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Abstract

Macroeconometric data often come under the form of large panels of time series, them-

selves decomposing into smaller but still quite large subpanels or blocks. We show how the

dynamic factor analysis method proposed in Forni et al (2000), combined with the identi-

fication method of Hallin and Lǐska (2007), allows for identifying and estimating joint and

block-specific common factors. This leads to a more sophisticated analysis of the structures

of dynamic interrelations within and between the blocks in such datasets, along with an in-

formative decomposition of explained variances. The method is illustrated with an analysis

of the Industrial Production Index data for France, Germany, and Italy.
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1 Introduction

1.1 Panel data and dynamic factor models

In many fields—macroeconometrics, finance, environmental sciences, chemometrics, ...—informa-

tion comes under the form of a large number of observed time series or panel data. Panel data

consist of series of observations (length T ) made on n individuals or “cross-sectional items” that

have been put together on purpose, because, mainly, they carry some information about some
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common feature or unobservable process of interest, or are expected to do so. This “common-

ness” is a distinctive feature of panel data : mutually independent cross-sectional items, in that

respect, do not constitute a panel (or then, a degenerate one). Cross-sectional heterogeneity

is another distinctive feature of panels : n (possibly non independent) replications of the same

time series would be another form of degeneracy. Moreover, the impact of item-specific or id-

iosyncratic effects, which have the role of a nuisance, very often dominate, quantitatively, that

of the common features one is interested in.

Finally, all individuals in a panel are exposed to the influence of unobservable or unrecorded

covariates, which create complex interdependencies, both in the cross-sectional as in the time

dimension, which cannot be modelled , as this would require criticable modelling assumptions

and a prohibitive number of nuisance parameters. These interdependencies may affect all (or

almost all) items in the panel, in which case they are “common”; they also may be specific to a

small number of items, hence “idiosyncratic”.

The idea of separating “common” and “idiosyncratic” effects is thus at the core of panel

data analysis. The same idea is the cornerstone of factor analysis. There is little surprise,

thus, to see a time series version of factor analysis emerging as a powerful tool in the context

of panel data. This dynamic version of factor models, however, requires an adequate definition

of “commonness” and “idiosyncrasy”. This definition should not simply allow for identifying

the decomposition of the observation into a “common” component and an “idiosyncratic” one,

but also should provide an adequate translation of the intuitive meanings of “common” and

“idiosyncratic”.

Denote by Xit the observation of item i (i = 1, . . . , n) at time t (t = 1, . . . , T ); the factor

model decomposition of this observation takes the form

Xit = χit + ξit, i = 1, . . . , n, t = 1, . . . , T,

where the common component χit and an the idiosyncratic one ξit are mutually orthogonal (at

all leads and lags) but unobservable. Some authors identify this decomposition by requiring the

idiosyncratic components to be “small” or “negligible”, as in dimension reduction techniques.

Some others require that the n idiosyncratic processes be mutually orthogonal white noises.

Such characterizations are not reflecting the fundamental nature of factor models: idiosyncratic

components indeed can be “large” and strongly autocorrelated, while white noise can be com-

mon. For instance, in a model of the form Xit = χt+ ξit, where χt is white noise and orthogonal

to ξit = εit + aiεi,t−1, with i.i.d. εit’s, the white noise component χt, which is present in all

cross-sectional items, very much qualifies as being “common”, while the cross-sectionally inde-

pendent autocorrelated ξit’s, being item-specific, exhibit all the attributes one would like to see

in an “idiosyncratic” component.

A possible characterization of commonness/idiosyncrasy is obtained by requiring the common

component to account for all cross-sectional correlations, leading to possibly autocorrelated but

cross-sectionally orthogonal idiosyncratic components. This yields the so-called “exact factor
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models” considered, for instance, by Sargent and Sims (1997) and Geweke (1997). These exact

models, however, are too restrictive in most real life applications, where it often happens that

two (or a small number of) cross-sectional items, being neighbours in some broad sense, exhibit

cross-sectional correlation also in variables that are orthogonal, at all leads and lags, to all

other observations throughout the panel. A “weak” or “approximate factor model”, allowing for

mildly cross-sectionally correlated idiosyncratic components, therefore also has been proposed

(Chamberlain 1983; Chamberlain and Rothschild 1983), in which, however, the common and

idiosyncratic components are only asymptotically (as n→ ∞) identified. Under its most general

form, the characterization of idiosyncrasy, in this weak factor model, can be based on the

behavior, as n → ∞, of the eigenvalues of the spectral density matrices of the unobservable

idiosyncratic components, but also (Forni and Lippi 2001) on the asympotic behavior of the

eigenvalues of the spectral density matrices of the observations themselves : see Section 2 for

details. This general characterization is the one we are adopting here.

Finally, once the common and idiosyncratic components are identified, two types of factor

models can be found in the literature, depending on the way factors are driving the common

components. In static factor models, it is assumed that common components are of the form

χit =
q
∑

l=1

bilflt, i = 1, . . . , n, t = 1, . . . , T, (1.1)

that is, the χit’s are driven by q factors f1t, . . . , fqt which are loaded instantaneously. This

static approach is the one adopted by Chamberlain (1983), Chamberlain and Rothschild (1983),

Stock and Watson (1989, 2002a and 2002b), Bai and Ng (2002 and 2007), and a large number

of applied studies. The so-called general dynamic model decomposes common components into

χit =
q
∑

l=1

bil(L)ult, i = 1, . . . , n, t = 1, . . . , T, (1.2)

where u1t, . . . , uqt, the common shocks, are loaded via one-sided linear filters bil(L). That “truly

dynamic” approach (the terminology is not unified and the adjective “dynamic” is often used in

an ambiguous way) goes back, under exact factor form, to Chamberlain (1983) and Chamberlain

and Rothschild (1983), but was developed, mainly, by Forni et al (2000, 2003, 2004, 2005), Forni

and Lippi (2001), Hallin and Lǐska (2007).

The static model (??) clearly is a particular case of the general dynamic one (??). Its

main advantage is simplicity. On the other hand, both models share the same assumption on

the asympotic behavior of spectral eigenvalues—a behavior which is confirmed by empirical

evidence. But the static model (??) places an additional and rather severe restriction on the

data generating process, while the dynamic one (??), as shown by Lippi and Forni (2001), does

not—we refer to Section 2 for details. Moreover, the synchronization of clocks and calendars

across the panel is often quite approximative, so that the concept of “instantaneous loading”

itself may be questionable.
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Both the static and the general dynamic models are receiving increasing attention in finance

and macroeconometric applications where information usually is scattered through a (very)

large number n of interrelated time series (n values of the order of several hundreds, or even

one thousand, are not uncommon). Classical multivariate time series techniques are totally

helpless in the presence of such values of n, and factor model methods, to the best of our

knowledge, are the only ones that can handle such datasets. In macroeconomics, factor models

are used in business cycle analysis (Forni and Reichlin 1998; Giannone, Reichlin, and Sala 2006),

in the identification of economy-wide and global shocks (Forni, Giannone et al 2005), in the

construction of indexes and forecasts exploiting the information scattered in a huge number

of interrelated series (Altissimo et al 2001), in the monitoring of economic policy (Giannone,

Reichlin, and Sala 2004), and in monetary policy applications (Bernanke and Boivin 2003; Favero

et al 2005). In finance, factor models are at the heart of the extensions proposed by Chamberlain

and Rothschild (1983) and Ingersol (1984) of the classical arbitrage pricing theory; they also

have been considered in performance evaluation and risk measurement (Chapters 5 and 6 of

Campbell et al 1997), and in the statistic analysis of the structure of stock returns (Yao 2008).

Factor models in the recent years also generated a huge amount of applied work: see Artis

et al (2002), Bruneau et al (2003), den Reijer (2005), Dreger and Schumacher (2004), Nieuwen-

huyzen (2004), Schneider and Spitzer (2004), Giannone and Matheson (2007), and Stock and

Watson (2002b) for applications to data from UK, France, the Netherlands, Germany, Belgium,

Austria, New Zealand, and the US, respectively; Altissimo et al (2001), Angelini et al (2001),

Forni et al (2003), and Marcellino et al (2003) for the Euro area and Aiolfi et al (2006) for South

American data—to quote only a few. Dynamic factor models also have entered the practice of a

number of economic and financial institutions, including several central banks and national sta-

tistical offices, who are using them in their current analysis and prediction of economic activity.

A real time coincident indicator of the EURO area business cycle (EuroCOIN), based on Forni

et al (2000), is published monthly by the London-based Center for Economic Policy Research

and the Banca d’Italia: see [http://www.cepr.org/data/EuroCOIN/]. A similar index, based on

the same methods, is established for the US economy by the Federal Reserve Bank of Chicago.

1.2 Dynamic factor models in the presence of blocks: outline of the paper

Although heterogeneous, panel data very often are obtained by pooling together several “blocks”

which themselves can be considered as “large” subpanels. In macroeconometrics, for instance,

data typically are organized either by country or sectoral origin: the database which is used in

the construction of EuroCOIN, the monthly indicator of the euro area business cycle published

by CEPR, includes almost 1000 time series that cover six European countries and are organized

into eleven blocks including industrial production, producer prices, monetary aggregates, etc.

When these blocks are large enough, several dynamic factor models can be considered and

analyzed, allowing for a refined analysis of interblock relations. In the simple two-block case,

“marginal common factors” can be defined for each block, and need not coincide with the “joint
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common factors” resulting from pooling the two blocks.

The objective of this paper is to provide a theoretical basis for that type of analysis. For

simplicity, we start with the simple case of two blocks. We show (Section 2) how the Hilbert

space spanned by the n observed series decomposes into four mutually orthogonal subspaces:

the space of strongly common variables, which are common to both subpanesls, the space of

strongly idiosyncratic variables, which are idiosyncratic to both subpanels, and two spaces of

weakly common/weakly idiosyncratic variables, which are common to one subpanel but idiosyn-

cratic to the other. In Sections 3 and 4, we show how the projection of each observation onto

those various subspaces is asymptotically identified and how it can be consistently reconstructed

from the observations. Section 5 is devoted to the general case of K ≥ 2 blocks, allowing for

a decomposition of each observation into 2K mutually orthogonal components. The tools we

are using throughout are Brillinger’s theory of dynamic principal components and the identifi-

cation method developed by Hallin and Lǐska (2007). Proofs are concentrated in an appendix

(Section 7).

The potential of the method is briefly illustrated, in Section 6, with a panel of Industrial

Production Index data for France and Germany (K = 2, four distinct components), then France,

Germany, and Italy (K = 3, hence eight distinct components). Simple as it is, the analysis

of that dataset reveals some striking facts. For instance, both Germany and Italy exhibit a

“national common factor” which is idiosyncratic to the other two countries, while France’s

common factors are included in the space spanned by Germany’s. The (estimated) percentages

of explained variation associated with the various cases also are quite illuminating : Germany,

with 25.9% of common variation, is the “most common” out of the three countries. But it

also is, with only 4.9% of its total variation, the “least strongly common” one. France has the

highest proportion (79.6%) of marginal idiosyncratic variation but also the highest proportions

of strongly and weakly idiosyncratic variations (72.7% and 6.9%, respectively).

We do not attempt here to provide an economic interpretation for such facts. Nor do we

apply the method to a more sophisticated dataset. But we feel that the simple application we

are proposing provides sufficient evidence of the potential power of the method, both from a

structural as from a quantitative point of view.

2 The dynamic factor model in the presence of blocks

We throughout assume that all stochastic variables considered in this paper belong to the Hilbert

space L2(Ω,F ,P), where (Ω,F ,P) is some given probability space. We will study two double-

indexed sequences of observed random variables

Y := {Yit, i ∈ N, t ∈ Z} and Z := {Zjt, j ∈ N, t ∈ Z},

where t stands for time and i, j are cross-sectional indices. Let Yny := {Yny ,t, t ∈ Z} and

Znz := {Znz ,t, t ∈ Z} be the ny- and nz-dimensional subprocesses of Y and Z, respectively,
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where

Yny,t :=
(
Y1t . . . , Ynyt

)′
and Znz ,t := (Z1t . . . , Znzt)

′ ,

and write Xn,t := (Y1t . . . , Ynyt, Z1t . . . , Znzt)
′ := (Y′

ny ,tZ
′
nz ,t)

′ with n := (ny, nz) and n :=

ny + nz. The Hilbert subspaces spanned by the processes Y, Z and X are denoted by Hy, Hz

and H, respectively.

The following assumption is made throughout the paper.

Assumption A1. For all n, the vector process {Xn,t; t ∈ Z} is a zero mean second order

stationary process.

Denoting by ΣΣΣy;ny(θ) and ΣΣΣz;nz(θ) the (ny × ny) and (nz × nz) spectral density matrices

of Yny,t, Znz ,t, respectively, and by ΣΣΣyz;n(θ) = ΣΣΣ′
zy;n(θ) their (ny × nz) cross-spectrum matrix,

write

ΣΣΣn(θ) =:

(

ΣΣΣy;ny(θ) ΣΣΣyz;n(θ)

ΣΣΣzy;n(θ) ΣΣΣz;nz(θ)

)

for the (n × n) spectral density matrix of Xn,t, with elements σi1i2(θ), σj1j2(θ) or σkk(θ), k =

1, . . . , n, i1, i2 = 1, . . . , ny, j1, j2 = 1, . . . , nz. On these matrices, we make the following

assumption.

Assumption A2. For any k ∈ N, there exists a real ck > 0 such that σkk(θ) ≤ ck for any

θ ∈ [−π, π].

For any θ ∈ [−π, π], let λy;ny,i(θ) be ΣΣΣy;ny(θ)’s i-th eigenvalue (in decreasing order of mag-

nitude). The function θ 7→ λy;ny,i(θ) is called ΣΣΣy;ny(θ)’ i-th dynamic eigenvalue. The notation

θ 7→ λz;nz,j(θ) and θ 7→ λn,k(θ) is used in an obvious way for the dynamic eigenvalues of ΣΣΣz;nz(θ)

and ΣΣΣn(θ), respectively.

The corresponding dynamic eigenvectors, of dimensions (ny × 1), (nz × 1), and (n × 1), are

denoted by py;ny,i(θ), pz;nz,j(θ), and pn,k(θ), respectively. These dynamic eigenvectors can be

expanded in Fourier series, e.g.

pn,k(θ) =
1

2π

∞∑

s=−∞

[∫ π

−π
pn,k(θ)e

isθdθ

]

e−isθ

where the series on the right hand side converge in quadratic mean, which in turn defines square

summable filters of the form

p
n,k

(L) =
1

2π

∞∑

s=−∞

[∫ π

−π
pn,k(θ)e

isθdθ

]

Ls.

Similarly define p
y;ny ,i

(L) and p
z;nz,j

(L) from py;ny,i(θ) and pz;nz,j(θ), respectively.

On those dynamic eigenvalues, we make the following assumptions.

Assumption A3. For some qy, qz ∈ N,

(i) the qy-th dynamic eigenvalue of ΣΣΣy;ny(θ), λy;ny ,qy(θ), diverges as ny → ∞, a.e. in [−π, π],

while the (qy + 1)-th one , λy;ny,qy+1(θ), is θ-a.e. bounded;
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(ii) the qz-th dynamic eigenvalue of ΣΣΣz;nz(θ), λz;nz,qz(θ), diverges as nz → ∞, a.e. in [−π, π],

while the (qz + 1)-th one, λz;nz,qz+1(θ), is θ-a.e. bounded.

The following lemma shows that this behavior of the dynamic eigenvalues of the subpanel

spectral matrices ΣΣΣy;ny(θ) and ΣΣΣz;nz(θ) entails a similar behavior for the dynamic eigenvalues

λn,k(θ) of ΣΣΣn(θ).

Lemma 1. Let Assumptions A1-A3 hold. Then, there exists q ∈ N, with max(qy, qz) ≤ q ≤
qy + qz, such that ΣΣΣn(θ)’s q-th dynamic eigenvalue λn,q(θ) diverges as min(ny, nz) → ∞, a.e. in

[−π, π], while the (q + 1)-th one, λn,q+1(θ), is θ-a.e. bounded.

Proof. See the appendix (Section 8.1). �

Theorem 2 in Forni and Lippi (2001) establishes that the behavior of dynamic eigenvalues

described in Assumption A3 and Lemma 1 characterizes the existence of a dynamic factor

representation. We say that a process X := {Xkt, k ∈ N, t ∈ Z} admits a dynamic factor

representation with q factors if Xkt decomposes into a sum

Xkt = χkt + ξkt, with χkt :=
q
∑

l=1

bkl(L)ult and bkl(L) :=
∞∑

m=1

bklmL
m, k ∈ N, t ∈ Z ,

such that

(i) the q-dimensional vector process {ut := (u1t u2t ... uqt)
′; t ∈ Z} is orthonormal white noise;

(ii) the (unobservable) n-dimensional processes {ξξξn := (ξ1t ξ2t · · · ξnt)′; t ∈ Z} are zero-mean

stationary for any n, with (idiosyncrasy) θ-a.e. bounded (as n→ ∞) dynamic eigenvalues;

(iii) ξk,t1 and ul,t2 are mutually orthogonal for any k, l, t1 and t2;

(iv) the filters bkl(L) are square summable:
∞∑

m=1

b2klm <∞ for all k ∈ N and l = 1, . . . , q, and

(v) q is minimal with respect to (i)-(iv).

The processes {ult, t ∈ Z}, l = 1, . . . , q, are called the common shocks or factors, the random

variables ξkt and χkt the idiosyncratic and common components of Xkt, respectively. Actually,

Forni and Lippi define idiosyncrasy via the behavior of dynamic aggregates, then show (their

Theorem 1) that this definition is equivalent to the condition on dynamic eigenvalues we are

giving here.

This result of Forni and Lippi (2001), along with Lemma 1, leads to the following proposition.

Proposition 1. Let Assumption A1 and A2 hold. Then,

(a) Assumption A3(i) is satisfied iff the process Y has a dynamic factor representation (qy

factors; call them the (common) y−factors)

Yit = χy;it + ξy;it =

qy∑

l=1

by;il(L)uy;lt + ξy;it , i ∈ N, t ∈ Z; (2.3)
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(b) Assumption A3(ii) is satisfied iff the process Z has a dynamic factor representation (qz

factors; call them the (common) z−factors)

Zjt = χz;jt + ξz;jt =
qz∑

l=1

bz;jl(L)uz;lt + ξz;jt , j ∈ N, t ∈ Z; (2.4)

(c) Assumption A3 is satisfied iff the process X has a dynamic factor representation (q factors,

with q characterized in Lemma 1; call them the joint common factors)

Xkt = Yit = χxy;it + ξxy;it =
q
∑

l=1

bxy;il(L)ult + ξxy;it , k ∈ N, t ∈ Z (2.5)

in case Xkt = Yit and

Xkt = Zjt = χxz;jt + ξxz;jt =
q
∑

l=1

bxz;jl(L)ult + ξxz;jt , k ∈ N, t ∈ Z (2.6)

in case Xkt = Zjt.

All filters involved have square-summable coefficients.

Proof. The proof follows directly from the characterization theorem of Forni and Lippi(2001),

along, for part (c), with Lemma 1. �

It follows that, under Assumption A3, the processes Y and Z admit two distinct decom-

positions each: the marginal factor models (a) and (b), with marginal common shocks uy;lt

(l = 1, . . . qy) and uz;lt (l = 1, . . . qz), respectively, and the joint factor model (c), with joint

common shocks ult (l = 1, . . . q). This double representation allows for refining the factor de-

composition. Call x−, y−, or z−idiosyncratic a process which is orthogonal (at all leads and

lags) to the x−, y−, or z−factors, respectively. Similarly, call x−, y−, or z−common any pro-

cess belonging to the Hilbert space generated by the x−, y−, or z−factors. The joint common

components χxy;it and χxz;jt then further decompose into

χxy;it = φy;it + ψy;it + νy;it and χxz;jt = φz;ij + ψz;jt + νz;jt,

where φy;it and φz;jt are y− and z−common, ψy;it and νz;jt are y−common but z−idiosyncratic,

and νy;it and ψz;jt are z−common but y−idiosyncratic. We thus have

Yit =

χxy;it
︷ ︸︸ ︷

φy;it + ψy;it + νy;it+ξxy;it and Zjt =

χxz;jt
︷ ︸︸ ︷

φz;jt + ψz;jt + νz;jt+ξxz;jt , i, j ∈ N, t ∈ Z. (2.7)

︸ ︷︷ ︸

χy;it

︸ ︷︷ ︸

ξy;it

︸ ︷︷ ︸

χz;jt

︸ ︷︷ ︸

ξz;jt

More precisely, consider the Hilbert subspaces Hχ
y , Hχ

z , and Hχ of H spanned by the common

components {χy;it, i ∈ N, t ∈ Z}, {χz;jt, j ∈ N, t ∈ Z}, and {χy;it, χz;jt, i, j ∈ N, t ∈ Z},
respectively. Similarly define, for idiosyncratic components, Hξ

y, Hξ
z, and Hξ. These subspaces

induce a partition of H into four mutually orthogonal subspaces: Hφ := Hχ
y

⋂Hχ
z (containing
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φy;it and φz;jt), Hψ
y := Hχ

y

⋂Hξ
z (containing ψy;it and νz;jt), Hψ

z := Hξ
y

⋂Hχ
z (containing νy;it

and ψz;jt), and Hξ := Hξ
y

⋂Hξ
z (containing ξxy;it and ξxz;jt).

Clearly, Hχ
y and Hχ

z are subspaces of Hχ. Since Hχ
y is spanned by the qy-tuple of mutually

orthogonal white noises {uy;lt, 1 ≤ l ≤ qy, t ∈ Z}, it has dynamic dimension qy. Similarly, Hχ
z

has dynamic dimension qz, and Hχ dynamic dimension q. Denote by qyz the dynamic dimension

of the intersection Hφ of Hχ
y and Hχ

z . This intersection may reduce to the origin in H, in which

case qyz = 0; it may coincide with Hχ
y (resp., with Hχ

z ) when Hχ
y ⊆ Hχ

z (resp., Hχ
z ⊆ Hχ

y ),

with qyz = min(qy, qz). Whenever qyz ≥ 1, let {vlt, 1 ≤ l ≤ qyz, t ∈ Z} denote a qyz-tuple

of mutually orthogonal white noises spanning this intersection. This qyz-tuple can be extended

into a qy-tuple {vlt, vy,mt, 1 ≤ l ≤ qyz, 1 ≤ m ≤ qy−qyz, t ∈ Z} spanning Hχ
y , or into a qz-tuple

{vlt, vz,mt, 1 ≤ l ≤ qyz, 1 ≤ m ≤ qz − qyz, t ∈ Z} spanning Hχ
z . We then have

φy;it =

qyz∑

l=1

dil(L)vlt , ψy;it =

qy−qyz∑

l=1

dy;il(L)vy;lt , νy;it =

qz−qyz∑

l=1

dyz;il(L)vz;lt ,

and

φz,jt =

qyz
∑

l=1

djl(L)vlt , ψz,jt =

qz−qyz
∑

l=1

dz,jl(L)vz;lt , νz,jt =

qy−qyz
∑

l=1

dzy,jl(L)vy;lt.

Note that ψz,jt and ψy,it are common in the joint model (??)-(??), but that ψz,jt is idiosyncratic

in the marginal models (??), ψy,it in the marginal model (??)—therefore call them weakly

common. Similarly, νy;it and νz;jt are common in the joint model (??)-(??), but idiosyncratic in

the marginal models (??) and (??), respectively—call them weakly idiosyncratic. We say that

φy;it and φz,jt, which are both y- and z-common, are strongly common; similarly, ξxy;it and ξxz;jt,

being y- and z-idiosyncratic, are called strongly idiosyncratic.

In the following sections, we propose a procedure that provides consistent estimates of φy;it,

ψy;it, νy;it, ξxy;it and φz,jt, ψz,jt, νz,jt, ξxz;jt, hence ξy;it, ξxy;it, ξz;jt, and ξxz;jt.

3 Identifying the factor structure; population results

Based on the n-dimensional vector process Xn,t =
(

Y′
ny,t,Z

′
nz ,t

)′
, we first asymptotically identify

φy;it, ψy;it, νy;it, φz;jt, ψz;jt and νz;jt as min(ny, nz) → ∞. More precisely, we show that,

under specified spectral structure, all those quantities can be consistently recovered from the

observations Xn,t.

3.1 Recovering the joint common and strongly idiosyncratic components

Under the joint factor model, Proposition 2 in Forni et al (2000) provides Xn,t-measurable

reconstructions—denoted by χn
xy;it and χn

xz;jt, respectively—of the joint common components

χxy;it and χxz;jt, which converge in quadratic mean for any i, j and t, as min(ny, nz) → ∞; we

are using the terminology “reconstruction” rather than “estimation” to emphasize that spectral

densities here, unlike in Section 4, are assumed to be known.
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Write M∗ for the adjoint (transposed, complex conjugate) of a matrix M. The scalar process

{Vn,kt := p∗
n,k

(L)Xn,t, t ∈ Z}, k = 1, . . . , n, the spectral density of which is λn,j(θ), will be called

Xn,t’s k-th dynamic principal component. The basic properties of dynamic principal components

imply that {Vn,k1t} and {Vn,k2t}, for k1 6= k2, are mutually orthogonal at all leads and lags. Forni

et al (2000) show that the projections of Yit and Zjt onto the closed space spanned by the present,

past and future values of Vn,kt, k = 1, . . . , q yield the desired reconstructions of of χxy;it and

χxz;jt. They also provide (up to a minor change due to the fact that they are considering row

rather than column-eigenvectors, as we do here) the explicit forms

χn

xy;it = K∗
y;n,i(L)Xn,t and χn

xz;jt = K∗
z;n,j(L)Xn,t i = 1, . . . , ny, j = 1, . . . , nz, (3.8)

with

Ky;n,i(L) :=
q
∑

k=1

p∗
n,k,i

(L)p
n,k

(L) and Kz,n,j(L) =
q
∑

k=1

p∗
n,k,j

(L)p
n,k

(L)

where p
n,k,i

(L) denotes the i-th component of p
n,k

(L) such that Xkt = Yit and p
n,k,j

(L) the j-th

component of p
n,k

(L) such that Xkt = Zjt.

We then can state a first consistency result.

Proposition 2. Let Assumptions A1-A3 hold. Then,

lim
min(ny ,nz)→∞

χn

xy;it = χxy;it and lim
min(ny ,nz)→∞

χn

xz;jt = χxz;jt

in quadratic mean, for any i, j, and t.

Proof. The proof consists in applying Proposition 2 in Forni et al (2000) to the joint panel.�

It follows from (??) that χn
xy;it has variance

Var(χn

xy;it) =
q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ.

Averaging this variance over the subpanel produces a measure

1

ny

ny
∑

i=1

Var(χn

xy;it) =
1

ny

ny
∑

i=1

q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ (3.9)

of the contribution of joint common factors in the variability of the y-subpanel. Dividing it by

the averaged variance

1

ny

ny∑

i=1

Var(Yit) =
1

ny

ny∑

i=1

∫ π

−π
λy;ny ,i(θ)dθ

of the y-subpanel yields an evaluation

ny
∑

i=1

q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ/

ny
∑

i=1

∫ π

−π
λy;ny,i(θ)dθ (3.10)

10



of its “degree of commonness” within the joint panel. For the z-subpanel, this measure takes

the form

nz∑

j=1

q
∑

k=1

∫ π

−π
|pn,k,j(θ)|2λn,k(θ)dθ/

nz∑

j=1

∫ π

−π
λz;nz,j(θ)dθ. (3.11)

As for the strongly idiosyncratic components ξxy;it, and ξxz;jt, they are consistently recovered,

as min(ny, nz) → ∞, by

ξnxy;it := Yit − χn

xy;it and ξnxz;jt := Zjt − χn

xz;jt,

respectively. In view of the mutual orthogonality of common and idiosyncatic components, the

variance of ξnxy;it writes

Var(ξnxy;it) = Var(Yit) −
q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ;

the complement to one of (??) therefore constitutes a measure of the “degree of idiosyncrasy”

of the y-subpanel within the joint panel. Similar formulas hold for the strongly idiosyncratic

component ξnxz;jt.

3.2 Recovering the marginal common, marginal idiosyncratic, and weakly

idiosyncratic components

If qy = q, then the marginal common and idiosyncratic components χy;it and ξy;it coincide

with their joint counterparts χxy;it and ξxy;it, which were taken care of in the previous section.

Assume therefore that q > qy; the marginal and joint y-common spaces then do not coincide

anymore.

Applying to the y- and z-subpanels separately the same type of technique as we used in

Section 3.1, consider the spectral density matrix ΣΣΣy;ny(θ), with eigenvectors py;ny,i(θ) and the

corresponding filters p
y;ny ,i

(L), i = 1, . . . , qy. A consistent reconstruction of χy;it is obtained by

projecting Yit onto the closed subspace spanned by the first qy dynamic principal components

V
ny

y;1t, . . . , V
ny

y;qyt of ΣΣΣy;ny(θ), where V
ny

y;kt := p∗
y;ny,k

(L)Yny ,t. This projection takes the form

χ
ny

y;it = G∗
y;ny,i(L)Yny ,t (3.12)

with

Gy;ny,i(L) :=

qy
∑

k=1

p∗
y;ny,k,i

(L)p
y;ny,k

(L). (3.13)

Similarly, the reconstruction χnz

z;jt of χz;jt is

χnz

z;jt = G∗
z;nz,j(L)Znz ,t =

qz∑

k=1

p
z;nz,k,j

(L)p∗
z;nz,k

(L)Znz ,t. (3.14)

11



We then have a second consistency result.

Proposition 3. Let Assumptions A1-A3 hold. Then

lim
ny→∞

χ
ny

y,it = χy;it and lim
nz→∞

χnz

z;jt = χz;jt

in quadratic mean for any i, j, and t.

Proof. The proof again is a direct application of Proposition 2 in Forni et al (2000) to the y-

and z-subpanels, respectively. �

The variance of the reconstructed marginal y-common component χ
ny

y;it writes

Var(χ
ny

y;it) =

qy∑

k=1

∫ π

−π
|py;ny,k,i(θ)|2λy;ny,k(θ)dθ

The averaged variance explained by the y-common factors in the y-subpanel is thus

1

ny

ny
∑

i=1

Var(χ
ny

y;it) =
1

ny

ny
∑

i=1

qy
∑

k=1

∫ π

−π
|py;ny,k,i(θ)|2λy;ny,k(θ)dθ =

1

ny

qy
∑

k=1

∫ π

−π
λy;ny ,k(θ)dθ. (3.15)

Similarly, the averaged variance explained by the z-common factors in the z-subpanel is

1

nz

∫ π

−π

[ qz∑

k=1

λz;nz,k(θ)

]

dθ. (3.16)

Consistent reconstructions of the marginal idiosyncratic components ξy;it and ξz;jt are straight-

forwardly obtained as

ξ
ny

y;it := Yit − χ
ny

y;it and ξnz

z;jt := Zjt − χnz

z;jt, (3.17)

whereas the weakly idiosyncratic components νy;it and νz;it can be recovered as

νn

y;it := χn

xy;it − χ
ny

y;it = ξ
ny

y;it − ξnxy;it and νn

z;jt := χn

xz;jt − χnz

z;jt = ξnz

z;jt − ξnxz;jt, (3.18)

respectively. The averaged variance of weakly idiosyncratic components (or its ratio to
∑ny

i=1 Var(Yit)),

which measures extent to which the z-common factors contribute to y-idiosyncratic variation,

is also a quantity of interest. Clearly, since ξ
ny

y;it = ξnxy;it + νn
y;it, where ξnxy;it (which is joint

idiosyncratic) and νn
y;it (which is joint comon) are mutually orthogonal,

Var(νn

y;it) = Var(ξ
ny

y;it) − Var(ξnxy;it), (3.19)

so that

1

ny

ny∑

i=1

Var(νn

y;it) =
1

ny

[ ny∑

i=1

q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ −

qy∑

k=1

∫ π

−π
λy;ny,k(θ)dθ

]

.

Similar formulas hold for νn
z;jt.
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3.3 Disentangling the strongly and weakly common components

As explained in Section 2, each element of the Hilbert space spanned by the observed vari-

ables decomposes into a sum of four mutually orthogonal components—the strongly common

(both y- and z-common), the weakly common/weakly idiosyncratic (either y-common and z-

idiosyncratic or y-idiosyncratic and z-common), and the strongly idiosyncratic one (both y-

and z-idiosyncratic). So far, we have been able to reconstruct some of these components by

implementing the Forni et al (2000) filtering, which asymptotically separates common and id-

iosyncratic components. In order to separate the strongly common component φy,it of Yit from

the weakly common one ψy,it, however, we need another procedure. Intuitively, three equivalent

projections are possible, all on the z-common space or, more precisely, on the approximation ot

the z-common space based on the nz-dimensional z-subpanel :

(a) either Yit is projected, yielding a consistent reconstruction χnz

yz,it (see (??)) of the z-common

component φy,it+νy,it of Yit, from which νn
y,it (obtained in Section 3.2) is easily subtracted,

yielding the desired φn
y,it;

(b) or χn
xy,it (obtained in Section 3.1) is projected, leading, up to quadratic mean negligible

quantities, to the same result, as the difference Yit − χn
xy,it is ξnxy,it, which consistently

reconstructs the strongly idiosyncratic ξxy,it;

(c) or χ
ny

y,it (obtained in Section 3.2) is projected, immediately providing the result φn
y,it, since

χ
ny

y,it = φy,it + ψy,it, where ψy,it is z-idiosyncratic.

For the sake of simplicity, as all these projections eventually coincide, we concentrate on projec-

tion (a).

The following result is adapted from Theorem 8.3.1 in Brillinger (1981), and provides the

explicit form of such projections.

Proposition 4. Assume that the (r + s) vector valued second-order mean zero stationary

process {(ζζζ ′t, ηηη′t)′, t ∈ Z} is such that the spectral density matrix fηηηηηη(θ) of ηηηt, is nonsingular.

Then, the projection of ζζζt onto the closed space Hη spanned by {ηηηt , t ∈ Z} —that is, the r-tuple

A(L)ηηηt of square summable linear combinations of the present, past and future of ηηηt minimizing

E[(ζζζt − A(L)ηηηt)(ζζζ t − A(L)ηηηt)
′] is fζζζηηη(L)f−1

ηηηηηη (L)ηηηt, where

fζζζηηη(L) :=
1

2π

∞∑

s=−∞

[∫ π

−π
fζζζηηη(θ)e

isθ dθ

]

Ls and f−1
ηηηηηη (L) :=

1

2π

∞∑

s=−∞

[∫ π

−π
[fηηηηηη(θ)]

−1eisθ dθ

]

Ls,

and fζζζηηη(θ) denotes the cross-spectrum of ζζζt and ηηηt. vspace2mm

Actually, Brillinger also requires (ζζζ ′t, ηηη
′
t)
′ to have absolutely summable autocovariances, so that

the filter fζζζηηη(L)f−1
ηηηηηη (L) also is absolutely summable. We, however, do not need this here.

Now, the z-common space Hχ
z on which we have to project Yit has reduced dimension qz < nz,

and Proposition 4 thus does not directly solve our problem. Nor does it apply it to the finite-

sample reconstruction of Hχ
z based on χz;nz,t, as the spectral density fηηηηηη(θ), for ηηηt = χz;nz,t,
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is singular. Fortunately, a full rank qz-dimensional random vector spanning the same space

as χz;nz,t is available : the qz-tuple

V′
z;nz,t :=

(

Vz;nz,1t, . . . , Vz;nz,qyt

)′

where Vz;nz,kt := p∗
z;nz,k

(L)Znz ,t,

of ΣΣΣz;nz(θ)’s first dynamic principal components, which are mutually orthogonal. Proposition 4

thus applies to the (ny+qz) random vector (Y′
ny ,t,V

′
z;nz,t)

′. The spectral matrix for that vector is

(

ΣΣΣYY(θ) ΣΣΣYV(θ)

ΣΣΣVY(θ) ΣΣΣVV(θ)

)

with ΣΣΣYY(θ) = ΣΣΣy;ny(θ) (ny × ny), ΣΣΣYV(θ) = ΣΣΣyz;n(θ)(pz;nz ,1(θ), . . . ,pz;nz,qz(θ)) (ny × qz),

and (since the principal components Vz;nz,kt’s, with spectral densities λz;nz,k(θ), are mutually

orthogonal) ΣΣΣVV(θ) = diag(λz;nz ,1(θ), . . . , λz;nz ,qz(θ)) (qz × qz).

This yields, for Yit, a projection (which we propose as a reconstruction of the z-common

component φy,it + νy,it of Yit)

χnz

yz,it :=
(

σi1(L), . . . , σinz
(L)

)(

p
z;nz,1

(L), . . . ,p
z;nz,qz

(L)
)

diag(λ−1
z;nz,1(L), . . . , λ−1

z;nz,qz(L))Vz;nzt

=
(

σi1(L), . . . , σinz
(L)

) qz∑

k=1

λ−1
z;nz,k

(L)p
z;nz,k

(L)p∗
z;nz,k

(L)Znz ,t

=: H∗
y;nz,i(L)Znz ,t (3.20)

where (denoting by σij(θ) the element in ΣΣΣn(θ) corresponding to the cross-spectrum of Yit

and Zjt)

σij(L) :=
1

2π

∞∑

s=−∞

[∫ π

−π
σij(θ)e

isθ dθ

]

Ls and λ−1
z;nz,k

(L) :=
1

2π

∞∑

s=−∞

[∫ π

−π
[λz;nz ,k(θ)]

−1eisθ dθ

]

Ls

(|λz;nz ,k(θ)|, k = 1, . . . , qz safely can be assumed to be θ-a.e. larger than one: see p. 551 of

Forni et al (2001), Assumption (A) and the comments thereafter; the filters associated with their

inverses then are well defined, and square summable).

Our reconstruction of Yit’s strongly common component then is

φn

y,it := H∗
y;nz,i(L)Znz ,t − νn

y,it.

Similar definitions, with obvious changes, are made for φn
z,jt. Parallel to Propositions 2 and 3,

we then have the following consistency result for φn
y,it and φn

z,jt.

Proposition 5. Let Assumptions A1, A2, and A3 hold. Then

lim
min(ny ,nz)→∞

φn

y,it = φy;it and lim
min(ny ,nz)→∞

φn

z,jt = φz,jt

in quadratic mean for any i, j, and t.

Proof. See the appendix. �
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It follows from (??) that the spectral density of χnz

yz,it is of the form

qz∑

k=1

|ΣY V ;ik(θ)|2 λ−1
z;nz,k

(θ);

the variance of χnz

yz,it therefore writes

Var(χnz

yz,it) =

∫ π

−π

qz∑

k=1

∣
∣
∣
∣
∣
∣

nz∑

j=1

σij(θ)pz;j,k(θ)

∣
∣
∣
∣
∣
∣

2

λ−1
z;nz,k

(θ)dθ (3.21)

as ΣY V ;ik(θ) =
∑nz

j=1 σij(θ)pz;j,k(θ). Since χnz

yz,it decomposes into the sum of φn
y,it and νn

y;it, which

are mutually orthogonal, the reconstructed strongly common component φn
y,it, in view of (??),

has variance

Var(φn

y,it) =

∫ π

−π

qz∑

k=1

∣
∣
∣
∣
∣
∣

nz∑

j=1

σij(θ)pz;j,k(θ)

∣
∣
∣
∣
∣
∣

2

λ−1
z;nz,k

(θ)dθ −
q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ

+

qy
∑

k=1

∫ π

−π
|py;ny,k,i(θ)|2λy;ny ,k(θ)dθ.

Averaged over the subpanel, this yields

1

ny

ny
∑

i=1

Var(φn

y,it) =
1

ny

ny
∑

i=1

∫ π

−π

qz∑

k=1

∣
∣
∣
∣
∣
∣

nz∑

j=1

σij(θ)pz;j,k(θ)

∣
∣
∣
∣
∣
∣

2

λ−1
z;nz,k

(θ)dθ

− 1

ny

ny
∑

i=1

q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ +

1

ny

qy
∑

k=1

∫ π

−π
λy;ny,k(θ)dθ,

which measures the contribution of the strongly common factors in the total variation of the

y-subpanel. Similar quantities are easily computed for the z-subpanel.

Consistent reconstructions of the weakly common components now readily follow by taking

differences :

ψn

y,it := Yit − χ
ny

yz,it − ξnxy;it and ψn

z,jt := Zjt − χnz

zy,jt − ξnxz;jt.

The contributions of those weakly common components to the total variation are be obtained

along the same lines as above, i.e. for ψn
y,it we get

1

ny

ny
∑

i=1

Var(ψn

y,it) =
1

ny

ny
∑

i=1

Var(Yit) −
1

ny

ny
∑

i=1

∫ π

−π

qz∑

k=1

∣
∣
∣
∣
∣
∣

nz∑

j=1

σij(θ)pz;j,k(θ)

∣
∣
∣
∣
∣
∣

2

λ−1
z;nz,k

(θ)dθ

− 1

ny

ny
∑

i=1

q
∑

k=1

∫ π

−π
|pn,k,i(θ)|2λn,k(θ)dθ.

Dividing by 1
ny

∑ny

i=1 Var(Yit) = 1
ny

∑ny

i=1

∫ π
−π λy;ny,k(θ)dθ yields the correponding relative quan-

tities. Up to obvious changes, the formulas for the z-subpanel are identical.

15



4 Recovering the factor structure; estimation results

The previous section shows how all components of Yit and Zjt can be recovered asymptotically

as min(ny, nz) → ∞, provided that the spectral density ΣΣΣn and the numbers q, qy, and qz of

factors are known. The estimates φn
y;it, ψ

n
y;it and νn

y;it all take the form of a filtered series of the

observed process Xn,t. We have indeed

φn

y,it = H∗
y;nz,i(L)Znz ,t − νn

y,it

= H∗
y;nz,i(L)Znz ,t + G∗

y;ny,i(L)Yny,t − K∗
y;n,i(L)Xn,t

=
[

(G∗
y;ny,i(L), H∗

y;nz,i(L)) − K∗
y;n,i(L)

]

Xn,t

=: K∗
φy;n,i(L)Xn,t,

ψn

y,it = χ
ny

y,it − φn

y,it

= G∗
y;ny,i(L)Yny ,t − K∗

φy ;n,i(L)Xn,t

=
[

K∗
y;n,i(L) − (0, H∗

y;nz,i(L))
]

Xn,t

=: K∗
ψy;n,i(L)Xn,t, and

νn

y;it = χn

xy;it − χ
ny

y;it

= K∗
y;n,i(L)Xn,t − G∗

y;ny,i(L)Yny ,t

=
[

K∗
y;n,i(L) − (G∗

y;ny,i(L), 0)
]

Xn,t

=: K∗
νy;n,i(L)Xn,t,

with

K∗
φy ;n,i(L) :=

[

(G∗
y;ny ,i(L), H∗

y;nz ,i(L)) − K∗
y;n,i(L)

]

,

K∗
ψy ;n,i(L) :=

[

K∗
y;n,i(L) − (0, H∗

y;nz,i(L))
]

, and

K∗
νy ;n,i(L) :=

[

K∗
y;n,i(L) − (G∗

y;ny,i(L), 0)
]

.

These three filters all are functions of the spectral density matrix ΣΣΣn(θ) which of course in

practice is unknown, as we only observe a finite realization XT
n := (Xn1,Xn2, . . . ,XnT ) of Xn.

Since its actual value is unknown, we need an estimator ΣΣΣTn (θ) of ΣΣΣn(θ). Consistent esti-

mation of the spectral density ΣΣΣn(θ) requires strengthening slightly Assumption A1 into the

following Assumption A1′:

Assumption A1′. For all n, the vector process {Xn,t; t ∈ Z} admits a Wold representation of the

form Xn,t =
∑∞
k=−∞ Ckζζζt−k, where ζζζt is full-rank n-dimensional white noise with finite fourth

order moments, and the n× n matrices Ck = (Cij,k) are such that
∑∞
k=−∞ |k||Cij,k|1/2 <∞ for

all i, j.

Under Assumption A1′, if ΣΣΣT
n(θ), with elements σT

n,ij(θ), denotes any periodogram-smoothing

or lag-window estimator of ΣΣΣn(θ), we have, for all n, i, j, and ε > 0,

lim
T→∞

P

[

sup
θ∈[−π,π]

∣
∣
∣σTn,ij(θ) − σij(θ)

∣
∣
∣ > ε

]

= 0
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(see e.g. Brockwell and Davis 1987, p. 433). In Section 6, we consider lag-window estimators of

the form

ΣΣΣT
n(θ) :=

MT∑

k=−MT

ΓΓΓTnkωke
−ikθ (4.22)

where ΓΓΓTnk is the sample covariance matrix of Xn,t and Xn,t−k and ωk := 1 − |k|/(MT + 1) are

the weights corresponding to the Bartlett lag window of size MT . Consistency then is achieved

provided that the following assumption holds:

Assumption B. MT → ∞, and MTT
−1 → 0, as T → ∞.

A consistent estimator ΣΣΣT
n(θ) of ΣΣΣn(θ) however is not sufficient here. Deriving, from this

estimatorΣΣΣT
n(θ), estimated versions KT

φy;n,i(L), KT
ψy;n,i(L) and KT

νy ;n,i(L), of the filters Kφy ;n,i(L),

Kψy ;n,i(L) and Kνy;n,i(L) indeed also requires an estimation of the numbers of factors q, qy and qz

involved. The only method allowing for such estimation is the idendification method developed

in Hallin and and Lǐska (2007), which we now briefly describe, with a few adjustments taking

into account the particular notation of this paper. For a detailed description of the procedure, we

refer to the section entitled “A practical guide to the selection of q” in Hallin and Lǐska (2007).

The lag window method described in (??) provides estimations ΣΣΣT
n(θl) of the spectral density

at frequencies θl := πl/(MT + 1/2) for l = −MT , . . . ,MT . Based on these estimations, consider

the information criterion

ICTn;c(k) := log




1

n

n∑

i=k+1

1

2MT + 1

MT∑

l=−MT

λTni(θl)



+ kcp(n, T ), 0 ≤ k ≤ qmax, c ∈ R
+
0 , (4.23)

where the penalty function p(n, T ) is o(1) while p−1(n, T ) = o
(

min(n,M2
T ,M

−1/2
T T 1/2

)

as both

n and T tend to infinity, and qmax is some predetermined upper bound; the eigenvalues λT
ni(θl)

are those of ΣΣΣTn(θl). Depending on c > 0, the estimated number of factors, for given n and T , is

qTn;c := argmin0≤k≤qmax
ICTn;c(k). (4.24)

Hallin and Lǐska (2007) prove that this qTn;c is consistent for any c > 0. An “optimal”

value c∗ of c is then selected as follows. Consider a J−tuple of the form q
Tj
c,nj , j = 1, . . . , J ,

where nj = (ny;j, nz;j) with 0 < ny;1 < . . . < ny;J = ny, 0 < nz;1 < . . . < nz;J = nz, and

0 < T1 ≤ . . . ≤ TJ = T . This J−tuple can be interpreted as a “history” of the identification

procedure, and characterizes, for each c > 0, a sequence q
Tj
c,nj , j = 1, . . . , J of estimated factor

numbers. In order to keep a balanced representation of the two blocks, we only consider J−tuples

along which ny;j/nz;j is as close as possible to ny/nz.

The selection of c∗ is based on the inspection of two mappings: c→ qTn;c, and c→ Sc, where

S2
c := J−1∑J

j=1(q
Tj
nj ;c−J−1∑J

j=1 q
Tj
nj ; c)

2 measures the variability of q
Tj
nj ;c over the “history”. For

n and T large enough, Sc exhibits “stability intervals”, that is, intervals of c values over which

Sc = 0. The definition of Sc implies that c 7→ qTn;c is constant over such intervals. Starting in
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the neighborhood of c = 0, a first stability interval (0, c+1 ) corresponds to qTn;c = qmax; choose c∗

as any point in the next one, (c−2 , c
+
2 ). The selected number of factors is then qTn = qTn;c∗. The

same method, applied to the Y - and Z-subpanels, yields estimators qTny
and qTnz

of qy and qz;

qTn;yz := qTny
+ qTnz

− qTn provides a consistent estimator of qyz.

The success of this identification method however also requires strengthening somewhat the

assumptions; from now on, we reinforce Assumption A1′ into Assumption A1′′ and Assump-

tions A2 and A3 into Assumptions A2′ and A3′:

Assumption A1′′. Same as Assumption A1′, but (i) the convergence condition on the

Cij,k’s is uniform, supi,j∈N

∑∞
k=−∞ |Cij,k||k|1/2 < ∞, and, for all 1 ≤ ℓ ≤ 4 and 1 ≤ j < ℓ,

supi1,...,iℓ

[
∑∞
k1=−∞ . . .

∑∞
kℓ−1=−∞ |ci1,...,iℓ(k1, . . . , kℓ−1)|

]

<∞.

Assumption A2′. The entries σij(θ) of Σn(θ) (i) are bounded, uniformly in n and θ—that is,

there exists a real c > 0 such that σij(θ) ≤ c for any i, j ∈ N and θ ∈ [−π, π]—and (ii) they have

bounded, uniformly in n and θ, derivatives up to the order two—namely, there exists Q < ∞
such that supi,j∈N supθ

∣
∣
∣
dk

dθkσij(θ)
∣
∣
∣ ≤ Q, k = 0, 1, 2.

Assumption A3′. Same as Assumption A3, but moreover

(i) λy;ny,qy(θ) and λz;nz,qz(θ diverge at least linearly in ny and nz, respectively, that is,

lim infny→∞ infθ n
−1
y λy;ny,qy(θ) > 0, and lim infnz→∞ infθ n

−1
z λz;nz,qz(θ) > 0, and

(ii) both ny/nz and nz/ny are O(1) as min(ny, nz) → ∞.

This “at least linear” divergence assumption is also made in Hallin and Lǐska (2007), and

can be considered as a form of cross-sectional stability of the two panels under study.

Once estimated values of the numbers q, qy and qz of factors are available, the estimated

counterparts of of Kφy;n,i(L), Kψy ;n,i(L) and Kνy;n,i(L) are obtained by substituting ΣΣΣT
n(θ), qTn ,

qTny
and qTnz

for ΣΣΣn(θ), q, qy and qz in all definitions of Section 3, then truncating infinite sums

as explained in Section B of Forni et al (2000) (a truncation which depends on t, which explains

the notation), yielding KTt
φy ;n,i(L), KTt

ψy ;n,i(L) and KTt
νy ;n,i(L). Parallel to Proposition 3 in Forni

et al (2000), we then have the following result.

Proposition 6. Let Assumption A1′′, A2′, A3′, and B hold. Then, for all ǫk > 0 and ηk > 0,

k = 1, 2, 3, there exists N0(ǫ1, ǫ2, ǫ3, η1, η2, η3) such that

P
[∣
∣
∣KTt ∗

φy;n,i(L)Xn,t − φy;it
∣
∣
∣ > ǫ1

]

≤ η1, P
[∣
∣
∣KTt ∗

ψy ;n,i(L)Xn,t − ψy;it
∣
∣
∣ > ǫ2

]

≤ η2,

and

P
[∣
∣
∣KTt ∗

νy ;n,i(L)Xn,t − νy;it
∣
∣
∣ > ǫ3

]

≤ η3,

for all t = ť(T ) satisfying, for some a, b such that 0 < a < b < 1,

a ≤ lim inf
T→∞

ť(T )

T
≤ lim sup

T→∞

ť(T )

T
≤ b,

all n ≥ N0 and all T larger than some T0(n, ǫ1, ǫ2, ǫ3, η1, η2, η3).
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Proof. The proof consists in reproducing, for each projection involved in the reconstruction

of φy;it, ψy;it and νy;it, the proof of Proposition 3 in Forni et al (2000). Lengthy but obvious

details are left to the reader. �

Consistent estimations of the various contributions to the total variance of each subpanel

can be obtained either by substituting estimated spectral eigenvalues and eigenvectors for the

exact ones in the formulas of Section 3, and replacing integrals with the corresponding finite

sums over Fourier frequencies, or by computing the empirical variances of the estimated strongly

and weakly common, strongly and weakly idiosyncratic components.

5 Dynamic factors in the presence of K blocks (K > 2).

The ideas developed in the previous sections readily extend to the more general case of K ≥ 2

blocks. Instead of Yit for the first block and Zjt for the second one, denote all observations as Xit

(i = 1, . . . , n), with an additional label [k] indicating, when needed, that Xit belongs to block k,

k = 1, . . . ,K: the notation X[1];1t for instance means that the first series in the panel belongs to

the first block. Marginal k-common and k-idiosyncratic spaces are defined in an obvious manner

by considering the kth block as an individual subpanel. The number of mutually orthogonal

components in the decomposition (??) of each observation X[k];it however increases exponentially

with K, and the general case requires 2K distinct components, with somewhat heavy notation:

for each i and t, Xit = X[k];it decomposes into

(a) one strongly common component φ[k];it, denoting the projection of X[k];it on the intersection

of the K marginal common spaces,

(b) 2K−1−1 weakly common components, of the form ψ[k] (k,k1,...,kℓ).(kℓ+1,...,kK−1);it, denoting the

projection of X[k];it on the intersection of the k-, k1-, . . ., kℓ-common and kℓ+1-, . . ., kK−1-

idiosyncratic spaces, where
(

{k1, . . . , kℓ}, {kℓ+1, . . . , kK−1}
)

ranges over all partitions of

{1, . . . , k−1, k+1, . . . ,K} into two nonoverlapping nonempty subsets, ℓ = 0, 1, . . . ,K−2;

(c) 2K−1−1 weakly idiosyncratic components, of the form ν[k] (k1,...,kℓ).(k,kℓ+1,...,kK−1);it, denoting

the projection of X[k];it on the intersection of the k1-, . . ., kℓ-common and k-, kℓ+1-, . . .,

kK−1-idiosyncratic spaces, where
(

{k1, . . . , kℓ}, {kℓ+1, . . . , kK−1}
)

similarly ranges over

all partitions of {1, . . . , k − 1, k + 1, . . . ,K} into two nonoverlapping nonempty subsets,

ℓ = 1, . . . ,K − 1;

(d) one strongly idiosyncratic component ξ[k];it, denoting the projection of X[k];it on the inter-

section of the K marginal idiosyncratic spaces.

In view of the notational burden, we will not pursue any further with formal developments,

since it is clear that the methods previously described, with a well-designed sequence of projec-

tions, allow for a consistent reconstruction of all those components.

An application for K = 3 is considered in Section 6.2.
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6 Real Data Applications

We applied our method to a dataset of monthly Industrial Production Indexes for France, Ger-

many, and Italy, observed from January 1995 through December 2006. All data were preadjusted

by taking a log-difference transformation (T = 143 throughout—one observation is lost due to

differencing), then centered and normalized using their sample means and standard errors.

6.1 A two-block analysis

First consider the data for France and Germany. Using Yit or the Fench data and Zjt for

the German, we have ny = nF = 96, nz = nG = 114, hence n = nFG = 210. Spectral

densities were estimated from the pooled panel using a lag-window estimators of the form (??),

with truncation parameter MT = 0.5
√
T = 5. Based on this estimation, we ran the Hallin

and Lǐska (2007) identification method on the French and German subpanels, with sequences

nF,j = 96 − 2j, j = 1, . . . , 5 and nG,j = 96 − 2j, j = 1, . . . , 5, respectively, then on the pooled

panel, with sequence nFG,j = 210−2j, j = 1, . . ., 8 and an “almost constant ” proportion 96/210,

114/210 of French and German observations (namely, ⌈96nFG,j/210⌉ French observations, and

⌊114nFG,j/210⌋ German ones. In all cases, we put Tj = T = 143, j = 1, . . . , 5. The range for

c values, after some preliminary exploration, was taken as [0, 0.0002, 0.0004, . . . , 0.5], and qmax

was set to 10. In all cases, the panels were randomly ordered prior to the analysis. The penalty

function was p(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])−1/2
.

The results are shown in Figure ??, and very clearly conclude for qT(nF ,nG) = 3 (for c ∈
[0.1798, 0.1894]), qTnF ,F

= 2 (for c ∈ [0.2222, 0.2344]), and qTnG,G
= 3 (for c ∈ [0.2032, 0.2138]).

This identification of 3 joint common factors, 3 German-common and 2 French-common factors

also provides an estimation of 2 strongly common factors (as qyz = qy + qz − q). The French-

common factors thus are strongly common (no weakly common space), whereas one German-

common factor is French-idiosyncratic.

Table ?? is summarizing these findings. For each of the mutually orthogonal subspaces

appearing in the decomposition, we provide the percentage of total variation explained in each

country. The two strongly common factors jointly account for 9.2 % of German total variability

and 20.4 % of French total variability. Germany has an “all-German”, French-idiosyncratic,

common factor explaining 16.7 % of its total variance. Although French-idiosyncratic, that

German factor nevertheless still accounts for 2.6 % of the French total variability. Estimated

percentages of explained variation were obtained via estimated eigenvectors and eigenvalues.

6.2 A three-block analysis

Next consider the three-block case resulting from adding the corresponding Italian Industrial

Production index, with nI = 91 into the previous panel, yielding K = 3. The series length is

still T = 143. Adapting the notation of Section 5, let X[F ];it correspond to the French, X[G];it

to the German, and X[I];it to the Italian subpanel, respectively.
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(c) France & Germany
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Figure 1: Identification of the numbers of factors for the France-Germany Industrial Production

dataset. The three figures show he simultaneous plots of c 7→ Sc and c 7→ qTc,n needed for

this identification, ((a) and (b)) in the marginal French and German subpanels, and (c) in the

complete panel, respectively.
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3 joint 0 factor 2 factors 1 factor

common weakly F-common strongly weakly F-idiosyncratic strongly

factors weakly G-idiosyncratic common weakly G-common idiosyncratic

France (ψF ) 0 % (φF ) 20.4 % (νF ) 2.6 % (ξF ) 77.0 %

Germany (νG) 0 % (φG) 9.2 % (ψG) 16.7 % (ξG) 74.1 %

Table 1: Decomposition of the France-Germany panel data into four mutually orthogonal com-

ponents, with the corresponding percentages of explained variation.

From the resulting panel (n = nFGI = 301), we can extract seven subpanels—the three

panels we already analysed in Section 6.1, one new one-block subpanel (the marginal Italian

one, with nI = 91) and two new two-block subpanels (the France-Italy one, with nFI = 187 and

the Germany-Italy one, with nGI = 205, respectively). Analyzing these new subpanels along the

same lines as in the previous section (with, using obvious notation, nI,j = 91− 2j, j = 1, . . . , 5,

nGI,j = 191− 2j, j = 1, . . . , 8, nFI,j = 187− 2j, j = 1, . . . , 8, and nFGI,j = 301− 2j, j = 1, . . . ,

15), still with MT = 0.5
√
T = 5, the same penalty function and the same qmax = 10 as before,

we obtain the results shown in the four graphs of Figure ??.

These graphs again very clearly allow for identifying a total umber of qT
n,FGI = 4 joint

common factors (for c ∈ [0.1710, 0.1718]), qT
n,F I = 3 (for c ∈ [0.1838, 0.1886]), qT

n,GI = 4 (for

c ∈ [0.1786, 0.1800]), and qTnI ,I
= 2 marginal Italian factor (for c ∈ [0.2118, 0.22218]). Along

with the figures obtained in Section 6.1 for France and Germany, this leads to the results

summarized in Figure ??. The space spanned by he three blocks now decomposes into eight

mutually orthogonal subspaces: seven (jointly) common ones, namely, the strongly common

(F,G,I-common), the F,G-common/I-idiosyncratic, the G,I-common/F-idiosyncratic, the F,I-

common/G-idiosyncratic, the F-common/G,I-idiosyncratic, the G-common/F,I-idiosyncratic,

the I-common/F,G-idiosyncratic one, and the strongly idiosyncratic (F,G,I-idiosyncratic) one.

Since the total number of factors is 4, three at least of the common subspaces must have dimen-

sion zero (they only contain the origin). The relations between the various (dynamic) dimensions

of the seven common spaces are very easily obtained; for instance

q(nF ,nG),FG= qnF ,F+ qnG,G− q(nF ,nG),

a relation which we already used in Section 6.1, or

q(nF ,nG),FG= qnF ,F+ qnG,G+ qnI ,I− q(nF ,nG),FG− q(nF ,nI),F I− q(nG,nI),GI+ q(nF ,nG,nI),FGI .

A two-dimensional table however cannot display the various interrelations between the seven

common subspaces, which we rather provide in the diagram shown in Figure ??, along with the

various percentages of explained variances. Inspection of that diagram reveals that the three

countries all exhibit a high percentage of about 60 % of strongly idiosyncratic variation. As
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(e) France & Italy
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(f) Germany & Italy
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(g) France & Germany & Italy
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Figure 2: Identification of the numbers of factors for the France-Germany-Italy Industrial Pro-

duction dataset. The four figures show he simultaneous plots of c 7→ Sc and c 7→ qTc,n needed for

this identification: (d) for the marginal Italian subpanel, ((e) and (f)) for the France-Italy and

Germany-Italy subpanels, and (g) for the complete three-country panel, respectively.
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already noted, France has no common components but the two shared with Germany and Italy

(one), and with Germany alone (one). Both Italy and Germany have a “national common

component. Italy’s only “non national” common factor is the strongly common one, which is

common to the three countries under study.

FRANCE GERMANY
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Figure 3: Decomposition of the France-Germany-Italy panel data into eight mutually orthogonal

components, with the corresponding percentages of explained variation.

7 Appendix.

7.1 Proof of Lemma 1.

Proof. Denote by Θ̄y the set (with Lebesgue measure zero) of θ values for which divergence

in Assumption A2(i) does not hold. Similarly define Θ̄z, and let Θ̄ := Θ̄y ∪ Θ̄z: Θ̄ also has

Lebesgue measure zero. Since ΣΣΣy;ny(θ) is a principal submatrix of ΣΣΣn(θ), a classical result (see

Corollary 1, page 293, in Lancaster and Tismenetsky 1985) implies that, for any n = (ny, nz)

and θ, λy;ny,i(θ) ≤ λn,i(θ), i = 1, . . . , ny. Since λy;ny ,qy(θ) diverges for all θ ∈ Θ as ny → ∞,
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so does λn,qy(θ). The same result of course also holds for the λz;nz,j’s. It follows that, for all

θ ∈ Θ, λn,max(qy,qz)(θ) diverges as min(ny, nz) tends to infinity.

Note that the same result by Lancaster and Tismenetsky (1985) also implies that, for all θ

and k, λn,k(θ) is a monotone nondecreasing function of both ny and nz and, therefore, either is

bounded or goes to infinity as either ny or nz → ∞.

Next, let us show that λn,qy+qz+1(θ) is bounded as min(ny, nz) → ∞, for all θ ∈ Θ.

For all θ ∈ Θ, consider the sequences of n-dimensional vectors ζζζnnn(θ) := (ζζζ ′y;ny
(θ), ξξξ′z;nz

(θ))′

which are orthogonal to the qy + qz vectors (p′
y;ny ,1(θ), 0, . . . , 0)

′, . . . , (p′
y;ny ,qy(θ), 0, . . . , 0)

′ and

(0, . . . , 0,p′
z;nz ,1(θ))

′, . . . , (0, . . . , 0,p′
z;nz ,qz(θ))

′. The collection of all such ξξξnnn’s is a linear sub-

space ΞΞΞnnn(θ) of dimension at least n− qy − qz. For any such ξξξnnn(θ), in view of the orthogonality

of ξξξy;ny
(θ) and py;ny,1(θ), . . . ,py;ny,qy(θ) (resp., of ξξξz;nz

(θ) and pz;nz,1(θ), . . . ,pz;nz,qz(θ)),

‖ξξξnnn(θ)‖−2ξξξ∗nnn(θ)ΣΣΣn(θ)ξξξnnn(θ)

= ‖ξξξnnn‖−2ξξξ∗y;ny
(θ)ΣΣΣy;ny(θ)ξξξy;ny

(θ) + ‖ξξξnnn(θ)‖−2ξξξ∗z;nz
(θ)ΣΣΣz;nz(θ)ξξξz;nz

(θ)

+‖ξξξnnn(θ)‖−2ξξξ∗y;ny
(θ)ΣΣΣyz;n(θ)ξξξz;nz

(θ) + ‖ξξξnnn(θ)‖−2ξξξ∗z;nz
(θ)ΣΣΣzy,n(θ)ξξξy;ny

(θ)

≤ 2
(

‖ξξξ
y;ny

(θ)‖−2ξξξ∗y;ny
(θ)ΣΣΣy;nyξξξy;ny

(θ) + ‖ξξξ
z;nz

(θ)‖−2ξξξ∗z;nz
(θ)ΣΣΣz;nzξξξz;nz

(θ)
)

≤ 2(λ2
y;ny ,qy+1(θ) + λ2

z;nz,qz+1(θ))

for all θ ∈ Θ and n = (ny, nz). Since λ2
y;ny,qy+1(θ) and λ2

z,nz,qz+1(θ) are bounded, for any

θ ∈ Θ, as min(ny, nz) → ∞, so is ξξξ∗nnn(θ)ΣΣΣn(θ)ξξξnnn(θ). Hence, for all θ ∈ Θ and n = (ny, nz),

ΞΞΞnnn (with dimension at least n − qy − qz) is orthogonal to any eigenvector associated with a

diverging sequence of eigenvalues of ΣΣΣn(θ). It follows that the number of such eigenvalues

cannot exceedqy + qz.

Summing up, for all θ ∈ Θ, the number of diverging eigenvalues of ΣΣΣn(θ) is finite—denote it

by q—and comprised between max(qy, qz) and qy + qz, as was to be shown. �

7.2 Proof of Proposition 5.

The proof of Proposition 5 is an extension of the proof of Proposition 2 in Forni et et al (2000).

We systematically denote byφφφy;ny,t, χχχy;ny ,t, . . . column ny-vectors of the form (φy;1t, . . . , φy;nyt)
′,

(χy;1t, . . . , χy;nyt)
′, . . . ; these vectors thus belong to the “exact” strongly common, the “exact”

y-weakly common, . . . spaces. The notation φφφn

y;t, χχχ
ny

y;t, . . . on the contrary is used for the

corresponding “reconstructions” (φn
y;1t, . . . , φ

n
y;nyt)

′, (χ
ny

y;1t, . . . , χ
ny

y;nyt)
′, . . . ; these vectors which

belong to the finite-(ny, nz) approximations of the same “exact” strongly common, “exact”

y-weakly common, . . . spaces. Similar notation is used for Znz,t.

With this notation, each observation Yny,t, for given n = (ny, nz), decomposes into

Yny,t = φφφy;ny,t +ψψψy;ny,t + νννy;ny,t + ξξξxy;ny,t = φφφn

y;t +ψψψn

y;t + νννn

y;t + ξξξnxy;t,

where

φn

y;it + νn

y;it = H∗
y;nz ,i(L)Znz ,t = H∗

y;nz ,i(L)(φφφz;nz,t +ψψψz;nz,t + νννz;nz,t + ξξξxz;nz,t).
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Hence, letting χyz;it := (φy;it + νy;it) and χyz;nz,it := H∗
y;nz,i(L)(φφφz;nz,t +ψψψz;nz,t), we have

[

χyz;it − χyz;nz,it

]

+
[

ψy;it − ψn

y;it

]

+
[

ξxy;it − ξnxy;it

]

= H∗
y;nz,i(L)

[

νννz;nz,t + ξξξxz;nz,t

]

. (7.25)

The outline of the proof is as follows. We first show (Lemma 2) that the spectral density of

H∗
y;nz,i(L)

[

νννz;nz,t+ξξξxz;nz,t

]

= H∗
y;nz ,i(L)ξξξz;nz,t tends to zero, θ-a.e. uniformly, as nz → ∞, which

implies that the corresponding process tends to zero in quadratic mean. The same therefore also

holds for the left-hand side of (??). Denote by Anz,i(θ) the spectral density of that right-hand

side, by Bnz ,i(θ), Cn,i(θ), and Dn,i(θ) the spectral densities of χyz;it − χyz;nz,it, ψy;it − ψn
y;it, and

ξxy;it − ξnxy;it, respectively (all these spectral densities are scalar). Noting that χyz;it − χyz;nz,it

is z-common, whereas ψy;it and ξxy;it are z-idiosyncratic, and that ψy;it is y-common whereas

ξxy;it is y-idiosyncratic, we have that

Anz,i(θ) = Bnz,i(θ) + Cn,i(θ) + Dn,i(θ)

−2ℜ(En,i(θ)) − 2ℜ(Fn,i(θ)) + 2ℜ(Gn,i(θ)) − 2ℜ(In,i(θ)) − 2ℜ(Jn,i(θ))

where En,i(θ), Fn,i(θ), Gn,i(θ), In,i(θ) and Jn,i(θ) are the cross-spectra of χyz;it − χyz;nz,it and

ψn
y;it, χyz;it−χyz;nz,it and ξnxy;it, ψ

n
y;it and ξnxy;it, ψy;it and ξnxy;it, and ψn

y;it and ξxy;it, respectively,

and ℜ(z) stands for the real part of a complex z ∈ C. Whe then show (Lemma 3) that those

five cross-spectra all pointwise converge to zero, θ-a.e., as min(ny, nz) → ∞. It follows that

Bnz,i(θ), Cn,i(θ), and Dn,i(θ) also pointwise converge to zero θ-a.e. min(ny, nz) → ∞; moreover

(Lemma 4), their norms are θ-a.e. bounded. These two facts jointly imply that the corresponding

processes tend to zero in quadratic mean, as min(ny, nz) → ∞. This concludes the proof.

Lemma 2. For all t, H∗
y;nz ,i(L)ξξξz;nz,t tends to zero in quadratic mean, with spectral densities

tending to zero pointwise θ-a.e.-uniformly as nz → ∞.

Proof. With the notation of Section 3, the filter H∗
y;nz,i(L) defined in (??) can be written as

H∗
y;nz,i(L) =

qz∑

k=1

λ−1
z;nz,k

(L)ΣΣΣY V ;ik(L)p∗
z;nz,k

(L),

where ΣΣΣY V ;ik(θ) stands for the (scalar) cospectrum of Yit and Vz;nz,kt. Then, in view of the

mutual orthonormality of eigenvectors,

|Hy;nz ,i(θ)|2 =
qz∑

k=1

|λ−1
z;nz,k

(θ)ΣΣΣY V ;ik(θ)|2 =
qz∑

k=1

|λ−1
z;nz ,k

(θ)|2|ΣΣΣY V ;ik(θ)|2

The Cauchy-Schwarz inequality implies that |ΣΣΣY V ;ik(θ)|2 ≤ |σii(θ)||λz;nz,k(θ)|. Hence,

|Hy;nz ,i(θ)|2 ≤ ci

qz∑

k=1

|λ−1
z;nz,k

(θ)|,

a quantity which, in view of Assumption A3(ii), tends to zero as nz → ∞. The claim then

follows from Forni et al (2000)’s Lemma 3 and the fact that ξξξz;nz,t is an idiosyncratic process.�
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Lemma 3. The cross-spectra En,i(θ) of χyz;it−χyz;nz,it and ψn
y;it, Fn,i(θ) of χyz;it−χyz;nz,it and

ξnxy;it, Gn,i(θ) of ψn
y;it and ξnxy;it, In,i(θ) of ψy;it and ξnxy;it, and Jn,i(θ) of ψn

y;it and ξxy;it tend to

zero pointwise, θ-a.e., as n → ∞.

Proof. Since χyz;it−χyz;nz,it is z-common, it admits a representation of the form
∑qz
j=1 anz ,ij(L)uz;jt,

where anz,ij(L), j = 1, . . . , qz are square-summable filters and uz;1t, . . . , uz;qzt are qz mutually

orthogonal white noise processes spanning the z-common space Hχ
z and providing for the Zjt’s

a dynamic factor representation of the form (??); the existence of such a representation (not its

unicity) is guaranteed by Proposition 1.

Contrary to χyz;it − χyz;nz,it, which belongs to the “exact” z-common space Hχ
z , ψ

n
y;it is a

“reconstructed” quantity, belonging to the orthogonal complement, Hξ
z;nz

, say, of the space Hχ
z;nz

spanned by the first qz dynamic principal components V nz
z;1t, . . . , V

nz
z;qzt of ΣΣΣz;nz(θ) (the spectral

densities λz;nz,1(θ), . . . , λz;nz,qz(θ) of which diverge). Associated with those dynamic principal

components, consider the normalized dynamic principal components W nz
z;1t, . . . ,W

nz
z;qzt, where

W nz

z;jt := λ−1
z;nz,j

(L)V nz

z;jt = λ−1
z;nz,j

(L)p∗
z;nz,j

(L)Znz ,t.

For any nz, the W nz

z;jt’s, clearly, are spanning the same reconstructed z-common space Hχ
z;nz

as

the V nz

z;jt’s themselves, but their covariance is a qz × qz unit matrix. The convergence of Hχ
z;nz

to Hχ
z is characterized in the following way (see Lemma 4 of Forni et al 2000). Projecting

Wnz
z,t := (W nz

z;1t, . . . ,W
nz
z;qzt)

′ onto Hχ
z yields

Wnz
z,t = Az;nz(L)(uz;1t, . . . , uz;qzt)

′ + Rz;nz,t,

where Az;nz(L) is an appropriate nz × nz matrix of square-summable filters and the residual

Rz;nz,t is orthogonal to Hχ
z . They show that the spectral density matrix of Rz;nz,t converges to

zero θ-a.e., and that Rz;nz,t itself converges to zero in quadratic mean, as nz → ∞. Moreover,

the projection onto Hχ
z;nz

of uz,t := (uz;1t, . . . , uz;qzt)
′ takes the form

uz,t = A∗
z;nz

(L−1)(W nz
z;1t, . . . ,W

nz
z;qzt)

′ + Sz;nz,t

where the spectral density of Sz;nz,t also converges to zero θ-a.e., and Sz;nz,t also converges to

zero in quadratic mean, as nz → ∞.

Turning back to the cross-spectrum En,i(θ) of χyz;it − χyz;nz,it and ψn
y;it, we thus have

χyz;it − χyz;nz,it = a′
i(L)uz,t = a′

i(L)A∗
z;nz

(L−1)Wnz
z,t + a′

i(L)Sz;nz,t,

with a′
nz,i(L) := (anz ,i1(L), . . . , anz ,iqz(L)). Because ψn

y;it is orthogonal to the space Hχ
z;nz

spanned by Wnz
z,t, the cross-spectrum En,i(θ) actually is the cross-spectrum between a′

i(L)Sz;nz,t

and ψn
y;it. Since a′

i(L)Sz;nz,t has spectral density a′
i(e

−iθ)ΣΣΣS

z;nz
(θ)ai(e

iθ) tending to zero θ-a.e. as

nz → ∞, and since the spectral density of ψn
y;it is dominated by that of Yit, the squared modulus

of En,i(θ) also tends to zero θ-a.e. as nz → ∞.

The argument for the cross-spectrum Fn,i(θ) of χyz;it−χyz;nz,it and ξnxy;it is entirely similar.
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As for the cross-spectrum Gn,i(θ) of ψn
y;it and ξnxy;it, note that, parallel to the decompositions

of H into products of mutually orthogonal subspaces H = Hχ × Hξ, H = Hχ
z × Hξ

z, H =

Hχ
y × Hξ

y, etc., based on the “exact” common/idiosyncratic components, we have, for each n,

decompositions of the form H = Hχ
n ×Hξ

n, H = Hχ
z;nz

×Hξ
z;nz

, H = Hχ
y;ny

×Hξ
y;ny

, etc., based

on the “reconstructed” common/idiosyncratic components. Here, ξnxy;it belongs to Hξ
n. On the

other hand, ψn
y;it was defined as

ψn

y;it := χ
ny

y;it − χnz

yz;it + νn

y;it = χ
ny

y;it − χnz

yz;it + χn

xy;it − χ
ny

y;it = χn

xy;it − χnz

yz;it.

Since, by construction, χn
xy;it ∈ Hχ

n, and χnz

yz;it ∈ Hχ
z;nz

, they both are strictly orthogonal to

ξnxy;it ∈ Hξ
n, and the cross-spectrum Gn,i(θ) is θ-a.e. equal to zero for any n.

The argument for the cross-spectra In,i(θ) of ψy;it and ξnxy;it, and the cross-spectra Jn,i(θ)

of ψn
y;it and ξxy;it is entirely similar. �

Lemma 4. The spectra Bnz ,i(θ), Cn,i(θ),and Dn,i(θ) are θ- a.e. bounded.

Proof. We successively consider Bnz,i(θ), Cn,i(θ),and Dn,i(θ).

(a) The spectral density Bnz,i(θ) of χyz;it − χyz;nz,it has squared modulus

|Bnz ,i(θ)|2 = a′
i(e

−iθ)ai(e
iθ),

which is bounded since the anz ,ij(L)’s are square-summable filters.

(b) In order to show that the spectral density Cn,i(θ) of ψy;it − ψn
y;it is θ-a.e. bounded, it is

sufficient to show that the spectral densities of ψy;it and ψn
y;it are. The spectral density

of ψy;it is dominated by the spectral density of Yit and therefore is θ- a.e. bounded in view

of Assumption A2. As for ψn
y,it, we have

ψn

y,it := χ
ny

y,it − φn

y,it = χ
ny

y,it − H∗
y;nz,i(L)Znz ,t + νn

y,it

= χ
ny

y,it − H∗
y;nz ,i(L)Znz ,t + (χn

xy;it − χ
ny

y;it)

= χn

xy;it − H∗
y;nz ,i(L)Znz ,t = K∗

y;n,i(L)Xn,t − H∗
y;nz,i(L)Znz ,t.

The spectral density of K∗
y;n,i(L)Xn,t is K∗

y;n,i(θ)Σn(θ)Ky;n,i(θ) =
q
∑

k=1

|pn,k,i(θ)|2λn,k(θ),

which is bounded by the spectral density ofXit (see Lemma 1 of Forni et al 2000). Similarly

as in the proof of Lemma 2, the spectral density of H∗
y;nz,i(L)Znz ,t writes

qz∑

k=1

[

ΣY V ;ik(θ)λ
−1
z;nz,k

(θ)
]

λz;nz,k(θ)
[

λ−1
z;nz,k

(θ)Σ∗
Y V ;ik(θ)

]

=
qz∑

k=1

|ΣY V ;ik(θ)|2λ−1
z;nz,k

(θ) ≤ qzσii(θ) ≤ qzci,

and therefore is also θ- a.e. bounded; θ- a.e. boundedness of Cn,i(θ) follows.
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(c) Turning to the spectral density Dn,i(θ) of ξxy;it − ξnxy;it, note that the spectral density of

ξxy;it, being dominated by that of Yit, is θ- a.e. bounded because of Assumption A2; as for

ξnxy;it, it is of the form Yit − χn
xy;it = Yit − K∗

y;n,i(L)Xn,t, where the spectral density of of

Yit is θ- a.e. bounded by Assumption A2, while the spectral density of K∗
y;n,i(L)Xn,t is θ-

a.e. bounded because Ky;n,i(L) has square-summable coefficients. The claim follows. �
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