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Selling to Advised Buyers†

By Andrey Malenko and Anton Tsoy*

In many cases, buyers are not informed about their valuations and 
rely on experts, who are informed but biased for overbidding. We 
study auction design when selling to such “advised buyers.” We 
show that a canonical dynamic auction, the English auction, has 
a natural equilibrium that outperforms standard static auctions in 
expected revenues and allocative efficiency. The ability to commu-
nicate as the auction proceeds allows for more informative com-
munication and gives advisors the ability to persuade buyers into 
overbidding. The same outcome is the unique equilibrium of the 
English auction when bidders can commit to contracts with their 
advisors. (JEL D44, D82, D83, D86)

In many economic environments, agents that make purchase decisions have lim-
ited information about their valuations of the asset for sale. As a consequence, they 
rely on the advice of informed experts, who however often have misaligned pref-
erences. For example, when a firm is competing for a target in a takeover contest, 
its board of directors has authority over submitting bids, while its managers are 
likely to be more informed about the valuation of the target. The managers, however, 
could be prone to overbidding because of career concerns and empire-building pref-
erences. Other examples of advisors that have private information about bidders’ 
valuations and advise them on bidding are research teams in telecommunication 
companies in spectrum auctions and realtors in real estate transactions.

The goal of this paper is to study how the seller should design the sale mechanism 
when the potential buyers are advised by informed but biased advisors. We study 
a canonical setting in which the seller has an asset to auction among a number of 
potential buyers with independent private values. We depart from it in one aspect: 
each potential buyer is a pair of a bidder (female) and her advisor (male), where 
the bidder controls bidding decisions (e.g., the firm’s board) but has no information 
about her valuation, while the advisor (e.g., the firm’s manager) knows the valuation 
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but has a conflict of interest. We focus on the advisors’ bias toward overbidding: 
given value ​v​ to the bidder, the advisor’s maximum willingness to pay is ​v + b​ with ​
b  >  0​. This specification captures empire-building motives of managers or career 
concerns of consulting companies.

Prior to the bidder submitting an offer, the advisor communicates with the bidder 
via a game of cheap talk. If the sale process consists of a single round of bidding, 
there is only one round of communication. In contrast, if it consists of multiple 
rounds, the advisor communicates with the bidder in each round. In this environ-
ment, communication and the design of the sale process interact. On the one hand, 
communication from advisors affects bids and therefore revenues of each auction 
format. On the other hand, the auction format affects how advisors communicate 
information to bidders.

We first study static auctions. As one could expect from the classic game of cheap 
talk (Crawford and Sobel 1982), communication takes an interval partition form. 
All types of the advisor are partitioned into intervals and types in each interval 
induce the same bid. Imposing the NITS (no incentive to separate) condition from 
Chen, Kartik, and Sobel (2008), which in our setup boils down to the lowest type of 
advisor getting a non-negative payoff, selects equilibria in which communication is 
relatively efficient. We prove a version of the revenue equivalence theorem for static 
auctions. Focusing on a large class of standard auctions with continuous payments 
introduced in Che and Gale (2006), which includes first-price, second-price, and 
all-pay auctions, we show that all static auctions in this class bring the same expected 
revenue and feature the same communication between bidders and advisors.

This conclusion changes drastically if the asset is sold via dynamic mechanisms. 
Consider the English (ascending-price) auction, in which the price continuously 
increases until only one bidder remains. From the position of a bidder and her advi-
sor, bidding is a stopping time problem: At what price level to drop out. At each 
price level, the advisor advises his bidder about whether to quit the auction now or 
not. We show that the English auction has equilibria with the following structure. 
The advisor recommends to stay in the auction until the price reaches the advisor’s 
maximum willingness to pay. In turn, the bidder follows the advisor’s recommenda-
tion until the price reaches a high enough threshold, at which she drops out irrespec-
tively of what the advisor then says. Thus, the advisor’s types perfectly separate at 
the bottom of the distribution and pool at the top. Moreover, when the value is in the 
range of separation, the bidder overbids: she exits the auction at a higher price than 
she would had she known her value at the start of the game. Because the behavior 
in these equilibria is as if each bidder delegates bidding decisions to her advisor 
subject to a cap, we refer to them as the “capped delegation” equilibria.

The intuition why these equilibria exist in the English auction but not in static auc-
tions lies in the irreversibility of the running price in the auction: While a bidder can 
always bid until a price level higher than the current price, she cannot exit at a price 
lower than the current price. Informally, she can improve her offer but cannot renege 
on past offers. If the advisor is biased for overbidding, he recommends the bidder to 
continue bidding and sends the recommendation to quit only when the price reaches 
the advisor’s indifference point, i.e., when the price exceeds the buyer’s value by the 
amount of the bias. When the bidder gets such a recommendation, she infers that her 
valuation is below the running price and, hence, quits the auction immediately. When 
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the bidder gets the recommendation to stay in the auction, she trades off the contin-
uation value of learning the advisor’s private information against the cost of possi-
bly overpaying. The solution is to act on the advisor’s recommendation unless the 
running price reaches a high enough threshold. Thus, the English auction allows the 
advisor to persuade the bidder whose valuation ​v​ is not too high into overbidding—
bidding until the price reaches ​v + b​, rather than ​v​, which is what the bidder would 
have done had she known her valuation at the start of the auction.

The main result of the paper is that under natural conditions on the distribution 
of types, the “capped delegation” equilibrium of the English auction outperforms in 
expected revenues any equilibrium of the static auctions satisfying the NITS con-
dition. The key to the comparison is to view the seller’s auction design problem as 
selling to advisors directly, where communication between advisors and bidders 
puts restrictions on what the selling mechanism can be. As in Myerson (1981), the 
expected revenues equal the expected virtual valuation of the winning advisor minus 
the expected payoff of the advisors with the lowest value. We show that the English 
auction has both a higher efficiency and a lower payoff of the lowest type of advisor 
than static auctions. The English auction is more efficient both because types of 
advisor below the cutoff fully separate and because the length of the pooling interval 
is below the length of the top interval of types in a static auction. In addition, in the 
English auction, the lowest type of advisor never wins, so his payoff is zero. At the 
same time, the NITS condition implies that his payoff in the second-price auction 
cannot be negative.1

We further show that under weak distributional assumptions, imposing the NITS 
condition on equilibria in static auctions is not required for the revenue comparison 
if the auction is sufficiently competitive. In this case, the “capped delegation” equi-
librium of the English auction yields higher expected revenues than any equilibrium 
of the second-price and, by revenue equivalence, any other static auction. Intuitively, 
as the number of bidders increases, the gain in expected revenues from the finer sep-
aration of high types in the English auction eventually outweighs the possible loss 
from extracting lower rents from low types.

To highlight the role of commitment, we next consider an “auction with con-
tracts.” Specifically, we assume that each bidder can commit to a contract that spec-
ifies the exit price in the English (or, equivalently, bid in the second-price) auction 
conditional on the advisor’s report of the type. Under a mild distributional restric-
tion, this auction with contracts has a unique undominated equilibrium, and it coin-
cides with the capped delegation equilibrium of the English auction in the model 
without commitment. This result has two implications. First, it provides a founda-
tion for our focus on capped delegation equilibria in the English auction with cheap 
talk.2 If each bidder cannot commit to a contract but has the ability to select among 
the equilibria of the communication game with her advisor, this result suggests that 
the capped delegation equilibrium will arise as an outcome. Second, it reveals that 

1 Interestingly, for certain unbounded distributions of values, the threshold after which the bidder quits irrespec-
tive of the advisor’s recommendation is infinite (i.e., there is full separation). This implies that the English auction 
is efficient. In this case, the English auction with an appropriately chosen reserve price extracts the highest expected 
revenues in the class of selling mechanisms that deliver a non-negative expected payoff to any type of advisor.

2 An alternative foundation, which is based on a dynamic extension of the NITS condition, is provided in online 
Appendix B.
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the inability to lower the bid below the current running price in the English auction 
serves as an implicit commitment device for the bidder to follow her advisor’s rec-
ommendations, which is not feasible in static auctions. Once explicit commitment 
power is given to the bidders, the English and the second-price auctions become 
equivalent, as in the standard setting when buyers know their valuations.

Our paper is related to two strands of the literature: auction design and commu-
nication of non-verifiable information (cheap talk). Our contribution to the auction 
theory literature is to study the design of auctions when bidders are advised by 
informed experts. A fundamental result in auction theory is the celebrated revenue 
equivalence theorem (Myerson 1981, Riley and Samuelson 1981), generalized to 
arbitrary type distributions by Che and Gale (2006). In our setting, it holds for static 
mechanisms, but breaks down for dynamic mechanisms.3 Our paper is related to 
studies of information acquisition by bidders and information design by the seller. 
In particular, Compte and  Jehiel (2007) show that multiple-round auctions bring 
higher expected revenues than static counterparts because of more flexible infor-
mation acquisition.4 While this result is similar to ours, it follows from a very dif-
ferent argument, which relies crucially on the asymmetry of bidders in information 
endowments and their knowledge of the number of remaining bidders in the auction. 
McAdams (2015) shows that multiple-round version of the second-price auction 
dominates the sealed-bid format when entry is costly. Bergemann and Pesendorfer 
(2007), Eso and Szentes (2007), Chakraborty and Harbaugh (2010), and Bergemann 
and  Wambach (2015) study design of information by the auctioneer. Our differ-
ence from this literature is in how bidders get information: from biased experts 
as opposed to the seller. Burkett (2015) studies a principal-agent relationship in 
auctions where the principal optimally constrains an agent with a budget and shows 
revenue equivalence of first- and second-price auctions. Burkett (2016) shows that 
the optimality of constraining a bidder using a simple budget extends to a large class 
of selling mechanisms. Differently from us, he focuses exclusively on the setup with 
commitment and assumes that the agent’s bias vanishes as the value converges to 
the lowest value.

Second, our paper is related to the literature on cheap talk. In addition to the 
classic paper by Crawford and Sobel (1982), two papers that relate the most to our 
paper are Chen, Kartik, and Sobel (2008) and Grenadier, Malenko, and Malenko 
(2016). First, because some of our main results about the comparison of expected 
revenues rely on the NITS condition, our paper builds on Chen, Kartik, and Sobel 
(2008), who introduce it.5 Second, our paper builds on Grenadier, Malenko, and 
Malenko (2016) who study a cheap talk game in the context of an option exercise 
problem and show that, when the sender is biased for delaying exercise, it leads 
to different equilibria than the static counterpart: separation up to a cutoff.6 Our 

3 Existing reasons for the failure of revenue equivalence include affiliation of values (Milgrom and Weber 
1982); bidder asymmetries (Maskin and Riley 2000); and budget constraints (Che and Gale 1998, 2006; Pai and 
Vohra 2014), among others.

4 Other papers on information acquisition by bidders in auctions include Persico (2000); Bergemann 
and Välimäki (2002); Bergemann, Shi, and Valimaki (2009); Crémer, Spiegel, and Zheng (2009), and Shi (2012). 

5 It is also related to Kartik (2009) and Chen (2011) who study perturbed versions of the classic cheap talk 
game with lying costs and behavioral players, respectively, since both variations can be used to motivate the NITS 
condition.

6 See also Guo (2016) for a related result in the optimal delegation (rather than cheap talk) problem. 
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main contribution is that rather than taking the game as given, we compare auction 
designs from the perspective of maximizing expected revenues. A number of papers 
study cheap talk models with less related dynamic aspects of communication.7

Finally, several papers study other effects of cheap talk in auctions. Matthews and 
Postlewaite (1989) study pre-play communication in a two-person double auction. 
Ye (2007) and Quint and Hendricks (forthcoming) study two-stage auctions, where 
the actual bidding is preceded by the indicative stage, which takes form of cheap talk 
between bidders and the seller. Kim and Kircher (2015) study how auctioneers with 
private reservation values compete for potential bidders by announcing cheap talk 
messages. Several papers also study the role of cheap talk in non-auction trading 
environments.8

The structure of the paper is as follows. Section I introduces the model. Section II 
illustrates our main results in a simple example. Section III compares the auction 
formats under cheap talk communication and presents our main results. Section IV 
studies bidding with contracts. Section V concludes. The Appendix contains the 
proofs. Online Appendices A and B contain technical details of the proofs and addi-
tional results.

I.  Model

Consider the standard setting of symmetric bidders with independent private val-
ues. There is a single indivisible asset for sale. Its value to the seller is normalized to 
zero. There are ​N​ potential buyers (bidders). The valuation of bidder ​i​, ​​v​i​​​, is an i.i.d. 
draw from distribution with c.d.f. ​F​ and p.d.f. ​f​. The distribution ​F​ has full support 
on ​[ ​ v _ ​, ​v –​ ]​ with ​0  ≤ ​  v _ ​  < ​ v –​  ≤  ∞​ and satisfies ​​∫ ​ v _ ​​ 

​v –​​​ v dF(v)  <  ∞​.
The novelty of our setup is that each bidder ​i​ does not know her valuation ​​v​i​​​, 

but consults advisor ​i​ who does. Advisor ​i​ knows ​​v​i​​​, but has no information about ​​
v​j​​​, ​j  ≠  i​ except for their distribution ​F​. While advisor ​i​ knows ​​v​i​​​, he is biased. 
Specifically, the payoffs from the auction are

(1)	 Bidder i’s payoff: ​​ I​i​​ ​v​i​​ − ​p​i​​ ;​    Advisor i’s payoff: ​​ I​i​​​(​v​i​​ + b)​ − ​p​i​​,​

where ​​I​i​​​ is the indicator variable that bidder ​i​ obtains the asset, ​​p​i​​​ is the payment of 
bidder ​i​ to the seller, and ​b​ is the advisor’s bias. Bias ​b​ is commonly known.

Motivated by applications described in the introduction, we assume that advisors 
have a bias for overbidding, i.e., ​b  >  0​. For example, consider a publicly traded 
firm bidding for a target. The board of the firm has formal authority over the bid-
ding process, maximizes firm value, but does not know valuation ​​v​i​​​. Suppose that 
a risk-neutral CEO of the firm knows ​​v​i​​​, but is biased. Specifically, if the CEO 
owns fraction ​α​ of the stock of the company and gets a private benefit of ​B​ from 
acquiring the target and managing a larger company, his payoff is ​α(​v​i​​ − p) + B​. 
Normalizing this payoff by ​α​ and denoting ​b  =  B/α​, we obtain formulation (1).

7 See Sobel (1985), Morris (2001), Golosov et al. (2014), Ottaviani and Sørensen (2006a, b), Krishna and Morgan 
(2004), and Aumann and Hart (2003).

8 For example, Koessler and Skreta (2016), Inderst and Ottaviani (2013), and Levit (2017).
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Our objective is to analyze how communication between biased advisors and bid-
ders affects expected revenues and efficiency of different selling mechanisms. We 
model communication as a game of cheap talk. If the auction format is static (i.e., it 
consists of a single round of bidding), the timing of the game is as follows:

	 (i)	 Advisor ​i​ sends a private message ​​​m ̃ ​​i​​  ∈  M​ to bidder ​i​ where ​M​ is some 
infinite set of messages.

	 (ii)	 Having observed message ​​​m ̃ ​​i​​​, bidder ​i​ chooses what bid ​​β​i​​  ∈ ​ ℝ​+​​​ to submit.

	 (iii)	 Given all submitted bids ​​β​1​​, …, ​β​N​​​, the asset is allocated and payments are 
made according to the rule of the auction.

In contrast, if the auction format is dynamic, the advisor sends a message to the 
bidder before each round of bidding.

Static Auctions.—If the communication has an interval partition form as in 
Crawford and Sobel (1982) (which it will in equilibrium as we show below), then 
after receiving a message, the bidder updates her expected value to one of a finite 
number of values. It is well-known that when the distribution of bidder’s values 
is discrete, the revenue equivalence need not hold. Thus, within static auctions, 
we consider a rich class of auctions for which the revenue equivalence theorem 
holds for arbitrary distributions of values in the standard setting where bidders are 
informed about their valuations (Che and Gale 2006).

DEFINITION 1 (Che and Gale 2006): An auction is a standard auction with contin-
uous payments if it satisfies the following conditions:

	 (i)	 The highest bid wins and ties are broken randomly.

	 (ii)	 The payment depends only on the bidder’s own and the highest competing 
bid, i.e., bidder ​i​ pays ​​τ​w​​​(  ​β​i​​, ​β​m(i)​​)​​ if she wins, and ​​τ​l ​​​( ​β​i​​, ​β​m(i)​​)​​ if she loses, 
where ​​β​m(i)​​  = ​ max​j≠i​​ ​β​j​​​.

	 (iii)	​​ τ​w​​(0, 0)  = ​ τ​l​​ (0, ⋅ )  =  0​ and ​​τ​k​​ ​( ⋅ , ​β​m(i)​​)​​ is continuous for ​k  =  w, l​, in the 
relevant domain.

This is a rich class of auctions that includes common formats, such as first-price, 
second-price, and all-pay auctions. For example, in the first-price auction, 
​​τ​w​​​(​ β​i​​, ​β​m(i)​​)​  = ​ β​i​​​ and ​​τ​l​​ ( ⋅ )  =  0​, while in the second-price auction, ​​τ​w​​​( ​β​i​​, ​β​m(i)​​)​ 
= ​ β​m(i)​​​ and ​​τ​l​​ ( ⋅ )  =  0​. For conciseness, we refer to standard auctions with contin-
uous payments in which there is only one round of bidding (and communication) as 
simply static auctions.

We consider perfect Bayesian equilibria (PBE) of static auctions. Since all bid-
ders are symmetric, we focus on symmetric PBEs in which all advisors play the 
same communication strategy ​m : ​[​ v _ ​, ​v –​]​  →  M​ and all bidders play the same bid-
ding strategy, which maps messages in ​M​ to distributions over bids. We refer to an 
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equilibrium as babbling if regardless of the message received, each bidder plays the 
same strategy.

There is a multiplicity of equilibria in cheap talk games. To select among them, we 
impose the “no incentive to separate” (NITS) condition of Chen, Kartik, and Sobel 
(2008). According to the NITS condition, the equilibrium payoff to the “weakest” 
type of advisor, ​​ v _ ​​, cannot be below his payoff if he credibly revealed himself (and 
had the bidder best-respond to that information). Intuitively, every type of advisor 
wants to convince the bidder to bid more than the bidder would bid if she knew her 
value. Thus, it is natural to assume that the recommendation to bid the lowest pos-
sible amount would be perceived as credible by the bidder. Chen, Kartik, and Sobel 
(2008) show that NITS can be justified by perturbations of the cheap talk game with 
non-strategic players or costs of lying. Further, as we shall see, the NITS condition 
in our model boils down to the requirement that advisor type ​​ v _ ​​ gets non-negative 
expected utility from the auction. This is akin to the participation constraint, which 
is automatically implied if the advisor can quit and obtain the payoff of zero after 
learning ​v​. This provides another justification for our use of NITS in static auctions.

English Auction.—We focus on the English auction among dynamic mechanisms. 
The seller continuously increases price ​p​, which we refer to as the running price, 
starting from zero. Each bidder decides whether to continue participating or to quit 
the auction. A bidder that quits the auction cannot re-enter. Once only one bidder 
remains, she wins and pays the running price.

The advisor sends a message to the bidder before each round of bidding. We 
index rounds by corresponding running prices ​p​. We assume that bidders and advi-
sors only observe the running price ​p​, but not the actions of other bidders.9 The 
history ​h​ of bidder ​i​ includes the current running price ​p​ and messages ​​​(m​t​​)​t< p​​​ sent 
by advisor ​i​ up to round ​p​. Denote the set of all histories by ​H  =   {( p, ​​(m​t​​)​t< p​​)}​.

A strategy of advisor ​i​ is a measurable mapping ​m : [ ​ v _ ​, ​v –​ ] × H  →  M​ from the 
advisor’s private information about the valuation ​v​ and a history ​h​ into a message 
​m (v, h)​ sent to bidder ​i​ after that history. In the English auction, the only actions 
are to stay or to quit labelled zero and one, respectively. A strategy of bidder ​i​ is a 
measurable mapping ​a : H × M  ↦  { 0, 1}​ from a history ​h​ and a current message ​​
m ̃ ​​ into the action ​a (h, ​m ̃ ​)​ chosen by the bidder. A bidder’s posterior belief process is 
a measurable mapping ​​μ ̃ ​ : H × M  →  Δ​([ ​ v _ ​, ​v –​ ])​​ from a history ​h​ and current mes-
sage ​​m ̃ ​​ into the posterior distribution over ​[ ​ v _ ​, ​v –​ ]​, ​​μ ̃ ​(h, ​m ̃ ​​).

We focus on symmetric perfect Bayesian equilibria in pure Markov strategies 
(PBEM) where the state consists of the auction round ​p​ and a bidder’s posterior 
belief about her valuation ​v​. Communication strategy ​m (v, p, μ)​ gives the message 
sent in round ​p​ when bidder’s posterior is ​μ​ and the advisor’s type is ​v​. Belief map-
ping ​​μ ̃ ​ ( p, μ, ​m ̃ ​)​ gives the bidder’s posterior in round ​p​ after observing message ​​m ̃ ​​ 
given that the posterior in the beginning of round ​p​ is ​μ​. Bidding strategy ​a( p, ​μ ̃ ​)​ 
gives the bidder’s decision in round ​p​ to quit/stop the auction (​a  =  1​) or continue 
(​a  =  0​), when her beliefs are ​​μ ̃ ​​ ( ​​μ ̃ ​​ is an updated version of ​μ​ after observing the 
advisor’s last message).

9 This assumption simplifies the analysis. However, equilibria that we consider are also equilibria in the model 
in which the number of remaining rivals is observed by bidders and advisors.



1330 THE AMERICAN ECONOMIC REVIEW APRIL 2019

From now on, we refer to the equilibria we restrict attention to as simply equilibria.

II.  Example: Two Bidders with Uniformly Distributed Valuations

We start the analysis with a simple example that illustrates the results of the 
paper. There are two bidders (​N  =  2​), each valuation is an i.i.d. draw from the uni-
form distribution over [ ​0, 10 ]​, and the advisors’ bias is ​b  =  1​.

First, consider the second-price auction. Because of the bias, the advisor cannot 
credibly communicate the valuation to the bidder, and the equilibrium must have an 
interval partition structure. Consider the conditions that characterize an equilibrium 
with ​K​ intervals, [​​ω​0​​, ​ω​1 ​​]​, …, ​[​ω​K−1​​​​, ​ω​K​​ ]​, with ​​ω​0​​  =  0​ and ​​ω​K​​  =  10​. Given the advi-
sor’s message that conveys that the valuation is in the ​k th​ interval, the best response 
of the bidder is to bid the updated expected valuation, ​(​ω​k−1​​​​ + ​ω​k​​)/ 2​. This bid is 
the winning bid with probability 1, if the valuation of the rival bidder is below ​​ω​k−1​​​​​​, 
with probability ​50 percent​, if it is between ​​ω​k−1​​​​​​ and ​​ω​k​​​, and with probability 0, if it 
is above ​​ω​k​​​. By inducing the bidder to bid (​​ω​k​​ + ​ω​k+1​​)/ 2​ instead of ​(​ω​k−1​​​​ + ​ω​k​​ )/ 2​, 
the advisor increases the probability of winning against types [​​ω​k−1​​​​, ​ω​k ​​]​ from 50 per-
cent to 1 and against types ​[​ω​k​​, ​ω​k+1​​]​ from 0 to 50 percent. Hence, for the cutoff type 
of the advisor ​​ω​k​​​, the additional payoff from a higher probability of winning against 
types ​​[ω​k−1​​​​, ​ω​k ​​]​ must equal the cost from overpaying when the bidder wins against 
types ​[​ω​k​​, ​ω​k+1​​]​:

​​ 
​ω​k​​ − ​ω​k−1​​​​ ________ 

10
 ​​ (​ω​k​​ + b − ​  ​ω​k−1​​​​ + ​ω​k​​ ________ 

2
 ​ )​  = ​  ​ω​k+1​​ − ​ω​k​​ ________ 

10
 ​​ (​ 

​ω​k​​ + ​ω​k+1​​ ________ 
2
 ​  − ​ω​k​​ − b)​,

k  =  1, …, K − 1.​

We will refer to the equilibrium with the highest number of intervals as the most 
informative. In this example, this equilibrium has three intervals, ​​[0, 1​ 1 _ 3 ​]​​, ​​[1​ 1 _ 3 ​, 4​ 2 _ 3 ​]​​, 

and ​​[4​ 2 _ 3 ​, 10]​​. The corresponding bids are ​​ 2 _ 3 ​​, ​3​, and ​7​ 1 _ 3 ​​ (see Figure 1). Since the lowest 

bid is below ​b  =  1​, this equilibrium satisfies the NITS condition: the weakest type of 
the advisor (​v  =  0​) is better off inducing bid ​2/3​ than communicating that ​v  =  0​. 
There exist two other equilibria: one with two intervals (​[0, 4]​ and ​[4, 10]​) and the 
uninformative equilibrium. Since the lowest bid (​2​ in the former case; ​5​ in the latter) 
exceeds ​b  =  1​, these equilibria violate the NITS condition.

Next, in the English auction a bidder faces a stopping time problem. At each 
price ​p​, she decides whether to quit the auction or stay for a little longer. Consider 
the following “delegation-like” equilibrium. Suppose that an advisor with type ​v​ 
plays the threshold strategy of recommending to stay in the auction, if ​p  <  v + 1​, 
and to quit once ​p​ hits ​v + 1​ (see Figure 1). Given this, what is the optimal strategy 
of the bidder? If she gets the recommendation to quit when the running price is ​
p  ∈  [1, 11]​, she infers that her valuation is ​v  =  p − 1​. Since ​p​ exceeds this valua-
tion, the bidder finds it optimal to quit the auction immediately. If she has received 
recommendations to continue bidding, she trades off the value of waiting for more 
information against the possibility of overpaying for the asset. As the running price ​
p​ increases, the support of bidder’s beliefs, ​[  p − 1, 10]​, shrinks. Therefore, the 
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best response of the bidder is to stay in the auction, as long as ​p  ≤ ​ p ˆ ​​, given by ​
0  =  E[v | v  ≥ ​ p ˆ ​ − 1] − ​p ˆ ​.​ Hence, ​​p ˆ ​  =  9​. Intuitively, ​​p ˆ ​  =  9​ is exactly the price 
at which the bidder is indifferent between winning the auction and getting the valu-
ation of ​9​ on average (when the auction reaches this price, the bidder’s posterior is 
that ​v  ∈  [ 8, 10 ]​) and quitting it.

The “delegation-like” equilibrium in the English auction is very different from 
the equilibrium of the second-price auction. What does this imply for the compar-
ison of revenues and efficiency? It is clear from Figure 1 that the English auction 
is more efficient: not only is there a separation of types up to ​v  =  8​, but the pool-
ing interval ​[ 8, 10 ]​ is contained in the pooling interval in the top interval in the 

second-price auction ​​[4 ​ 2 _ 3 ​, 10]​​. The English auction also generates higher expected 
revenues than the second-price auction: ​4 ​ 23 __ 

75
 ​​ versus ​3 ​ 88 ___ 

135
 ​​. The comparison of reve-

nues is not obvious at first glance, because one distribution of bids does not dom-
inate the other. Nevertheless, higher expected revenues in the English auction is a 
rather general result.

III.  Bidding under Cheap Talk Communication

This section solves for equilibria. Subsection IIIA shows that the revenue 
equivalence theorem extends to the setting when bidders rely on biased  

Figure 1. Equilibrium Bids in Second-Price and English Auctions
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advisors, if the auction is static. Subsection IIIB shows that the English auction has 
“delegation-like” equilibria that dominate equilibria in the second-price auction in 
terms of both expected revenues and efficiency.

A. Static Auctions

After a bidder gets message ​​m ̃ ​​ from her advisor, she updates her belief about her 
value and decides on the bid. By risk-neutrality, the bidder cares only about her 
posterior expected value, which we refer to as her type ​θ  ≡  E[v | ​m ̃ ​]  ∈  [​ v _ ​, ​v –​]​. Let ​​
F​θ​​​ denote the distribution of a bidder’s types, induced by equilibrium at the commu-
nication stage (by symmetry, ​​F​θ​​​ is the same for all bidders). The next proposition 
establishes revenue equivalence for static auctions, and shows that communication 
takes an interval partition form similar to standard cheap talk games.

PROPOSITION 1: If there is a single round of communication, then

	 (i)	 for any equilibrium in a static auction there exists an equilibrium of the 
second-price auction that generates the same allocation, expected revenues, 
and equilibrium distribution of bidders’ expected values, ​​F​θ​​​, after the com-
munication stage;

	 (ii)	 in any equilibrium, the communication takes an interval partition form 
​​(​ω​k​​ )​ k=0​ 

K ​ ​, in which ​​ω​0​​  = ​  v _ ​​ , ​​ω​K​​  = ​ v –​​, and types ​v  ∈  [​ω​k−1​​​​, ​ω​k ​​), k  =  1, …, K​ 
induce the same bid.

Our main question is whether the choice of the auction format affects its expected 
revenues and efficiency. Part (i) of Proposition 1 tells us that it does not if one 
restricts attention to static auctions. Intuitively, the advisor’s decision of what mes-
sage to send depends only on how it affects the probability of winning and expected 
payment. From Che and Gale (2006), we know that both are the same for any fixed 
distribution ​​F​θ​​​. Therefore, the advisor’s problem of choosing what message to send 
is also the same.

Part (ii) of Proposition 1 states that in static auctions the conflict of interest 
results in coarse information transmission from advisors to bidders. After the com-
munication, each bidder updates her expected value to one of finite values ​E [v | v  ∈ 
​[ω​k−1​​​​, ​ω​k​​ )], k  =  1, …, K​, and bids it. Hence, ties arise with positive probability, 
and the asset is sometimes allocated inefficiently. The interval partition structure of 
communication is similar to Crawford and Sobel (1982), though it does not follow 
from it directly because the payoffs of each bidder and advisor depend on bids of 
rival bidders that are outcomes of the communication game. Instead, we show that 
the advisor’s payoff generally satisfy the appropriate single-crossing condition in 
Kartik, Lee, and Rappoport (2017), which implies the interval partition structure.10 
Note that an equilibrium with a higher number of intervals need not imply higher 
expected revenues to the seller.

10 Chen, Kartik, and Sobel (2008) show that in the standard cheap talk game, there always exist equilibria satis-
fying the NITS condition, which is also true in our model (Proposition 5 in online Appendix A).
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B. Comparison of Auction Formats

Unlike static auctions, the English auction also admits an equilibrium of a very 
different form:

DEFINITION 2: The equilibrium of the English auction is a capped delega-
tion equilibrium if it is outcome-equivalent to the equilibrium in which for some  
​​v​​ ∗​  ∈  (​ v _ ​, ​v –​​ ​​] on the equilibrium path:

	 •	 Advisor type ​v​ recommends “stay” in the auction when the running price is 
below his most preferred exit price ​v + b​, and recommends “quit” when it 
reaches ​v + b​.

	 • 	The bidder quits the auction if either the running price increases to ​​v​​ ∗​ + b​ or 
she receives message “quit” from the advisor, whichever happens earlier.

If ​​v​​ ∗​  = ​ v –​​, we call the equilibrium the full delegation equilibrium.

In a capped delegation equilibrium, the advisor’s types below ​​v​​ ∗​​ fully separate 
over the course of the auction, provided that it reaches price ​​v​​ ∗​ + b​. In contrast, 
types above ​​v​​ ∗​​ pool, because the bidder exits the auction at price ​​v​​ ∗​ + b​ irrespec-
tively of the advisor’s recommendation then. We call this equilibrium capped del-
egation, because if the advisor submitted the bids himself, he would stay in the 
auction until price ​v + b​. Thus, even though the bidder has formal authority over the 
bidding decisions, she effectively delegates them to the advisor with the restriction 
that he cannot stay in the auction beyond price ​​v​​ ∗​ + b​ (cap). In online Appendix B, 
we show that if an equilibrium of the English auction satisfies a dynamic version of 
the NITS condition, then it must be a capped delegation equilibrium.

For a large class of distributions, the capped delegation equilibrium is unique. 
Let ​MRL​(s)​  ≡  E [v | v  ≥  s] − s​ be the mean residual lifetime function, which is 
well-studied in industrial engineering and economics (Bagnoli and Bergstrom 2005). 
Then, a sufficient condition for uniqueness is one of the following two assumptions.11

ASSUMPTION A: ​MRL​(s)​  >  b​ for all ​s  ∈ ​ [​ v _ ​, ​v –​]​​ (and so ​​v –​  =  ∞​).

ASSUMPTION B: ​MRL​(s)​​ is strictly decreasing in ​s​.

Assumption A is satisfied for distributions with weakly increasing ​MRL​(s)​​ if the 
bias ​b​ is not too high. For example, it holds for exponential, Pareto, and truncated 
from below log-normal distributions. Decreasing ​MRL​(s)​​ is a particularly natu-
ral property. In industrial engineering, where ​MRL​(s)​​ captures the expected time 
before a machine of age ​s​ breaks down, decreasing ​MRL​(s)​​ means that the machine 
gets less durable as it ages. In our context, it means that winning at a higher price is 

11 Proposition 6 in online Appendix A shows that with two bidders our results generalize to cases in which 
neither Assumption A nor B is satisfied.
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worse news for the bidder than winning at a lower price. It holds for uniform, nor-
mal, logistic, extreme value, and many other distributions.

We now turn to our main comparison results. Let ​φ​(v)​  ≡  v + b − 
​ 
1 − F​(v)​

 ______ 
f ​(v)​

 ​ ​ denote the virtual valuation of the advisor with type ​v​.

THEOREM 1: Suppose that Assumption A holds. Then, there exists the full delega-
tion equilibrium in the English auction. It is fully efficient: the winner of the auc-
tion is always the bidder with the highest valuation. If, in addition, ​φ( ⋅ )​ is strictly 
increasing, then it brings higher expected revenues than any NITS equilibrium in the 
second-price auction. Finally, no other capped delegation equilibrium exists.

Unlike in static auctions, full separation of advisor types is possible in the English 
auction. This immediately leads to full efficiency. The difference arises because of 
communication during the course of the auction. When the advisor recommends the 
bidder to quit the auction at the current price ​p​, the bidder learns that her valuation 
is ​p − b  <  p​ and thus exits immediately. As she gets recommendations to stay in 
the auction, she updates her belief that the valuation is not too low. Her decision 
whether to continue bidding trades off the benefit of waiting for more information 
against the cost of possibly overpaying. If the bidder wins when the strongest rival’s 
bid is ​s + b​, she pays ​s + b​ and gets on average ​E [v | v  ≥  s​]. Under Assumption A, ​
E [v | v  ≥  s]​ is always above ​s + b​. Thus, following the advisor’s recommendation 
is always optimal for the bidder. Given that such a reaction of the bidder imple-
ments the advisor’s unconstrained optimal bidding strategy of bidding up to ​v + b​, 
the advisor does not want to deviate from this communication strategy. This full 
delegation equilibrium is not possible in static auctions because of the commitment 
problem: the bidder would not follow the advisor’s recommendation. In contrast, in 
the English auction the advisor can make the bidder bid above her (unknown) valu-
ation by delaying the recommendation to quit the auction.

The revenue comparison result is surprising. It is a priori not clear why the English 
auction should bring higher expected revenue. To maintain the indifference of cutoff 
types ​​ω​k​​​ in the second-price auction, it is necessary that bids in the second-price and 
the English auction are not clearly ordered. Relatedly, optimal mechanisms usu-
ally impose inefficiencies to limit information rents of bidders. The key idea is to 
view the seller’s problem as the problem of selling directly to informed advisors, 
where communication between advisors and bidders puts a restriction on the set of 
outcomes that can be implemented. By the envelope formula in Myerson (1981), 
we can write the seller’s expected revenues as the expected virtual valuation of the 
winning advisor less the payoff of the lowest type,

(2)	​ E​[ ​ ∑ 
i=1

​ 
N

 ​​ φ​(​v​i​​)​p​(​v​i​​, ​v​−i​​)​]​ − N ⋅ ​U​A​​​(​ v _ ​ )​,​

where ​p​(v​i​​, ​v​−i​​)​ is the probability that a bidder with valuation ​​v​i​​​ wins the auction 
if the vector of types of rival bidders is ​​v​−i​​​ and ​​U​A​​​(v)​​ is the expected payoff of 
advisor type ​v​. In  equation (2), the auction format determines ​p​( ⋅ )​​ and ​​U​A​​​(​ v _ ​ )​​. 
Higher efficiency of the English auction together with increasing virtual valua-
tion implies the first term is higher in the English auction than in the second-price  
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auction. The NITS condition guarantees that the expected payoff of the lowest type 
is non-negative in the second-price auction, while it is zero in the English auction. 
Together, these two effects imply that the English auction generates higher expected 
revenues.

The English auction can be easily modified to allow for a reservation price. Then, 
under Assumption A, the English auction with an appropriate reserve price becomes 
optimal in a very large class of selling mechanisms. Specifically, consider any sell-
ing mechanism in which in each round each bidder ​i​ privately communicates with 
advisor ​i​ via cheap talk, and which in equilibrium delivers a non-negative expected 
payoff to any type of the advisor: ​​U​A​​​(v)​  ≥  0​ for all ​v  ∈  [ ​ v _ ​, ​v –​ ]​. The expected reve-
nues from this mechanism can be written as equation (2). Thus, the seller’s problem 
of selling to bidders relying on the advice of informed advisors is a constrained prob-
lem of selling to advisors directly, so the optimal mechanism in the former problem 
cannot generate higher expected revenues than the optimal mechanism in the latter 
problem. We know from Myerson (1981) that if the seller sells directly to informed 
advisors, the English auction with a reserve price ​r  = ​ φ​​ −1​​(0)​ + b​ achieves the 
highest expected revenues among all mechanisms satisfying ​​U​A​​​(v)​  ≥  0​ for all ​
v  ∈  [ ​ v _ ​, ​v –​ ]​. However, under Assumption A, the English auction in which the seller 
sells to bidders relying on advisors is identical to selling to advisors directly. Thus, 
we get the following theorem.

THEOREM 2: Suppose that Assumption A holds and ​φ( ⋅ )​ is strictly increasing. 
Then, the English auction with a reserve price ​r  = ​ φ​​ −1​​(0)​ + b​ is optimal among 
all selling mechanisms that in equilibrium generate a non-negative expected utility 
to any type of the advisor: ​​U​A​​​(v)​  ≥  0​ for all ​v  ∈  [ ​ v _ ​, ​v –​ ]​.

The next theorem generalizes the uniform example in Section II and compares 
auction formats under Assumption B. We say that an equilibrium in one auction is 
more efficient than an equilibrium in another auction if the former results in a higher 
expected valuation of the winning bidder.

THEOREM 3: Suppose that Assumption B holds. If ​b  ∈  ​ (​lim​ v→​v –​​ 
  ​  MRL(v), MRL(​ v _ ​))​​, 

then there is a unique capped delegation equilibrium in the English auction, and 
the cutoff type is ​​v​​ ⁎​  =  MR ​L​​ −1​​(b)​  < ​ v –​.​ This equilibrium in the English auction is 
more efficient than any equilibrium of the second-price auction. If, in addition, ​φ( ⋅ )​ 
is strictly increasing, it brings higher expected revenue than any NITS equilibrium 
of the second-price auction. Furthermore, it brings higher expected revenue than 
any equilibrium of static auctions if ​N​ is sufficiently high.

Under Assumption B, in the English auction the value of the option to wait for 
advisor’s recommendation is strictly positive at any price below ​​v​​ ⁎​ + b​. However, 
when the price ​p​ exceeds ​​v​​ ∗​ + b​, the bidder learns that her valuation is in a narrow 
enough interval ​[  p − b, ​v –​​ ] so that the risk of overpaying outweighs the value of 
additional information. Thus, there is necessarily pooling at the top above ​​v​​ ∗​​ and the 
full delegation is not possible. This makes the efficiency comparison more nuanced, 
because both English and second-price auctions misallocate the asset with positive 
probability. Nevertheless, we show that the pooling region is always smaller in the 
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English auction. To see this result, consider the advisor’s indifference condition that 
determines intervals in the second-price auction. For advisor with type ​​ω​K−1​​​​​​ to be 
indifferent, the highest bid must exceed the maximum willingness to pay of the advi-
sor type ​​ω​K−1​​​​​ ​: ​E [v | v  ≥ ​ ω​K−1​​​​ ]  > ​ ω​K−1​​​​ + b​, or, equivalently, ​MRL​ (ω​K−1​​​​)  >  b​. 
Hence, in the English auction the bidder’s option value of waiting is positive at price ​​
ω​K−1​​​​ + b​. Consequently, types just above ​​ω​K−1​​​​​​ would recommend the bidder to 
stay in the English auction at this price, and the bidder would follow the recommen-
dation, implying a smaller pooling region and higher efficiency. Once we obtain the 
efficiency ranking, the revenue comparison follows by the same argument as under 
Assumption A.

The last result in Theorem 3 highlights the role of NITS condition in static auctions. 
If an equilibrium in the second-price auction violates the NITS condition, ​​U​A​​( ​ v _ ​ )​ 
in equation (2) is negative, so that the second-price auction could generate higher 
expected revenues despite its lower efficiency. Indeed, in the example of Section II, 
the babbling equilibrium in the second-price auction generates ​E [v]  =  5​ in reve-
nues, which exceeds the expected revenues of the capped delegation equilibrium of 

the English auction ​​(4 ​ 23 __ 
75

 ​)​​. The NITS condition deems equilibria with negative pay-

off of advisor unreasonable, implying that a NITS equilibrium in the second-price 
auction cannot be too inefficient. This in turn implies that the information rents of 
advisors cannot be too low and leads to the ranking of expected revenues.

While the NITS condition seems to be a sensible restriction in static cheap talk 
games, the last statement of Theorem 3 shows that the revenues comparison result 
becomes selection-free if the auction is sufficiently competitive: the capped delega-
tion equilibrium of the English auction generates higher expected revenues than any 
equilibrium of the second-price auction (and by Proposition 1, any other static auc-
tion in a very large class). Intuitively, as ​N​ increases, valuation of the second-highest 
bidder is more likely to be high. Thus, the seller eventually cares much more about 
the finer separation of types in the English auction than about the extraction of extra 
rents from the lower types in the second-price auction. In the example of Section II, 
already for ​N  =  3​ expected revenues of the English auction are higher than in any 
equilibrium of the second-price auction.12

Given that the English auction is attractive from both efficiency and revenues 
dimensions, it is interesting to explore how they depend on the magnitude of the 
advisors’ bias. In particular, does the seller benefit from advisors being more biased 
for overpaying? The next proposition sheds light on this question.

PROPOSITION 2. Suppose that Assumption B holds. Then, in the unique capped 
delegation equilibrium of the English auction:

	 (i)	 The expected valuation of the winning bidder is strictly decreasing in ​b​ on  
​​(​lim​ v→​v –​​   ​  MRL​(v)​, MRL​(​ v _ ​)​)​​.

12 The capped delegation equilibrium of the English auction yields the expected revenues of ​ ≈  5.93​. The high-
est expected revenues in the second-price auction are ​ ≈  5.17​, which is attained in the most informative equilibrium 
with four intervals. 
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	 (ii)	 The expected revenues are strictly increasing in ​b​ in the neighborhood of ​
b  =  0​ and strictly decreasing in ​b​ in the neighborhood of ​b  =  MRL (​ v _ ​)​.

	 (iii)	 For any ​b  >  0​, if ​​v –​  <  ∞​, and for any ​b  > ​ lim​v→∞​​ MRL (v)​, if ​​v –​  =  ∞​, 
there exists ​N(b)​ such that for all ​N  >  N(b)​, the expected revenues strictly 
increase with a marginal decrease in ​b​.

The first result of the proposition is that efficiency of the auction decreases with the 
advisors’ bias. This is because a higher bias increases the size of the pooling region. 
More interestingly, the second result shows that the effect of a bias on revenues is 
non-monotone. A higher bias has two opposite effects. On the one hand, it leads to 
more aggressive bidding when the valuation is in the separating region, ​v  < ​ v​​ ∗​(b)​, 
since the advisor recommends to quit the auction at a higher price. On the other 
hand, a higher bias leads to less aggressive bidding when the valuation is in the 
pooling region, ​v  > ​ v​​ ∗​(b)​, since the bidder stops listening to the advisor’s recom-
mendation earlier. The former effect dominates when the size of the pooling region 
is small, which is the case when the bias is low, while the latter effect dominates 
when it is high. In the example of Section II, expected revenues are single-peaked in ​
b​, reaching the maximum at ​b  ≈  3.54​.

The last result of Proposition 2 implies that for any bias level, expected reve-
nues decrease in the bias if the auction is sufficiently competitive. Intuitively, if 
the auction is sufficiently competitive, the valuations of the strongest two bidders 
are very likely to be in the pooling region, which implies that more aggressive bid-
ding by high types is more important than more aggressive bidding by low types. 
Therefore, a lower bias increases expected revenues in sufficiently competitive auc-
tions. Overall, our results suggest that the seller benefits from a higher bias if the 
bias is moderate and the auction is not too competitive.

IV.  Bidding with Contracts

We have shown that when bidders rely on cheap talk communication with their 
advisors, there is an equilibrium in the English auction, but not in the second-price 
and other static auctions, in which bidders behave as if they delegate bidding to 
advisors with caps on bids. This equilibrium results in more efficient allocations and 
higher expected revenues to the seller. This section considers a model in which bid-
ders can commit to contracts with their advisors. It shows that commitment makes 
the English and the second-price auctions equivalent, and that their equilibrium fea-
tures the same bidding behavior and outcomes as the “capped delegation” equilib-
rium of the English auction in the “cheap talk” model.

Formally, we consider the following auction with contracts. At the initial date, 
each bidder ​i​ simultaneously and privately commits to a contract that maps each 
report of her advisor of valuation ​​w​i​​  ∈  [ ​ v _ ​, ​v –​ ]​ into the exit price in the English 
auction ​​θ​i​​​(w​i​​)​. After the contracts are committed to, each advisor sends a private 
report of his valuation to his bidder, and bidders bid in the auction abiding to their 
contracts. The optimal contract of bidder ​i​ maximizes her expected payoff subject 
to providing the advisor with incentives to report the valuation truthfully, ​​w​i​​  = ​ v​i​​​, 
taking as given contracts of other bidders, ​​θ​j​​ (​w​j​​)​, ​j  ≠  i​. An equilibrium in this game 
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is a set of contracts, ​​θ​ j​ ∗​(​w​j​​)​, ​j  =  1, …, N​, which satisfy the property that each bid-
der ​j​ finds contract ​​θ​ j​ ∗​(​w​j​​)​ optimal, given that she expects other bidders offer their 
equilibrium contracts.

As an intermediate step, consider the optimal contracting problem of a single 
bidder ​i​, fixing bidding strategies of all rival bidders ​j  ≠  i​. Suppose that bidder ​i​ 
expects the distribution (c.d.f.) of the highest rival bid to be ​y( ⋅ )​ and ​y( ⋅ )​ is strictly 
increasing in the range ​θ  ∈  [ ​ v _ ​ + b, ​v –​ ]​. The next proposition shows that under 
an additional condition on the distribution of valuations, the solution to bidder ​i​’s 
problem is to bid her advisor’s maximum willingness to pay up to a certain cutoff. 
Furthermore, this cutoff does not depend on the distribution ​y( ⋅ )​ of the highest rival 
bid, and in fact, coincides with the cutoff in the capped delegation equilibrium of the 
cheap talk game of Section III.

PROPOSITION 3: Consider the optimal contracting problem of bidder ​i​ for any 
distribution ​y( ⋅ )​ of the highest rival bid. Suppose that Assumption B holds and 
​F (v) + b  f (v)​ is strictly increasing in ​v  ∈  [ ​ v _ ​, ​v –​ ]​. Then, contract ​​θ​i​​ (​w​i​​)  =  b + 
min ​{ w​i​​, ​v​​ ⁎​ }​, where ​​v​​ ∗​  ≡  MR ​L​​ −1​(b)​, is optimal. If, in addition, ​y​(θ)​​ is strictly 
increasing in the range ​θ  ∈  [ ​ v _ ​ + b, ​v –​ ]​, then this contract is the unique optimal 
contract.13

Thus, if the bidder can commit to any way she responds to recommendations 
from her advisor, she strictly prefers a capped delegation contract, provided that 
the probability of winning is strictly increasing in the bid in the relevant range. If 
the distribution of the highest rival bid ​y( ⋅ )​ has flat regions in the range ​[ ​ v _ ​ + b, ​v –​ ]​, 
then the contract from Proposition 3 is also optimal, but not necessarily uniquely 
optimal.14 Proposition 3 is similar to Proposition 2 in Burkett (2016), but our prop-
osition has a result about uniqueness, which is important for our claim about the 
equilibrium uniqueness in the next corollary. Our proof is different from Burkett 
(2016), because he assumes that the advisor’s bias goes to zero as ​v  → ​  v _ ​​, while in 
our setup the bias is constant. In the proof, we follow Melumad and Shibano (1991) 
to derive the general shape of incentive compatible contracts, and then show that any 
contract that does not take capped delegation form with cap ​b + ​v​​ ∗​​ can be profitably 
modified by the bidder.

Next, consider the auction with contracts in which each bidder ​j​ simultaneously 
commits to some contract ​​θ​j​​ ( ⋅ )​. Proposition 3 implies that for each bidder ​i​, the 
strategy of choosing contract ​​θ​i ​​(​w​i​​ )  =  b + min {​ω​i​​, ​v​​ ∗​}​ is weakly dominant in the 
following sense: it earns bidder ​i​ an expected payoff of at least as high as any other 
contract, regardless of the contracts that the other bidders commit to. It follows that 
the auction with contracts has a unique undominated equilibrium, i.e., an equilib-
rium in which no bidder chooses a weakly dominated contract, and it is given by all 
bidders committing to contract ​​θ​​ ∗​(ω)  =  b + min {ω, ​v​​ ∗​}​.15

13 As always, uniqueness means uniqueness within the class of direct revelation contracts.
14 Intuitively, if it is a zero probability event that the highest rival bid is in an interval ​[x − ε, x + ε]​ for some ​

ε  >  0​ and ​x  ∈  ( ​ v _ ​ + b, ​v​​ ∗​ + b)​, then the contract from Proposition 3 yields the same payoff to bidder ​i​ as an 
otherwise identical contract that pools types close enough to type ​x − b​. 

15 This is also a unique equilibrium in a perturbed version of the game, in which with probability ​ε  >  0​ there is 
an additional “behavioral” bidder, whose bid distribution has c.d.f. that is strictly increasing on ​[ ​ v _ ​ + b, ​v –​ ]​. 
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COROLLARY 1: Suppose that Assumption B holds and ​F (v) + b f (v)​ is strictly 
increasing in ​v​. Then, the unique undominated equilibrium in the auction with con-
tracts is a symmetric one in which all bidders offer contract ​​θ​​ ∗​(ω)  =  b + min {ω, ​v​​ ∗​}​.

Thus, if bidders could commit to contracts, then the second-price auction would 
result in exactly the same bidding behavior and allocation as the English auction in 
the model with cheap talk communication.

Therefore, this section achieves two objectives. First, it illustrates the role of the 
lack of commitment for our results about the comparison of auction formats—the 
irreversibility of the price in the English auction gives commitment power to the 
bidder for free. Second, the result that delegated bidding up to a cap is the optimal 
contract from the bidder’s point of view provides another justification for the capped 
delegation equilibrium in the English auction in the model with cheap talk commu-
nication. If a bidder has ability to “influence” what equilibrium of the communi-
cation game with her advisor is played, Proposition 3 suggests that the bidder will 
have strong incentives to favor the capped delegation equilibrium.

V.  Conclusion

The goal of the paper is to understand how to sell assets when potential buy-
ers rely on the advice of biased experts. We analyze this problem in the canonical 
framework of symmetric independent private values. We show that when the com-
munication takes form of cheap talk, the revenue equivalence theorem holds in static 
auctions. However, the English auction is, quite generally, more efficient and also 
results in higher expected revenues than static auctions. This is because by commu-
nicating his information later in the game rather than in the beginning, advisors are 
able to persuade their bidders to stay in the auction longer. When all bidders can 
commit to contracts, the revenue equivalence of the second-price and English auc-
tions is restored and the communication there is the same as in the English auction 
with cheap talk.

Our analysis points to several directions for future research. First, the analysis 
of bidder asymmetries, in particular in the biases of their advisors, is relevant in 
applications and can be fruitful. Second, since our focus is on the comparison of 
static and dynamic formats, we do not solve for the optimal mechanism, except for 
the case of Assumption A. Solving for the optimal mechanism in the general case 
is thus an avenue for future research. We conjecture that the optimality of English 
auction with an appropriate reserve price generalizes beyond Assumption A. Finally, 
many applications in which bidders rely on biased advisors may have valuations 
with a common component: corporate takeovers and real estate transactions are two 
examples. Thus, it can be interesting to extend the model beyond the independent 
private values framework.

Appendix

In the analysis, we will frequently refer to the distribution of valuation of the 
strongest opponent of a bidder. We denote by ​​v ˆ ​​ the maximum of ​N − 1​ i.i.d. random 
variables distributed according to ​F​ and its c.d.f. by ​G​: ​G(​v ˆ ​)  =  F ​(v)​​ N−1​​.​ We also 
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use ​F (a, b)  =  F (b) − F (a)​ to denote the probability that a random variable dis-
tributed according to ​F​ falls in the interval ​[a, b]​. Similarly, ​G(a, b)  =  G(b) − G(a)​.

PROOF OF PROPOSITION 1:
Part 1: Consider a standard static auction ​​ with continuous payments and an 

equilibrium in it. Let ​​m​​​ : [ ​ v _ ​, ​v –​ ]  ↦  M​ be the equilibrium communication strat-
egy. Let ​​F​θ, ​​​ be the distribution of each bidder’s types generated by ​​m​​​​, ​​Θ​​​​ be the 
support of ​​F​θ, ​​​, and ​​β​​​ : ​Θ​​​  ↦  Δ​(ℝ​+​​)​ be the equilibrium bidding strategy. Let ​
x (θ)​ and ​t (θ)​ be type ​θ​’s equilibrium expected probability of winning and expected 
payment, respectively.

We first use the results of Che and Gale (2006) to argue that if bidders’ types 
are drawn i.i.d. from ​​F​θ, ​​​, the equilibrium ​​β​​​​ in the second-price auction ​​ implies 
the same expected probabilities of winning and payments ​x (θ)​ and ​t (θ)​. Since this 
result follows directly from Che and  Gale (2006), we simply outline the argu-
ment. Lemma 2 in Che and Gale (2006) shows that a symmetric equilibrium of a 
standard auction with continuous payments admits an efficient allocation, i.e., for 
any realization of bidders’ types (which in our case are drawn i.i.d. from ​​F​θ, ​​​), a 
bidder with the highest type wins the auction. This implies that function ​x (θ)​ is 
the same across such auctions. Proposition 1 in Che and Gale (2006) shows that 
for standard auctions with continuous payments their conditions (A1) and (A2) 
hold. Condition (A1) implies that their inequality (3) holds as equality. This in 
conjunction with the envelope condition for the bidder’s payoff (their equation 
(4)) and condition (A2) implies that function ​t (θ)​ is the same across standard 
auctions with continuous payments.

We next show that the communication strategy ​​m​​​​ is also an equilibrium commu-
nication strategy in the second-price auction. Consider any type ​v​ contemplating to 
send message ​m′  ≠ ​ m​​​(v)​. First, consider ​m′  = ​ m​​​(v′  )​ for some other type ​v′  ≠  v​. 
Then, message ​m′​ generates some bidder’s type ​θ′  ∈ ​ Θ​​​​. Since type ​v​ is better 
off sending message ​​m​​​(v)​ than message ​​m​​​(v′  )​ in auction ​​, it must be that 
​(v + b) x (θ) − t (θ)  ≥  (v + b) x (θ′  ) − t (θ′  )​. Since ​x (θ)​ and ​t (θ)​ are the same 
in both auctions, this implies that type ​v​ does not benefit from sending message 
​​m​​​(v′  ) ≠ ​ m​​​(v)​. Second, consider ​m′​ such that there is no type ​v′​ for whom 
​m′  = ​ m​​​(v′  )​. Specify the beliefs of the bidder following such message ​m′​ as the 
beliefs following some message ​​m​​​(v′  )​ for some ​v′​ (i.e., specify that any off-path 
message is interpreted as one of on-path messages). Then, a deviation to such ​m​​′​ is 
equivalent to a deviation to ​​m​​​(v′  )​ for some ​v′​. Since the latter does not benefit type ​
v​, the former also does not. Hence, ​​m​​​ : [ ​ v _ ​, ​v –​ ]  ↦  M​ is also an equilibrium com-
munication strategy in the second-price auction.

Thus, we have constructed an equilibrium in the second-price auction with the 
same communication strategy ​​m​​​​ as in ​​. Moreover, we have shown that given that 
bidders’ types are drawn i.i.d. from ​​F​θ, ​​​, the two auctions exhibit payoff equivalence 
(functions ​x (θ)​ and ​t (θ)​ are the same) and thus, yield the same expected revenues. 
Moreover, the two auctions allocate the asset to the bidder with the highest type ​θ​.

Part 2: By Part 1, it is without loss of generality to focus on the second-price 
auction. Fix the strategies of all bidder-advisor pairs but one, and consider the cheap 
talk game in the remaining bidder-advisor pair. In equilibrium, to each bid corre-
sponds a pair ​(q, t)​, where ​q  ∈  [0, 1]​ is the expected probability of winning the asset 
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and ​t  ∈ ​ ℝ​+​​​ is the expected payment. The strategy of the bidder maps messages 
into distributions over bids, hence, into distributions over pairs ​(q, t)​. The utility of 
advisor type ​v​ from ​(q, t)​ is ​(v + b) q − t​. We can rewrite this utility in the form ​​
g​1​​(q, t) ​f​1​​(v) + ​g​2​​(q, t) ​f​2​​(v)​, where ​​g​1​​(q, t)  =  q​, ​​f​1​​(v)  =  v + b, ​​​g​2​​(q, t)  =  − t​, 
​​f​2​​(v)  =  1​. Since ​​f​1​​​ is strictly increasing in ​v​ and ​​f​2​​​ is constant, ​​f​1​​​ strictly ratio dom-
inates ​​f​2​​​. Hence, by Theorem 2 in Kartik, Lee, and Rappoport (2017) the advisor’s 
utility function satisfies the strict single-crossing expectational differences. Then, 
Claim 1 in Kartik, Lee, and Rappoport (2017) implies that every equilibrium in 
the communication game is connected: if ​​v​l​​  < ​ v​m​​  < ​ v​h​​​ and ​m(​v​l​​ )  =  m(​v​h​​ )​, then  
​m(​v​m​​ )  =  m(​v​l​​ )​.

By Lemma 3 in Che and  Gale (2006), in any symmetric equilibrium of the 
second-price auction, each bidder submits her updated expected valuation with 
​​F​θ​​-probability​ one.16 Consider set ​​Θ ̃ ​​ of bidder types that submit their updated 
expected valuations in equilibrium. Let ​​V ̃ ​  ≡  {v  ∈  [​  v _ ​, ​v –​ ] : E[v | m(v)]  ∈ ​ Θ ̃ ​​} be the 
set of advisor types who induce one of the bidder types in ​​Θ ̃ ​​. Since ​​Θ ̃ ​​ occurs with 
​​F​θ​​-probability​ one, ​​V ̃ ​​ occurs with ​F-probability​ one. It is convenient and without 
loss of generality, to refer to messages to such types as bid recommendations and 
denote equilibrium messages by ​​m ̃ ​  =  E [v ​|​​ m(v)  = ​ m ̃ ​]​. Since bidder types in ​​Θ ̃ ​​ bid 
their updated expected valuation and ​m( ⋅ )​ is connected on ​[ ​ v _ ​, ​v –​ ]​, ​m( ⋅ )​ is weakly 
increasing on ​​V ̃ ​​.

Further, it is not possible that ​m( ⋅ )​ is strictly increasing on some interval of advi-
sor types ​(v′, v″ )  ∩ ​ V ̃ ​​. By contradiction, if this were the case, then the message 
would be fully revealing of the advisor type in ​(v′, v″ )​, and the bidder would bid 
the message. But this would imply that the advisor of type ​​ 1 _ 2 ​(v′ + v″ )​ would 

prefer to deviate to sending message (and inducing bid) ​​ 1 _ 2 ​(v′ + v″ ) + ε​, which 
is a contradiction. Therefore, we have shown that ​m( ⋅ )​ is weakly increasing on ​​
V ̃ ​​ and cannot be strictly increasing on any ​(v′, v″ )  ∩ ​ V ̃ ​​. This implies that the 
communication strategy takes an interval partition form on set ​​V ̃ ​​. Call the partition 
cutoffs ​​(​ω​k​​)​ k=0​ K ​ ​.

Since ​m( ⋅ )​ is connected on ​[ ​ v _ ​, ​v –​ ]​, the set ​[ ​ v _ ​, ​v –​ ] \​V ̃ ​​ is a subset of ​​{​ω​k​​}​ k=0​ K ​ ​. Further, 
if ​​ω​k​​  ∈  [ ​ v _ ​, ​v –​ ] \​V ̃ ​​, then advisor type ​​ω​k​​​ perfectly reveals himself. This would induce 
bid ​​ω​k​​​, which equals to the updated expected valuation of the bidder, and hence, 
contradicts ​​ω​k​​  ∈  [ ​ v _ ​, ​v –​ ] \​V ̃ ​​. Therefore, the communication strategy takes an interval 
partition form on the whole set ​[ ​ v _ ​, ​v –​ ]​. This concludes the proof. ∎

PROOF OF THEOREM 1:
First, we show that the capped delegation equilibrium with ​​v​​ ∗​  =  ∞​ is indeed an 

equilibrium. The argument after the theorem verifies the advisor’s optimality and 
bidder’s optimality after message “quit.” To verify that the bidder has incentives to 
follow the advisor’s recommendation to “stay” at any ​p​, consider the option value 
to the bidder of following the advisor’s recommendation. The bidder infers from 
the fact that the auction reaches price ​p​ that her valuation is in ​[  p − b, ∞)​, and 
that there is at least one rival whose valuation is also in ​[  p − b, ∞)​. Denoting the 

16 Lemma 3 in Che and Gale (2006) assumes that ​Θ​ is bounded from above. The proof of Lemma 3 can be 
modified to allow for set ​Θ​ unbounded from above.
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bidder’s posterior probability that ​n​ rival bidders have valuations in ​[  p − b, ∞)​ by 
​​q​n​​( p)​ and the c.d.f. of the maximum of ​n​ i.i.d. random variables distributed 
according to ​F​ by ​​G​n​​( ⋅ )​, the bidder’s option value of following the advisor’s  
recommendation is

(3)​  V​( p)​ 

� = ​ ∫ p−b​​ 
  ∞

 ​​ ​ 
1 − F​(s)​

 ___________  
1 − F​(p − b)​

 ​ ​(E​[v ​|​​ v ≥ s]​ − s − b)​​(​ ∑ 
n=1

​ 
N−1

​​​q​n​​​(p)​ d​G​n​​​(s ​|​​ s ≥ p − b)​)​.​

Intuitively, if the bidder wins when the strongest rival’s valuation is ​s​, she pays ​s + b​ 
and gets, on average, ​E [v ​|​​ v  ≥  s​]. Under Assumption A, ​E [v ​|​​ v  ≥  s] − s − b  >  0​ 
for any ​s  ≥ ​  v _ ​​. Thus, the bidder prefers to follow recommendation “stay” at any ​p​. 
Hence, this is indeed an equilibrium. In this equilibrium, the auction is won by the 
bidder with the highest valuation. Therefore, it is fully efficient.

Second, we prove the statement about revenues. Consider an equilibrium of 
the second-price auction. Let ​​p​SPA​​(v)​ and ​​t​SPA​​(v)​ be the associated expected prob-
ability of winning and expected payment conditional on winning, conditional 
on a bidder’s valuation being ​v​. The implied equilibrium payoff of the advisor is 
​​U​A, SPA​​(v)  = ​ p​SPA​​(v)(v + b − ​t​SPA​​(v))​. If advisor type ​v​ mimics the equilib-
rium communication strategy of advisor type ​​v ˆ ​​, his expected payoff would be 
​​p​SPA​​(​v ˆ ​)(v + b − ​t​SPA​​(​v ˆ ​))​. For ​​p​SPA​​(v)​ and ​​t​SPA​​(v)​ to be supported in equilibrium, it 
must be that

	​​ U​A, SPA​​​(v)​  = ​ max​ 
​v ˆ ​
​   ​ ​ p​SPA​​​(​v ˆ ​)​​(v + b − ​t​SPA​​​(​v ˆ ​)​)​,​

which by the generalized envelope theorem (Milgrom and Segal 2002) implies ​​
U​A, SPA​​(v)  = ​ U​A, SPA​​(​ v _ ​) + ​∫ ​ v _ ​​ 

v​​ ​p​SPA​​(x) dx​. Integrating by parts, the expected revenues 
can be written as

 ​ NE​[​p​SPA​​​(v)​ ​t​SPA​​​(v)​]​​

	​ =  NE​[​p​SPA​​​(v)​​(v + b)​ − ​U​A, SPA​​​(v)​]​​

	​ =  NE​[​p​SPA​​​(v)​​(v + b)​ − ​U​A, SPA​​​(​ v _ ​)​ − ​∫ ​ v _ ​
​ 
v
​​​p​SPA​​​(x)​ dx]​​

	​ =  N​[​∫ ​ v _ ​
​ 
​v –​
​​​(​p​SPA​​​(v)​​(v + b)​ − ​∫ ​ v _ ​

​ 
v
​​​p​PSA​​​(x)​ dx)​ dF​(v)​ − ​U​A, SPA​​​(​ v _ ​)​]​​

	​ =  N​[​∫ ​ v _ ​
​ 
​v –​
​​​p​SPA​​​(v)​​(v + b)​dF​(v)​ + ​∫ ​ v _ ​

​ 
​v –​
​​​(​∫ ​ v _ ​

​ 
v
​​​p​PSA​​​(x)​dx)​d​(1 − F​(v)​)​ − ​U​A, SPA​​​(​ v _ ​)​]​​

	​ =  N​[​∫ ​ v _ ​
​ 
​v –​
​​​(​p​SPA​​​(v)​​(v + b)​)​ dF​(v)​ − ​∫ ​ v _ ​

​ 
​v –​
​​​p​PSA​​​(v)​ ​ 

1 − F​(v)​
 _______ 

f​(v)​
 ​   dF​(v)​ − ​U​A, SPA​​​(​ v _ ​)​]​​

	​ =  N​[​∫ ​ v _ ​
​ 
​v –​
​​​p​SPA​​​(v)​​(v + b − ​ 

1 − F​(v)​
 _______ 

f​(v)​
 ​ )​ dF​(v)​ − ​U​A, SPA​​​(​ v _ ​)​]​​

	​ =  N​[E​[​p​SPA​​​(v)​φ​(v)​]​ − ​U​A, SPA​​​(​ v _ ​)​]​.​
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After this, the statement about revenues follows from the text after the statement of 
the theorem.

Finally, we show that there is no capped delegation equilibrium with ​​v​​ ∗​  <  ∞​. 
By contradiction, suppose that such an equilibrium exists, and consider the auc-
tion at price ​​v​​ ∗​ + b​. The equilibrium prescribes that every remaining bidder 
should exit the auction at this price. However, because ​E [v ​|​​ v  ≥ ​ v​​ ∗​]  > ​ v​​ ∗​ + b​, a 
bidder unilaterally benefits from deviating and waiting until the price is just above ​​
v​​ ∗​ + b​. This deviation leads to a jump in the probability of winning to one and 
only an infinitesimal increase in the payment. Hence, there is no caped delegation 
equilibrium with ​​v​​ ∗​  <  ∞​. ∎

PROOF OF THEOREM 2:
Consider a symmetric mechanism ​Γ​ comprised of a bidder’s strategy set and an 

outcome function. Because the mechanism can potentially be dynamic, the strat-
egy set is a set of contingent plans of bids in each round. The outcome function 
is a mapping from bids in all rounds to the allocation rule and the transfer rule. 
Consider a symmetric equilibrium in this mechanism. Let ​​p​Γ​​(v)​ denote the equi-
librium probability (evaluated at the start of the auction) of a bidder obtaining the 
asset, conditional on her valuation (known by her advisor) being ​v​. Similarly, let ​​
p​Γ​​(v) ​t​Γ​​(v)​ be the equilibrium expected transfer of a bidder, conditional on her val-
uation being ​v​. If the advisor with type ​v​ adopted the equilibrium communication 
strategy of the advisor with type ​​v ˆ ​  ≠  v​, her bidder would win with probability ​​
p​Γ​​(​v ˆ ​)​ and the expected transfer would be ​​p​Γ​​(​v ˆ ​) ​t​Γ​​(​v ˆ ​)​. The fact that this should not 
be optimal implies that the equilibrium expected payoff of the advisor, ​​U​A, Γ​​(v)​, 
must satisfy

	​​ U​A, Γ​​​(v)​  = ​ max​ 
​v ˆ ​
​   ​ ​ p​Γ​​​(​v ˆ ​)​​(v + b − ​t​Γ​​​(​v ˆ ​)​)​.​

Applying the generalized envelope theorem and integration by parts, we can write 
the expected revenues as ​NE [  ​p​Γ​​(v)φ(v)] − N ​U​A ,Γ​​(​ v _ ​)​.

From Myerson (1981), the mechanism that maximizes ​E​[ ​∑ i​   ​​ p​(​v​i​​, ​v​−i​​)​φ​(​v​i​​)​]​ − 
N ​U​A​​​(​ v _ ​)​​ subject to constraints ​​∑ i​ 

  ​​ p(​v​i​​, ​v​i​​)  ≤  1​, ​p(​v​i​​, ​v​−i​​)  ≥  0​, and ​​U​A​​​(​ v _ ​)​  ≥  0​ is 
to allocate the asset to the agent with the highest virtual valuation, provided that it 
is non-negative, and set ​​U​A​​(​ v _ ​)  =  0​. Since ​φ( ⋅ )​ is increasing, English auction with 
reserve price ​r​ implicitly defined by ​φ(r − b)  =  0​ (equivalently, ​r  = ​ φ​​ −1​(0) + b​) 
is optimal. By Assumption A, the same expected revenues are also achieved in the 
English auction with reserve price ​r  = ​ φ​​ −1​(0) + b​ if the seller sells to advised 
bidders. Therefore, any mechanism ​Γ​ that in equilibrium generates ​​U​A,Γ​​(​ v _ ​)  ≥  0​ 
cannot yield strictly higher expected revenues. ∎

PROOF OF THEOREM 3:
First, we show that under Assumption B, there is unique capped delegation equi-

librium, and ​​v​​ ∗​​ is given by ​MR​L​​ −1​​(b)​​. Consider any capped delegation equilibrium. 
Suppose the game has reached price ​p  < ​ v​​ ∗​ + b​. Generalizing equation (3), the 
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bidder’s option value of following the advisor’s recommendation until price ​​v​​ ∗​ + b​ 
and quitting the auction then is

(4)  ​V​(p)​ 

� = ​ ∫ p−b​​ 
​v​​ *​

  ​​ ​ 
1 − F​(s)​

 ___________  
1 − F​(p − b)​

 ​​(E​[v ​|​​ v ≥ s]​ − s − b)​​(​ ∑ 
n=1

​ 
N−1

​​​q​n​​​(p)​ d​G​n​​​(s ​|​​ s ≥ p − b)​)​.​

Note that compared to equation (3), equation (4) could also include the term, corre-
sponding to the case of winning at a tie at price ​​v​​ ∗​ + b​, but because ​MRL (​v​​ ∗​)  =  b​, 
it equals 0, so we can omit it. If ​MRL (​v​​ ∗​)  <  b​, then equation (4) implies ​V( p)  <  0​ 
for ​p​ sufficiently close to ​​v​​ ∗​​. Therefore, there cannot be a capped delegation equilib-
rium with ​​v​​ ∗​  >  MR​L​​ −1​(b)​. If ​MRL (​v​​ ∗​)  >  b​, then consider the auction reaching 
price ​​v​​ ∗​ + b​. The candidate equilibrium prescribes the bidder to exit immediately. 
However, the bidder would prefer to wait until the price just above ​​v​​ ∗​ + b​ instead 
of exiting at price ​​v​​ ∗​ + b​. By doing this, she would ensure that she wins the auc-
tion with probability one and pays below her estimated valuation of ​E [v ​|​​ v  ≥ ​ v​​ ∗​  ]​. 
Since this strategy results in a discontinuous upward jump in the expected utility of 
the bidder, she is better off deviating. Hence, it must be that ​MRL (​v​​ ∗​)  =  b​. Next, 
we show that this is indeed an equilibrium. Since ​MRL ( ⋅ )​ is strictly decreasing, ​
s + b  >  E [v ​|​​ v  ≥  s]​ for any ​s  < ​ v​​ ∗​​, so ​V( p)  >  0​ for any ​p  < ​ v​​ ∗​ + b​. Thus, the 
bidder prefers to follow the advisor’s recommendation for any ​p  < ​ v​​ ∗​ + b​. When ​
p  = ​ v​​ ∗​ + b​, the bidder is indifferent between winning and losing, so leaving the 
auction for any recommendation of the advisor is optimal for the bidder. Finally, 
the strategy of communicating “stay” until price ​v + b​ and “quit” after that is also 
optimal for the advisor given expected reaction from the bidder. Any advisor type ​
v  ≤ ​ v​​ ∗​​ implements his unconstrained optimal bidding policy this way, while any 
advisor type ​v  > ​ v​​ ∗​​ implements his constrained optimal bidding policy, since it is 
impossible to induce bidder bidding above ​​v​​ ∗​ + b​. Therefore, the capped delegation 
with cap ​​v​​ *​  =  MR​L​​ −1​(b)​ is the unique capped delegation equilibrium.

Efficiency.—By Lemma 3 that precedes the proof of Proposition  5 outlined 
in online Appendix A, this is ​​K ̃ ​​ such that advisor types in ​[ ​ v _ ​, ​v​​ ⁎​ ]​ induce at 
most ​​K ̃ ​​ different bids in the second-price auction. Denote by ​[​ω​​K ̃ ​−1​​, ​ω​​K ̃ ​​​)​ the 
highest interval such that ​​ω​​K ̃ ​−1​​  ≤ ​ v​​ ∗​​. Since ​​ω​​K ̃ ​−1​​​ satisfies equation  (15) in 
online Appendix A, ​​ω​​K ̃ ​−1​​ + b − E [v ​|​​ v  ∈  [​ω​​K ̃ ​−1​​, ​ω​​K ̃ ​​​)]  <  0​. Hence, since  
​E [v ​|​​ v  ≥ ​ ω​​K ̃ ​−1​​]  ≥  E [v ​|​​ v  ∈  [​ω​​K ̃ ​−1​​, ​ω​​K ̃ ​​​)]​, we have that ​b  <  MRL (​ω​​K ̃ ​−1​​)​. On the 
other hand, ​b  =  MRL (​v​​ ∗​)​. Since ​MRL ( ⋅ )​ is strictly decreasing, ​​v​​ ∗​  > ​ ω​K−1​​​​​​. Hence, 
in the capped delegation equilibrium, the pooling region ​[ ​v​​ ∗​, ​v –​ ]​ is smaller than  
​[​ω​​K ̃ ​−1​​, ​v –​ ]​ in the second-price auction.

Now, we can compare the efficiency of two auction formats. Denote by ​​v​(i)​​​ the 
​i​ th largest element in ​{​v​i​​, i  =  1, … , N}​, and by ​​F​(i)​​​ the c.d.f. of ​​v​(i)​​​. Fix some realiza-
tion of ​(​v​(1)​​, … , ​v​(N )​​)​. If ​​v​(1)​​​ and ​​v​(2)​​​ are both below ​​v​​ *​​, then the English auction is fully 
efficient, while the second-price auction is inefficient, because of ties. If ​​v​(1)​​  ≥ ​ v​​ *​  > ​
v​(2)​​​, then again the English auction is fully efficient, while the second-price auction 
is inefficient, because of ties. If ​​v​(1)​​  ≥ ​ v​(2)​​  ≥ ​ v​​ *​​, then let ​j  ∈  {2, …, N  }​ be such 
that ​​v​(  j  )​​  ≥ ​ v​​ *​  > ​ v​(   j+1)​​​, and let ​k  ∈  {2, …, N  }​ be such that ​​v​(   j)​​  ≥ ​ ω​K−1​​​​  > ​ v​(   j+1)​​​. 



1345MALENKO AND TSOY: SELLING TO ADVISED BUYERSVOL. 109 NO. 4

We have that ​j  ≤  k​. Conditional on the realization of ​(​v​(1)​​, … , ​v​(N  )​​)​, the difference 
between the expected value of the winning bidder in the English auction and in the 
second-price auction equals

	​​  1 _ 
j
 ​ ​ ∑ 
i=1

​ 
j

  ​​ ​v​​(  j)​​​ − ​ 1 _ 
k
 ​ ​ ∑ 
i=1

​ 
k

  ​​ ​v​​(k)​​​​ ​ = ​  ∑ 
i=1

​ 
j

  ​​​v​​(  j)​​​​( ​ 1 _ 
j
 ​ − ​ 1 _ 

k
 ​)​ − ​ 1 _ 

k
 ​ ​ ∑ 
i=j+1

​ 
k

  ​​ ​v​​(k)​​​​

	​ = ​  ∑ 
i=1

​ 
j

  ​​​v​​(  j)​​​ ​ 
k − j

 ____ 
jk

 ​  − ​ 1 _ 
k
 ​ ​ ∑ 
i=j+1

​ 
k

  ​​ ​v​​(k)​​​​

	​ = ​  k − j
 ____ 

k
 ​ ​(​ 1 _ 

j
 ​ ​ ∑ 
i=1

​ 
j

  ​​ ​v​​(  j)​​​ − ​  1 ____ 
k − j ​  ​ ∑ 

i=j+1
​ 

k

  ​​ ​v​​(k)​​​)​  ≥  0.​

We have shown that for any realization of ​(​v​(1)​​, … , ​v​(N )​​)​, the capped delega-
tion equilibrium in the English auction is more efficient than the equilibrium in 
the second-price auction. Thus, it is also more efficient when we integrate over  
​(​v​(1)​​, … , ​v​(N  )​​)​.

Expected Revenue.—The revenue comparison of the capped delegation equilibrium 
with NITS equilibria of static auctions follows by the same argument as in Theorem 
1. We next show that for sufficiently large ​N​ the revenue comparison holds for any 
equilibrium of any static auction, not necessarily a NITS equilibrium. By Proposition 
1, we can focus on the second-price auction among all static auctions (in the class we 
consider, i.e., standard auctions with continuous payments). We need to show that 
for all sufficiently large ​N​, ​E [min{​v​(2)​​, ​v​​ ⁎​ } + b]  ≥ ​ ∑ k=1​ K  ​​ ​m​k​​ Pr(​v​(2)​​  ∈  [​ω​k−1​​​​, ​ω​k​​))​, or 
equivalently,

	​​  ∑ 
k=1

​ 
K

  ​​ E​[min​{​v​​(2)​​​, ​v​​ ⁎​}​ + b ​|​​ ​v​​(2)​​​  ∈  [​ω​k−1​​​​, ​ω​k​​)]​Pr​(​v​​(2)​​​  ∈  [​ω​k−1​​​​, ​ω​k​​))​

	     > ​  ∑ 
k=1

​ 
K

  ​​ ​m​k​​ Pr​(​v​​(2)​​​  ∈  [​ω​k−1​​​​, ​ω​k​​))​.​

Thus, it is sufficient to show that for all sufficiently large ​N​,

(5)	 ​E​[min​{​v​​(2)​​​, ​v​​ ⁎​}​ + b ​|​​ ​v​​(2)​​​  ∈  [​ω​k−1​​​​, ​ω​k​​)]​  ≥ ​ m​k​​,​

for all ​k  =  1, …, K​ with a strict inequality for at least one ​k​. This proof is some-
what technical and lengthy, so we relegate it to online Appendix A. ∎

PROOF OF PROPOSITION 2:
The first statement follows directly from the facts that ​MRL (​v​​ ⁎​ )  =  b​ and ​MRL​ 

is strictly decreasing. In the range ​b  ∈  (​lim​v→​v –​​​ MRL (v), MRL (​ v _ ​))​, the unique equi-
librium has ​​v​​ ∗​(b)  =  MR ​L​​ −1​(b)  ∈  (​ v _ ​, ​v –​)​. Since ​MRL (v)​ is strictly decreasing, so 
the expected valuation of the winning bidder is strictly decreasing in ​b​.

Consider the second statement. Consider ​b  >  0​ in the neighborhood of ​b  =  0​. 
If ​​v –​  =  ∞​ and ​​lim​v→∞​​ MRL (v)  >  0​, we have ​​v​​ ∗​(b)  =  ∞​, so the expected reve-
nues are ​b + ​∫ ​ v _ ​​ 

∞​​ v dH(v)​, where ​H( ⋅ )​ is the c.d.f. of the second-highest order statistic 
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of ​N​ i.i.d. random variables with c.d.f. ​F( ⋅ )​. Therefore, the expected revenues are 
strictly increasing in ​b​ in this case. If ​​v –​  <  ∞​ or ​​v –​  =  ∞​ and ​​lim​v→∞​​ MRL (v)  =  0​, 
​​v​​ ∗​(b)  ∈  ( ​ v _ ​, ​v –​ )​, so the expected revenues can be written as

(6)	​ b + ​∫ ​ v _ ​
​ ​v​​ 
∗​​(b)​​​ v dH​(v)​ + ​(1 − H​(​v​​ ∗​​(b)​)​)​ ​v​​ ∗​​(b)​.​

The derivative of equation (6) with respect to ​b​ equals ​1 + (1 − H(​v​​ ∗​(b))) ​ d​v​​ ∗​ ___ 
db

 ​​. 
Applying the implicit function theorem to ​MRL (​v​​ ∗​(b))  =  b​ yields

	​ MRL′ ​(​v​​ ∗​​(b)​)​  = ​ 
f ​(​v​​ ∗​​(b)​)​

 __________  
1 − F​(​v​​ ∗​​(b)​)​

 ​  MRL ​(​v​​ ∗​​(b)​)​ − 1.​

Therefore, ​​ d​v​​ ∗​ ___ 
db

 ​  =  −​​(1 − b ​ 
f ​(​v​​ ∗​​(b)​)​

 _______ 
1 − F​(​v​​ ∗​​(b)​)​

 ​)​​​ 
−1

​​, which is negative by Assumption B. 

Hence, the derivative of equation (6) with respect to ​b​ is

(7)	​​ 
H​(​v​​ ∗​​(b)​)​ − b ​ 

f ​(​v​​ ∗​​(b)​)​
 _______ 

1 − F​(​v​​ ∗​​(b)​)​
 ​
  __________________  

1 − b ​ 
f ​(​v​​ ∗​​(b)​)​

 ________ 
1 − F​(​v​​ ∗​​(b)​)​

 ​
 ​ .​

When ​b  →  0​, ​​v​​ ∗​(b)  → ​ v –​​, so the derivative equals 1. Thus, the expected reve-
nues are increasing in ​b​ around ​b  =  0​. When ​b  →  MRL (​ v _ ​)​, ​​v​​ ∗​(b)  → ​  v _ ​​. Hence,  
(7) converges to ​− MRL (​ v _ ​) f (​ v _ ​) / (1 − MRL (​ v _ ​) f (​ v _ ​))  <  0​. Hence, (7) is nega-
tive for a sufficiently high ​b​, so the expected revenues are decreasing in ​b​ around ​
b  =  MRL (​ v _ ​)​.

Finally, consider the third statement. Notice that for any ​v  < ​ v –​​, ​​lim​N→∞​​ H(v)  
=  0​. Indeed, by definition of ​H( ⋅ )​, ​H(v)  =  NF ​(v)​​ N−1​​ − (N − 1)F ​(v)​​ N​​. Therefore,

	​​  lim​ 
N→∞

​ 
 
 ​  H​(v)​  = ​  lim​ 

N→∞
​ 

 
 ​  ​(​(N − 1)​F ​​(v)​​​ N​)​ × ​(​ lim​ 

N→∞
​ 

 
 ​   ​ 

NF ​​(v)​​​ N−1​​
 __________  

​(N − 1)​F ​​(v)​​​ N​
 ​ − 1)​​

	​ = ​ 
​lim​N→∞​​ F ​​(v)​​​ N​

  __________  − ln F​(v)​
 ​  × ​

(
​  1 ____ 
F​(v)​

 ​ − 1
)

​  =  0​

for any ​v  < ​ v –​​, where we used l’Hospital’s rule. Also, notice that for any ​b  >  0​, 
the cutoff type ​​v​​ ∗​(b)​ does not depend on ​N​. Therefore, for any ​b  >  0​, there exists ​

N (b)​ such that ​H(​v​​ ∗​(b)) − ​  f  (​v​​ ∗​(b)) ________ 
1 − F (​v​​ ∗​(b)) ​ b  <  0​ for all ​N  >  N (b)​. Therefore, for any ​

b  >  0​, (7) is negative for any ​N  >  N (b)​. ∎

PROOF OF PROPOSITION 3:
We only overview the key steps of the proof leaving the details for online 

Appendix A. On the first step, we derive the expected payoffs of the bidder and her 
advisor for any incentive-compatible contract. On the second step, we show that any 
incentive-compatible contract ​θ(v)​ must be continuous and consisting of flat regions 
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and regions ​θ(v)  =  v + b​. Next, we show the optimality of capped delegation. 
Finally, we show that the optimal cap is ​​v​​ ⁎​ + b​. All these statements are strict and 
thus the optimal contract is unique in the class of direct revelation contracts, if ​x( ⋅ )​ 
is strictly increasing in the range ​[ ​ v _ ​ + b, ​v –​ ]​. In contrast, if ​x ( ⋅ )​ is only weakly 
increasing, then the proof shows that this contract leads to a weakly higher payoff to 
the bidder than any other contract. ∎
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