictions. Learning process (ii), by playing many repeated games, contains 
experimenting and experiencing the payoffs of the games under various histories 
against different partners. By doing this as a player, you may learn at the same time 
about your partners’ (sample of) dispositions and chosen strategies, your partner’s 
beliefs about the according distributions in the population, about the learning of 
your partners, and so on. One might think that the best way to disregard this com-
plex dynamic process would be to let every player just play one repeated game. The 
downside of this latter method would be, however, to study only fully unexperienced 
behavior. While this is interesting in itself, in particular in simpler games, it is not 
what we are after in this very complex game. We want to study the behavior of play-
ers with sufficient experience to “understand,” at least, the termination probability 
and the basic tradeoffs in the payoff parameters. We believe that for an infinitely 
repeated game with termination probability, a small sample of correctly answered 
test questions cannot substitute for experience. Hence, in order to test our hypotheses 
in the lab, we must compromise to some extent. Our way of doing this, in this proj-
ect, is to implicitly suppose that most of this learning happens in the first couple of 
games, since the incremental gain in information decreases over time.20 We take 
account of this by not evaluating the first three repeated games (that are in total 300), 
where players already got paid. We used only the remaining 1,400 repeated games. 
Since variation of the termination probability would be rather abstract, we did not 

19 See e.g., Ehud Kalai and Ehud Lehrer (1993).
20 The experimental evidence in Dal Bó and Fréchette (2011) supports this assumption. See their figure 1. They 

let some players play more than 60 repeated games. It turns out that after a couple of periods cooperation rates tend 
to be rather stable.

Table 1—The Stage Games We Use in the Experiments Measured in ECU  
(= “Experimental Currency Units”), 1€  = 270 ECU

Payoff parameter

Game number a b c d

1 70 100 90 80
2 0 100 90 80
3 30 130 90 70
4 0 100 90 70
5 0 120 90 50
6 0 140 90 30
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alter it within one session. We varied only the payoff parameters of the stage game, 
and at most once during one session. Table 2 gives an overview about the sessions. 
The resulting set of observed truncated outcome paths is called D1400.

Equilibrium Filtering.—In an experiment on repeated games, we cannot observe 
strategies. The only directly observable information are outcome paths. Since not all 
outcome paths are equilibrium outcome paths, this provides an elegant tool to disen-
tangle two issues, i.e., the equilibrium selection problem from the equilibrium ver-
sus disequilibrium behavior, at least to some extent. Since an equilibrium selection 
criterion does not predict anything on players that do not play an equilibrium, the 
most accurate way to relate our experimental data to equilibrium selection theory 
is to separate observed outcome paths into equilibrium outcome paths and non-
equilibrium outcome paths.21 The predictive power of any equilibrium selection cri-
terion can then only regard the sub-sample of equilibrium outcome paths.

To precisely identify all equilibrium outcome paths, one would have to charac-
terize the set of all infinite equilibrium outcome paths and check for any observed 
truncated path h(T ) = ((​x​11​, ​x​21​), … , (​x​1T​ , ​x​2T​)) of length T if there is an infinite equi-
librium outcome path, starting with this observed path. Here we propose a pragmatic 
and much simpler way of approaching this identification. We proceed in two steps. 
The first rule formulates a necessary condition, and the second rule a sufficient con-
dition for paths to be equilibrium outcome paths.

Filtering Rule 1: Remove all C-paths that are not individually rational, i.e., do 
not satisfy

	​ ∑ 
t=1

​ 
T

  ​ ​δ​ t−1​​ ​u​i​ (​x​1t​ , ​x​2t​)  + ​ δ​T​ ​π​i​  ≥   ​  d _ 
1  −  δ ​  for i  =  1, 2 or

	 δ  ≥   ​δ _​ ,

21 Since we only observe outcome paths, rather than strategies, an equilibrium outcome path might still result 

Table 2—The Table Shows the Games That Were Played in the Different Sessions

1. Treatment 2. Treatment

Session δ
Stage-
game

Repeated 
game Obs.

Stage-
game

Repeated 
game Obs.

1 0.75 1 1–11 80 2 12–19 80
2 0.5 3 1–11 80 4 12–19 80
3 0.75 3 1–11 80 — — —
4 0.875 3 1–8 50 4 9–13 50
5 0.75 4 1–11 80 3 12–19 80
6 0.75 2 1–11 80 1 12–19 80
7 0.75 5 1–11 80 6 12–19 80
8 0.875 4 1–8 50 3 9–13 50
9 0.75 6 1–11 80 5 12–19 80
10 0.75 3 1–11 80 4 12–19 80

Notes: In session 3, we had some technical problems and could only conduct one treatment. 
Because of the time limit we restricted the number of repeated games to 13 in sessions 4 and 8. 
Observations is the number of repeated games we use for statistical tests.
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where the continuation payoffs (​π​1​, ​π​2​) of the unobserved infinite paths are ele-
ments of the equilibrium payoff space, which we describe after these rules. The 
remaining set of paths surviving filtering rule 1 contains 1,272 out of 1,400 paths 
and is called D1272.

Filtering Rule 2: From the remaining set D1272, remove all paths for which 
we cannot construct the following equilibrium outcome path. The first part is the 
observed path t = 1,  …  , T. The second part establishes indefinite cooperation for 
both players. If both players always defect off-equilibrium, such an outcome path is 
a subgame perfect equilibrium outcome path if all non-deviation conditions

  ​  ∑ 
τ =1

​ 
T

  ​ ​δ​ τ−1​​​u​i​ (​x​1τ​ , ​x​2τ​)  + ​ δ​ T​ ​  c _ 
1  −  δ ​ ≥ ​ ∑ 

τ =1
​ 

t−1

 ​ ​δ​ τ−1​​ ​u​i​ (​x​1τ​ , ​x​2τ​) 

	 + ​ δ​ t−1​​u​i​ (​​   x​​i,t​ , ​x​−i,t​)  + ​ δ​ t​ ​  d _ 
1  −  δ ​

for both players i = 1, 2 and ∀t ∈ {1,  …  , T } are satisfied. Here, ​​   x​​i,t​ ≠ ​x​i,t​ is the devi-
ating action (for example D instead of C) for player i, relative to the observed path in 
period t and players switch to indefinite defection from then. We know that for t > T 
the conditions are satisfied if δ ≥ ​δ _​. The remaining set of paths surviving filtering 
rule 2 contains 1,098 out of 1,272 paths and is called D1098.

We know from the folk theorem literature that for δ → 1 the equilibrium payoff 
space is bounded by a polygon Π given as

	 (c  −  a)​π​1​  +  (b  −  c)​π​2​  − ​ 
(b  −  a)c

 _ 
1  −  δ  ​  ≤  0,

	 Π = {(​π​1​ ,​π​2​)  ∈ ​ ℝ​2​ | (b  −  c)​π​1​  +  (c  −  a)​π​2​  − ​ 
(b  −  a)c

 _ 
1  −  δ  ​  ≤  0, } .

	​ π​1​  ≥ ​   d _ 
1  −  δ ​, ​π​2​  ≥ ​   d _ 

1  −  δ ​.

The Pareto frontier of Π is formed by two lines through the points (​  a
 _ 1 − δ ​, ​ 

b
 _ 

1 − δ ​), 
(​  c

 _ 1 − δ ​, ​ 
c
 _ 

1 − δ ​), and (​  b
 _ 1 − δ ​, ​ 

a
 _ 

1 − δ ​). The lower bound ​  d
 _ 

1 − δ ​ for any player is called indi-
vidual rationality constraint. The equilibrium payoff space for any given δ must be 
contained in Π. Hence, a necessary condition for a path to survive filtering rule 1 is 
that the individual rationality condition in filtering rule 1 is satisfied for both players 
and at least for one of the three vertices on the Pareto frontier of Π. Otherwise, indi-
vidual rationality is violated for all points of Π and therefore also for the equilibrium 
payoff space of the repeated game. Besides inequality δ ≥ ​δ _​ this procedure defines 

from non-equilibrium strategies. We disregard, however, this latter impreciseness as neither the players nor the 
experimentator can observe actual strategies.
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for any h(T ) a set of another six inequalities to be checked for filtering rule 1.22 
Accordingly there is a finite set of 2T non-deviation inequalities to be checked for 
filtering rule 2.

If our experimental results do not depend on whether we test the predictions for 
D1272 versus D1098 we have strong reasons to believe that they would hold as 
well for the set of equilibrium outcome paths that must be between the two sam-
ples. Moreover, though this paper is about equilibrium selection there is no reason 
why our axioms should not be empirically valid for non-equilibrium behavior.23 
Therefore we test our predictions as well for D1400.

We expect another bias in our experimental data that stems again from the fact that 
discounting in infinitely repeated discounted games is implemented as a termination 
probability. Hence, what we observe are finite stochastic termination realizations of 
infinite outcome paths. Now, consider an outcome path starting with (D, D) that termi-
nates after the first period. According to our definition of C-equilibria and D-equilibria 
it is impossible to say whether this outcome path results from a D-equilibrium or 
a C-equilibrium since there are C-equilibria of “more hesitant cooperators” start-
ing with (D, D) and switching to cooperation later. This means that an unknown 
proportion of finite paths only containing defective actions result from C-equilibria 
rather than D-equilibria. Conversely any observed cooperative action rules out that 
a D-equilibrium was played. Together this implies that the proportion of cooperative 
behavior relative to defective behavior is underestimated by our experimental data. In 
other words, for any selection criterion S our theory predicts that among all observed 
equilibrium outcome paths we should expect only defective outcome paths for δ < ​ 
δ​S​(a, b) and cooperative and defective outcome paths for δ > ​δ​S​(a, b).

V.  Results

The subjects’ choices are summarized in Table 3. It lists the rate of cooperation 
in rounds 1–3 and for the average of all rounds.

A “+” for Δ​δ _​ = (δ − ​δ _​) indicates that cooperation can be supported as an equi-
librium, and accordingly a “+” for Δ​δ​ *​ = (δ − ​δ​ *​) means that cooperation is sup-
ported by our cooperation criterion δ ≥ ​δ​ *​ based on the unique selection criterion ​S​ *​ 
induced by our Axioms 1–5. To distinguish theoretical predictions, we say that the 
equilibrium class is 1 if there are two “−” signs, is 2 for a “+” “−” combination, 
and is 3 for two “+” signs.

Our hypotheses make predictions about the frequencies of C-equilibria. Our 
dataset contains outcome paths of 1,400 repeated games. The frequencies of 
C-outcome paths—i.e., those that contain a cooperative choice—are shown in 
Table 4 in column D1400.

The frequencies in Table 4 are means over all repeated games of a treatment. Our 
statistical analysis may be inaccurate if we ignore learning and correlation—i.e., 
if the behavior in one repeated game depends on the behavior in previous repeated 

22 For example, in stage game 4 with δ = 0.75, the feasible payoff set ​δ​ 3​ Π after the path h(3) = (DC, CD, CD) 
does not contain the always defect payoff (280, 280).

23 We thank Werner Güth and Wolfgang Leininger who both pointed this out independently.
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games. Note that we have an absolute stranger design, but subjects may still learn 
to cooperate or defect based on their accumulated experience or may just display 
reciprocity to an anonymous subject in a later repeated game. In the Appendix we 
show the evolution of C-equilibria over all repeated games in all our ten sessions. 
The figures are based on the dataset D1400. In almost all treatments we do not see 
a clear trend. In those figures where there is a trend as in Session 5 it supports the 
direction of our predictions. Given these observations we believe we have good rea-
sons to trust our statistical analysis.

Although our theoretical predictions are a little bit sharper for the filtered sam-
ples of observations we want to point out that none of our results actually depends 
on this filtering process. This means that the empirical validity of our axioms for 
non-equilibrium behavior cannot be rejected by our experimental results.24

Hypothesis (i): To test our hypothesis (i) we compare pairs of treatments across 
which ​δ _​ and ​δ​ *​ and thereby Δ​δ _​ and Δ​δ​ *​ change in opposite directions, as they did 
in the introductory example of Section I. In particular, we analyze how the frequency 
of C-equilibria changes in these cases. As mentioned in Section III, we expect that 
this direct qualitative comparison is robust with respect to subjects’ distribution 

24 This confirms Werner Güth’s and Wolfgang Leininger’s observation mentioned in Section IV.

Table 3—Results: Rate of Cooperation in our Experiments

Stage-game characteristics Equilibrium Round

No ​δ _​ ​δ​ *​ δ Δ​δ _​  Δ​δ​ *​ Class 1 2 3 = All

1 0.5 0.667 0.75 + + 3 0.356 0.292 0.221 0.214
2 0.5 0.9 0.75 + — 2 0.044 0.025 0.028 0.028
3 0.667 0.8 0.5 — — 1 0.219 0.110 0.070 0.135
3 0.667 0.8 0.75 + — 2 0.244 0.136 0.146 0.154
3 0.667 0.8 0.875 + + 3 0.390 0.267 0.283 0.266
4 0.333 0.8 0.5 + — 2 0.156 0.013 0.033 0.082
4 0.333 0.8 0.75 + — 2 0.144 0.100 0.143 0.134
4 0.333 0.8 0.875 + + 3 0.385 0.169 0.179 0.217
5 0.429 0.667 0.75 + + 3 0.559 0.400 0.300 0.370
6 0.455 0.571 0.75 + + 3 0.600 0.463 0.400 0.376

Table 4—Results: Rate of C-outcome Paths in our Experiments

Stage-game characteristics Equilibrium C-paths

No  ​δ _​ ​δ​ *​ δ Δ​δ _​  Δ​δ​ *​ Class D1400 D1272 D1098

1 0.5 0.667 0.75 + + 3 0.650 0.650 0.529
2 0.5 0.9 0.75 + — 2 0.100 0.007 0.007
3 0.667 0.8 0.5 — — 1 0.400 0.000 0.000
3 0.667 0.8 0.75 + — 2 0.504 0.504 0.331
3 0.667 0.8 0.875 + + 3 0.810 0.839 0.762
4 0.333 0.8 0.5 + — 2 0.313 0.018 0.018
4 0.333 0.8 0.75 + — 2 0.269 0.164 0.041
4 0.333 0.8 0.875 + + 3 0.730 0.658 0.645
5 0.429 0.667 0.75 + + 3 0.806 0.803 0.767
6 0.455 0.571 0.75 + + 3 0.825 0.825 0.801
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of individual preferences over monetary payoffs that is assumed to be more or less 
stable across treatments.25

Let us first look at pairs of repeated games with the same continuation probability 
δ = 0.75. Compare game 2 in the second row of Table 4—denoted by ​Γ​22​—with the 
second game 3 in the fourth line of Table 3—which we denote ​Γ​34​:

​Γ​22​ c d

and

​Γ​34​ c d

 .
c

90 100
c

90 130

90 0 90 30

d
0 80

d
30 70

100 80 130 70

In ​Γ​22​ we have ​δ _​ = 0.5 while in ​Γ​34​ we have ​δ _​ = 0.667. Here, the standard cri-
terion ​δ _​ predicts that cooperation should be easier to sustain, and should therefore 
be observed more frequently in ​Γ​22​ than in ​Γ​34​ . Looking at changes in our alterna-
tive criterion ​δ​ *​, however, the prediction is the opposite. Cooperation should be 
easier, hence, be observed more frequently, in ​Γ​34​ where ​δ​ *​ = 0.8 than in ​Γ​22​ where ​
δ​ *​ = 0.9. The experimental results in Table 4 show that cooperation is much more 
frequent in ​Γ​34​ than in ​Γ​22​ . This observation confirms our hypothesis (i) and is con-
sistent with predictions based on changes in ​δ​ *​. However, it falsifies predictions 
based on ​δ _​.26

Similarly, let ​Γ​11​ denote game 1 at the first row of Table 4, and ​Γ​47​ denote game 
4 at the seventh row of Table 4:

​Γ​11​ c d

and

​Γ​47​ c d

 .
c

90 100
c

90 100

90 70 90 0

d
70 80

d
0 70

100 80 100 70

Here ​δ _​ predicts less cooperation in ​Γ​11​, where ​δ _​ = 1/2 relative to ​Γ​47​ where ​δ _​ falls 
to 1/3. The opposite predicts ​δ​ *​, as it grows from 2/3 in ​Γ​11​ to 4/5 in ​Γ​47​. Again, our 
experimental results show that cooperation is clearly more frequent in ​Γ​11​ than in ​Γ​47 ​, 
as predicted by ​δ​ *​ and again in contrast with predictions based on ​δ _​.

25 For another robustness check see also next section.
26 This and the following similar statements are supported by Wilcoxon rank sum tests, where we found highly 

significant p-values (p < 4.7 ⋅ 1​0​−14​ ) except for the case Gamma 59 versus Gamma 60, were the p-value is 0.245. 
Statistical computations are done by R (R Development Core Team 2006).
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Finally, let ​Γ​59​ denote game 5 at row nine of Table 4, and ​Γ​60​ denote game 6 at 
row ten of Table 4; and compare these two games and ​Γ​47​ discussed before:

​Γ​59​ c d

with

​Γ​60​ c d

 .
c

90 120
c

90 140

90 0 90 0

d
0 50

d
0 30

120 50 140 30

Passing from ​Γ​47​ to ​Γ​59​ and then to ​Γ​60​ we observe ​δ _​ increasing from 0.333 to 0.429 
and then to 0.455, predicting a monotone decrease in the rate of cooperation. On the 
other hand, ​δ​ *​ decreases from 0.8 to 0.667 and then to 0.571, predicting the opposite, 
a monotone increase in cooperation. The experimental results show that indeed the 
frequency of cooperation increases monotonically moving from ​Γ​47​ to ​Γ​59​ and then to ​
Γ​60​ , again confirming predictions based on ​δ​ *​ and rejecting those based on ​δ _​.

We summarize these comparisons as follows.

Result of Hypothesis (i): When ​δ _​ and ​δ​ *​ change in opposite directions, the fre-
quency of cooperation changes as predicted by changes in ​δ​ *​, contradicting predic-
tions based on ​δ _​. This holds for all datasets D1400, D1272, and D1098.

This result provides unambiguous support for our hypothesis (i). In Section VI, 
we show that in all previous experimental studies that we are aware of ​δ _​ and ​δ​ *​ never 
change simultaneously in opposite directions across treatments. We believe that our 
experiments are novel in the sense that they are the first that can differentiate so 
clearly with respect to the two competing criterions.

Hypothesis (ii): If our hypothesis (ii) is also correct, we should find signif-
icantly more cooperation in games within equilibrium class 3 compared to any 
other parameter constellation. A first look at Table 4 shows that the frequency of 
C-equilibria differs for different games. By definition of our dataset the frequency 
of C-equilibria is 0 for games with δ < ​δ _​ since we have removed observations 
where outcome paths are not supported by equilibrium behavior. But even in the 
class of games where ​δ _​ < δ < ​δ​ *​ frequency remains low.

Result of Hypothesis (ii): The overall frequency of C-equilibria in class 2 is 25 
percent. In class 3 the frequency is 75 percent. A Wilcoxon rank sum test shows with 
very high significance that there is a difference.

A compelling graphical representation of hypothesis (ii) is provided by Figure 1. 
It shows a logistic estimation of C-equilibria frequencies dependent on the differ-
ence (δ − ​δ​ *​) for D1272.27

27 The logistic function is defined by 1 − (1/(1 + exp(a + bx))).
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We can omit the according figures for D1400 and D1098 since the estimated 
parameters of the logistic function given in Table 5 show that all figures look very 
similar to Figure 1.

For D1272 only the p-value of b is highly significant p < 1​0​−15​. The p-value of 
a is 0.165. In this sense, we can conclude that the value where the logistic function 
has its turning point is at δ = ​δ​ *​. This establishes strong evidence in favor of our 
hypothesis (ii). For the other datasets the turning point is also very close to ​δ​ *​.

VI.  Results of Other Experimental Studies

As mentioned in the introduction, there are several previous experimental studies 
of cooperation in the infinitely repeated Prisoner’s Dilemma reported in the litera-
ture, and one study that was undertaken simultaneously and independently. Table 6 
offers a synthetic overview of these results. The table has the same structure as 
Table 3 displaying our own experimental results. In some of the earlier studies the 

Figure 1. Frequencies of C-equilibria Depending on (δ − ​δ​ *​)

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

C
-e

qu
ili

br
iu

m

δ − δ*

Table 5—Logistic Estimates for the Frequencies of C-Path

Data a b

D1440 0.259*** 6.560***
D1272 −0.096 12.887***
D1098 −0.620*** 14.715***

Note: Signif. codes: 0  ≤  ***  <  0.001  ≤  **  <  0.01  ≤  *  <  0.05  ≤ .  <  0.1.
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data are missing or reported only in an aggregated form, so we were not able to 
complete the full table. The experiments are too diverse to allow serious conclu-
sions based on our main hypothesis. Nevertheless, if we look at the cooperation 
frequencies, the mean values of cooperation are 0.14 if δ < ​δ _​ , 0.26 if ​δ _​ < δ < ​δ​ *​ 
and 0.43 if ​δ​ *​ < δ. This is not inconsistent with our hypothesis in the sense that we 
expect “higher frequencies of cooperation” for the third equilibrium class, and even 
moderately supports it.

Anyway, it is interesting to look more closely at the studies from our perspective. 
Roth and Murnighan (1978) is the first study that analyzed equilibrium behavior in an 
uncertain horizon repeated PD game. They found that the frequencies of cooperation 
increase in δ. However, their values for the two cases δ < ​δ​ *​ are high compared to 
our observations. The reason may be that in their experiments subjects played against 
particular robot strategies rather than against another subject. Some subjects may 
have believed, for example, that they play against the well-known strategy Tit-For-Tat 
which would encourage more of them to try to build up cooperation compared to other 
less forgiving types of equilibria. This may also be the reason behind the high frequen-
cies in Murnighan and Roth (1983), where subjects play against the experimenter. In 
the table we listed only aggregated data. The experiment includes 12 games with dif-
ferent payoff matrices, i.e., different values for ​δ _​, ​δ​ *​ and three different continuation 
probabilities. In our terminology they observe 36 different treatments of which 14 are 
part of equilibrium class 1 (δ < ​δ _​ ) and 16 are part of equilibrium class 3 (​δ​ *​ < δ). 
Only the remaining six belong to the middle equilibrium class 2 and potentially offer 
some clue regarding our hypothesis.

Table 6—Rate of Cooperation in some Experiments Reported in the Literature

Game Equilibrium Round

Study ​_ δ​ ​δ​ *​ δ Δ​_ δ​ Δ​δ​ *​ Class 1 2 3 All

DF 0.72 0.812 0.5 — — 1 0.098 0.098
DF 0.4 0.605 0.5 + — 2 0.187 0.180
DF 0.08 0.395 0.5 + + 3 0.390 0.353
DF 0.72 0.812 0.75 + — 2 0.256 0.203
DF 0.4 0.605 0.75 + + 3 0.611 0.587
DF 0.08 0.395 0.75 + + 3 0.851 0.764
DO14 0.5 0.667 0.9 + + 3 0.482 0.549
DO6 0.5 0.667 0.9 + + 3 0.625 0.627
D 0.538 0.667 0.5 — — 1 0.032
D 0.538 0.667 0.75 + + 3 0.207
D 0.455 0.667 0.5 + — 2 0.188
D 0.455 0.667 0.75 + + 3 0.256
FH 0.407 0.5 0.333 — — 1 0.233
FH 0.407 0.5 0.667 + + 3 0.360
FH 0.407 0.5 0.833 + + 3 0.389
MR — — 1 0.173
MR + — 2 0.409
MR + + 3 0.320
RM 0.333 0.5 0.105 — — 1 0.19
RM 0.333 0.5 0.5 + + 3 0.298
RM 0.333 0.5 0.895 + + 3 0.364

Notes: DF = Dal Bó and Fréchette (2011); DO14 = Duffy and Ochs (2009), 14 subjects; DO6 = Duffy and 
Ochs (2009), 6 subjects; D = Dal Bó (2005), game 1; FH = Robert M. Feinberg and Thomas A. Husted (1993); 
MR = Murnighan and Roth (1983); RM = Roth and Murnighan (1978).
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The work of Robert M. Feinberg and Thomas A. Husted (1993) frames a PD 
game as a duopoly game. In their study the probability δ is composed of two parts. 
Besides the continuation probability they consider a discount factor reducing payoffs 
in successive rounds. Their three treatments differ only in this latter factor (equal to 
1, 0.8, 0.4). Consequently, in Table 6 we listed the product of both. According to our 
main hypothesis we believe that the explanation for their comparatively high coop-
eration frequencies for equilibrium class 1 is buried in the unobserved details of this 
particular experimental design. Nevertheless, FH’s observed cooperation rates rise 
markedly in equilibrium class 3 which in their case supports the traditional predic-
tion based on ​δ _​ as much as ours.

Dal Bó (2005) used a 2 by 3 by 2 design. This means, he studies two infinite 
repeated games with three continuation probabilities (0, 0.5, 0.75) and compares 
this with repeated games of fixed duration (1, 2, 4). His fixed durations correspond 
to the expected lengths of the according infinite games. We did not list the results of 
the treatment with fixed duration nor those with the continuation probability 0. Dal 
Bó observes a significant difference in the levels of cooperative behavior between 
these two types of games. In line with game theoretical wisdom, the cooperation 
frequencies in treatments with fixed duration are significantly lower. More interest-
ing for our context is the second result stating that cooperation frequencies increase 
with δ. In particular, the difference in the level of cooperation between equilibrium 
class 2 (0.188) and equilibrium class 3 (0.207 and 0.256) is positive though not as 
clearly as in our experiment.

Duffy and Ochs (2009) study experimentally the hypothesis of Michihiro 
Kandori (1992) that cooperation may emerge in a group of subjects randomly 
selected to play a PD-game. They analyze treatments with 14 and others with 6 sub-
jects and compare the levels of cooperation in treatments in which subjects are 
randomly rematched after each round with fixed matching treatments. Kandori’s 
main hypothesis is not supported by their experiment, in the sense that substantial 
cooperation supported by the threat of contagion does not emerge. The level of 
cooperation is much higher in the fixed paired treatments than in the randomly 
selected ones. In our table we only listed the results of the fixed matching treat-
ments, which are closer to our topic. The treatments they used in their experiment 
fit in our equilibrium class 3. They found relatively high levels of cooperation, 
much in line with our Figure 1.

As already mentioned, at the same time as we ran our experiments Dal Bó and 
Fréchette (2011) ran experiments on cooperation and learning that are related to 
what we did, as they also partly take into account strategic risk. Their results are 
much in accordance with our results, as they provide independent additional sup-
port in favor of Blonski and Spagnolo (2004), which as we mentioned comes up 
with the same predictions as these tested here through a theoretical derivation of a 
risk dominance indicator for repeated games. Again, they observe slightly higher 
frequencies of cooperation than we do, but this could probably be explained, at 
least in part, by differences in their experimental design. For example, in our 
design a subject could never meet the same subject again, as in Dal Bó (2005). In 
the design of Dal Bó and Fréchette (2011), there is a positive probability to meet 
again the same subject. In a pool of 12 to 20 subjects, every subject plays 23 to 
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77 repeated games. On average any subject meets any other subject 3.3 times. If a 
subject expects to meet the opponent over and over at later instants, the assumed 
continuation probabilities may not correspond to the perceived ones. Also, their 
pool of subjects appears to contain less economics and business students than ours. 
Unfortunately in their treatments, ​δ _​ and ​δ​ *​ were always chosen to change in the 
same direction, so that direct comparisons of the kind we did in Section III are not 
possible based on their experimental data.

There are some other experimental studies on infinite repeated games modify-
ing the standard PD-game. For example, Van Huyck, John M. Wildenthal, and 
Battalio (2002) reported an experiment on repeated dominance solvable games. 
In one of their four treatments, similar to a PD-game of equilibrium class 3, they 
found after a time of learning a pointedly high level of cooperation. Less related 
are experiments by Masaki Aoyagi and Fréchette (2009), who show that in infi-
nitely repeated prisoner’s dilemma games with imperfect public monitoring, the 
level of cooperation increases with the quality of the public signal.

To sum up, we conclude that studies that ignore strategic risk or the role of the 
“sucker’s payoff,” by only looking at changes in the incentive compatibility condi-
tions—summarized by ​δ _​ —to predict changes in agents’ ability and willingness to 
cooperate or collude when the environment changes, may yield incorrect or mis-
leading results. The available experimental evidence, to which we add here, indi-
cates that our ​δ​ *​ clearly fares much better as a tool for predicting changes in the 
frequency of cooperation among real subjects when the relevant institutions change

Appendix

The following figures show the evolution of C-equilibria in all sessions. The dot-
ted horizontal lines are the average frequencies of C-equilibria reported in Table 4 
for D1400. The vertical solid lines separate the two different treatments within one 
session.
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