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Abstract

To detect the quantity theory of money, we follow Lucas (1980) by looking
at scatter plots of filtered time series of inflation and money growth rates and
interest rates and money growth rates. Like Whiteman (1984), we relate those
scatter plots to sums of two-sided distributed lag coefficients constructed from
fixed-coefficient and time-varying VARs for U.S. data from 1900-2005. We
interpret outcomes in terms of population values of those sums of coefficients
implied by two DSGE models. The DSGE models make the sums of coefficients
depend on the monetary policy rule via cross-equation restrictions of a type
that Lucas (1972) and Sargent (1971) emphasized in the context of testing
the natural unemployment rate hypothesis. When the U.S. data are extended
beyond Lucas’s 1955-1975 period, the scatter plots mutate in ways that we
attribute to prevailing monetary policy rules.
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1 Introduction

Robert E. Lucas, Jr., (1980) described low-frequency ramifications of the quantity
theory of money that he took to hold across a class of models capable of describing
outcomes in the post WWII U.S. data, possibly including ones having very different
transient dynamics. He focused on low frequencies because he did not want faulty
estimates of transient dynamics to obscure the quantity theory. He verified that the
low-frequency characterizations approximated post WWII U.S. data from 1955-1975.

The virtue of relatively atheoretical tests ... is that they correspond
to our theoretically based intuition that the quantity theoretic laws are
consistent with a wide variety of possible structures. If so, it would be
desirable to test them independently and then, if confirmed, to impose
them in constructing particular structural models rather than to proceed
in the reverse direction. Lucas (1980, p. 1007)

Lucas’s quantity theoretic connections can be cast as unit restrictions on sums of
coefficients in two-sided distributed lag regressions of an inflation rate and a nominal
interest rate on money growth rates.! In most DSGE models, population values of
these sums of weights depend on all of the structural objects that govern transient
dynamics, including the monetary policy rule. In interpreting his empirical findings
“as a measure of the extent to which the inflation and interest rate experience of
the postwar period can be understood in terms of purely classical monetary forces,”
Lucas (1980, p. 1005) trusts that a monetary policy rule prevailed that, via the
cross-equation restrictions emphasized by Lucas (1972) and Sargent (1971, 1981),
makes the quantity theory reveal itself with a unit sum of distributed lag weights.
Implicit in Lucas’s calculation is an assumption that monetary policy allowed the
money supply to vary in ways that unleashed the quantity theory.

In this paper, we do three things. (1) We study whether Lucas’s low-frequency
findings extend beyond his 1955-1975 period to a much longer 1900-2005 period that
arguably witnessed alternative monetary rules. (2) In the context of two DSGE
models, one with flexible prices, the other with sticky prices, we study mappings

!See Whiteman (1984) and section 2.3 below. Lucas (1972) and Sargent (1971) had warned
against using a closely related object to test the natural rate of unemployment theory. A point of
Sargent (1972, 1973a) is that empirical manifestations of the natural unemployment rate hypothesis
and the Fisher equation are two sides of the same coin. In the context of the Great Moderation,
Benati and Surico (2008) show an example in which changes in reduced-form statistics are difficult
to interpret because they can be explained either by changes in predictable parts of shocks processes
and decision rules, including those for monetary policy, or by changes in variances of shocks.



from key parameters of monetary rules to the sums of distributed lag coefficients
associated with the two quantity theoretic propositions. (3) We invert the mappings
in part 2 to infer what our estimated sums of distributed lag coefficients imply about
prevailing monetary policies.

2 Revisiting Lucas’s method and findings

For U.S. data over 1955-1975, Lucas (1980) plotted moving averages of inflation and
a nominal interest rate on the y axis against the same moving average of money
growth on the z axis in order to pursue

Y

... the hunch that identifying long-run with “very low frequency” might
isolate those movements in postwar inflation and interest rates which can
be accounted for on purely quantity-theoretic grounds. Lucas (1980, p.
1013)

Lucas chose a moving average that isolates low-frequency components. We present
outcomes from Lucas’s filter in our figure 1, which uses M2, the GDP deflator, and the
Federal Funds rate instead of M1, the CPI, and the treasury bill rate used by Lucas.
(In section 3.1, we describe our data, which differ from Lucas’s in ways that allow us
to study a longer time period.) The figure contains scatter plots of our raw data in
the top panels and moving averages of the raw data in the bottom panels. Following
Lucas, we plot only second quarter data. The bottom panel shows the 45 degree line
as well as two simple regression lines through the filtered data, one running ‘y on z’,
the other ‘z on y’.2 Lucas regards low-frequency versions of two quantity-theoretic
propositions as asserting that both scatter plots should approximate a 45 degree
line. Those assertions are more or less borne out by our filtered data, which seem
to wander around lines parallel and below the 45 degree line. For comparison, we
report analogous plots for Lucas’s measures of inflation and money growth in figure
27 in appendix A.

To appreciate what inspired Lucas to cast the quantity theory in this way, we
describe some mechanical features of Lucas’s filter and, following Whiteman (1984),
how Lucas’s scatter plots relate to the sum of weights in a two-sided distributed lag.

2These regression lines use all of the data, not just second-quarter data.
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2.1 Lucas’s low-pass filter

For a scalar series x; and 3 € [0,1), Lucas (1980) constructed moving averages

_ (1-p)
1= =26 (1= B)

x (0) = « i Bl with «

k=—n

(1)

Choosing « according to this formula makes the sum of weights equal one. The
Fourier transform of a sequence {f;} is f(w) = > po__ fre”™*. The squared Fourier
transform of the two-sided sequence {a*}7_ s

(1—=0)" (1 =2 =28 cos ((n+ 1) w) + 2 "2 cos (nw))”
(=@ =25 (1= F) (1+ 5 -28cos()®

Using the value f = .95 featured in Lucas’s graphs that best confirm the quantity
theory, figure 2 plots |f(w)|? for n = 8,16, and 100. Because the spectral density
of the filtered variable is |f(w)|? times the spectral density of the original variable,
application of Lucas’s moving average filter with § = .95 achieves his intention of
focusing on low-frequency variations.?

[f(w)]* =

2.2 Cross-equation restrictions in a plain vanilla model

To illustrate mappings from structural parameters to slopes of scatter plots, consider
the following simple macroeconomic model:*

T = (1= A + AEm1 + 06

pr1 = (L= p)d+ pps + opérin
Rt = T+Et7rt+1+O-R€t>

where 7; is inflation, p; is money growth, r + ore; is the one-period real interest
rate, R; is a one-period nominal interest rate, and ¢ is an i.i.d. 3 x 1 random vector.
The first equation is Sargent’s (1977) rational expectations version of Phillip Cagan’s
(1955) demand function for money with A € (0,1) parameterizing the response of

3For a presentation of the classical filtering theory used in this paper, see Sargent (1987, ch XI).

4Though the particular example differs, the message of this subsection was also asserted by
Lucas (1972), Sargent (1971), and King and Watson (1994). Sargent (1973b) and Barsky (1987)
have applied versions of our plain vanilla model to interpret the Gibson paradox. Our plain vanilla
model conveys the message of the three time-invariant examples of cross-equation restrictions in
the second part of Lucas (1976). The first part of Lucas (1976) is about random coefficients models
that account for instabilities over time.
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Figure 2: Squared Fourier transform of Lucas’s filter with g = .95 for n = 8,16, and 100.

the demand for real balances to the nominal interest rate. The second equation is

an exogenous law of motion for money growth. The third equation is the Fisher
equation. A rational expectations equilibrium has representation

1—A
™ = ¢+<1_)\p)(ﬂt—¢)+0n€t
R, = _|_¢_|_ i ( _(b)_|_
t = T P 1—>\p M OREt+1,

two equations that are linear least squares projections of m, and R;, respectively, on
Mt

The equilibrium displays two sharp quantity theory predictions: cross-economy
variations in the uncondition mean of money growth ¢ show up one-for-one in cross-
economy variations in unconditional means of 7 and R. However, these say nothing
about the slopes of scatter diagrams of filtered data.

Because the equilibrium representation expresses m; and R; directly as linear least
squares regressions on contemporaneous 7, it immediately follows that for this model
the slopes of Lucas’s scatter plots on filtered data are, for any filter f, just the slopes

of these regressions, namely, 11_;/\’\[) for m on p and p ﬁ for R on p. The m on p



slope is unity if A = 0 (no interest elasticity and a Cagan money demand function
with no response to expected inflation) or if p = 1 (money growth takes a random
walk). The R on p slope is 1 if p = 1.

If we had specified the evolution equation for u; to be a higher order univariate
autoregression or some rule feeding back on R and 7, we would have to work harder
to find the population values of the slopes of Lucas’s scatter plots. We do that
in section 5, where we show that the message of this section comes through in two
DSGE models: the slopes of Lucas’s scatter plots are in general functions of structural
parameters, prominently including ones that describe the evolution of money growth.
If one succeeds in injecting into these DSGE models a highly persistent and highly
volatile money growth process, the neutralities that are built into them mean that
effects of money growth variations should surface mostly in variations in inflation and
interest rates, while letting real variables live lives of their own. We shall confirm
this hunch in subsection 5.1.5 by watching how measures of volatility and persistence
vary with parameters of the monetary policy rules.

2.3 An equivalent distributed lag procedure

Whiteman (1984) observed that fitting straight lines through scatter plots of moving
averages is an informal way of computing sums of weights in long two-sided dis-
tributed lag regressions. In this subsection, we shall follow a somewhat different
route to Whiteman’s result but will return to his argument at the end.

Let {y;, 2:} be a bivariate jointly covariance stationary process with unconditional
means of zero and consider the two-sided infinite least-squares projection of y; on
past, present, and future z’s:

Y = Z hjzi_j + € (2)
j=—00
where ¢; is a random process that satisfies the population orthogonality conditions
EEtZt_j =0 VJ

Let the spectral densities of y and z be denoted S,(w) and S,(w), respectively, and
let the cross-spectral density be denoted S,.(w). Let the Fourier transform of {h;}
be h(w) =372 __ hje”™’. Then

j=—o00

hw) = (3)




and the sum of the distributed lag regression coefficients is

> h =) = g @)

Where g, = 377°  fijyejand 2z, = 377 fiz—j, the regression coefficient by of

Yy on Z; is
cov (T, Z) _ % - ‘f(w)PSyZ(W)dW
varGa) o [ @RS (@)

Evidently, (5) implies that for g, z; constructed by applying a filter f(w) that puts

by = (5)

most power near zero frequency and for a 5;%’:((5)) that is sufficiently smooth near
w=05
S:(0)

Remark 1. Comparing formula (6) to formula (3) evaluated at w = 0 shows that

The population R? of a regression of j on 7 is

s cov(@, %)
= var(Zz; )var(i;) (7)

which, with a filter f(w) that puts most power near zero frequency and a
is sufficiently smooth near w = 0, implies

Syz(w)
& ) that

Syz(0)”

B~ 5 5,0 )

The low-frequency relationship between inflation and money growth is better
identified when there is more variation in the low frequency components of money
growth. Government policies that influence the variance of filtered money growth
thus affect an econometrician’s ability to detect Lucas’s low-frequency manifestations
of the quantity theory.

Whiteman’s (1984) used a different argument than we have to show that the
slope of the line drawn between moving averages of y and z can be regarded as
an estimator of the sum of distributed lag coefficients Z;’;_oo h;. In particular,

Syz(w) s

) 8 associated

®Appendix E evaluates the quality of approximations (6) in the context of
with two DSGE models.



appealing to Sims’s (1972a) approximation formula enabled Whiteman to point out
that Lucas’s low-frequency regression coefficient is an estimator of Z;’ioo h; that is
robust to misspecification of lag lengths in the projection equation (2).

Formula (5) allows us to formalize Lucas’s low-frequency characterizations of the
two quantity theoretic propositions by investigating how the parameters of a DSGE
model, including the monetary policy rule, influence the sum of weights in (2).

2.4 Mappings from VAR and DSGE models to h(0)

- oo Iy by estimating vector au-

toregressions (VARs), then interpret them in terms of two log-linear DSGE models.®
Whether the sums of coefficients reveal Lucas’s frequency-domain expressions of the
two quantity-theoretic propositions depends on the prevailing monetary policy.

Time-invariant versions of our VARs and of our log-linear DSGE models can both
be represented in terms of the state space system

We construct estimates of sums of coefficients >

Xiy1 = AXy+ BWi,
Yoo = CX,+DWy (9)

where X; is an nx x 1 state vector, W, is an ny x 1 Gaussian random vector
with mean zero and unit covariance matrix and that is distributed identically and
independently across time, Y; is an ny X 1 vector of observables, and A, B,C, D are
matrices, with the eigenvalues of A being bounded strictly above by unity (A can be
said to be a ‘stable’ matrix). Elements of the matrices A, B, C, D can be (nonlinear)
functions of a vector of structural parameters n. Let vy, 2; be two scalar components
of Y, and consider the two-sided infinite regression (2). As noted above, the Fourier
transform of the population regression coefficients is h(w) = > e oo hje™™7 and the
sum of coefficients is evidently i~z(0) We seek a mapping to iL(O) from the structural
parameters 7 underneath A(n), B(n),C(n), D(n).
The spectral density matrix of YV is

Sy(w)=C(I — Ae™™)'BB'(I — A'¢™)~'C" + DD'. (10)

SRather than estimating ﬁ(l) by first estimating a VAR as we do, another worthwhile strategy
would be to apply the dynamic ordinary least squares or the dynamic generalized least squares
estimator of Stock and Watson (1993) to estimate h(1) as the simple regression coefficient of g
on Z;. We have yet to compare the sampling distribution of such estimators to the posterior
distributions that we describe below. Procedures of Phillips (1991) can also be applied to estimate
h(1) viewed as a regression coefficient.



The spectral density matrix is the Fourier transform of the sequence of autocovari-
ance matrices EY;Y/ ;,j = —o0,...,—1,0,1,..., +00 whose typical element can be
recovered from Sy (w) via the inversion formula

1 " Wi
BV, = %/_W Sy (w)e™ du. (11)

The Fourier transform of the population regression coefficients i (w) can be com-
puted from formula (3) where S, . (w), the cross spectrum between y and z, and 5, (w),
the spectrum of z, are the appropriate elements of Sy (w).

2.5 DMeasures of volatility and persistence

In section 5, we shall see that within two examples of DSGE models, Lucas’s frequency-
domain expressions of the two quantity-theoretic propositions require that monetary
policy put sufficient volatility and persistence into money growth, inflation, and the
nominal interest rate. As a measure of persistence in a univariate time series y, we
follow Cogley and Sargent (2001) in using the normalized spectrum at zero:

5y(0)
1 T 9
o f—7r SZ/ ((A))du)
where the denominator is the unconditional variance of y. For a first-order univariate

autoregression y;11 = py; + €41, where {€1} is 1.i.d. with mean zero and finite
variance

persist, = (12)

ersist —ﬂ
p y_l_p

which we plot in figure 3 for p € [0, .95].

3 A picture show (then some regressions)

In this section, we present the data, report Lucas’ representation of the low frequency
relationships between money growth and inflation, and money growth and the nom-
inal interest rate. Then we compute sums of distributed lag coefficients by applying
formulas (3) and (10) to bi-variate and multi-variate VARs.

10
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Figure 3: Persistence of a first-order a.r. process with a.r. parameter p, as measured by
normalized spectrum at zero frequency.

3.1 Data

We use quarterly U.S. data. Real and nominal GDP (M2 stock) are available from
the FRED database since 1947Q1 (1959Q1). Prior to that, we apply backward the
growth rates on the real GNP and M2 series constructed by Balke and Gordon
(1986).” As for the nominal short-term interest rate, the Federal funds rate is avail-
able from the FRED database since 1954Q3. Prior to that, we apply backward the
growth rates on the Commercial Paper rate 6 month constructed by Balke and Gor-
don (1986). Figure 4 displays year-on-year first differences of logs of raw variables.
Figure 5 reports moving averages of the raw data using Lucas’s g = .95 filter. The
shaded regions in these two filters isolate the 1955-1975 period that Lucas focused
on.
These figures reveal some striking patterns.

e Figure 4 reveals that for money growth, inflation, and output growth, but not
for the interest rate, volatility decreased markedly after 1950.

e The filtered data in figure 5 indicates that the shaded period that Lucas studied
exhibit persistent increases in money growth, inflation, and the interest rate.
These features let Lucas’s two quantity-theoretic propositions leap off the page.

e For the filtered data, the shaded area observations are atypical.

"As for M2, Balke and Gordon (1986) build upon Friedman and Schwartz (1963).

11
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Figure 6: Lucas’ filter over the full sample, 2nd quarter

3.2 More scatter plots

Figure 6, which is best viewed in color, shows scatter plots of 2nd quarter observations
of filtered series over the entire period of our data sample from 1900-2005. Different
colors indicate subperiods 1900-1928, 1929-1954, Lucas’s subperiod of 1955-1975, and
1976-2005. Figures 7, 8, and 9 show scatters for subsamples alone from 1900-1928,
1929-1954, and 1976-2005. These are to be compared with figure 1 for Lucas’s period
1955-1975.

These graphs reveal the following patterns in our eyes. The scatters of points
can be said to align broadly with the two quantity propositions in the 1955-75 and

14



annual rate of inflation

annual rate of inflation

1900-1928

O

e

0

0O
NS
@
®

TR 10 20 3

annual rate of money growth

B=0.95 Z
45 line
Ton Am N
| —— —Amonm /
/
v
/.
0
i
/.
7
/
/
/
/
-2 0 2 4 6

annual rate of money growth

short-term interest rate

LUCAS FILTER, 190

short—term interest rate

201

15¢

10t

[$2]

-10¢t

-15

-15

“0 & %0 %%

-5 0 5 10 15
annual rate of money growth

-10

0-1928

B=0.95
45 line
R on Am

[ —— —AmonR -

20

-2 0 2 4
annual rate of money growth

Figure 7: Lucas’ filter over the sub-sample 1900-1928, 2nd quarter



annual rate of inflation

annual rate of inflation

1929-1954

307 307
25} 251
Q
20 © 201
15} @) g 15t
Q
10t &0 £ 10t
O £
5| 8 @) O @) g 5l
@0) &
of O(SQO o © 2 ot o
® © o
_5 F _5 L
_10 L L L J _10 L L L J
-10 0 10 20 30 -10 0 10 20 30
annual rate of money growth annual rate of money growth
LUCAS FILTER, 1929-1954
61 0o B=0.95 6} O B=0.95
45 line 45 line
4t on Am - % 4t R on Am
— — —-Amonm o g .- b — — —AmonR
- 0]
2t - _ 70 e 8 g 2
RS £ = EE 7o
ol ] E ol mEc-Emo
- Q -
g - T
-2t 0O, 2 -2t
_ 2]
-4F -4+
-4 -2 0 2 4 6 -4 -2 0 2 4 6

annual rate of money growth

annual rate of money growth

Figure 8: Lucas’ filter over the sub-sample 1929-1954, 2nd quarter

16



1976-2005

15¢ 15¢
O
c 2
8 ©
& 10t o g 10+ O @
c
o 9] O
g % S OO <§
© O £
= O 5 O © O
] - o O
2 51 L 5¢ 8 O
o
- °9° 9 © § |07 o °©
000 g o %
0 L L J O L L J
0 5 10 15 0 5 10 15
annual rate of money growth annual rate of money growth
LUCAS FILTER, 1976-2005
5¢ ' S5t
x B=0.95 . x B=095 ></
al 45 line / 4 45 line X7
5 Ton Am / % R onAm > X
kS — — —Amonm 7 b — — —AmonR / ¢
E 3] / Q3 / /
kS / L X s/ X
° 7 £ X XK
T /s X £ /
It / g 2t X rbox
S / X I x ¥ s X
£ VN 2 e
© 1 X x X @ 1t X X
KX oK / X
/ /
0 : : : : ‘ 0 : : : : ‘
0 1 2 3 4 5 0 1 2 3 4 5
annual rate of money growth annual rate of money growth
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1976-2005 subperiods: the points adhere to lines that at least seem to be parallel
to the 45 degree line. But for the other two subperiods there are deviations. The
inflation on money growth scatter is steeper than 45 degrees during 1900-1928 and
flatter during 1929-1954; while the interest on money growth scatter is flatter than
the 45 degree line during 1900-1928 and negatively sloped during 1929-1954.8 We
enter these impressions in the appropriate places in table 1 and move on to other
entries in the table.

8We obtain similar results using the band-pass filter proposed by Christiano and Fitzgerald
(2002) and also employed by Benati (2005), with frequency above either eight or twenty years.
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Table 1: Regressions on 3 = .95-filtered data, 1900-2005

Data - T1: M2; P: GNP /GDP deflator; R: 6-month Commercial paper rate/federal funds rate
mon Am R on Am

median iL(O) median iL(O)
Lucas graph from VARs Lucas graph from VARs
slope  OLS | (2-,4-variate) | slope OLS | (2-,4-variate)
full sample <1 .08 (58, 56) ~0 .07 (28, 23)
1900-28 | >1 1.13 | (1.31, 1.21) ~0 .06 (.06, .05)
1929-54 | <1 .39 (.43, .41) <0 -.08 (-.05, -.06)
1955-75 | ~1 .86 (1.02, .90) ~1 .62 (.70, .78)
1976-05 | <1 A48 (.75, .55) ~1 .75 (1.05, .73)

3.3 Regressions on filtered data

Table 2 reports regression coefficients of y on x and x and y for filtered data using
different values of 3. We want to focus mainly on the § = .95 outcomes that
contribute entries to table 1.

3.4 Estimates of h(0) from time-invariant VARs

In this section, we report three sets of fized coefficient Bayesian VARs (BVARs) over
the full sample as well as for our four sub-samples. The three families of BVARs are:

1. a bivariate BVAR in money growth and inflation
2. a bivariate BVAR in money growth and the nominal interest rate

3. a BVAR in money growth, inflation, nominal interest rate and output growth.

Following the procedure developed by Litterman (1986) and extended by Kadiyala
and Karlsson (1997), we assume that the parameters of a VAR of order p are dis-
tributed as a Normal inverse Wishart, centered around the least square estimates of
the VAR augmented with dummy observations for the priors.’

9The prior on the autoregressive parameters is set to zero with tightness 1/p? for the coefficient
on the first (own) lag of each variable i and 6;/(6;p?) with j # i for all the others. The scale factor

18



Table 2: Regressions on filtered data, 1900-2005

Data - T1: M2; P: GNP /GDP deflator; R: 6-month Commercial paper rate/federal funds rate

7 on Am Amon R on Am Am on R

g .95.8 5 0 .95.8 5 0 95 .8 5 0 .95 .8 5 0

full sample | .58 .57 .56 .54 | .89 .84 .73 .64 | .07 .05 .02 .01 |.18 .15 .09 .04
1900-28 | 113 1.18 1.21 1.15| .67 .65 .61 .57 | .06 .04 .00 -0l | 216 1.27 -01 -.41
1929-5/ | 39 39 .37 34| 1.48 1.33 1.02 .84 | -.08 -07 -06 -.06|-68 -7.1 -7.3 -T2
1955-75 | .86 69 36 22| 61 56 .41 31| .62 45 13 .00 | .89 71 24 .01
1976-05 | 48 45 38 32| .65 .59 .50 .46 | .75 .74 .66 .56 | .45 .43 .37 .32

Note: numbers in bold are not statistically different from one at the 10% significance level, HAC covariance matrix

We use 80000 Gibbs sample replications, discard the first 60000 as burn-in, and
then retain one every ten to minimize the autocorrelation across retained draws. For
the sake of comparison with the results from the time-varying VAR below, we set
p = 2 and retain those draws for which the roots of the associated VAR polynomial
are not inside the unit circle.

For each BVAR, we compute h(0) using formulas (10) and (4). Posterior distri-
butions of hy am(0) and hg Ay (0) for the full sample 1900-2005 are plotted in Figure
10. The positive (negative) ordinate values report the posterior distribution from the
bivariate (multivariate) VAR. The posteriors indicate substantial uncertainty about
the h(0)’s. The probability mass associated with h. am,(0) = 1 is zero according to
the bivariate VAR, whose median estimate is 0.58. The median values for the money
growth-interest rate h(0) are around 0.25 in both VARs with the central 68% (90%)
mass of the distribution within the band [0, 0.55] ([—0.2,0.84]). .

The sub-sample results for the sum of distributed lag coefficients h(0) between
money growth and inflation (money growth and the nominal interest rate) are re-
ported in Figure 11 (Figure 12). The h(0)’s estimated using the multivariate VARs
are typically characterized by less uncertainty than the bivariate VAR counterparts.
In Figure 11, the value of one is inside the 68% posterior bands for the samples
1900-28 and 1955-75, and, only for the bivariate VAR, for the period 1976-2005 too.
The distributions for the later two sub-periods, however, have fatter tails than the
distributions for the earlier sub-periods.

6, is equal to the sample variance of the residuals from a univariate autoregressive model of order p
for the variable i (see Sims and Zha, 1998). The prior on the intercept is diffuse. In appendix B, we
report the implied prior distributions and the posterior distributions for hr am(0) and kg am(0).
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Figure 10: Full sample, 1900-2005. Posterior distributions of the long-run coefficients:
multivariate vs. bivariate VAR

As for the sums of coefficients /(0) in the two-sided distributed lag of the nominal
interest rate on money growth, figure 12 shows a striking difference between the pre-
and post-1955 periods. In the sample 1900-1928, for instance, the value of zero
is inside the 68% posterior bands. During the years between 1929 and 1955, the
probability mass associated with negative values of hg am(0) is 98%. In contrast, the
median values for the period 1955-75 (1976-2005) are 0.78 (0.73) for the multivariate
VAR and 0.70 (1.05) for the bivariate VAR and a value of one is always inside the
68% interval.

4 Evidence from a time-varying VAR

In this section, we use a time-varying VAR with stochastic volatility to construct
‘temporary’ estimates of E(O) that vary over time. There are at least two good reasons
to allow for such time variation. First, the dynamics of money growth, inflation,
nominal interest rate and output growth have exhibited substantial instabilities.
Second, our long sample arguably transcends several monetary regimes, starting with
a Gold Standard and ending with the fiat standard supported by a dual mandate to
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Figure 11: Posterior distributions of the izmAm(O) coefficient between money growth and
inflation: multivariate vs. bivariate VAR
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Figure 12: Posterior distributions of the ﬁR,Am(O) coefficient between money growth and
the nominal interest rate: multivariate vs. bivariate VAR
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promote high employment and stable prices that succeeded Bretton Woods. Before
presenting details of the statistical model in subsection 4.2, we hurry to state the
punch line.

4.1 Time-variation in sums of coefficients

In Figure 13, we report as red solid lines the central 68% posterior bands of the
following object constructed from our time-varying VAR:

. Syt (0)
b0 = )

(13)
namely, the temporary cross-spectrum divided by the temporary spectrum at ¢, using
the smoothed estimates of the time-varying VAR conditioned on the dataset 1,...,T.
We compute the temporary spectral objects by applying formulas (10) and (4) to
the (¢,T") versions of A, B,C, D.

We view equation (13) as a local-to-date t approximation of equation (4). Ide-
ally, when extracting the low-frequency relationships, we should also account for the
fact that the parameters drift going forward from date ¢. But this is computation-
ally challenging because it requires integrating a high-dimensional predictive density
across all possible paths of future parameters. Adhering to a practice in the learning
literature (referred to as ‘anticipated-utility’ by Kreps, 1998), we instead update the
elements of 6;, H, and A; period-by-period and then treat the updated values as if
they would remain constant going forward in time.

For comparison, we also report as blue dotted (solid) lines the 68% posterior
bands (median values) based on the estimates from a fixed-coefficient 4-variate VAR
for money growth, inflation, the nominal interest rate, and output growth over the
full sample.

The medians of the distributions of the A(0)s display large amounts of time vari-
ation, especially for the money growth and the nominal interest rate. The posteriors
reveal substantial uncertainty about the h(0)s, however, and in some episodes like
the 1970s, h(0) values of zero and one are simultaneously inside the posterior bands
for both panels. The most recent twenty years as well as the 1940s are character-
ized by the lowest values of the median estimates and the smallest uncertainty. The
1970s, in contrast, are associated with the highest values and the largest uncertainty.

It is worth noting that the median estimates of h; am(0) and hgam(0) based
on the fixed coefficient multivariate BVAR for the full sample are 0.55 and 0.25
respectively. These are probably similar to the values that one would obtain by
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Figure 13: Median and 68% central posterior bands for }N‘Lm Am/(0) and h R,Am (0) based on
a fixed-coefficient VAR over the full samples and a VAR with time-varying coefficient and
stochastic volatility.
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averaging the time-varying iLyx,ﬂT(O)’s over the full sample as well as across Gibbs-
sampling repetitions.

As for the unit coefficients associated with the quantity theory of money, the
value of one is outside the posterior bands for most of the sample, with the exceptions
typically concentrated in the 1970s. A comparison between the results based on the
time-varying VAR and the straight lines from the fixed-coefficient VAR over different
sub-samples reveal that the two models can yield very different results. Notice that
in each sub-sample, estimates of h(0) based on the fixed-coefficient model (reported
in the previous section) appear to give disproportionate weight to the episodes whose
71(0)’8 seem outliers when viewed through the lens of the time-varying estimates.

4.2 A model with drifting coefficients and stochastic volatil-
ities

We now describe the time-varying statistical model underlying the results presented

above. The model is a VAR(p) with drifting coefficients and stochastic volatility:

Yi=Boy+ B+ ..+ ByYi,+ e = X,0, + ¢ (14)

where X, collects the first p lags of Y}, 6; is a matrix of time-varying parameters, ¢
are reduced-form errors and Y; is defined as Y; = [Amy, 7, Ay, R;]. The operator
A denotes a first log difference; m,; denotes the money, m; is the inflation rate, the
first difference of the log of the GDP deflator, p;; and y; is real GDP. The short-term
nominal interest rate is R;. Following Cogley and Sargent (2005), we set the lag order
p=2. The time-varying VAR parameters, collected in the vector 6;, are postulated
to evolve according to:

p(et | 01, Q) = I(‘gt) f(et | 01, Q) (15)

where (6;) is an indicator function that takes a value of 0 when the roots of the
associated VAR polynomial are inside the unit circle and is equal to 1 otherwise.
[0 | 0,-1, Q) is given by

et = et—l + ™ (16)

with 7, ~ N(0, Q). The VAR reduced-form innovations in (14) are postulated to
be zero-mean normally distributed, with time-varying covariance matrix €); that is
factored as

Var(et) = Qt = At_lHt(At_l)/ (17)
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The time-varying matrices H; and A; are defined as:

hig 0O 0 0 1 0 0 0
. 0 h27t 0 0 _ Qo1 ¢ 1 0 0
He = 0 0 h3,t 0 A= Q316 (321 1 0 (18)
0 0 0 hyy g1y Oy gy 1
with the elements h;; evolving as geometric random walks:
Inh;y =Inh;;—1+ vy (19)
Following Primiceri (2005), we postulate:
ap = Qg1 + Tt (20)
where oy = [a214, 314, .., O3]/, and assume that the vector [uj, n;, 7/, v;]' is
distributed as
Uy I, 0 0 O o2 0 0 0
it . 10 @ 0 0 10 g 0 0
T N (O, V) , with V= 0 0 S 0 and 4= 0 0 O'g 0 (21)
2 0 0 0 Z 0 0 0 o3

where u; is such that ¢, = A, 1Ht%ut.

The model (14)-(21) is estimated using Bayesian methods (see Kim and Nelson
(2000)). Full descriptions of the algorithm, including the Markov-Chain Monte Carlo
(MCMC) used to simulate the posterior distribution of the hyperparameters and the
states conditional on the data, are provided in a number of papers (see, for instance,
Cogley and Sargent, 2005, and Primiceri, 2005) and will not be repeated here.

Even though one cannot characterize analytically the joint posterior distribution
of the model parameters, it is possible to construct a Markov chain whose invariant
distribution is the posterior. The MCMC procedure draws from the marginal density
of a set of random variables j, conditional on some realizations for another set of
random variables 7, and then drawing from the marginal distribution of ¢ conditional
on the realizations of j in the previous step. Under some assumption, the chain
converge to an invariant density that equals the desired posterior density.

To calibrate the priors for the VAR coefficients, we use a training sample of twenty
five years, from 1875Q1-1899Q4. The results hereafter, then, refer to the period
1900Q1 to 2007Q4. The elements of S are assumed to follow an inverse-Wishart
distribution centered at 1072 times the prior mean(s) of the relevant element(s)
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of the vector «; with the prior degrees of freedom equal to the minimum allowed.
The priors for all the other hyperparameters are borrowed from Cogley and Sargent
(2005). We use 80000 Gibbs sampling replications, discard the first 60000 as burn-
in, and then retain every tenth one to minimize the autocorrelation across retained
draws. In Appendix C, we show that the posterior moments vary little across subsets
of retained draws, providing some evidence of convergence.

4.3 Macroeconomic volatility
We measure volatilities by computing the temporary variances

1 s

2r ) .

S pr(w)dw

where as in Cogley and Sargent (2005), S,4r(w) is the spectral density formed by
applying formula (10) with the time ¢ estimates of the state-space matrices formed
using all the data from ¢t = 1,...,7T, which in our case span the period 1900-2007.

The results for the median estimates and the 68% central posterior bands are
reported in Figure 14. Money growth and inflation were very volatile towards the
end of 1910s. WWI was associated with output volatility and moderate interest rate
variation. The volatilities of money growth and output growth exhibited their highest
values in the intra-wars sample, which was dominated by the Great Depression and
Roosevelt’s New Deal. Inflation was volatile too, though not at the levels seen during
WWI. After the peaks associated with WWII, all series experienced a significant
decline in volatility that lasted until the 1970s.

The years between 1973 and 1984 were characterized by the largest fluctuations
since the end of WWII. Unlike the first part of the of the twentieth century, however,
the variation in money growth and inflation coincided with the highest sample value
for the interest rate volatility. When judged against a broader historical perspective,
the so-called Great Moderation in output in recent years seems less impressive. Since
the second half of the 1980s, inflation and output growth have been most stable. The
volatilities of money growth and interest rate have also been limited by historical
standards, with a common local peak in the early 2000s.

4.4 Innovation standard deviation and stochastic volatility

Appendix D reports measures of stochastic volatility constructed from our time-
varying VAR. These indicate a significant decline in the variance of forecast errors
for money growth, inflation, output growth and the interest rate. The flip-side of
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Figure 14: Standard deviations of the variables
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the reduction in the innovation variances (but not the flip-side of the reduction in
the variances of the series) is that the forecasts based on a naive model such as the
unconditional mean have become relatively more accurate than the forecasts based
on more sophisticated models such as VARs.'°

A similar picture emerges from Figure 32, which plots the stochastic volatility of
each variable j computed as the square root of h; ;.

4.5 Persistence

Figure 15 shows the evolution of persistence for the four variables in the VAR as
measured by the temporary normalized spectra

Sx,t\T(O)

% firw Sx’ﬂT(W)dw ‘

(22)

Four findings stand out. First, there seems to be little variation in the persistence of
money growth. Second, inflation persistence experienced a substantial and unprece-
dented increase during the 1960s and the 1970s. Third, the highest persistence for
the nominal interest rate occurred around 1940, which is not surprising after we have
observed the behaviour of the series shown in Figure 4. Fourth, the persistence for
output growth appears relatively stable, with possible peaks both in our estimates
of persistence and in the uncertainty surrounding these estimates towards the end of
the 1970s.

5 Two DSGE models

... we have specific theoretical examples exhibiting both quantity-theoretic
laws in clear, exact form, and others which suggest possibly important
qualifications. This is all we can ever hope for from our theory; some
strong clues as to what to look for in the data; some warnings as to
potential sources of error in these predictions. Lucas (1980, p. 1006)

This section applies formulas (10) and (4) to study how theoretical values of the
sums of coefficients fzmAm(O) and sz,Am(O) depend on monetary policy rules in two
DSGE models. The first model has completely flexible prices while the second has
sticky prices. If monetary policies are conducted in particular ways, it is possible for

10See D’Agostino, Giannone and Surico (2006) for a discussion of the link between (the breakdown
in) predictability and the Great Moderation.
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Lucas’s low frequency characterizations of the two quantity theory propositions to
come through in both models. But if policies are conducted in other ways, Lucas’s
characterization does not prevail.

We posit more general monetary policies than did Lucas and Whiteman, both of
whom assumed that money growth is econometrically exogenous in the sense of Sims
(1972b). We consider two types of monetary policy rules, each of which, depending
on parameter values, allows extensive feedback from endogenous variables to money
growth.!! The first is a money growth rule according to which the central bank sets
the growth rate of money in response to movements in inflation and output growth.
The second is a Taylor rule according to which the central bank sets the short-term
nominal interest rate in response to movements in inflation and output growth.

5.1 A neoclassical model

The competitive equilibrium of Lucas’s (1975) monetary business cycle model can
be expressed in the state-space form (9). A parameter vector n implies a 4-tuple of
matrices A(n), B(n),C(n), D(n). We are interested in how monetary policies affect
population values of the sums of distributed lag coefficients of inflation on money
growth and the short term interest rate on money growth.

5.1.1 The structure

The structural equations of Lucas’s model are:

Ty = —0rky

Or Eyriyr + 0 By + Ok + exg

Amy T+ 2 — T B AT — T EAT L+ TRAK ey
Yy arky +1In(Zy), Ay = apAky + 2
Ry = r+ Eym

ki

N N N N /N
[\)
ot

N N N N N

where 7, ki, Amy, r; and R, are inflation, the capital stock, nominal money growth,
the real and the nominal short-term interest rates, respectively. The rate of techno-
logical progress is z; = Aln(Z;) and the output growth is Ay,. The mathematical
expectation operator conditional on information available at time ¢ is denoted Ej.
Equation (23) is a marginal productivity condition for capital, (24) is a portfolio
balance equation that expresses the behavior of owners of capital, while (25) is the

"For us, depending on monetary policy rule parameter values, other variables can Granger cause
money growth rates (see Granger (1969) and Sims (1972b)).
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demand for money, and (26) is a production function. The Fisher equation (27)
asserts that the nominal interest rate is the sum of the real rate and the expected rate
of inflation. The structural shocks are iid and normally distributed with variances
or, 0%, and o2, respectively. All variables are expressed in log deviations from their
steady state values.

5.1.2 Monetary policy
We study two types of policies.

A money supply rule. A rule adjusts the growth rate of money smoothly in
response to movements in inflation and output growth and a shock &,,;.

Amt = pmAmt_l + (1 — pm) ((Zbﬂ—ﬂ't —+ ¢AyAyt> -+ Emty, Emt ™~ N(O, U;) (28)

A Taylor rule. A Taylor rule adjusts the short-term nominal interest rate smoothly
in response to movements in inflation and output growth and a monetary policy shock

ERt-

Rt = ert—l + (1 - pr’) (%7& + ¢AyAyt) +ERt with ERt ™~ N(O> 012[2) (29)

5.1.3 Parameter values

We set parameter values in Table 3. These respect the theoretical restrictions 6, >
0. >0, 7x >7.>0and 0,7 € (0,1).

Fixing the other structural parameters at their table 3 values, we solve the model
for alternative values of the monetary policy rule parameters, deduce the associated
A, B, C, D matrices, then use formulas (10) and (4) to compute the theoretical values
of sums of distributed lag coefficients i~z(0) Under the configurations that imply in-
determinacy in the Taylor rule regime 2, we apply the orthogonality solution method
developed by Lubik and Schorfheide (2004). Here we set the standard deviation of
the sunspot shock, o, to 0.2, their estimated value. Under the money supply rule

regime 1, the configurations of policy parameters always imply determinacy.
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Table 3: Parameter values

economy shocks policy rules
o 0.05 or 05 V. [0,3]
6. 0.2 o, 04 Yay  [0,1]

0. 0.1 o, 0.5 Pr 0.7
0. 0.97 0ss 0.2 o 0.4
7. 0.1 Or [—2,1]
7. 0.2 day [—1,0]
ap 0.3 Om 0.4

5.1.4 Sums of weights 71(0) across monetary regimes

Figures 16 and 17 record the results of applying formulas (10) and (4) to our numer-
ical version of Lucas’s model.

A more anti-inflationary stance, as exemplified by lower values of ¢, in figure
16, is associated with monotonically smaller values of h(0), which reach their min-
ima around 0.4 at ¢, = —2. The explanation for this outcome is that the more
successfully monetary policy stabilizes inflation, the less persistent is inflation and
therefore also the interest rate, with the consequence that, as encoded in Bz am(0)
and hpam(0), the low frequency associations between these variables and money
growth become attenuated.

However, weaker policy responses of money growth to inflation (i.e. a ¢, that
approaches one) generate one-to-one low frequency comovements between money
growth and inflation and money growth and the nominal interest rate as reflected in
the h(0)’s.12

Moving to outcomes with a Taylor rule, under a passive monetary policy, (i.e.
one with a less than proportional response of the interest rate to inflation), we note
high values of hyam(0) and hgam(0). Money growth and inflation (the nominal
interest rate) display the highest sums of distributed lag coefficients 1 (0.9) for mon-
etary policies in the neighborhood of v, = 1, largely independently from the policy
response ¥a, to output growth. Within the active policy regime, outcomes for the
interest rate rule are mirror images of those for the money growth rule.

12Results are robust to halving the transmission mechanism parameters.
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Figure 16: Sums of weights il(O) in Lucas model under money supply rule.
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Figure 17: Sums of weights 2(0) in Lucas model under Taylor rule.
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5.1.5 Volatility and persistence

To highlight a force that drives these outcomes, Figure 18 plots the persistence of
money growth, as measured by the normalized spectrum at zero frequency defined
in equation (12), and the volatility, as measured by the unconditional variance of
money growth. We plot these under both a money growth rule and a Taylor rule.
A more aggressive policy response to inflation (lower values of ¢, in the money rule
and higher values of v in the Taylor rule) diminishes both the persistence and the
volatility of the money supply within the determinacy region.

The shapes of persistence and volatility as functions of the policy parameters
resemble the shapes of sums of distributed lag coefficients (0)’s as functions of
the same parameters, depicted in Figures 16 and 17. This pattern suggests that
the amounts of variability and persistence of money growth are key features that
intermediate how the h(0)s depend on policy.!® Furthermore, the fact that high
volatility and high persistence are associated with 71(0)8 near one confirms the hunch
articulated in subsection 2.2 about the sources of variation in the data that could
allow the low frequency connections featured by Lucas (1980) to emerge from his
plots of one filtered data series against another.

5.1.6 Mundell-Tobin effect

Figures 16 and 17 lock the Mundell-Tobin effect parameter 6, at the value of .1
reported in table 3. Figure 19 shows the consequences of setting this parameter first
to eradicate the Mundell-Tobin effect (6, = 0) and then to strengthen it (6, equal
to .5 or 1).1 The figure is constructed for money growth rules and we intend it to
be compared with figure 16. Outcomes confirm Lucas’s assertions about how the
Mundell-Tobin effect should affect the h(0) sums of distributed lag coefficients for
two-sided distributed lag regressions of interest on money supply growth and how it
should not affect that for inflation on money supply growth.

It is notable that, with the parameterization in table 3, the model requires a
significant Mundell-Tobin effect to be able to match the hg A (0) estimated for the
sub-samples at the beginnings of both the twentieth and the twenty-first centuries.
Similar results, not reported but available upon request, are obtained using a Taylor
rule for monetary policy.

13See King and Watson (1994, 1997) for a discussion of related forces that affect particular tests
of the natural unemployment rate hypothesis.

14To conform to the inequality 6, > 6, in the second and third columns of figure 19 we have set
0, equal to .6 and 1.1, respectively. Similar results, however, are obtained keeping 6,. to .2.
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Figure 18: Properties of money growth in the Lucas model
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Figure 19: Mundell-Tobin effects, as measured by sums of coefficients h(0) on the y axes,
under alternative money supply rules.
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5.1.7 The variance of the monetary policy shock

The results in Figure 16 are based on a parameterization in which the standard
deviation of the shocks to monetary policy is as large as the standard deviations of
the shocks to technology and the process for capital accumulation. Another way that
monetary policy may change, however, is through the frequency and the size of the
deviations from its systematic behaviour. In Figure 20, we explore the consequences
for hyz am(0) and hg am(0) of halving the standard deviation of the monetary policy
shock, o,,, from the baseline value of 0.4 to 0.2. For expositional convenience, the
left column reports the two panels of figure 16.

Two findings are worth noting. First, kg anm(0) is virtually unaffected by the
change in 0,,. Second, the model can now generate low (and even slightly negative)
values of hr A, (0), when the policy response to inflation is sufficiently aggressive, (i.e.
¢r < —0.5). This is important for the ability of the model to replicate the estimated
values of fzmAm(O) over the most recent period reported in figure 13. Halving the
standard deviation of the money demand shock, in contrast, has little impact on
the h(0)’s.!® Interestingly, low values of the variance of the monetary policy shocks
appear important to generate low values of hy An,(0) (With virtually no impact on
hgr,am(0)) while high values of the Mundell-Tobin effect appear important to generate
low values of hg anm(0) (with virtually no impact on Ay am(0)).

5.1.8 Policy smoothing

In the plain vanilla model of section 2.2, high values of the policy smoothing param-
eter p are associated with high values of h; am(0) and hg arm(0). In this section, we
will confirm that result in the context of the Lucas (1975) model by showing how
the h(0)’s vary with the policy smoothing parameter p,, in the money growth rule.
To this end, figure 21 shows the fzmAm(O) and sz,Am(O) for three different values of
the smoothing coefficient: 0, .4 and .95. These results should be compared with the
findings for p,, = .7 in figure 16.

A money growth rule with no smoothing is associated with values for ﬁmAm(O)
between -.5 and 1.1, spanning a larger interval than in figure 16. A weaker anti-
inflationary stance (i.e. higher values of ¢,.) implies a stronger low-frequency rela-
tionship between inflation and money growth. The relationship becomes less non-
linear in the middle column for p,, = .4. A policy smoothing parameter of .95, in
the last column, makes the ﬁw, am(0)’s very close to one, with little impact from the
other policy coefficients. This is in line with the results from the plain vanilla model

15We obtain similar results halving the variance of the monetary policy shock in the Taylor rule.
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Figure 20: The effects of the variance of the monetary policy shock on the sums of
coefficients h(0) on the y axes, under alternative money supply rules.
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of section 2.2.

As for the low-frequency relationship between the nominal interest rate and
money growth, the bottom row of figure 21 shows that this is zero in the absence of
policy smoothing. The hg am(0)’s increase monotonically with p,,, and in the last
column, a very high value for the smoothing coefficient implies high values of the
sums of distributed lags. The impact of the other policy parameters, ¢, and ¢a, is
larger than in the case of hr an(0), in line with the predictions of the plain vanilla
model.

Similar results for the inflation money growth relationship prevail under a Taylor
rule. As for relationship between the nominal interest rate and money growth, pg =
95 is associated with values of hp am(0) close to zero. The reason for this finding is
that a higher value of the policy smoothing coefficient in the Taylor rule implies a
smaller value of AR,. According to the money demand equation (25), smaller values
of AR; weaken the link between the nominal interest rate and money growth.

5.2 A new neoclassical model

In this section, we execute calculations like those described in section 5.1 but for a
DSGE model with sticky prices, separability between consumption and real money
balances, habit formation in households’ preferences, price indexation by firms, and
a unit root in technology. This type of model is said by Goodfriend and King
(1997) to represent a New Neoclassical Synthesis. Related models have been studied
extensively by Woodford (2003).

We continue to assume that the central bank uses either a money-growth rule or
a Taylor interest-rate rule. However, now the policy instrument will respond to the
output gap rather than to output growth, as well as to inflation.

5.2.1 The economy

The structure is:

1
T = Bl —oag)Emyq + Bogm_y + Koy — e (30)
Ty = (]. — Oéx) Etl't_;,_l + QT — O'(Rt — Etﬂ-t—i-l) +o0 (]. — 6) (1 — pa) ay (31)
1 1 1
Amt = T+ 2+ —Al’t — —ARt + — (AXt — ACLt> (32)
ol Y gl
U = wp+8&ay, Ay =0 — Y1+ 2 (33)

where m;, x;, Am; and R; are inflation, the output gap, nominal money growth and
the short-term interest rate, respectively. The level of de-trended output is g, and

41



NO POLICY SMOOTHING: P = 0 POLICY SMOOTHING: P = 0.4 POLICY SMOOTHING: P = 0.95

INFLATION and MONEY GROWTH

NO POLICY SMOOTHING: P, = 0 POLICY SMOOTHING: P, = 0.4

INTEREST RATE and MONEY GROWTH

Figure 21: The effects of policy smoothing on the sums of coefficients i~1(0) on the y axes,
under alternative money supply rules.
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Ay, refers to output growth. The rate of technological progress is z;. Equation (30)
is an example of a new Keynesian Phillips curve, while (31) is the so-called new
Keynesian IS curve. Equation (32) is a money demand equation of the type derived
by McCallum and Nelson (1999) and Ireland (2003).

The discount factor is 3, the parameter . is price setters’ extent of indexation
to past inflation, «, captures the extent of habit formation. The coefficients x and o
are the slope of the Phillips curve and the elasticity of intertemporal substitution in
consumption. The price adjustment cost parameter in Rotemberg’s (1982) quadratic
function is 7, while £ represents the inverse of the labor supply elasticity. The inverse
of the interest elasticity of money demand is captured by ~.

The economy is exposed to four non-policy disturbances: a markup shock e;, a
demand shock a;, a money demand shock y;, and a technology shock Z; that evolve
as

e, = pe€i_1 + e, With e ~ N(0,02)

A = Paly_1 + Eqr, With £4 ~ N(0,02)

Xt = PxXi—1 + Exe, With 4 ~ N(O, ai)
Aln (Zy) 2 = £, wWith ., ~ N(0, 0?)

All variables are expressed in log deviations from their steady state values. More
details about the specification are to be found in Ireland (2004).

Unlike the model of section 5.1, there is no capital or capital accumulation here.
The model generates persistence through its specification of the processes of the
shocks and the backward looking dynamics appended to the Phillips curve and the
IS curve.

5.2.2 Monetary policy
There are two types of monetary regime.

A money supply rule. Money growth adjusts smoothly in response to movements
in inflation and the output gap. Unlike (28), money growth depends on the output
gap rather than output growth.

Amt = pmAmt_l + (1 — pm) ((bﬂ—ﬂ't -+ (bm.ilft) -+ EmtsEmet ™ N(O, U?n) (34)

A Taylor rule. The short-term nominal interest rate is adjusted smoothly in
response to movements in inflation and the output gap.

Ry =p,Ri—1 + (1 — pp) (Vrmy + Yox) + e, €00 ~ N(O, 012'%) (35)
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Table 4: Parameter values

economy shocks policy rules
6] 0.99 pe 0.5 v, |0, 3]
ar 0.5 pa 0.5 Y. [0,1]
ar 0.5 py 0.7 Pr 0.7
K 0.1 . 0.5 o, 0.4
T 6 os 0.5 O
o 0.1 o, 04 o [—1,
13 0.15 o, 0.5 Pm 0.7
v~ 0.15 oss 0.2 Om 0.4

5.2.3 Parameters

We report parameters in table 4. We fix them so as to fall roughly in the middle
of the ranges of available estimates. For most of the parameter space associated
with ¢, < 1 under the Taylor rule, the model implies equilibrium indeterminacy.
Under the money supply rule, the configurations of policy parameters always imply
determinacy.

5.2.4 The quantity theory across monetary regimes

Figures 22 and 23 report results that are broadly similar to those obtained using
the Lucas model of section 5.1. But three differences are worth noting. First, the
variation in the coefficients describing monetary policy is such that the model can
attain the entire [0,1] interval for hg A, (0) under both policy rules. Second, a larger
policy response to the output gap is associated with significantly larger h(0) values.
Third, the move from indeterminacy to determinacy in figure 23 is associated with
a somehow more abrupt change in the i}m am/(0) values across the bounclary.

Notice that small values of ¢, are associated with low values of h(0) for the
nominal interest rate. This outcome emerges because under a money growth rule,
the nominal interest rate is pinned down by the money demand equation (32). In
the new neoclassical model money balances depend upon x;, and therefore a policy
that does not stabilize the output gap induces weaker comovements between money
and the nominal interest rate.
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INFLATION and MONEY GROWTH

INTEREST RATE and MONEY GROWTH

Figure 22: Sums of weights il(O) in new neoclassical model under money supply rule.
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INFLATION and MONEY GROWTH

Figure 23: Sums of weights 2(0) in new neoclassical model under a Taylor rule.
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As for the outcomes for persistence and volatility of money growth within the
determinacy region, the findings for the new neoclassical model are qualitatively and
quantitatively similar to the section 5.1 findings for the Lucas (1975) model: low
values of the long-run response coefficients in figures 22 and 23 are associated with
low persistence and low volatility. In the presence of equilibrium indeterminacy,
which occurs under a Taylor rule only for 1, < 1, the persistence and volatility
of money growth in the new neoclassical model are larger than the persistence and
volatility in the Lucas model for values of v, close to but below 1.

5.2.5 The roles of non-policy shocks

In this section, we explore whether, under a Taylor rule, alterations in the process
for the non-policy shocks in the new neoclassical model are capable of generating
time profiles for A am(0) and hg am(0) like those that emerge in the U.S. data.'t
To this end, we study the effects of changing parameters that govern the degrees
of persistence and the variances for all shocks. We report outcomes only for those
alterations that we find to be associated with substantial changes in the low-frequency
relationships between inflation and money growth and between the nominal interest
rate and money growth.

In figure 25, we move the autoregressive parameters in the process for the supply
shock, pe, from 0.5 to 0.9 while keeping all other coefficients to the values in table 4.
A comparison with the plots in figure 23 reveals that more persistent supply shocks
are typically associated with higher values of fzmAm(O) and sz,Am(O). It should be
noted, however, that high values of p. are neither necessary nor sufficient to generate
high values of the h(0)’s. In fact, an activist monetary policy stance that assigns
a sufficiently large weight to inflation (i.e., ¥, above 1.5) and little or no weight to
the output gap response (i.e., ¥, close to zero) is capable of generating values for
i}mAm(O) and sz,Am(O) that are substantially lower than one.

A similar finding emerges from figure 26, where we increase the standard deviation
of the supply shocks, o., from 0.5 to 2, while keeping values for all other parameters
unchanged. The low-frequency relationships now seem less influenced by monetary
policy relative to figure 23, with the notable exception of the policy rules associated
with low values of ¢, and ¢, > 1. Our findings suggest that while a change in
the process for the supply shocks (in the form of higher persistence and/or higher
variance) may have helped to account for the high values of the sums of distributed
lags observed in U.S. data during the original period studied by Lucas (1980), a
monetary policy response that placed sufficient weight on inflation relative to the

16Under a money growth rule, we obtained results similar to those reported in this section.
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Figure 24: Volatility and persistence of money growth in the new neoclassical model
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INFLATION and MONEY GROWTH

Figure 25: Sums of weights B(O) in new neoclassical model under a Taylor rule with highly
persistent supply shocks.
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output gap could have prevented the U.S. from attaining realizations of these large
values for h; am(0) and hg am(0).

The results in this section are similar to findings that Woodford (2007) and
Benati (2007) obtained by using versions of the new neoclassical model that differ
from ours. Woodford (2007), for instance, showed that in a model where the low-
frequency variation in money growth is mostly driven by trend inflation (defined as a
unit root process for the central bank’s inflation target), the slow-moving components
of inflation and money growth tend to be highly correlated.'”

We conclude that the sources of variation in the process for money growth, as ex-
emplified by shocks in a money demand equation like (32), are crucial for identifying
and interpreting the low-frequency associations between nominal variables. In partic-
ular, if the variances of the determinants of the low-frequency components of inflation
are sufficiently larger than the variances of the determinants of the low-frequency
components of output growth and the nominal interest rate, then an econometrician
would get higher values for the sum of distributed lag coefficients for inflation on
money growth. We have shown that within two DSGE models monetary policy can
strongly influence the relative variances of the slow-moving components of inflation,
output growth, and the nominal interest rates, and through those avenues it can
strongly influence the slow-moving components of money growth. Using a historical
sample similar to ours, Ireland (2008) provides a further example in which instability
in the long-run money demand can be used to infer the stance of monetary policy.

6 Inferring the monetary policy stance from ZL(O)

Section 5 described how low-frequency manifestations of the quantity theory depend
on the stance of monetary policy. In this section, we surrender to the temptation to
invert the mapping from policy rule parameters to sums of weights and draw some
inferences about prevailing policy rules from our estimates of h; o (0) and kg am(0).

We select two years, 1973 and 2005. In figure 13, the median estimates of the
sums of the distributed lag coefficients from the time-varying VAR are approximately
0.9 for both Ay am(0) and hgam(0) in 1973, but they are around 0.2 in 2005. A
comparison with figure 16 (17) reveals that, according to Lucas’s (1975) neoclassical
model, the values for 1973 can have only been generated by weak policy responses to

"In the presence of both highly persistent and highly volatile supply shocks, of the magnitude
considered in this section, the sums of weights E(O) are close to one, virtually independently of
monetary policy parameters. The stability that the low-frequency relationships would display across
time under this scenario, however, is at variance with the instability of h(0) in U.S. data documented
in sections 3 and 4.
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Figure 26: Sums of weights B(O) in new neoclassical model under a Taylor rule with highly
volatile supply shocks
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inflation, as measured for instance by values of ¢, (1) close to 1 (0.8) in the money
supply rule (interest rate rule). Very similar values for ¢, and 1, can be backed out
using the results for the new neoclassical model in figures 22 and 23.

As for 2005, values of 0.2 for both low frequency relationships can be generated in
the neoclassical model by a strong anti-inflationary monetary policy stance (i.e. ¢
close to -2), but only in the presence of large Mundell-Tobin effects for hr anm(0) in
figure 19 and small values of the variance of the monetary policy shock for A anm(0)
in figure 20. In the new-neoclassical model parameterized according to table 4, esti-
mates of the sum of the distributed lags coefficients around 0.2 require configurations
of the policy rule parameters that attach large weight to the inflation response (i.e.
¢ close to -2 and 1, close to 2) as well as small or no weight to the output response
(i.e. ¢ay and 9, close to 0) in figures 22 and 23.

We view these results as tantalizing invitations to extend this study by bringing
to bear evidence from all frequencies to estimate the evolution of monetary policy
rules. We leave this work to a sequel to this already long paper.

7 Concluding remarks

A long-standing, but flawed, tradition in macroeconomics has regarded low-frequency
quantity theory relationships as policy-invariant features of macroeconomic models
that embody long-run neutrality propositions. We say ‘lawed’ for reasons that Lucas
(1972), Sargent (1971), and King and Watson (1994, 1997) described in the context
of econometric tests of the natural unemployment rate hypothesis and that White-
man (1984) analyzed in the context of the quantity theory of money: low-frequency
properties of two-sided infinite projections are themselves functionals of government
policies.'®

To study how Lucas’s (1980) low-frequency manifestations of the quantity the-
ory have evolved, we have estimated time-invariant and time-varying VARs for U.S.
data spanning 1900-2005. We computed equilibria of two DSGE models for differ-
ent monetary policies to study how the low-frequency relationships between inflation
and money growth and the short-term interest rate and money growth should vary
with monetary policy. Our results show how the low-frequency co-movements be-
tween nominal variables that Lucas featured convey information about the stance of
monetary policy. In particular, Lucas’s low-frequency manifestations of the quan-
tity theory are (more) less likely to emerge when the monetary authorities respond
(in)sufficiently to inflationary pressures.

18 Also see Sargent (1987, ch. XI).
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A CPI and M1 data

In this appendix, we reproduce the calculations in Lucas (1980) using his favourite
measures of money (M1) and prices (CPI), over the sample 1955-2005, and the sub-

sample 1975-2005." In table A, we report the full set of low frequency relationships
for different values of § in (1).

Table A: Regressions on filtered data, Lucas’ measures of money and prices

Data as in Lucas (1980) - 772: M1; D: consumer price index. R: federal funds rate

T on Am Amon R on Am Amon R

g 95 .8 5 0 .95 .8 5 0 .95 .8 5 0 .95 .8 5 0

full sample | .44 .36 .21 .13 | 57 49 34 24 | 58 .45 24 .14 | 51 43 .27

17
1955-75 | 139 122 74 46 | 54 49 .36 .28 | 1.15 1.00 .58 .30 | .74 .66 .41 .24
1976-05 | 30 24 .13 .08 | .58 .48 .31 .20 | 46 .33 .17 .09 | .47 .38 .22 .13

Note: numbers in bold are not statistically different from one at the 10% significance level, HAC covariance matrix

9The official definition of M1 was broaden in 1980 to include nonbank checkable deposits.
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Figure 28: Lucas’ filter over 1976-2005, using M1 and CPI.
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Figure 29: Prior and posterior distributions of }N‘LmAm(O) and iNLRAm(O) based on the
multivariate time-invariant VAR, 1900-2005.

B Priors on the /(0)’s from the time-invariant VAR

In specifying our priors over the VAR coefficients and innovation variances, our
intention was to make them relatively uninformative about fzmAm(O) and ﬁRAm(O).
In this appendix, we map the priors for the coefficients and innovation covariances of
the time-invariant VAR into implied prior distributions for h; o, (0) and hg am(0).
In particular, we (i) draw from the prior distributions of the VAR parameters, (ii)
compute the low-frequency slope coefficients by applying formula (4) to the realized
values of the VAR coefficients, and (iii) repeat steps (i) and (ii) 4000 times. The
resulting prior distributions for the h(0)’s are reported in figure 29 together with the
posterior distributions. Evidently, the posteriors for h; am(0) and hgam(0) differ
markedly from the priors, indicating fulfillment of our intention not to let a prior
dominate a likelihood in its influence over a posterior. Note that both posteriors are
shifted to the right relative to the priors, and that while the posterior for fzmAm(O) is
considerably tighter than the prior, the posterior for g an(0) is more diffuse. The
prior (posterior) median for the Ay ap,(0) distribution is 0.03 (0.56), while the 16"
and 84" percentiles are —1.35 (0.44) and 1.35 (0.67) respectively. As for hg am(0),
the prior (posterior) median is 0.00 (0.23), while the 16! and 84 percentiles are
—0.17 (—0.03) and 0.16 (0.53).
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Figure 30: Posterior means of key parameters of the time-varying VAR

C Convergence

In figure 30, we plot the posterior means of key model parameters. These statistics are
computed recursively as the average for every 20th draw of the retained repetitions
of the Gibbs sampler. The figure reveals that the fluctuations in the posterior means
are modest, thereby providing informal evidence in favour of convergence.
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Figure 31: Standard deviations of the VAR reduced-form errors

D Volatility statistics from time-varying VAR

In figure 31, we report the evolution of the standard deviations of the VAR inno-
vations computed as the square root of the elements in (17). A comparison of the
time profiles in figures 14 and 31 reveal that in the late 1970s and early 1980s money
growth, inflation, output growth and the interest rate displayed a significant surge in
volatility whereas their innovations were relatively more stable. It should be noted,
however, that during this episode, the volatility of the variables were eight (ten, four
and three) times larger for money growth (inflation, the interest rate and output)
than the volatility of the reduced-form errors. During the most volatile episodes of
the first part of last century, in contrast, the ratios between variable and innovation
volatilities were always below four. This implies that, during the second half of the
sample, it has become more difficult for a statistical model such a VAR to produce
forecasts for money growth, inflation, output growth and the interest rate which are
more accurate than the forecasts produced by a naive model such as the uncondi-
tional mean. A similar picture emerges from Figure 32, which plots the stochastic
volatility of each variable j computed as the square root of h;;.
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Figure 32: Square roots of the stochastic volatility
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E Slopes using Lucas’ filter and the sums of dis-
tributed lags coeflicients

By applying formulas from section 2.3, this appendix evaluates how well by approx-
imates h(0). In figure 33, we report estimates of by and h(0) obtained in the Lucas
model under a Taylor rule. For expositional convenience the first column reproduces
the charts in figure 17, which correspond to h; am(0) and hgam(0), respectively.
The second (third) column depicts estimates of by for a window width of n = 8 (100)
quarters in Lucas’ filter (see equation 1).2°

The first row of figure 33 reveals that for inflation and money growth, by does a
good job of approximating h(0) for both n equal to 8 and n equal to 100, with the
approximation being uniformly better for n = 100. Interestingly, very similar results
for inflation and money growth are obtained using a money growth rule in Lucas
model and using either a Taylor rule or a money growth rule in the new neoclassical
model.

As for the low-frequency relationship between the interest rate and money growth,
the approximation errors typically appear to be larger. A comparison of the bottom
left panel with the other two panels in the second row suggests that the gap between
by and h(0) can be as large as .3 (.1) for n=8 (100) in the Lucas filter when t; > 1.
Under a money growth rule, however, by and 71(0) become very close again, indicat-
ing that, in the Lucas model, the monetary policy rule matters for the quality of
the approximation. However, in the new neoclassical model, the maximum distance
between by and h(0) for the nominal interest rate and money growth is .2, indepen-
dently on the monetary policy rule in place. The gap is smaller using a window of
n=100 in the Lucas filter.

20The element S, (w) of by in equation (5) is computed as the sum of the squared co-spectrum
and the squared quadrature.
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Figure 33: Lucas’ slope estimator by vs. the sums of weights 7(0) in Lucas model under
a Taylor rule.
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F Other approximation issues

Whiteman indicated how approximation issues raised by Sims (1972a) can mean that
low-order distributed lags can produce unreliable estimates of sums of coefficients.
Similar issues can plague estimates of these sums constructed by using formula (4) in
conjunction with cross-spectra estimated by applying a version of (10) to parameter
estimates for a prematurely truncated VAR. To evaluate such approximation issues
in the context of Lucas’s model and VARs of the sizes that we have used in our
empirical work, we have also calculated fzmAm(O) and sz,Am(O) by simulating the
equilibrium of Lucas’s model, and then computing VARs and the associated sums of
coefficients displayed in figures 16 and 17.

We simulate 5,000 times a period of 120 observations, which at quarterly fre-
quency correspond to 30 years.?! It should be noted that 30 years lie at the upper
bound of the sample sizes used in the sub-period analysis of Section 3. For each
simulation, we run a four-variate VAR in money growth, inflation, the short-term
interest rate, and output growth. For each VAR, we compute the sums of distributed
lag coefficients reported in figures 16 and 17, and then we take averages across the
5,000 simulations. We report the deviations of these averages from the analytical
h(0) as a function of the coefficients in both policy rules.

In the Lucas model, the estimates of fzmAm(O) based on the small sample VARs
on simulated data appear to do a good job of approximating their population coun-
terparts under both policy rules.?? As for hgam(0), the approximation errors are
small only under a money rule. When monetary policy is conducted according to
a Taylor rule, in contrast, the small sample estimates of hr am(0) tend to lie above
(below) the population values whenever 1, is below (above) 1.

To explore the sources of these deviations, in figure 35 we report the approxima-
tion errors on iLR,Am(O) for six different combinations of lag order of the VAR (i.e.
p = 2,10,20) and sample size (i.e. T = 400,600 observations, which at quarterly
frequency correspond to 100 years -roughly the size of our full sample- and 150 years)
in the context of the Lucas model under a Taylor rule.

Three results stand out. First, increasing the number of observations to 100 years
(first column) and 150 years (second column), within the determinacy region, halves
the approximation errors relative to the results from the 30 years simulated sample
reported in the bottom right panel of figure 34. Second, increasing the order of the
VAR to 10 lags (second row) and 20 lags (third row) further reduces the distance

21To reduce dependence from initial conditions, we run a pre-simulation of 100 periods, which we
then discard.
22 A similar result holds for the new neoclassical model
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Figure 34: Approximation errors on A(0)s in Lucas model.

between estimated and population values of 7137Am(0). Third, the largest accuracy
gains from increasing the lag order occur in the indeterminacy region. Consistent
with the findings in Benati and Surico (2008) for the new neoclassical model, a
possible interpretation of the third result is that indeterminacy introduces a small
MA component in the VAR(MA) representation of the DSGE model. Altogether,
fitting a VAR of order ten on a sample of about 100 years produces, on average,
approximation errors of the order 7e-02.
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Figure 35: Approximation errors on izRyAm (0) in Lucas model under a Taylor rule.
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G  Evidence on R?: data and DSGE models

This appendix compares, on the one hand, the R?’s in equation (8) based on the time-
varying and the fixed-coefficient VARs estimated on U.S. data for money growth,
inflation, the short-term interest rate and output growth, and, on the other hand,
the R%’s based on the Lucas model under both money growth and Taylor rules at
parameter values recorded in table 3.

In figure 36, we note that both R? statistics computed on actual data seem char-
acterized by an extent of time variation similar to the one of their h(0) counterparts
in figure 13. The amount of uncertainty, however, is so large that the probability
distributions span most of the R? domain. Over the end of the 1970s, for instance,
the values of 0.85 and 0.05 are both inside the 68% central posterior bands in the
top panel as well as in the bottom panel of figure 36.

In line with the evidence presented in section 4, a fixed coefficient VAR over the
full-sample, represented as straight blue lines, delivers estimates that are, in some
years, significantly different from the estimates based on the time-varying VAR,
especially for inflation and money growth.

Moving to the DSGE models, in figure 37, we vary the parameters of both policy
rules in Lucas model to assess the extent of time variation in the R*’s observed on
actual data implied by alterations of monetary policy. The patterns uncovered by
this exercise resemble the patterns disclosed by figures 16 and 17, and the same
arguments used in section 5 carry over to this appendix. We obtain similar results
with the new neoclassical model.
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R2: INFLATION and MONEY GROWTH
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Figure 36: Median and 68% central posterior bands for R? based on a fixed-coefficient
VAR over the full samples and a VAR with time-varying coefficient and stochastic volatility.
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Figure 37: R? in Lucas model under money supply and Taylor rules.
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