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Abstract

We develop a dynamic model of technology adoption featuring strategic complemen-
tarities: the benefits of the technology increase with the number of adopters. We
show that complementarities give rise to gradual adoption, multiple equilibria, multi-
ple steady states, and suboptimal allocations. We study the planner’s problem and
its implementation through adoption subsidies. We apply the theory to SINPE Móvil,
an electronic peer-to-peer payment app developed by the Central Bank of Costa Rica,
currently adopted by 60 percent of adults. Using transaction-level data and several
administrative data we estimate sizable complementarities. In our calibrated model
the optimal subsidy pushes the economy to universal adoption.
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1 Introduction

Understanding the forces behind technology di↵usion is important in several areas of eco-

nomics (see e.g., Parente and Prescott (1994); Comin and Hobijn (2010); Stokey (2020)).

While the literature has studied the role of learning in shaping adoption processes, less is

known about how the process of di↵usion is shaped by strategic complementarities, where

one agent’s benefit from adoption increases with the number of adopters. We develop a

dynamic model of adoption to study the role of such complementarities in the di↵usion of a

new technology. The model allows us to analyze the e�ciency of the equilibria and discuss

optimal policy interventions.

In particular, we study the di↵usion of new means of payments, such as mobile money

and other peer-to-peer (P2P) payment instruments, that have been recently propelled by

digitization (see e.g., Economides and Jeziorski (2017); Aron (2018)) and appear in several

plans for central bank digital currency (see e.g., Auer et al. (2020); Carapella and Flemming

(2020)). A central element of our analysis is the presence of complementarities in adoption,

an inherent feature of payment instruments. The applied literature on technology adoption

has long recognized the presence of complementarities, whereby the probability that a new

technique is adopted is an increasing function of the proportion of firms already using it

(see Griliches (1957); Mansfield (1961)), but progress in this research area is hindered by the

challenges that arise when modeling adoption dynamically –a large state space, non-linear

decisions, multiple equilibria–, and by the lack of detailed data on technology di↵usion. We

present a model of technology adoption featuring heterogeneous agents, complementarities,

and fully fledged dynamics: the agent’s decision to adopt depends on the whole path of future

adoptions. We analyze the conditions for equilibrium existence, multiplicity of equilibrium

paths, multiplicity of stationary equilibria, and the local stability of stationary equilibria. We

also characterize the planner’s problem and its implementation through subsidies. We use the

model to study the di↵usion of SINPE, a digital platform developed and administered by the

Central Bank of Costa Rica.1 The platform was launched in May 2015 and over 60% of the

adult population uses the app in 2021, with about 10% of the country’s GDP transacted via

SINPE. We leverage a battery of granular administrative datasets to characterize adoption

patterns and to document the presence of strong complementarities in adoption and usage.2

The model assumes the flow benefits of using the technology at time t depend on the

number of agents who have adopted the technology, N(t), and on an idiosyncratic persistent

1More precisely, the app is called “SINPE Móvil,” although throughout we will be referring to it only as
“SINPE,” which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish).

2See Björkegren (2018) for a related network-goods analysis using data on mobile phones adoption in
Rwanda.
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random component, x(t). Adoption entails a fixed cost and agents choose when to adopt

taking the aggregate path of adoption as given. The model also includes an intensive margin

for the usage of the technology. We show that when the idiosyncratic benefits are random the

equilibrium features gradual adoption through a simple mechanism: agents wait for others

to adopt.3 This di↵ers from previous contributions, discussed below, where gradualism is

absent or assumed (e.g., by means of staggered adoption opportunities). While gradualism

can also be generated by a learning mechanism, we see strategic complementarities as an

inherent feature of means of payment, as well as important for its implications on optimal

subsidies.4 The optimal adoption rule is given by a time-dependent threshold value, denoted

by x̄(t), such that adoption is optimal if x(t) > x̄(t). We assume that the economy starts with

an initial measure of agents that have adopted the technology. Aggregation of the optimal

adoption rule across agents yields a path for the fraction of agents that adopt the technology

at each time t, N(t). The equilibrium has a classic fixed point structure: the optimal decision

path (x̄) depends on the aggregate path (N), and vice-versa.

We obtain several theoretical results. First, we establish the monotonicity of the optimal

decision rules and of the aggregation. In particular, we show that the optimal adoption rule

for each agent, summarized by the threshold path x̄, is a decreasing functional of the path of

adoption N . The strength of this e↵ect depends on the parameter that controls the strategic

complementarity. Likewise, we show that the adoption path N is a decreasing functional of

the path x̄, for any initial distribution of adopters. An equilibrium path N is a fixed point of

the composition of these two functionals. We use the monotonicity to show that, for a given

initial condition, the set of equilibrium path is a lattice, i.e., the equilibria can be ordered

in terms of their intensity of adoption, with a highest and a lowest equilibrium path. This

means that when there is more than one equilibrium, the highest and lowest paths do not

cross. Additionally, the equilibrium path N increases as a function of the strength of strategic

complementarity, as well as of the initial fraction of adopters. Second, we show that there

is a critical mass of adopters N0 such that, if the initial measure of adopters is below N0,

then there is an equilibrium where no one will adopt in the future. Third, we analyze the

equilibrium model as a dynamic system for the cross sectional distribution of adoption. We

show that besides the stationary distribution with no adoption the model has two additional

interior stationary distributions, which we label low- and high-adoption. Fourth, we conduct

a perturbation analysis with respect to the initial condition to study the stability of the

3We also analyzed a model where x is heterogeneous across agents but fixed through time. A key takeaway
from this model is that, starting from a no adoption initial distribution, it features no dynamics; it is not
a model of gradual di↵usion, but one of “jumps.” Instead, the stochastic model features gradual adoption
given the option value of waiting for a high draw of the idiosyncratic benefit.

4See Cabral (1990); Reinganum (1981) for an early analysis of a dynamic equilibrium with externalities.
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interior stationary distributions. This is a non-trivial problem that involves the linearization

of an infinite dimensional system, which we handle leveraging techniques from the Mean

Field Game literature (e.g., Alvarez et al., 2022b; Auclert et al., 2022; Bilal, 2023). We

find that the high-adoption equilibrium is locally stable, while the low-adoption is unstable,

a feature that leads us to discard it from the analysis. Fifth, all equilibria are socially

ine�cient: the reason is that agents do not internalize the fact that when they adopt they

benefit all agents who already have the technology. We analyze the socially e�cient dynamics

of adoption by solving the planner’s problem, and show how to decentralize the planner’s

solution using a time-varying subsidy paid to those that use the technology. Equivalently, it

can be decentralized with a time varying adoption subsidy.

We then leverage a comprehensive set of data collected since SINPE was created to analyze

the dynamics of adoption and usage, to document the presence of strategic complementari-

ties, and to discipline the parametrization of the model. Data on users—both receivers and

senders—can be linked to several relevant networks, including the employer-employee net-

work, family networks, and spatial “neighborhood” networks. We document five empirical

patterns that guide our modeling choices and inform the quantitative analysis. First, while

firms can potentially use SINPE, over 95% of the transactions are between individuals: this

fact aligns with our model where transactions are peer-to-peer. Second, we find that indi-

viduals belong to networks, as 75% of all transactions occur between coworkers, neighbors,

or relatives. Third, we find that the technology di↵uses gradually within the network. The

last two facts motivate the importance of mechanisms delivering a gradual di↵usion of the

technology within a network. Fourth, there is evidence of selection at entry: users who

adopted when adoption rates were low use the app more intensively, and that early adopters

have higher wages and skills than those who adopt later. These patterns are consistent with

our model where individuals with a high idiosyncratic benefit adopt the technology early on.

Fifth, there is evidence of strategic complementarities: changes in the share of people within

a network who adopt SINPE are associated with changes in the intensity with which users in

that network use the app.5 We use arguably exogenous variations in the network size due to

mass layo↵s to provide evidence in support of a causal relation between the share of agents

who have adopted (N) and usage of the app.6

We put together the theory and the data in a quantitative analysis where we calibrate

the model using key moments from the data. To match the initial gradual di↵usion of the

5This e↵ect persists across a battery of ways to define usage and networks. It also emerges after using a
leave-one-out instrument and following a balanced panel of adopters to address concerns regarding selection.

6Namely, we focus on networks of coworkers and examine the e↵ect of network changes on the intensity
of the app’s usage and its adoption for workers displaced in a mass layo↵. By analyzing the usage intensity
of workers who had already adopted the app prior to being displaced, we are able to isolate the influence of
strategic complementarities rather than the e↵ects of learning.
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technology, observed in each network, we combine our model of strategic complementarities

with a random di↵usion of information model, following the seminal work of Bass (1969). The

calibration requires us to estimate the value of the parameter that governs the strength of

the strategic complementarities. We do so by exploiting exogenous changes in the network of

coworkers after mass the layo↵s described above. We examine how both the extensive and the

intensive margin of adoption respond to that variation. The intensive margin, in particular,

allows us to tease out strategic complementarities from other channels. The calibrated model

shows that the optimal subsidy moves the economy to 100% adoption.

Contribution of the Paper Altogether, we see our model as delivering four main con-

tributions. First, a novel mechanism for the gradual di↵usion of a new technology, based

on the presence of strategic complementarities, whose empirical relevance we also document.

Second, an in-depth analysis of multiple equilibria, multiple stationary equilibria, and the

stability or lack thereof (e.g., Matsuyama (1991)). Third, the tractability of the model al-

lows us to solve the planning problem. The problem is relevant for policy since the presence

of complementarities implies that the equilibrium is not e�cient. Our framework allows

us to compute the optimal subsidy under which the equilibrium converges to the planner’s

solution. The optimal subsidy depends positively on the strength of strategic complementar-

ities, which can be estimated from the data. Fourth, our paper also innovates in the use of

individual-level data on adoption and on usage of SINPE, relying on individual earnings and

demographic characteristics, considering relatives, neighbors, and coworkers. This provides

a unique opportunity to understand the characteristics and relevant networks of each user,

identify the strength of complementarities —at both the extensive and intensive margins—

and the dynamics of adoption over a long time period.7

Related Literature Several recent studies are related to our paper. Benhabib et al. (2021)

model firms that can endogenously innovate and adopt a technology. They analyze the e↵ect

of these choices on productivity and balanced growth, but without conducting an analysis

of the transition between stationary distributions; likewise, Buera et al. (2021) study poli-

cies that can coordinate technology adoption across firms. A closely related contribution

is Crouzet et al. (2023), who develop a model with a unique equilibrium where the rate of

adoption of electronic payment by retailers increases following an aggregate shock. Their

analysis is motivated by 2016 Indian Demonetization, and exploits the variation in the inten-

sity with which firms in Indian districts were exposed to the shock to examine the adoption

of retailers. Unlike our model, which has heterogeneous agents and generates dynamics and

7This is related to other studies, summarized by Suri (2017), that relied on RCTs or shorter periods of
time to analyze the patterns of adoption of electronic methods of payment.
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gradual adoption endogenously (as agents wait for others to adopt before doing so), their

model features homogeneous agents and a sluggish adjustment à la Calvo (1983), generating

gradual adoption through this imposed friction. Moreover, the heterogeneity in our model

allows us to accommodate, not only aggregate shocks when we analyze transition dynamics

in closed-form, but also dynamics after shocks that target particular types of agents; for

instance, we compare the propagation after “giving the app” to people with high vs. low

idiosyncratic benefits, which in turn can be mapped to observables like wages and skills.

2 The Model

We present a simple model for the adoption of a new technology. The economy is populated

by a continuum of agents that di↵er in the potential benefits from adopting the technology.

Let N(t) denote the number of agents that have adopted at time t. Let x 2 [0, U ] be the

idiosyncratic potential benefit of adopting, due to e.g., the agent’s strength of connections.

We assume that the flow benefit of the technology for an agent who adopts is given by

x(✓0 + ✓nN(t)) (1)

at time t, where ✓0, ✓n > 0 are parameters. The idiosyncratic potential x follows a Brownian

motion, independent across agents, with variance per unit of time �, no drift, and reflecting

barriers at x = 0 and x = U , so that dx = �dW where W is a standardized Brownian

motion. We let c > 0 be the fixed cost of adopting the technology. The time discount rate is

r > 0, and we assume that with probability ⌫ per unit of time agents die, so that the agents

discount at rate ⇢ ⌘ r+⌫. Agents that die are replaced by newborns without the technology

and are given a random draw x from the invariant density f on [0, U ] which is uniformly

distributed due to our reflecting barriers assumption, i.e., f(x) = 1/U .

2.1 Optimal Adoption Decisions

In this section, we describe the optimal adoption decision as a function of the whole path of

N , the fraction of agents that adopt the technology. Let a(x, t) be the value function of an

agent who uses the technology and has state x at time t:

a(x, t) = E
h Z 1

t

e
�⇢(s�t) (✓0 + ✓nN(s)) x(s)ds

��� x(t) = x

i
(2)

for all t � 0 and x 2 [0, U ]. Note that the agent takes the path N(s) as given.

For technical motives, we assume that the path of N(s) is constant at some given value
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N̄ for s > T where T is given. All our results hold for finite but arbitrarily large T , and some

of the results hold for T ! 1. Later on, we will focus on the case when N̄ is the adoption

rate corresponding to an invariant distribution for the model with T = 1.

An agent with state x that at time t has not yet adopted has a value function v(x, t) that

solves the following stopping-time problem

v(x, t) = max
t⌧

E
h
e
�⇢(⌧�t) (a (x (⌧) , ⌧)� c)

��� x(t) = x

i
, (3)

where ⌧ denotes the time of the adoption and depends only on the information generated by

the process for x’s and on calendar time.

Discretized Model For future use, we introduce a discretized version of the model. It is

defined by positive integers I, J which determine step sizes for t given by �t =
T

J�1 and for x

given by �x = U

I�1 . Thus t 2 {�t(j� 1) : j = 1, . . . , J} and x(t) 2 {�x(i� 1) : i = 1, . . . , I}.

The reflecting Brownian Motion, Poisson processes, and discounting are changed accordingly,

following the scheme used in finite di↵erence approximations. See Definition 3 in Appendix A

for a detailed definition.

As a preliminary result, we show that the optimal adoption policy is a threshold rule:

Proposition 1. Fix a path N and a time t 2 [0, T ]. If it is optimal to adopt at (x1, t),

then it is also optimal to adopt at (x2, t) where x2 > x1. This holds for the continuous time

as well as for the discretized version.

This proposition means that we can represent the optimal adoption rule at time t as a

threshold rule, x̄(t). The result is intuitive but non-trivial since the process for x is persistent.

We denote aT (x) = a(x, T ) and vT (x) = v(x, T ), that depend only on the constant N̄ .

We can now concentrate on the time interval [0, T ]. In this interval we write the optimal

decision rule as a function of the path N : [0, T ] ! [0, 1], and of the functions aT and vT .

Indeed, the optimal decision depends on the di↵erence between aT and vT which we denote

by DT ⌘ aT � vT , further discussed in Section 2.4. We denote the optimal threshold as

x̄ = X (N ;DT ), so that x̄ : [0, T ] ! [0, U ].

2.2 Aggregation

We now aggregate the individual adoption decisions and compute the implied path for the

fraction of adopters, N . We start by defining the probability that an agent at s with state

x(s) = x survives until time t, while the value of her state remains below x̄ during this period:

6



P (x, s, t; x̄) = Pr

h
x(◆)  x̄(◆), for all ◆ 2 [s, t]

��� x(s) = x

i
e
�⌫(t�s)

. (4)

For an agent that at time s has x  x̄(s), the value of P (x, s, t; x̄) gives the probability that

this agent will survive up to t without adopting.

We let m0(x) be the density of the agents at time t = 0 without the technology. Given

our assumption about x, we require 0  m(x)  1/U for all x 2 [0, U ]. The fraction of agents

that have adopted the technology at time t is thus given by

N(t) = 1�

Z
U

0

P (x, 0, t; x̄)m0(x)dx�

Z
t

0

⌫

Z
U

0

P (x, s, t; x̄)
1

U
dx

�
ds. (5)

The second term on the right hand side is the fraction of agents who did not have the

technology at time 0 and survived until time t without adopting. The third term considers

the cohorts of agents that are born between 0 and t, and for each of these cohorts computes

the fraction that survived without adopting up to t. We note that an equivalent version of

equation (5) holds in a discretized version of the model. We denote N (x̄;m0) as the path of

N as a function of x̄ (the path of the adoption threshold) and of the initial condition m0.

2.3 Equilibrium

The equilibrium is given by the fixed point between the forward looking optimal adoption

decision, encoded in X , and the backward looking aggregation, encoded in N . To emphasize

the forward looking nature of X , note that it depends on the terminal value function DT =

aT � vT . To emphasize the backward looking nature of N , note that it propagates the initial

condition m0. We then have the following definition.

Definition 1. Fix an initial conditionm0 and a terminal value function DT . An equilibrium

{N
⇤
, x̄

⇤
} solves the fixed point:

N
⇤ = F (N⇤;m0, DT ) where F (N ;m0, DT ) ⌘ N (X (N ;DT ) ;m0) (6)

and the corresponding x̄
⇤ = X (N⇤;DT ).

Note that this is a canonical definition of equilibrium, where the operator F combines the

two operators N and X defined before. This definition holds for both the continuous time

and the discretized version of the model.
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2.4 A Recursive Formulation of the Equilibrium

The functions a(x, t) and v(x, t), and the optimal policy x̄(t), have a recursive representation

in terms of Hamilton-Jacobi-Bellman (HJB) partial di↵erential equations. We derive these

equations and their boundaries in Appendix F. The information encoded in the equations

can be summarized by the value function D(x, t) ⌘ a(x, t)� v(x, t), which satisfies:

⇢D(x, t) = min
n
⇢c , x(✓0 + ✓nN(t)) +

�
2

2
Dxx(x, t) +Dt(x, t)

o
(7)

for all x 2 [0, U ], t 2 [0, T ] and terminal condition D(x, T ) ⌘ DT (x) = aT (x)� vT (x).

We interpret the value function D(x, t) as the opportunity cost of waiting to adopt. To

see why, note that a(x, t) � c is the net value of adopting immediately while v(x, t) is the

net optimal value, that may entail adopting in the future, see equation (2) and equation (3).

From here, it follows that

D(x, t) = E
h Z ⌧

t

e
�⇢(s�t) (✓0 + ✓nN(s)) x(s)ds+ e

�⇢(⌧�t)
c

��� x(t) = x

i
. (8)

Optimality requires that D(x, t)  c, which implies the value matching condition at the

barrier. We are looking for a classical solution that satisfies:

⇢D(x, t) = x(✓0 + ✓nN(t)) +
�
2

2
Dxx(x, t) +Dt(x, t) (9)

for all x 2 [0, x̄(t)] and t 2 [0, T ] with boundary conditions:

D(x̄(t), t) = c Value Matching

Dx(x̄(t), t) = 0 Smooth Pasting (10)

Dx(0, t) = 0 Reflecting

If the solution is regular, it also features smooth pasting. Finally, since x = 0 is a reflecting

barrier, the value function has a zero derivative at that point.

Let m(x, t) denote the density of the agents with x that have not adopted at t. The law

of motion of m for all t � 0 is:

mt(x, t) = ⌫

✓
1

U
�m(x, t)

◆
+
�
2

2
mxx(x, t) if 0  x  x̄(t)

m(x, t) = 0 for x 2 [x̄(t), U ] (11)

mx(0, t) = 0

8



and initial condition m0(x) = m(x, 0) for all x 2 (0, U). The p.d.e. is the standard Kol-

mogorov forward equation (KFE). The density of non-adopters is zero to the right of x̄(t),

since this is an exit point. The last boundary condition is obtained from our assumption that

x reflects at x = 0. The fraction of agents that have adopted the technology is thus given by

N(t) = 1�

Z
x̄(t)

0

m(x, t)dx. (12)

We use these equations to provide an equilibrium definition, equivalent to Definition 1, which

emphasizes the dynamic nature of the equilibrium.

Definition 2. An equilibrium is given by the functions {D,m, x̄, N} satisfying the coupled

p.d.e.’s for D and m given in equation (9) and equation (11), and the boundary conditions

given in equation (10), equation (11), and equation (12).

We note that this system of p.d.e.’s is involved for two reasons. First, the equations are

coupled through x̄ and N . Second, the equations feature a time-varying free boundary, which

is known to be non-trivial.

3 Equilibrium of the Stochastic Baseline Model

In this section, we establish equilibrium existence. We first give a normalization of the primal

problem that is useful for empirical applications.

Lemma 1. The problem with parameters {c, ⇢, ⌫, �, ✓0, ✓n, U}, initial conditionm0, f(x) =
1
U

and equilibrium objects {x̄(t), N(t), a(x, t), v(x, t)} for x 2 [0, U ] and t 2 (0, T ) is equivalent

to the following normalized problem
n

c

U✓0
, ⇢, ⌫,

�

U
, 1, ✓n

✓0
, 1
o
for a normalized variable z ⌘

x

U
2

(0, 1) and t 2 (0, T ) with initial condition m0(z) = U m0(x), f(z) = 1 and equilibrium objectsn
x̄(t)
U
, N(t), â (z, t) , v̂ (z, t)

o
where â (z, t) ⌘ ✓0a (zU, t) and v̂ (z, t) ⌘ ✓0v (zU, t).

The lemma shows that the problem features five independent parameters, as U and ✓0

can be normalized without a↵ecting the dynamics of the technology di↵usion.

3.1 Monotonicity and Existence of Equilibrium

The next proposition shows that the function X , giving the path of the optimal threshold x̄

as a function of the path N , is monotone decreasing. Thus, an agent facing a higher path of

adoption will choose to adopt earlier. Moreover, the proposition shows that an agent facing

larger values of ✓0 and/or ✓n, will also adopt earlier.

9



Proposition 2. Fix the terminal value function DT = aT � vT and ✓n � 0. Let x̄ be the

threshold path implied by N(t). Consider two paths such that N 0(t) � N(t) for all t 2 [0, T ],

then x̄
0(t)  x̄(t). Moreover, let ✓ = (✓0, ✓n) with the corresponding optimal threshold path

x̄. If ✓0 � ✓ then x̄
0(t)  x̄(t).

Proposition 2 also holds if we replace the continuous time model by a discrete-time,

discrete-state, approximation to it. For instance, it holds for a finite di↵erence approximation,

which we use for some computations, and which converges to the continuous-time version.

The proof holds as we verify the conditions to use Topkis (1978). Thus, once we reformulate

the problem in terms of stopping times, we can apply the monotone comparative statics logic

developed by Milgrom and Shannon (1994) to characterize the policy function.

Next, we show that for the same initial condition m0(x), if the path x̄(t)  x̄
0(t) then

N
0(t)  N(t) for all t. We need to show that the fraction of non-adopters is decreasing in

x̄(t). This implies that N is monotone decreasing.

Proposition 3. Fix m0 and consider two path of thresholds x̄, x̄0 satisfying x̄
0(t) � x̄(t) for

all t 2 [0, T ]. Let N 0 = N (x̄0;m0) and N = N (x̄;m0). Then N
0(t)  N(t) for all t 2 [0, T ].

Moreover, fix a threshold x̄, and consider two initial measures with m
0
0(x) � m0(x) for all

x 2 [0, U ], then N
0 = N (x̄;m0

0) and N = N (x̄;m0). Then N
0(t)  N(t) for all t 2 [0, T ].

The next theorem uses the monotonicity of X and N , established in Proposition 2 and

Proposition 3, which by equation (6) implies that F is monotone. This allows us to use

Tarski’s theorem. For technical reasons, the theorem applies to a finite-horizon discretized

-version of the model introduced in Section 2.1, where the time domain [0, T ] is divided into

J segments and the state [0, U ] is divided into I segments (see Definition 3 in Appendix A).8

Theorem 1. Consider a finite horizon, discrete time - discrete state version of the model

and ✓n � 0. Fix an initial condition m0 2 RI

+ and a terminal value function DT 2 RI

+.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest

equilibrium, {x̄L
, N

L
}, and a largest one, {x̄H

, N
H
}, and any equilibrium path {x̄, N} satis-

fies NL
 N  N

H and x̄
L
� x̄ � x̄

H .

(ii) Let ✓0 � ✓ and m
0
0  m0. Consider the equilibrium {x̄

0
, N

0
} with the largest N

0 corre-

sponding to {✓
0
,m

0
0} and the equilibrium {x̄, N} with largest N corresponding to {✓,m0}.

Then x̄
0
 x̄ and N

0
� N .

The first statement of the theorem establishes existence of the equilibrium for the finite

horizon - discrete time version of the model. The result holds for an arbitrary small length

of the time period, and for an arbitrary large horizon T . An important consequence of the

8The reason is the completeness of the lattice in which F is defined.
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theorem is that the equilibrium set, for a given initial distribution of non-adopters m0 and

terminal valuation DT = aT � vT , is a lattice. Moreover, we can compute the value of

the extreme equilibria by iterating on N
k+1 = F(Nk;DT ,m0) for k = 0, 1, . . . , starting from

N
0(t) = 1 or from N

0(t) = 0, for all t. The theorem ensures that the limit converges to a fixed

point. If the two sequences converge to the same limit, then the equilibrium is unique. The

second statement of the theorem establishes a useful comparative statics result: considering

a model with a larger ✓ or with a smaller m0 implies that the high-adoption equilibrium is

larger (more agents adopt).

3.2 No Adoption Equilibrium

We briefly analyze the equilibrium in which there is no adoption i.e., x̄(t) = U for all t. For

simplicity we focus on the case where T = 1. This case is particularly easy because agents

decision are in a corner. We find the basin of attraction for such equilibrium, i.e., we find a

threshold for the number of adopters N , so that a no-adoption equilibrium exists if and only

if at t = 0 there are fewer agents with the technology than N .

Proposition 4. A no-adoption equilibrium with x̄(t) = U and N(t) = N(0)e�⌫t for all

t � 0 exists if and only if 1�
R

U

0 m0(x)dx  N , where

⇢c

U
= ✓0 [1 + g(⌘U)] +N

⇢✓n

⇢+ ⌫
[1 + g(⌘0U)] (13)

⌘ =

r
2⇢

�2
, ⌘

0 =

r
2(⇢+ ⌫)

�2
and g(y) ⌘

csch(y)� coth(y)

y
2 (�1

2 , 0) . (14)

Note that N > 0 if and only if ⇢c

U
> ✓0 [1 + g(⌘U)]. Moreover, if N > 0 we have:

(i) N is an increasing function of �, satisfying

⇢+ ⌫

⇢✓n

⇣
⇢c

U
� ✓0

⌘
 N 

⇢+ ⌫

⇢✓n

⇣
2
⇢c

U
� ✓0

⌘
, (15)

where the two limits are reached as � ! 0 and as � ! 1, respectively.

(ii) N is a decreasing function of ✓n.

An immediate corollary of this proposition is that m0(x) = 1/U is an invariant distribution

provided that N � 0, i.e., if we start with no adoption, then we stay with no adoption. The

fact that N > 0 requires ✓0 to be small is intuitive: otherwise, agents with a large x find it

profitable to adopt regardless. Likewise, the e↵ect of � is intuitive as, for a given U , a large

� makes the reversion to the mean faster. Finally, if ✓n is large then it is more profitable to

coordinate on high N and the basin of attraction is smaller.
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4 Stationary Equilibria

In this section, we let T = 1 and analyze the stationary version of the model and its

corresponding stationary distributions. We look for an initial condition m0, such that the

distribution is invariant, and that both x̄(t) = x̄ss and N(t) = Nss are constant through time.

4.1 Stationary Equilibria in the Deterministic Model (� = 0)

We begin by studying the deterministic case where � = 0, so that the agent’s valuation x

does not change. This case is useful to relate to the existing literature studying technology

di↵usion (e.g., Stokey (2020); Buera et al. (2021); Crouzet et al. (2023)), and it unveils the

basic forces at work in the adoption problem.

We specialize equation (7) to the stationary equilibrium of the deterministic model. Since

�
2 = 0 thenDxx�

2 = 0 and, as we focus on the stationary case,Dt = 0. The equation becomes

⇢D̃(x) = min
n
⇢c , x(✓0 + ✓nNss)

o
(16)

for all x 2 [0, U ]. The stationary threshold x̄ss is the value of x solving

⇢c = x̄ss(✓0 + ✓nNss). (17)

Using equation (11), imposing the �2 = 0 and the stationary condition mt = 0 gives one

equation for the invariant distribution of agents without the technology which is given by

m̃(x) = 1
U
for x 2 [0, x̄ss] and m̃(x) = 0 for x 2 [x̄ss, U ] so that we have

Nss = 1�
x̄ss

U
. (18)

Solving this simple system for x̄ss gives a quadratic equation that can have zero, one or two

interior stationary distributions. We have the following result:

Proposition 5. There are two cases. Case (i): If ⇢c < ✓0U , then there is a unique

stationary distributions with x̄ss with 0 < x̄ss < U . Case (ii): If ✓0U < ⇢c, then there is

always a no activity stationary equilibrium with x̄ss = U . In this case, there is threshold

value for ✓⇤
n
such that, if ✓n < ✓

⇤
n
, there is no other stationary equilibrium, whereas if ✓n > ✓

⇤
n

there are two additional interior stationary equilibrium.

A key insight of the proposition is that multiple interior stationary equilibria occur when

the complementarities are strong relative to the intrinsic value of the technology, i.e., when

✓0 is small and ✓n is large. We concentrate on the stationary equilibria of the deterministic
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model for two reasons. First, for small � they provide a good benchmark for the stationary

equilibria of the stochastic model analyzed next. Second, we omit the treatment of the

dynamics of this model because for a non-pathological set of initial conditions the model

converges immediately to the corresponding stationary distribution.9

4.2 Stationary Equilibria in the Stochastic Model (� > 0)

Next, we analyze the stationary equilibria of the stochastic version of the model. We will

show that convergence to these equilibrium must be gradual, i.e., unlike the deterministic

case, it is not possible to “jump” to the equilibrium given a generic initial condition.

A stationary equilibrium is given by two constant values of Nss and x̄ss that solve the

time-invariant version of the partial di↵erential equations presented in Section 2.4. Given

Nss, we can derive the value function D(x, t) = D̃(x) and x̄(t) = x̄ss. Given x̄ss, we can

derive the invariant distribution m(x, t) = m̃(x), from which we derive Nss. Given Nss, we

find D̃ and x̄ss that solve:

⇢D̃(x) = x(✓0 + ✓nNss) +
�
2

2
D̃xx(x) if x 2 [0, x̄ss] Value of Adoption

D̃x(0) = 0 Reflecting

D̃(x̄ss) = c Value Matching

D̃x(x̄ss) = 0 Smooth Pasting

Given x̄ss solve for m̃

0 = �⌫m̃(x) + ⌫
1

U
+
�
2

2
m̃xx(x) KFE if x  x̄ss

m̃(x̄ss) = 0 and m̃x(0) = 0 Exit and Reflecting

and given m̃(x) and x̄ss, we define the fixed point

Nss = 1�

Z
x̄ss

0

m̃(s)dx.

We begin by solving D̃(x), and x̄ss given a value for Nss. The details of the solution can

be found in Appendix I.1. Using the solutions for D̃ we can solve for Xss : [0, 1] ! [0, U ], a

function that gives the optimal stationary threshold as a function of a given Nss. The mono-

9Indeed, in Appendix J we show that if the initial condition is such that at time zero no agent with low
valuation has adopted the technology (while some high valuation agents may have done so), the equilibrium
of the deterministic problem has no dynamics. This implies that adoption occurs instantaneously and that
the fraction of adopters is a constant N(t) = Nss.
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tonicity properties of the function D̃ on the parameters Nss, ✓n, c and ✓0 give the following

characterization of the threshold Xss.

Lemma 2. The function Xss is decreasing inNss, strictly so at the points where 0 < x̄ss < U .

Fixing a value of Nss, the function Xss is strictly increasing in c, strictly so at the points

where 0 < x̄ss < U . Fixing a value of Nss, the function Xss is strictly decreasing in ✓0

and ✓n at the points where 0 < x̄ss < U . Moreover, we have the following expansion:

Xss(Nss) =
⇢c

✓0+✓nNss

+ �p
2⇢

+ o(�).

Since the function Xss(Nss) is decreasing in Nss, it has an inverse, X�1
ss

, given by:

X
�1
ss

(x̄ss) =
1

✓n

2

4 ⇢c

�
x̄ss + Ā1e

⌘x̄ss + Ā2e
�⌘x̄ss

�
�

(1+⌘(Ā1e
⌘x̄ss�Ā2e

�⌘x̄ss))(e⌘x̄ss+e�⌘x̄ss )

⌘(e⌘x̄�e�⌘x̄ss )

� ✓0

3

5 where

Ā1 ⌘
1

⌘

�
1� e

�⌘U�

(e�⌘U � e⌘U)
, Ā2 ⌘

1

⌘

�
1� e

⌘U
�

(e�⌘U � e⌘U)
and ⌘ ⌘

p
2⇢/�2. (19)

Note that, from the expansion given in Lemma 2, fixing x̄ss, then X
�1
ss

(x̄ss) is increasing in

� in a neighborhood of � = 0, provided that ✓n > 0, we have

X
�1
ss

(x̄ss) ⇡
1

✓n

✓
c⇢

x̄ss � �/
p
2⇢

� ✓0

◆
.

Next we can solve the Kolmogorov forward equations for m̃(x), given a barrier x̄ss subject

to an exit point and to the conditions coming from the reflecting barriers. We denote the

corresponding value of the fraction that have adopted asNss(x̄ss). The details of the solutions

can be found in Appendix I.2. Solving this equation we obtain

Nss(x̄ss) = 1�
x̄ss

U
+

tanh (�x̄ss)

U�
where � ⌘

p
2⌫/�2. (20)

As it is intuitive, the value of Nss(x̄ss) is decreasing in the level of the barrier x̄. The next

lemma, obtained by analyzing equation (20) gives a characterization of Nss.

Lemma 3. Fix � > 0, then Nss(x̄) is strictly decreasing in x̄ss. Fixing x̄ > 0, then Nss is

strictly increasing in �, and hence strictly decreasing in �. Moreover, we have the expansion:

Nss(x̄) = 1� x̄ss

U
+ �

U
p
2⌫

+ o(�).

The system given by equation (19) and equation (20) determines x̄ss and Nss. In partic-

ular, a stationary equilibrum is described by the pair {x̄ss, Nss}, which solves

Nss ⌘ Nss(x̄ss) = X
�1
ss

(x̄ss).
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Next, we summarize the behavior of the stationary equilibrium for small values of �. We

label the stationary equilibrium with superscripts {H,L} to hint at the associated High or

Low level of adoption, so that x̄H
< x̄

L.

Proposition 6. Assume that ⌫ > 0 and that the parameters ✓0, ✓n, c and ⇢ are such

that there are two interior stationary equilibria in the deterministic case of � = 0, and label

them as x̄H

ss
< x̄

L

ss
. Then, (i) there exists a �̄ > 0 such that for all � 2 (0, �̄) there are two

interior stationary equilibria with x̄
H

ss
< x̄

L

ss
. (ii) The thresholds for each stationary equilibria

is continuous with respect to � at � = 0. (iii) The sign of the comparative static di↵ers

across stationary equilibria, with

@x̄
H

ss

@c
> 0 >

@x̄
L

ss

@c
and

@x̄
L

ss

@✓0
> 0 >

@x̄
H

ss

@✓0
.

The proposition shows that the high adoption stationary equilibria behaves in an intuitive

way, with more adoption (a lower x̄
H

ss
) associated to a smaller adoption cost (c), or to a

larger intrinsic value of the technology (✓0). The comparative statics for the low adoption

stationary state are just the opposite.

Figure 1: Stochastic Stationary Equilibria: Density of non-adopters: m(x)

(a) Deterministic and Stochastic Stat. Eqbm (b) High and Low Adoption Stat. Eqbm

Panel (a) of Figure 1 compares the density of stationary distribution of non-adopters

for the deterministic case (� = 0) with the one for the stochastic case (� > 0). The key

di↵erence is that in the invariant equilibrium of the stochastic case there are agents with low

benefits, namely with x(t) < x̄ss, who have the technology. These are agents who adopted the

technology in the past (for some t
0
< t when x(t0) > x̄(t0), and whose stochastic x decreased

over time. As a result, m(x) < 1/U when � > 0, and the density of non-adopters below x̄ss

is not uniform. Given that the density takes time to adjust, the stochastic model features
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dynamics in the adoption of a new technology; while the distribution of the deterministic

model can be generated instantaneously (with the agents above x̄ immediately adopting), the

distribution of the stochastic model takes time to change from the initial uniform distribution

to the invariant distribution, as agents adopt when x(t) > x̄(t) and it takes times for these x0
s

to crawl back below the stationary threshold. Panel (b) shows the densities of the invariant

distribution of the high and the low adoption stationary equilibria in the stochastic model

(� > 0). Naturally, x̄H

ss
< x̄

L

ss
, so that both equilibria have adopters below the stationary

thresholds, although fewer of them in the low adoption stationary equilibrium.

5 Stability of Stationary Equilibria

In this section, we analyze the local stability of the stationary equilibria. We explore the

question using a perturbation of the distribution of adopters in each of the two interior

invariant distributions using techniques from the Mean Field Game literature developed

in Alvarez, Lippi and Souganidis (2022b). For the purpose of this section, we model the

equilibrium as in Definition 2. This dynamical system is infinite-dimensional because the

state at every time t is given by the entire density m(x, t).

We consider the stationary equilibrium given by m̃ and ask if, starting from a condition

m0 close to m̃, the economy converges back to m̃. As the system is infinite-dimensional, many

deviations are possible. Any initial condition can be described by m0(x) = m̃(x) + ✏!(x),

for some ! satisfying
R

U

0 !(x)dx = 0. The sense in which the analysis is local is that we

derive the system with respect to ✏ and evaluate it at ✏ = 0. The alert reader will notice that

the local dynamics of a system in Rq are encoded in a q ⇥ q matrix. The analogous infinite

dimensional object is a linear operator that will be analytically presented below.

We begin with the approximation of x̄(t) = X (N)(t). We take the directional derivative

(Gateaux) with respect to an arbitrary perturbation n of a constant path N . In particular,

we consider paths defined by N(t) = Nss+✏n(t) around the stationary value Nss. We denote

this Gateaux derivative by ȳ.

Proposition 7. Fix a stationary equilibrium with interior x̄ss, and its corresponding

Nss. Let DT be equal to the stationary value function D̃ corresponding to that stationary

equilibrium. Let n : [0, T ] ! R be an arbitrary perturbation. Then

ȳ(t) ⌘ lim
✏#0

X (Nss + ✏n; D̃)(t)� X (Nss; D̃)(t)

✏

=
✓n

D̃xx(x̄ss)

Z
T

t

G(⌧ � t)n(⌧)d⌧, (21)
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where

G(s) ⌘
1X

j=0

cje
� js � 0 ,  j ⌘ ⇢+

�
2

2

✓
⇡(12 + j)

x̄ss

◆2

and cj ⌘ 2

✓
1�

cos(⇡j)

⇡(j + 1
2)

◆
,

where D̃xx(x̄ss) < 0 is the second derivative of the stationary value function:

D̃xx(x̄ss) =
⇢c� x̄ss [✓0 + ✓nNss]

�2/2
, Nss = 1�

x̄ss

U
+

tanh (�x̄ss)

�U
and � =

r
2⌫

�2
.

Thus, we can write x̄(t) = x̄ss + ✏ȳ(t) + o(✏). Note that G is positive and Dxx is negative,

so the e↵ect of the future path on the current value is negative, which is consistent with the

property that X is decreasing. Also note that it is proportional to ✓n, so if ✓n = 0, then the

threshold will be constant. Thus, the approximation of x̄(t) depends on the perturbation

of the path of N from t to T , given by n(s) for s = [t, T ]. The proof of the proposition

is obtained by jointly di↵erentiating with respect to ✏ the system defined by D and x̄ in

equation (9) and equation (10). This yields a new p.d.e., and new boundary conditions. The

expression for ȳ is obtained once we solve this new p.d.e., see the proof in Appendix C.1.

Now we turn to the perturbation for the fraction of the adopters as a function of the

thresholds and of a perturbation of the initial condition. We approximate N(t) = N (x̄,m0)(t)

by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation ȳ

of a constant path x̄ and a perturbation ! on the stationary density m̃. In particular,

we consider paths defined by x̄(t) = x̄ss + ✏ ȳ(t) around the stationary threshold xss, and

m0(x) = m̃(x) + ✏!(x). We will denote this Gateaux derivative by n.

Proposition 8. Fix the interior threshold x̄ss of a stationary equilibrium and its

corresponding Nss, and let m̃ be the corresponding invariant distribution of non-adopters.

Let ! : [0, x̄ss] ! R be an arbitrary perturbation to the distribution, and let ȳ : [0, T ] ! R
be an arbitrary perturbation of the threshold. Then

n(t) ⌘ lim
✏#0

N (x̄ss + ✏ȳ; m̃+ ✏w)(t)�N (x̄ss; m̃)(t)

✏

= n0(!)(t) +
m̃x(x̄ss)�2

x̄ss

Z
t

0

J(t� ⌧)ȳ(⌧)d⌧ (22)

where
J(s) =

1X

j=0

e
�µjs with µj = ⌫ +

1

2
�
2

✓
⇡(12 + j)

x̄ss

◆2

(23)

n0(!)(t) ⌘ �

1X

j=0

x̄ss

⇡(12 + j)

h'j,!i

h'j,'ji
e
�µjt, (24)
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'j(x) ⌘ sin

✓✓
1

2
+ j

◆
⇡

✓
1�

x

x̄ss

◆◆
for x 2 [0, x̄ss] (25)

h'j,!i

h'j,'ji
=

2

x̄ss

Z
x̄ss

0

'j(x)!(x)dx and m̃x(x̄ss) = �
�

U
tanh(�x̄ss).

Thus, we can write N(t) = Nss + ✏n(t) + o(✏). This formula encodes the e↵ect of two

perturbations: ! and ȳ. The former is the perturbation on the initial condition m0, whose

e↵ect is in the term n0(!)(t). We note that n0(!)(t) is the e↵ect at time t on the path N(t)

triggered by a perturbation of the initial condition keeping the threshold rule x̄ fixed. The

function n0(!) can be further reinterpreted by considering the limiting case of a perturbation

! given by a distribution concentrated at x = x̂  x̄ss, i.e., a Dirac’s delta function as

!(x) = �x̂(x). In this case,

n0(�x̂)(t) = �

1X

j=0

2
sin

⇣�
1
2 + j

�
⇡

⇣
1� x̂

x̄ss

⌘⌘

(12 + j)⇡
e
�µjt.

The e↵ect of the perturbation, ȳ, on the path of the threshold, x̄(s), is captured by the second

term in equation (22). This term gives the e↵ect at time t on the path N(t) of a perturbation

of the threshold rule x̄, keeping the initial condition m̃ fixed. Also, consistent with our general

result for N , the e↵ect of the threshold is negative, as J > 0 and m̃x(x̄ss) < 0.

For future reference it is useful to understand the behavior of n0(t) as function of time.

In particular, the rate at which the perturbation ! to the initial distribution converges back

to the stationary distribution, while keeping x̄(t) = x̄ss. This rate is given by the value of

µ0 = ⌫ + �
2

8

⇣
⇡

x̄ss

⌘2

, i.e., the dominant eigenvalue. The proof’s strategy is in Appendix C.2

and resembles the one for the previous proposition.

The next step is to use the last two propositions to derive one equation for the linearized

equilibrium as a function of the perturbed initial distribution m0(x) = m̃(x) + ✏!(x). We

combine equation (21) and equation (22) to arrive to a single linear equation that n(t) must

solve as a function of !.

Theorem 2. Fix an interior threshold x̄ss for an stationary state, with its corresponding

Nss, and let m̃ be the corresponding invariant distribution of non-adopters. Let m0(x) =

m̃(x) + ✏!(x). Let DT be equal to the value function D̃ corresponding to that stationary

equilibrium. The linearized equilibrium must solve

n(t) = n0(!)(t) +⇥

Z
T

0

K(t, s)n(s)ds, (26)
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where n0(!)(t) is given in Proposition 8 and ⇥ ⌘
m̃x(x̄ss)�2

✓n

x̄ssD̃xx(x̄ss)
> 0. The kernel K is given by

K(t, s) =
1X

i=0

1X

j=0

cje
�µit� js


e
(µi+ j)min{t,s}

� 1

µi +  j

�
> 0. (27)

Moreover, Lip
K

⌘ sup
t

R
|K(t, s)|ds 

⇣
x̄
2
ss

�2

⌘2

. Furthermore, if ⇥Lip
K

< 1 there exists a

unique bounded solution to equation (26) which is the limit of

n =
⇥
I +⇥K +⇥2

K
2 + . . .

⇤
n0(!) where K(g)(t) ⌘

Z
T

0

K(t, s)g(s)ds, (28)

and where K
j+1(g)(t) ⌘

R
T

0 K(t, s)Kj(g)(s) ds for any bounded g : [0, T ] ! R.

A few remarks are in order. First, note that K depends on ✓n as µj, j are a function of

x̄ss, which is itself a function of ✓n. The coe�cient ⇥ depends on ✓n directly and indirectly

via x̄ss. Hence, the equation (26) and its solution depend on which stationary equilibrium we

focus on. Second, if we discretize time so that t 2 {�t(j � 1) : j = 1, . . . , J} for �t =
T

J�1 ,

as done in Section 2.1, then the operator K is a J ⇥ J matrix with elements K(ti, tj), and

n0, n are J ⇥ 1 vectors, so that equation (26) becomes the linear equation n = n0 + ⇥K n.

Third, the fact that ⇥K > 0 implies that the terms ⇥K + ⇥2
K

2 + . . . in equation (28) give

the amplification over and above n0, due to the time-varying path of the barrier x̄.

Figure 2: Perturbation of Stationary Equilbria

(a) High Adoption Stat. Eqbm. (b) Low Adoption Stat. Eqbm.

Figure 2 illustrates the stability of the high and low adoption equilibria, respectively, in

Panels (a) and (b). Each panel considers two shocks that displace a small mass of agents away

from the invariant distribution of non-adopters and endows them with the app. The shocks

di↵er in the direction in which the mass is displaced. The blue line depicts the case where
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the app is given to agents with low benefit, namely with x ⇡ 0, while the red line considers

a perturbation where the app is assigned to agents with a high benefit, namely with x ⇡ x̄ss.

Two remarks are due. First, the high adoption equilibrium is locally stable, as displayed

in Panel (a): for all shocks considered, the system returns to its invariant distribution. We

also note that the half life of the shock is much shorter when the perturbation assigns the

app to agents with a high benefit (x ⇡ x̄ss), as these agents were going to get the app

soon anyways. Second, it is apparent that the low adoption equilibrium is unstable in Panel

(b): the dynamics of the system following a perturbation are explosive, showing that the

sequence in equation (28) does not converge; i.e., that the system does not return to the

invariant distribution after being shocked. To see the explosive nature of the path nearby

the low activity stationary equilibrium, note the di↵erence in the scale of the two panels.

6 The Planning Problem

This section sets up the planning problem in the stochastic version of the model (� > 0).

We first state the planning problem, provide a characterization of its solution, and show

how it can be decentralized as an equilibrium with a subsidy. Section D.1 characterizes the

stationary solution of this problem.10

The planner solves a non-trivial dynamic problem since the state of the economy is an

entire distribution. At time zero, the planner solves:

max
{x̄(t)}

⇢Z 1

0

e
�rt

Z
U

0

(1/U �m(x, t))| {z }
Density of adopters

x (✓0 + ✓nN(t))| {z }
Flow benefit

dx dt

�

Z 1

0

e
�rt

c (Nt(t) + ⌫N(t)) dt
| {z }

Flow of adoption cost: gross new adoptions

�

subject to

N(t) = 1�

Z
x̄(t)

0

m(z, t)dz for all t

mt(x, t) = �⌫ (m(x, t)� 1/U) +
�
2

2
mxx(x, t) for x 2 (0, x̄(t)) and all t � 0 KFE

m(x, t) = 0 for x 2 [x̄(t), U ] and all t � 0 Adoption

mx(0, t) = 0 for all t � 0 Reflecting

m(x, 0) = m0(x) for all x Initial condition

10Appendix D.5 uses a linearized version of the problem to analyze dynamics around its invariant distri-
bution.
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The objective function of the planner integrates the lifetime utility of agents using as a

weight the discount factor e�rt for the cohort born at t. The first term contains the utility

flows of all those using the technology. The second term subtracts the cost of adoption across

time, where Nt(t) + ⌫N(t) is the gross cost of adoption at time t. The planner decides at

each time a threshold x̄(t) which determines adoption, and takes as given the initial condition

m0(x). The planner takes as given the law of motion of the density m that is only a↵ected

through the choice of x̄. The first constraint defines N(t). The second constraint is the KFE

of the density of non-adopters. As before, the density of non-adopters is zero to the right of

x̄(t), there is an exit point at x̄(t), and there is a boundary condition from reflection at zero.

To characterize the solution, we write the Lagrangian for this problem. We denote the

Lagrange multiplier of the KFE equation by e
�rt
�(x, t) and replace N(t) and Nt(t) by the

corresponding integrals. To derive the p.d.e’s for non-adopters, we first adapt the planning

problem to a discrete-time discrete-state problem using a finite-di↵erence approximation. In

this set up, we allow for a more general policy, i.e., not necessarily a threshold rule. We

obtain the first order conditions for a problem in finite dimensions and take limits to find the

corresponding p.d.e’s. We provide details of this derivation in Appendix D.3. The p.d.e’s

corresponding to the planning problem are summarized in the following proposition.

Proposition 9. A planner problem is given by {x̄(t),�(x, t),m(x, t)} such that adoption

occurs for x � x̄(t), and the Lagrange multiplier �, and the density of non-adopters m solve

the p.d.e. for non-adopters:

⇢�(x, t) = x
�
✓0 + ✓n[1�

Z
x̄(t)

0

m(z, t)dz]
�
+ ✓n

�
U

2 �

Z
x̄(t)

0

m(z, t)z dz
�

(29)

+ �
2

2 �xx(x, t) + �t(x, t) for x  x̄(t) and t � 0

�(x, t) = c for x � x̄(t) and t � 0

�x(x̄(t), t) = 0 for t � 0 (30)

�x(0, t) = 0 for t � 0

and mt(x, t) = ⌫
�
1/U �m(x, t)

�
+ �

2

2 mxx(x, t) for x < x̄(t) and t � 0

m(x, t) = 0 for x � x̄(t) and t � 0

mx(0, t) = 0 for t � 0

m(x, 0) = m0(x) for all x

This proposition has two important consequences. First, it allows us to compute the solu-

tion of the planning problem following similar steps as for the computation of the equilibrium
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described in Section 3.1. Second, it indicates how to decentralize the optimal allocation as

an equilibrium. Define Z(t) ⌘
U

2 �
R

x̄(t)

0 m(x, t)x dx � 0 and note that this non-negative

magnitude is the di↵erence between the average x in the population, U/2, and the average x

among those who have not adopted the technology (the integral term). Comparing the p.d.e.

for the Lagrange multiplier � in equation (29) with the p.d.e. for D which characterizes the

equilibrium in equation (9), we see that these equations only di↵er in the term ✓nZ(t) in the

flow. Thus, if agents that adopt the technology were given a flow subsidy ✓nZ(t) every period

after they have adopted (independent of the app’s usage), then the planner allocation would

be an equilibrium.11 Note that ✓nZ(t) contains the inframarginal valuation of the technology

for those that use it. So, this subsidy corrects the externality. We summarize this discussion

in the following proposition.

Proposition 10. Fix an initial condition m0 and the solution of the planner’s problem

{x̄,�,m}. The planner’s allocation coincides with an equilibrium for the same initial condi-

tions with a time varying subsidy paid to adopters. The flow subsidy paid at time t to those

that have adopted at t or before is given by ✓nZ(t) where

Z(t) ⌘ U

2 �

Z
x̄(t)

0

m(x, t) x dx for all t � 0 (31)

The subsidy ✓nZ is independent of x.

For future reference, we define Z ⌘ Z(x̄;m0) as the solution of the path for Z defined in

equation (31). In particular, given x̄ and m0, using the KFE one solves for the path of m,

and computing the integral in equation (31) gives Z. Consider the path x̄ that solves the

p.d.e. ⇢�(x, t) = x (✓0 + ✓nN(t)) + ✓nZ(t) +
�
2

2 �xx(x, t) + �t(x, t) with the three boundaries

given in equation (30) given the paths of N and Z and terminal condition �(x, T ) = �T (x).

For future reference, we define x̄ = X
P (N,Z;�T ) to denote the functional, which is defined

as the X in Section 2.1 and where the superscript P denotes the planning problem. Note

that, using the definitions for X
P
,Z and N the planner’s problem must satisfy the fixed

point x̄
⇤ = H(x̄⇤

,�T ,m0) where H(x̄;�T ,m0) ⌘ X
P (N (x̄;m0),Z(x̄;m0);�T ). We can use

the same type of analysis, based on monotonicity, to characterize the solution to this fixed

point problem, and to compute it.

Figure 3 illustrates an application of the optimal subsidy to reach a high adoption equilib-

rium. In Panel (a) of the figure, we plot the time path of the share of adopters, N(t), for the

stationary high-adoption equilibrium and for the planning problem. Since the initial distribu-

11Clearly, this is equivalent to a once and for all payment to agents adopting at t equal to
✓n

R1
t e�⇢(s�t)Z(s)ds.
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tion of non-adopters corresponds to the stationary equilibrium, the path of N(t) is constant.

Instead, the path for N(t) in the planning problem jumps on impact (at the time the subsidy

appears) and converges gradually to the stationary distribution of the planning problem (see

Appendix D.1 for a characterization of this stationary distribution). Panel (b) shows the time

path of the optimal subsidy, Z(t), which starts at the value Z(0) = U

2 �
R

x̄H

0 m̃(x)xdx and

increases over time. In this example, although the high-adoption equilibrium has an interior

solution, the planning problem mandates close to full adoption in the stationary distribution.

Figure 3: Planning Problem: m0(x) = m̃(x)

(a) N(t) (b) Z(t)

7 Application: SINPE, A Digital Payments Platform

In May 2015, the Central Bank of Costa Rica (BCCR) launched SINPE Móvil (hereafter,

SINPE), a digital platform that enables users to make money transfers using their mobile

phones.12 To utilize SINPE, users must have a bank account at a financial institution and

link it to their mobile number. According to the BCCR, the primary objective of SINPE was

to become a mass-market payment mechanism that could reduce the demand for cash as a

method of payment. As such, SINPE was originally designed for relatively small transfers,

which are not subject to any fee as long as they do not exceed a daily sum. The maximum

daily amount transferred without a fee varies by bank; for most users, it is approximately

$310, although some banks have lower limits of $233 and $155.13 The average transaction

size in SINPE is about $50, and has slowly decreased over time, as shown in Figure G2.

12SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos Electrónicos) in Spanish.

13Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones.
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7.1 Data

SINPE Transactions Our data on SINPE usage is comprehensive: For each user in the

country, we have o�cial records on the exact date when she adopted the technology, along

with records on each transaction made. In particular, for each transaction, the data records

the amount transacted along with the individual identifier of the sender and the receiver of

the money. Records also include the sender’s and the receiver’s bank. Importantly, this

information is available, not only for individuals, but also for firms.

Family Networks and Demographics Data on nationwide family networks is available

from Costa Rica’s National Registry. In particular, these data records, for each citizen, if he

or she is married, to whom, and who their children are. Thus, it is possible to reconstruct

each person’s family tree. We find that the average number of first-degree, second-degree, and

third-degree relatives is 6.4 (median 5), 10.9 (median 9), and 22.0 (median 18), respectively.

The data includes individual identifiers that can be linked to SINPE. The data is dynamic,

meaning that we can see how family networks are changing over time between 2015 and 2021.

The same data source provides details on individual demographics.

Networks of Coworkers, Income, and Occupation Matched employer-employee data

is obtained from the Registry of Economic Variables of the Central Bank of Costa Rica, which

tracks the universe of formal employment and labor earnings. The data include monthly de-

tails on each employee, including her occupation, earnings, and employment history spanning

SINPE’s lifetime (2015-2021).14 The average number of coworkers in our sample is 4.7 (me-

dian 1). Using this data, we can identify which people are working at the same firm in a

given month to construct networks of coworkers which can be matched to SINPE records.

Networks of coworkers vary at a monthly frequency as people change employers.

Networks of Neighbors and Residential Location We construct networks of neighbors

for all adult citizens in the country leveraging data from the National Registry and the

Supreme Court of Elections. The data consist of o�cial records on the residence of each

citizen, along with his or her identifier. While the records include each person’s district of

residence, and there are 488 districts across the country, they also include the voting center

which is closest to the citizen’s residence, with 2,059 centers in total. Thus, we leverage the

latter to get a more precise notion of a person’s neighborhood. Approximately, 1,670 adults

are assigned to each voting center, on average (median 613).
14It is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),

which is significantly below the Latin American average of 53.1% (ILO, 2002).
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Firm-Level Data We leverage data on corporate income tax returns from the Ministry of

Finance, which cover the universe of formal firms in the country and contain typical balance

sheet variables, including sales, input costs, and net assets. The data covers 2005 through

2021 and includes details on each firm’s sector and location.

7.2 From Model to Data: Empirical Facts

As described in the previous section, we obtained (i) individual-level data on networks of

neighbors, coworkers, and relatives from o�cial sources; and (ii) transaction-level data in-

cluding information on the senders and receivers who took part in each transaction since the

app’s inception. Moreover, crucially, we can link identifiers in (i) and (ii). We leverage this

substantial data e↵ort to construct measures of networks (N) for each individual and to ob-

tain individual-level measures of adoption at the extensive and intensive margins. This will

enable us to document six facts consistent with the model, along with evidence of selection

(x) and strategic complementarities (✓n).

Fact 1: Most transactions are peer-to-peer. In theory, firms are allowed to adopt SINPE

and conduct transactions within the app. In practice, however, transactions involving firms

represent a small fraction of all payments. In fact, as shown in Figure G3, individual-to-

individual transactions account for over 95% of all transactions, regardless of the time period

considered.15 This motivates us to study adoption through the lens of our model while

focusing on peer-to-peer transactions where small agents trade with each other, rather than

one with a few non-atomistic players (large firms).

Fact 2: Individuals “belong” to networks. We can identify di↵erent types of networks for each

user. In particular, we could identify which transactions take place within an individual’s

network of neighbors, coworkers, or relatives. To do so, we construct the network of neighbors

of each user—which would correspond with the people assigned to her voting center—and

calculate the number and total value of SINPE transactions involving another user who

also resides in the same neighborhood. Similarly, we construct the network of coworkers for

each employed user based on employer-employee data. Finally, we construct family networks

taking into account relatives up to a third-degree of kinship.

In Table 1, we document that most transactions involve a counterpart who belongs to at

least one of these networks:16 43% of all transactions have a neighbor as counterpart, 44% of

all transactions are among coworkers, and 28% of transactions are conducted with relatives.

15This finding holds if we instead consider unweighted number of transactions, as shown in Figure G4.
16Table 1 calculates shares using 2018 data; the midpoint of our sample period. Results remain similar if,

instead, we consider the average shares of transactions for the entire sample in Table G1.
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We can also consider the union of all three networks described above, and document that

about three-quarters of all transactions take place with someone within one of the three types

of networks. Moreover, we also document that users have relatively few peers with whom

they transact. Before 2019, each user had less than two distinct connections per month,

both as a sender and as a receiver. By the end of 2021, this number had increased; each

user had just over six distinct monthly connections and the average total number of distinct

connections per user was 44, i.e., people do not necessarily transact with the same six peers

each month.17 The average transaction size is $46 (median $48), and has decreased slowly

over time, as shown in Figure G2.

Table 1: Share of Transactions Within Network

(1) (2) (3) (4)

Neighborhood Firm Family Union of all three

0.72
Neighborhood 0.43
Firm 0.62 0.44
Family 0.55 0.66 0.28

Notes: We construct average shares using data on transactions per user from 2018, i.e., the middle of our sample period. Shares
using the entire sample—from May 2015, when the technology was introduced, to December 2021—are shown in Table G1.

Fact 3: The adoption of the technology within each network was gradual. We classify net-

works (i.e., neighborhoods, families, firms) according to their level of adoption. In particular,

we calculate the share of individuals within a network who had adopted SINPE by Decem-

ber 2021, the last period available in our data set. We then compute percentiles of this

share across networks to generate a distribution. Figure 4 displays the di↵usion path of the

technology for the median neighborhood and the median family network in Panels (a) and

Panel (b), respectively. The panels show that the technology was adopted gradually within

networks.18 While Figure 4 is computed based on networks of neighbors and relatives, the

same patterns emerge when analyzing networks of coworkers, as shown in Figure G7.

Fact 4: There is evidence of selection at entry. Through the lens of our model, early

adopters—who started using the technology even when the network was small—should be

more intense users (with higher x). Consistent with this notion, we document that early

adopters have distinct characteristics as compared with users who adopted later. For this

exercise, and throughout the entire paper, we classify an individual as an adopter starting

from the time when she first used the app. First, as shown in Figure 5, we find that early

adopters have a higher average wage as compared with individuals who adopted later (Panel

17Average monthly patterns are documented in Figure G5.
18Di↵usion is displayed after controlling for local COVID-19 cases over time.
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Figure 4: Gradual Di↵usion Within Networks
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(a) Networks of Neighbors (b) Family Networks

Notes: The figures show the patterns of di↵usion of the technology within networks across di↵erent percentiles of the distribution

of networks. Percentiles are calculated in the last period of the sample using the share of individuals that had adopted the

technology. Panel (a) defines networks as neighborhoods, while Panel (b) considers family networks.

(a)), and are on average more high-skill (Panel (b)).19 Early adopters are also younger, on

average, than later adopters, as shown in Figure G6.

Second, we can more closely bring the model to the data by interpreting the flow benefit

of agents who adopt the technology as being proportional to how intensively they use SINPE.

Specifically, suppose SINPE users choose the intensity with which they use the application,

⇠t, maximizing the following expression:

⇠
⇤
t
(xt, Nt) = argmax

⇠t

1 + p

p


�(xt, Nt)⇠t �

⇠
1+p

t

1 + p

�
,

where p > 0 so that the problem is convex and �(xt, Nt) > 0. The first order condition

describes the optimal intensity in which the technology is used: ⇠⇤
t
(xt, Nt) = �(xt, Nt)1/p,

and we can choose the function �(xt, Nt) such that the indirect utility function gives the

specified flow benefit, i.e:

[✓0 + ✓nNt]xt = max
⇠t

1 + p

p


�(xt, Nt)⇠t �

⇠
1+p

t

1 + p

�
for all xt 2 [0, U ] and Nt 2 [0, 1].

The solution is given by �(xt, Nt) = [(✓0 + ✓nNt) xt]
p

p+1 ; combining this expression with the

19We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
The dashed vertical line in each figure denotes the beginning of the pandemic, which just as in Figure G1
did not have a major impact on overall trends.
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Figure 5: Average Wage and Skill at the Time of Adoption
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Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ monthly wages in USD. Panel (b) shows the cross-

sectional distribution of SINPE users’ skills. High skill users are those that are in an occupation that requires more than a high

school degree. Both panels show averages weighted by the number of transactions of each user. Both figures include a vertical

dashed line to mark the start of the COVID-19 pandemic (March 2020).

first-order condition and taking logs, we obtain:

ln ⇠⇤
t
=

1

1 + p
ln [(✓0 + ✓nNt)] +

1

1 + p
ln xt. (32)

In this equation, note that if we were to remove the network⇥time variation, then ln ⇠n
it

would proxy for lnxt, as through the lens of the model only the idiosyncratic variation would

remain. The model also predicts that users with a higher x would adopt the technology

earlier. Thus, we can obtain a relation between intensity of usage (⇠n
it
) and the share of user

i’s network who had adopted the technology at the time when she first used the app (Nn

i,entry
):

ln ⇠n
it
= � + ⇣N

n

i,entry
+ �

n

t
+ ⌫

n

it
,

where n 2{neighbors, coworkers, relatives} and ⇠n
it
is defined as number of transactions of user

i each month t. Our model predicts that ⇣ < 0, as users who adopted the app (“entered”)

when the network was smaller should have a higher idiosyncratic taste for the app and use it

more intensively—note that the inclusion of the network-time fixed e↵ect, �n
t
, prevents this

relationship from being mechanical.

We estimate ⇣̂ to be �2.7 when defining a network as a neighborhood. This relationship

is shown in Column (1) of Table 2, and while suggestive, points to the presence of selection

at entry. The relation is also robust to defining networks using coworkers and relatives, as

shown in Columns (2) and (3) in Table 2. The relation also holds if, instead of the total
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number of transactions, we consider the value of transactions as our dependent variable, as

reported in Table G2.

Table 2: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (IHS)

(1) (2) (3)

Size of Neighbors’ Network at Entry -2.730***
(0.005)

Size of Coworkers’ Network at Entry -1.300***
(0.005)

Size of Family Network at Entry -1.181***
(0.006)

Observations 34,409,818 16,138,736 14,700,288
Network⇥Time/Cohort FE Yes Yes Yes
Adjusted R-squared 0.234 0.304 0.199

Notes: The dependent variable in this estimation is the number of transactions each month for each user transformed using
the inverse hyperbolic sine function. Coe�cients describe the e↵ect of increasing the share of an individual’s network who had
adopted the app at the time when she used it for the first time. All regressions control for network size (in levels) and use data
from May 2015, when the technology launched, to December 2021. Standard errors, clustered by individual, are in parenthesis.

Fact 5: There is evidence of strategic complementarities. The core idea behind strategic

complementarities is that usage benefits increase with the size of a user’s network. In what

follows, we first establish a significant correlation between the intensity of app usage and

the share of individuals in the user’s network who have adopted it. This correlation remains

robust across various network definitions, usage intensity measures, and specifications. Then,

we show that the impact of network size on usage intensity persists even after employing a

leave-one-out instrument to address potential endogeneity concerns and measurement errors.

Additionally, this relationship is una↵ected when accounting for selection through a balanced

panel of adopters. Lastly, we employ an identification strategy relying on mass layo↵s, along

with appropriate controls, to provide evidence of a causal relationship between the share of

adopters and the changes in usage and adoption.

Model-Derived Relations Recall the expression in equation (32). Under this interpre-

tation of the model, the intensity with which the application is used, which is observable in

the data (e.g., number or value of transactions), is proportional in logs to the flow benefit

of adopting the application as described in the model. After taking the first order Taylor

expansion of ln(✓0 + ✓nNt) around N
⇤ and plugging it into equation (32), we obtain:

ln ⇠⇤
t
⇡ ln(✓0 + ✓nN

⇤) +
1

1 + p

✓n(Nt �N
⇤)

✓0 + ✓nN
⇤ +

1

1 + p
ln xt. (33)
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Moreover, taking first di↵erences, it follows that:

� ln ⇠⇤
t
= ��Nt + ⌫t, (34)

where � ⌘
1

1+p

e✓
1+e✓N⇤ and ⌫t ⌘

1
1+p

� ln xt. Further, in the case of a quadratic adjustment

costs (i.e., p = 1), then e✓ = 2�
1�2N⇤� . Thus, throughout all the tables in this section, we can

evaluate N
⇤ at its mean value to recover e✓ from each �; these are our coe�cients of interest

since strategic complementarities in the adoption of the technology exist if � > 0 () e✓ >
0 () ✓0 > 0 and ✓n > 0. Note that equation (34) is in di↵erences, therefore, any individual

or network characteristics which are time invariant would cancel out.

OLS Estimates Now, in the data, we have many networks—for example many neighbor-

hoods across the country—therefore, we consider the following version of equation (34):

� ln ⇠n
it
= � + ��N

n

t
+  �X

n

t
+ �t + �c + ✏

n

it
, (35)

where ln ⇠n
it
is the intensity with which individual i in network n uses the technology, and

can be interpreted as either the value or the number of SINPE transactions in a given month

t, Nn

t
is share of user i’s network that has adopted the app, �X

n

t
is a vector of controls

at the network⇥time level, which includes the change in the size of network n in levels and

the change in the number of COVID-19 cases; we also include time fixed-e↵ects, �t, which

capture that aggregate adoption is increasing over time, along with cohort fixed-e↵ects, �c,

which through the lens of the model control for selection into the app. This regression

considers only the intensive margin of adoption, and thus allows us to isolate the e↵ect of

strategic complementarities from other learning externalities which might be active when

studying the extensive margin of adoption.20

Table 3 shows results when considering n as a user’s network of neighbors, coworkers, and

relatives. The dependent variable refers to the number of SINPE transactions transformed

using the inverse hyperbolic sine (IHS) function. Across specifications, we find that � re-

mains positive and statistically significant. Further, the coe�cients corresponding with each

network remain stable when considering all of them simultaneously in Column (4) of Table 3.

Findings remain unchanged if we consider either alternative transformations to IHS or the

monthly value of transactions of each user as our dependent variable, instead of the number

of transactions, as reported in Table G3 and Table G4.21

20For instance, if studying the extensive margin, an individual might be more likely to learn about the
existence of the app if she has more friends who have adopted it. With the intensive margin, we are focusing on
individuals who already had the app, and thus knew about its existence, so the learning channel is attenuated.

21Panel (a) of Table G3 runs the regression with a dependent variable in logs. Panel (b) repeats the exercise
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Table 3: Changes in Number of Transactions and Network Changes

Dependent variable: � Number of Transactions (IHS)

� Share Neighborhood Adopters 1.008*** 0.879***
(0.022) (0.031)

� Share Coworkers Adopters 0.238*** 0.232***
(0.007) (0.007)

� (Log) Wage 0.044*** 0.044***
(0.001) (0.001)

� Share Relatives Adopters 0.273*** 0.308***
(0.003) (0.004)

Observations 32,391,602 16,232,003 30,633,379 15,355,945
Time/Cohort FE Yes Yes Yes Yes
Adjusted R-squared 0.014 0.019 0.015 0.020

Notes: The unit of observation is the individual. The dependent variable is transformed using the inverse hyperbolic sine
function; Table 3 shows results with alternative transformations. All regressions control for network size (in levels) and for the
number of COVID-19 cases (using an inverse hyperbolic sine transformation). We run regressions using data from May 2015,
when the technology was introduced, to December 2021. Standard errors (clustered by individual) are in parentheses.

It is also possible to use an alternative measure of N , which by construction comprehends

all transactions. Our starting point is the last period in our sample (December 2021)—in

which most adults have already adopted. Then, we look back in time at all transactions that

have occurred, and, for each individual, we define her network as the collection of people

with whom she transacted at some point in time. Thus, for instance, the share of adopters in

someone’s network in 2016 will have all her connections who have adopted in the numerator,

and all her past and future connections in the denominator. Table G5 shows the results of

estimating equation (35) using this alternative network and the number of transactions per

user as our dependent variable: a positive correlation between changes in usage and in the

share of adopters within network is always present across specifications.22

Leave-One-Out Instrument and Balanced Panel The OLS above speaks to a corre-

lation between the changes in the intensity with which someone uses the app and changes in

the share of individuals in her network who have adopted it. We will proceed by refining our

analysis of this relation. First, we construct a leave-one-out instrument to address concerns

related to mis-measurement and local common shocks. In particular, instead of focusing on

the change in the degree of adoption in an individual’s neighborhood, we instrument for it

using the weighted average of adoption in neighborhoods which are in close proximity—but

transforming the value of transactions following Davis and Haltiwanger (1992) (i.e. �xt = 2xt�xt�1

xt+xt�1
). We

prefer the inverse hyperbolic sine function over a transformation using logs, as it is frequent to find zero
transactions for individuals in a given month, even after they adopt the technology.

22Table G6 displays results considering instead the value of transactions per user.
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outside—an individual’s own district (Costa Rica has 488 districts and 2,059 neighborhoods),

where the weight is the inverse of distance divided by the total sum of distances.23

Table G7 shows the IV results. The first stage is in the table’s top panel, and we estimate

equation (35), but instrumenting our main independent variable, in the bottom panel using

the number of transactions as the dependent variable. Estimated coe�cients are smaller than

those of the OLS when implementing this IV strategy, as would be expected in the presence

of common shocks, but remain positive and highly significant.24

Another possible refinement, this time to address concerns regarding selection in and out

of the app, is to study how changes in usage depend on changes in the share of adopters

following a balanced panel of adopters across time. Thus, we repeat our estimations but now

on a balanced panel of users who had already adopted by 2016 in Table G9. Again, our

results are robust to the estimation using this subset of users; while coe�cients are slightly

smaller—as would be expected in the case of positive selection into the app—they remain

similar to the ones using the entire sample.

Usage After a Mass Layo↵ We now consider an alternative identification strategy to

provide more evidence on the relationship between changes in usage and in the share of

adopters being causal. This strategy focuses on the network of coworkers and implements

a mover design, where we focus on the workers displaced during mass layo↵s to examine

the e↵ect of network changes on the intensive and extensive margins of adoption.25 The

main hypothesis of this exercise is that workers, who were displaced during a mass layo↵ and

who ended up at firms where a larger share of colleagues had SINPE (larger N), have more

incentives to use the app via the e↵ect of strategic complementarities.

We first analyze the impact of a mass layo↵ on the intensive margin of adoption. To

do so, we focus on workers who were fired during a mass layo↵ and consider only displaced

workers who had already adopted and had used SINPE at least once by the time they were

fired. We then examine how the intensity with which they use the app changes depending on

the change in the share of coworkers who had SINPE at their old and new firm. As explained

before, it is possible to derive the relationship in equation (35) from our theoretical model,

23Namely, for neighborhood j in district d, we consider:
P

k 6=d
(distjk)

�1
P

n(distjn)
�1Nn

kt, that is, the (distance-

weighted) total transactions in nearby neighborhoods indexed by j.
24Results considering the value of transactions as the dependent variable are reported in Table G8.
25To define a mass layo↵, we follow Davis and Von Wachter (2011) and identify establishments with at least

50 workers that contracted their monthly employment by at least 30% and had a stable workforce before this
episode and did not recover in the following 12 months. More details are provided in Appendix G.4.1.
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which speaks to the technology’s usage intensity. Thus, we consider:

� ln ⇠̃i =↵̃ + ✓̃�N
coworkers

i
+ �̃� lnwagei +  ̂� ln sizei + �̃date hiredi+

!̃�Covidi + �̃�ic + ⌫̃ ln
moveX

t=0

⇠̃i + ⌫̃ ln
moveX

t=0

⇣
⇠̃t, new firm � ⇠̃t, old firm

⌘
+ ✏̃i, (36)

where � ln ⇠̃i refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving at her new firm compared with 6 months before being fired;

�N
coworkers

i
is the change between the share of coworkers who had adopted at the old and the

new employer; � lnwagei corresponds with the change in the average wage (in logs) across

6 months before the layo↵ and after the rehiring; � ln sizei is the change in the number of

workers at each firm; date hiredi controls for the date in which individual i was hired by the

new firm; �Covidi controls for the change in the cumulative COVID-19 cases (transformed

using the inverse hyperbolic sine function) in the individual’s neighborhood across the 6

months before the layo↵ and after the rehiring; �ic controls for cohort (i.e., the date when

individual i adopted SINPE); ln
P

move

t=0 ⇠̃i is the sum of all historical transactions made by

agent i since she adopted the app, and ln
P

move

t=0

⇣
⇠̃t, new firm � ⇠̃t, old firm

⌘
is the di↵erence in

the historical transactions made by workers at the new firm and the old firm up until the

move occurred, which aims to control for factors—other than strategic complementarities—

which might facilitate adoption at the new vs. the old firm. Appendix G.4.1 provides more

details on each of these variables.

This is our preferred specification for several reasons. First, the results are likely not

driven by learning about the app since (i) workers had already adopted the app when they

were fired—and we define “adoption” as making at least one transaction—so they were at

least aware of the app’s existence and had used it before; (ii) we control for tenure in the

app (i.e., the cohort when the user adopted) and for the historical number of transactions in

the app, which as shown before correlate with observables like age, skill, and wage. These

variables aid in controlling for characteristics that are particularly relevant for intensity of

usage and are also useful to addressing learning to better use the app after adopting. Second,

of course, the choice of the new firm after a mass layo↵ is not exogenous, but this does not

pose a measurement problem as long as sorting is not (both): (i) stronger after a mass

layo↵—note that there is no reason why this might be the case, especially as results hold

even when we focus on job-to-job transitions, where workers had little time to find a new job

after being fired exogenously—and (ii) not controlled for by the cohort of the mover, which

proxies for her idiosyncratic characteristics, and di↵erence in the historical transactions at

the new vs. the old firm. The latter control, in particular, helps us rule out stories where,
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for instance, workers select into firms where people use the app more intensively for reasons

other than strategic complementarities (like demographics or the internet speed at the firm).

Table 4: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layo↵

Dependent Variable: � Number of transactions (IHS)

(1) (2) (3) (4)

�N
coworkers

i
2.460*** 1.500*** 1.008*** 0.943***
(0.153) (0.191) (0.196) (0.197)

� lnwagei 0.400*** 0.349*** 0.363***
(0.046) (0.044) (0.048)

�Covidi 0.165*** 0.155***
(0.020) (0.023)

Observations 1,554 1,554 1,554 1,554
Time FE No Yes Yes Yes
Cohort FE/Historical ⇠ No No No Yes
Adjusted R-squared 0.141 0.222 0.257 0.280

Notes: The unit of observation is the individual. We run regressions using data on mass layo↵s which occurred between May
2015, when the technology was introduced, until December 2021. While time and cohort fixed-e↵ects’ inclusion varies across
columns, all other independent variables in equation (36) are present across columns. Standard errors are in parentheses.

Table 4 displays our results using the number of transactions per user as our dependent

variable.26 Changes in the intensity of usage depend positively and significantly on the change

in the share of adopters at the old and new firm. Panel (a) of Figure 6 displays the marginal

e↵ect of these network changes following the specification described by Column (3) of Table 4.

As this panel shows, not only is the relationship between usage and network changes positive,

but also whenever a worker moves to a firm with a lower adoption rate, her usage decreases

(i.e., the change on the vertical axis is negative).27

Column (4) controls for cohort, i.e., date of adoption, which aims to mitigate any e↵ect

of more experienced users behaving di↵erently than beginners. Column (4) also controls for

the total historical transactions made, which in a similar spirit as cohort, intends to mitigate

any e↵ect resulting from learning how to use the app from others. Interestingly, as compared

with Column (3), adding these controls does not change the coe�cient of interest almost at

all. This result aligns with the following intuition: at the intensive margin—once users have

already adopted and used the app—a learning story is less plausible, as reflected by ✓̃ not

changing after controlling for cohort and historical usage.

26Table G10 reports the same results with the value of transactions as dependent variable.
27The marginal e↵ect considering the value of transactions as dependent variable, as opposed to the number

of transactions, is reported in Figure G8.
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Figure 6: Marginal E↵ect of Network Changes on Usage Intensity
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(a) All transactions (b) Transactions with coworkers only

Notes: Panel (a) plots the marginal e↵ect of �N
coworkers

i
in the specification described by Column (4) of Table 4. Bars

denote 95% confidence intervals. The dependent variable in this estimation is the number of transactions (transformed using
the inverse hyperbolic sine function) on each period for each user. Panel (b) is similar, but di↵ers as the dependent variable in
this estimation is the number of transactions which have a coworker as a counterpart (transformed using the inverse hyperbolic
sine function) on each period for each user.

The analysis can be taken to an even more detailed level if, instead of considering all

transactions in the left-hand-side variable, we focus only on those which had a coworker as

a counterpart. This subsample allows us to better identify changes in usage intensity which

are a direct consequence of the arguably exogenous changes in the network of coworkers.

Reassuringly, results are remarkably similar to those using all transactions, as shown in

Panel (b) of Figure 6 and Table G11.28

Adoption After a Mass Layo↵ Lastly, we analyze changes in the extensive margin of

adoption directly by considering the change in the probability of adoption for displaced

workers who had not adopted the app by the time they were rehired, and how it depends on

the change in the share of coworkers who had SINPE at their old and new firm. We consider:

Adopti =↵ + ✓̂�N
coworkers

i
+ �̂� lnwagei +  ̂� ln sizei + �̂date hiredi+

⌫̃ ln
moveX

t=0

⇣
⇠̃t, new firm � ⇠̃t, old firm

⌘
+ !̂�Covidi + ✏i, (37)

where Adopti equals one if individual i adopted SINPE within 6 months after arriving at her

new firm, and zero otherwise. Other variables are defined in the same way as in equation (36).

Panel (a) of Figure 7 shows the results of estimating equation (37) using a logit model. The

28The corresponding results using the value instead of the number of transactions are reported in Table G10.
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Figure 7: Adoption Probability and Changes in Coworkers’ Network After a Mass Layo↵
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�N coworkers
i 8.298*** 5.754*** 5.420***

(0.119) (0.158) (0.163)
[0.450] [0.376] [0.350]

� lnwagei -0.024 -0.035
(0.034) (0.035)

�Covidi 0.112***
(0.016)

Observations 22,249 17,658 17,658
Time/Cohort FE No Yes Yes
Pseudo R2 0.495 0.525 0.528

(a) Changes in Adoption Probability (b) Marginal E↵ect of Network Changes

Notes: Panel (a): The unit of observation is the individual. We run regressions using data on mass layo↵s that occurred between
May 2015, when the technology was introduced, and December 2021. Standard errors are in parentheses. Marginal e↵ects for
the main variable of interest are reported in brackets. Panel (b): This figure plots the marginal e↵ect of �N

coworkers

i
in the

specification described by Column (3) of Panel (a) in this figure. Vertical bars denote 95% confidence intervals.

marginal e↵ects of changes in network adoption are reported in brackets. We consistently

find that workers who, after a mass layo↵, were hired by firms where the rate of SINPE

adoption was higher than their previous employer’s are more likely to adopt SINPE than

their counterparts who moved to firms where the change in their coworkers’ rate of adoption

was smaller. The marginal e↵ect of �N
coworkers

i
, under the specification described by Column

(3) of Panel (a), is shown in Panel (b) of Figure 7. This marginal e↵ect is monotonous and,

as expected, is present only when the change in the share of adopters is positive.

8 Quantitative Performance and Optimal Subsidy

In this section, we calibrate our model and evaluate its performance relative to SINPE data.

We begin by describing an extension of the model that combines the model of strategic

complementarities with a learning model. This hybrid version is helpful to make the model

consistent with the evidence presented in the panels of Figure 4, where the path for N(t)

is smooth and relatively flat at the beginning. The presence of a learning element seems

consistent with the fact that only about 5% of the adults report knowing about SINPE

Móvil, as reported by the 2017 Survey of Payment Methods conducted by the Central Bank

of Costa Rica. We next describe our calibration procedure in detail.
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A Learning Model with Strategic Complementarities It is straightforward to ex-

tend our benchmark model of strategic complementarities to include random di↵usion of the

technology across agents. We adapt Bass’s (1969) model of information di↵usion for new

products to our setup. We assume newborn agents are initially uninformed, and become

informed by randomly matching with informed agents. Thus, the variational inequality of

the adoption decision (i.e., net value of adoption a(x, t)� c and the net optimal value v(x, t))

are the same as in the model with strategic complementarities, since this decision to adopt

can only be made after agents are aware of the technology. However, the law of motion of m

needs to be modified to include the inflow of informed agents as in a random di↵usion model:

mt(x, t) =
�
2

2
mxx(x, t) +

�0

U
I(t)(1� I(t))� ⌫m(x, t) all t � 0 and x 2 [0, x̄]

m(x, t) = 0 all t � 0 and x 2 [x̄, U ]

mx(0, t) = 0 all t � 0

where I(t) denotes the fraction of the population informed about the technology and �0 indi-

cates the number of meetings per unit of time between those informed and those uninformed

(i.e., 1� I(t)), see Appendix E for details.29

Calibration We calibrate the hybrid model to match the adoption path of the average

neighborhood in Figure 4. We interpret the flow benefit of agents who adopt the technology

as being proportional to how many transactions they conduct, as described in Section 7.2, and

assuming a quadratic adjustment cost (i.e., p = 1). By Lemma 1, U can be normalized with-

out loss of generality, so the problem features six independent parameters: ⌫, ⇢, ✓n, ✓0, �, and

c (we use the normalization U = 1). The model with learning has an additional parameter,

�0, and an initial condition for the informed population, I(0).

We calibrate ⌫ to 0.0278 to match the rate at which agents stop using SINPE; namely,

the average fraction of agents in 2019-2021 who had adopted SINPE but did not conduct a

single transaction in the app within a year. We use the last three years of the data, when the

adoption rate is higher, to focus on periods closer to a stationary equilibrium. We set the

discount factor r to be consistent with a 5 percent annual interest rate. This value is a lower

bound for r, which can admit higher values if we assume agents expect new technologies to

29The appendix develops a model of pure learning featuring random di↵usion of the technology across
agents. In the model, agents can be either uninformed about the technology, or informed about it. If they
are informed, they can decide to pay a cost c and adopt it. Once an agent adopts the technology her flow
benefit depends on the idiosyncratic value of the random variable x, but not on the size of the network, i.e.,
✓n = 0. The model has four main conclusions: i) it has a unique equilibrium, ii) it has a logistic S shape
adoption profile if the initial share of informed agents is small, iii) the use of the technology for those that
adopt depends only on the cohort, and iv) the equilibrium is constrained e�cient.
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arrive in the future and replace SINPE. The values of ⌫ and r imply ⇢ = r + ⌫ = 0.0778.

Since we are targeting the path of the mean neighborhood, we set e✓ ⌘ ✓n

✓0
equal to 2 based

on our reduced-form regressions for neighborhoods.30 We calibrate � = 0.15 and ✓0 = 86

using simulated method of moments to match various micro-data moments. Both � and ✓0 are

estimated jointly so that they are consistent with the empirical distribution of transactions.

Intuitively, � is pinned down by the dispersion of the changes in transactions and ✓0 by the

level of transactions in the data.31 We set c

U✓0
= 8.5 to match the fraction of the population

which had adopted the technology by the end of 2021 and �0 = 1.35 to match the share

of people informed about the app (approximately 5% two years after the launch). Figure 8

displays the path of adopters starting at I(0) = 0.001, that is, 0.1 percent of population in

the average neighborhood is informed about SINPE at the time it was launched.

Results Panel (a) of Figure 8 compares the path of adoption in the model and in the data.

The solid red line indicates the di↵usion of the technology in the median neighborhood and the

dashed lines represent the 25th and 75th percentiles. The figure shows that both the speed and

the level of adoption generated by the model are consistent with those in the data. Panel (b)

shows the path of I(t), N(t) and x̄(t). The path of I(t) shows that most people are informed

about the technology within the first 7 years; in the stationary distribution, approximately

98% of the population knows about the application. Furthermore, the model predicts that

in stationary distribution 93% of the population living in the median neighborhood will

adopt the application, as shown by the path of N(t). Importantly, the declining path of x̄(t)

indicates that, consistent with our empirical evidence, the model features selection: agents

that benefit the most from the technology adopt first.32

Panels (c) and (d) of Figure 8 display the values of Nss and x̄ss in the stationary equi-

librium as we vary e✓ and �, while holding others constant. These panels illustrate the

comparative statics of the stationary equilibrium derived in Section 4.2. Panel (c) shows

how the stationary level of adoption changes with e✓ and � (a black diamond denotes Nss’s

level in the baseline calibration). As e✓ increases, so does the strength of the strategic com-

plementarities, and not surprisingly, Nss increases as e✓ rises. The e↵ect of � is more subtle

and results from two opposing forces. On the one hand, higher � decreases Nss since agents

30We aim to be conservative, as this parameter admits values between 2 and 3. The estimates using a
balanced panel (cohort of 2016) in Table G9 imply e✓ = 2�

1�2N⇤� ⇡ 2 since � = 0.76 and N⇤ = 0.17. Table G7
shows that in the leave-one-out specification, � = 0.69, and using the average adoption N⇤ = 0.41 we find
e✓ = 2�

1�2N⇤� = 3.1. Figure 8 shows the performance of the model for di↵erent values of e✓.
31A detailed description of the simulation and estimation procedure can be found in Section H.1.
32Section H.2 presents a version of the model without strategic complementarities and only learning (i.e.,

e✓ = 0). In this case, the path of x̄(t) is completely flat. In contrast to what is observed in the data, a
pure learning model features no selection in the adoption of the technology and is constrained e�cient: the
optimal subsidy to adopt the technology is zero.
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Figure 8: Path of Adopters (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

(c) Comparative Statics: Nss (d) Comparative Statics: x̄ss

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the patterns of di↵usion
of the technology in the median neighborhood, where the percentile is calculated in the last period of the sample using the
share of individuals that had adopted the technology. The dashed red lines show the 25th and 75th percentiles. Panel (b) shows
the share of informed agents, I(t), the share of adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline

calibration. Panel (c) and (d) show how Nss and x̄ss change with e✓ and �, keeping the rest of the parameters constant. The

black diamonds indicate the levels of e✓ and � in our baseline calibration.

have a higher option value of waiting to adopt. On the other hand, higher � increases Nss,

since it implies a smaller density of non-adopters below x̄ss. In our calibration the latter

e↵ect dominates and Nss increases with �. Panel (d) displays a similar exercise for x̄ss. It

shows that strategic complementarities e✓ play an important role in decreasing the adoption

threshold. Moreover, given e✓, a higher � increases x̄ss.

Optimal Subsidy Panel (a) of Figure 9 shows the optimal adoption path in the model with

complementarities (blue line) relative to the decentralized equilibrium (black line). During

the first three years after the launch of the technology, the optimal level of adoption is similar

to that of the equilibrium without subsidy. Afterward, the optimal path of adopters from
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Figure 9: Planning Problem: Solution and Optimal Subsidy

(a) Optimal Path of Adopters (b) Optimal Subsidy

(c) Multiplicity: High Cost (d) No Multiplicity: Low Cost

Notes: Panel (a) shows the share of informed agents, I(t), the share of adopters in the decentralized model, N(t), and the
optimal levels of adoption, N(t) (optimal), according to the solution of the planning problem. Panel (b) shows the path of the
optimal subsidy ✓nZ(t) and the flow benefit of the average adopter, Z(t)(✓0 + ✓nN(t)). Panel (c) shows the share of informed
agents, I(t), the share of adopters in the decentralized model, N(t), and the optimal levels of adoption, N(t) (optimal), according
to the solution of the planning problem for a high adoption cost and 70% of the population informed 7 months after the launch
of the technology. Panel (b) shows the same variables for a lower adoption cost and 70% of the population informed 7 months
after the initial launch.

the planning problem is higher than that of the decentralized equilibrium. In fact, by the

beginning of 2021, it is equal to the total number of informed agents in the economy; over

30 percentage points higher than the levels of adoption observed in the data.

Panel (b) shows the path of the optimal subsidy.33 As the share of adopters increases, so

does the externality. Thus, the optimal subsidy, which is the same across agents, increases

33Figure 9 shows the subsidy ✓nZ(t) as a ratio of the net flow benefits (i.e., (✓0 + ✓nN(t))E(x|adopted)).
In the invariant distribution, the subsidy-to-benefit ratio is approximately 0.65.
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over time. To see why, notice the optimal flow subsidy in equation (31) can be written as

✓nZ(t) = ✓nN(t)⇥ E(x|adopted),

where the expectation over x is taken over the set of agents that have adopted the tech-

nology (see Proposition 10 for the derivation). The first term ✓nN captures the size of the

adoption externality, i.e., the additional benefits for agents that adopt the technology. Thus,

the subsidy increases as more agents adopt. Conversely, E(x|adopted) decreases as more

agents adopt, since the marginal adopter has lower idiosyncratic benefits from adopting the

technology. Intuitively, the planner internalizes that subsidizing agents with low x also ben-

efits the rest of the agents, even if the subsidy to incentivize these agents to adopt is large.

The first component of the optimal subsidy dominates and eventually pushes the economy

to universal adoption.34 Importantly, the planner is also constrained by the share of people

who are informed ; otherwise, while the subsidy would still be increasing and the same across

agents, there would be a “jump” in the subsidy level as soon as the application is launched,

as depicted in panel (b) of Figure 3.

High Adoption Cost Our model can be used to study economies with higher adoption

costs featuring multiple equilibria. We consider an economy with higher adoption cost c and

higher fraction of the population informed about the technology at launch. This example is

motivated by a recent experience in El Salvador, where 70% of the population knew about

a payment app introduced by the government (i.e., Chivo Wallet) 7 months after its initial

launch.35 Panel (c) shows the possible paths of adopters N(t) for this economy. It shows

that, when the adoption cost is larger, the decentralized equilibrium where nobody adopts

the technology is not ruled out; for the same initial conditions there is an equilibrium with

high adoption and one with no adoption. Panel (d) shows the same paths for a lower adoption

cost. Our model allows for the study and quantification of policies that eliminate the no-

adoption equilibrium even if the optimal subsidy is not implemented. In this case, a large

enough permanent subsidy can lower the adoption cost, solve the coordination failure, and

send the decentralized economy to the high adoption equilibrium, i.e., from Panel (c) to (d).36

34Figure H3 shows that only for lower levels of e✓ the planner prescribes lower adoption levels.
35The app allows users to digitally trade both bitcoin and dollars.
36The Salvadorean government did in fact implement a similar subsidy. As an incentive to adopt, citizens

who downloaded Chivo Wallet received a $30 bitcoin bonus from the government. Our model suggests that
the subsidy was not large enough to rule-out the no-adoption equilibrium given the low levels of adoption of
Chivo Wallet reported by Alvarez, Argente and Van Patten (2022a).
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9 Conclusion

Understanding the adoption process of a technology and the transition from low to high

adoption is challenging, especially in the presence of strategic complementarities. This paper

develops a new dynamic model of technology adoption that allows us to model this transition.

The model provides a framework to generate gradual adoption through a novel mechanism—

waiting for others to adopt—and allows us to derive predictions that can be tested empirically.

We solve for the social planner’s problem. The planner in our setup controls the entire

distribution of adopters across time. The presence of strategic complementarities enriches

the problem and allows us to link our results to the “big push” literature, as they imply that

small subsidies can lead to large changes in adoption given the multiplicity of equilibria. In

our framework, the optimal subsidy increases over time but it is flat across people, thus, easily

implementable. The methodology we develop can be useful for a wide set of multidimensional

dynamic problems, and can be applied to the study of any technology that features strategic

complementarities, learning, or both.

Our application analyzes new electronic methods of payment, which are particularly rel-

evant today and are undergoing a digital transformation. This revolution has been echoed

by a growing interest from monetary authorities to promote and develop digital payment

platforms, both in developed and developing countries. Using individual- and transaction-

level data on SINPE, a national electronic payment system adopted by a large fraction of

the adult population in Costa Rica, along with extensive data on the networks of each user,

we document that strategic complementarities play an important role in the adoption of this

technology. SINPE also provides a rich environment to calibrate the model, which allows

us to estimate the optimal time-varying adoption subsidy and the degree of selection into

adoption across time. These results have implications for the launch and implementation of

payment technologies with similar features such as CBDCs.
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