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Abstract

This paper develops a dynamic stochastic general equilibrium model with rational

inattention. Households and decision-makers in firms have limited attention and decide

how to allocate their attention. We study the implications of rational inattention for

business cycle dynamics. We find that the impulse responses of prices under rational

inattention have several properties of empirical impulse responses: (i) prices respond

slowly to monetary policy shocks, (ii) prices respond faster to aggregate TFP shocks,

and (iii) prices respond very fast to disaggregate shocks. As a result, profit losses due to

deviations of the actual price from the profit-maximizing price are an order of magnitude

smaller than in the Calvo model that generates the same real effects. We also find that

consumption responds slowly to monetary policy shocks. For standard parameter values,

deviations from the consumption Euler equation are cheap in utility terms, implying

that households devote little attention to the consumption-saving decision.
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1 Introduction

This paper develops a dynamic stochastic general equilibrium model with rational inatten-

tion. We model the idea that decision-makers have limited attention and decide how to

allocate their attention. Following Sims (2003), we model attention as an information flow

and we model limited attention as a constraint on information flow. We let agents choose

the allocation of information flow. We study the implications of rational (in)attention for

business cycle dynamics.

The economy consists of households, firms and a government. Firms produce differenti-

ated goods using a variety of types of labor. Households supply the different types of labor,

consume a variety of goods, and hold nominal government bonds. Decision-makers in firms

take price setting and factor mix decisions. Households take consumption and wage setting

decisions. The central bank sets the nominal interest rate according to a Taylor rule. Prices

and wages are physically fully flexible and there is no habit formation in consumption. The

only source of inertia in the model is the limited attention by decision-makers. We com-

pute the impulse responses of prices and quantities to monetary policy shocks, aggregate

technology shocks, and micro-level shocks under rational inattention by all decision-makers.

We find that the model can match several features of empirical impulse responses.

We find that, in our model and for our parameter values, rational inattention by decision-

makers in firms has the following implications. The price level responds slowly to monetary

policy shocks. More precisely, the impulse response of the price level to monetary policy

shocks under rational inattention by decision-makers in firms resembles the impulse response

in a Calvo model with an average price duration of 7.5 months. At the same time, the

price level responds fairly quickly to aggregate technology shocks, and individual prices

respond very quickly to micro-level shocks. The reason is the optimal allocation of attention.

Decision-makers in firms decide to devote little attention to monetary policy disturbances,

about twice as much attention to the state of aggregate technology, and a lot of attention

to market-specific conditions. Therefore, prices respond slowly to monetary policy shocks,

prices respond fairly quickly to aggregate technology shocks, and prices respond very quickly

to market-specific shocks.

Furthermore, profit losses due to deviations of the actual price from the profit-maximizing
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price are an order of magnitude smaller than in the Calvo model that generates the same

real effects of monetary policy shocks. More precisely, profit losses due to sub-optimal price

responses to aggregate conditions are 23 times smaller than in the Calvo model; and profit

losses due to sub-optimal price responses to idiosyncratic conditions are 57 times smaller

than in the Calvo model that generates the same real effects of monetary policy shocks.

The main reason for this result is the optimal allocation of attention, implying that prices

respond slowly to monetary policy shocks, but prices respond fairly quickly to aggregate

technology shocks, and prices respond very quickly to idiosyncratic shocks. By contrast, in

the Calvo model prices respond slowly to all those shocks. The other reason for this result

is that under rational inattention by decision-makers in firms deviations of the actual price

from the profit-maximizing price are less likely to be extreme than in the Calvo model.

When we add rational inattention by households, we find that households devote little

attention to the consumption-saving decision because for standard parameter values devi-

ations from the consumption Euler equation are cheap in utility terms. Since households

devote little attention to the consumption-saving decision, consumption responds slowly to

shocks. It turns out that the impulse responses of consumption to shocks look similar to

the impulse responses of consumption in a model with habit formation.

This paper is related to two strands of literature: (i) the literature on rational inattention

(e.g. Sims (2003, 2006), Luo (2008), Máckowiak and Wiederholt (2009), Van Nieuwerburgh

and Veldkamp (2008), andWoodford (2009)); and (ii) the literature on business cycle models

with imperfect information (e.g. Lucas (1972), Woodford (2002), Mankiw and Reis (2002),

Lorenzoni (2008) and Angeletos and La’O (2009)). The main innovation with respect to

the existing literature on rational inattention is that we solve a dynamic stochastic general

equilibrium model. The main innovation with respect to the existing literature on business

cycle models with imperfect information is that the information structure is the outcome

of an optimization problem.

The paper is organized as follows. Section 2 describes all features of the economy apart

from the information structure. Section 3 characterizes the steady state of the non-stochastic

version of the economy. In Section 4 we derive the objective that decision-makers in firms

maximize when they decide how to allocate their attention. In Section 5 we derive the
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objective that households maximize when they decide what to focus on. Section 6 describes

issues related to aggregation. Section 7 characterizes the solution of the model under perfect

information. Section 8 presents numerical solutions of the model under rational inattention

by decision-makers in firms. Here we maintain the assumption that households have perfect

information. Section 9 presents numerical solutions of the model under rational inattention

by decision-makers in firms and households. Section 10 concludes.

2 Model

In this section, we describe all features of the economy apart from the information structure.

Thereafter, we solve the model for alternative assumptions about the information structure:

(i) perfect information, and (ii) rational inattention.

2.1 Households

There are J households in the economy. Households supply differentiated types of labor,

consume a variety of goods, and hold nominal government bonds.

Time is discrete and households have an infinite horizon. Each household seeks to

maximize the expected discounted sum of period utility. The discount factor is β ∈ (0, 1).

The period utility function is

U (Cjt, Ljt) =
C1−γjt − 1
1− γ

− ϕ
L1+ψjt

1 + ψ
, (1)

where

Cjt =

Ã
IX

i=1

C
θ−1
θ

ijt

! θ
θ−1

. (2)

Here Cijt is consumption of good i by household j in period t, Cjt is composite consumption

by household j in period t and Ljt is labor supply by household j in period t. The parameter

γ > 0 is the inverse of the intertemporal elasticity of substitution and the parameters ϕ > 0

and ψ ≥ 0 affect the disutility of supplying labor. There are I different consumption goods

and the parameter θ > 1 is the elasticity of substitution between those consumption goods.1

1The assumption of a constant elasticity of substitution between consumption goods is only for ease of

exposition. One could use a general constant returns-to-scale aggregator.
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The flow budget constraint of household j in period t reads

IX
i=1

PitCijt +Bjt = Rt−1Bjt−1 + (1 + τw)WjtLjt +
Dt

J
− Tt

J
. (3)

Here Pit is the price of good i in period t, Bjt are holdings of nominal government bonds

by household j between period t and period t + 1, Rt is the nominal gross interest rate

on those bond holdings, Wjt is the nominal wage rate for labor supplied by household j

in period t, τw is a wage subsidy paid by the government, (Dt/J) is a pro-rata share of

nominal aggregate profits, and (Tt/J) is a pro-rata share of nominal lump-sum taxes. We

assume that all households have the same initial bond holdings Bj,−1 > 0. We also assume

that bond holdings have to be positive in every period, Bjt > 0. We have to make some

assumption to rule out Ponzi schemes. We choose this particular assumption because it

allows us to rewrite the model in terms of logs of all variables. One can think of households

having an account. The account holds only nominal government bonds, and the balance on

the account has to be positive.

In every period, each household chooses a consumption vector, (C1jt, . . . , CIjt), and a

wage rate, Wjt. Each household commits to supply any quantity of labor at that wage rate.

Each household takes as given: all prices of consumption goods, all wage rates set by

other households, the nominal interest rate and all aggregate quantities.

2.2 Firms

There are I firms in the economy. Firms supply the differentiated consumption goods.

Firm i supplies good i. The production function of firm i is

Yit = eateaitLα
it, (4)

where

Lit =

⎛⎝ JX
j=1

L
η−1
η

ijt

⎞⎠
η

η−1

. (5)

Here Yit is output, Lijt is input of type j labor, Lit is composite labor input and (eateait)

is total factor productivity of firm i in period t. Total factor productivity has an aggregate

component, eat , and a firm-specific component, eait . Type j labor is the labor supplied
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by household j. Since there are J households, there are J types of labor.2 The parameter

η > 1 is the elasticity of substitution between those types of labor. The parameter α ∈ (0, 1]

is the elasticity of output with respect to composite labor.

Nominal profits of firm i in period t equal

(1 + τp)PitYit −
JX

j=1

WjtLijt, (6)

where τp is a production subsidy paid by the government.

In every period, each firm sets a price, Pit, and chooses a factor mix,
³
L̂i1t, . . . , L̂i(J−1)t

´
,

where L̂ijt = (Lijt/Lit) denotes firm i’s relative input of type j labor in period t. Each firm

commits to supply any quantity of the good at that price. Each firm then produces the

quantity demanded with the chosen factor mix.

Each firm takes as given: all prices set by other firms, all wage rates set by households,

the nominal interest rate and all aggregate quantities.

2.3 Government

There is a monetary authority and a fiscal authority. The monetary authority sets the

nominal interest rate according to the rule

Rt

R
=

µ
Rt−1
R

¶ρR
"µ
Πt
Π

¶φπ
µ
Yt
Y

¶φy
#1−ρR

eε
R
t , (7)

where Πt = (Pt/Pt−1) is inflation, Yt is aggregate output defined as

Yt =

Ã
IX

i=1

PitYit

!
/Pt, (8)

and εRt is a monetary policy shock. The price index Pt will be defined later. Here R, Π

and Y denote the values of the nominal interest rate, inflation and aggregate output in the

non-stochastic steady state. The policy parameters satisfy ρR ∈ [0, 1), φπ > 1 and φy ≥ 0.

The government budget constraint in period t reads

Tt + (Bt −Bt−1) = (Rt−1 − 1)Bt−1 + τp

Ã
IX

i=1

PitYit

!
+ τw

⎛⎝ JX
j=1

WjtLjt

⎞⎠ . (9)

2The assumption that all types of labor appear in the labor aggregator is for ease of exposition. One

could assume that a firm-specific subset of types of labor appear in the labor aggregator.
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The government has to finance interest on nominal government bonds, the production sub-

sidy and the wage subsidy. The government can collect lump-sum taxes or issue new

government bonds.

We assume that the government sets the production subsidy, τp, and the wage subsidy,

τw, so as to correct the distortions arising from firms’ market power in the goods market

and households’ market power in the labor market. In particular, we assume that

τp =
ϑ

ϑ− 1 − 1, (10)

where ϑ denotes the price elasticity of demand, and

τw =
ζ

ζ − 1 − 1, (11)

where ζ denotes the wage elasticity of labor demand.3 We make this assumption to abstract

from the level distortions arising from monopolistic competition.

2.4 Shocks

There are three types of shocks in the economy: aggregate technology shocks, firm-specific

productivity shocks and monetary policy shocks. We assume that, for all i = 1, . . . , I, the

stochastic processes {at}, {ait} and
©
εRt
ª
are independent. Furthermore, we assume that

the firm-specific productivity processes, {ait}, are independent across firms. In addition,

we assume that the number of firms is sufficiently large so that

1

I

IX
i=1

ait = 0. (12)

Finally, we assume that at follows a stationary Gaussian first-order autoregressive process

with mean zero, each ait follows a stationary Gaussian first-order autoregressive process

with mean zero, and εRt follows a Gaussian white noise process. In the following, we denote

the period t innovation to at and ait by εAt and εIit, respectively.

3When households have perfect information then ϑ = θ and thus τp = θ
θ−1 − 1. By contrast, when

households have imperfect information then ϑ (the price elasticity of demand) may differ from the parameter

θ. Therefore, the value of the production subsidy (10) may vary across information structures. For the same

reason, the value of the wage subsidy (11) may vary across information structures.
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2.5 Notation

In this subsection, we introduce notation that will be convenient. Throughout the paper,

Ct will denote aggregate composite consumption

Ct =
JX

j=1

Cjt, (13)

and Lt will denote aggregate composite labor input

Lt =
IX

i=1

Lit. (14)

Furthermore, P̂it will denote the relative price of good i

P̂it =
Pit
Pt

, (15)

and Ŵjt will denote the relative wage rate for type j labor

Ŵjt =
Wjt

Wt
. (16)

Finally, W̃jt will denote the real wage rate for type j labor

W̃jt =
Wjt

Pt
, (17)

and W̃t will denote the real wage index

W̃t =
Wt

Pt
. (18)

In each section, we will specify the definition of Pt and Wt.

3 Non-stochastic steady state

We begin by characterizing the non-stochastic steady state of the economy described in the

previous section. We define a non-stochastic steady state as a solution of the non-stochastic

version of the economy with the property that real quantities, relative prices, the nominal

interest rate and inflation are constant over time. In the following, variables without the

subscript t denote values in the non-stochastic steady state.
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In this section, Pt denotes the following price index

Pt =

Ã
IX

i=1

P 1−θit

! 1
1−θ

, (19)

and Wt denotes the following wage index

Wt =

⎛⎝ JX
j=1

W 1−η
jt

⎞⎠ 1
1−η

. (20)

In the non-stochastic steady state, the households’ first-order conditions read

R

Π
=
1

β
, (21)

Cij

Cj
= P̂−θi , (22)

and

W̃j = ϕ
³
Ŵ−η

j L
´ψ

Cγ
j . (23)

The firms’ first-order conditions read

P̂i = W̃
1

α

³
P̂−θi C

´ 1
α
−1

, (24)

and

L̂ij = Ŵ−η
j . (25)

The firms’ price setting equation (24) implies that all firms set the same price in the

non-stochastic steady state. Households therefore consume the different consumption goods

in equal amounts, implying that all firms produce the same amount. Since in addition all

firms have the same technology in the non-stochastic steady state, all firms have the same

composite labor input. It follows from the definition of the price index (19), the consumption

aggregator (2) and the definition of aggregate composite labor input (14) that

P̂ 1−θi =

µ
Cij

Cj

¶ θ−1
θ

=
Li

L
=
1

I
. (26)

Furthermore, in the non-stochastic version of the economy, all households face the same de-

cision problem, have the same information and their decision problem has a unique constant

solution, implying that all households choose the same consumption level and set the same
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wage rate in the non-stochastic steady state. Firms therefore hire the different types of

labor in equal amounts. It follows from the definition of aggregate composite consumption

(13), the definition of the wage index (20) and the labor aggregator (5) that

Cj

C
= Ŵ 1−η

j = L̂
η−1
η

ij =
1

J
. (27)

We will use equations (21)-(27) below.

One can show that equations (21)-(27), Yi = Lα
i , Yi = Ci and Ci = P̂−θi C imply that all

variables appearing in equations (21)-(27) are uniquely determined apart from the nominal

interest rate, R, and inflation, Π. For ease of exposition, we select Π = 1. Equation (21)

then implies R = (1/β). It is worth pointing out in this context that the steady-state

inflation rate has no effect on real variables in both the non-stochastic and the stochastic

version of the economy. In addition, in the non-stochastic steady state, the initial price

level, P−1, is not determined. We will assume that P−1 equals some value P̄−1. Finally, for

given initial real bond holdings
¡
Bj,−1/P̄−1

¢
, fiscal variables in the non-stochastic steady

state are uniquely determined by the requirement that real quantities are constant over

time. The reason is that real bond holdings are a real quantity and real bond holdings are

constant over time if and only if the government runs a balanced budget in real terms (i.e.

real lump-sum taxes equal the sum of real interest payments and real subsidy payments).

4 Derivation of the firms’ objective

In this section, we derive a log-quadratic approximation to the expected discounted sum of

profits. We will use this expression below when we assume that decision-makers in firms

choose the allocation of attention so as to maximize the expected discounted sum of profits.

To derive this expression, we proceed in four steps: (i) we make a guess concerning the

demand function for a consumption good, (ii) we substitute the demand function and the

production function into the expression for profits to obtain the profit function, (iii) we

make an assumption about how decision-makers in firms value profits in different states of

the world, and (iv) we compute a log-quadratic approximation to the expected discounted

sum of profits.
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First, we guess that the demand function for good i has the form

Cit = ς

µ
Pit
Pt

¶−ϑ
Ct, (28)

where Ct is aggregate composite consumption, Pt is a price index satisfying the following

equation for some function d that is homogenous of degree one, symmetric and continuously

differentiable

Pt = d (P1t, . . . , PIt) , (29)

and ϑ > 1 and ς > 0 are undetermined coefficients satisfying

ςP̂−ϑi = P̂−θi . (30)

When we solve the model for alternative assumptions about the information structure below,

we will always verify that this guess concerning the demand function is correct.4

Second, we substitute the production function (4)-(5) and the demand function (28) into

the expression for nominal profits (6) to obtain the profit function. We begin by rewriting

the expression for nominal profits (6)

(1 + τp)PitYit −
JX

j=1

WjtLijt = (1 + τp)PitYit − Lit

⎡⎣ JX
j=1

WjtL̂ijt

⎤⎦ , (31)

where L̂ijt = (Lijt/Lit) is firm i’s relative input of type j labor. The term in square brackets

on the right-hand side is the wage bill per unit of composite labor input. Rearranging

equations (4)-(5) yields

Lit =

µ
Yit

eateait

¶ 1
α

, (32)

and

1 =
JX
j=1

L̂
η−1
η

ijt . (33)

Substituting the technology (32)-(33), Yit = Cit and the demand function (28) into the

expression for nominal profits (31) yields the profit function

(1 + τp)Pitς

µ
Pit
Pt

¶−ϑ
Ct −

⎡⎢⎣ς
³
Pit
Pt

´−ϑ
Ct

eateait

⎤⎥⎦
1
α
⎡⎢⎣J−1X
j=1

WjtL̂ijt +WJt

⎛⎝1− J−1X
j=1

L̂
η−1
η

ijt

⎞⎠
η

η−1
⎤⎥⎦ .
(34)

4To give the simplest example, when households have perfect information then Pt is given by equation

(19), ϑ = θ and ς = 1.
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Profits of firm i in period t depend on the following variables that the decision-maker in the

firm chooses: Pit, L̂i1t, . . . , L̂i(J−1)t; and on the following variables that the decision-maker

in the firm takes as given: Pt, at, ait, Ct,W1t, . . . ,WJt.

Third, we make an assumption about how decision-makers in firms value profits in

different states of the world. Since the economy described in Section 2 is an incomplete-

markets economy with multiple owners of a firm, it is unclear how firms should value profits

in different states of the world. Therefore, we assume a general stochastic discount factor.

In particular, we assume that, in period −1, decision-makers in firms value nominal profits

in period t using the following stochastic discount factor

Q−1,t = βtλ (C1t, . . . , CJt)
1

Pt
, (35)

where Pt is the price index appearing in the demand function (28) and λ is some twice

continuously differentiable function with the property5

λ (C1, . . . , CJ) = C−γj . (36)

Then, in period −1, the expected discounted sum of profits equals

Ei,−1

" ∞X
t=0

βtF
³
P̂it, L̂i1t, . . . , L̂i(J−1)t, at, ait, C1t, . . . , CJt, W̃1t, . . . , W̃Jt

´#
, (37)

where Ei,−1 is the expectation operator conditioned on the information of the decision-maker

of firm i in period −1 and the function F is given by

F
³
P̂it, L̂i1t, . . . , L̂i(J−1)t, at, ait, C1t, . . . , CJt, W̃1t, . . . , W̃Jt

´
= λ (C1t, . . . , CJt) (1 + τp) ςP̂

1−ϑ
it

⎛⎝ JX
j=1

Cjt

⎞⎠

−λ (C1t, . . . , CJt)

⎡⎢⎢⎢⎢⎢⎢⎣
ςP̂−ϑit

⎛⎝ JX
j=1

Cjt

⎞⎠
eateait

⎤⎥⎥⎥⎥⎥⎥⎦

1
α ⎡⎢⎣J−1X

j=1

W̃jtL̂ijt + W̃Jt

⎛⎝1− J−1X
j=1

L̂
η−1
η

ijt

⎞⎠
η

η−1
⎤⎥⎦ .(38)

5For example, the stochastic discount factor could be a weighted average of the marginal utilities of the

different households (i.e. λ (C1t, . . . , CJt) =
J

j=1
λjC

−γ
jt with λj ≥ 0 and

J

j=1
λj = 1). Equation (36)

would be satisfied because all households have the same marginal utility in the non-stochastic steady state.
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In the following, small variables denote log-deviations from the non-stochastic steady state.

For example, cjt = ln (Cjt/Cj). Expressing the real profit function F in terms of log-

deviations from the non-stochastic steady state and using equations (10), (24)-(25), (27),

(30), Yi = Lα
i , Yi = Ci and Ci = P̂−θi C yields the following expression for the expected

discounted sum of profits

Ei,−1

" ∞X
t=0

βtf
³
p̂it, l̂i1t, . . . , l̂i(J−1)t, at, ait, c1t, . . . , cJt, w̃1t, . . . , w̃Jt

´#
, (39)

where

f
³
p̂it, l̂i1t, . . . , l̂i(J−1)t, at, ait, c1t, . . . , cJt, w̃1t, . . . , w̃Jt

´
= λ (C1e

c1t , . . . , CJe
cJt)

ϑ

ϑ− 1
1

α
W̃Li

1

J

JX
j=1

e(1−ϑ)p̂it+cjt

−λ (C1ec1t , . . . , CJe
cJt) W̃Lie

−ϑ
α
p̂it− 1

α
(at+ait)

⎛⎝ 1
J

JX
j=1

ecjt

⎞⎠ 1
α

1

J

⎡⎢⎣J−1X
j=1

ew̃jt+l̂ijt + ew̃Jt

⎛⎝J −
J−1X
j=1

e
η−1
η

l̂ijt

⎞⎠
η

η−1
⎤⎥⎦ . (40)

Fourth, we compute a log-quadratic approximation to the expected discounted sum of profits

around the non-stochastic steady state. We obtain the following result.

Proposition 1 (Expected discounted sum of profits) Let f denote the real profit function

defined by equation (40) and let f̃ denote the second-order Taylor approximation to f at

the non-stochastic steady state. Let Ei,−1 denote the expectation operator conditioned on

the information of the decision-maker of firm i in period −1. Let xt, zt and vt denote the

following vectors

xt =
³
p̂it l̂i1t · · · l̂i(J−1)t

´0
, (41)

zt =
³
at ait c1t · · · cJt w̃1t · · · w̃Jt

´0
, (42)

vt =
³
x0t z0t 1

´0
. (43)

Let vm,t denote the mth element of vt. Suppose that there exist two constants δ < (1/β)

and A ∈ R such that, for each period t ≥ 0 and for all m and n,

Ei,−1 |vm,tvn,t| < δtA. (44)

13



Then

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#
−Ei,−1

" ∞X
t=0

βtf̃ (x∗t , zt)

#

=
∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
, (45)

where the matrix H is given by

H = −C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑ
α

¡
1 + 1−α

α ϑ
¢

0 · · · · · · 0

0 2
ηJ

1
ηJ · · · 1

ηJ
... 1

ηJ

. . . . . .
...

...
...

. . . . . . 1
ηJ

0 1
ηJ . . . 1

ηJ
2
ηJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (46)

and the vector x∗t is given by:

p̂∗it =
1−α
α

1 + 1−α
α ϑ

⎛⎝ 1
J

JX
j=1

cjt

⎞⎠+ 1

1 + 1−α
α ϑ

⎛⎝ 1
J

JX
j=1

w̃jt

⎞⎠− 1
α

1 + 1−α
α ϑ

(at + ait) , (47)

and

l̂∗ijt = −η

⎛⎝w̃jt −
1

J

JX
j=1

w̃jt

⎞⎠ . (48)

Proof. See Appendix A.

After the log-quadratic approximation to the real profit function, the profit-maximizing

price in period t is given by equation (47) and the profit-maximizing factor mix in period t

is given by equation (48). Furthermore, after the log-quadratic approximation to the real

profit function, the loss in profits in period t in the case of a deviation from the profit-

maximizing decisions (i.e. xt 6= x∗t ) is given by the quadratic form in expression (45). The

upper-left element of the matrix H determines the profit loss in the case of a sub-optimal

price setting decision. The profit loss in the case of a sub-optimal price setting decision is

increasing in the price elasticity of demand, ϑ, and increasing in the degree of decreasing

returns-to-scale, (1/α). The lower-right block of the matrix H determines the profit loss in

the case of a sub-optimal factor mix decision. The profit loss in the case of a sub-optimal

factor mix decision is decreasing in the elasticity of substitution between types of labor, η,
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and depends on the number of types of labor, J . Note that the diagonal elements of H

determine the profit loss in the case of a deviation in a single variable, while the off-diagonal

elements of H determine how a deviation in one variable affects the loss in profits due to

a deviation in another variable. Finally, condition (44) ensures that, in the expression for

the expected discounted sum of profits, after the log-quadratic approximation to the real

profit function, one can change the order of integration and summation and the infinite sum

converges.

It is worth pointing out that the profit-maximizing decision vector (47)-(48) and the

expected discounted sum of profit losses (45) depend only to a limited extent on the function

λ appearing in the discount factor (35). The profit-maximizing decision vector (47)-(48)

does not depend at all on the function λ because the profit-maximizing price and the

profit-maximizing factor mix are the solution to a static decision problem in the economy

described in Section 2. The expected discounted sum of profit losses (45) depends only on

the steady-state value of the function λ because of the log-quadratic approximation to the

real profit function.

So far we have only derived an expression for the expected discounted sum of profits

in the economy described in Section 2, but from this expression one can already see to

some extent how a decision-maker in a firm who cannot attend perfectly to all available

information will allocate his/her attention. For example, the attention devoted to the price

setting decision will depend on the profit loss that the firm incurs in the case of a price

setting mistake (i.e., a deviation of the actual price from the profit-maximizing price).

Thus, the attention devoted to the price setting decision will depend on the upper-left

element of the matrix H. Furthermore, the decision-maker will track closely those changes

in the environment that in expectation cause most of the variation in the profit-maximizing

decisions. As one can see from equations (47)-(48), which changes in the environment in

expectation cause most of the variation in the profit-maximizing decisions depends on the

technology parameters α and η, the calibration of the exogenous processes as well as the

behavior of the other agents in the economy.
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5 Derivation of the households’ objective

In this section, we derive a log-quadratic approximation to the expected discounted sum of

period utility. We will use this expression below when we assume that households choose

the allocation of attention so as to maximize the expected discounted sum of period utility.

To derive this expression, we proceed in three steps: (i) we make a guess concerning the

demand function for a particular type of labor, (ii) we substitute the labor demand function,

the consumption aggregator and the flow budget constraint into the period utility function

to obtain a period utility function that incorporates those constraints, and (iii) we compute

a log-quadratic approximation to the expected discounted sum of period utility.

First, we guess that the demand function for type j labor has the form

Ljt = ξ

µ
Wjt

Wt

¶−ζ
Lt, (49)

where Lt is aggregate composite labor input, Wt is a wage index satisfying the following

equation for some function h that is homogenous of degree one, symmetric and continuously

differentiable

Wt = h (W1t, . . . ,WJt) , (50)

and ζ > 1 and ξ > 0 are undetermined coefficients satisfying

ξŴ−ζ
j = Ŵ−η

j . (51)

When we solve the model for alternative assumptions about the information structure below,

we will always verify that this guess concerning the labor demand function is correct.6

Second, we substitute the consumption aggregator (2), the flow budget constraint (3)

and the labor demand function (49) into the period utility function (1) to obtain a period

utility function that incorporates those constraints. We begin by rewriting the flow budget

constraint (3) as

Cjt

Ã
IX

i=1

PitĈijt

!
+Bjt = Rt−1Bjt−1 + (1 + τw)WjtLjt +

Dt

J
− Tt

J
,

6To give the simplest example, when firms have perfect information then Wt is given by equation (20),

ζ = η and ξ = 1.
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where Ĉijt = (Cijt/Cjt) is relative consumption of good i by household j. The term in brack-

ets on the left-hand side is consumption expenditure per unit of composite consumption.

Rearranging yields

Cjt =
Rt−1Bjt−1 −Bjt + (1 + τw)WjtLjt +

Dt
J −

Tt
JXI

i=1
PitĈijt

.

Dividing the numerator and the denominator on the right-hand side by Pt, where Pt is some

price index, yields

Cjt =

Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw) W̃jtLjt +
D̃t
J −

T̃t
JXI

i=1
P̂itĈijt

, (52)

where B̃jt = (Bjt/Pt) are real bond holdings by the household, D̃t = (Dt/Pt) are real

aggregate profits, T̃t = (Tt/Pt) are real lump-sum taxes, and Πt = (Pt/Pt−1) is inflation.

Rearranging the consumption aggregator (2) yields

1 =
IX

i=1

Ĉ
θ−1
θ

ijt . (53)

Substituting the flow budget constraint (52), the consumption aggregator (53) and the labor

demand function (49) into the period utility function (1) yields a period utility function

that incorporates those constraints:

1

1− γ

⎛⎜⎜⎜⎜⎜⎜⎝
Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw) W̃jtξ
³
W̃jt

W̃t

´−ζ
Lt +

D̃t
J −

T̃t
J

I−1X
i=1

P̂itĈijt + P̂It

Ã
1−

I−1X
i=1

Ĉ
θ−1
θ

ijt

! θ
θ−1

⎞⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ
− ϕ

1 + ψ

⎡⎣ξÃW̃jt

W̃t

!−ζ
Lt

⎤⎦1+ψ . (54)

Expressing the period utility function (54) in terms of log-deviations from the non-stochastic

steady state and using equations (11), (21)-(23), (26), (51) and Lj = Ŵ−η
j L yields our final
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period utility function:

C1−γj

1− γ

⎛⎜⎜⎜⎜⎜⎜⎝
ωB
β ert−1−πt+b̃jt−1 − ωBe

b̃jt + ζ
ζ−1ωW e(1−ζ)w̃jt+ζw̃t+lt + ωDe

d̃t − ωT e
t̃t

1
I

I−1X
i=1

ep̂it+ĉijt + 1
I e

p̂It

Ã
I −

I−1X
i=1

e
θ−1
θ

ĉijt

! θ
θ−1

⎞⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ
−

C1−γj

1 + ψ
ωW e−ζ(1+ψ)(w̃jt−w̃t)+(1+ψ)lt , (55)

where ωB, ωW , ωD and ωT denote the following steady-state ratios:³
ωB ωW ωD ωT

´
=
³

B̃j

Cj

W̃jLj
Cj

D̃
J
Cj

T̃
J
Cj

´
. (56)

Third, we compute a log-quadratic approximation to the expected discounted sum of

period utility around the non-stochastic steady state.

Proposition 2 (Expected discounted sum of period utility) Let g denote the functional that

is obtained by multiplying the period utility function (55) by βt and summing over all t

from zero to infinity. Let g̃ denote the second-order Taylor approximation to g at the non-

stochastic steady state. Let Ej,−1 denote the expectation operator conditioned on information

of household j in period −1. Let xt, zt and vt denote the following vectors

xt =
³
b̃jt w̃jt ĉ1jt · · · ĉI−1jt

´0
, (57)

zt =
³
rt−1 πt w̃t lt d̃t t̃t p̂1t · · · p̂It

´0
, (58)

vt =
³
x0t z0t 1

´0
. (59)

Let vm,t denote the mth element of vt. Suppose that

Ej,−1
h
b̃2j,−1

i
<∞, (60)

and, for all m,

Ej,−1
¯̄̄
b̃j,−1vm,0

¯̄̄
<∞. (61)

Furthermore, suppose that there exist two constants δ < (1/β) and A ∈ R such that, for

each period t ≥ 0, for τ = 0, 1 and for all m and n,

Ej,−1 |vm,tvn,t+τ | < δtA. (62)
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Then

Ej,−1
h
g̃
³
b̃j,−1, x0, z0, x1, z1, . . .

´i
−Ej,−1

h
g̃
³
b̃j,−1, x

∗
0, z0, x

∗
1, z1, . . .

´i
=

∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0H0 (xt − x∗t ) + (xt − x∗t )
0H1

¡
xt+1 − x∗t+1

¢¸
. (63)

Here the matrix H0 is given by

H0 = −C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B

³
1 + 1

β

´
γωBζωW 0 · · · 0

γωBζωW ζωW (γζωW + 1 + ζψ) 0 · · · 0

0 0 2
θI · · · 1

θI
...

...
...

. . .
...

0 0 1
θI · · · 2

θI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (64)

and the matrix H1 is given by

H1 = C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B γωBζωW 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (65)

Furthermore, the process {x∗t } is defined by the following two requirements: (i) the vector

vt with xt = x∗t satisfies conditions (60)-(62), and (ii) in each period t ≥ 0,

c∗jt = Et

"
−1
γ

Ã
rt − πt+1 −

1

I

IX
i=1

(p̂it+1 − p̂it)

!
+ c∗jt+1

#
, (66)

w̃∗jt =
γ

1 + ζψ
c∗jt +

ψ

1 + ζψ
(ζw̃t + lt) +

1

1 + ζψ

Ã
1

I

IX
i=1

p̂it

!
, (67)

ĉ∗ijt = −θ
Ã
p̂it −

1

I

IX
i=1

p̂it

!
, (68)

where c∗jt is defined by

c∗jt =
ωB
β

³
rt−1 − πt + b̃∗jt−1

´
− ωB b̃

∗
jt +

ζ

ζ − 1ωW
£
(1− ζ) w̃∗jt + ζw̃t + lt

¤
+ωDd̃t − ωT t̃t −

Ã
1

I

IX
i=1

p̂it

!
, (69)
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and Et denotes the expectation operator conditioned on the entire history of the economy

up to and including period t.

Proof. See Appendix B.

After the log-quadratic approximation to the expected discounted sum of period utility,

stochastic processes for real bond holdings, the real wage rate and the consumption mix

that satisfy conditions (60)-(62) can be ranked using equation (63). Equations (66)-(69)

characterize the optimal behavior under perfect information (i.e. the decisions the household

would take if in each period t ≥ 0 the household knew the entire history of the economy

up to and including period t). Equation (63) gives the loss in expected lifetime utility in

the case of deviations from the optimal behavior under perfect information. The upper-left

block of the matrix H0 and the upper-left block of the matrix H1 determine the loss in

expected lifetime utility in the case of sub-optimal real bond holdings and wage setting. A

single percentage deviation in real bond holdings from optimal bond holdings causes a larger

utility loss the larger γ, ωB and (R/Π) = (1/β). See the (1,1) element of the matrix H0. A

single percentage deviation in the real wage rate from the optimal wage rate causes a larger

utility loss the larger γ, ψ, ωW and ζ. See the (2,2) element of the matrix H0. Furthermore,

the off-diagonal elements of H0 show that a bond deviation in period t affects the utility

cost of a wage deviation in period t, and the first row of H1 shows that a bond deviation

in period t affects both the utility cost of a bond deviation in period t + 1 and the utility

cost of a wage deviation in period t+1. The lower-right block of the matrix H0 determines

the utility loss in the case of a sub-optimal consumption mix. The loss is decreasing in

the elasticity of substitution between consumption goods, θ, and depends on the number

of consumption goods, I. Finally, conditions (60)-(62) ensure that, in the expression for

the expected discounted sum of period utility, after the log-quadratic approximation to

expected lifetime utility, one can change the order of integration and summation and all

infinite sums converge.

From Proposition 2 one can already see how some parameters will matter for the optimal

allocation of attention by a household that cannot attend perfectly to all available informa-

tion. For example, consider the role of γ. Increasing γ raises the utility loss caused by a

deviation of real bond holdings from optimal bond holdings. At the same time, increasing γ
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lowers the response of optimal bond holdings to the real interest rate. The relative strength

of these two effects will determine whether for a household with a higher γ it is more or less

important to be aware of movements in the real interest rate.

6 Aggregation

In this section, we describe issues related to aggregation.

In the following, we will work with log-linearized equations for all aggregate variables.

Log-linearizing the equations for aggregate output (8), for aggregate composite consumption

(13) and for aggregate composite labor input (14) yields

yt =
1

I

IX
i=1

(p̂it + yit) , (70)

ct =
1

J

JX
j=1

cjt, (71)

and

lt =
1

I

IX
i=1

lit. (72)

Log-linearizing the equations for the price index (29) and for the wage index (50) yields

0 =
IX

i=1

p̂it, (73)

and

0 =
JX
j=1

ŵjt. (74)

Note that the last two equations can also be stated as

pt =
1

I

IX
i=1

pit, (75)

and

w̃t =
1

J

JX
j=1

w̃jt. (76)

Furthermore, we will work with log-linearized equations when we aggregate the demands

for a particular consumption good or for a particular type of labor. Formally,

cit =
1

J

JX
j=1

cijt, (77)
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and

ljt =
1

I

IX
i=1

lijt. (78)

Note that the production function (4) and the monetary policy rule (7) are already

log-linear:

yit = at + ait + αlit, (79)

and

rt = ρRrt−1 + (1− ρR)
¡
φππt + φyyt

¢
+ εRt . (80)

7 Case 1: Perfect information

In this section, we present the solution of the model under perfect information. This solution

will serve as a benchmark. We define the solution of the model under perfect information

as follows: In each period t, all agents know the entire history of the economy up to and

including period t; firms choose the profit-maximizing price and factor mix; households

choose the utility-maximizing consumption vector and nominal wage rate; the government

sets the nominal interest rate according to the monetary policy rule, pays subsidies so as

to correct the distortions due to market power and chooses a fiscal policy that satisfies the

government budget constraint; aggregate variables are given by their respective equations;

and households have rational expectations.

The following proposition characterizes real variables at the solution of the model under

perfect information after the log-quadratic approximation to the real profit function (see

Section 4), the log-quadratic approximation to the expected discounted sum of period utility

(see Section 5) and the log-linearization of the equations for the aggregate variables (see

Section 6).

Proposition 3 (Solution of the model under perfect information) A solution to the system

of equations (47)-(48), (66)-(69), (70)-(80), (12) and yit = cit with the same initial bond

holdings for each household and a non-explosive bond sequence for each household (i.e.
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lims→∞Et

h
βs+1

³
b̃j,t+s+1 − b̃j,t+s

´i
= 0) satisfies:

yt = ct =
1 + ψ

1− α+ αγ + ψ
at, (81)

lt =
1− γ

1− α+ αγ + ψ
at, (82)

w̃t =
γ + ψ

1− α+ αγ + ψ
at, (83)

rt −Et [πt+1] = γ
1 + ψ

1− α+ αγ + ψ
Et [at+1 − at] , (84)

and

ĉijt = −θp̂it, (85)

p̂it = −
1
α

1 + 1−α
α θ

ait, (86)

l̂ijt = −ηŵjt, (87)

ŵjt = 0. (88)

Proof. See Appendix C.

Under perfect information, aggregate output, aggregate composite consumption, the

aggregate composite labor input, the real wage index, and the real interest rate depend

only on aggregate technology. The relative price of good i and relative consumption of

good i by household j depend only on firm-specific productivity of firm i. The relative

wage rate for type j labor and firm i’s relative input of type j labor are constant.

Under perfect information, monetary policy has no real effects in this model. Monetary

policy does affect nominal variables. The nominal interest rate and inflation follow from

the monetary policy rule (80) and the real interest rate (84). Since (1− ρR)φπ > 0 and

(1− ρR)φπ + ρR > 1, the equilibrium paths of the nominal interest rate and inflation are

locally determinate.7

7See Woodford (2003), Chapter 2, Proposition 2.8.
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8 Case 2: Firms have limited attention and households have

perfect information

In this section, we solve the model assuming rational inattention by decision-makers in

firms. By rational inattention we mean that decision-makers have limited attention and

that they decide how to allocate their attention. For the moment, we continue to assume

that households have perfect information to isolate the implications of rational inattention

by decision-makers in firms.

8.1 The firms’ attention problem

Following Sims (2003), we model attention as an information flow and we model limited

attention as a constraint on information flow. To take decisions that are on average close

to the profit-maximizing decisions, the decision-maker in a firm has to be aware of changes

in the economic environment that cause changes in the profit-maximizing decisions. Being

aware of stochastic changes in the environment requires information flow. Decision-makers

that have limited attention therefore face a trade-off: Tracking closely particular changes

in the environment improves decision making but also uses up valuable information flow.

We formalize this trade-off by letting the decision-maker choose directly the stochastic

process for the decision vector, subject to a constraint on information flow. For example,

the decision-maker could decide to respond swiftly and correctly with his/her price setting

decision to changes in firm-specific productivity but this would require allocating attention

to firm-specific productivity. We assume that the decision-maker in a firm chooses the level

and the allocation of information flow so as to maximize the expected discounted sum of

profits net of the cost of information flow.

Formally, the attention problem of the decision-maker in firm i reads:

max
κ,B1(L),...,B3(L),C1(L),...,C3(L),ζ,χ

( ∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
− μ

1− β
κ

)
, (89)
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where

xt − x∗t =

⎛⎜⎜⎜⎜⎜⎜⎝
pit

l̂i1t
...

l̂i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝

p∗it

l̂∗i1t
...

l̂∗i(J−1)t

⎞⎟⎟⎟⎟⎟⎟⎠ , (90)

subject to the equations characterizing the profit-maximizing decisions

p∗it = A1 (L) ε
A
t| {z }

pA∗it

+A2 (L) ε
R
t| {z }

pR∗it

+A3 (L) ε
I
it| {z }

pI∗it

(91)

l̂∗ijt = −ηŵjt, (92)

the equations characterizing the actual decisions

pit = B1 (L) ε
A
t + C1 (L) ν

A
it| {z }

pAit

+B2 (L) ε
R
t +C2 (L) ν

R
it| {z }

pRit

+B3 (L) ε
I
it + C3 (L) ν

I
it| {z }

pIit

(93)

l̂ijt = −ζ
µ
ŵjt +

V ar (ŵjt)

χ
νLijt

¶
, (94)

and the constraint on information flow

I
³n

pA∗it , p
R∗
it , p

I∗
it , l̂

∗
i1t, . . . , l̂

∗
i(J−1)t

o
;
n
pAit, p

R
it , p

I
it, l̂i1t, . . . , l̂i(J−1)t

o´
≤ κ. (95)

Here A1 (L) to A3 (L), B1 (L) to B3 (L), and C1 (L) to C3 (L) are infinite-order lag polyno-

mials. The noise terms νAit, ν
R
it , ν

I
it and νLijt appearing in the actual decisions are assumed

to follow unit-variance Gaussian white noise processes that are: (i) independent of all other

stochastic processes in the economy, (ii) firm-specific, and (iii) independent of each other.

The operator I measures the amount of information that the actual decisions contain about

the profit-maximizing decisions. The operator I is formally defined below.

Proposition 1 states that, after the log-quadratic approximation to the real profit func-

tion, the profit-maximizing decisions of firm i in period t are given by equations (47)-(48)

and the expected profit loss due to suboptimal decisions is given by equation (45). Objective

(89) therefore states that the decision-maker of firm i chooses the level and the allocation of

information flow so as to maximize the expected discounted sum of profits net of the cost of

information flow.8 The variable κ ≥ 0 is the information flow devoted to the price setting
8A more negative value of expression (45) means a larger expected profit loss due to suboptimal decisions.
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and factor mix decisions. The parameter μ ≥ 0 is the per-period marginal cost of informa-

tion flow. This marginal cost of information flow can be interpreted as an opportunity cost

(i.e. the cost of devoting less attention to some other activity) or a monetary cost (e.g. an

extra wage payment to a manager to improve decision-making).9

Equation (91) characterizes the profit-maximizing price setting decision. Here we guess

that the profit-maximizing price given by equation (47) has the representation (91) after

using equations (71), (76) and p̂it = pit − pt and after substituting in the equilibrium

processes for pt, ct, w̃t, at and ait. We will verify this guess. Equation (92) characterizes

the profit-maximizing factor mix decision. Here we have simply rewritten the equation for

the profit-maximizing factor mix (48) using equations (76) and ŵjt = w̃jt − w̃t.

Equation (93) characterizes the actual price setting decision. By choosing the lag poly-

nomials B1 (L) and C1 (L) to B3 (L) and C3 (L), the decision-maker chooses the joint distri-

bution of the profit-maximizing price and the actual price. For example, if B1 (L) = A1 (L)

and C1 (L) = 0, the price set by the decision-maker responds perfectly to aggregate technol-

ogy shocks. Similarly, if B2 (L) = A2 (L) and C2 (L) = 0, the price set by the decision-maker

responds perfectly to monetary policy shocks.

Equation (94) characterizes the actual factor mix decision. By choosing the coefficients

ζ and the signal-to-noise ratio χ, the decision-maker chooses the joint distribution of the

profit-maximizing factor mix and the actual factor mix. The fact that the decision-maker

can only choose two coefficients in equation (94) may seem restrictive compared to equation

(93), but we will show below that the firm cannot do better with a less restrictive choice in

equation (94).

The information flow constraint (95) restricts the amount of information that the actual

decisions contain about the profit-maximizing decisions. We follow Sims (2003) and a large

literature in information theory by quantifying information by reduction in uncertainty,

where uncertainty is measured by entropy. Let H (X) denote the entropy of the random

vector X = (X1, . . . ,XN). Entropy is a measure of uncertainty. Let H (X|Y ) denote

the conditional entropy of the random vector X = (X1, . . . ,XN ) given knowledge of Y =

(Y1, . . . , YN). Conditional entropy is a measure of conditional uncertainty. The reduction

9 In equation (90), we use the fact that p̂it − p̂∗it = pit − p∗it.
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in uncertainty H (X)−H (X|Y ) is a measure of the amount of information that Y contains

about X. The operator I in the information flow constraint (95) is defined as

I ({Xt} ; {Yt}) = lim
T→∞

1

T + 1
[H (X0, . . . ,XT )−H (X0, . . . ,XT |Y0, . . . , YT )] . (96)

The operator I measures the average per-period amount of information that the stochastic

process {Yt}∞t=0 contains about the stochastic process {Xt}∞t=0. Thus, the information flow

constraint (95) states that the average per-period amount of information that the actual

decisions contain about the profit-maximizing decisions cannot exceed the value of κ.

Note that we have assumed that the actual decisions follow a Gaussian process. One

can show that a Gaussian process for the actual decisions is optimal because the objective

(89) is quadratic and the profit-maximizing decisions (91)-(92) follow a Gaussian process.10

We have also assumed that the noise appearing in the actual decisions is firm-specific.

This assumption accords well with the idea that the friction is the decision-maker’s limited

attention rather than the availability of information. Finally, we have assumed that the

noise terms νAit, ν
R
it , ν

I
it and νLijt are independent of each other. This assumption captures

the idea that paying attention to the state of aggregate technology, paying attention to

monetary policy disturbances, paying attention to firm-specific productivity and paying

attention to relative wage rates are independent activities. Relaxing this assumption is

work in progress.

Two remarks are in place before we present solutions of the problem (89)-(95). First,

when we solve the problem (89)-(95) numerically, we turn this infinite-dimensional prob-

lem into a finite-dimensional problem by parameterizing each infinite-order lag polynomial

B1 (L) to B3 (L) and C1 (L) to C3 (L) as a lag-polynomial of an ARMA(p,q) process where

p and q are finite. Second, when a variable appearing in the information flow constraint

(95) is (or may be) non-stationary, we replace the original variable by its first difference in

the information flow constraint to ensure that entropy is always well defined.

10See Sims (2006) or Section VIIA in Maćkowiak and Wiederholt (2009).
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8.2 Computing the equilibrium of the model

We use an iterative procedure to solve for the equilibrium of the model. First, we make a

guess concerning the process for the profit-maximizing price (91) and a guess concerning

the process for the relative wage rate in equation (92). Second, we solve the firms’ attention

problem (89)-(95). Third, we aggregate the individual prices to obtain the aggregate price

level:

pt =
1

I

IX
i=1

pit. (97)

Fourth, we compute the aggregate dynamics implied by those price level dynamics. Recall

that in this section we assume that households have perfect information. The households’

optimality conditions (66)-(68), equations (70)-(80), equation (12), yit = cit and the as-

sumption that aggregate technology follows a first-order autoregressive process imply that

the following equations have to be satisfied in equilibrium:

ct = Et

∙
−1
γ
(rt − pt+1 + pt) + ct+1

¸
, (98)

w̃t = γct + ψlt, (99)

yt = ct, (100)

yt = at + αlt, (101)

at = ρAat−1 + εAt , (102)

rt = ρRrt−1 + (1− ρR)
£
φπ (pt − pt−1) + φyyt

¤
+ εRt . (103)

Here Et denotes the expectation operator conditioned on the entire history of the economy

up to and including period t. We employ a standard solution method for linear rational

expectations models to solve the system of equations containing the price level dynamics

and those six equations. We obtain the law of motion for (ct, w̃t, yt, lt, at, rt) implied by the

price level dynamics. Fifth, we compute the law of motion for the profit-maximizing price.

The firms’ optimality condition (47) and equations (71), (76) and p̂it = pit − pt imply that

the profit-maximizing price is given by

p∗it = pt +
1−α
α

1 + 1−α
α ϑ

ct +
1

1 + 1−α
α ϑ

w̃t −
1
α

1 + 1−α
α ϑ

(at + ait) . (104)
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By substituting the law of motion for pt, ct, w̃t, at and ait into the last equation, we obtain

the law of motion for the profit-maximizing price. In the last equation, we set ϑ = θ because

the households’ optimality condition (68) and equations (71), (73) and (77) imply that the

demand function for good i has the form (28)-(30) with a price elasticity of demand ϑ = θ.

If the process for the profit-maximizing price differs from our guess, we update the guess

until a fixed point is reached.

Finally, we derive the equilibrium relative wage rates and the equilibrium factor mix.

Suppose that firms choose a value for ζ that exceeds 1 and a value for χ that is strictly

positive. Then, each firm can attain the profit-maximizing factor mix without any infor-

mation flow. Thus, no firm has an incentive to deviate. The argument is the following.

Equation (94) and equations (72) and (78) imply that the labor demand function for each

type of labor has the form (49)-(51). Since all households have exactly the same decision

problem, all households set the same wage rate. It follows from equation (76) that w̃t = w̃jt,

or equivalently ŵjt = 0. Thus, in equilibrium the profit-maximizing factor mix is constant

(l̂∗ijt = 0), implying that each firm can attain the profit-maximizing factor mix (l̂ijt = 0)

without any information flow.

8.3 Benchmark parameter values and solution

In this section, we report the numerical solution of the model for the following parameter

values. We set β = 0.99, γ = 1, ψ = 0, θ = 4, α = 2/3 and η = 4.

To set the parameters governing the process for aggregate technology, equation (102),

we consider quarterly U.S. data from 1960 Q1 to 2006 Q4. We first compute a time series

for aggregate technology, at, using equation (101) and measures of yt and lt. We use the log

of real output per person, detrended with a linear trend, as a measure of yt. We use the log

of hours worked per person, demeaned, as a measure of lt.11 We then fit equation (102) to

the time series for at obtaining ρA = 0.96 and a standard deviation of the innovation equal

to 0.0085. In the benchmark economy, we set ρA = 0.95 and we set the standard deviation

of εAt equal to 0.0085.

11We use data for the non-farm business sector. The source of the data is the website of the Federal

Reserve Bank of St.Louis.
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To set the parameters of the Taylor rule, we consider quarterly U.S. data on the Federal

Funds rate, inflation and real GDP from 1960 Q1 to 2006 Q4.12 We fit the Taylor rule

(103) to the data obtaining ρR = 0.89, φπ = 1.53, φy = 0.33, and a standard deviation

of the innovation equal to 0.0021. In the benchmark economy, we set ρR = 0.9, φπ = 1.5,

φy = 0.33, and the standard deviation of ε
R
t equal to 0.0021.

We assume that firm-specific productivity follows a first-order autoregressive process.

Recent papers calibrate the autocorrelation of firm-specific productivity to be about two-

thirds in monthly data, e.g. Klenow and Willis (2007) use 0.68, Midrigan (2006) uses

0.5, and Nakamura and Steinsson (2008) use 0.66. Since (2/3)3 equals about 0.3, we set

the autocorrelation of firm-specific productivity in our quarterly model equal to 0.3. We

then choose the standard deviation of the innovation to firm-specific productivity such that

the average absolute size of price changes in our model equals 9.7 percent under perfect

information. The value 9.7 percent is the average absolute size of price changes excluding

sales reported in Klenow and Kryvtsov (2008). This yields a standard deviation of the

innovation to firm-specific productivity equal to 0.22.

We compute the solution of the model by fixing the marginal value of information flow

instead of κ. The overall information flow, κ, is then determined within the model. The

idea is the following. When the marginal value of information flow is high, decision-makers

in firms have a high incentive to increase information flow in order to take better decisions.

In contrast, when the marginal value of information flow is low, decision-makers in firms

have little incentive to increase information flow. We set the marginal value of information

flow equal to 0.1 percent of a firm’s steady state output. We obtain this marginal value of

information flow in equilibrium by setting the marginal cost of information flow in objective

(89) to μ = (0.001)Yi.

We first report the optimal allocation of attention at the rational inattention fixed point.

The decision-maker in a firm allocates 3.1 bits of information flow to tracking firm-specific

productivity, 1 bit of information flow to tracking aggregate technology, and 0.35 bits of

12We compute a time series for four-quarter inflation rate from the price index for personal consumption

expenditures excluding food and energy. We compute a time series for percentage deviations of real GDP

from potential real GDP. The sources of the data are the websites of the Federal Reserve Bank of St.Louis

and the Congressional Budget Office.
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information flow to tracking monetary policy. The expected per-period loss in profits due

to imperfect tracking of firm-specific productivity equals 0.07 percent of the firm’s steady

state output; the expected per-period loss in profits due to imperfect tracking of aggregate

technology equals 0.05 percent of the firm’s steady state output; and the expected per-

period loss in profits due to imperfect tracking of monetary policy equals 0.03 percent of

the firm’s steady state output. Together these numbers imply that the expected per-period

loss in profits due to deviations of the actual price from the profit-maximizing price equals

0.15 percent of the firm’s steady state output. We think this is a reasonable number.

Figures 1 and 2 show impulse responses of the price level, inflation, output, and the

nominal interest rate at the rational inattention fixed point (green lines with circles). For

comparison, the figures also include impulse responses of the same variables at the equilib-

rium under perfect information derived in Section 7 (blue lines with points). All impulse

responses are to shocks of one standard deviation. All impulse responses are drawn such that

an impulse response equal to one means “a one percent deviation from the non-stochastic

steady state”. Time is measured in quarters along horizontal axes.

Consider Figure 1. The price level shows a dampened and delayed response to a mone-

tary policy shock compared with the case of perfect information. The response of inflation

to a monetary policy shock is persistent. Output falls after a positive innovation in the

Taylor rule and the decline in output is persistent. The nominal interest rate increases on

impact and then converges slowly to zero. The impulse responses to a monetary policy shock

under rational inattention differ markedly from the impulse responses to a monetary policy

shock under perfect information. Under perfect information, the price level adjusts fully on

impact to a monetary policy shock, there are no real effects, and the nominal interest rate

fails to change.

Consider Figure 2. The price level and inflation show a dampened response to an

aggregate technology shock compared with the case of perfect information. The output

gap is negative for a few quarters after the shock. Output and the nominal interest rate

show hump-shaped impulse responses to an aggregate technology shock. Note that under

rational inattention the response of the price level to an aggregate technology shock is

less dampened and less delayed than the response of the price level to a monetary policy
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shock. The reason is the optimal allocation of attention. Decision-makers in firms decide

to allocate about three times as much attention to aggregate technology than to monetary

policy. Therefore, prices respond faster to aggregate technology shocks than to monetary

policy shocks. As a result, the output gap is negative for only 5 quarters after an aggregate

technology shock, while the output gap is negative for 10 quarters after a monetary policy

shock.13

Figure 3 shows the impulse response of an individual price to a firm-specific productivity

shock. Prices respond almost perfectly to firm-specific productivity shocks. The reason is

the optimal allocation of attention. Decision-makers in firms decide to pay close attention

to firm-specific productivity.

8.4 Comparison to the Calvo model

For comparison, we solved the Calvo model for the same parameter values and assuming that

prices change every 2.5 quarters on average. Figures 4 and 5 show the impulse responses in

the benchmark economy with rational inattention (green lines with circles) and the impulse

responses in the Calvo model with perfect information (red lines with crosses). The impulse

responses to a monetary policy shock are essentially identical in the two models, while the

impulse responses to an aggregate technology shock are quite different in the two models. In

particular, inflation responds to a monetary policy shock by the same amount on impact in

the benchmark economy and in the Calvo model, while inflation responds to an aggregate

technology shock twice more strongly on impact in the benchmark economy than in the

Calvo model. This is because decision-makers in firms in the benchmark economy decide

to allocate about three times as much attention to aggregate technology than to monetary

policy.

In the benchmark economy and in the Calvo model, firms experience profit losses due to

deviations of the actual price from the profit-maximizing price. In the benchmark economy,

13See also Paciello (2008). Paciello solves the white noise case of a similar model analytically, where white

noise case means that: (i) all exogenous processes are white noise processes, (ii) there is no lagged interest

rate in the Taylor rule, and (iii) the price level instead of inflation appears in the Taylor rule. The analytical

solution in the white noise case helps to understand in more detail the differential response of prices to

aggregate technology shocks and to monetary policy shocks.
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profit losses due to deviations of the actual price from the profit-maximizing price are an

order of magnitude smaller than in the Calvo model that generates the same real effects.

Specifically, the expected loss in profits due to sub-optimal price responses to aggregate

conditions is 23 times smaller than in the Calvo model. In addition, the expected loss in

profits due to sub-optimal price responses to firm-specific conditions is 57 times smaller than

in the Calvo model. The main reason for this result is the optimal allocation of attention.

In the benchmark economy, prices respond slowly to monetary policy shocks, but fairly

quickly to aggregate technology shocks, and very quickly to micro-level shocks. In contrast,

in the Calvo model, prices respond slowly to all those shocks. Another reason for this result

is that under rational inattention deviations of the actual price from the profit-maximizing

price are less likely to be extreme than in the Calvo model.

9 Case 3: Firms and households have limited attention

We now study the implications of adding rational inattention by households. We first

make two simplifying assumptions to focus on the implications of rational inattention by

households for consumption behavior. In particular, we assume that households set real

wage rates (instead of nominal wage rates) and ψ = 0. One can show analytically that

these two assumptions imply that the optimal wage setting behavior under both perfect

information and limited attention satisfies

w̃jt = γcjt. (105)

The reason is as follows. When households set real wage rates and ψ = 0, each household

only needs to know his/her own consumption to be on the labor supply curve. Knowing

own consumption does not require any information flow. Hence, the assumptions that

households set real wage rates (instead of nominal wage rates) and ψ = 0 allow us to study

in isolation the implications of rational inattention by households for consumption behavior.
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9.1 The households’ attention problem

The attention problem of household j reads:

max
κ,B(L),C(L),ϑ,χ

∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0H0 (xt − x∗t ) + (xt − x∗t )
0H1

¡
xt+1 − x∗t+1

¢¸
− μ

1− β
κ,

(106)

where

xt − x∗t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̃jt

w̃jt

ĉ1jt
...

ĉI−1jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̃∗jt

w̃∗jt

ĉ∗1jt
...

ĉ∗I−1jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (107)

subject to an equation linking an argument of the objective and two decision variables

b̃jt − b̃∗jt = −
1

ωB

tX
s=0

µ
1

β

¶t−s £¡
cjs − c∗js

¢
+ ζωW

¡
w̃js − w̃∗js

¢¤
, (108)

the equations characterizing the household’s optimal behavior under perfect information

c∗jt = A1 (L) ε
A
t| {z }

cA∗jt

+A2 (L) ε
R
t| {z }

cR∗jt

(109)

w̃∗jt = γc∗jt (110)

ĉ∗ijt = −θp̂it, (111)

the equations characterizing the household’s actual behavior

cjt = B1 (L) ε
A
t + C1 (L) ν

A
jt| {z }

cAjt

+B2 (L) ε
R
t + C2 (L) ν

R
jt| {z }

cRjt

(112)

w̃jt = γcjt (113)

ĉijt = −ϑ
µ
p̂it +

V ar (p̂it)

χ
νIijt

¶
, (114)

and the information flow constraint

I
¡©
cA∗jt , c

R∗
jt , ĉ

∗
1jt, . . . , ĉ

∗
I−1jt

ª
;
©
cAjt, c

R
jt, ĉ1jt, . . . , ĉI−1jt

ª¢
≤ κ. (115)

Here A1 (L), A2 (L), B1 (L), B2 (L), C1 (L) and C2 (L) are infinite-order lag polynomials.

The noise terms νAjt, ν
R
jt and ν

I
ijt in the actual decisions are assumed to follow unit-variance
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Gaussian white noise processes that are: (i) independent of all other stochastic processes

in the economy, (ii) household-specific, and (iii) independent of each other. The operator

I measures the amount of information that the household’s actual decisions contain about

the household’s optimal decisions under perfect information.

In equations (112)-(114), we assume that the household chooses a consumption vector

and a real wage rate. The household’s real bond holdings then follow from equation (108),

which follows from the flow budget constraint (69).

Finally, we assume that, in period −1, the economy is in the non-stochastic steady state

and all households know that the economy is in the non-stochastic steady state.

When we solve the problem (106)-(115) numerically, we turn this infinite-dimensional

problem into a finite-dimensional problem by parameterizing each infinite-order lag polyno-

mial B1 (L), B2 (L), C1 (L) and C2 (L) as a lag-polynomial of an ARMA(p,q) process where

p and q are finite.

9.2 Benchmark parameter values and solution

We assume the same parameter values as in the benchmark economy in Section 8.3. We

have to choose values for three additional parameters: ωB, ωW and the household’s marginal

value of information flow. We set ωB = 4 and ωW = 0.95. We set the household’s marginal

value of information flow equal to 0.1 percent of the household’s steady state composite

consumption. We obtain this marginal value of information flow by setting the marginal

cost of information flow in objective (106) to μ = (0.001)Cj .

We begin with the following experiment in order to get a first idea of how rational inat-

tention by households affects consumption behavior. We study the optimal allocation of

attention by an individual household assuming that decision-makers in firms have limited

attention and all other households have perfect information, i.e. we study the optimal allo-

cation of attention by an individual household at the fixed point derived in Section 8. The

optimal allocation of attention by the household has the following features. The household

allocates 0.31 bits of information flow to tracking aggregate technology and 0.12 bits of

information flow to tracking monetary policy. The expected per-period loss in utility due

to imperfect tracking of aggregate technology equals 0.02 percent of the household’s steady
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state composite consumption, and the expected per-period loss in utility due to imperfect

tracking of monetary policy also equals 0.02 percent of the household’s steady state com-

posite consumption. Figure 6 shows the impulse response of composite consumption by

the individual household to a monetary policy shock (upper panel) and to an aggregate

technology shock (lower panel). In each panel, the green line with circles is the impulse

response under perfect information, while the black line with diamonds is the impulse re-

sponse under limited attention. We would like to point out four results. First, there are

sizeable differences between the impulse responses of consumption under perfect informa-

tion and the impulse responses of consumption under rational inattention, despite the fact

that the utility loss from deviations from the perfect information behavior is very small

and the marginal value of information flow is very low. Second, the impulse response of

consumption to a monetary policy shock under rational inattention is hump-shaped, while

the impulse response under perfect information is monotonic. Third, consumption under

rational inattention differs from consumption under perfect information, but in the long

run the difference between consumption under rational inattention and consumption un-

der perfect information goes to zero. Similarly, we find that bond holdings under rational

inattention differ from bond holdings under perfect information, but in the long run the

difference between bond holdings under rational inattention and bond holdings under per-

fect information goes to zero. Fourth, the impulse responses of consumption under rational

inattention look similar to the impulse responses of consumption in a model with habit

formation.

Next, we solve for the fixed point when decision-makers in firms and all households have

limited attention. When we add rational inattention by households, the decision-maker

in a firm allocates 1 bit of information flow to tracking aggregate technology and 0.3 bits

of information flow to tracking monetary policy. Less attention gets allocated to tracking

monetary policy compared with the case when households had perfect information. The

expected per-period loss in profits due to imperfect tracking of aggregate technology is ap-

proximately unaffected. The expected per-period loss in profits due to imperfect tracking

of monetary policy falls to 0.02 percent of the firm’s steady state output. Each house-

hold allocates 0.34 bits of information flow to tracking aggregate technology and 0.18 bits
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of information flow to tracking monetary policy. The expected per-period loss in utility

due to imperfect tracking of aggregate technology equals 0.03 percent of the household’s

steady state composite consumption. The expected per-period loss in utility due to imper-

fect tracking of monetary policy also equals 0.03 percent of the household’s steady state

composite consumption.

Figures 7 and 8 show equilibrium impulse responses of the price level, inflation, con-

sumption, and the nominal interest rate (black lines with asterisks). For comparison, the

figures also include impulse responses of the same variables at the fixed point when decision-

makers in firms have limited attention and households have perfect information (green lines

with circles). When we add rational inattention by households, the impulse responses to

a monetary policy shock change considerably, despite the fact that the utility loss from

sub-optimal behavior is very small and the marginal value of information flow is very low.

The response of the price level to a monetary policy shock becomes more dampened. The

response of inflation to a monetary policy shock becomes more persistent. The response

of consumption to a monetary policy shock becomes hump-shaped. See Figure 7. Adding

rational inattention by households has only a small effect on the impulse responses to an

aggregate technology shock. See Figure 8. One reason is that households allocate twice

more attention to tracking aggregate technology than to tracking monetary policy.

10 Conclusion

We have solved a dynamic stochastic general equilibrium model in which decision-makers

in firms and households have limited attention and decide how to allocate their attention.

In contrast to the existing literature on rational inattention, we solve a dynamic stochastic

general equilibrium model. In contrast to the existing literature on business cycle models

with imperfect information, the information structure is the outcome of an optimization

problem.

The impulse responses of prices under rational inattention by decision-makers in firms

have several properties of empirical impulse responses: (i) the price level responds slowly to

monetary policy shocks, (ii) the price level responds faster to aggregate technology shocks,
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and (iii) prices respond very fast to disaggregate shocks.14 These impulse responses imply

that profit losses due to deviations of the actual price from the profit-maximizing price are

an order of magnitude smaller than in the Calvo model that generates the same real effects.

The impulse response of consumption to a monetary policy shock under rational inat-

tention by households looks similar to the impulse response of consumption to a monetary

policy disturbance in a model with habit formation.

These results suggest that the slow responses of prices and consumption to monetary

policy shocks that are usually modeled with a Calvo price-setting friction and habit forma-

tion may have a different origin.

14For empirical evidence on the response of the price level to aggregate technology shocks, see Altig,

Christiano, Eichenbaum, and Linde (2004). For empirical evidence on the response of prices to disaggregate

shocks, see Boivin, Giannoni, and Mihov (2009) and Maćkowiak, Moench, and Wiederholt (2009).
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A Proof of Proposition 1

First, we introduce notation. Let xt denote the vector of all variables appearing in the real

profit function f that the firm can affect

x0t =
³
p̂it l̂i1t · · · l̂i(J−1)t

´
. (116)

Let zt denote the vector of all variables appearing in the real profit function f that the firm

takes as given

z0t =
³
at ait c1t · · · cJt w̃1t · · · w̃Jt

´
. (117)

Second, we compute a quadratic approximation to the expected discounted sum of profits

(39) at the non-stochastic steady state. Let f̃ denote the second-order Taylor approximation

to f at the non-stochastic steady state. We have

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#

= Ei,−1

" ∞X
t=0

βt
µ
f (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¶#
, (118)

where hx is the vector of first derivatives of f with respect to xt evaluated at the non-

stochastic steady state, hz is the vector of first derivatives of f with respect to zt evaluated

at the non-stochastic steady state, Hx is the matrix of second derivatives of f with respect

to xt evaluated at the non-stochastic steady state, Hz is the matrix of second derivatives

of f with respect to zt evaluated at the non-stochastic steady state, and Hxz is the matrix

of second derivatives of f with respect to xt and zt evaluated at the non-stochastic steady

state. Third, we rewrite equation (118) using condition (44). Let vt denote the following

vector

v0t =
³
x0t z0t 1

´
, (119)

and let vm,t denote the mth element of vt. Condition (44) implies that

∞X
t=0

βtEi,−1

¯̄̄̄
f (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¯̄̄̄
<∞. (120)
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It follows that one can rewrite equation (118) as

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#

=
∞X
t=0

βtEi,−1

∙
f (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¸
. (121)

See Rao (1973), p. 111. Condition (44) also implies that the infinite sum on the right-hand

side of equation (121) converges to an element in R. Fourth, we define the vector x∗t . In

each period t ≥ 0, the vector x∗t is defined by

hx +Hxx
∗
t +Hxzzt = 0. (122)

We will show below that Hx is an invertible matrix. Therefore, one can write the last

equation as

x∗t = −H−1
x hx −H−1

x Hxzzt. (123)

Hence, x∗t is uniquely determined and the vector vt with xt = x∗t satisfies condition (44).

Fifth, equation (121) implies that

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#
−Ei,−1

" ∞X
t=0

βtf̃ (x∗t , zt)

#

=
∞X
t=0

βtEi,−1

∙
h0x (xt − x∗t ) +

1

2
x0tHxxt −

1

2
x∗0t Hxx

∗
t + (xt − x∗t )

0Hxzzt

¸
. (124)

Using equation (122) to substitute for Hxzzt in the last equation and rearranging yields

Ei,−1

" ∞X
t=0

βtf̃ (xt, zt)

#
−Ei,−1

" ∞X
t=0

βtf̃ (x∗t , zt)

#

=
∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0Hx (xt − x∗t )

¸
. (125)

Sixth, we compute the vector of first derivatives and the matrices of second derivatives

appearing in equations (123) and (125). We obtain

hx = 0, (126)
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Hx = −C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑ
α

¡
1 + 1−α

α ϑ
¢

0 · · · · · · 0

0 2
ηJ

1
ηJ · · · 1

ηJ
... 1

ηJ

. . . . . .
...

...
...

. . . . . . 1
ηJ

0 1
ηJ . . . 1

ηJ
2
ηJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (127)

and

Hxz = C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϑ
α
1
α −ϑ

α
1
α

ϑ
α
1−α
α

1
J · · · ϑ

α
1−α
α

1
J

ϑ
α
1
J · · · · · · ϑ

α
1
J

ϑ
α
1
J

0 0 0 · · · 0 − 1J 0 · · · 0 1
J

...
...

...
...

... 0
. . . . . .

...
...

...
...

...
...

...
...

. . . . . . 0
...

0 0 0 · · · 0 0 · · · 0 − 1J
1
J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(128)

where we used equation (36) in equations (127)-(128). Seventh, substituting equations

(126)-(128) into equation (122) yields the following system of J equations:

p̂∗it =
1−α
α

1 + 1−α
α ϑ

⎛⎝ 1
J

JX
j=1

cjt

⎞⎠+ 1

1 + 1−α
α ϑ

⎛⎝ 1
J

JX
j=1

w̃jt

⎞⎠− 1
α

1 + 1−α
α ϑ

(at + ait) , (129)

and

∀j 6= J : l̂∗ijt +
J−1X
k=1

l̂∗ikt = −η (w̃jt − w̃Jt) . (130)

Finally, we rewrite equation (130). Summing equation (130) over all j 6= J yields

J−1X
j=1

l̂∗ijt = −η
1

J

JX
j=1

w̃jt + ηw̃Jt. (131)

Substituting the last equation back into equation (130) yields

∀j 6= J : l̂∗ijt = −η

⎛⎝w̃jt −
1

J

JX
j=1

w̃jt

⎞⎠ . (132)

Collecting equations (125), (127), (129) and (132), we arrive at Proposition 1.
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B Proof of Proposition 2

First, we introduce notation. In each period t ≥ 0, let xt denote the vector of all variables

appearing in the period utility function (55) that the household can affect in period t

x0t =
³
b̃jt w̃jt ĉ1jt · · · ĉI−1jt

´
, (133)

and, in each period t ≥ 0, let zt denote the vector of all variables appearing in the period

utility function (55) that the household takes as given

z0t =
³
rt−1 πt w̃t lt d̃t t̃t p̂1t · · · p̂It

´
. (134)

There is one variable appearing in the period utility function (55) that is neither an element

of xt nor an element of zt: the predetermined variable b̃jt−1. For ease of exposition, we define

the (1 + I)-dimensional column vector x−1 by

x0−1 =
³
b̃j,−1 0 · · · 0

´
, (135)

because then, in each period t ≥ 0, the predetermined variable b̃jt−1 is an element of xt−1.

Let g denote the functional that is obtained by multiplying the period utility function

(55) by βt and summing over all t from zero to infinity. Let g̃ denote the second-order

Taylor approximation to g at the non-stochastic steady state. Finally, let Ej,−1 denote the

expectation operator conditioned on information of household j in period −1. Second, we

compute a log-quadratic approximation to the expected discounted sum of period utility

around the non-stochastic steady state. We obtain

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]

= Ej,−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g (0, 0, 0, 0, 0, 0, 0, . . .)

+
∞X
t=0

βt

⎛⎜⎜⎜⎜⎜⎜⎝
h0xxt + h0zzt

+1
2x
0
tHx,−1xt−1 +

1
2x
0
tHx,0xt +

1
2x
0
tHx,1xt+1

+1
2x
0
tHxz,0zt +

1
2x
0
tHxz,1zt+1

+1
2z
0
tHz,0zt +

1
2z
0
tHzx,−1xt−1 +

1
2z
0
tHzx,0xt

⎞⎟⎟⎟⎟⎟⎟⎠
+β−1

¡
h0−1x−1 +

1
2x
0
−1H−1x−1 +

1
2x
0
−1Hx,1x0 +

1
2x
0
−1Hxz,1z0

¢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (136)

where
¡
βthx

¢
is the vector of first derivatives of g with respect to xt evaluated at the

non-stochastic steady state,
¡
βthz

¢
is the vector of first derivatives of g with respect to zt
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evaluated at the non-stochastic steady state,
¡
βtHx,τ

¢
is the matrix of second derivatives

of g with respect to xt and xt+τ evaluated at the non-stochastic steady state,
¡
βtHz,τ

¢
is

the matrix of second derivatives of g with respect to zt and zt+τ evaluated at the non-

stochastic steady state,
¡
βtHxz,τ

¢
is the matrix of second derivatives of g with respect to

xt and zt+τ evaluated at the non-stochastic steady state, and
¡
βtHzx,τ

¢
is the matrix of

second derivatives of g with respect to zt and xt+τ evaluated at the non-stochastic steady

state. Finally,
¡
β−1h−1

¢
is a (1 + I)-dimensional column vector whose first element equals

the first derivative of g with respect to b̃j,−1 evaluated at the non-stochastic steady state

and
¡
β−1H−1

¢
is a (1 + I) × (1 + I) matrix whose upper left element equals the second

derivative of g with respect to b̃j,−1 evaluated at the non-stochastic steady state. Note that

only certain quadratic terms appear on the right-hand side of equation (136) because: (i)

for all t ≥ 0, the vector of first derivatives of g with respect to xt depends only on elements

of xt−1, xt, xt+1, zt and zt+1, (ii) for all t ≥ 0, the vector of first derivatives of g with respect

to zt depends only on elements of zt, xt−1 and xt, and (iii) the first derivative of g with

respect to b̃j,−1 depends only on elements of x−1, x0 and z0. Furthermore, note that, when

we write the vector of first derivatives of g with respect to xt evaluated at the non-stochastic

steady state as
¡
βthx

¢
, we exploit the fact that this vector of first derivatives depends on t

only through the multiplicative term βt. Third, we rewrite equation (136) using conditions

(60)-(62). For all t ≥ 0, let vt denote the following vector

v0t =
³
x0t z0t 1

´
. (137)

For t = −1, let vt denote a (8 + 2I)-dimensional column vector whose first element equals

b̃j,−1 and all other elements equal zero. Let vm,t denote the mth element of vt. Condition

(62) implies that, for all m and n and for τ = 0, 1,

∞X
t=0

βtEj,−1 |vm,tvn,t+τ | <∞. (138)

Condition (61) implies that condition (138) also holds for τ = −1. It follows that, for all m

and n and for τ = 0, 1,−1,

Ej,−1

" ∞X
t=0

βtvm,tvn,t+τ

#
=

∞X
t=0

βtEj,−1 [vm,tvn,t+τ ] . (139)
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See Rao (1973), p. 111. Furthermore, conditions (61)-(62) imply that the infinite sum

on the right-hand side of equation (139) converges to an element in R. Thus, conditions

(61)-(62) imply that one can rewrite equation (136) as

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]

= g (0, 0, 0, 0, 0, 0, 0, . . .) +
∞X
t=0

βtEj,−1
£
h0xxt

¤
+

∞X
t=0

βtEj,−1
£
h0zzt

¤
+

∞X
t=0

βtEj,−1

∙
1

2
x0tHx,−1xt−1

¸
+

∞X
t=0

βtEj,−1

∙
1

2
x0tHx,0xt

¸

+
∞X
t=0

βtEj,−1

∙
1

2
x0tHx,1xt+1

¸
+

∞X
t=0

βtEj,−1

∙
1

2
x0tHxz,0zt

¸
+

∞X
t=0

βtEj,−1

∙
1

2
x0tHxz,1zt+1

¸

+
∞X
t=0

βtEj,−1

∙
1

2
z0tHz,0zt

¸
+

∞X
t=0

βtEj,−1

∙
1

2
z0tHzx,−1xt−1

¸
+

∞X
t=0

βtEj,−1

∙
1

2
z0tHzx,0xt

¸
+β−1Ej,−1

∙
h0−1x−1 +

1

2
x0−1H−1x−1 +

1

2
x0−1Hx,1x0 +

1

2
x0−1Hxz,1z0

¸
, (140)

and that each infinite sum on the right-hand side of equation (140) converges to an element

in R. In addition, conditions (60)-(61) ensure that the term in the last line on the right-

hand side of equation (140) is finite. Finally, using Hxz,0 = H 0
zx,0, Hxz,1 = βH 0

zx,−1 and

Hx,1 = βH 0
x,−1 one can rewrite equation (140) as

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]

= g (0, 0, 0, 0, 0, 0, 0, . . .) +
∞X
t=0

βtEj,−1
£
h0xxt

¤
+

∞X
t=0

βtEj,−1
£
h0zzt

¤
+

∞X
t=0

βtEj,−1

∙
1

2
x0tHx,0xt

¸
+

∞X
t=0

βtEj,−1
£
x0tHx,1xt+1

¤
+

∞X
t=0

βtEj,−1
£
x0tHxz,0zt

¤
+

∞X
t=0

βtEj,−1
£
x0tHxz,1zt+1

¤
+

∞X
t=0

βtEj,−1

∙
1

2
z0tHz,0zt

¸
+β−1Ej,−1

∙
h0−1x−1 +

1

2
x0−1H−1x−1 + x0−1Hx,1x0 + x0−1Hxz,1z0

¸
. (141)

Fourth, we define the process {x∗t }. Let Et denote the expectation operator conditioned on

the entire history of the economy up to and including period t. The process {x∗t } is defined

by the following three requirements: (i) x∗−1 is given by equation (135), (ii) in each period

t ≥ 0, x∗t satisfies

Et

£
hx +Hx,−1x

∗
t−1 +Hx,0x

∗
t +Hx,1x

∗
t+1 +Hxz,0zt +Hxz,1zt+1

¤
= 0, (142)
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and (iii) the vector vt with xt = x∗t satisfies conditions (60)-(62). Fifth, we derive a result

that we will use below. Multiplying equation (142) by (xt − x∗t )
0 and using the fact that

Et is the expectation operator conditioned on the entire history of the economy up to and

including period t yields

Et

£
(xt − x∗t )

0 ¡hx +Hx,−1x
∗
t−1 +Hx,0x

∗
t +Hx,1x

∗
t+1 +Hxz,0zt +Hxz,1zt+1

¢¤
= 0. (143)

Taking the expectation conditioned on information of household j in period t = −1 and

using the law of iterated expectations yields

Ej,−1
£
(xt − x∗t )

0 ¡hx +Hx,−1x
∗
t−1 +Hx,0x

∗
t +Hx,1x

∗
t+1 +Hxz,0zt +Hxz,1zt+1

¢¤
= 0. (144)

Rearranging the last equation yields

Ej,−1
£
(xt − x∗t )

0 (hx +Hxz,0zt +Hxz,1zt+1)
¤

= −Ej,−1
£
(xt − x∗t )

0 ¡Hx,−1x
∗
t−1 +Hx,0x

∗
t +Hx,1x

∗
t+1

¢¤
. (145)

Sixth, we derive another result that we will use below. By the Cauchy-Schwarz inequality,

for each period t ≥ 0, for τ = 0, 1,−1 and for all m and n,

¡
Ej,−1

£
xm,tx

∗
n,t+τ

¤¢2 ≤ Ej,−1
£
x2m,t

¤
Ej,−1

£
x∗2n,t+τ

¤
. (146)

Conditions (60) and (62) and the definition of the process {x∗t } therefore imply that there

exist two constants δ < (1/β) and A ∈ R such that, for each period t ≥ 0, for τ = 0, 1,−1

and for all m and n, ¯̄
Ej,−1

£
xm,tx

∗
n,t+τ

¤¯̄
< δtA. (147)

It follows that
½XT

t=0
βtEj,−1

£
xm,tx

∗
n,t+τ

¤¾∞
T=0

is a Cauchy sequence in R, implying thatX∞

t=0
βtEj,−1

£
xm,tx

∗
n,t+τ

¤
converges to an element in R. Seventh, it follows from equation
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(141) that

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]−Ej,−1
£
g̃
¡
x∗−1, x

∗
0, z0, x

∗
1, z1, x

∗
2, z2, . . .

¢¤
=

∞X
t=0

βtEj,−1

∙
1

2
x0tHx,0xt + x0tHx,1xt+1 −

1

2
x∗0t Hx,0x

∗
t − x∗0t Hx,1x

∗
t+1

¸

+
∞X
t=0

βtEj,−1
£
(xt − x∗t )

0 (hx +Hxz,0zt +Hxz,1zt+1)
¤

+β−1Ej,−1

∙
h0−1x−1 +

1

2
x0−1H−1x−1 + x0−1Hx,1x0 + x0−1Hxz,1z0

¸
−β−1Ej,−1

∙
h0−1x

∗
−1 +

1

2
x∗0−1H−1x

∗
−1 + x∗0−1Hx,1x

∗
0 + x∗0−1Hxz,1z0

¸
. (148)

Substituting x∗−1 = x−1 and equation (145) into equation (148) yields

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]−Ej,−1
£
g̃
¡
x∗−1, x

∗
0, z0, x

∗
1, z1, x

∗
2, z2, . . .

¢¤
=

∞X
t=0

βtEj,−1

∙
1

2
x0tHx,0xt + x0tHx,1xt+1 −

1

2
x∗0t Hx,0x

∗
t − x∗0t Hx,1x

∗
t+1

¸

−
∞X
t=0

βtEj,−1
£
(xt − x∗t )

0 ¡Hx,−1x
∗
t−1 +Hx,0x

∗
t +Hx,1x

∗
t+1

¢¤
+β−1Ej,−1

£
x0−1Hx,1 (x0 − x∗0)

¤
.

Finally, rearranging the right-hand side of the last equation using that (i)
X∞

t=0
βtEj,−1

£
x0tHx,τx

∗
t+τ

¤
converges to an element in R for τ = 0, 1,−1, (ii) Hx,1 = βH 0

x,−1, and (iii) x
∗
−1 = x−1 yields

Ej,−1 [g̃ (x−1, x0, z0, x1, z1, x2, z2, . . .)]−Ej,−1
£
g̃
¡
x∗−1, x

∗
0, z0, x

∗
1, z1, x

∗
2, z2, . . .

¢¤
=

∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0Hx,0 (xt − x∗t ) + (xt − x∗t )
0Hx,1

¡
xt+1 − x∗t+1

¢¸
. (149)

Eighth, we compute the vector of first derivatives and the matrices of second derivatives

appearing in equations (142) and (149). We obtain

h0x =
³
0 0 0 · · · 0

´
, (150)

Hx,0 = −C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B

³
1 + 1

β

´
γωBζωW 0 · · · 0

γωBζωW ζωW (γζωW + 1 + ζψ) 0 · · · 0

0 0 2
θI · · · 1

θI
...

...
...

. . .
...

0 0 1
θI · · · 2

θI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (151)
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Hx,1 = C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B γωBζωW 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...
. . .

...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (152)

Hx,−1 =
1

β
H 0
x,1, (153)

Hxz,0 = C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γω2B
β −γω2B

β
γωBζ

2ωW
ζ−1

γωBζωW
(ζ−1)

γωBζωW
β −γωBζωW

β ζ2ωW

³
γζωW
ζ−1 + ψ

´
ζωW

³
γζωW
ζ−1 + ψ

´
0 0 0 0
...

...
...

...

0 0 0 0

γωBωD −γωBωT ωB(1−γ)
I · · · ωB(1−γ)

I
ωB(1−γ)

I

γζωWωD −γζωWωT
ζωW (1−γ)

I · · · ζωW (1−γ)
I

ζωW (1−γ)
I

0 0 −1I · · · 0 1
I

...
...

...
. . .

...
...

0 0 0 · · · −1I
1
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (154)

Hxz,1 = C1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γω2B
β + ωB

γω2B
β − ωB −γωBζ

2ωW
ζ−1 −γωBζωW

(ζ−1)

0 0 0 0

0 0 0 0
...

...
...

...

0 0 0 0

−γωBωD γωBωT −ωB(1−γ)
I · · · −ωB(1−γ)

I −ωB(1−γ)
I

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (155)
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Ninth, substituting equations (150)-(155) into equation (142) yields the following system of

1 + I equations:

c∗jt = Et

"
−1
γ

Ã
rt − πt+1 −

1

I

IX
i=1

(p̂it+1 − p̂it)

!
+ c∗jt+1

#
, (156)

w̃∗jt =
γ

1 + ζψ
c∗jt +

ψ

1 + ζψ
(ζw̃t + lt) +

1

1 + ζψ

Ã
1

I

IX
i=1

p̂it

!
, (157)

and

∀i 6= I : ĉ∗ijt +
I−1X
k=1

ĉ∗kjt = −θ (p̂it − p̂It) , (158)

where the variable c∗jt is defined by

c∗jt =
ωB
β

³
rt−1 − πt + b̃∗jt−1

´
− ωB b̃

∗
jt +

ζ

ζ − 1ωW
£
(1− ζ) w̃∗jt + ζw̃t + lt

¤
+ωDd̃t − ωT t̃t −

Ã
1

I

IX
i=1

p̂it

!
. (159)

Finally, we rewrite equation (158). Summing equation (158) over all i 6= I yields

I−1X
i=1

ĉ∗ijt = −θ
Ã
1

I

IX
i=1

p̂it − p̂It

!
.

Substituting the last equation back into equation (158) yields

∀i 6= I : ĉ∗ijt = −θ
Ã
p̂it −

1

I

IX
i=1

p̂it

!
. (160)

Collecting equations (149), (151), (152), (156), (157), (159) and (160), we arrive at Propo-

sition 2.

C Solution of the model under perfect information

First, the price setting equation (47) and equations (71), (73), (76) and (12) imply that

0 =
1− α

α
ct + w̃t −

1

α
at.

The wage setting equation (67) and equations (71), (73) and (76) imply that

w̃t = γct + ψlt.
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The production function (79) and equations (70), (72), (73) and (12) imply that

yt = at + αlt.

The equation for aggregate output (70) and equations yit = cit, (77), (68), (71) and (73)

imply that

yt = ct.

Solving the last four equations for the endogenous variables yt, ct, lt and w̃t yields equations

(81)-(83). Furthermore, the consumption Euler equation (66) and equations (71) and (73)

imply that

ct = Et

∙
−1
γ
(rt − πt+1) + ct+1

¸
.

Substituting the solution for ct into the last equation and solving for the real interest rate

yields equation (84). Second, the equation for the optimal consumption mix (68) and

equation (73) imply equation (85). Note that combining equations (85), (71) and (77)

yields a demand function for good i that has the form (28)-(30) with ϑ = θ and ς = 1. The

price setting equation (47) and equations (71), (76), (81) and (83) and a price elasticity

of demand of ϑ = θ imply equation (86). Third, the equation for the optimal factor mix

(48) and equation (76) imply equation (87). Note that combining equations (87), (72) and

(78) yields a labor demand function that has the form (49)-(51) with ζ = η and ξ = 1.

Finally, when all households have the same initial bond holdings and the bond sequence for

each household is non-explosive (i.e. lims→∞Et

h
βs+1

³
b̃j,t+s+1 − b̃j,t+s

´i
= 0), equations

(66)-(69) have a unique solution for consumption that is identical for all households. The

wage setting equation (67) then implies that all households set the same wage. It follows

from equation (76) that wt = wjt, implying ŵjt = 0.
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Figure 1: Impulse responses, benchmark economy
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Figure 2: Impulse responses, benchmark economy
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Figure 3: Impulse response of an individual price to a firm-specific productivity shock
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Figure 4: Impulse responses, benchmark economy and the Calvo model
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Figure 5: Impulse responses, benchmark economy and the Calvo model
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Figure 6: Impulse responses, household problem
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Figure 7: Impulse responses, benchmark economy
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Figure 8: Impulse responses, benchmark economy




