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1 Introduction

National income accounting exercises conducted by Klenow and Rodriguez-Clare

(1997), Hall and Jones (1999) and Chari, Kehoe, and McGrattan (2007) unanimously

conclude that total factor productivity is of cardinal importance for both long-run

growth and business cycles, including economic depressions. Klenow and Rodriguez-

Clare, for example, find that at least 50% of the variation in output per worker in

a sample of over 40 countries is attributable to differences in TFP. There is less

agreement about the source of productivity differentials. Suggestions range widely

from differences in broadly defined social infrastructure advocated by Hall and Jones,

to technology adoption barriers proposed by Parente and Prescott (1999), to the

labor market frictions studied in Lagos (2006).

This paper is a theoretical investigation of how credit markets frictions limit cap-

ital mobility and slow down the movement of resources from temporarily less to

temporarily more productive sectors. We are pushed in this direction by much ev-

idence connecting poor economic performance with capital misallocation. Chari et

al. (2007) find that financial frictions, defined as wedges that distort the allocation

of intermediate goods among firms, account for 60-80% of the US output drop in

both the 1929-1933 depression and the 1979-1982 recession. Eisfeldt and Rampini

(2006) point out that capital reallocation among U.S. firms–defined as sales and ac-

quisition of property, plant and equipment–makes up nearly 25% of total investment

on average. Finally, there are strong indications that macroeconomic volatility is

connected with the dispersion of both sectoral productivities and sectoral rates of

return on capital.1

Lilien (1982) was an early advocate of the importance of sectoral shocks for overall

economic activity in an empirical study that connected the aggregate unemployment

1 See Eisfeldt and Rampini (2006) on the countercyclical dispersion of capital productivity

among firms and on the sectoral dispersion of TFP; Loungani, Rush, and Tave (1990) and Brainard

and Cutler (1993) on the countercyclical dispersion of stock market returns across sectors; Diebold

and Yilmaz (2008) on the correlation between the volatilities of stock market returns and GDP

growth in a sample of 40 countries.
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rate with the cross-sectional dispersion of sectoral employment. More recently, Phe-

lan and Trejos (2000) argue in a model with labor–search frictions that sectoral

reallocations are quantitatively important for business cycle dynamics. This paper

puts Lilien’s idea to work in a growth model with financial frictions and looks at

the consequences for productivity and capital accumulation. It is this emphasis on

sectoral shocks and productivity which separate our work from earlier literature on

financial frictions as a cause of macroeconomic volatility.2

We describe sectoral shifts as idiosyncratic technology shocks in a class of sim-

ple economies populated by identical infinitely-lived households and consisting of

finitely many sectors that produce the same consumption good. Capital is the only

input in production which means that we focus on the misallocation of investment

and ignore potentially larger problems stemming from imperfectly functioning la-

bor markets.Sectoral technologies are assumed to be AK with random idiosyncratic

productivities and a constant aggregate production possibility frontier, that is, a

fixed value for the maximal idiosyncratic productivity. We ignore declining and

expanding industries, assuming instead that all sectoral shocks are temporary and

reversible.

An ideal economy of this type without any financial frictions would exploit its un-

changing aggregate production possiblities to the fullest by moving all physical

capital instantly to the most productive sector, and delivering to its population

a constantly growing stream of aggregate output and individual consumption. In

what follows, surplus capital from less productive sectors is in the form of secured

collateral loans, as suggested by Kiyotaki and Moore (1997) and also in the form

unsecured reputational loans, as in Bulow and Rogoff (1989). Both types of loans

require endogenous debt limits which rule out default when asset markets are com-

plete. These limits slow down capital reallocation and prevent rates of return on

capital from equality across all sectors.

2Prominent examples are Kiyotaki and Moore (1997) on collateral constraints as a propagator

and amplifier of aggregate technology shock; Matsuyama (2007) on the interplay between borrower

net wealth, debt limit and investment; and Aghion, Banerjee, and Piketty (1999) on how restricted

participation in credit markets contributes to macroeconomic volatility.
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The rest of the paper is organized as follows. Section 2 describes a class of economies

with financial frictions; section 3 gives a preview of results by explaining what

happens in the worst-case scenario of financial autarky or zero capital mobility.

Stationary Markov equilibria are defined in Section 4 and described in Section 5 for

economies with secured loans only. Section 6 looks at the dynamics of lending when

both secured and unsecured loans are traded. Section 7 presents some numerical

examples connecting aggregate with sectoral variables. Extensions are discussed in

Section 8 and conclusions are summarized in Section 9.

2 The environment

Consider a growth model in discrete time t = 0, 1, 2, . . . with a finite number of

agent types (sectors) indexed i ∈ I = {1, 2, . . . , I} and productivity states s ∈ S =

{1, 2, . . . , S}. Each sector comprises a continuum of agents with equal size. All

agents produce the same good which is available for consumption and investment

purposes. Their common preferences over consumption streams are represented by

an additively separable expected utility function

E0(1 − β)
∞

∑

t=0

βt ln[c(st)] ,

where st = (st, . . . , s0) ∈ S1+t is the state history in period t, and the initial state s0

is given. The productivity state follows a Markov process with transition probability

from s to s+ equal to π(s+|s). In state s an agent of type i can convert capital into

gross output (“resources”) with linear technology y = Ai
sk. Resources y include

current output and undepreciated capital which can be costlessly converted into

the single consumption/investment good in the next period. In particular, capital

investment is not sector–specific. The simplification that all agents produce the same

good isolates the impact of sectoral shocks on capital reallocation while abstracting

from relative price effects.

We assume that the economy’s production possibility frontier is constant at A ≡

maxi∈I Ai
s for all s ∈ S. Though we do not need to impose that agent types are
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in some way symmetric, it simplifies the exposition to assume that every agent has

access to the technological frontier sometimes and that there is always a unique most

productive sector:

(A1) Every agent operates the technological frontier sometimes; that is, for each i

there exists s such that Ai
s = A.

(A2) Not more than one agent type operates the technological frontier; that is, for

each s there is exactly one i such that Ai
s = A.

(A3) No state is trivial; that is, every s ∈ S is in the support of the unique invariant

state distribution.

Throughout this paper we focus on stationary Markov equilibria where all endoge-

nous variables depend only on the current state vector of the economy, denoted

σ ≡ (x, s) ∈ Σ ≡ [0, 1]I × S, where x = (x1, . . . , xI) is the distribution of wealth

shares across agent types.

Each period, the less productive agents lend out capital to the more productive

agents at gross interest rate R(σ) in a credit market. An exogenous fraction λ ∈ [0, 1]

of each agent’s resources is pledgeable collateral which can be seized by creditors

in the event of default. The value of λ is common for all producers; it depends

on technological factors like the collaterizability of income and wealth, as well as

on creditor rights and other aspects of economic institutions.3 Timing within each

period is as follows. First the productivity state is realized; second the credit market

opens and agents decide about consumption, investment, borrowing and lending;

and third, agents produce, borrowers redeem their debt, and everyone carries their

wealth into the next period.

Borrowers may choose to default at the end of the period. Any agent who does so

loses the collateral share of his resources to creditors and is banned from any bor-

rowing in excess of collateral in all future periods. A defaulting agent is still allowed

3If resources are split into output and undepreciated capital according to y = Ak = Ãk+(1−δ)k,

a more general expression for collateral would be λ0Ãk + λ1(1 − δ)k. Our simplifying assumption

is that collaterizability of output and capital is the same, λ0 = λ1.
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to lend, however, and also to borrow up to the discounted value of his collateralized

assets. Since no uncertainty is resolved during debt contracts (that is, borrowing

and debt redemption happen within the same period), there exist endogenous debt

limits similar to those defined in the pure–exchange model of Alvarez and Jermann

(2000). These limits are the highest values of debt that will prevent default. In

the absence of collateral (λ = 0), our enforcement mechanism resembles the one

discussed by Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2008) who as-

sume that defaulters are denied all credit but are still allowed to accumulate assets.

With λ > 0, borrowing against collateral is always feasible and sometimes, but not

always, credit limits go beyond an agent’s collateral capacity and sustain a higher

flow of credit. Borrowing above one’s collateral is a reputational loan founded on a

producer’s desire to maintain a record of solvency and of continued access to future

reputational loans.

We denote the endogenous constraint on borrower i’s debt–equity ratio by θi(σ).

Whenever the cost of capital R(σ) is strictly below borrower i’s marginal product

Ai
s, this producer will borrow up to his debt limit, and the leveraged equity return

will be R̃i(σ) = Ai
s + θi(σ)[Ai

s −R(σ)]. On the other hand, if agent i’s productivity

is below or equal to the capital yield R(σ), this agent’s equity return is simply

R̃i(σ) = R(σ). A defaulting agent, who can only borrow against collateral, faces

a maximal debt–equity ratio θi
c(σ) = λAi

s/[R(σ) − λAi
s], and his equity return is

R̃i
c(σ) = Ai

sR(σ)(1−λ)/[R(σ)−λAi
s] when R(σ) < Ai

s, and R̃i
c(σ) = R(σ) otherwise.

It is worth noting that intra–period credit is the only traded asset in this economy.

If agents were to trade insurance or contingent claims against next period’s produc-

tivity state, these security markets would not open. This immediately follows from

the observation that every agent’s marginal utility of wealth ω is proportional to

1/ω, regardless of the agent’s productivity state, so all agents’ security demands are

proportional to their wealth. That in turn implies that trade of insurance securities

must be zero in equilibrium. We also do not consider a stock market distinct from

the loan market. In particular, all shares in other agents’ technologies are equivalent

to loans and are subject to default.

The assumption of logarithmic utility implies that all agents consume a fraction 1−β
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of wealth, and that the expected utility of a productive borrower with end–of–period

wealth ω can be expressed in the form ln(ω) + V i(σ), where V i(σ) is end–of–period

utility of agent i with unit wealth when the current state is σ = (x, s).4 Similarly,

if agent i had defaulted in this or in some earlier period, his utility is expressed as

ln(ω) + V i
c (σ) if end–of–period wealth is ω and V i

c (σ) denotes end–of–period utility

of a unit–wealth agent of type i who has only access to collateralized loans.

3 An Example: Financial Autarky

As a first step to understand the importance of financial markets for aggregate factor

productivity, we describe equilibrium in an autarkic economy without collateral in

which capital is completely immobile. We suppose in particular that this economy

has two sectors (i = 1, 2) and two states (s = 1, 2) with transition probabilities

π(s+|s) =

{

π ∈ [0, 1] if s+ = s ,

1 − π if s+ 6= s .

Sectoral productivities are

Ai
s =

{

A > 0 if i = s ,

zA if i 6= s .

with 0 < z < 1. We denote by x ∈ [0, 1] the wealth share of the productive sector,

by (Y, K) the vector of current aggregate output and capital, and by (Y+, K+) the

future value of that vector.

Aggregate output and future capital satisfy

Y = AK[x + z(1 − x)], K+ = βY. (1)

The future value of the wealth share x+ equals the ratio of the efficient producer’s

capital tomorrow divided by K+. This yields the following stochastic law of motion

4These assertions follow from the observation that agent i’s flow budget constraint takes the

form ωi = R̃i(σ)(ωi

− − ci) where ci is consumption and ωi (ωi

−) is agent i’s wealth at the end of

the current period (the previous period, respectively).

6



for the wealth share

x+ =

{

f(x) = x/[x + z(1 − x)] w. prob. π ,

1 − f(x) = z(1 − x)/[x + z(1 − x)] w. prob. 1 − π .
(2)

Equation (2) is graphed in Figure 1 (c) as the special case λ = 0. From equation

(1), we conclude that aggregate factor productivity:

• includes a correction x + z(1 − x) < 1 due to financial frictions;

• is lower when sectoral productivities are more dispersed, that is, for small

values of z; and

• fluctuates in response to changes in the distribution of wealth between po-

tential “borrowers” and “lenders”, that is, between more productive and less

productive sectors.

It is easy to check that the aggregate growth rate

Y+/Y = βA[z + (1 − z)x+]

fluctuates when the wealth distribution changes, even though the aggregate produc-

tion possibilities frontier is stationary. In a cross section of economies indexed on

the value of z, the growth rate would be positively correlated with z and, therefore,

negatively correlated with the dispersion of sectoral TFP’s.

We return now to economies with active asset markets.

4 Stationary Markov equilibrium

A stationary Markov equilibrium is a list of functions

[

θi(σ), R(σ), R̃i(σ), R̃i
c(σ), vi(σ), X i(σ)

]

i∈I,σ∈Σ
. (3)

The first four objects on that list are respectively the debt–equity limits on solvent

agents, the cost of capital, and the equity returns for solvent and bankrupt agents.
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The functions vi(σ) = V i(σ) − V i
c (σ) define the “penalty of default” for agent i,

that is, the difference between the continuation utilities from solvency and default.

Finally, the maps xi
+ = X i(σ) : Σ → [0, 1] connect this period’s state vector (x, s)

with next period’s wealth share for every agent i. Let X = (X i)i∈I : Σ → [0, 1]I be

the collection of these maps.

In equilibrium, debt limits are the largest values that will deter default when any

borrower with equity E is indifferent between defaulting and not defaulting:

ln
[

R̃i(σ)E
]

+ V i(σ) = ln
[

(1 − λ)Ai
s[1 + θi(σ)]E

]

+ V i
c (σ) .

Here, the right–hand side is expected utility of the defaulting agent i who leaves

the default period with his unpledged wealth (1 − λ)Ai
s[1 + θi(σ)]E. This equality

is conveniently equivalent to

θi(σ) =
(evi(σ) − 1 + λ)Ai

s

(1 − λ)Ai
s − evi(σ)[Ai

s − R(σ)]
. (4)

Equation (4) shows that the default–deterring debt–equity ratio is increasing in

the penalty of default vi(σ) and in the collateral share λ. Debt–equity ratios are

also decreasing in the interest rate, and equation (4) implies a lower bound on the

equilibrium interest rate: the debt-equity ratio of borrower i tends to infinity when

R(σ) approaches Ai
s[1−(1−λ)e−vi(σ)] from above. Intuitively, when the interest rate

is low, some borrowers never opt for default. Thus their demand for loans becomes

infinite which cannot be compatible with credit–market equilibrium.

Equation (4) shows that θi(σ) is larger than the collateral debt limit θi
c(σ) =

λAi
s/[R(σ) − λAi

s] for all positive default penalties vi(σ) > 0; it reduces to θi
c(σ)

if vi(σ) = 0. In the following, we refer to an equilibrium with vi(σ) = 0 for all i ∈ I

and σ ∈ Σ as one of collateral borrowing; an equilibrium where vi(σ) > 0 for at least

some i ∈ I and σ ∈ Σ has reputational borrowing: here debt–equity limits are based

on collateral and reputation.

With aggregate capital K, agent i’s equity is xiK. The supply of credit comes

from all agents with productivity Ai
s ≤ R(σ), and because agents with Ai

s = R(σ)

are indifferent between lending and borrowing at market rate R(σ), the aggregate
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supply of credit (per unit of aggregate capital) is a step function, expressed as the

correspondence

CS(σ) =

[

∑

i:Ai
s<R(σ)

xi ,
∑

i:Ai
s≤R(σ)

xi

]

.

Similarly, the demand for credit per unit of capital is the correspondence

CD(σ) =

[

∑

i:Ai
s>R(σ)

θi(σ)xi ,
∑

i:Ai
s≥R(σ)

θi(σ)xi

]

,

and the credit market is in equilibrium if

CS(σ) ∩ CD(σ) 6= ∅ . (5)

As we saw earlier, for any interest yield R(σ), the equity return of agent i is

R̃i(σ) = max
{

Ai
s + θi(σ)

[

Ai
s − R(σ)

]

, R(σ)
}

, (6)

while the equity return of an agent who is permitted to borrow only against collateral

is

R̃i
c(σ) = max

{

Ai
sR(σ)(1 − λ)
R(σ) − λAi

s

, R(σ)
}

. (7)

Agent i’s wealth share changes from xi to

xi
+ = X i(σ) =

R̃i(σ)xi

∑

j∈I

R̃j(σ)xj
, σ = (x1, . . . , xI , s) . (8)

To understand this expression, suppose that total wealth is one unit today; then

agent i’s wealth next period is β times the numerator of (8) while total wealth is β

times the denominator of (8).

Expected utilities satisfy recursive equations

V i(x, s) = (1−β) ln(1−β)+β
∑

s+∈S

π(s+|s)

{

ln
[

βR̃i[X(x, s), s+]
]

+V i
[

X(x, s), s+

]

}

.

(9)

Note again that V i denotes expected utility of solvent agent i with unit wealth. In

the first period, this agent consumes c = 1 − β, and so the first term on the right–

hand side is the utility of first–period consumption; the other terms are discounted
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future payoffs. To the next period, the distribution of wealth changes from x to

x+ = X(x, s) and the productivity state changes from s to s+ with probability

π(s+|s); the agent saves a fraction β of his unit wealth, ending the period with wealth

ω+ = βR̃i(x+, s+) and utility ln(ω+) + V i[x+, s+]. For an agent who has opted for

default in some earlier period, the recursive equation in V i
c is nearly identical to (9);

all that changes is that the equity returns R̃i are replaced by the defaulter’s lower

returns R̃i
c. By subtracting those equations from (9), we obtain recursive equations

in the default penalties vi(σ) = V i(σ) − V i
c (σ):

vi(x, s) = β
∑

s+∈S

π(s+|s)

{

ln
R̃i[X(x, s), s+]

R̃i
c[X(x, s), s+]

+ vi
[

X(x, s), s+

]

}

. (10)

Definition: A stationary Markov equilibrium is a list of functions specified in (3)

which satisfies equations (4)–(8) and (10) for all σ = (x, s) ∈ Σ and i ∈ I.

In a stationary Markov equilibrium, the state vector σ is also a sufficient statistic

for the growth rate that connects aggregate current resources Y with last period’s

resources Y−. In particular, current aggregate capital K equals saving βY−, and

current resources are the sum of resources across all agent types:

Y = K
∑

i∈I

xiR̃i(σ)

= βY−

{

R(σ) +
∑

i:Ai
s>R(σ)

[Ai
s − R(σ)]xi[1 + θi(σ)]

}

.

The growth factor is

Y
Y−

= β
{

R(σ) +
∑

i:Ai
s>R(σ)

[Ai
s − R(σ)]xi[1 + θi(σ)]

}

≤ βA .

This expression has an upper bound βA achieved when no capital is misallocated.

Before we analyze stationary Markov equilibria in detail for some special cases, we

state two general results. One of them says that an equilibrium with no reputational

borrowing always exists and in that equilibrium all borrowing is against collateral.

In particular,
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Proposition 1: There exists a unique equilibrium with collateral borrowing.

This result generalizes earlier findings by Bulow and Rogoff (1989) and Kehoe and

Levine (1993) who showed that financial autarky is an equilibrium in economies

where all borrowing is reputational. Indeed, it is easy to check that vi(σ) = 0

together with R̃i(σ) = R̃i
c(σ) and θi(σ) = θi

c(σ) satisfy all equilibrium equations

except market clearing for any given interest rate R(σ). Existence and uniqueness

of the market–clearing interest rate is proven in the appendix.

What is the intuition for the equilibrium with collateral borrowing? If there are

no reputational loans, there is no penalty of default, and therefore no borrower is

permitted to borrow in excess of collateral. And conversely, when debt–equity limits

just reflect collateral constraints, a good credit record is worthless because there is

no default penalty. Section 4 characterizes the collateral borrowing equilibrium

completely for a symmetric economy with two agent types and two states.

Our second result says that a first–best allocation can only be an equilibrium if

there is enough collateral. Specifically, λ ≥ (I − 1)/I is a necessary and sufficient

condition to support the first best with collateral borrowing at the symmetric initial

wealth distribution xi = 1/I, i ∈ I. Here returns are equalized, R̃i = A, and the

debt–equity ratio is large enough to shift all capital to the most productive sector

in every state.

Can the first best also be supported by reputational borrowing when λ < (I −

1)/I? Put differently, is there a first–best equilibrium where debt constraints exceeed

collateral constraints? In line with earlier results by Bulow and Rogoff (1989) and

Hellwig and Lorenzoni (2008), the answer to this question is no. Reputation by itself

or with insufficient collateral cannot support first–best allocations. These findings

are summed up in

Proposition 2: When λ ≥ (I−1)/I, the collateral–borrowing equilibrium gives rise

to a first best allocation for some initial distribution of wealth. Conversely, when

λ < (I −1)/I, no first best allocation can be an equilibrium with collateral borrowing

or with reputational borrowing.
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The inequality λ ≥ (I−1)/I is stringent, requiring collateral to be a large proportion

of available resources, that is, gross national product plus undepreciated capital. In

spite of Proposition 2, we will see in Section 5 that reputational borrowing can still

sometimes support production–efficient allocations, particularly in economies with

very patient agents and large productivity differences.

To explore equilibrium with binding constraints in more detail, we focus for the

remainder of this paper on the symmetric two–agent, two–state special case of the

general environment. In particular, Ai
s = A if i = s, and Ai

s = zA if i 6= s, for i ∈

{1, 2} and s ∈ {1, 2}, where z < 1 is a measure of the productivity differential. Both

types are equally likely to operate the frontier technology, where π is the probability

that any state s = 1, 2 does not change from one period to the next. In this

symmetric economy, stationary Markov equilibria are also symmetric. Therefore,

the only relevant state variable is the share of wealth owned by the borrowing agents

(short “borrower wealth”), to be denoted x ∈ [0, 1]. The wealth distribution is thus

(x, 1 − x) if s = 1 and (1 − x, x) if s = 2. Current rates of return and debt limits

depend on borrower wealth x alone, and the productivity state s matters only for

the transitional dynamics of borrower wealth.

5 Collateral borrowing

In the collateral borrowing equilibrium with zero default penalties vi(x, s) = 0 and

debt–equity ratio θ = λA/[R − λA], the market–clearing loan yield can be readily

obtained as

R(x) =















zA if x ≤ 1 − λ
z ,

λA
1 − x if x ∈ [1 − λ

z , 1 − λ] ,

A if x ≥ 1 − λ .

When borrower wealth is below 1−λ/z, credit demand is so low that the equilibrium

interest rate makes unproductive lenders indifferent between production and lend-

ing. The economy is production inefficient because it misallocates its capital stock.

When borrower wealth exceeds this threshold, all capital flows to the more produc-

tive agents and the economy becomes production efficient. For x < 1−λ, borrowers
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are still debt constrained and enjoy a higher equity yield than do lenders. Consump-

tion growth rates are higher for borrowers which makes the economy consumption

inefficient. Full efficiency in period t is attained only when borrower wealth ex-

ceeds 1 − λ. In what follows, we assume throughout that λ < z so that production

inefficiency remains a possibility.

The transitional dynamics of borrower wealth is described by two maps. Next

period’s borrower wealth is x+ = X0(x) when the productivity state is unaltered

and it is x+ = X1(x) = 1 − X0(x) when the productivity state changes. Using

the above expressions for R(x), θ(x) = λA/[R(x) − λA], and the borrowers’ equity

return R̃(x) = A + θ(x)[A − R(x)], we obtain

X0(x) =
R̃(x)x

R̃(x)x + R(x)(1 − x)
=



















(1 − λ)x
(1 − z)x + z − λ

, x ≤ 1 − λ
z ,

1 − λ , x ∈ [1 − λ
z , 1 − λ] ,

x , x ≥ 1 − λ .

Figure 1 shows the two maps X0 and X1 in three generic situations. It becomes

evident from these graphs that the stochastic dynamics of borrower wealth must

settle down on the bounded interval [λ, 1 − λ] or [1 − λ, λ] (depending on whether

λ ≤ 1/2 or λ ≥ 1/2. Moreover, the asymptotic dynamics must be a stochastic cycle

with finite support. The precise statement, which is proved in the Appendix, is

Proposition 3: In the equilibrium with collateral borrowing and for any π ∈ (0, 1)

and λ > 0, the dynamics of wealth xt enters a finite stochastic cycle (xn)N
n=1, with

probability one as t → ∞. The cycle has the following features.

(a) Economies with ample collateral λ ≥ 1/2 converge to a cycle with two states

x2 = 1 − x1 ∈ [1 − λ, λ]. Production is efficient, debt constraints do not bind,

and aggregate output growth and individual consumption growth are constant

at βA.

(b) Economies with medium collateral λ ∈ [z/(1 + z), 1/2) also converge to a cycle

with two states and x1 = λ < x2 = 1 − λ. Production is again efficient

and aggregate growth is constant at βA. However, individual consumption
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(wealth) growth rates are volatile and borrowers are constrained in a fraction

1 − π of periods. Specifically, agent i’s consumption growth in state st is βA

if st = st−1, βAλ/(1 − λ) if i 6= st 6= st−1, and βA(1 − λ)/λ if i = st 6= st−1.

(c) Economies with small collateral λ < z
1 + z converge to a cycle with generically

N = 2m states, with m ≥ 2. In 2m − 3 of these states, aggregate growth is

lower than βA. Cycles are typically asymmetric with booms lasting longer than

recessions.

Figure 1 illustrates the three possibilities stated in the proposition. In (a), the

typical first–best equilibrium is a cycle where borrower wealth fluctuates between

two states which means that every agent’s wealth share is constant. Any initial

wealth distribution must enter such a cycle with probability one in finitely many

periods. In (b), the stochastic cycle again has only two states, but now one of them

has constrained borrowers; no capital is misallocated and production is efficient in

all periods. And graph (c) shows an example of a cycle with six states, with no

misallocation of capital in three of them, and some misallocation in the other three.

The red lines indicate the possible transitions between these states.

6 Reputational borrowing

Equilibria with reputational borrowing are not easy to describe analytically in any

degree of generality. Nonetheless, it is possible to derive a few insightful results for

some special cases where the asymptotic wealth dynamics settles down to a finite

state space. One such case is the deterministic economy (π = 0), the other is an

economy permitting simple production–efficient stochastic cycles with two states.

We explore these simpler equilibria in this section.

The deterministic economy admits a steady state with binding constraints where

borrower wealth is stable at some x. The wealth share of either type thus periodically

alternates between x and 1− x. This is in stark contrast to the stochastic economy

where equilibria are typically cyclical and the only possible steady state is a first

14



Figure 1: Asymptotic cycles with collateral borrowing.

best outcome with unconstrained borrowers achievable only if λ ≥ 1/2. For λ < 1/2,

borrower wealth must fluctuate permanently in a stochastic economy.
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One obvious steady state in the deterministic model is the one with collateral bor-

rowing. Although Proposition 3 requires π > 0, it is straightforward to extend the

result to the deterministic case as follows. The deterministic economy has a unique

steady state x with collateral borrowing which is (i) first best when λ ≥ 1/2; (ii)

production efficient and consumption inefficient when z/(1+ z) ≤ λ < 1/2; and (iii)

production inefficient when λ < z/(1+ z). In Figure 1 these steady states are at the

intersection of the 45o line with the map X1(.).

For a deterministic economy with reputational borrowing, we prove the following

result in the Appendix.

Proposition 4: Let π = 0. Then there is a threshold value λ̂ ≤ z − β2

1 − β2 such that

(a) If β ≤ z, there is one steady state with collateral borrowing and no steady state

with reputational borrowing.

(b) If β > z and λ ∈ [λ̂,
β

1 + β
), there is a production–efficient steady state with

reputational borrowing which coexists with the steady state with collateral bor-

rowing.

(c) If β > z > β2 and λ ∈ (λ̂,
z − β2

1 − β2 ), there is a production–inefficient steady state

with reputational borrowing which coexists with the two other steady states of

(b).

To interpret these results, the inequality β ≤ z simply says that the gains from credit

market participation are not high enough to support an equilibrium with reputa-

tion borrowing. Part (a) extends the well–known result of Kehoe and Levine (1993)

that intertemporal financial autarky or, equivalently, pure collateral borrowing is

the only equilibrium when agents are too impatient or when income fluctuations are

too small. Conversely, says part (b), when β > z reputational borrowing is feasible

but now collateral may not exceed the threshold β/(1 + β). If the collateral value

is larger than that number, the gain from borrowing above collateral is too small

to prevent borrowers from defaulting. Put differently, collateral borrowing already
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supports efficient allocations with low leverage, so that extended credit limits add

very little value. Part (c) establishes a strong form of equilibrium multiplicity. The

production–inefficient steady state always co–exists with the socially more desirable

production–efficient equilibrium and with the collateral borrowing equilibrium which

is then also production inefficient. The explanation for equilibrium multiplicity is a

dynamic complementarity in the endogenous borrowing limits. Borrowers’ expecta-

tions of future credit market conditions affect their incentives to default today, and

this in turn takes an impact on their current borrowing limits. If future constraints

are tight, the payoff from solvency is modest; agents place a low value on the strat-

egy of participating in credit markets, and their default penalty is low. In this case,

current default–deterring debt limits must be low. Conversely, expectations of loose

constraints in the future make participation more valuable, lessen default incentives

and ease current constraints.

When agents are sufficiently patient, so that z ≤ β2, the assumptions in part (c)

are not valid. Then the deterministic economy has a unique steady state with rep-

utational borrowing, coexisting with the collateral–borrowing steady state. Figure

2 shows how steady–state loan yields vary with the collateral parameter λ when

z ≤ β2.

The deterministic economy also permits an analysis of the local dynamics around

the steady states. When there is only one steady state with reputational borrow-

ing, it is locally determinate, but the collateral borrowing steady state is locally

indeterminate.5

Proposition 5: Let z < β2 and λ < β/(1 + β).

(a) The steady state with collateral borrowing (θc, xc) is locally indeterminate. Par-

ticularly, there is a continuum of equilibria (θt, xt) such that θt → θc and xt

converges to a cycle with period two around xc.

(b) The steady state with reputational borrowing is locally determinate.

5In situations with two reputational borrowing steady states, the production–inefficient one

turns out to be indeterminate and the steady state with collateral borrowing becomes determinate.
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Figure 2: Steady state loan yields with collateral borrowing (Rc) and with reputa-

tional borrowing (R∗) when z < β2.

The stochastic economy cannot have a steady state unless it is the first best, and

cycles with reputational borrowing are too complex to describe analytically. Nu-

merically we find that the qualitative features of the transition maps for borrower

wealth are much like the ones shown in Figure 1, with the only difference that, unlike

the collateral cycles in Figure 1(c), reputational cycles do not have finite support.

However, there are still situations where the economy has a stochastic cycle of order

two which is production efficient, like the one shown in Figure 1(b). Paralleling

Proposition 4, what is necessary for such cycles is that z is small relative to β:

agents must be patient enough and their productivity must fluctuate sufficiently so

that exclusion from reputational borrowing is a severe enough punishment. In fact,

production–efficient cycles may even exist when there is no collateral at all. In the
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Appendix we derive necessary and sufficient conditions for the existence of this kind

of equilibrium, summarized as follows.

Proposition 6: A production–efficient cycle with reputational borrowing:

(a) Does not exist for any λ if z is large, that is, if

z ≥
β(1 − π)
1 − βπ

.

(b) Exists for intermediate λ and small z, that is, if

λ ∈
[

λ,
β(1 − π)

1 + β − 2βπ

)

and z <
β(1 − π)
1 − βπ

,

for some threshold λ which equals zero whenever z falls below another threshold

z < β(1 − π)/(1 − βπ).

Part (a) says that production efficient cycles with reputational borrowing cannot

exist if agents are too impatient or if productivity fluctuations are too small. Part

(b) says the opposite: sufficiently large productivity fluctuations give rise to a

production–efficient equilibrium which also requires collateral to be neither too large

nor too small. For example, if collateral is large enough, production efficient (or even

first best) allocations are achieved by collateral borrowing alone; a good credit rep-

utation is then worthless. And when collateral is too small, any equilibrium with

reputational borrowing must involve some states of production inefficiency. But

when z is smaller than threshold z, unsecured loans can support production–efficient

allocations even in the complete absence of collateral.

7 Numerical examples

For a fuller description of stochastic cycles, especially ones that exhibit some misal-

location of capital, we use value function iteration to isolate stationary Markov

equilibria with reputational borrowing. Specifically, for arbitrary initial default

19



penalties for agent 1 v1
0(., 1) > 0 and v1

0(., 2) > 0,6 we calculate constraints and

interest rates for all x using the equilibrium conditions (4)–(7) and the wealth iter-

ation maps (8). The results are then substituted in the right–hand side of (10) to

calculate new default penalties v1
1(., 1) and v1

1(., 2), and so on. Our previous results

on equilibrium multiplicity imply that this map cannot be a global contraction, so

one cannot expect a definitive proof that equilibrium exists. We find, however, that

these iterations converge fast, and we are able to identify the theoretical equilibria

in the special cases analyzed in previous sections. We conjecture that the itera-

tion procedure generally converges to the determinate equilibrium whenever there

is equilibrium multiplicity. In the deterministic economy π = 0, for example, we

know that the collateral–borrowing equilibrium is determinate whenever no other

equilibrium exists, and indeterminate otherwise (Proposition 5). Numerically we

find indeed that value function iteration converges to the determinate equilibrium.

For a benchmark parameterization we study an economy which aims to match some

features of the U.S. business cycle between 1960 and 2006 under the extreme as-

sumption that the business cycle is driven only by the sectoral shocks analyzed in

this paper. It is not the purpose of this exercise to conduct a full–blown quantita-

tive analysis; such would require a much more detailed model incorporating several

of the features discussed in the next section. We rather wish to illustrate how ag-

gregate growth and volatility depend on various model parameters and how they

qualitatively correlate with the sectoral dispersions of equity returns and total fac-

tor productivities. Since our stylized model does not distinguish between output

and undepreciated capital, we let gt = Yt/Yt−1 − 1 denote the annual growth rate

of current resources Yt which describes the sum of real GDP and capital minus de-

preciation. We pin down the five parameters A, z, π, β and λ to match mean and

standard deviation of g of about 3.3% and 0.8%, an annual autocorrelation of g of

about 0.75, a mean real interest rate of 4.5% and an average share of non–financial

business credit in GDP of about 55%.7 These targets are matched at A = 1.077,

6Because of symmetry, default penalties for agent 2 are simply v2(x, 1) = v1(x, 2) and v2(x, 2) =

v1(x, 1).
7The time series of g is obtained from the standard calculation of the capital stock from the
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z = 0.965, π = 0.88, β = 0.97 and λ = 0.23. It turns out that these parameters

lead to a situation of a unique equilibrium with collateral borrowing. Only when

some of these parameters are changed, does reputational borrowing set in, as will

be seen below. In the first–best benchmark, the economy would growth steadily at

rate βA−1 ≈ 4.5%. Hence, the economy’s misallocation of capital costs about 1.2%

growth per year.

Figure 3 shows how the mean and standard deviation of g change when z varies

between 0.7 and 1.0. Clearly, when z is close to one, the economy is almost first

best. Growth is constant at βA. But growth is also flat at βA when z is smaller

than 0.76. In these situations, allocations are production efficient and supported by

reputational borrowing. Indeed, we find that reputational borrowing sets in at about

z ≤ 0.94, whereas collateral borrowing is the only equilibrium at the benchmark

z = 0.965.

Figure 3: Mean and standard deviation of growth as z varies.

Figure 4 shows the result of the parameter variation as λ goes from zero to 1/2.

national income accounts. The interest rate is the real yield on corporate bonds, and “business

credit” is all credit–market debt owed by non–financial firms, which averages around 55% dring

the last decades.

21



From Proposition 3 follows that the economy is production efficient (so aggregate

growth is constant at βA) when λ ≥ z/(1 + z) ≈ 0.491. As the collateral share λ

falls below that value, the growth rate decreases and becomes more volatile. When

differences in financial development are explained by creditor protection, described

as variations in the collateral share λ, our model implies that financial development

correlates positively with growth and negatively with output volatility. Other dif-

ferences in contract enforcement, such as those discussed in Section 7.4, are further

determinants of financial development and give rise to similar implications.

Figure 4: Mean and standard deviation of growth as λ varies.

At the benchmark calibration we calculate equity return dispersion as the spread

between sectoral equity returns, measured by the weighted standard deviation be-

tween R̃1
t and R̃2

t where weights are the corresponding wealth shares. We find that

this measure averages around 1.9% and has a standard deviation of 0.8%, about

an order of magnitude smaller than the stock–market dispersion indices reported

in Loungani, Rush, and Tave (1990) (Fig. 1). The correlation coefficient between

equity–return dispersion and gt is -0.48, which is in line with the evidence listed

in the introduction. Growth is low when capital is misallocated in which case the

dispersion between sectoral equity returns is large. Figure 5 shows time series for
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the growth rate of aggregate resources and for the dispersion of equity returns for a

simulation of 100 periods at the benchmark parameter values.

Figure 5: Simulation at benchmark parameter values: Growth rate (solid) and

dispersion of equity returns (dashed), both as deviations from their mean.

In accordance with results of Eisfeldt and Rampini (2006) (Table 3), our model

further produces countercyclicality of TFP dispersion across sectors. Using the

standard deviation of sectoral factor productivities A and zA, weighted by their

relative output shares, as a measure of TFP dispersion, we find a mean dispersion of

2.8%, a standard deviation of 1.9% and a contemporaneous correlation with growth

of -0.99.
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8 Extensions

8.1 Irreversible investment

Unsurprisingly, each of the two sectors is considerably more volatile than the aggre-

gate economy. Because every stochastic cycle must enter some occasional periods

of production efficiency, output in any sector falls occasionally to zero. This cir-

cumstance is not only unrealistic, it also prevents a meaningful calculation of sector

growth rates. Further, it appears to be a strong abstraction to assume that all gross

resources can, in the extreme, move between sectors from one period to the next. To

deal with these limitations, it seems a sensible extension to augment the model by

some sector specificity (investment irreversibility).8 For simplicity, suppose that a

constant fraction of resources is sector specific and cannot be employed in the other

sector, and let Ψ < 1 be the share of resources which is usable in both sectors. Then

the only change to the model is that the expression for credit supply CS(σ) is multi-

plied by the factor Ψ, and all other equations remain unchanged. It is important to

emphasize, however, that now even the first–best economy involves fluctuations of

aggregate output, as resources move sluggishly between sectors when the productive

state changes.

In the numerical example, suppose that 90 percent of capital is sector specific (Ψ =

0.1). We find that for the benchmark parameter values, mean growth falls only

slightly to 2.9% whilst its standard deviation is practically unchanged. The growth

rate of either sector, however, has a standard deviation of about 9%, an order

of magnitude larger than the standard deviation of aggregate growth. For larger

values of Ψ, each sector’s output would become even more volatile. In line with the

evidence discussed in the introduction, the dispersion between sector growth rates

is countercyclical; its correlation coefficient with aggregate growth is about -0.14 .

8There are two alternative variations achieving similar results. One is essentiality; if the two

goods produced are not perfect substitutes and essential for consumers, sectoral shifts induce

relative price changes which prevent that all resources are shifted to one sector. The other is

complementarity between capital and another factor (labor) which is immobile between sectors.
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8.2 Sectoral comovement

Another feature of the cycles characterized in the previous sections is that growth

rates in the two sectors are negatively correlated. As an implication, either one sector

is pro–cyclical and the other is counter–cyclical or both sectors are acyclical. The

evidence however strongly supports comovement of virtually all two–digit industries

with aggregate output (see e.g. Christiano and Fitzgerald (1998)). However, the

absence of comovement is an artefact of the two–sector, two–state example, where

business cycles are exclusively driven by sectoral productivity shifts between two

constant productivities A and zA. When technologies are, in some way, correlated

with the sectoral productivity shifts, comovement can easily be generated. To see

this in an extension of the model which retains perfect symmetry between sectors and

which still has a constant production possibility frontier, suppose that the technology

parameter z attains one of two values zc and zn, depending on whether the sectoral

state changes or not. That is, “change of states” has zt = zc when st 6= st−1, and “no

change of states” has zt = zn when st = st−1. This extension thus has two sectors

and four productivity states (st, st−1) ∈ {1, 2}2. In the numerical example with the

same benchmark parameter values, we find that there is comovement (i.e. positive

correlations between aggregate growth and growth rates of each sector) if zc =

0.99 > zn = 0.965 (and Ψ = 0.9). Alternative mechanisms are possible which can

generate co–movement for aggregate shocks to A or to the collateral share λ which

are correlated with sectoral shifts.

8.3 Asymmetric sectors

To be discussed.

8.4 Alternative enforcement

Reputational loans in our model are supported by perpetual exclusion of defaulting

agents from all borrowing in excess of collateral. Alternative punishment mecha-

nisms are conceivable and have been explored in the literature, mostly in economic
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environments without production. A much more powerful enforcement of credit ar-

rangements is obtained when defaulters can be shut out of all intertemporal trade

(borrowing and lending) as is the case in the models of Kehoe and Levine (1993) and

Alvarez and Jermann (2000). In their pure–exchange models with zero collateral it

is well known that first–best allocations can be implemented with reputational loans

provided that all agents share a common high discount factor and have sufficiently

large income variability (see also Azariadis and Kaas (2007)). Similar results can

also be obtained for our model; the only change in the model’s equations is that

the defaulters’ equity returns R̃i
c(x, s) in equations (10) must be replaced by the

autarkic returns Ai
s. In the two–agent, two–state special case without collateral, it

is straightforward to show that there is a first–best equilibrium at the symmetric

wealth distribution iff

ln 1
z ≥

(1 − β)(1 + β − 2βπ)
β(1 − π)

ln 2 .

Thus the first best is an equilibrium if the productivity differential is sufficiently

large or if agents are sufficiently patient.

On the other hand, one can also think of weaker punishment scenarios in our model.

For example, defaulting agents may be shut out of unsecured credit for a finite

number of periods before they regain unlimited access to reputational loans. Alter-

natively, defaulters may sometimes evade punishment and have a positive chance not

to be shut out of reputational loans. Both mechanisms are rather straightforward

extensions of our model. Shortened punishment periods and lower detection proba-

bilities tighten debt limits considerably and thereby contribute to lower growth and

higher aggregate TFP volatility.

9 Conclusions

This paper outlines a financial theory of aggregate factor productivity which con-

nects the sectoral capital allocation with credit market frictions. We emphasize

frictions arising from insufficient collateral for secured loans and limited enforce-

ment of unsecured loans. Both of these lead to endogenous debt limits which slow
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down the reallocation of surplus capital from less productive to more productive

sectors, and prevent the equalization of sectoral productivities and sectoral rates of

return.

Our model is consistent with much empirical evidence suggesting that economy-

wide factor productivity and economic growth are both negatively correlated with

the dispersion of sectoral stock returns, the dispersion of sectoral TFP’s, and the

dispersion of sectoral growth rates. If we reinterpret “sectors” to be individual firms,

then our results are also consistent with recent work by Hsieh and Klenow (2007)

who find that industry productivity dispersion is negatively correlated with industry

productivity in a panel that includes data from the U.S., China and India.

Finally, if we index countries by the fraction of collateral assets to total resources,

our results are in line with Diebold and Yilmaz (2008) who find that macroeconomic

volatility is positively correlated with stock market volatility in a cross section of

countries.
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Appendix

Proof of Proposition 1:

It remains to show existence and uniqueness of a market–clearing interest rate R =

R(σ) with collateral borrowing for any σ = (x, s). For any R > λA ≥ λAi
s, collateral

debt limits are θi
c(R) =

λAi
s

R − λAi
s

. Debt limits are decreasing in the interest rate,

and so is the demand for credit CD(σ); it is a downward–sloping function with

finitely many upward jumps at R = Ai
s, it is zero at R ≥ A and it tends to infinity

as R → λA. On the other hand, the supply of credit CS(σ) is a weakly increasing

step function which is zero at R = 0 and finite at R ≥ A. Because of these features,

there exists a unique market–clearing interest rate for any σ. 2

Proof of Proposition 2:

A candidate first–best equilibrium has stable wealth shares x∗ = (xi∗)i∈I and an

interest factor equal to the frontier productivity, R(x∗, s) = A for all s ∈ S. With

collateral borrowing (vi = 0), the debt limits then follow from (4) as θi(x∗, s) =

λ/(1−λ) for all i ∈ I and s ∈ S. In every productive state s, there is by assumption

(A2) a unique agent i(s) using the frontier technology. Because of (A3), no state

is trivial, hence credit market equilibrium requires that for any s ∈ S, agent i(s)’s
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maximum demand for credit does not exhaust credit supply of all other agents:

λ
1 − λ

xi(s)∗ ≥
∑

j 6=i(s)

xj∗ = 1 − xi(s)∗ , s ∈ S ,

which is λ ≥ 1 − xi(s)∗ for all s. By assumption (A1), every agent has access to

the frontier technology in at least one state. Thus the first best is an equilibrium

with collateral borrowing iff λ ≥ 1 − xi∗ for all i ∈ I. For this to be true at some

distribution of wealth xi∗, it must hold in particular at the symmetric distribution of

wealth, xi∗ = 1/I. Therefore, the condition λ ≥ (I −1)/I is necessary and sufficient

for the first best to be an equilibrium with collateral borrowing for some distribution

of initial wealth.

Now suppose that λ < (I − 1)/I and suppose that there is a first–best equilibrium

with reputational borrowing at stable wealth distribution x∗ = (xi∗)i∈I and interest

yields R(x∗, s) = A, s ∈ S. But then from (6) and (7), R̃i(x∗, s) = R̃i
c(x, s) = A

for all i ∈ I and s ∈ S, and from (10) follows that vi(x∗, s) = 0 for all (i, s). But

this in connection with (4) implies again collateral borrowing, so debt limits are

θi(x∗, s) = λ/(1−λ), and the credit market cannot be in equilibrium, as seen above.

2

Proof of Proposition 3:

Parts (a)–(b) follow simply from inspection of Figure 1 (a) and (b). To prove (c),

it is useful to note the following features of the maps X0(x) and X1(x). For any

x ≤ 1 − λ/z, it holds that X1X1(x) = x and that X0X1(x) = 1 − x.

Again it is clear from the graph that the minimum and maximum elements of the

asymptotic invariant set are x = λ and x = 1 − λ. Let ℓ ≥ 1 be the unique number

such that Xℓ−1
0 (λ) < 1−λ/z and Xℓ

0(λ) ≥ 1−λ/z and suppose the last inequality is

strict (a generic feature). Obviously then, Xk
0 (λ), k = 1, . . . , ℓ are also elements of

the asymptotic invariant set. Further elements are the ℓ wealth states X1X
k
0 (λ) for

k = 0, . . . , ℓ − 1, which are all in the interval (λ, 1 − λ/z] and which are generically

different from the other elements. Note that X1X
ℓ
0(λ) = λ is not a new element of

the asymptotic invariant set. To see that there are no further elements, note that

any further iteration from X1X
k
0 (λ) can only lead either to X1X1X

k
0 (λ) = Xk

0 (λ) or
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to X0X1X
k
0 (λ) = 1 − Xk

0 (λ) = X1X
k−1
0 (λ) which are both already elements of the

asymptotic invariant set. Hence the asymptotic invariant set comprises λ, 1 − λ,

Xk
0 (λ) for k = 1, . . . , ℓ and X1X

k
0 (λ) for k = 0, . . . , ℓ − 1, which are 2ℓ + 2 = 2m

elements with m = ℓ + 1 ≥ 2. Of these, exactly the three [1 − λ, Xℓ
0(λ) and

X1(λ) = 1− λ/z] are not smaller than the threshold 1− λ/z and have growth rates

at βA − 1. All other states have growth rates below βA − 1. 2

Proof of Proposition 4:

Without loss of generality, set A = 1 to simplify notation. Consider first a production–

efficient steady state x with debt–equity constraint θ = (1 − x)/x and interest rate

R ∈ (z, 1). x is a steady state if x = X1(x) = R(1 − x), and hence x = R/(1 + R),

θ = 1/R, R̃ = 1 + θ(1−R) = 1/R, and R̃c = R(1− λ)/(R− λ). Let v and w be the

default penalties for borrowing and lending agents (of both types) in steady state.

From (10) follows that v and w satisfy

v = βw , (11)

w = β
{

ln
[

R̃
R̃c

]

+ v
}

. (12)

Hence,

v =
β2

1 − β2 ln
(

R̃
R̃c

)

=
β2

1 − β2 ln
(

R − λ
R2(1 − λ)

)

.

On the other hand, (4) implies that

v = ln
[

(1 − λ)(1 + R)
]

. (13)

From these two equations follows that the steady–state interest rate must solve

(1 − λ)1/β2

R2(1 + R)(1−β2)/β2

= R − λ . (14)

Moreover, reputational borrowing requires that v > 0 which, from (13), implies that

R > Rc ≡ λ/(1 − λ), where Rc is the interest rate with collateral borrowing which

is always a solution of equation (14). Another solution R∗ > Rc exists provided

that the slope of the LHS at Rc is smaller than one. This turns out to be the case

if and only if λ < β/(1 + β). Now R∗ indeed constitutes an equilibrium provided
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that R∗ > z and R∗ < 1. The latter inequality follows if LHS>RHS at R = 1. But

this turns out to be equivalent to λ < 1/2 which follows from λ < β/(1 + β). The

first inequality is true either if Rc ≥ z (which is the same as λ ≥ z/(1 + z)) or if

LHS<RHS at R = z. This last inequality is expressed as

(z − λ)β2

1 − λ
> z2β2

(1 + z)1−β2

. (15)

This inequality becomes an equality at λ = z/(1 + z), and the left–hand side is

decreasing in λ > λ0 ≡ (z − β2)/(1 − β2) and increasing in λ < λ0. When z ≥ β,

λ0 ≥ z/(1 + z) holds, and hence (15) is violated for any λ ≤ z/(1 + z); hence there

is no reputational borrowing steady state in this case. When z < β, there must be a

threshold λ̃ < λ0 where (15) holds with equality. Hence, with λ̂ = max(0, λ̃), there

exists a steady state with reputational borrowing for any λ ∈ [λ̂, β/(1 + β)).

Next consider a production–inefficient steady state where R = z, R̃ = 1 + θ(1 − z)

and R̃c = z(1 − λ)/(z − λ), and again let v be the stationary penalty of default for

a borrowing agent. Now (11) and (12) can be expressed as

v =
β2

1 − β2 ln
(

[1 + θ(1 − z)](z − λ)
z(1 − λ)

)

,

and (4) becomes

v = ln
[

(1 − λ)(1 + θ)
1 + θ(1 − z)

]

. (16)

Equating the two yields an equation in the debt–equity ratio,

1 + θ =
(

1 − λ/z
)

β2

1−β2
(

1 + θ(1 − z)
1 − λ

)
1

1−β2

. (17)

Here, the debt–equity ratio with collateral borrowing θc = λ/(z − λ) solves this

equation. Another solution θ∗ corresponds to a reputational–borrowing equilibrium

only if θ∗ > θc, and such a solution exists iff the slope of the RHS at θc is smaller

than one. This is the case iff

λ < λ0 =
z − β2

1 − β2 .

The solution θ∗ > θc indeed gives rise to a production–inefficient equilibrium at

R = z if θ∗ < (1 − x∗)/x∗ at the stationary borrower share x∗ which satisfies

x = X1(x) =
z(1 − x)

[1 + θ∗(1 − z)] + z(1 − x)
,
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or

(1 − z)(1 + θ∗)x2 + 2zx − z = 0 .

Clearly this quadratic has a unique solution x∗ ∈ (0, 1) for any θ∗ > 0. Now

θ∗ < (1 − x∗)/x∗ when x∗ < 1/(1 + θ∗) which is the case if the quadratic is positive

at x = 1/(1 + θ), which in turn is equivalent to θ∗ < 1/z. This condition is fulfilled

whenever in (17) the LHS is smaller than the RHS at θ = 1/z. But this inequality

is equivalent to (15) again. Because the LHS in (15) is increasing in λ ∈ [0, λ0], the

inequality is satisfied for all λ ∈ (λ̂, λ0). Hence

λ̂ < λ <
z − β2

1 − β2

is a necessary and sufficient condition for a production inefficient steady state equi-

librium with reputational borrowing. 2

Proof of Proposition 5:

In the deterministic economy, the dynamic versions of the steady–state equations

(11) and (12) can be simplified to

vt = β2 ln
(

R̃t+2

R̃c
t+2

)

+ β2vt+2 . (18)

Suppose first that the economy is production inefficient in all periods. Then, Rt = z,

R̃c
t = z(1 − λ)/(z − λ), and from (4) follows

R̃t =
(1 − λ)z

1 − λ − evt(1 − z)
.

Substitution into (18) yields

vt = β2 ln
(

z − λ
1 − λ − evt+2(1 − z)

)

+ β2vt+2 .

Note that vt is a forward–looking (jump) variable. Hence, the steady state v = 0 is

locally indeterminate iff dvt/(dvt+2)|v=0 > 1. But this condition turns out to be the

same as

λ >
z − β2

1 − β2 ,
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which follows from z < β2. Hence, there is an infinity of equilibria with vt → 0 (and

thus θt → θc). In the limit, the dynamics of borrower wealth becomes

xt+1 =
(1 − xt)(z − λ)

z − λ + xt(1 − z)
= X1(xt) ,

which satisfies xt+2 = X2
1 (xt) = xt. Hence, in all these equilibria, wealth converges

to a cycle of periodicity two (where one of these “cycles” is the collateral–borrowing

steady state).

Next consider a production–efficient economy. Here θt = (1 − xt)/xt, and from (4)

follows

Rt =
1 − e−vt(1 − λ)

1 − xt
, R̃t = 1 − λ

evtxt
, R̃c

t =
[1 − e−vt(1 − λ)](1 − λ)

1 − e−vt(1 − λ) − λ(1 − xt)
.

Substitution into (18) yields

vt = β2 ln
(

1 − e−vt+2(1 − λ) − λ(1 − xt+2)
[evt+2 − 1 + λ]xt+2

)

+ β2vt+2 . (19)

The dynamics of borrower wealth is

xt+1 =
Rt(1 − xt)

Rt(1 − xt) + R̃txt

= 1 − e−vt(1 − λ) .

Substitution into (19) gives

vt = β2 ln
(

1 − e−vt+2(1 − λ) − λ(1 − λ)e−vt+1

[evt+2 − 1 + λ][1 − e−vt+1(1 − λ)]

)

+ β2vt+2 .

Using ϕt = evt , this equation is more conveniently expressed as

ϕt =

[

ϕt+1(ϕt+2 − 1 + λ) − λ(1 − λ)ϕt+2

(ϕt+2 − 1 + λ)(ϕt+1 − 1 + λ)

]β2

. (20)

A steady state is a solution of

ϕ(1−β2)/β2

=
ϕ − 1 + λ2

(ϕ − 1 + λ)2 . (21)

One solution is ϕ = 1 which (under appropriate conditions) gives rise to a steady

state with collateral borrowing. A steady state with reputational borrowing must

be a solution with ϕ > 1. Again ϕt is a forward–looking jump variable; hence a
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steady state is locally determinate if both eigenvalues of the backward dynamics

(20) have modulus less than one, and a steady state is locally indeterminate if at

least one eigenvalue has modulus larger than one. It is straightforward to calculate

the determinant and trace of the Jacobian at the steady state:

D = − dϕt

dϕt+2
=

β2λ(1 − λ)2

(ϕ − 1 + λ)(ϕ − 1 + λ2)
,

T =
dϕt

dϕt+1
= −

β2(ϕ − 1)(1 − λ)2

(ϕ − 1 + λ)(ϕ − 1 + λ2)
.

At a steady state with collateral borrowing (ϕ = 1), D > 1 if and only if λ <

β/(1 + β). Hence, this steady state is indeterminate whenever there is another one

with reputational borrowing. Such a steady state is determinate, provided that

D < 1 and D + T > −1. At λ = 0, D = 0 and T > −1 requires that ϕ > 1 + β2.

Since ϕ = (ϕ − 1)−β2/(1−β2), this inequality is true provided that

1 + β2 < (β2)−β2/(1−β2) ,

which is true for all β2 ∈ (0, 1). When λ increases, it can be shown numerically

that both D(λ) and D(λ) + T (λ) increase (where ϕ(λ) > 1 adjusts to solve (21)),

regardless of the value of β. Moreover D(λ) converges to 1 and T (λ) converges to zero

when λ → β/(1 + β) (and ϕ(λ) → 1). Therefore D(λ) < 1 and D(λ) + T (λ) > −1

are satisfied for any λ ∈ [0, β/(1+β)), and hence the steady state with reputational

borrowing is locally determinate. 2

Proof of Proposition 6:

A production–efficient cycle of order two has a support at x1 < x2 where x1 applies

if the productive state changes (st 6= st−1), and x2 applies if the state stays the

same. The corresponding default penalties for borrowers and lenders in these two

situations are denoted vj , wj, j = 1, 2. The cycle has the following features:

• the allocation is first best at x = x2, i.e. R2 = A and

θ2 = ev2 + λ − 1
1 − λ

≥ 1 − x2
x2

.
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• the allocation is production–efficient but not first–best at x = x1, so that

θ1 = (1 − x1)/x1 and

R1 = Aev1 + λ − 1
ev1(1 − x1)

∈ (zA, A) .

Again simplify notation by setting A = 1. Because the economy is first–best at x2,

X0(x2) = x2 and X1(x2) = 1 − x2. Hence x1 = 1 − x2. At x = x1, rates of return

are

R1 = ev1 + λ − 1
ev1(1 − x1)

< R̃1 = 1 − λ
x1e

v1 .

If the productive state is unaltered, borrower wealth must thus increase from x1 to

x2, which implies

X0(x1) = R̃1x1

R̃1x1 + R1(1 − x1)
= e−v1(1 − λ) = x2 = 1 − x1 ,

and therefore x1 = 1 − e−v1(1 − λ).

The recursive equations in default penalties are

v1 = βπv2 + β(1 − π)w1 ,

w1 = βπw2 + β(1 − π)
[

ln(R̃1/R̃
c
1) + v1

]

,

v2 = βπv2 + β(1 − π)w1 ,

w2 = βπw2 + β(1 − π)
[

ln(R̃1/R̃
c
1) + v1

]

.

From these follows v1 = v2 = v, w1 = w2 = w, and

v = C ln
(

R̃1

R̃c
1

)

= C ln
(

ev + λ − 1 − λev(1 − x1)
(ev + λ − 1)x1e

v

)

= C ln
(

ev − 1 + λ2

(ev + λ − 1)2

)

, (22)

with

C ≡
β2(1 − π)2

(1 − β)(1 + β − 2πβ)
.

Equation (22) has a solution v > 0 (necessary for reputational borrowing) provided

that λ2 + 2λC − C < 0, which is equivalent to

λ <
β(1 − π)

1 + β − 2βπ
≡ λ1 . (23)
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To make sure that this is indeed a production–efficient equilibrium, it must be

verified that R1 ∈ [z, 1) and that θ2 ≥ (1 − x2)/x2. It is easy to show that the

last condition holds with equality. R1 < 1 is fulfilled provided that ev < 2(1 − λ).

But at ev = 2(1 − λ) the RHS of (22) is zero; thus the equilibrium ev must be

smaller than 2(1 − λ). Hence it remains to check that R1 ≥ z. This is true iff

ev ≥ (1−λ)(1+ z) which is valid either if λ ≥ z/(1+ z) or if RHS≥LHS in equation

(22) at ev = (1 − λ)(1 + z). Hence, R1 ≥ z iff

λ ≥ z
1 + z or Φ(λ) ≡

(z − λ)C

(1 − λ)1+C ≥ z2C(1 + z) . (24)

The last condition holds with equality at λ = z/(1 + z) and Φ has a maximum at

λ̃ = z(1+C)−C. It is straightforward to verify that λ ≥ λ1 iff z/(1+z) ≥ λ1 iff z ≥

β(1−π)/(1−βπ). Hence, if z exceeds this threshold, there is no λ satisfying both (23)

and (24), and hence there cannot be a production–efficient cycle with reputational

borrowing, which proves part (a). Conversely, when z < β(1−π)/(1−βπ), there is a

unique λ̂ < λ such that the second condition in (24) holds with equality. In that case,

any λ ∈ [λ̂, λ1) gives rise to a production–efficient cycle with reputational borrowing,

which proves part (b). Finally, the lower bound λ̂ is non–positive provided that the

second condition in (24) holds at λ = 0 which is the same as

1 ≥ zC(1 + z) .

This condition is the same as z ≤ z for another threshold z(β) which converges to

one when β → 1 (C → ∞). 2
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