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Abstract

This paper considers GLS estimation of linear panel models when
the innovation and the regressors can both contain a factor struc-
ture. A novel feature of this approach is that preliminary estimation
of the latent factor structure is not necessary. Under a set of regular-
ity conditions here provided, we establish consistency and asymptotic
normality of the feasible GLS estimator as both the cross-section and
time series dimensions diverge to infinity. In particular, dependence,
both temporally and cross-sectionally, of the idiosyncratic innovation
is permitted and in fact the latter can be eventually be correlated with
the regressors, making the conventional OLS estimator invalid. Our
results are presented separately for time regressions with unit-specific
coefficients as well as for cross-section regressions with time-specific
coefficients. As particular cases of our set up, we establish primitive
conditions of our assumptions for Pesaran (2006) and Andrews (2005)
regression models. A set of Monte Carlo experiments corroborate our
results.

1 Introduction

Factor models represent one of the most popular and successful way to cap-
ture cross-sectional dependence, especially when facing a large number of
units (N). However, a factor structure in the innovation of a linear regres-
sion model can make the ordinary least squares (henceforth OLS) estimator
invalid since it will no longer be consistent, in general, for the true regression
coefficients unless some restrictions are imposed. In a linear cross-sectional
regression with constant parameters Andrews (2005) shows that consistency
of the OLS estimator is preserved, as N goes to infinity, when both the error
and the regressors have a factor structure with uncorrelated factor loadings.
The asymptotic distribution of parameters estimate have a mixed normal
asymptotic distribution. Within a linear regression across time (T ) with the
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innovation and the regressors sharing a factor structure, when a panel of ob-
servations is available, Pesaran (2006) shows that individual-specific regres-
sion coefficients can be consistently estimated by augmenting the regressors
by cross-sectional averages of the dependent and the individual-specific re-
gressors. The conventional asymptotic normality is obtained, as both N, T
go to infinity. Again, the essential condition is a restriction on the joint dis-
tribution of the factors loadings for the factor structure in the regressors and
innovation, namely that their (population) means must be linearly indepen-
dent.

This paper considers cross-sectional regressions with time-specific param-
eters as well as time regressions with individual-specific parameters when the
innovation contains a factor structure and a panel of data is available. Both
cases are of independent interest. It is here noted that, in either cases, the
unfeasible generalized least squares (henceforth UGLS) estimator, based on
the presumption that the covariance matrix of the factor structure is known,
would be consistent and asymptotically normal distributed without any par-
ticular restriction on the factor loadings nor on the common factors, in par-
ticular even if the innovation and the regressors are mutually correlated. This
is due to a form of asymptotic orthogonality between the factor loadings and
the inverse of the factor structure covariance matrix. The difficulty arises
when considering a feasible version of the GLS estimator. A natural approach
would be, exploiting the panel dimension, to consider the sample covariance
matrix of the OLS residuals. Given the non-consistency of the OLS estima-
tor, such sample covariance matrix would also be non-consistent for the true
covariance matrix. However, the relevant result here is that, under suitable
regularity conditions, the limit of such sample covariance matrix leads to a
matrix whose inverse is also asymptotically orthogonal to the factor loadings.
Indeed, there is an entire class of matrices, rather than a unique matrix, that
is asymptotically orthogonal to the factor loadings. As a consequence, we
show that this feasible GLS (henceforth GLS) estimator is consistent and
asymptotically normal, as both N, T diverge to infinity, under a set of con-
ditions that make the OLS invalid. However, the limit covariance matrix of
the OLS residuals will be in general different from the true covariance matrix
of true innovations, and thus such the GLS might not be as efficient as the
UGLS.

The GLS estimator exhibits a number of desirable properties. First, it is
computationally easy to handle since it simply requires to perform a sequence
of linear regressions. Second, the GLS estimator does not require knowledge
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of the number of factors nor of estimates of the factors themselves since it is
not based on a preliminary estimation of the factor structure. Thus, we do
not need to make use of the recent advances in estimation of (dynamic) factor
models such as Forni, Hallin, Lippi, and L. (2000), Bai and Ng (2002), Stock
and Watson (2002) and Bai (2003), which in turn would require preliminary
testing of the number of factors (Bai and Ng (2002) and Hallin and Liska
(2007) for tests designed for static and dynamic factor models, respectively).

Panel with factor structure innovations have also been considered by
Holtz-Eakin, Newey, and Rosen (1988), Ahn, Hoon Lee, and Schmidt (2001),
Bai and Ng (2004) Phillips and Sul (2003), Moon and Perron (2003), and
Phillips and Sul (2007). With the exception of Ahn, Hoon Lee, and Schmidt
(2001), who focus on generalized method of moment estimation of cross-
sectional regressions with independent and identically distributed (i.i.d.) re-
gressors for fixed T the other papers are all defined within the context of
dynamic panel models. In particular, Holtz-Eakin, Newey, and Rosen (1988)
note how the individual effects can be eliminated by quasi-differencing al-
though this induces time-variation to otherwise constant regression coeffi-
cients. They consider the asymptotic properties of an instrumental variable
estimator for large N where the number of instruments is of order O(T 2). For
autoregressive panel models with possibly a time trend, Bai and Ng (2004)
study unit root tests that permit to identify whether the non-stationarity is
associated with the factor structure part of with the idiosyncratic part. They
do not treat the factor structure as a nuisance parameter but build their test
on pre-estimated factors and idiosyncratic component by principal compo-
nents, providing the asymptotic properties of the test for large N, T . For the
same models, Phillips and Sul (2003) focus on median unbiased estimation of
the autoregressive parameter, and related homogeneity and unit root tests.
Their asymptotic theory holds for fixed N . Moon and Perron (2003) propose
unit root testing with respect to a similar class of models, valid for both
large N, T , based on de-factoring the data by means of principal components
estimation of the factor structure which if ignored, would substantially re-
duce the power of the test. Their test has no power when linear trend with
fixed effects is allowed for. For a larger class of dynamic panels, that allows
for exogenous regressors, Phillips and Sul (2007) characterize the bias of the
(pooled) OLS estimator for large N , in particular showing that it converges
to a random variable because of the substantial degree of cross-sectional de-
pendence associated with the factor structure innovation.

Factor models is not the only way to describe cross-sectional dependence.
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Weaker, in the sense of local, forms of dependence can be achieved by spa-
tial econometrics approaches, in particular spatial autoregressive models (see
Anselin (1988), Case (1991), Conley (1999), Chen and Conley (2001), Lee
(2004), Robinson (2006)).

This paper, which studies separately the cases of estimation of linear
regressions with either individual-specific or time-specific parameters, pro-
ceeds as follows. The next section illustrates the basic definitions and the
general assumptions required for estimation of regressions with unit-specific
parameters stating with a theorem the asymptotic properties of the OLS,
UGLS and GLS estimator as T , in the first two cases, and as N, T in the
last case, diverge to infinity. Section 2.3 then considers, as a special case, the
regression model with unit-specific parameters of Pesaran (2006), establish-
ing primitive conditions for our general assumptions. In particular, we show
how some, but not all, of these conditions are implied by certain of Pesaran’s
(2006) assumptions, summarizing the findings in a proposition. Section 3 fo-
cuses regression models with time-specific parameters, again presenting the
basic definitions and the general assumptions, summarizing the asymptotic
properties of the OLS, UGLS and GLS as N and N, T , respectively, diverge
to infinity. Since Andrews (2005) cross-sectional model represents a special
case of this set-up, section 3.3 investigates the extent to which Andrew’s
(2005) assumptions provide primite conditions for at least some our general
assumptions. The full set of required primitive conditions is then described
in a proposition. The theoretical results are corroborated by a set of Monte
Carlo experiments described in section 4. Section 5 concludes. The proofs of
both theorems are reported in the final appendix.

Hereafter we use the following notation: →p denotes convergence in prob-
ability and →d convergence in distribution. When A > 0 we mean that
the matrix A is positive definite, A ≥ 0 that A is positive semi definite,
‖ A ‖= (tr(AA′))

1
2 indicates the Euclidean norm of the matrix A, ιn is a

n×1 vector of ones, µi,a = Eai for a random vector ai and Σi,aCb′ is the limit
in probability of A′

iCiBi/T for random matrices Ai,Bi with T rows and a
finite number of columns and for the random T × T matrix Ci all possibly
dependent on an index i. When Ci equals the identity matrix IT , we write
Σi,ab′ . We skip dependence on the index i when not necessary.
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2 Unit-Specific Parameters Model

2.1 Definitions and assumptions

Throughout this section, the observed variables obey a linear regression
model with a k × 1 vector of possible unit-specific regression coefficients
βi0. The model for the ith unit can be expressed, in matrix form, as

yi = Xiβi0 + ui, (1)

for an observed T × 1 vector yi = (yi1, ..., yit, ..., yiT )′, an observed T × k
matrix Xi = (xi1, ...,xiT )′ where either none, some or even all of the re-
gressors can be common across units, and an unobserved T × 1 vector ui =
(ui1, ..., uit, ..., uiT )′. The innovation satisfy the factor structure

ui = Fbi + εi, (2)

for an unobserved m× 1 vector of factor loadings bi, an unobserved T ×m
matrix of common factors F = (f1, ..., fT )′ and an unobserved T × 1 vector of
idiosyncratic innovations εi = (εi1, ..., εiT )′. The maintained assumption here
is that k and m do not vary with T and N . Although model (1) is written
as a regression across time, we assume that in fact a panel of observations
{y,X} = {y1, ...,yi, ...,yN ,X1, ...,Xi, ...,XN} is available. As pointed out
in Pesaran (2006, section 2), several panel models, with either constant or
unit-specific regression coefficients, are encompassed by his model, which in
turn is a particular case of (1), including the traditional fixed and random
effects models.

We now specify a set of general assumptions required for the estimators
here considered, commenting on them through a series of remarks below.
We then state, in Theorem 1, the asymptotic properties of the OLS, UGLS
and GLS estimators for βi0. In the subsequent section we establish a set
of primitive conditions of our general assumptions for the particular case of
interest of model (1) given by Pesaran (2006) model.

Assumption 1.H (factor loadings)
For every i, the bi are random vector of dimension m× 1 such that E(bib

′
i |

Xi,F) = Bi > 0 with N−1
∑N

i=1 Bi →p B > 0 as N →∞.

Assumption 2.H (idiosyncratic innovation)
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For every i, εi = (εi1, ..., εit, ..., εiT )′ satisfies E(εi | bi, Xi,F) = 0 and

Hi = E(εiε
′
i | bi, Xi,F) > 0, (3)

N−1

N∑
i=1

Hi →p HT > 0 as N →∞. (4)

Assumption 3.H (regressors)
For every i, the T × k matrix Xi is full column rank.

Assumption 4.H (basic limit conditions)
All the limit matrices below, as T →∞, are a.s. finite:

X′
iXi

T
→p Σi,xx′ > 0,

X′
iHiXi

T
→p Σi,xHx′ > 0,

X′
iF

T
→p Σi,xf ′ , (5)

X′
iH

−1
i Xi

T
→p Σi,xH−1x′ > 0,

F′H−1
i F

T
→p Σi,fH−1f ′ > 0,

X′
iH

−1
i F

T
→p Σi,xH−1f ′ ,

(6)

such that
Σi,xH−1x′ −Σi,xH−1f ′Σi,fH−1f ′Σ

′
i,xH−1f ′ > 0. (7)

Assumption 5.H (limit conditions for GLS)
All the limit matrices below, as N →∞ and arbitrary T , are a.s. finite:

N∑
i=1

XiΣ
−1
i,xx′Σi,xf ′bib

′
iΣ

′
i,xf ′Σ

−1
i,xx′X

′
i

N
= A1T (1+op(1)),

N∑
i=1

XiΣ
−1
i,xx′Σi,xf ′bib

′
iF
′

N
= A2T (1+op(1)),

N∑
i=1

XiΣ
−1
i,xx′X

′
iεiε

′
iXiΣ

−1
i,xx′X

′
i

NT
= A3T (1 + op(1)),

N∑
i=1

XiΣ
−1
i,xx′X

′
iεiε

′
i

N
= A4T (1 + op(1)),

N∑
i=1

biε
′
i

N
1
2

= C1T (1 + op(1)),
N∑

i=1

XiΣ
−1
i,xx′Σi,xf ′biε

′
i

N
1
2

= C2T (1 + op(1)), (8)

N∑
i=1

biε
′
iXiΣ

−1
i,xx′X

′
i

N
1
2 T

1
2

= C3T (1 + op(1)),
N∑

i=1

XiΣ
−1
i,xx′Σi,xf ′biε

′
iXiΣ

−1
i,xx′X

′
i

N
1
2 T

1
2

= C4T (1 + op(1)). (9)

Assumption 6.H (distribution conditions for OLS and UGLS)
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As T →∞:

X′
iεi

T
1
2

→d N (0,Σi,xHx′), (10)

X′
iH

−1
i εi

T
1
2

→d N (0,Σi,xH−1x′),
F′H−1

i εi

T
1
2

→d N (0,Σi,fH−1f ′). (11)

Assumption 7.H (distribution and identification conditions for GLS)
Let D1T , E1T be m×m matrices and D2T , E2T be T × T matrices satisfying

A1T − (A2T +A′
2T ) = FD1TF′ +D2T and A3T − (A4T +A′

4T ) = FE1TF′ + E2T (12)

with an m×m non-singular symmetric I1T = D1T +T−1E1T +B and a T ×T
non-singular I2T = D2T + T−1E2T +HT satisfying a.s.:

F′I−1
2T F

T
→p ΣfI−1

2 f ′ (non-singular),
F′I−1

2T HiI−1
2T F

T
→p Σi,fI−1HI−1

2 f ′ ,(13)

X′
iI−1

2T Xi

T
→p Σi,xI−1

2 x′ (non-singular),
X′

iI−1
2T HiI−1

2T Xi

T
→p Σi,xI−1

2 HI−1
2 x′ ,

X′
iI−1

2T F

T
→p Σi,xI−1

2 f ′ ,
X′

iI−1
2T HiI−1

2T F

T
→p Σi,xI−1

2 HI−1
2 f ′ ,

X′
iI−1

2T εi

T
1
2

→d N (0,Σi,xI−1
2 HI−1

2 x′),
F′I−1

2T εi

T
1
2

→d N (0,Σi,fI−1
2 HI−1

2 f ′),

where all the limits above hold as T →∞ with a.s. finite limit matrices and,
setting

ΣT = FI1TF′ + I2T ,

for all i and some a, b, c, d > 0:

X′
iΣ

−1
T (FC1T + C ′1TF′ + C2T + C ′2T )Σ−1

T (Fbi + εi) = Op(T
aιk), (14)

X′
iΣ

−1
T (FC3T + C ′3TF′ + C4T + C ′4T )Σ−1

T (Fbi + εi) = Op(T
bιk), (15)

X′
iΣ

−1
T (FC1T + C ′1TF′ + C2T + C ′2T )Σ−1

T Xi = Op(T
cιkι

′
k), (16)

X′
iΣ

−1
T (FC3T + C ′3TF′ + C4T + C ′4T )Σ−1

T Xi = Op(T
dιkι

′
k). (17)

Remarks: 1. We are assuming that the factor loadings bi are unobserved
random variables with a non-singular yet possibly heterogeneous distribution,
varying with the index i. We do not necessarily require the bi to be mutu-
ally independent from the regressors and from the factors although mutual
independence is typically assumed for concrete models.
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2. The factors ft are assumed unobserved, whereas observed factors, if present,
will be simply part of the regressors Xi. Moreover, there is no restriction on
the time dependence of the ft, who can be autocorrelated. One of the suffi-
cient conditions for Assumption 7.H will be, however, bounded-ness of Σff ′ .
Hence the ft can satisfy for instance a stationary vector auto-regression.
3. The idiosyncratic innovation εi does not need to be i.i.d across i, nor needs
to be independent from either the factor loadings bi, the factors F and the
observed regressors Xi. Moreover, Hi can vary with i and does not need to
be diagonal, implying a substantial degree of both heterogeneity as well as
the possibility of time dependence time dependence.
4. Assuming full column rank of Xi for all i is required, given that computa-
tionally the GLS estimator relies on the evaluation of a sequence of N OLS
problems.
5. When Σi,xx′ and Σff ′ are finite, then the other limit matrices are finite by
Schwartz inequality requiring, for certain cases, that the maximum eigenvalue
of Hi is bounded and its minimum eigenvalue is bounded away from zero,
uniformly in T . Bounded-ness of the maximum eigenvalue is implied when
ui satisfy an approximate factor structure Chamberlain (1983).

Note that Σi,xf ′ represents the cross-correlation (when EF = 0) between
the regressors Xi and the factors F and it determines the non-zero asymptotic
bias of the OLS estimator, unless it is a matrix of zeros or, if not, for the
trivial case of no factor structure (bi = 0). Under our assumptions, the
regression innovation ui has covariance matrix

Si = FBiF
′ + Hi

and, as seen below, the UGLS estimator of βi0 requires the limit of T−1X′
iS
−1
i Xi

to be positive definite, as stated in (7).
6. The limit matrices in Assumptions 5.H and 7.H arise when looking at the
probability limit of the sample covariance matrix of the OLS innovations.
Similarly, the limiting distribution results stated in Assumptions 6.H and
7.H, are required for OLS, UGLS and GLS respectively. Since we aim at
providing general results, we do not specify here the primitive conditions
required, although these can be relatively easily established when one con-
siders particular cases of (1) such as for Pesaran (2006)’s model, examined
in section 2.3.
7. As explained below, considering the GLS will imply to consider ΣT in
place of Si. Therefore, the various conditions dictated by Assumption 7.H
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on I1T , I2T make sure that Σ−1
T will be (as S−1

i ) asymptotically orthogonal to
the matrix of latent factors F. This is the essential property that guarantees
that the GLS estimator will have good asymptotic properties.
8. Conditions (14)-(17) determine the speed at which N and T have to diverge
to infinity, possibly at different rates, to ensure that the GLS estimator is
consistent and asymptotically normal.

2.2 Estimators results

For estimation of parameters βi0, the OLS estimator yield

β̂OLS
i = (X′

iXi)
−1Xiyi,

The unfeasible generalized least squares (UGLS) estimator is

β̂UGLS
i = (X′

iS−1
i Xi)

−1XiS−1
i yi,

setting
Si = FBiF

′ + Hi.

The feasible generalized least squares (GLS) estimator is

β̂GLS
i = (X′

iΣ̂
−1
T Xi)

−1XiΣ̂
−1
T yi,

setting

Σ̂T = N−1

N∑
i=1

ûiû
′
i, ûi = yi −Xiβ̂

OLS
i .

This requires at minimum N ≥ T . Note, however, that if the regressors
contain some observed factors, such as for instance when an intercept term is
allowed for, which can be written, without loss of generality, as Xi = (D,X∗

i )
for a T × k1 matrix D and a T × k2 matrix X∗

i , where k = k1 + k2, then
û′1D = 0 for all i. As a consequence, Σ̂T will be at most of rank T − k1 < T ,
no matter how large N is. Therefore, to allow non-singularity we consider
instead the alternative definition

Σ̂T = N−1

N∑
i=1

ûiû
′
i + T−1DD′,

where the normalization by T−1 is required since, from our assumptions,
supT ‖Σ̂−1

T ‖= O(1) a.s.
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Theorem 1 (unit-specific parameters)

(i) (OLS) When Assumptions 3.H, 4.H.(5), 6.H.(10) hold

T
1
2 (β̂OLS

i − βi0 − γOLS
i ) →d Nk(0,VOLS

i ) as T →∞,

setting
γOLS

i = Σ−1
i,xx′Σi,xf ′bi, VOLS

i = Σ−1
i,xx′Σi,xHx′Σ

−1
i,xx′ .

(ii) (UGLS) When Assumptions 1.H, 2.H.(3), 3.H, 4.H.(6), 6.H.(11)

T
1
2 (β̂UGLS

i − βi0) →d Nk(0,VUGLS
i ) as T →∞,

setting
VUGLS

i = (MUGLS
i )−1N UGLS

i (MUGLS
i )−1

withMUGLS
i = plimT→∞ T−1(X′

iS−1
i Xi), N UGLS

i = plimT→∞ T−1X′
iS−1

i HiS−1
i Xi.

Moreover
(MUGLS

i )−1 = N UGLS
i .

(iii) (GLS) When Assumptions 1.H, 2.H.(4), 3.H, 4.H.(5) and (7), 5.H,
7.H

β̂GLS
i →p βi0 as

1

T
+

Tmax(a−1,b− 3
2
)

N
1
2

+
Tmax(c− 3

2
,d−2)

N
1
2

→ 0,

T
1
2 (β̂GLS

i − βi0) →d Nk(0,VGLS
i ) as

1

T
+

Tmax(a− 1
2
,b−1)

N
1
2

+
Tmax(c−1,d− 3

2
)

N
1
2

→ 0,

setting
VGLS

i = (MGLS
i )−1NGLS

i (MGLS
i )−1

withMGLS
i = plim(N,T )→∞ T−1(X′

iΣ̂
−1
T Xi), NGLS

i = plim(N,T )→∞ T−1X′
iΣ̂

−1
T HiΣ̂

−1
T Xi.

Remarks 1. The asymptotic bias of the OLS estimator is not simply ex-
pressed in terms an un-centered asymptotic distribution which would other-
wise still ensures consistency. Instead βOLS

i = βi0 + γOLS
i + Op(T

− 1
2 ) where

γOLS
i = Σ−1

i,xx′Σi,xf ′bi is a random variable. Consistency is achieved if ei-
ther bi = 0, meaning no factor structure, or Σi,xf ′ = 0, that is zero cross-
correlation between the regressors and the factors (assuming the latter have
mean zero).
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2. It is well-known that the UGLS estimator improves efficiency with respect
the the OLS estimator for non-spherical innovations. Here we find that UGLS
exhibits a more profound property: it completely eliminates the factor struc-
ture’s adverse effect on OLS of inducing an asymptotic bias. The possibility
of a different, asymptotic, behaviour of OLS and GLS has already been noted
by Robinson and Hidalgo (1997) in a time series regression context with pos-
sibly long memory innovation and regressors. There, the GLS estimator is
T

1
2 -consistent and asymptotically normal whereas the same properties are

not warranted for the OLS estimator, under the same set of assumptions.
3. The reason underlying this important property of the UGLS estimator
here uncovered is the asymptotic orthogonality between the inverse of the
factor structure covariance matrix S−1

i and the factor matrix F, formalized
in general terms in Lemma 1. This result has been used, in the different
context of financial portfolio optimization, by Pesaran and Zaffaroni (2008)
who establish that mean-variance trading strategies do allow complete diver-
sification of both idiosyncratic and common shocks to asset returns.
4. The feasible GLS estimator here proposed is denoted GLS since it does
not achieve in general the same efficiency as the UGLS, as discussed below.
Our estimator does, however, exhibit the desired asymptotic properties, as
N, T diverge jointly to infinity at suitable rates, meaning that our result does
not depend on the somewhat restrictive approach of taking sequential limits.
When a ≤ 1, b ≤ 3

2
, c ≤ 3

2
and d ≤ 2 then consistency is achieved without the

need to specify the relative speed at which N, T diverge to infinity. These
conditions appear cumbersome due to the generality of our approach, whereas
they become much simpler when looking at specific models such as Pesaran
(2006), described in the next section.

The reason why GLS works is that , although Σ̂T is a non-consistent
estimate of the true covariance matrix Si (in the sense of element by element),
its limit ΣT = FI1TF′ + I2T ,, once taking the inverse, belongs to the space
orthogonal to the factors F, under suitable regularity conditions. On the
other hand, the GLS estimator does not require to identify, let alone to
estimate, the factor structure within the innovation so that, for instance, one
does not need to know m, the true number of factors, as long as it is finite.
In the case of no factor structure (m = 0) our method continue to work,
without making use of this information which obviously would suggest to
use OLS.
5. Since GLS delivers consistent parameter estimates, this suggests a two-
step approach, achieving a more efficient estimator. The first stage consists
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of getting the GLS estimator β̂i as described above. Next, one can evaluate
Σ̃T = N−1

∑N
i=1 ũiũ

′
i for ûi = yi − Xiβ̂

GLS
i in order to get the second-step

GLS estimator β̃GLS
i = (X′

iΣ̃
−1
T Xi)

−1XiΣ̃
−1
T yi. Given a set of conditions

that build on Assumptions H, one can show that β̃GLS
i is also consistent and

asymptotically normal, as N, T diverge to infinity (as some rate). Moreover,
it can be shown that Σ̃T →p Si + T−1Ri, as N →∞, for a T × T matrix Ri

satisfying supT ‖T−1Ri ‖= O(1) a.s. and where each element of T−1Ri goes
to zero as T →∞. Hence, Σ̃T is closer to Si than Σ̂T , where the approxima-
tion improves the larger N and T are. This suggests that a certain efficiency
improvements can be achieved by using the two-stage GLS estimator β̃i and,
indeed, such improvement can be substantial when N, T are both sizeable.
Below we report some Monte Carlo results in order to gauge these possible
improvements of efficiency in finite samples.

2.3 Particular model: Pesaran (2006)

The model is
yit = α′0idt + β′0ixit + eit, (18)

where dt is a n× 1 vector of observed factors, xit is a k × 1 observed vector
satisfying

xit = A′
idt + Γ′ift + vit (19)

where ft is the m×1 vector of unobserved factors, Ai, Γi are n×k and m×k
matrices of factor loadings, vit is the k × 1 vector of specific components of
the regressors xit. Finally

eit = f ′tγi + εit, (20)

with εit independent of dt, xit and vit independent of dt, ft. With respect to
our notation, (19)-(20) imply

F = (f1...ft...fT )′, B = (γ1...γi...γN)′, Xi = (D,X∗
i ) ,

where we set X∗
i = DAi+FΓi+Vi with D = (d1...dt...dT )′, Vi = (vi1...vit...viT )′.

We now verify the extent to which the assumptions of Pesaran (2006)
imply our Theorem 1, part (iii). It turns out that our conditions are both
weaker and stronger than Pesaran (2006) depending on the circumstances.
Note that since the model permits common observed factors, one will need
to add the term T−1DD′ to Σ̂T , in particular to I2T .
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Assumption 1.H follows by the strong law of large numbers (LLN) and
Pesaran (2006, Assumption 3) where Bi = B equal to γγ′ + Ωη using Pe-
saran’s notation. We further require B > 0. Assumption 2.H is only in
part implied by Pesaran (2006, Assumption 2), in particular (3) is, but we
also require N−1

∑N
i=1 Hi →p HT > 0, not necessarily implied by Pesaran

(2006, eq. (10)). Assumption 3.H is implied by Pesaran (2006, Assump-
tion 5a). Concerning Assumption 4.H, (5) follows by strengthening Pesaran
(2006, Assumption 1 and 2) to fourth-order covariance stationarity with ab-
solute summable autocovariances,

X′
iXi

T
→p Σi,xx′ ==

(
Σdd′ Σdd′Ai + Σdf ′Γi

A′
iΣdd′ + Γ′iΣfd′ Σvv′ + A′

iΣdd′Ai + Γ′iΣff ′Γi + A′
iΣdf ′Γi + Γ′iΣfd′Ai

)
,

X′
iF

T
→p Σi,xf ′ =

(
Σdf ′

Γ′iΣff ′ + A′
iΣdf ′

)
,

since Σfv′ and Σdv′ are both matrices of zeros by Pesaran (2006, Assump-
tion 1 and 2). By the same assumptions, Σi,xx′ is bounded and, using the
block matrix decomposition (Magnus and Neudecker 1988), is non-singular
whenever both matrices

Σdd′ , Σvv′ − Γ′iΣ(fd′)Γi,

are non-singular, where we set Σ(fd′) = Σfd′Σ
−1
dd′Σdf ′ −Σff ′ . The latter re-

quires Σvv′ > 0, implied by Pesaran (2006, Assumption 2) who defines it
as Σi, since −Σ(fd′) is positive semi definite, in fact at most 0 for perfectly
correlated ft, dt. However, we require in addition Σdd′ > 0. Expression for
Σi,xHx′ will depend on the adopted parameterization for the hts,i, that is on
the form of the moving average coefficients ail in Pesaran (2006, Assump-
tion 2). However, under summability of the moving average coefficients ail,
which implies the spectral density of the εit to be finite at all frequencies,
then boundedness of Σi,xx′ implies, by the spectral decomposition of positive
definite matrices, boundedness of Σi,xHx′ . Note, however, that the UGLS
estimator does need Hi > 0, as in Assumption 2.H.(3), which in turn re-
quires the spectral density of the εit to be bounded away from zero, ensuring
boundedness of Σi,xH−1x′ , Σi,fH−1f ′ , Σi,xH−1f ′ . Concerning Assumption 5.H,
setting Ci = (Ai + Σ−1

dd′Σdf ′Γi), one obtains

Σ−1
i,xx′ =

(
Σ−1

dd′ + Ci(Σvv′ − Γ′iΣ(fd′)Γi)
−1C′

i −Ci(Σvv′ − Γ′iΣ(fd′)Γi)
−1

−(Σvv′ − Γ′iΣ(fd′)Γi)
−1C′

i (Σvv′ − Γ′iΣ(fd′)Γi)
−1

)
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and

XiΣ
−1
i,xx′Σi,xf ′ = DΣ−1

dd Σdf ′+(DΣ−1
dd Σdf ′Γi−FΓi−Vi)(Σvv′−Γ′iΣ(fd′)Γi)

−1Γ′iΣ(fd′).

. Further manipulations yield

A1T = DΣ−1
dd′Σdf ′BΣfd′Σ

−1
dd′D

′ + DΣ−1
dd′Σdf ′BΣ(fd′)P1TΣfd′Σ

−1
dd′D

′

−DΣ−1
dd ΣdfBΣ(fd′)P1TF′ + DΣ−1

dd′Σdf ′P1TΣ(fd′)BΣfd′Σ
−1
dd′D

′

+DΣ−1
dd′Σdf ′P2TΣfd′Σ

−1
dd′D

′ −DΣ−1
dd′Σdf ′P2TF′ − FP1TΣ(fd′)BΣfd′Σ

−1
dd′D

′

−FP2TΣfd′Σ
−1
dd′D

′ + FP2TF′ + P3T ,

setting

N−1

N∑
i=1

Γi(Σvv′ − Γ′iΣ(fd′)Γi)
−1Γ′i →p P1T ,

N−1

N∑
i=1

(
Γi(Σvv′ − Γ′iΣ(fd′)Γi)

−1Γ′iΣ(fd′)BΣ(fd′)Γi(Σvv′ − Γ′iΣ(fd′)Γi)
−1Γ′i

) →p P2T ,

N−1

N∑
i=1

(
Vi(Σvv′ − Γ′iΣ(fd′)Γi)

−1Γ′iΣ(fd′)BΣ(fd′)Γi(Σvv′ − Γ′iΣ(fd′)Γi)
−1V′

i

) →p P3T ,

N−1

N∑
i=1

Vi(Σvv′ − Γ′iΣ(fd′)Γi)
−1V′

i →p P4T .

Likewise A2T = DΣ−1
dd′Σdf ′BF′ + DΣ−1

dd′Σdf ′P1TΣ(fd′)BF′ − FP1TΣ(fd′)BF′.
Notice how the above expression are functionally independent from Ai. Hence,
whether X∗

i is dependent or not from D, is irrelevant for the sake of the deriva-
tion of A1T ,A2T whose existence in implied, using a strong LLN argument,
by Pesaran (2006, Assumptions 2 and 3). No additional moment conditions
on the Γi are required since supΓi

‖ Γi(Σvv′ − Γ′iΣ(fd′)Γi)
−1Γ′i ‖= O(1) a.s.

and the Vi have bounded fourth moment by Pesaran (2006, Assumption 2).
By simple manipulations, XiΣ

−1
i,xx′X

′
i equals DΣ−1

dd′D
′+[(DΣ−1

dd′Σdf ′−F)Γi−
Vi](Σvv′ − Γ′iΣ(fd′)Γ

′
i)
−1[Γ′i(DΣ−1

dd′Σdf ′ − F)′ − V′
i], where all the terms in-

volving Ai drop out. Although closed-form expressions for A3T , A4T , require
to specify the parameterization of the Hi, existence of the limit follows by
Pesaran (2006, Assumptions 2 and 3). Assumptions (8) and (9) follow by
direct use of the CTL which holds under suitable assumptions. For instance,
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when ‖bi‖2+δ< ∞ and | εit |2+δ< ∞, some δ > 0, and Pesaran (2006, As-
sumption 2) hold with in addition i.i.d.-ness of the εit across i, then the

Lyapunov condition holds and the t-th column of C1T satisfies C
1
2
1tT ζ1t for a

normally distributed m × 1 vector ζ1t with mean zero and unit covariance
matrix and N−1

∑N
i,j=1 biεitεjtb

′
j →p C1tT whose existence is implied by the

previously made assumptions. Cross-sectional independence of the εit can
be relaxed to a limited degree of dependence of the εit such that, in partic-
ular, Ht = [hij,t]

N
i,j=1 = E(εtε

′
t | bi,bj,Xi,Xj,F) have bounded maximum

eigenvalue, that is supN ‖Ht‖= O(1) a.s. (see Pesaran and Tosetti (2007)
for a general definition cross-sectional weak dependence). Likewise, under

the same conditions, for the tth column of C2T one gets C
1
2
2tT ζ2t for a T × 1

normally distributed vector ζ2t with mean zero and unit covariance matrix,
where boundedness of C2tT requires E ‖D + F + Vi‖2+δ< ∞. Similar re-
sults apply to (9) where now the Lyapunov condition require, in addition,
E ‖D + F + Vi‖6+δ< ∞.

Concerning Assumption 7.H, (12) follows for

D1T = P2T + P1TΣ(fd′)B + BΣ(fd′)P1T ,

D2T = −F (C1T + B)Σfd′Σ
−1
dd′D

′ −DΣ−1
dd′Σdf ′ (C1T + B)F′

+DΣ−1
dd′Σdf ′ (C1T + B)Σfd′Σ

−1
dd′D

′ + P3T .

For A3T ,A4T , as said, closed-form expressions required to parameterize Hi

so, for instance, assuming for simplicity Hi = IT yields

E1T = −P1T ,

E2T =

−D(Σ−1
dd′ + Σ−1

dd′Σdf ′P1TΣfd′Σ
−1
dd′)D

′ −P4T + DΣ−1
dd′Σdf ′P1TF′ + FP1TΣfd′Σ

−1
dd′D

′.

Now non-singularity of I1T = D1T + T−1E1T + B requires

B + P2T + P1TΣ(fd′)B + BΣ(fd′)P1T − T−1P1T non-singular. (21)

Moreover, for (13), given

I2T = HT +P3T−T−1(D(Σ−1
dd′−In)D′+P4t)+(F−DΣ−1

dd′Σdf ′)I1T (F′−Σfd′Σ
−1
dd′D

′)−FI1TF′.

one needs
Σfd′ = 0 (22)
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for otherwise T−1F′I−1
2T F →p 0 by the Central Lemma (C, F,−I1T , T ), set-

ting C = HT +P3T −T−1(D(Σ−1
dd′ − In)D′+P4t)+ (F−DΣ−1

dd′Σdf ′)I1T (F′−
Σfd′Σ

−1
dd′D

′). Sufficient conditions for (22) are

µf = 0 and {ft,dt} contemporaneously uncorrelated.

Uncorrelatedness follow simply when dt is deterministic, including intercept
term, trends or seasonal dummies. Hence, under (22)

I2T = HT + P3T − T−1(D(Σ−1
dd′ − In)D′ + P4t) > 0.

Moreover Σ(fd′) = −Σff ′ and, by taking into consideration the definitions of
P1T ,P2T , (21) can be expressed as the limit of

N−1

N∑
i=1

(
Γi(Σvv′ + Γ′iΣff ′Γi)

−1Γ′iΣff ′ − Im

)B (
Γi(Σvv′ + Γ′iΣff ′Γi)

−1Γ′iΣff ′ − Im

)′

−T−1N−1

N∑
i=1

Γi(Σvv′ + Γ′iΣff ′Γi)
−1Γ′i →p C1T + B + T−1D1T = I1T non-singular.(23)

A sufficient condition for (23) is non-singularity of (Γi(Σvv′ + Γ′iΣff ′Γi)
−1Γ′iΣff ′ − Im)

for any i but in fact a milder condition might suffice. Set, as an example,
Σff ′ = B = Im and Σvv′ = Ik. For m > k = 1, (23) is equivalent to obtain a
non-singular limit of

N−1

N∑
i=1

(
Im − (2 + Γ′iΓi)

(1 + Γ′iΓi)2
ΓiΓ

′
i

)
− T−1N−1

N∑
i=1

ΓiΓ
′
i

(1 + Γ′iΓi)

which can be obtained under mild conditions on the Γi since each
(
Im − (2+Γ′iΓi)

(1+Γ′iΓi)2
ΓiΓ

′
i

)

is non-singular for all i. Instead, when k > m = 1 then (23) is equivalent to
obtaining a non-zero limit of

N−1

N∑
i=1

(
1− Γi(Ik + Γ′iΓi)

−1Γ′i
)2 − T−1N−1

N∑
i=1

Γi(Ik + Γ′iΓi)
−1Γ′i,

where it easily follows that each of the addenda is non-zero. Similar argu-
ments follow for the case m = k. Finally, notice that Σvv′ > 0 is strictly
required, ruling out the possibility that the regressors xit obey a pure factor
structure xit = A′

idt + Γ′ift, otherwise (7) fails.
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Closed-form expressions for Σi,xI−1
2 x′ , Σi,xI−1

2 HI−1
2 x′ , Σi,fI−1

2 HI−1
2 f ′ , Σi,xI−1

2 f ′ ,
Σi,xI−1

2 HI−1
2 f ′ , however, required for the verification of the CTL conditions,

would depend on the adopted parameterization for the hts,i, and thus for
the ail of Pesaran (2006, Assumption 2). We conclude investigating the
conditions required for (14)-(17). Under the assumptions made C1T is a
random, mean zero, matrix of dimension m × T , whose rows are uncor-
related with each εi, Xi and with each row of Σ−1

T . In addition, denot-
ing by C1Tj the jth row of C1T , we will require supT ‖EC ′1TjC1Tj ‖= O(1)
for all 1 ≤ j ≤ m. The same assumptions are required for all the zero
mean random matrices introduced below. Hence, by standard arguments,
X′

iΣ
−1
T C ′1T = Op(T

1
2 ιn+kι

′
m), C1TΣ−1

T εi = Op(T
1
2 ιm) and, by repeated use of

Lemma 2, F′Σ−1
T εi = Op(T

− 1
2 ιm),F′Σ−1

T C ′1T = Op(T
− 1

2 ιmι′m), F′Σ−1
T Xi =

Op(ιn+kι
′
m), F′Σ−1

T F = Op(ιmι′m) yielding

X′
iΣ

−1
T (FC1T + C ′1TF′)Σ−1

T Xi = Op(T
1
2 ιn+kι

′
n+k),

X′
iΣ

−1
T (FC1T + C ′1TF′)Σ−1

T (Fbi + εi) = Op(T
1
2 ιn+k).

Similarly, since under (22), XiΣ
−1
i,xx′Σi,xf ′ = (FΓi+Vi)(Σvv′+Γ′iΣff ′Γi)

−1Γ′iΣff ′ ,
one gets C2T = FC21T +C22T for a.s. random, mean zero, matrixes of dimension
m× T and T × T respectively. The previous bounds apply substituting C1T

with C21T and when, in addition, X′
iΣ

−1
T C22TΣ−1

T F = Op(ιn+kι
′
m), X′

iΣ
−1
T C22TΣ−1

T εi =

Op(T
1
2 ιn+k) then

X′
iΣ

−1
T (C2T + C ′2T )Σ−1

T Xi = Op(Tιn+kι
′
n+k),

X′
iΣ

−1
T (C2T + C ′2T )Σ−1

T (Fbi + εi) = Op(T
1
2 ιn+k).

Under (22), XiΣ
−1
i,xx′X

′
i = DΣ−1

dd′D
′ + (FΓi + Vi)(Σvv′ + Γ′iΣff ′Γ

′
i)
−1(Γ′iF

′ +

V′
i) yielding C3T = T− 1

2C1TDΣ−1
dd′D

′ + C31TF′ + C32T for zero mean random
m×m matrix C31T and a m×T matrix C32T . Again, the previous bounds apply
substituting C1T by C32T and X′

iΣ
−1
T D = Op(Tιn+kι

′
d), C1TD = Op(T

1
2 ιmι′d)

yielding

X′
iΣ

−1
T (FC3T + C ′3TF′)Σ−1

T Xi = Op(Tιn+kι
′
n+k),

X′
iΣ

−1
T (FC3T + C ′3TF′)Σ−1

T (Fbi + εi) = Op(Tιn+k).

Finally C4T = T− 1
2C2TDΣ−1

dd′D
′ + FC41TF′ + FC42T + C43TF′ + C44T for zero

mean random m×m matrix C41T , m×T matrices C42T , C ′43T and T×T matrix
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C44T yielding

X′
iΣ

−1
T (C4T + C ′4T )Σ−1

T Xi = Op(T
3
2 ιn+kι

′
n+k),

X′
iΣ

−1
T (C4T + C ′4T )Σ−1

T (Fbi + εi) = Op(T
3
2 ιn+k).

Hence, (14),(15),(16),(17) hold with a = 1/2, b = 1, c = 3/2, d = 3/2. In
general, primitive conditions can be derived but no assumption of Pesaran
(2006) would imply (21), (22) nor any of the other conditions in 7.H.

We summarize the result of this section as follows:

Proposition 1 Assume that Pesaran (2006, Assumptions 1, 2, 3 and 5a)
hold and, in addition, N−1

∑N
i=1 Hi →p HT > 0 as N → ∞, the (n+m)×1

vector (d′t, f
′
t)
′ is fourth-order covariance stationarity with absolute summable

autocovariances, bounded (6+δ)th moment and Σdd′ > 0, the bi have bounded
(2+δ)th moment with B > 0, the vit have bounded (6+δ)th moment and the εit

have bounded (2+δ)th moment and are i.i.d. across i. Finally let Assumption
7.H hold, which at minimum requires Σfd′ = 0.

Then Theorem 1,(iii) applies to the GLS estimator for (α′0, β
′
0)
′ of model

(18)-(19)-(20) when
1

T
+

1

N
→ 0

for consistency and
1

T
+

T

N
→ 0

for asymptotic normality.
No other conditions of Pesaran (2006) is required, such as in particular

the m×(k+1) matrix E (bi Γi) to be full row rank m.

Finally, notice that the bias term of the OLS for βi is, from Theorem 1
(i), γOLS

i = Σ−1
i,xx′Σi,xf ′bi which is zero only if bi = 0 a.s. (no factor structure

in the regression error) or, alternatively, if Σi,xf ′ = Oi = 0 a.s. This latter
condition requires both Γi = 0 a.s. and Σfd′ = 0. The GLS estimator does
not require Γi = 0 a.s. and thus allows the unit-specific regressors X∗

i to be
cross-correlated with the unobserved factors F.
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3 Time-Specific Parameters Model

3.1 Definitions and assumptions

This section mirrors exactly the previous section but we prefer to present it
in full, in order to avoid a the possibility of substantial confusion in notation.

Consider linear regression models with possibly time-specific parameters,
such that for the tth time period

yt = Xtβt0 + ut, (24)

for an observed N × 1 vector yt = (y1t, ..., yit, ..., yNt)
′ and an observed

N × k matrix Xt = (x1t, ...,xit, ...,xNt)
′ related by a k × 1 vector of pos-

sibly time-specific regression coefficients βt0. The unobserved N × 1 vector
ut = (u1t, ..., uit, ..., uNt)

′ obeys the same factor structure described previ-
ously which, staking the uit across units i, can be expressed as

ut = Bft + εt.

As before, ft denotes an unobserved m×1 vector of factors, B = (b1, ...,bN)′

is an unobserved N ×m matrix of factor loadings and εt = (ε1t, ..., εNt)
′ is

the unobserved N × 1 vector of idiosyncratic innovations. Cross-sectional
regressions with constant regression coefficients, such as Andrews (2005), or
time-specific coefficients, are particular cases of (50).

A set of general assumptions required for the estimators here considered
are introduced below, and commented subsequently. Theorem 2 states the
asymptotic properties of the OLS, UGLS and GLS estimators for βt0 and
the subsequent section discusses a set of primitive conditions of our general
assumptions for a particular case of interest of model (50) namely Andrews
(2005)’s model.
Assumption 1.T (common factors)
For every t, the ff are random vector of dimension m× 1 such that E(ftf

′
t |

Xt,B) = Ft > 0 with T−1
∑T

t=1Ft →p F > 0 as T →∞.

Assumption 2.T (idiosyncratic innovation)
For every t, εt = (ε1t, ..., εit, ..., εNt)

′ let E(εt | ft, Xt,B) = 0 and

Ht = E(εtε
′
t | ft, Xt,B) > 0, (25)

T−1

T∑
t=1

Ht →p HN > 0 as T →∞. (26)
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Assumption 3.T (regressors)
For every t, the N × k matrix Xt is full column rank.

Assumption 4.T (basic limit conditions)
All the limit matrices below, as N →∞, are a.s. finite:

X′
tXt

N
→p Σt,xx′ > 0,

X′
tHtXt

N
→p Σt,xHx′ > 0,

X′
tB

N
→p Σt,xb′ , (27)

X′
tH

−1
t Xt

N
→p Σt,xH−1x′ > 0,

B′H−1
t B

N
→p Σt,bH−1b′ > 0,

X′
tH

−1
t B

N
→p Σt,xH−1b′

(28)

such that
Σt,xH−1x′ −Σt,xH−1b′Σt,bH−1b′Σ

′
t,xH−1b′ > 0. (29)

Assumption 5.T (limit conditions for GLS)
All the limit matrices below, as T →∞ and arbitrary N , are a.s. finite:

T∑
t=1

XtΣ
−1
t,xx′Σt,xb′ftf

′
tΣ

′
t,xb′Σ

−1
t,xx′X

′
t

T
= A1N(1+op(1)),

T∑
t=1

XtΣ
−1
t,xx′Σt,xb′ftf

′
tB

′

T
= A2N(1+op(1)),

T∑
t=1

XtΣ
−1
t,xx′X

′
tεtε

′
tXtΣ

−1
t,xx′X

′
t

NT
= A3N(1+op(1)),

T∑
t=1

XtΣ
−1
t,xx′X

′
tεtε

′
t

T
= A4N(1+op(1)),

T∑
t=1

ftε
′
t

T
1
2

= C1N(1 + op(1)),
T∑

t=1

XtΣ
−1
t,xx′Σt,xb′ftε

′
t

T
1
2

= C2N(1 + op(1)), (30)

T∑
t=1

ftε
′
tXtΣ

−1
t,xx′X

′
t

T
1
2 N

1
2

= C3N(1+op(1)),
T∑

t=1

XtΣ
−1
t,xx′Σt,xb′ftε

′
tXtΣ

−1
t,xx′X

′
t

T
1
2 N

1
2

= C4N(1+op(1)). (31)

Assumption 6.T (distribution conditions for OLS and UGLS)
As N →∞:

X′
tεt

N
1
2

→d N (0,Σt,xHx′), (32)

X′
tH

−1
t εt

N
1
2

→d N (0,Σt,xH−1x′),
B′H−1

t εt

N
1
2

→d N (0,Σt,bH−1b′). (33)

Assumption 7.T (distribution and identification conditions for GLS)
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Let D1N , E1N be m×m and D2N , E2N and N ×N matrices satisfying

A1N − (A2N +A′
2N) = BD1NB′ +D2N and A3N − (A4N +A′

4N) = BE1NB′ + E2N (34)

with an m × m non-singular symmetric I1N = D1N + N−1E1N + F and a
N ×N non-singular I2N = D2N + N−1E2N +HN satisfying a.s.:

B′I−1
2NB

N
→p ΣbI−1

2 b′(non-singular),
B′I−1

2NHtI−1
2NB

N
→p Σt,bI−1

2 HI−1
2 b′ , (35)

X′
tI−1

2NXt

N
→p Σt,xI−1

2 x′ (non-singular),
X′

tI−1
2NHtI−1

2NXt

N
→p Σt,xI−1

2 HI−1
2 x′ ,

X′
tI−1

2NB

N
→p Σt,xI−1

2 b′ ,
X′

tI−1
2NHtI−1

2NB

N
→p Σt,xI−1

2 HI−1
2 b′ ,

X′
tI−1

2Nεt

N
1
2

→d N (0,Σt,xI−1
2 HI−1

2 x′),
B′I−1

2Nεt

N
1
2

→d N (0,Σt,bI−1
2 HI−1

2 b′),

where all the limits above hold as N →∞ with a.s. finite limit matrices and,
setting

ΣN = BI1NB′ + I2N ,

for all t, and some a, b, c, d > 0:

X′
tΣ

−1
N (BC1N + C ′1NB′ + C2N + C ′2N)Σ−1

N (Bft + εt) = Op(N
aιk), (36)

X′
tΣ

−1
N (BC3N + C ′3NB′ + C4N + C ′4N)Σ−1

N (Bft + εt) = Op(N
bιk), (37)

X′
tΣ

−1
N (BC1N + C ′1NB′ + C2N + C ′2N)Σ−1

N Xt = Op(N
cιkι

′
k), (38)

X′
tΣ

−1
N (BC3N + C ′3NB′ + C4N + C ′4N)Σ−1

N Xt = Op(N
dιkι

′
k). (39)

Remark: The comments made to Assumptions 1.H-7.H apply now but re-
placing T, F,bi,Xi, εi,Hi,ui,Σi,xx′ ,Σi,xf ′ ,Si with N, B, ft,Xt, εt,Ht,ut,Σt,xx′ ,Σt,xb′ ,St

respectively.

3.2 Estimators results

The ordinary least squares (OLS) estimator is

β̂OLS
t = (X′

tXt)
−1Xtyt,

The unfeasible generalized least squares estimator (UGLS) is

β̂UGLS
t = (X′

tS−1
t Xt)

−1XtS−1
t yt,
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setting
St = BFtB

′ + Ht.

The feasible generalized least squares estimator (GLS) estimator estimator
is

β̂GLS
t = (X′

tΣ̂
−1
N Xt)

−1XtΣ̂
−1
N yt,

setting

Σ̂N = T−1

T∑
t=1

ûtû
′
t, ût = yt −Xtβ̂

OLS
t ,

which requires T ≥ N . Again, if Xt = (D,X∗
t ) for a N × k1 matrix D and

a N × k2 matrix X∗
t , where k = k1 + k2, such as when an intercept term is

allowed for, then in order to allow non-singularity we consider

Σ̂N = T−1

T∑
t=1

ûtû
′
t + N−1DD′.

Theorem 2 (time-specific parameters)

(i) (OLS) When Assumptions 3.T , 4.T .(27), 6.T .(32) hold

N
1
2 (β̂OLS

t − βt0 − γOLS
t ) →d Nk(0,VOLS

t ) as N →∞,

setting
γOLS

t = Σ−1
t,xx′Σt,xb′ft, VOLS

t = Σ−1
t,xx′Σ

−1
t,xHx′Σ

−1
t,xx′ .

(ii) (UGLS) When Assumptions 1.T , 2.T .(25), 3.T , 4.T .(28), 6.T .(33)

N
1
2 (β̂UGLS

t − βt0) →d Nk(0,VUGLS
t ) as N →∞,

setting
VUGLS

t = (MUGLS
t )−1N UGLS

t (MUGLS
t )−1

withMUGLS
t = plimN→∞ N−1(X′

tS−1
t Xt), N UGLS

t = plimN→∞ N−1X′
tS−1

t HtS−1
t Xt.

Moreover
(MUGLS

t )−1 = N UGLS
t .

(iii) (GLS)
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When Assumptions 1.T , 2.T .(26), 3.T , 4.T .(27) and (29), 5.T , 7.T

β̂GLS
t →p βt0 as

1

N
+

Nmax(a−1,b− 3
2
)

T
1
2

+
Nmax(c− 3

2
,d−2)

T
1
2

→ 0,

N
1
2 (β̂GLS

t − βt0) →d Nk(0,VGLS
t ) as

1

N
+

Nmax(a− 1
2
,b−1)

T
1
2

+
Nmax(c−1,d− 3

2
)

T
1
2

→ 0,

setting
VGLS

t = (MGLS
t )−1NGLS

t (MGLS
t )−1

withMGLS
t = plim(N,T )→∞ N−1(X′

tΣ̂
−1
N Xt), NGLS

t = plim(N,T )→∞ N−1X′
tΣ̂

−1
N HtΣ̂

−1
N Xt.

Remarks 1. Most of the comments to Theorem 1 apply here and will not
be repeated. Now βOLS

t = βt0 + γOLS
t + Op(N

− 1
2 ) where γOLS

t = Σ−1
t,xx′Σ

−1
t,xb′ft

which is a random variable. Consistency is achieved if either ft = 0 (no
factors) or Σ−1

t,xb′ = 0, implied by no cross-correlation between the regressors
and the factors (assuming the latter have mean zero or, alternatively, when
Xt contains an vector of ones).
2. Now the GLS makes use of Σ̂N which, although a non-consistent estimate
of the true covariance matrix St = BFtB

′ + Ht (in the sense of element by
element), has limit ΣN = BI1NB′ + I2N , which, once taking the inverse,
belongs to the space orthogonal to the factor loadings B under suitable reg-
ularity conditions.

3.3 Particular model: Andrews (2005)

The model is
yit = β′0t(1x′it)

′ + uit, (40)

where (yit,xit) are assumed i.i.d. across units conditional on c1t, C2t by An-
drews (2005, Assumption 1), with

uit = c′1tu
∗
i + εit, (41)

xit = C2tx
∗
i + vit, (42)

with c1t, u∗i are d1 × 1 random vectors and C2t, x∗i respectively a random
matrix of dimension k × d2, with d2 ≥ k, and a random vector of dimen-
sion d2 × 1 and εit and vit are i.i.d. innovations across i and t, respectively
scalar and k × 1, with zero mean and variances hii,t and Σt,vv′ . We focus on
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Andrews (2005)’s standard factor structure, spelled out in his Assumption
SF1, here slightly extended to allow for an idiosyncratic component in both
the regression error uit and the regressors xit as well as time-variation in
parameters, common factors and covariance matrices. The first extension is
compulsory since when εit = 0 a.s. our theory does not apply. Let as start
assuming Σt,vv′ = 0 implying vit = 0 a.s. as in Andrews (2005), although
this is not necessary for our arguments to go through. (41)-(42) imply

F = (c11...c1t...c1T )′, B = (u∗1...u
∗
N)′, Xt = (ιN ,X∗C′

2t) ,

where we set X∗ = (x∗1...x
∗
i ...x

∗
N)′. We do not consider here Andrew’s other,

more general, forms cross-sectional dependence named heterogeneous and
functional factor structures.

We now verify the extent to which the assumptions of Andrews (2005)
imply our Theorem 2, part (iii). We are able to relax some of his assumptions,
although here more conditions need to be made here with respect to the time-
series properties of c1t,C2t, εt, un-necessary to Andrews (2005) since all his
results hold conditional on the σ-field C induced by {c1t,C2t}.

Assumptions 1.T and 2.T do not follow from any of Andrews (2005)’s
assumptions although, when imposing iidness conditional on C, Ht = σ2

t IN .
We also require plimT−1

∑T
t=1 σ2

t = σ2 > 0 yielding HN = σIN . Assumption
3.T is implied by Andrews (2005, Assumption 2d). Concerning Assumption
4.T

X′
tXt =

(
N

∑N
i=1 x∗i

′C′
2t

C2t

∑N
i=1 x∗i C2t

∑N
i=1 x∗i x

∗
i
′C′

2t

)
, X′

tHtXt = σ2
t X

′
tXt,

X′
tH

−1
t Xt = σ−2

t X′
tXt, B′H−1

t B = σ−2
t

N∑
i=1

u∗i u
∗
i
′,

X′
tB =

( ∑N
i=1 u∗i

′

C2t

∑N
i=1 x∗i u

∗
i
′

)
, X′

tH
−1
t B = σ−2

t X′
tB.

and the limits are well defined by Andrews (2005, Assumptions 1, 2 and
3(a)). Then

Σt,xx′ =

(
1 µx

′C2t
′

C2tµx C2tΣxx′C2t
′

)
> 0, Σt,xb′ =

(
µ′u

C2tΣxu′

)
,

non-singularity ensured by Andrews (2005, Assumption 2(d)), where here-
after µx = Ex∗i , Σxx′ = Ex∗i x

∗
i
′, Σuu′ = Eu∗i u

∗
i
′, µu = Eu∗i , Σxu′ = Ex∗i u

∗
i
′.
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Using the block matrix decomposition (Magnus and Neudecker 1988) one
gets

Σ−1
t,xx′ =(

q−1
t −q−1

t µ′xC2t
′(C2tΣxx′C2t

′)−1

−q−1
t (C2tΣxx′C2t

′)−1C2tµx (C2tΣxx′C2t
′)−1(Ik + q−1

t C2tµxµ
′
xC2t

′(C2tΣxx′C2t
′)−1)

)
,

where qt = 1− µ′xC2t
′(C2tΣxx′C2t

′)−1C2tµx > 0, a.s. since the xit = C2tx
∗
i

have an non-singular distribution. In fact, for any non-degenerate random
vector x one gets Exx′ > ExEx′, equivalent to Ex′(Exx′)−1Ex < 1. Formu-
lae for Σt,xHx′ ,Σt,xH−1x′ , Σt,bH−1b′ ,Σt,xH−1b′ easily follows. Concerning As-
sumption 5.H, the expression for A1N , A2N follows by using

XtΣ
−1
t,xx′Σt,xb′ =

[
X∗C2t

′(C2tΣxx′C2t
′)−1C2tΣxu′

+q−1
t (ιN −X∗C2t

′(C2tΣxx′C2t
′)−1C2tµx)(µ

′
u − µ′xC2t

′(C2tΣxx′C2t
′)−1C2tΣxu′)

]
.

By Greville (1965), setting A+ to be the Moore-Penrose of a matrix A,

(C2tΣxx′C2t
′)−1 = (C2t

′)+Σ−1
xx′(C2t)

+ = (C2tC2t
′)−1C2tΣ

−1
xx′C2t

′(C2tC2t
′)−1,

where the last equality follows since C2t is full row rank. Substituting
the last expression into XtΣ

−1
t,xx′Σt,xb′FtΣ

′
t,xb′Σ

−1
t,xx′X

′
t yields many terms like

C2t
′(C2tC2t

′)−1C2t. Now the matrix M2t = Ik − C2t
′(C2tC2t

′)−1C2t is
idempotent positive semi-definite, implying

C2t
′(C2tC2t

′)−1C2t = Ik −M2t ≤ Ik. (43)

This implies ‖ XtΣ
−1
t,xx′Σt,xb′FtΣ

′
t,xb′Σ

−1
t,xx′X

′
t ‖= O(‖Ft ‖) a.s. Similarly, for

A2N , ‖ XtΣ
−1
t,xx′Σt,xb′Ft ‖= O(‖Ft ‖) a.s., forA3N , ‖ XtΣ

−1
t,xx′Σt,xHx′Σ

−1
t,xx′X

′
t ‖=

O(σ2
t ) a.s. Notice that A4N = A3N since Ht is diagonal, where

XtΣ
−1
t,xx′X

′
t =

q−1
t ιN ι′N − q−1

t X∗C′
2t(C2tΣxx′C

′
2t)

−1C2tµxι
′
N − q−1

t ιNµ′xC
′
2t(C2tΣxx′C

′
2t)

−1C2tX
∗′

+X∗C′
2t(C2tΣxx′C

′
2t)

−1[Ik + q−1
t C2tµxµ

′
xC

′
2t(C2tΣxx′C

′
2t)

−1]C2tX
∗′

and hence its boundedness does not require any moment conditions in C2t.
For (30) and (31), they follow by using the martingale CLT (see Brown

(1971)) if we assume that, for each i, the εit can be written as linear pro-
cesses of a martingale difference sequence with absolute summable coeffi-
cients. In turn, this is implied when Hi = [hts,i]

T
t,s=1 (defined in (3)) has
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bounded maximum eigenvalue. Then for the ith column of C1N one gets

T− 1
2

∑T
t=1 ftεit = C

1
2
1iNζ1i(1+op(1)) for a m×1 vector ζ1t normally distributed

with mean zero and unit covariance matrix if T−1
∑T

t,s=1 fthts,if
′
t →p C1iN and

E ‖ft‖2+δ< ∞, E|εit|2+δ < ∞. Likewise, the ith column of C2N can be written

as C
1
2
2iNζ2i where no additional moment conditions are required because of

(43). The same results apply for (31). Unless Σt,vv′ = 0, one also needs
E ‖vi,t‖6+δ< ∞.

Notice that when d2 = k, C2t is a square full rank matrix and both
XtΣ

−1
t,xx′Σt,xb′ and XtΣ

−1
t,xx′X

′
t are not time-varying, simplifying the above re-

sults. For Assumption 7.T , in particular (34), set D = X∗Σ−1
xx′Σxu′+q−1(ιN−

X∗Σ−1
xx′µx)(µ

′
u−µ′xΣ

−1
xx′Σxu′), E = σ2q−1

(
ιN ι′N −X∗Σ−1

xx′µxι
′
N − ιNµ′xΣ

−1
xx′X

∗′

+X∗Σ−1
xx′ [qIk + µxµ

′
xΣ

−1
xx′ ]X

∗′) , q = 1− µ′xΣ
−1
xx′µx. It follows that

A1N −A2N −A′
2N = (D−B)F(D−B)′−BFB′, A3N −A4N −A′

4N = −E.

Σxu′ = 0, µu = 0 (44)

which in turn is implied when x∗i and u∗i are uncorrelated with µu = 0.
When k < d2 which implies full row rank C2t, then obviously (34) is

satisfied when (44) hold. However, now it is also possible that x∗i and u∗i are
correlated, for instance even perfectly correlated such as

x∗i = Au∗i , µu = 0, Σt,vv′ > 0, (45)

for a A non-random full row rank matrix. As an example, set for simplicity
d2 = d1 > k, A = Id1 yielding Σxx′ = Σxu′ = Id1 . Notice that now we
require Σt,vv′ = Evitv

′
it > 0, to ensure (29) holds, and also vit and u∗i to

be mutually independent. The previous derivations still apply by replacing
(C2tΣxx′C

′
2t)

−1 by (C2tΣxx′C
′
2t +Σt,vv′)

−1 and Xt = (ιN ,X∗C′
2t +Vt). Then

T−1

T∑
t=1

(Id1 −C′
2t(C2tC

′
2t + Σt,vv′)

−1C2t)F(Id1 −C′
2t(C2tC

′
2t + Σt,vv′)

−1C2t)

−N−1T−1

T∑
t=1

σ2
t C

′
2t(C2tC

′
2t + Σt,vv′)

−1C2t →p D1N + F + N−1E1N = I1N

and non-singularity of I1N follows under mild conditions on C2t and Σt,vv′ .
Moreover, given D2N = 0, E2N = −σ2ιN ι′N one obtains

I2N = σ2IN −N−1σ2ιN ι′N + N−1ιN ι′N
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where I2N is non-singular for all values of σ2 < ∞. Then, by the Sherman-
Morrison-Woodbury formula,

Σt,xI−1
2 x′ =

(
1 µx

′C2t
′

C2tµx σ−2C2t(Σxx′ + (σ2 − 1)µxµ
′
x)C2t

′

)
.

Similar calculations lead to Σt,xI−1
2 HI−1

2 x′ , Σt,bI−1
2 HI−1

2 b′ , Σt,xI−1
2 b′ , Σt,xI−1

2 HI−1
2 b′ .

It remains to verify (36)-(39). Under the assumptions made C1N is a ran-
dom, mean zero, matrix of dimension m × N , whose are uncorrelated with
each εt, Xt and with each row of Σ−1

N . In addition, denoting by C1Nj the jth
row of C1N , we will require supN ‖EC ′1NjC1Nj ‖= O(1) for all 1 ≤ j ≤ m.
The same assumptions are required for all the zero mean random matrices
introduced below. Thus, for all t, X′

tΣ
−1
N C ′1N = Op(N

1
2 ι1+kι

′
m), C1NΣ−1

N εt =

Op(N
1
2 ιm) and, by Lemma 2, B′Σ−1

N εt = Op(N
− 1

2 ιm), B′Σ−1
N C ′1N = Op(N

− 1
2 ιmι′m),

X′
tΣ

−1
N B = Op(ι1+kι

′
m), B′Σ−1

N B = Op(ιmι′m) yielding

X′
tΣ

−1
N (BC1N + C ′1NB′)Σ−1

N Xt = Op(N
1
2 ι1+kι

′
1+k),

X′
tΣ

−1
N (BC1N + C ′1NB′)Σ−1

N (Bft + εt) = Op(N
1
2 ι1+k).

We discuss only the case when (45) hold, since case (44) is much simpler.
Setting for simplicity d2 = d1 > k, A = Id1 yields XtΣ

−1
t,xx′Σt,xb′ = (BC2t

′ +
Vt)(C2tC2t

′ + Σt,vv′)
−1C2t and, in turn, one gets C2N = BC21N + C22N for

a.s. random, mean zero, matrixes of dimension m × N and N × N respec-
tively. The previous bounds apply substituting C1N with C21N . Moreover,
X′

tΣ
−1
N C22NΣ−1

N B = Op(ι1+kι
′
m), X′

tΣ
−1
N C22NΣ−1

N εt = Op(N
1
2 ι1+k) then

X′
tΣ

−1
N (C2N + C ′2N)Σ−1

N Xt = Op(Nι1+kι
′
1+k),

X′
tΣ

−1
N (C2N + C ′2N)Σ−1

N (Bft + εt) = Op(N
1
2 ι1+k).

Again, when (45) holds

XtΣ
−1
t,xx′X

′
t = q−1

t ιN ι′N − q−1
t (BC′

2t + Vt)(C2tΣxx′C
′
2t + Σt,vv′)

−1C2tµxι
′
N

−q−1
t ιNµ′xC

′
2t(C2tΣxx′C

′
2t + Σt,vv′)

−1(C2tX
∗′ + V′

t)

+(X∗C′
2t+Vt)(C2tΣxx′C

′
2t+Σt,vv′)

−1[Ik+q−1
t C2tµxµ

′
xC

′
2t(C2tΣxx′C

′
2t+Σt,vv′)

−1](C2tX
∗′+V′

t),

yielding C3N = C31N ι′N + C32NB′ + C33N for a m × 1 matrix C31N ,a m ×
d1 matrix C32N and a m × T matrix C33N , all zero mean random. Using
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the previous bounds, with C33N in place of C1N , as well as X′
tΣ

−1
N ιN =

Op(Nι1+k), B′Σ−1
N ιN = Op(ιm), ε′tΣ

−1
N ιN = Op(N

1
2 ) yielding

X′
tΣ

−1
N (BC3N + C ′3NB′)Σ−1

N Xt = Op(Nι1+kι
′
1+k),

X′
tΣ

−1
N (BC3N + C ′3NB′)Σ−1

N (Bft + εt) = Op(Nι1+k).

Finally C4N = BC41N ι′N + BC42NB′ + C43N ι′N + C44NB′ + C45N for a m × 1
matrix A41N , a m×m matrix C42N , a N×1 matrix C43N , a N×m matrix C44N

and a N × N matrix C45N , all zero mean random. Thus using the previous
bounds, with C43N , C44N in place of C1N and C45N in place of C22N yields

X′
tΣ

−1
N (C4N + C ′4N)Σ−1

N Xt = Op(N
3
2 ι1+kι

′
1+k),

X′
tΣ

−1
N (C4N + C ′4N)Σ−1

N (Bft + εt) = Op(N
3
2 ι1+k).

Hence, (36), (37), (38), (39) hold with a = 1/2, b = 1, c = 3/2, d = 3/2.
Therefore, primitive conditions for Assumption 7.T can be found, in partic-
ular such as (45).

We summarize the result of this section as follows:

Proposition 2 Assume that Andrews (2005, Assumptions 1, 2, 3) hold and,
in addition, for any i the εi,t have bounded (2 + δ)th moment and are linear
processes of a martingale difference innovation with summable coefficients,
the ft have bounded (2+δ)th moment, the vi,t have bounded (6+δ)th moment.
Finally let Assumptions 1.T , 2.T , and 7.T hold.

Then Theorem 2,(iii) applies to the GLS estimator for β0 of model (40)-
(41)-(42) when

1

N
+

1

T
→ 0

for consistency and
1

N
+

N

T
→ 0

for asymptotic normality.
No other conditions of Andrews (2005) is required, such as uncorrelat-

edness between the x∗i and the u∗i . Moreover, we do not require moment
conditions for the C2t.

Notice that the bias term of the OLS for β0t is, from Theorem 2 (i),
γOLS

t = Σ−1
t,xx′Σ

−1
t,xb′ft which is zero only if ft = 0 a.s. (no factor struc-

ture in the regression error) or, alternatively, if Σ−1
t,xx′Σt,xb′ = 0 a.s. The
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first row of the latter matrix, corresponding to the intercept parameter, is
precisely equal to q−1

t (µ′u − µ′xC
′
2t(C2tΣxx′C

′
2t)

−1C2tΣxu′), simplifying to µ′u
under Andrews (2005, Condition SF2), that is when Σxu′ = µxµ

′
u holds.

Therefore zero bias for the OLS estimator of the intercept also requires his
condition SF3, viz. µu = 0. However, as noted by Andrews (2005), consis-
tency of the regression parameters only (the last k entries of βt0) requires just
zero correlation between the x∗i and the u∗i (his condition SF2). In fact the
sub-matrix made considering from the second to the last row of Σ−1

t,xx′Σt,xb′ is
(C2tΣxx′C2t

′)−1C2t(Σxu′−µxµ
′
u)+(C2tΣxx′C2t

′)−1(C2tµxµ
′
xC2t

′(C2tΣxx′C2t
′)−1−

µ′xC2t
′(C2tΣxx′C2t

′)−1C2tµxIk)C2tΣxu′ which, when Σxu′ = µxµ
′
u, equals

(C2tΣxx′C2t
′)−1C2t(µxµ

′
u − µxµ

′
u)

+µ′xC2t
′(C2tΣxx′C2t

′)−1C2tµx(C2tΣxx′C2t
′)−1(C2tµx −C2tµx)µu′ and thus

a matrix of zeros, independently from whether µu is zero or not.

4 Monte Carlo

We conduct a set of Monte Carlo experiments to appreciate the relevance of
our asymptotic results for the GLS estimator. We consider both the case
of time regression with unit-specific coefficients as well as cross-sectional
regression with time-specific coefficients.

4.1 Design

In the time regression case the data generating process is a simple regression
model

yit = αi0 + βi0xit + bi10f1t + bi20f2t + εit, (46)

where the single regressor is given by

xit = 0.5 + δi10f1t + δi30f3t + vit. (47)

Note that the model implies an observed common factor equal to 1 for all
observations. The latent common factors, their factor loadings and the id-
iosyncratic errors to yit and to xit are assumed i.i.d across time and across
units as well as mutually independent. Nevertheless, note that the single
regressor is allowed to be contemporaneously correlated with the innovation
through one of the latent common factors (whenever bi10δi10 6= 0 a.s.). In
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particular the factor loadings are random variables with normal distribution,
i.i.d. across unit:

(
bi10

bi20

)
∼ NID(

(
1
0

)
,

(
0.2 0
0 0.2

)
), (48)

(
δi10

δi30

)
∼ NID(

(
0.5
0

)
,

(
0.5 0
0 0.5

)
), (49)

and the latent common factors and the idiosyncratic components are sta-
tionary stochastic processes, mutually independent to each other, such as,
setting ft = (f1t, f2t, f3t)

′,

fj,t = 0.5fj,t−1 +
√

0.5ηjf,t, j = 1, 2, 3,

where each ηjf,t ∼ NID(0, 1) for j = 1, 2, 3 mutually independent. Also, for
any i = 1, ..., N :

εit = ρiεεit−1 + ηiε,t, ηiε,t ∼ NID(0, σ2
i (1− ρ2

iε)),

vit = ρivvit−1 + ηiv,t, ηiv,t ∼ NID(0, (1− ρ2
iv)),

with ρiε ∼ UID(0.05, 0.95), ρiv ∼ UID(0.05, 0.95), σ2
iε ∼ UID(0.5, 1.5). Fi-

nally, the parameters of interest are constant across replications and equal
to αi0 = 1, γi0 = 0.5 and, assuming N even,

βi0 =

{
1 for i = 1, ..., N

2
,

3 for i = N
2

+ 1, ..., N.

This Monte Carlo design is a simplified version of Pesaran (2006), designed
in such a way that (through (49)) the rank condition in Pesaran (2006, eq.
(21)) is not satisfied. Pesaran (2006) shows that under this circumstance his
individual specific estimator for βi0 is invalid whereas his pooled estimators
for β0 = Eβi0 remain consistent.

For cross-sectional estimators, we consider the regression model with
time-varying parameters

yit = αt0 + βt0xit + bi10f1t + bi20f2t + εit. (50)

The regressor xit is defined in (47) and the factors fj,t, j = 1, 2, 3 and the
idiosyncratic innovations εit, i = 1, ..., N are obtained as in the previous
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case. The parameters of interest are constant across replications and equal
to αt0 = 1 and, assuming T even,

βt0 =

{
1 for i = 1, ..., T

2
,

2 for i = T
2

+ 1, ..., T.

Finally,
(

bi10

bi20

)
∼ NID(

(
0
0

)
,

(
0.2 0
0 0.2

)
), (51)

(
δi10

δi30

)
=

(
bi10

bi20

)
. (52)

implying that the factor loadings pertinent to the innovation of (50) are
(perfectly) correlated with the factor loadings corresponding to the regressor
xit. Under this condition Andrews (2005) shows that the OLS estimator of
the regression parameters αt0, βt0 is non consistent.

We consider 2000 Monte Carlo replications with sample sizes (N, T ) ∈
{(60, 200, 600), (30, 100, 300)}, with N > T , for the time regression and
(N, T ) ∈ {(30, 100, 300), (60, 200, 600)}, with N < T , for the cross-sectional
regression.

The results from the Monte Carlo exercise are summarized in Tables
1 to 4, where we report the sample mean a and root mean square error
(rmse) for the estimates of the parameter αi0, βi0 and αt0, βt0 for time and
cross-sectional regression respectively, averaged across the Monte Carlo it-
erations. We consider four estimators which corresponds to four panel of
each table: the GLS, the iterated GLS (described Remark 5 to Theorem
1) where the iteration is carried out four times, the OLS and the UGLS.
In particular, regarding the time regression results reported in Tables 1-2,
for each of these four estimators, we report the average across all N units

of M−1
∑M

m=1 α̂m
i and

(
M−1

∑M
m=1(α̂

m
i − 1)2

) 1
2

and the average across the

units i = N/2+1, ..., N of M−1
∑M

m=1 β̂m
i and

(
M−1

∑M
m=1(β̂

m
i − 3)2

) 1
2

with

M = 2, 000, since we assumed that the true intercept coefficients are constant
across units whereas the regression coefficients take two different values for
the first half and second half of the N units. Here α̂m

i and β̂m
i denote, respec-

tively, the estimates of the intercept and regression coefficients corresponding
to the mth Monte Carlo iteration for a generic estimator. The same descrip-
tion applies to the cross-sectional regression results although now Tables 3-4
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report, for each of these four estimators, the average across all T periods

of M−1
∑M

m=1 α̂m
t and

(
M−1

∑M
m=1(α̂

m
t − 1)2

) 1
2

and the average across the

periods t = T/2 + 1, ..., T of M−1
∑M

m=1 β̂m
t and

(
M−1

∑M
m=1(β̂

m
t − 2)2

) 1
2

with M = 2, 000. (The results for the regression coefficients corresponding
to the units i = 1, ..., N/2, for time regression, and to periods t = 1, ..., T/2,
for cross-sectional regression, are not reported but are available.)

4.2 Results

We start by looking at Tables 1 and 2, which report the estimation results
for time regression with unit-specific intercept term and regression coefficient
respectively. Notice that since the GLS and iterated GLS estimators requires
N ≥ T each panel is made by a lower triangular matrix. Obviously, the
OLS and the UGLS estimator do not require this constraint since they can
be also evaluated when N < T but we did not report the results for this
case. The upper left panel describes the GLS results. One can see how
the bias diminishes as both N, T grow or when N increases for a given T .
This is because the inverse of the pseudo-covariance matrix Σ−1

T is better
estimated in these circumstances. In contrast, although still negligible in
absolute terms, the bias, if any, tends to increase when T grows for a given
N . Instead, as expected, the rmse always diminishes when T increases for a
given N or when they both increase. For the regression coefficient case (Table
2) the rmse diminishes also when N increases for given T . The same pattern
is observed with respect to the iterated GLS results, reported in the upper
right panel. The only difference is that now the bias and the rmse are always
much smaller than the GLS case. The lower right panel reports the results
for the UGLS which is clearly unfeasible in practice since it involves the true
covariance matrix Si. As a consequence, the results do not depend on N
but only on T . The bias is negligible even for small samples and, for larger
sample sizes, it is nevertheless comparable to the iterated GLS although the
latter exhibit a slightly larger rmse. Finally, the lower left panel reports the
OLS results which also do not depend on N , as expected. Under our design,
the OLS estimator is non-consistent obtaining a bias which is much larger
than for any other estimators and, more importantly, only marginally varying
as N or T increases. The rmse diminishes suggesting that the variance of
the OLS estimator is converging to zero with the squared bias converging to
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(γOLS
i )2.
The cross-section regression results are in Tables 3 and 4. Now the GLS

and iterated GLS estimators requires N ≤ T and thus each panel is made by
an upper triangular matrix. The results are specular to the ones obtained
for the time regression case. For instance, regarding the GLS results in the
upper left panel, the bias diminishes as both N, T grow or when T increases
for a given N whereas it does not necessarily decreases when N grows for
a given T since in this latter circumstance Σ−1

N is more poorly estimated.
The rmse diminishes when either T increases for a given N or when they
both increase and, for for the regression coefficient case (Table 3)when N
increases for given T as well. The performance of the iterated GLS and
of the UGLS, respectively reported in the upper and lower right panels, is
remarkably similar, except perhaps when N, T are either both very small or
very large. Obviously, UGLS carries the best results especially in terms of
rmse where, as expected, the figures do not depend on T but vary only with
N . The OLS estimator, whose results are in the lower left panel reports, is
non-consistent under our design, with a sizeable bias only marginally varying
with either N and T . Again, the rmse diminishes as N increases indicating
that the OLS will eventually converge to the sum of the true parameter
value and the non-zero bias. Although the results have not been reported for
easy reference, the OLS and the UGLS estimators can be evaluated also for
N > T .

5 Concluding remarks

This paper proposes a feasible GLS estimator for linear panel with common
factor structure in potentially both the regressors and the innovation. We
develop our results separately for time regressions with unit-specific coeffi-
cients as well as for cross-section regressions with time varying coefficients.
The GLS estimator is consistent and asymptotically normal, when both the
cross-section N and time series T dimensions diverge to infinity, under cir-
cumstances that make the OLS non-consistent, hence providing more than
an efficiency gain. Whereas for consistency N and T can diverge at any
rate, asymptotic normality will require them to diverge at specific rates, here
established. Moreover, the GLS estimator does not require preliminary es-
timation of the latent factors nor of their dimension. It uses all the panel
data structure in an essential way, but it computationally only requires to

33



estimate N + 1 time or T + 1 cross-sectional regressions, respectively. We
provide a set of general regularity assumptions which allows both tempo-
ral and cross-sectional dependence of the idiosyncratic innovation, the latter
being even possibly correlated with the regressors. We provide primitive
conditions of our general assumptions for the specific models investigated by
Pesaran (2006) and Andrews (2005), as examples of time and cross-sectional
regressions respectively. Our results are corroborated by a set of Monte Carlo
experiments that shows that the performance of the GLS estimator is com-
parable to the unfeasible UGLS estimator, that makes use of the true (yet
generally unknown) innovation covariance matrix.

6 Mathematical Appendix

For random matrices A non-singular of dimension m1×m1, B of dimensionm1×
m2, C non-singular of dimension m2 ×m2, D of dimension m1 ×m3, with
m1 ≥ m2, we present the well-known Sherman-Morrison-Woodbury formula,
followed by the two lemmas of this paper. In particular, the proof of Lemma
1 is basically reproducing the proof of Lemma A in Pesaran and Zaffaroni
(2008) and it is here repeated for easy reference. Note that throughout the pa-
per we will refer to the lemmas without reference to the matrixes A,B,C,D
when there is no risk of ambiguity.

Sherman-Morrison-Woodbury formula.

(BCB′ + A)−1 = A−1 −A−1B(C−1 + B′A−1B)−1B′A−1 a.s.

Lemma 1(A, B, C,m1). Set

E = BCB′ + A a.s.

Let G a random positive definitive matrix such that as m1 →∞:

B′A−1B

m1

→a.s. G non-singular , (53)

Then

E−1B = A−1B(
C−1

m1

+
B′A−1B

m1

)−1C
−1

m1

(54)
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and, denoting by e
(i)
m1 the i-th column of the identity matrix Im1, then for any

1 ≤ i ≤ m1

e(i)
m1

′E−1b(j) →p 0, 1 ≤ j ≤ m2, as m1 →∞, (55)

where b(j) = Be
(j)
m2 is the jth column of B.

When (53) and
B′A−1′A−1B

m1

→a.s. L ≥ 0, (56)

where L denotes an a.s. finite random positive semi-definitive matrix, then

‖ E−1B ‖2= Op(m
−1
1 ) as m1 →∞. (57)

Proof: This follows precisely the proof of Pesaran and Zaffaroni (2008,
Lemma A). We start from the Sherman-Morrison-Woodbury formula, rewrit-
ten as

E−1 = A−1 −A−1B(
C−1

m1

+
B′A−1B

m1

)−1B
′A−1

m1

. (58)

Post-multiplying both sides by B and simple manipulations yields (54). Pre-

multiplying both sides by e
(i)
m1

′ and post-multiplying both sides by e
(j)
m2 yields

(55).

We deal with (57) more explicitly. Since Be
(j)
m2 = b(j)

(m−1
1 C−1 + m−1

1 B′A−1B)−1m−1
1 B′A−1b(j) − e(j)

m2

= (m−1
1 C−1 + m−1

1 B′A−1B)−1m−1
1 B′A−1b(j) − (m−1

1 B′A−1B)−1m−1
1 B′A−1b(j)

= m−1
1

[−(m−1
1 C−1 + m−1

1 B′A−1B)−1C−1(m−1
1 B′A−1B)−1m−1

1 B′A−1b(j)
]

= m−1
1 g(j),

where it is easy to see that g(j) →p −G−1C−1G−1e
(j)
m2 . Therefore, substitut-

ing the latter expression into (58) yields E−1b(j) = A−1b(j) −A−1B(e
(j)
m2 +

m−1
1 g(j)) = −m−1

1 A−1Bg(j) and thus

‖ E−1b(j) ‖2= m−1
1 g(j)′ (m−1

1 B′A−1′A−1B
)
g(j) = Op(m

−1
1 e(j)

m2

′G−1C−1G−1LG−1C−1G−1e(j)
m2

).

At last (57) simply follows from

‖ E−1B ‖2≤
m2∑
j=1

‖ E−1b(j) ‖2 . 2
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Lemma 2(A, B, C, D,m1).
Set

E = BCB′ + A a.s.

When (53) and D′A−1′B = Op(m1 ιm3ι
′
m2

) then

D′E−1B = Op(ιm3ι
′
m2

) as m1 →∞. (59)

When (53) and D′A−1′B = Op(m
1
2
1 ιm3ι

′
m2

) then

D′E−1B = Op(m
− 1

2
1 ιm3ι

′
m2

) as m1 →∞. (60)

Proof: By (58)

D′E−1B = D′A−1B(C−1 + B′A−1B)−1C−1.

and (59) and (60) easily follows along the lines of the proof of Lemma 1. 2

Proof of Theorem 1. (i) All the limits below hold as T →∞. The results
follows since

β̂OLS
i − βi0 = (X′

iXi)
−1X′

iui,

can be written as

β̂OLS
i − βi0 − (

X′
iXi

T
)−1X

′
iFbi

T
= T− 1

2 (
X′

iXi

T
)−1T− 1

2X′
iεi.

(ii) All the limits below hold as T →∞.
Since

β̂UGLS
i − βi0 = (X′

iS−1
i Xi)

−1X′
iS−1

i (Fbi + εi)

= (X′
iS−1

i Xi)
−1X′

i

(
H−1

i −H−1
i F(B−1

i + F′H−1
i F)−1F′H−1

i

)
Fbi + (X′

iS−1
i Xi)

−1X′
iS−1

i εi

= (X′
iS−1

i Xi)
−1X′

iH
−1
i F(B−1

i + F′H−1
i F)−1B−1

i bi + (X′
iS−1

i Xi)
−1X′

iS−1
i εi

= (
X′

iS−1
i Xi

T
)−1X

′
iH

−1
i F

T
(
B−1

i

T
+

F′H−1
i F

T
)−1B−1

i

T
bi + T− 1

2 (
X′

iS−1
i Xi

T
)−1X

′
iS−1

i εi

T
1
2

= γ̂UGLS
i + T− 1

2 (
X′

iS−1
i Xi

T
)−1X

′
iS−1

i εi

T
1
2

,

where the first equality is warranted by the Sherman-Morrison-Woodbury
(hereafter SMW) formula and the fourth equality makes use of the Central
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Lemma(Hi,F,Bi, T ). Using the SMW formula again

X′
iS−1

i Xi

T
=

X′
iH

−1
i Xi

T
− X′

iH
−1
i F

T
(
B−1

i

T
+

F′H−1
i F

T
)−1F

′H−1
i Xi

T

=

(
X′

iH
−1
i Xi

T
− X′

iH
−1
i F

T
(
B−1

i

T
+

F′H−1
i F

T
)−1F

′H−1
i Xi

T

)
,

implying

(
X′

iS−1
i Xi

T
)−1 =

(
Σi,xH−1x′ −Σi,xH−1f ′Σ

−1
i,fH−1f ′Σ

′
i,xH−1f ′

)−1

+ op(1)

yielding γ̂UGLS
i = Op(T

−1). Therefore concerning the first term on the right

hand side of T
1
2 (β̂UGLS

i − βi0)

T
1
2 γ̂UGLS

i = Op(T
− 1

2 ).

For the second term of the right hand side of T
1
2 (β̂UGLS

i − βi0), given

cov

(
X′

iH
−1
i εi

T
1
2

,
ε′iH

−1
i F

T
1
2

)
= Σi,xH−1f ′ + op(1),

then

X′
iS−1

i εi

T
1
2

→d N
(
0, (Σi,xH−1x′ −Σi,xH−1f ′Σ

−1
t,fH−1f ′Σ

′
t,xH−1f ′)

)
.

Combining terms

T
1
2 (β̂UGLS

i − βi0) →d Nk(0,VUGLS
i ).

(iii) All the limits below hold as (N, T ) → ∞. We must assume N ≥ T
and, with no loss of generality, that there are no observed common factors
implying that Σ̂T = N−1

∑N
i=1 ûiû

′
i where

ûi = (IT −Mi)ui,

setting
Mi = Xi(X

′
iXi)

−1X′
i.
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Then

ûiû
′
i =

Fbib
′
iF
′

︸ ︷︷ ︸
I

+
(IT −Mi)εiε

′
i(IT −Mi)︸ ︷︷ ︸

II

+
MiFbib

′
iF
′Mi︸ ︷︷ ︸

III
+

(Fbiε
′
i(IT −Mi) + (IT −Mi)εib

′
iF
′)︸ ︷︷ ︸

IV

−((IT −Mi)εib
′
iF
′Mi + MiFbiε

′
i(IT −Mi))︸ ︷︷ ︸

V
− (MiFbib

′
iF
′ + Fbib

′
iF
′Mi)︸ ︷︷ ︸

V I
.

For II

N−1

N∑
i=1

(IT −Mi)εiε
′
i(IT −Mi) = N−1

N∑
i=1

εiε
′
i

+

(
N−1T−2

N∑
i=1

XiΣ
−1
i,xx′X

′
iεiε

′
iXiΣ

−1
i,xx′X

′
i

)
(1 + op(1))

−
(

N−1T−1

N∑
i=1

(
XiΣ

−1
i,xx′X

′
iεiε

′
i + εiε

′
iXiΣ

−1
i,xx′X

′
i

)
)

(1 + op(1)),

yielding

N−1

N∑
i=1

(IT −Mi)εiε
′
i(IT −Mi) =

(HT + T−1(A3T − (A4T +A′
4T ))

)
(1+op(1)).

For III

N−1

N∑
i=1

MiFbib
′
iF
′Mi = A1T (1 + op(1)).

For IV

N− 1
2

N∑
i=1

Fbiε
′
i = FC1T (1 + op(1)), T

1
2 N− 1

2

N∑
i=1

Fbiε
′
iMi = FC3T (1 + op(1)),

and combining the above results yield

N−1

N∑
i=1

Fbiε
′
i(IT −Mi) = N− 1

2F
(
C1T − T− 1

2C3T

)
(1 + op(1)),
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For V using the same arguments one gets

N−1

N∑
i=1

MiFbiε
′
i(IT −Mi) = N− 1

2

(
C2T − T− 1

2C4T

)
(1 + op(1)),

For V I

N−1

N∑
i=1

MiFbib
′
iF
′ = A2T (1 + op(1)).

Summarizing:

Σ̂T =
(
FBF′ +HT +A1T −A2T −A′

2T + T−1(A3T −A4T −A′
4T ) +DN,T

)
(1 + op(1))

= (FI1TF′ + I2T +DN,T ) (1 + op(1)) = (ΣT +DN,T ) (1 + op(1))

setting

DN,T = N− 1
2 (FC1T + C ′1TF′ + C2T + C ′2T )−(NT )−

1
2 (FC3T + C ′3TF′ + C4T + C ′4T ) .

Hence, using Σ̂−1
T = Σ̂−1

T Σ̂T Σ̂−1
T = Σ−1

T Σ̂TΣ−1
T (1 + op(1)),

(β̂GLS
i − βi0) =

(
(X′

iΣ
−1
T Xi)

−1 + (X′
iΣ

−1
T Xi)

−1(X′
iΣ

−1
T DN,TΣ−1

T Xi)(X
′
iΣ

−1
T Xi)

−1
)

× (
X′

iΣ
−1
T (Fbi + εi) + X′

iΣ
−1
T DN,TΣ−1

T (Fbi + εi)
)
(1 + op(1))

= (X′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T (Fbi + εi)(1 + op(1))

+ (X′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T DN,TΣ−1

T (Fbi + εi)(1 + op(1))

+ (X′
iΣ

−1
T Xi)

−1(X′
iΣ

−1
T DN,TΣ−1

T Xi)(X
′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T (Fbi + εi)(1 + op(1))

+ (X′
iΣ

−1
T Xi)

−1(X′
iΣ

−1
T DN,TΣ−1

T Xi)(X
′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T DN,TΣ−1

T (Fbi + εi)(1 + op(1)).

Following precisely the same steps of part (ii) but replacing Si, Bi, Hi by
ΣT , I1T , I2T respectively, and using the Central Lemma(I2T ,F, I1T , T ), then

(X′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T (Fbi + εi) = Op(T

− 1
2 ) and

T
1
2 (X′

iΣ
−1
T Xi)

−1X′
iΣ

−1
T (Fbi+εi) →d N (0, (MGLS

i )−1NGLS
i (MGLS

i )−1) as T →∞
with

NGLS
i = Σ−1

i,xI−1
2 HI−1

2 x′
+ Σi,xI−1

2 f ′Σ
−1

i,fI−1
2 f ′

Σi,fI−1
2 HI−1

2 f ′Σ
−1

i,fI−1
2 f ′

Σ′
i,xI−1

2 f ′

−
(
Σi,xI−1

2 HI−1
2 f ′Σ

−1

i,fI−1
2 f ′

Σ′
i,xI−1

2 f ′ + Σi,xI−1
2 f ′Σ

−1

i,fI−1
2 f ′

Σ′
i,xI−1

2 HI−1
2 f ′

)
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and
MGLS

i = Σi,xI−1
2 x′ −Σi,xI−1

2 f ′Σi,fI−1
2 f ′Σ

′
i,xI−1

2 f ′ .

For the second and third term after the second equality sign,

(X′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T DN,TΣ−1

T (Fbi + εi) = Op(N
− 1

2 T−1(T a + T b− 1
2 )),

(X′
iΣ

−1
T Xi)

−1(X′
iΣ

−1
T DN,TΣ−1

T Xi)(X
′
iΣ

−1
T Xi)

−1X′
iΣ

−1
T (Fbi + εi) = Op(N

− 1
2 T− 3

2 (T c + T d− 1
2 )),

whereas the fourth term goes to zero faster than these two terms. 2

Proof of Theorem 2. (i) All the limits below hold as N →∞. The results
follows since

β̂OLS
t − βt0 = (X′

tXt)
−1X′

tut,

can be written as

β̂OLS
t − βt0 − (

X′
tXt

N
)−1X

′
tBft
N

= N− 1
2 (

X′
tXt

N
)−1N− 1

2X′
tεt.

(ii) All the limits below hold as N →∞.
Since

β̂UGLS
t − βt0 = (X′

tS−1
t Xt)

−1X′
tS−1

t (Bft + εt)

= (
X′

tS−1
t Xt

N
)−1X

′
tH

−1
t B

N
(
F−1

t

N
+

B′H−1
t B

N
)−1F−1

t

N
ft + N− 1

2 (
X′

tS−1
t Xt

N
)−1X

′
tS−1

t εt

N
1
2

= γ̂UGLS
t + N− 1

2 (
X′

tS−1
t Xt

N
)−1X

′
tS−1

t εt

N
1
2

,

using the Central Lemma(Ht,B,Ft, N). Using the SMW formula again

(
X′

tS−1
t Xt

N
)−1 =

(
Σt,xH−1x′ −Σt,xH−1b′Σ

−1
t,bH−1b′Σ

′
t,xH−1b′

)−1

+ op(1)

yielding
N

1
2 γ̂UGLS

t = Op(N
− 1

2 ).

Since

X′
tS−1

t εt

N
1
2

→d N
(
0, (Σt,xH−1x′ −Σt,xH−1b′Σ

−1
t,bH−1b′Σ

′
t,xH−1b′)

)
,

then
N

1
2 (β̂UGLS

t − βt0) →d Nk(0,VUGLS
t ).
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(iii) All the limits below hold as (N, T ) → ∞. We must assume T ≥ N
and, with no loss of generality, that there are no observed common factors
implying that Σ̂N = T−1

∑T
t=1 ûtû

′
t where

ût = (IN −Mt)ut,

setting
Mt = Xt(X

′
tXt)

−1X′
t.

Then

ûtû
′
t =

Bftf
′
tB

′
︸ ︷︷ ︸

I
+

(IN −Mt)εtε
′
t(IN −Mt)︸ ︷︷ ︸

II

+
MtBftf

′
tB

′Mt︸ ︷︷ ︸
III

+
(Bftε

′
t(IN −Mt) + (IN −Mt)εtb

′
tB

′)︸ ︷︷ ︸
IV

−((IN −Mt)εtf
′
tB

′Mt + MtBftε
′
t(IN −Mt))︸ ︷︷ ︸

V
− (MtBftf

′
tB

′ + Bftf
′
tB

′Mt)︸ ︷︷ ︸
V I

.

For II

T−1

T∑
t=1

(IN −Mt)εtε
′
t(IN −Mt) = T−1

T∑
t=1

εtε
′
t

+

(
N−2T−1

T∑
t=1

XtΣ
−1
t,xx′X

′
tεtε

′
tXtΣ

−1
t,xx′X

′
t

)
(1 + op(1))

−
(

N−1T−1

T∑
t=1

(
XtΣ

−1
t,xx′X

′
tεtε

′
t + εtε

′
tXtΣ

−1
t,xx′X

′
t

)
)

(1 + op(1)),

yielding

T−1

T∑
t=1

(IN −Mt)εtε
′
t(IN −Mt) = HN+N−1 (A3N −A4N −A′

4N) (1+op(1)).

For III

T−1

T∑
t=1

MtBftf
′
tB

′Mt = A1N(1 + op(1)).

For IV

T− 1
2

T∑
t=1

Bftε
′
t = BC1N(1 + op(1)), (NT )−

1
2

T∑
t=1

Bftε
′
tMt = BC3N(1 + op(1)),
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and combining the above results yields

T−1

T∑
t=1

Bftε
′
t(IN −Mt) = T− 1

2B
(
C1N −N− 1

2C3N

)
(1 + op(1)).

For V using the same arguments one gets

T−1

T∑
t=1

MtBftε
′
t(IN −Mt) = T− 1

2

(
C2N −N− 1

2C4N

)
(1 + op(1)).

For V I

T−1

T∑
t=1

MtBftf
′
tB

′ = A2N(1 + op(1)).

Summarizing:

Σ̂N =
(
BFB′ +HN +A1N −A2N −A′

2N + N−1(A3N −A4N −A′
4N) +DT,N

)
(1 + op(1))

= (BI1NB′ + I2N +DT,N) (1 + op(1)) = (ΣN +DT,N) (1 + op(1))

setting

DT,N = T− 1
2 (BC1N + C ′1NB′ + C2N + C ′2N)−(NT )−

1
2 (BC3N + C ′3NB′ + C4N + C ′4N) .

Hence, using Σ̂−1
N = Σ̂−1

N Σ̂NΣ̂−1
N = Σ−1

N Σ̂NΣ−1
N (1 + op(1)),

(β̂GLS
t − βt0) =

(
(X′

tΣ
−1
N Xt)

−1 + (X′
tΣ

−1
N Xt)

−1(X′
tΣ

−1
N DT,NΣ−1

N Xt)(X
′
tΣ

−1
N Xt)

−1
)

× (
X′

tΣ
−1
N (Bft + εt) + X′

tΣ
−1
N DT,NΣ−1

N (Bft + εt)
)
(1 + op(1))

= (X′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N (Bft + εt)(1 + op(1))

+ (X′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N DT,NΣ−1

N (Bft + εt)(1 + op(1))

+ (X′
tΣ

−1
N Xt)

−1(X′
tΣ

−1
N DT,NΣ−1

N Xt)(X
′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N (Bft + εt)(1 + op(1))

+ (X′
tΣ

−1
N Xt)

−1(X′
tΣ

−1
N DT,NΣ−1

N Xt)(X
′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N DT,NΣ−1

N (Bft + εt)(1 + op(1)).

Following precisely the same steps of part (ii) but replacing St, Ft, Ht by
ΣN , I1N , I2N respectively, and using the Central Lemma(I2N ,B, I1N , N),

then (X′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N (Bft + εt) = Op(N

− 1
2 ) and

N
1
2 (X′

tΣ
−1
N Xt)

−1X′
tΣ

−1
N (Bbt+εt) →d N (0, (MGLS

t )−1NGLS
t (MGLS

t )−1) as N →∞
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with

NGLS
t = Σ−1

t,xI−1
2 HI−1

2 x′
+ Σt,xI−1

2 b′Σ
−1

t,bI−1
2 b′

Σt,bI−1
2 HI−1

2 b′Σ
−1

t,bI−1
2 b′

Σ′
t,xI−1

2 b′

−
(
Σt,xI−1

2 HI−1
2 b′Σ

−1

t,bI−1
2 b′

Σ′
t,xI−1

2 b′ + Σt,xI−1
2 b′Σ

−1

t,bI−1
2 b′

Σ′
t,xI−1

2 HI−1
2 b′

)

and
MGLS

t = Σt,xI−1
2 x′ −Σt,xI−1

2 b′Σt,bI−1
2 b′Σ

′
t,xI−1

2 b′ .

For the second and third term after the second equality sign,

(X′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N DT,NΣ−1

N (Bft + εt) = Op(T
− 1

2 N−1(Na + N b− 1
2 )),

(X′
tΣ

−1
N Xt)

−1(X′
tΣ

−1
N DT,NΣ−1

N Xt)(X
′
tΣ

−1
N Xt)

−1X′
tΣ

−1
N (Bft + εt) = Op(T

− 1
2 N− 3

2 (N c + Nd− 1
2 )),

whereas the fourth term goes to zero faster than these two terms. 2
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Table 1: time regression with unit-specific coefficients
intercept term αi0 = 1, i = 1, ..., N.

GLS GLS (iterated)
bias rmse bias rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 0.944 − − 0.523 − − 0.976 − − 0.531 − −
200 0.967 0.951 − 0.518 0.315 − 0.986 0.987 − 0.527 0.309 −
600 0.981 0.982 0.955 0.524 0.308 0.200 0.994 0.998 0.991 0.531 0.310 0.184

OLS UGLS
bias rmse bias rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 0.897 − − 0.560 − − 0.993 − − 0.369 − −
200 0.892 0.901 − 0.563 0.361 − 0.993 0.999 − 0.368 0.221 −
600 0.898 0.902 0.904 0.567 0.363 0.261 0.994 0.998 0.999 0.369 0.222 0.134

Table 2: time regression with unit-specific coefficients
regression coefficient βi0 = 3, i = N/2 + 1, ..., N.

GLS GLS (iterated)
bias rmse bias rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 3.105 − − 0.314 − − 3.041 − − 0.277 − −
200 3.053 3.095 − 0.228 0.227 − 3.013 3.024 − 0.215 0.146 −
600 3.034 3.037 3.091 0.209 0.133 0.198 3.012 3.004 3.019 0.200 0.111 0.090

OLS UGLS
bias rmse bias rmse

(N, T ) 30 100 300 30 100 300 30 100 300 30 100 300

60 3.201 − − 0.488 − − 3.013 − − 0.181 − −
200 3.204 3.196 − 0.490 0.415 − 3.012 3.003 − 0.180 0.090 −
600 3.204 3.197 3.193 0.492 0.417 0.389 3.012 3.003 3.001 0.180 0.090 0.051
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Table 3: cross-sectional regression with time-specific coefficients
intercept term αt0 = 1, t = 1, ..., T.

GLS GLS (iterated)
bias rmse bias rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 0.953 0.968 0.973 0.242 0.238 0.237 0.971 0.984 0.985 0.244 0.238 0.237
100 − 0.959 0.977 − 0.141 0.130 − 0.983 0.995 − 0.132 0.128
300 − − 0.967 − − 0.095 − − 0.987 − − 0.076

OLS UGLS
bias rmse bias rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 0.938 0.939 0.939 0.257 0.258 0.258 0.985 0.986 0.986 0.206 0.207 0.207
100 − 0.939 0.939 − 0.167 0.167 − 0.995 0.996 − 0.109 0.108
300 − − 0.939 − − 0.131 − − 0.998 − − 0.062

Table 4: cross-sectional regression with time-specific coefficients
regression coefficient βt0 = 2, t = T/2 + 1, ..., T.

GLS GLS (iterated)
bias rmse bias rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 2.093 2.065 2.054 0.235 0.208 0.201 2.058 2.032 2.031 0.229 0.198 0.192
100 − 2.082 2.045 − 0.167 0.116 − 2.033 2.010 − 0.118 0.101
300 − − 2.078 − − 0.135 − − 2.025 − − 0.070

OLS UGLS
bias rmse bias rmse

(N, T ) 60 200 600 60 200 600 60 200 600 60 200 600

30 2.121 2.121 2.122 0.292 0.291 0.291 2.028 2.027 2.028 0.190 0.189 0.190
100 − 2.120 2.120 − 0.241 0.240 − 2.001 2.009 − 0.099 0.098
300 − − 2.121 − − 0.225 − − 2.003 − − 0.056
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