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Abstract

The persistent movements away from long-run benchmark values
in real exchange rates often observed in periods of currency float have
been subject to much empirical research without resolving the under-
lying theoretical puzzle. This chapter demonstrates how the Cointe-
grated VAR approach of grouping together components of similar per-
sistence can be used to uncover structures in the data that ultimately
may help to explain theoretically the forces underlying such puzzling
movements. The charaterization of the data into components which
are empirically I(0), I(1) and I(2) is shown to be a powerful organizing
principle, allowing us to structure the data into long-run, medium-run,
and short-run behavior. Its main advantage is the ability to associate
persistent movements away from fundamental benchmark values in
one variable/relation with similar persistent movements somewhere
else in the economy.

JEL: C32, C50, F41

Keywords: Cointegrated VAR, 1(2), Deterministic componenets,
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Introduction

International macroeconomics is known for a number of empirical puzzles, the
most notable among them being the 'PPP puzzle’, which is closely related
to the ’long swings puzzle’ and the ’exchange disconnect puzzle’ (Rogoff,
1996). These puzzles are all related to the pronounced persistence away
from equilibrium states that have been observed in many real exchange rates



during periods of currency float. Among these, the Dmk-$ rate in the post
Bretton Woods period is one of the more extreme cases.

One important purpose of this chapter is to demonstrate how the Coin-
tegrated VAR (CVAR) approach (Juselius, 2006) can be used to uncover
structures in the data that ultimately may help to explain theoretically the
forces underlying such persistent movements in the data. The CVAR ap-
proach starts from a general unrestricted VAR model that gives a good char-
acterization of the the raw data. It then tests down until a parsimonious
representation of the data with as much economic content as possible has
been achieved. When properly applied, the CVAR is able to extract valu-
able information about the dynamics of the pulling and pushing forces in
the data without distorting this information. This entails the identification
of stationary relationships between nonstationary variables, interpretable as
long-run equilibrium states, and the dynamic adjustment of the system to
deviations from these states. It also entails the identification of the transitory
and permanent shocks that have affected the variables and the short-run and
long-run impact of these shocks.

For the results to be reliable, the statistical properties of the model, have,
however, to be taken seriously. This implies adequately controlling for re-
forms, interventions, regime shifts, etc., that often are part of the data gener-
ating mechanism. The reunification of East and West Germany is an example
of such an important event. The approach also entails the untying of any
transformation of the variables, such as the real exchange transformation,
imposed from the outset on the data. Such transformations, common in em-
pirical economics, often seriously distort signals in the data that, otherwise,
might help to uncover precisely those empirical regularities which give a clue
to the underlying reasons for the puzzling behavior.

The weight of the empirical analysis is on characterizing data within the
broad framework of a theory model. To facilitate the interpretation of the em-
pirical results, the chapter argues that it is essential first to translate the un-
derlying assumptions of the theoretical model into hypotheses on the pulling
and pushing forces of the VAR model (Juselius and Johansen, 2006, Juselius,
2006, Juselius and Franchi, 2007). A careful formulation of such a scenario
is indispensable for being able to structure and interpret the emprical results
so that empirical regularities either supporting or rejecting the theoretical
assumptions become visible. In particular, the latter are valuable as they
should ultimately lead to empirically more relevant theory models. Thus, to
some extent, the CVAR approach switches the role of theory and statistical
analysis in the sense of rejecting the privileging of a priori economic theory
over empirical evidence. In the language of the CVAR approach, empirical
evidence is the pushing force and economic theory is adjusting (Hoover et
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al., 2007)

The approach will be illustrated with an empirical analysis of the long
swings in real exchange rates based on German and US prices and the Dmk/$
rate over the period 1975:09-1998:12. Using the above decomposition into
pulling and pushing forces, the empirical analysis identifies a number of
'structured’ (rather than stylized) facts describing important empirical reg-
ularities underlying the long swings puzzle. These provide clues suggesting
where to dig deeper (see Hoover, 2006) to gain an empirically more relevant
understanding of the puzzling behavior in the goods and foreign exchange
markets.

To structure the data as efficiently as possible, this chapter argues that the
order of integration, rather than a structural parameter, should be considered
an empirical approximation, measuring the degree of persistent behavior in
a variable or a relation. Organizing the data into directions where they are
empirically 1(0), I(1) or I(2) is not the same as claiming they are structurally
1(0), I(1), or I1(2). In the first case some implications of the statistical
theory of integrated processes are likely to work very well, such as inference
on structures, others less well, such as inference on the long-run values to
which the process converges towards when all the errors have been switched
off (Johansen, 2005). The focus of this chapter is on structure rather than
long-run values.

The statistical analysis suggested that the two prices (and possibly even
the nominal exchange rate) were empirically 7(2). Thus, another important
aim of this chapter is to discuss the 7(2) model, how it relates to the I(1)
model, and what can be gained by interpreting the empirical reality within
the rich structure of the I(2) model. Because the I(2) model is also more
complex, the analysis is first done in the I(1) model, emphazing those signals
in the results suggesting data are I(2). Though most of the (1) results can
be found in the 7(2) model, the chapter demonstrates that the I(2) results are
more precise and that the I(2) structure allows for a far richer interpretation.

The exposition of the chapter is as follows: Section 1 defines the (1)
and /(2) models as parameter restrictions on the unrestricted VAR. Sec-
tion 2 introduces the persistent features of the real exchange data for the
German-US case and discusses how they can be formulated in the pulling
and pushing forces of a CVAR model. Section 3 discusses under which con-
ditions 7(2) data can be modelled with the I(1) model, why it works, and
how the interpretation of the results has to be modified. Section 4 presents
the empirical I(1) analysis of prices and nominal exchange rates inclusive of
specification testing and estimation of the long-run structure. Section 5 gives
a brief account of the 7(2) model and discusses at some length the specifi-
cation of the deterministic componenets. Section 6 discusses an estimation
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procedure based on maximum likelihood and shows how the I(2) structure
can be linked to the /(1) model. Section 7 provides a theoretical scenario for
the real exchange data. Section 8 presents the empirical results of the pulling
and pushing forces structured by the I(2) model, summarizes the puzzling
facts detected, and discusses what has been gained by this analysis compared
to the I(1) analysis. Section 9 concludes with a discussion of what the data
were able to tell when allowed to speak freely.

1 The VAR model

The baseline VAR(2) model in its unrestricted form is given by:

x; = IIix,q + Ihx; 9 + @D, + &4, (1)
with

Ep ~ Np(O,Q ), t= 1, ,T

where x;" = [T14, Tay, ...Tp4] 18 & vector of p stochastic variables and Dy is a
vector of deterministic variables, such as constant, trend and various dummy
variables. As the subsequent empirical VAR model has lag two, all results
are given for the VAR(2) model. A generalization to higher lags should be
straightforward.

In terms of likelihood, an equivalent formulation of (1) is the vector equi-
librium correction form:

Axt = I‘IAXt—l + th_l + ¢Dt + Et, (2)

where I'y = —II, and IT = —(I — I, — II,).
Alternatively, (1) can be formulated in acceleration rates, changes and
levels:

A2Xt = FAXt_l + ]-_-[Xt—l + q)Dt + &4, (3)

where I' = —(I — I';) and IT as above. As long as all parameters are un-
restricted, the VAR model is no more than a convenient summary of the
covariances of the data. As a result, most VAR models are heavily over-
parametrized and insignificant parameters need to be set to zero. The idea
of general-to-specific modelling is to reduce the number of parameters by
significance testing, with the final aim of finding a parsimonious parameteri-
zation with interpretable economic contents. Provided that the simplification
search is statistically valid, the final restricted model will reflect the full in-
formation of the data. Thus, given the broad framework of a theory model, a
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correct CVAR analysis allows the data to speak freely about the underlying
mechanisms that have generated the data.

All three models are equivalent from a likelihood point of view, but (1)
would generally be chosen when x; is I(0), (2) when x; is (1), and (3) when
x; is 1(2). The hypothesis that x; is /(1) is formulated as a reduced rank
restriction on the matrix II:

II = a@, where o, 3 are p x r, (4)

and that x; is I(2) as an additional reduced rank restriction on the trans-
formed matrix I':

o \TB, =&n', where £, are (p —7) X 51, (5)

where 3, o, are the orthogonal complements of 3 and . The first reduced
rank condition is formulated on the variables in levels, the second on the vari-
ables in differences. The intuition of the former is that the variables contain
stochastic trends (unit roots) that can be cancelled by linear combinations.
The intuition of the latter is that the differenced process also contains unit
roots when data are /(2). However, in this case the linear combinations that
cancel these roots are more complicated. Thus, when x; ~ I(2) and, hence
Ax; ~ I(1), it is not sufficient to impose the reduced rank restriction on the
matrix IT to get rid of all (near) unit roots in the model. This is because
Ax; is also a unit root process and lowering the value of » does not remove
the unit roots belonging to I' = — (I — T';). Therefore, even though the rank
of IT = a3’ has been correctly determined, there will remain additional unit
roots in the VAR model when the data are 1(2). As will be demonstrated
below, this provides a good diagnostic tool for detecting 7(2) problems in the
VAR analysis.

Inverting the VAR model gives us the Moving Average (MA) form. Under
the reduced rank of (4) and the full rank of (5), the MA form is given by:

t
xi=C) (e +®D;) + C*(L)(e; + ®Dy) + A (6)
i=1
where C*(L) is a lag polynomial describing the impulse response functions of
the empirical shocks to the system, and A is a function of the initial values
X, X_1,X_o, and C is of reduced rank p — r:

C= BL(alFIBL)_lal: BLal (7)

with 8, =8, (a/, B,)7".
Inverting the VAR under the reduced rank of both (4) and (5) will be
discussed in Section 5.



2 The persistent swings in real exchange data

Parity conditions are central to international finance and, more specifically,
to many open economy macro-models, such as the popular Dornbusch (1976)
sticky price overshooting model with rational expectations (RE). However,
the persistent movements away from long-run benchmark values that have
characterized the Dmk/$ currency float of the post Bretton Woods period are
hard to reconcile with the Dornbush model and its many modifications (see
Frydman, Goldberg, Johansen and Juselius (2008) and references therein).
They show that it is, in particular, the assumption of RE in these models
that is inconsistent with the long swings behavior characterizing many real
exchange rates. This prompts for a reformulation of the model and of how
agents are assumed to make forcasts. The idea here is to formulate the
basic assumptions of the PPP hypotheses under a currency float into testable
hypotheses on the pushing and pulling forces of the Cointegrated VAR model,
a so called scenario. By comparing assumed with actual behavior it should
be possible to pinn down exactly where the puzzling behavior is. Since the
VAR model is just a reformulation of the covariance information in the data,
the end results should be a set of empirical features which a theory model
should be able to replicate in order to claim empirical relevance.

2.1 The long swings puzzle
Purchasing power parity (PPP) is defined as:

p1 = p2 + S12, (8)

where p; is the log of the domestic price level (here German), p, is the log of
the foreign price level (here US), and s;5 denotes the log of the spot exchange
rate (here Dmk/$). The real exchange rate, ppp;, is the departure at time ¢
from (8):

PPPt = P1t — D2t — Si2;t- 9)

An ocular inspection gives a first impression of the development over time
of prices and the nominal exchange rate and illustrates what the puzzle is
about. Figure 1, upper panel, shows that US prices have grown more than
German prices resulting in a downward sloping stochastic trend in relative
prices. According to purchasing power parity, the nominal exchange rate
should reflect this downward sloping trend. The picture shows that this is
also approximately the case over the very long run. However, what is striking
are the long swings around that downward sloping trend.
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Figure 1: The time graphs of German and US prices (upper panel) and their
relative prices and nominal exchange rate (lower panel.

How can we use econometrics to learn about the mechanisms underlying
these swings? The subsequent VAR analyis will demonstrate that the joint
modelling of prices and exchange rates allows us to formulate much richer
hypotheses about the empirical mechanisms behind the puzzle.

2.2 Pulling and pushing forces in the cointegrated VAR
model

To provide the intuition for the VAR approach and to show how the results
can be interpreted in terms of pulling and pushing forces, a hypothetical
VAR analysis of the German-US PPP data will be used as an illustration.
For simplicity, the discussion will be restricted to a bivariate I(1) model for
relative prices and the nominal exchange rate. Because the period of interest
defines a currency float, a prior hypothesis is that the nominal exchange rate
has been adjusting and prices pushing. Provided that the stochastic trend
in nominal exchange rates reflects the stochastic trend in relative prices, it is
easy to show that ppp = p; — ps — s12 ~ 1(0). Thus, the stationarity of PPP
and its adjustment dynamics can be formulated as a composite hypothesis:

7



{(pr — p2) = pp ~ I(1), s12 ~ I(1), ppp ~ 1(0), s12 is adjusting, and p1, p>
are pushing}.
The pulling forces are described by the vector equilibrium correction

model: A
ppr || o _ o €1t
{ Asio, } = [ } (ppr — s124 — By) + { } )

(6%) Eat

where (pp; —s12.:— ) = (3'x; is the cointegration relation with E(ppp;) = f,-
Thus, an equilibrium position, defined as pp; — si2: = 3, can be given an
interpretation as a resting point towards which the process is drawn after it
has been pushed away. In this sense, an equilibrium position exists at all
time points, t, contrary to the long-run value of the process, which is the
value of the process in the limit as ¢ — oo and all shocks have been switched
off.

The pushing forces are described by the corresponding common trends

model: .
Dbpe ¢ / * €1t
= a g, + C*(L A
)= e erem 3]
with | = ———[—as, ;] and with o S°!_, & describing the common sto-

chastic trend. Assume now that o’ = [0, as], i.e. only the nominal exchange
rate is equilibrium correcting when ppp; — 3, # 0. In this case o, = [1,0] im-
plies that the common stochastic trend originates from relative price shocks.
This would conform to the theoretical prior for a period of floating exchange
rates.

The question is now whether the empirical reality given by the observed
variables in Figure 1, lower panel, can be adequately represented by the above
assumed pulling and pushing forces. Stationarity of ppp; would imply that
the nominal exchange rate would follow relative prices one-for-one apart from
stationary noise. Figure 2 shows a crossplot ofthe pp, and sq2; variables. If
the assumption that ppp; ~ I(0) were correct, then the crossplots should
be randomly scattered around the 45° line defining the equilibrium position
pp: = S124. Obviously, the crossplots measuring the deviation from ppp, i.e.
B'x; = pp — s12: — By, are systematically scattered either above or below
the 45° line. Thus the reality behind the observed real exchange rate looks
very different from the assumed stationarity, illustrating the puzzle. The
nonstationarity of real exchange rates has been demonstrated in a number
of studies (see Froot and Rogoff, 1995, and MacDonald, 1995, for surveys;
Cheung and Lai, 1993, Juselius, 1995, Johansen and Juselius, 1992, Juselius
and MacDonald, 2004, 2007).
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Figure 2: A cross plot of US-German relative prices and the $/Dmk rate for
the period 1975:4-1998:12.

2.3 Approximating persistent behavior with /(1) or /(2)

The above ocular analysis showed that the long swings puzzle in PPP is
essentially a question of why nominal exchange rates have so persistently
moved away from relative prices. The previous subsection suggested that
the cointegrated VAR model should be used to structure such data by the
pulling and pushing forces. Section 2 defined the /(1) and I(2) models as
reduced rank parameter restrictions on the I(0) model, providing us with
an empirically strong procedure for addressing behavioural macroeconomic
problems. This is because the reduced rank parametrization of the CVAR
allows us to group together components of similar persistence over the sample
period. The charaterization of the data into empirically 1(0), I(1) and I(2)
components is a powerful organizing principle, allowing us to structure the
data in the long-run, medium-run, and short-run behavior. An additional
advantage is that inference is likely to become more robust than otherwise.
For example, treating a near unit root as stationary tends to invalidate certain
inferences based on the y2, F' and ¢ distributions unless we have a very long
sample!.

This is a fairly pragmatic way of classifying data allowing a variable to
be treated as I(1) in one sample and [(0) or even I(2) in another. The

! Johansen (2006) demonstrated that valid inference on steady-state values requires
more than 5000 observations if the model contains a near unit root of 0.998.



idea is that, in a general equilibrium world, a persistent departure from
a steady-state value of a variable or a relation should generate a similar
persistent movement somewhere else in the economy. For example, if the
Fisher parity holds as a stationary relation (stationary real interest rates) and
we find that inflationary shocks have been very persistent, then we should
expect interest rate shocks to have a similar persistence. Thus empirical
persistence is a powerful property that can be used to investigate whether
our prior hypothesis (the Fisher parity) is empirically relevant, and if not,
which other variables have been co-moving in a similar manner, giving rise
to new hypotheses.

From the outset, many economists would consider the idea that economic
variables are I(2) highly problematic. The argument is often that all infer-
ence on long-run values (the steady-state value a variable converges to when
the errors are switched off) would lead to meaningless results. This is a valid
argument provided one can argue that the order of integration is a structural
parameter, which often seems doubtful. Nonetheless, there are cases when a
structural interpretation is warranted. For example, Frydman et al. (2008)
show that speculative behavior based on IKE is consistent with near 1(2) be-
havior; arbitrage theory suggests that a nominal market interest rate should
be a martingale difference process, i.e. approximately a unit root process.
Of course, in such cases a structural (near) unit root should be invariant to
the choice of sample period.

3 Modelling I(2) data with the /(1) model:
does it work?

It often happens that I(2) data are analyzed as if they were I(1) because the
I(2) possiblity was never checked, or one might have realized that the data
exhibit /(2) features but decided to ignore these signals in the data. For
this reason, it is of some interest to ask whether the findings from such /(1)
analyses are totally useless, misleading, or can be trusted to some extent.

Before answering these questions, it is useful to examine the so called
R-model in which short-run effects have been concentrated out. We consider
first the simple VAR(2) model:

AXt: I‘lAthl—FOlﬁ,thl + g tEs

EtNNp(O,Q ),t:].,...7T (10)
and the corresponding R-model:
ROt: OAB'th—i—Et. (11)
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where Ro; and Ry; are found by concentrating out the lagged short-run ef-
fects, Ax;_1:

AXt: BlAXt—l+ﬂO+R0t (12)

and A
Xi—1= BQAXt_l‘i‘I:lzo‘i‘th. (13)

When x; ~ (2), both Ax; and Ax;_; contain a common /(1) trend which,
therefore, cancels in the regression of one on the other as in (12). Thus,
Ryt ~ 1(0) even if Ax; ~ I(1). On the other hand, an I(2) trend cannot be
cancelled by regressing on an (1) trend and regressing x; ; on Ax; ; as in
(13) does not cancel the /(2) trend, so Ry; ~ I(2). Because Ro; ~ 1(0) and
g, ~ 1(0), equation (11) can only hold if 3 = 0 or, alternatively, if 3'Ry; ~
I(0). Thus, unless the rank is zero, the linear combination 'Ry, transforms
the process from 1(2) to 1(0).

The connection between 3'x; ; and 3'Ry; can be seen by inserting (13)
into (11):

Ry = aﬁl(xtfl — BoAx; 1 — fig) + € (14)
1(0) I(2) I(1)
= a(B8xi-1 — BBoAxi1 — f1y) + €,
S—— S——
1(1) 1(1)
= a(@/xt_l — w,AXt_ll - I:I’O) + €,
1(0)

where w = 3'B,. It is now easy to see that the stationary relations 3Ry,
consist of two components 3'x,_; and w'Ax,_;. There are two possibilities:

1. Bix;_1 ~ I(0) and w;= 0, where 3; and w; denote the ith column of 3
and w, or

2. Bix;_1 ~ I(1) cointegrates with w;Ax; ; ~ I(1) to produce the sta-
tionary relation 3'Ry; ~ I1(0).

In the first case, we talk about directly stationary relations, in the second
case about polynomially cointegrated relations. Here we shall consider 3'x; ~
I(1) without distinguishing between the two cases, albeit recognizing that
some of the cointegration relations 3'x; may be stationary by themselves.

We have demonstrated above that Rg, ~ I(0) and B'Ry; ~ I(0) in (11),
which is the model on which all 7(1) estimation and test procedures are
derived. This means that the I(1) procedures can be used even though data
are 1(2), albeit with the following reservations:
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1. the I(1) rank test cannot say anything about the reduced rank of the
I' matrix, i.e. about the number of I(2) trends. The determination
of the reduced rank of the IT matrix, though asymptotically unbiased,
might have poor small sample properties (Nielsen and Rahbek, 2004)

2. the B coefficients relating I(2) variables are T? consistent and, thus,
very precisely estimated. We say that the estimate of 3 is super-super
consistent.

3. the tests of hypotheses on 3 are not tests of cointegration from /(1) to
I(0), but instead from I(2) to I(1), as is evident from (14) and a coin-
tegration relation should in general be considered I(1), albeit noting
that a cointegration relation 3;x; can be CI(2,2), i.e. be cointegrating
from 1(2) to 1(0),

4. the MA representation is essentially useless, as the once cumulated
residuals cannot satisfactorily explain variables containing 7(2) trends,
i.e. twice cumulated residuals.

Thus, one can test a number of hypotheses based on the I(1) procedure
even if x; is I(2), but the interpretation of the results has to be modified
accordingly.

4 An (1) analysis of prices and exchange rate

4.1 Specification

The VAR model is based on the assumption of multivariate normality which,
if correct, implies linearity in parameters as well as constancy of parameters.
However, multivariate normality is seldom satisfied in a first tentatively es-
timated VAR model. There are many reasons for this, for example omission
of relevant variables, inadequate measurements, interventions, reforms, etc.
All this may have changed the data generating mechanisms, thus producing
structural breaks, or resulting in extraordinary effects on some of the vari-
ables. In the present case, the reunification of East and West Germany in
1991:1 was a particularly important institutional event which is likely to have
changed some of the properties of the VAR model. For example, Figure 1
shows that the nominal exchange rate may have experienced a change in its
trending behavior at the reunification, as well as a shift in its level. There-
fore, a consequence of merging the less productive East with West Germany
is likely to have been a change in relative productivity, which needs to be
accounted for by a change in the slopes of the linear trends in the VAR model.
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Thus, in order to achieve a well-specified VAR model one usually has to
control for major institutional events. Section 5.2 will provide a more detailed
account of how to specify deterministic components in the 7(2) model. For
the specification of such events in the /(1) model the reader is referred to
Juselius (2006, Chapter 6). Here they will be modelled by a trend with a
changing slope at 1991:1 and various dummy variables, as explained below:

Axy = T1AX 1 + a1 + g + oy Ds o114 + Hqt + pyqtors + ®,D,p 1 + &4,
(15)
where the sample period is 1975:09-1998:12 and x| = [p1., Pa.t, S124) With
p1t = log of German CPI?,
pot = log of US CPI, and
s124+ = log of the nominal Dmk/$ exchange rate.
The linear terms in (15) are defined as

W is a vector of constant terms,

Mo, is a vector measuring a change in the constant term at 1991:1

p, a vector of linear trend slopes,

W4, a vector measuring a change in the trend slope at 1991:1.

The dummy variables are defined as:
Dpytax =1 in 1991:7, 1991:9, and 1993:1, zero otherwise
Ds91.1; is 1 for t > 1991:1, 0 otherwise,
ve = [Dp80.7, Dp9l.1, Dytax, D,97.7] with

DpX X.y; = 1 in 19XX:y, zero otherwise.

The tax dummy is needed to account for a series of commodity tax increases
to pay for reunification and the three dummies are needed to account for a
big drop in the US inflation rate in 1980:7, the large changes in the nominal
exchange rate in 1991:1 and 1997:7.

As discussed in more detail in section 8.6, the two trend components,
the constant, and the shift dummy need to be appropriately restricted in the
VAR model to avoid quadratic and cubic trends. The dummy variables have
been specified to exclusively control for the extraordinary shock at the time
of the intervention, but to leave the information of the observation intact
through its lagged impact. Thus, the dummies do not remove the outlying
observation as is usually the case in a static regression model. Table 1 reports
the estimated effects.

Conditional on the dummies, the VAR model becomes reasonably well-
specified. The tests for multivariate residual autocorrelation at one lag,
x%(9) = 11.0[0.28], and two lags, x?(9) = 14.2[0.12], were acceptable, as

2German CPI has been additively mean corrected for the reunification in 1991:1 prior
to the VAR analysis.
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Table 1: Estimated outlier effects and misspecification tests]

Estimated outlier effects Misspecification tests
Dytax Dp80.7 D91.1 D,97.7 Norm.  Skew. Kurt.
Apyy 0.01  —0.00 0.00 0.01 7.22[0.03] 0.35 3.62

[11.36] [—1.40] [1.77] [4.15]

Apy;  —0.00 —0.01 0.00 0.00 15.4/0.00] -0.20 4.20
[—0.15] [—4.90] [0.16] [0.37]

Asipy  —0.02 0.01 0.01 0.06 6.31[0.04]  0.10 3.66
[—1.04] [0.39] [2.57] [1.98]

t - ratios in |]

were the test of multivariate ARCH of order one, x?(36) = 45.9[0.12], and
order two, x?(72) = 87.2[0.11]. However, multivariate normality was rejected
based on x%(6) = 27.1[0.00]. To get some additional information, Table 1
reports the univariate Jarque-Bera tests, as well skewness (third moment
around the mean) and kurtosis (forth moment around the mean). It appears
that the non-normality problems are mostly due to excess kurtosis in the US
inflation rate. Since the VAR estimates have been shown to be reasonably ro-
bust to moderate deviations from normality due to excess kurtosis (Gonzalo,
1994), the baseline VAR model is considered to be a reasonably adequate
characterization of the data.

4.2 Rank determination and general model properties

The determination of the cointegration rank is a crucial step in the analy-
sis, as it structures the data into its pulling and pushing components. The
so called trace test (Johansen, 1988) is a likelihood ratio test for the coin-
tegration rank. However, the trace test is derived under the null of p — r
unit roots, which does not always correpond to the null of the theory model
as illustrated in Section 7 (see also Juselius, 2006, Chapter 8). Therefore,
the choice of rank suggested by the trace test needs to be checked for its
consistency with other information in the model, such as the characteristic
roots.

The trace tests reported in Table 2 suggest a borderline acceptance of
r = 1 cointegration relation and, hence, p — r = 2 common stochastic trends
or, alternatively, a strong acceptance of r = 2 and, hence, p —r = 1 common
stochastic trend. Thus, from a statistical point of view both choices can be
defended. Section 7 will argue that r = 2 is the theory consistent choice.
To find out which choice is econometrically preferable, we shall check the
consistency of » = 1,2 with the characteristic roots in the model and with
the mean reversion of the cointegration relations.
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Table 2: Determination of rank in the I(1) model

roop-r Tpr 4 largest characteristic roots

0 3 80.06 1.0 1.0 1.0 0.75
[57.9]

1 2 32.65 1.0 1.0 0.99 0.53
(36.6]

2 1 ?1.;75% 1.0 099 099 0.52

3 0 099 099 098 0.53

Note: 95% quantiles in []
Tests of pushing and pulling variables

T b1 b2 512
No levels feedback 1 7.52 16.17 7.58
[0.01] [0.00]  [0.01]
2 23.83 32.74 8.66
[0.00]  [0.00]  [0.01]
Pure adjustment 1 21.40 11.26 34.27
[0.00]  [0.00]  [0.00]
2 274 131 18.74
[0.10]  [0.25) [0.00]

Note: p-values in ||

An inspection of the characteristic roots of the model shows that there
are three large roots of magnitude 0.99 in the unrestricted model. These are
generally indistinguishable from unit roots, so the model seems to contain
three unit roots. The choice of r = 1 leaves one near unit root and the choice
of r = 2 two near unit roots in the model. Section 3 showed that, when one
or several large roots remain in the model for any reasonable choice of r, it
is a sign of I(2) behavior in at least one of the variables.?

To check the consistency of the results with the 7(2) model, it is useful to
divide the total number of stochastic trends into /(1) and /(2) trends, i.e. p—
r = $1+ so where s; denotes the number of /(1) trends (unit root processes),
and sy the number of I(2) trends (double unit root processes). Three (near)
unit roots in the model would be consistent with either {r = 0,p —r = 3}
or {r=1,81 = 1,89 = 1}, whereas {r = 2,51 = 0, sy = 1} corresponds to two
unit roots . Since the latter is less than the three near unit roots in the model,
the choice r = 2 would not be consistent with the empirical information in
the data.

Thus, by imposing » = 1, two of the big roots are restricted to unity,

3Note, however, that this diagnostic check is only reliable in a VAR model with a
correct lag length. A VAR model with too many lags will often generate complex pairs

of large (albeit insignificant) roots in the characteristic polynomial (Nielsen and Nielsen,
2006).
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Figure 3: The graphs of the first cointegration relation. 3'x; in the upper
panel, 3'R;; in the lower panel.

but the third would still be unrestricted in the I(1) model, invalidating some
of the interpretation of the empirical results as discussed in Section 3. The
graphs of the first two cointegration relations, reported in Figures 3 and 4,
illustrate the effect of a near unit root. Based on the graphs, it is difficult
to argue that B.x;, i = 1,2, is mean-reverting as an equilibrium error should
be. However, 3:R;; (in the lower panel) looks much more mean-reverting, at
least for r = 1. This, of course, is exactly in accordance with (13). Thus, only
{r =1,s1 =1, s, = 1} seems acceptable based on the characteristic roots of
the model and the graphs of the cointegration relations.

It is also useful to investigate the general pulling and pushing properties
of the model described by the test of a unit vector in v and a zero row in «
(Juselius, 2006, Chapter 11) and how they would be affected by the choice
of rank. In the lower part of Table 2 the tests of 'no levels feed-back’ (a zero
row in ) and 'pure adjustment’ (a unit vector in ) are reported for r = 1
and r = 2. For r = 1, none of the variables are found to purely pushing or
pulling. For r = 2, there is some evidence that the two prices are exclusively
adjusting (though the hypothesis that they are jointly adjusting is rejected).
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Figure 4: The graphs of the second cointegration relation. 3'x; in the upper
panel, 3R in the lower panel.

Altogether, the empirical evidence suggests that prices are 'more’ pulling
than pushing which is an interesting observation as one would expect the
opposite during a currency float.

4.3 Estimating the long-run structure

Table 3 reports the estimates of a, 3, I'1 and ® for the choice of » = 1. The
estimated B3 relation suggests that p;, and p,; are almost homogeneously
related. Testing the hypothesis gives a test statistic x*(1) = 0.56[0.46] and,
thus, price homogeneity of 3'x; seems acceptable* when allowing for a broken
trend. The presence of a broken linear trend might seem difficult to interpret
but is probably a proxy for omitted variables effects, such as the effect of
productivity differentials on relative prices, the so called Balassa-Samuelson
effect (Balassa, 1964, Samuelson, 1964). The change in the trend slope at re-
unification supports this interpretation. What is more surprising, however,

*When the data are I(2) price homogeneity of 3'x; is a necessary, but not sufficient
condition as will be discussed in Section 7.
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Table 3: The estimated short-run dynamic adjustment structure

Apyy 0.21 0.12 0.01 Api_1
[4.50]  [2.31] [2.06]
Apgyt — 0.10 0.52 0.00 Ap2,t71
[2.21] [10.23]  [0.38]
A8127t 092 —-1.44 -0.01 A512 t—1
[1.15]  [-1.59] [-0.18] '
1(1) Ty 1(1)
—0.01 0.00 0.02
[-3.92] (L.77]  [4.09] D.91.1 €1t
—0.02 ! 0.00 0.03 sIL- 7
+ [—5.92] [ Bixi ] + [0.16]  [6.21] [ Lo } T | e2
—-0.17 (1) 0.01 0.22 €3¢
[—3.05] [2.57]  [2.96] ——
—_——— ~ ~ ~ 1(0)
« [0
where
Blx; = 1.0p; ¢ —0.81 py; + 0.18515; —0.0022 ¢ ; + 0.0022¢
(=7.76] [4.39] [—4.81] 3.96]
and
1.00
Q= 0.12 1.00

—0.58 —0.07 1.00

is that the sign of the nominal exchange rate is opposite to the expected one.
Based on Figure 1 it is easy to see why: over the sample period relative prices
and nominal exchange rates have frequently moved in opposite directions for
extended periods of time. For this reason, the data do not support the ppp
restrictions (1,-1,-1) on 8.

The estimated a coefficients show that German prices and nominal ex-
change rates have been equilibrium correcting to the estimated 3 relation
whereas US prices have been increasing in the equilibrium errors. The over-
all behavior of the system is, nevertheless, stable as the other two variables
compensate for the error increasing behavior of US prices. The estimated
coefficients of I'; show that lagged inflation rates are quite significant in the
price equations, whereas the lagged depreciation/appreciation rate is only
significant in the German price equation. As already demonstrated in Sec-
tion 3, the lagged changes of the I(2) variables in I'; are needed to achieve
stationarity of 3Ry ;.

The estimates of a;;, 3,; and C in the MA representation of the /(1)
model are almost all insignificant and are not reported here. This is because
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the stochastic trends in the (1) model are measured by the once cumulated
residuals, whereas the data are generated by second order stochastic trends,
measured by the twice cumulated residuals. Thus, when data are I(2) the
MA representation of the I(1) model is completely uninformative.

Based on the above results, it would be hard to argue that the data are
not empirically 7(2) and the next step is, therefore, to address the PPP
puzzle in the correct framework of an 7(2) model.

5 Representing the /(2) model

5.1 The basic structure

As discussed in Section 1, formulation (3) is convenient when data are I(2):

A’x;p = PAXg1 + TIXe 1 + prg+por Doornetpat+paators + 8,0, + e,
(16)
where the deterministic components are in Section 4.1. Similar to the I(1)
model, we need to define the concentrated 7(2) model®:

R07t = FRl,t + HRQ,t + & (17)

where Ro ¢, R1 ¢, and Ry, are defined by:

A?x, = byg + byt + Blle,t + Blsz,t + Roy, (18)
AR,y = byg + byt + leDs,t + Bzsz,t + Ry, (19)
Xy_1 = bag + bat + BSle,t + B32Dp,t + Roy. (20)

and X; indicates that x; has been augmented with some deterministic com-
ponents such as trend, constant, and shift dummy variables. The matrices
IT and T are subject to the two reduced rank restrictions, IT = o’3, where
a, are p x r, and &, T3, = £n', where &, are (p — ) X s1. The model
in (16) contains an unrestricted constant with a shift, a broken trend and
a few impulse dummies that will have to be adequately restricted to avoid
undesirable effects, as discussed in Section 5.2.

The moving average representation of the 7(2) model (Johansen, 1992b,
1996,1997) with unrestricted deterministic components is given by:

When the lag k > 2, there would also be lagged acceleration rates, A?x; 1, to con-
centrate out.
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t J
> (i 4 po + pyi 4 poy Dsgr1; + Dy )
—1i=1

x; = Gy

J
t

+C1 Yo+ 1o+ H1J + Mo Dsgr1,; + ,Dp )

j

+C*(

(21)

1(
(¢ + pg + pyt + o1 Ds 1.1, + (I)pr,t) + A+ Bt

where A and B are functions of the initial values x¢,x_1,X_», and the coef-
ficient matrices satisfy:

Cy, = ﬂu(fxlu‘l’ﬁu)_lalw

BCi = —aTC,; pf,Ci=-a)(I-¥Cy), (22)
v = I'gaT+1-T,

where the notation o = og(ae’oz)_1 is used all through the chapter. To
facilitate the interpretation of the I(2) stochastic trends and how they load

into the variables, it is useful to let 3,5, = B, 5(a/,¥B5) "}, so that

Cy = B, (23)

It is now easy to see that the C, matrix has a similar reduced rank rep-

resentation to C; in the I(1) model, so it is straightforward to interpret

o' ) > e; as a measure of the s, second order stochastic trends which load
into the variables x, with the weights 3 Lo

From (22) we note that the C; matrix in the /(2) model cannot be given

a simple decomposition as it depends on both the C, matrix and the other

model parameters in a complex way. Johansen (2007) derives an analytical
expression for Cq, essentially showing that:

Ci =wod + wid|| +wsa|, (24)

where w; are complicated functions of the parameters of the model (not to
be reproduced here).

To summarize the basic structures of the I(2) model, Table 4 decom-
poses the vector x; into the directions of (3,8 ,,,8,,) and the directions
of (o, ¢} |, o 15). The left hand side of the table illustrates the 8,3, direc-
tions, where 3'x; + & Ax, defines the stationary polynomially cointegrating
relation, and @'/ ;x; the CI(2,1) relation that can only become stationary
by differencing. The 3, 3, relations define the two stationary cointegration
relations between the differenced variables, 7/Ax;. Finally, B ,x; ~ I(2) is a
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Table 4: Decomposing the data vector using the I(2) model

The 8,3, decomposition of x; The a, a; decomposition
r=1 [B1x; + 61A%x,| ~ I(0) a;: short-run adjustment coefficients
——  ——
1(1) 1(1)
s1=1 B x ~ I(1) o/, S0 e I(1) stochastic trend

p—s3=2 TAx=(B,811)Ax ~ 1(0)

sy =1 Box: =7\ x4 ~ 1(2) o, S 370 e 1(2) stochastic trend

non-cointegrating relation, which can only become stationary by differencing
twice. The right hand side of the table illustrates the corresponding decom-
position into the o, | directions, where a define the dynamic adjustment
coefficients to the polynomially cointegrating relation, whereas ax;; and a5
define the first and second order stochastic trends as a linear function of the
VAR residuals.

5.2 Deterministic components

A correct specification of the deterministic components, such as trends, con-
stant and dummies, and how they enter the model is mandatory for the 1(2)
analysis. This is because the chosen specification is likely to strongly affect
the reliability of the model estimates and to change the asymptotic distrib-
ution of the rank test. Because the typical smooth behavior of a stochastic
I(2) trend sometimes can be approximated with an /(1) stochastic trend
around a broken linear deterministic trend, one can in some cases avoid the
I(2) analysis altogether by allowing for sufficiently many breaks in the lin-
ear trend. Whether one specification is preferable to the other is difficult to
know, but we need to pay sufficient attention to this question, as the choice
is likely to significantly influence the empirical results.

In the present data, the reunification of Germany is likely to have sig-
nificantly affected German prices, but not US prices. The raw data exhibit
an extraordinary large shock in A%p;; due to the reunification in 1991:1. A
big impulse in A?p;, cumulates to a level shift in Ap;,;, and double cumu-
lates to a broken linear trend in p; ;. Thus, accounting for the extraordinary
large shock at 1991:1 with a blip dummy in A%p;;, a shift dummy in Ap;,
is econometrically consistent with broken linear trends in prices. Because
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such a broken linear trend may or may not cancel in 3'x;, the model should
be specified to allow for a (testable) broken linear trend in 3'x;. Likewise,
the level shift may (or may not) cancel in §’Ax; or 7/Ax;. Thus, the model
specification should allow for this possibility. Inspecting the graphs in Figure
1 shows an increasing trend in both prices and a downward sloping trend in
relative prices and the question is whether the latter is cancelled by cointe-
gration with the nominal exchange rate.

Whatever the case, quadratic or cubic trends will be excluded from the
outset and the model specification should account for this.

To understand the role of the deterministic terms in the 7(2) model, it
is useful to specify the mean of the stationary parts of (16) allowing for the
above effects (so that they can be tested), while at the same time excluding
cubic or quadratic trend effects.

The mean of A%x; should be allowed to contain the impulse dummies as
these do not double cumulate to quadratic trends, i.e.:

EA2Xt = Qpr,t

The mean of the polynomially cointegrated relations should be allowed
to have a trend and a broken linear trend in 3'x; and a constant and a shift
dummy in §Ax,, i.e.:

The mean of the difference stationary relations 7' Ax; should be allowed
to contain a step dummy and a constant, i.e.:

E(T'Ax;) = wo + w1 D91.1,

The question is now how to restrict gy, o1, fq, and pq; in (16)° to allow
for the deterministic components in the above mean values while suppressing
any quadratic or cubic trend effects in the model. The general idea will only
be demonstrated for the constant term g, and the linear term p, as the
procedure is easily generalized to the step dummy and the broken trend. A
more detailed discussion is given in Juselius (2006, Chapter 17).

First, the constant term p, is decomposed into three components propor-
tional to a, a1 and o 5:

g = Yy + 117y, + Q2. (26)

The step dummy g, is similarly decomposed:

6 At this stage, ®, will be left unrestriced in the model.
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Koy = OYgp + 0117y + Q129

To investigate the effect of an unrestricted constant on x;, (26) is then in-
serted in (21) using (23) and (24) . The effect of cumulating the constant
twice is given by:

t t
CQ Z Z Ko — Z Z LQaLQ 7o + 117 + aJ_272)

= fguauau’h( (t-1)/2) (27)

as o' ,a =0 and o ,a,; = 0. Thus, an unrestricted constant term in the

VAR model will allow for a quadratic trend in x; so we need to restrict the

o » component of p, to avoid this. How to do it will be discussed below.
The effect of cumulating the constant term once is given by:

¢
Cy Z po = (woo +wia; +waady) Z(a'Yo + oy + aneys)

j=1
= [(‘*’Oala')’o + wlalloﬂﬂ’l + w2al204u’7’2)]t (28)
o T s

as &’ 1=0, &’ o= 0 and &, ;a2 = 0. Thus, there are three different
linear trends associated with the C; components of the constant term.

Most applications of the 7(2) model are for nominal variables implying
that linear trends in the data is a natural starting hypothesis (as average
nominal growth rates are generally nonzero). To achieve similarity in the
rank test procedure (Nielsen and Rahbek, 2000), the model should allow
for linear trends in all directions consistent with the specification of trend-
stationarity as a starting hypothesis in (25). This means that p,t # 0 and
Wi1te11 # 01in (16), so the vector gy and g, need to be decomposed similarly
to the constant term and the step dummy:

My =Qpg+aripy + iapy

and
By = Py + 1Py + Q2P

We now focus on the linear trend term. The effect of cumulating this
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term twice is given by:

t g toJ
& Z Z Myt = Z Z B 120 15(apy + ai1p; + izpy)i

j=1 i=1 j=1 i=1
t J
= B2 s 2y (29)
1201201 2P9
j=1 i=1 ~

Thus, unless we restrict acj2p, = 0 the model will allow for cubic trends in
the data. The I(2) procedure in CATS in RATS (Dennis et al. 2005) imposes
this restriction. The effect of cumulating the linear trend term once is given
by:

t

t
Ci) i = Y (wod +wid| +wady)(apy + i) + aizp,)]
=1 =1
t

= Z(woa'apo +widjaipy + wad ,a0p,) ] (30)
=1 £0 =0 =0

It appears that all three C; components of the linear trend will generate
quadratic trends in the data. Based on (29) we already know that o 2p, = 0.
Unless we are willing to accept linear trends in o/, ;Ax,;”, we should also
restrict a1 p; = 0. This leaves us with the o component of C;, which cannot
be set to zero, because ap, # 0 is needed to allow for a linear trend in 3'x;.
The problem is that a linear trend in a polynomially cointegrating relation,
unless adequately restricted, generates a quadratic trend in x;. However, this
can be solved by noticing that aj 57, # 0 in (27) also generates a quadratic
trend in x;, so that by restricting woa’apy, = —8 |, ;a1 275, the two trend
components cancel and there will be no quadratic trends in the data. The
trend-stationary polynomially cointegrated relation in Rahbek et al. (1999)
was estimated subject to this constraint.

To summarize: To avoid quadratic and cubic trends in the I(2) model
we need to impose the following restrictions: p; = p, = 0 and woad’ap, =

/ — _ ! _ !
—B 120 50 127,, as well as py; = py; = 0 and wod'apy; = —B 150,197y
to avoid broken quadratic and cubic trends.

"A linear trend in o’ ; Ax; would imply that inflation rate, say, is allowed to grow with
a linear trend and, thus, prices with a quadratic trend. It would be hard to argue for such
a specification except, possibly, as a local approximation.
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6 Estimation in the /(2) model

Johansen (1992) provided the solution to the two step estimator and Jo-
hansen (1997) to the full ML estimatior. Even though the two-stage proce-
dure gives asymptotically efficient ML estimates, the small sample properties
of the ML estimates are generally superior (Nielsen and Rahbek, 2007) and
all subsequent results are based on the ML procedure.

6.1 The ML procedure

Section 1 showed that there is an important difference between the first
and second rank condition. The former is formulated as a reduced rank
condition directly on IT, whereas the latter is on a transformed I". The full ML
procedure exploits the fact that the I(2) model contains p — s, cointegration
relations, 7'x;, where 7 =(3, 3 ;) define r + s; = p — s5 directions in which
the process is cointegrated from (2) to I(1). This means that 7 can be
determined by solving just one reduced rank regression, after which the vector
space can be divided into 3 and 3 ;. This is the basic reason for the following
parameterization of the I(2) model proposed by Johansen (1997):

A’x, = o(p' TR + "}/Ait—l) + W' F AR+ ®,D,; + ®,Dy s + &y,
—— ——  N—— ——

1(0) (1) 1(1) 1(0)

1(0)
Ep ~ Np(O,ﬂ ), t = ]_, 7j—‘

(31)
where p = (I,0) is a (r + s1) X r selection matrix designed to pick out the r
cointegration vectors 3'x; (so that p'v'= ), ¥ = —(a/Q'a ) 'a/Q7'T,
w' = _QaL(aﬁ_Qai)il(aﬁ_FﬁZE)a pl%, = [IBIaPOapm]? 1/"/ = [¢/a70a701]7
X, = [x},t,t83] and AX] = [Ax]}, 1, Ds831].

The FIM L estimates of 7 =(3,3 ;) are obtained by an iterative proce-
dure which at each step delivers the solution of just one reduced rank problem
and the eigenvectors give the estimates of 7. Thus, the vector x; is decom-
posed into the p— s, directions 7 = (3,3, ,) in which the process is I(1) and
the so directions 7= B3, in which it is (2). For given values of (3,3 ;) it
is possible to derive all the remaining matrices (o, ;1 1, @ 2,3,5).

The matrix ¢ in (31) does not make a distinction between stationary and
nonstationary components in Ax;. For example, when x; contains variables
which are I(2), for example prices, as well as I(1), for example nominal
exchange rates, then some of the differenced variables picked up by v will
be I(0). As the latter do not contain any stochastic /(1) trends, they are
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by definition redundant in the polynomially cointegrated relations. The idea
behind the parameterization in Paruolo and Rahbek (1997) was to express
the polynomially cointegrated relations exclusively in terms of the differences
of the I(2) variables. This was achieved by noticing that

YAx, =P (77 + 77 ) Ax .

The model given below is based on the Paruolo and Rahbek parameteriza-
tion. As discussed in Section 5, the (broken) trend has been restricted to be
proportional to a, and the constant and the shift dummy to be proportional

to ¢.

( )
9 Xi—1 AXt—l
/ !
A%x = aq [B, po, Poil t + 0", 7Y0: You! c
1(0) . lo1.1 . D,91.1, 4 J
A F(I) v) ),
1(0) (32)
Ax,_
/ t—1
_|_C' IB/? 7p£)7 p91 c + @pr7t + €t7
Zdoedo b | Dot
N T J/
1(0)

whereeg; ~ N,(0,Q2),t=1,...,.T,8 =7, 7 withy' = —(a/Q ') 1 /Q7'T,
('=¢v't— Qo (&, Qa ) N/, T'B,€) and € is defined in (5)

The relations B'%; + SlAfit, with 3" = (3, po, Po1], X, = [X},t, te1.1], 5 =
6", 70, Yo1] » and AX, = [Ax}, 1, D,91.1], define r stationary polynomially
cointegrating relations, whereas the relations 7' AX; define p — s, stationary
relations between the growth rates.

6.2 Linking /(1) with /(2)

It is useful to see how the formulation (32) relates to the usual VAR formu-
lation (3). Relying on results in Johansen (1997) the levels and difference
components of the unrestricted VAR model (3) can be decomposed as:

26



FAx, ; +1Ix,; = (FB) B'Ax,_y
—_———

1(0)
+(aaTB | + ay1) BllAXt—l
—_—

_E 1o (33)
+(aa'TB ;) B A%y
———
(1)
+afB'x,-1
——
I(1)

where B8 = B(8'8)"' and « is similarly defined. The decomposition de-
scribes three types of linear relations between the growth rates, B’ Ax,_,
B’ Az jand @' ,Ax, 1, of which the first two define 7(0) relations and the
third an I(1) relation. The coefficients in soft brackets define the correspond-
ing adjustment coefficients.

Since 3 ,Ax;_1 is I(1), it needs to be combined with another /(1) variable
to become stationary. An obvious candidate for this is 3'x,_;. It is now easy
to see how the parameterization in (3) relates to the one in (32):

a(,@'xt_l + (ETBH) ﬂlQAXt_l) = a(ﬂ’xt_l + 5/AXt_1). (34)

Finally, when r > sy the long-run matrix IT can be expressed as the sum of
the two levels components measured by:

II = aBy + a3}

where (3(x;_1 defines r — sy directly stationary C1(2,2) relations, whereas
B1x;_1 defines sy nonstationary CI(2,1) cointegrating relations which needs
to be combined with the differenced process to become stationary through
polynomial cointegration.

Thus, the /(2) model can distinguish between the C'1(2,1) relations be-
tween levels {8'x;, 3 ;x;}, the CI(1,1) relations between levels and differ-
ences {3'x;_1 +8"Ax,}, and finally the C'I(1, 1) relations between differences
{7'Ax;}. As a consequence, when discussing the economic interpretation of
these components, the generic concept of a ”long-run” equilibrium relation
needs to be modified accordingly. Juselius (2006, Chapter 17) proposed the
following interpretation:

o 3'x; + 6’ Ax; as r dynamic long-run equilibrium relations, or alterna-
tively when r > s

— Byx; as T — sy static long-run equilibrium relations, and
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— Bx; + 81Ax; as sy dynamic long-run equilibrium relations,

o T'Ax; as medium-run equilibrium relations.

7 'Two hypothetical scenarios

To be able to structure and interpret the empirical VAR results, it is useful
to formulate a scenario for what we would expect to find in the VAR model,
provided the reality is in accordance with the assumption of the theoretical
model. For example, the first scenario below is specified for the hypothesis:
{ppp: ~ 1(0), prices are pushing and the nominal exchange rate is pulling}
under the assumption that x; is empirically /(2).

We shall discuss the following two cases, (1) r = 2, which correponds to
the theory consistent case, and (2) r = 1, which is what we find in the data.
In both cases it will be assumed that long-run price homogeneity holds, i.e.
/BIJ_Q = [¢,¢,0].

Case 1: {r =2,s1 =0, sy = 1} is consistent with:

D1 & toJ by J €1t
P2t | = | € E E ur; + | b2 E Up; + | €24 (35)
S12,t 0 | j=1i=1 bs | i=1 €3¢

It is easy to see that (p1+ — pey) ~ I(1) and (p1t — p2r — S124) ~ 1(0)
if (by — by) = b3. When the nominal exchange rate is adjusting (and price
shocks are pushing) one would have that u;; = &/, ,&; with &/} = [a1, a2, 0].
This scenario would imply two cointegrating relations, one of which is directly
cointegrating, because r—ss = 1, and the other is polynomially cointegrating,
because s, = 1. It is easy to show that the directly cointegrating relation is
the ppp relation, i.e. (p1+—pos—Si2¢) ~ 1(0). The polynomially cointegrated
relation is more difficult to see and it is helpful to examine the system based
on the nominal-to-real transformation (Kongsted, 2005)®:

Pt — D2y b1 — by J €1t
Api = c E Ui + | Eop
S12.¢ b3 i=1 €3t

It is now straightforward to show that {pi1; — pas + wAp1 .} ~ 1(0), if ¢ =
—(by — by/w). Alternatively, if ¢ = —bg/w, then {si2; +wAp;,} ~ 1(0). In
both cases the polynomially cointegrating relation can be thought of as a

8From a statistical point of view, an equivalent transformation would be achieved by
replacing Ap; with Aps.
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dynamic equilibrium relation describing how the inflation rate adjusts when
relative prices have been pushed apart, i.e. Apiy = —1/w (p1s — pay). It
simply states the obvious that the inflation rates have to react in a non-
homogeneous manner if relative prices move persistently apart.

Case 2: {r =1,s1 = 1,s, = 1} is consistent with:

J

D1t c toJ bir b2 >, U5 €1t
_ i=1

P2 | = | € E E Ui+ | bar bao 3 + | €24

S12,t 0 | j=1i=1 bz1 b3z > Uy €3,t
i=1

In this case there is not in general a directly cointegrating relation, as
r—sg = 0, but one polynomially cointegrating relation, as s = 1. Again, the
properties can be more easily discussed in the nominal-to-real transformed
system:

J
Pt — D2 bii — bai b1z — bao Z Ui 4 €1t
Apl,t = & 0 1?1 + gg’t
S12,¢ b3y ba Z U2 5 €3t
i=1

It is now easy to see that stationarity of ppp; can only be achieved in the
very special case when by; — by = bzy and big — bay = bzg, implying that 0
in (32) takes the value zero. Generally, empirical support for ppp; can only
be achieved by polynomial cointegration, i.e. in the form of a dynamic long-
run adjustment relation. For example, if bjs — bys = b3p and ¢ = —(by; —
b21 — b31)/w, then {pl,t — P2 — S12¢ +CL)A]91¢} ~ ](0) The latter can be
interpreted as evidence of the following dynamic adjustment relation: Ap; ; =
—1/w{p1+ — p2+t — S12:¢} - In this case, either inflation rates or the currency
depreciation/appreciation rate have to move in an offsetting direction when
ppp has persistently deviated from its benchmark values.

Thus, the outcome of testing rank indices in the 7(2) model has strong
implications for whether support for a stationary relation can be found or
not.

8 An /(2) analysis of prices and exchange rates

8.1 Determining the two rank indices

The number of stationary multi-cointegrating relations, r, and the number of
I(1) trends, s1, among the common stochastic trends, p—r, can be determined
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Table 5: Determination of rank indices

r p-Tr 82:3 82:2 82:]. 82:0
0 3 027.6  293.9 118.10 80.06
[110.9] [89.3] [71.9] [57.9]

1 2 96.88 32.25 32.65
[64.4] [48.5) [36.6]

2 1 8.20 6.72

[28.7] [18.4]

The 4 largest characteristic roots, r = 2

51=0 sp=1 1.0 1.0 098 0.53

The 4 largest characteristic roots, r = 1

s51=2 83=0 1.0 1.0 099 0.53

s1=1 s, =1 1.0 1.0 1.0 0.53

Note: 95% quatiles in []

by the M L procedure in Nielsen and Rahbek (2007), where the trace test is
calculated for all possible combinations of r and s; so that the joint hypothesis
(r,s1) can be tested as explained below.

Table 5 reports the ML tests of the joint hypothesis of (7, s;) which corre-
sponds to the two reduced rank hypotheses in (4) and (5). The test procedure
starts with the most restricted model (r = 0,57, = 0,52 = 3) in the upper
left hand corner, continues to the end of the first row (r = 0,57 = 3,59 = 0),
and proceeds similarly row-wise from left to right until the first acceptance.
Based on the tests, the first acceptance is at (r = 1,57 = 1,82 = 1), which
was also the preferred choice in Section 3. The last column of the table cor-
reponds to the I(1) trace test. When the data are I(2), determining the rank
r exclusively on this test can often lead to incorrect results.

Our model has a broken linear trend restricted to the polynomially coin-
tegrated relation and a shift dummy restricted to the differences. Because of
this, the standard asymptotic trace test distributions (for example, provided
by CATS for RATS) are no longer correct. The critical values given in brack-
ets below the test values have been kindly provided by Heino Nielsen using
a simulation program described in Nielsen (2004): see also Kurita (2007).
The inclusion of a broken linear trend in the cointegration relations shifts
the distributions to the right, implying that the test will be undersized if one
ignores the effect of the broken trend.

Table 5 also reports the characteristic roots in the VAR model for » = 1
and 2. For {r =2,p—r =1} there is just one common stochastic trend,
which has to be (2) if the data are I(2). The choice of {r =2, s, = 1} will
impose two unit root restrictions on the characteristic roots of the model.
As already discussed in Section 4.2 and confirmed in Table 5, this leaves one
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large unrestricted root, 0.98, in the model. Such a root is not statistically
distinguishable from a unit root and would give problems if left unrestricted
in the empirical model. When r = 1, the choice {r = 1,51 = 1,s5 = 1} ac-
counts for all three near unit roots in the model with 0.53 as the largest
unrestricted root, whereas the choice of {r =1,s; =0, sy = 2} corresponds
to 4 unit roots in the model and basically forces 0.53 to be a unit root. Alto-
gether, the results strongly suggest that {r = 1,s; = 1, s3 = 1} is the correct
choice.

That r = 1 is an important result, as the two scenarios in Section 7
showed that a stationary ppp; is inherently associated with one stochastic
trend having generated prices and nominal exchange rates. Thus, the finding
of p — r = 2 suggests that there exists another source of permanent shocks
that have contributed to the persistent behaviour in the data. A plausible
explanation will be given in the concluding section.

8.2 The pulling forces

The scenarios above assume long-run price homogeneity. In Section 5, this
hypothesis was tested on 3'x; (see Johansen, 2006) and was accepted with
high p-value. However, when x; ~ [I(2), long-run price homogeneity is de-
fined on 7'x;, where 7" = [3,3,,]. Hence, long-run homogeneity on 3 is a
necessary, but not sufficient condition. When tested, long-run price homo-
geneity of 7/x; was strongly rejected based on x?(2) = 22.95[0.00] and 3, ;x;
cannot be considered homogeneous in prices. As a matter of fact, the results
in Table 6 demonstrate that the coefficients to prices in 3, are proportional
to (1, 1) rather than (1, -1). This, of course, is just another piece of evidence
associated with the ppp puzzle.

Table 6 also reports the estimates of short-run adjustment dynamics
towards the estimated long-run equilibrium relations. The I(2) model is
parameterized according to (32). We note that the I(2) model allows the
VAR variables to adjust to a medium-run equilibrium error, 3’ ;A%x; i, to a
change in the long-run ’static equilibrium’ error, 3’ AX,_;, and to the long-run
’dynamic equilibrium’ error, 3'%; ;1 +  AX;_;. In this sense, the I(2) model
offers a much richer dynamic adjustment structure than the 7(1) model.

When discussing the adjustment dynamics with respect to the polynomi-
ally cointegrating relations, it is useful to interpret the adjustment coefficients
a and d as two levels of equilibrium correction. Consider, for example, the
following model for the variable z; ;:
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Table 6: The dynamics of the short-run dynamic adjustment

A’pyy —0.01
[—4.98]
2
A p27t - T_%(?ﬁ? \|: /83th1 + 53Axt,1 l
A?s194 —-0.13 1(0)
R 3 [—3.41]
1(0) 4
—0.51 —-0.25
[-11.97] [-11.15] c
.| 020 —o1a |[ Bidxea ]|
[7.25] [-6.51] /6/J_1 1AXt,1 2,t
1.19 0.06 |~ —- €3t
[1.66] [0.15] 1(0) ——
~- - 1(0)
¢
where
ﬁ’lxt + 6’1Axt = l'Opl,t —0.85 D2t + 0. 9812,t —0.0025 tgl.l + 0.0024¢t+
[-7.68] [15.08] [—5.99] 8.34]

+2.61 Apy, + 5.21 Apy; +9.31 Asyy, — 0.10 D,91.1

ﬂlJ_IAXt_l =1.01 Ath +1.0 ApQ,t —0.84 ASlQ,t +0.01 Atgl‘l —0.01 A¢

Note: t-ratios in []

,
Al = Z i (05A% 1 + Bjxy 1) + - - - (36)
j=1
If a;;0;; < 0 for j = 1, ..., r, then the acceleration rates, A%z;, are equilibrium
error correcting to the changes Az;;, and if 6;;8;; > 0 for i = 1,..,p, then
the changes Ax;;, are equilibrium error correcting to the levels x;;. In the
interpretation below we shall pay special attention to whether a variable
is equilibrium error correcting or increasing as defined above, as this is an
important feature of the data.

Based on the estimates in Table 6, it appears that the acceleration rates
of prices and nominal exchange rates are all equilibrium error correcting
to their respective growth rates. When it comes to the relationship between
growth rates and levels of variables, there is just one polynomial cointegration
relation to check for equilibrium correction, but the check has to be done for
all three growth rates. To make the equilibrium correction property more
visible, the relation 8’ Ax,_;+3'x;_1 has been formulated in three alternative,
but equivalent, ways:

32



100
751
501

I

0.

o

I
i MH

’“\ U H\

h M“

The polynomially cointegrated relation

ﬂ | m
i 1‘ i

I

-25¢

5.0

“ W
ol
I

V

““V ”

\
HW
H‘
\

| H‘

|
!

il

I
|

|
|

|
M‘ M\
‘M Il \\

‘\“ U

2 | -

I
1980

I I I
1985 1990 1995

Figure 5: The graph of the polynomially cointegrated relation 3'x; +& Ax;.

Apl t = = —0. 38(]91 t—O 85]?2 t—f—[() 19]812 t—O 0025t91 1+0 [00%5t) 2.0 Ap27t—3.5 A812’t
[~7.68] [—5.99]

Apg?t = 016<p2t 1. 15 1t—[0 25]812 t+0 003t91 1—0[ 00}315) 0.50 Ath—]..S A812’t
[-7.68] 15.08 [~5.99)

ASlgt = —0. 02(812 t_4 5p2 t+5 5p1 t—|~0 013t91 1—0[ O].]-?)t) —0.28 Apl,t—0.56 Apg,t
[7.68] [-5.99]

It appears that the polynomially cointegrated relation is consistent with
equilibrium correction behavior in the German inflation rate and the Dmk/$
depreciation/appreciation rate, whereas the US inflation rate is error increas-
ing. The lack of equilibrium error correction in US prices, already commented
on in Section 4.3, is an interesting empirical finding that is likely to be related
to the ppp puzzle.

Ideally, one would like to interpret the above relations as dynamic adjust-
ment of growth rates to a long-run static equilibrium relation, as described in
the second scenario in Section 7. In the present case, this is not straightfor-
ward because the nominal exchange rate has the wrong sign in 3'x;. There-
fore, the latter cannot be given an approximate interpretation of a long-run
ppp relation. Whatever the case, Figure 5 illustrates that the polynomially
cointegrated relation is strongly mean reverting.

Finally, the estimated adjustment coefficients, ¢ = [(;, (5], to the growth
rate relations, 3]Ax; ; and 3 ;Ax; 1, show that it is primarily the two
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prices that are adjusting. Both German and US prices are equilibrium ad-
justing to the first ’growth rates’ relation, 31Ax; ; = 1.0Apy; — 0.85Apy; +
0.20As124, but German prices more quickly so. The second ’growth rates’
relation, 3’| ;Ax; 1 = 1.01Ap;; + 1.0Apy; — 0.84As15,; is more difficult to
interpret. It essentially says that the change in the Dmk/$ rate has been
proportional to the sum of German and US inflation rates, rather than to
the inflation spread. As the coefficients of 3, are the opposite of price ho-
mogeneity, the results explain why long-run price homogeneity in 7 was so
strongly rejected.

That inflation rates are moving in opposite directions is a puzzling and
even implausible result. Therefore, it is useful to check whether this result
still holds for the combined estimates, {7'Ax,, calculated below:

Apu Ap2,t A812,t
A2pyy —0.75 0.18 0.10
A2p2,t : 044 —-0.13 0.04
A2812’t : 1.25 —1.00 0.17

Fortunately, the combined estimates are more plausible: German as well
as US inflation rates are now equilibrium error correcting to each other. The
US inflation rate is equilibrium error correcting to German price inflation
with the correct sign but to the Dmk/$ rate with an "incorrect’ sign. However,
the coefficient is very small and may not be significantly different from zero.
Finally, the Dmk/$ rate is not equilibrium error correcting but even error
increasing with the US-German inflation spread. Since the coefficients (5
and (5 were both insignificant this is, however, not necessarily an empirically
strong result.

To summarize, the VAR analysis has detected four puzzling results:

1. Nominal exchange rates tend to move in the opposite direction to rel-
ative prices for extended periods of time.

2. The US inflation rate is not equilibrium error correcting to 3'x;.

3. Changes in the nominal exchange rate either do not seem to have been
significantly responding to movements in relative inflation rates or, if
they have, in an equilibrium increasing manner.

4. The US inflation rate does not seem to have been responding to this
’adverse’ behavior of the change in the Dmk/$ rate.
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8.3 The estimated driving forces

The scenario in Section 7 can now be directly assessed based on the esti-
mates of the MA representation in Table 7. The results clearly show that
the empirical reality has deviated quite substantially from the assumed the-
oretical scenario. For example, the estimated loadings to the I(2) trend,
3,5, show that the price coefficients are not even close to being equal as
assumed by the long-run homogeneity hypothesis. Given the previous rejec-
tion of long-run price homogeneity, this result should, of course, not come
as a big surprise. However, what is more surprising is that the coefficient to
the Dmk/$ rate is not even close to zero, suggesting that s, is empirically
I(2) rather than I(1) as assumed in the scenario. Another surprising result
is that, given the estimates of 3 ,, the I(2) trend does not seem to cancel in
ppp = p1 — P2 — S12. For this to be the case, the coefficients would need to be
proportional to 3, = [a, —a, 2a].

That the real exchange rate is empirically /(2) would be hard to rec-
oncile with standard theories. However, the theory of imperfect knowledge
economics (Frydman and Goldberg, 2007) does in fact explain such a result.
Frydman et al. (2008) demonstrate that, under highly plausible assumptions
on agents’ behavior, speculative transactions in the foreign exchange mar-
ket are likely to generate pronounced persistence in nominal exchange rates
that would be hard to distinguish from a near /(2) process. Johansen et al.
(2008) find strong evidence for this to be the case based on the same US-
German data analyzed here, but extended with short- and long-term interest
rates. They also find that the ppp transformed variable exhibits highly per-
sistent behavior that can be considered either empirically near-1(2) or I(1),
depending on whether emphasis is on size or power.

The estimated a5 shows that it is shocks to relative prices (but with a
larger weight on US prices) and to nominal exchange rates that seem to have
generated the stochastic I(2) trend. Contrary to the scenario, the coefficient
to the nominal exchange rate is significant and the sign is opposite to the
expected one. The estimated o, describing the stochastic (1) trend, shows
that a weighted average of inflationary shocks in Germany and the US have
generated the medium run movements in prices and exchange rate.

These results seem to strengthen the previous conclusions: standard theo-
ries of price determination in the goods market cannot explain the long swings
in real exchange rates. The overriding impression it that it is the nominal
exchange rate that is behaving oddly, suggesting that the long swings puz-
zle needs to be solved together with another international macro puzzle, the
forward premium puzzle. This will be discussed in the concluding section.
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Table 7: The common stochastic trends and their loadings

Pt 0.04
poi | =] 009 | [/, > &+
5124 0.16

+ | Co1 Coo

C11 Ci12 / ~ bll b12
(81 &g; t
[ ¢2,1Z } | by by [ 91.1 ]

o/ él t
C31 (32 M’lz bz1 b3z
where
a’u’lét = _0‘57ép1,t + 1-Oép2,t —0.09 ésm,t
[—4.03] [—2.32]
o & =0.25¢ 0.14¢,, , —0.04 ¢,
11,1¢t [6.79] p1,t + [2.52] p2,t 182 12,t

8.4 What did we gain from the /(2) analysis?

Section 4 reported estimates and tests using the /(1) model even though
data were empirically 7(2). The question is whether the 7(2) analysis has
changed some of the previous conclusions, or provided new insight that could
not have been obtained from the /(1) analysis.

To facilitate a comparison of the I(1) and 7(2) models, it is useful first
to subtract Ax;_; from the both sides of the equation in (15) estimated in
Section 4. The vector process would then be formulated in second differences
A%x,;, and T'; would become I' = T'; — I. In terms of likelihood, the two
models differ only with respect to I, which is unrestricted in the /(1) model
but subject to one nonlinear parameter restriction in the 7(2) model.

The estimates of the B and « coefficients are very similar in the two
models, but their standard errors are smaller in the /(2) model resulting in
larger ¢ ratios. This is because in the I(2) model the super-super consistency
of 3 is adequately accounted for and because the 3 relation has been directly
estimated as a polynomial cointegration relation. Also, the v coefficients are
not just measuring the adjustment to the levels relation, 3'x,_;, but to the
levels and differences relation, B3)x; 1 + & Ax; ;.

In the I(1) model, the coefficient estimates of I'; are unrestricted, and
there is not the same efficiency gain as in the I(2) model, where the esti-
mates are subject to the second reduced rank condition. In addition, the
parametrization of the I(1) model does not allow us to distinguish between
B and T = (B,3,,) and, therefore, not to decompose I' =T'; — I as in
(33). Therefore, even though we may have realized that the 3 relation is not
mean- reverting by itself and, thus, that it has to be combined with the dif-
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ferenced process 8’ Ax,, we would not find the estimate of § without knowing
the estimate of 3, ;. Furthermore, the graphs of 3R, in Figure 3 and of
B1x; + 07Ax; in Figure 5 suggest that the latter relation is more precisely
measured in terms of stationarity.

The hypothesis of long-run price homogeneity was adequately formulated
as a test on 7 in the /(2) model (and rejected), whereas in the /(1) model it
was formulated as a necessary, but not sufficient, test on B (and accepted).
Thus, based on the I(1) model, one might have been tempted to believe
that long-run price homogeneity was acceptable even though it was strongly
rejected. The rejection of homogeneity gave one of the clues as to why there
are puzzles in international economics.

Finally, no useful results on the common driving trends could be obtained
from the (1) model, whereas the MA analysis of the 7(2) model provided
results on the /(1) and I(2) stochastic trends which suggested that we need
to look closer at the determination of the nominal exchange rates.

To conclude, even though the I(1) and /(2) models are quite close in
terms of likelihood, the I(2) procedure is likely to insure against possible
pitfalls in the statistical analysis when there is a double unit root in the
data. Last, but not least, it also allows for a much richer structure and,
therefore, more interesting interpretations of the information in the data.

9 Concluding discussion

The CVAR approach adopted in this chapter is based on general-to-specific
modelling as a tool to uncover empirical regularities in the economy. Start-
ing from a general unrestricted model representing the raw data and then
testing down seems to be a useful way of extracting as much information as
possible from the data without distorting them in a prespecified direction.
In this vein, it is also important from the outset to untie any transforma-
tion of the variables, such as the real exchange transformation of prices and
nominal exchange rates, assumed to hold rather than tested in the data.
Such transformations, common in empirical economics, can often seriously
distort signals in the data that, otherwise, might help to uncover impor-
tant empirical regularities. This was also the case in this chapter, where the
joint modelling of prices and exchange rates revealed empirical regularities
in prices and the nominal exchange rate that were helpful in pinning down
the underlying puzzling behavior in this period.

To effectively pull information from the data, this chapter argues that
the vector process should be classified into directions of similar persistence,
dubbed empirically 7(0), I(1) or 1(2). By following this route, one can ro-
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bustify inference and improve the interpretability of economic behavior in
the short, medium and long run. However, the main advantage is the ability
to associate persistent movements away from fundamental benchmark values
in one variable/relation with similar persistent movements somewhere else
in the economy. In a general equilibrium world one would expect a persis-
tent imbalance in one sector to generate a persistent departure in another.
Thus, by characterising the data according to the empirical order of integra-
tion, the CVAR approch offers a powerful tool to investigate the generating
mechanisms underlying such puzzling behavior.

To distinguish between those empirical regularities which can be ex-
plained by the theory model and those which cannot, the chapter has demon-
strated the importance of first translating the basic assumptions of the theory
model into testable assumptions on the CVAR model. As an illustration, the
chapter showed how to translate the assumption of a stationary PPP and
long-run price homogeneity, together with the assumption that prices are
pushing and the exchange rate is pulling, into testable hypotheses in the
CVAR model. This theory consistent scenario showed, among others, that
a stationary real exchange rate is inherently associated with one stochastic
trend having generated prices and nominal exchange rates. The finding of
two (rather than one) stochastic trends was particularly important, as it sug-
gested the existence of an additional source of permanent shocks that have
contributed to the persistent behaviour in the data. This additional shock
seemed to be related to speculative behavior in the market for foreign ex-
change and pointed to the importance of addressing the PPP and the long
swings puzzle jointly with another puzzle in international finance, the for-
ward premium puzzle. Similar to the former, the forward premium puzzle
also has to do with persistent movements in the data, now in the forward
premium: (Ry;— Rot— EtAs1244m), where R; ; is an interest yield of maturity
m.

Thus, the two puzzles have a common variable, the nominal exchange rate,
suggesting that the puzzle is related to the joint determination of nominal
exchange rates in the goods and the foreign exchange market. Based on a
CVAR analysis of German and the US prices, exchange rates, and interest
rates, Johansen et al. (2008) found that the ppp and the real interest rate
spread were strongly cointegrating though individually I(1), or even near 1(2).
A theoretical justification for this strong feature in the data was provided by
Frydman et al. (2008) who were able to show in a two-country monetary
model with IKE that goods prices and exchange rates adjust to a long-run
equilibrium relation being a combination of the ppp and the real interest rates
spreads.

They also report additional findings that point to the importance of in-
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flationary expectations measured by the term spread (R{ — R!), which was
found to be empirically 7(1). The latter finding, again, points to the impor-
tance of allowing for not just one, but at least two, stochastic trends in the
term structure of interest rates (Giese, 2008), and thus to a reconsideration
of the monetary policy interest rate channel.

This illustrates how the VAR approach can be used constructively. Start-
ing with the basic information set, carefully structuring the information in
the data, and adding more information if needed, might at an early stage
suggest how to modify either the empirical or the economic model, or both.

The following passage from Hoover (2006) pinpoints the fundamental dif-
ference between an approach based on a priori theory and the general-to-
specific approach to empirical economics:

”"The Walrasian approach is totalizing. Theory comes first.
Empirical reality must be theoretically articulated before it can
be empirically observed. There is a sense that the Walrasian
attitude is that to know anything, one must know everything.

There is a fundamental problem: How do we come to
our a priori knowledge? Most macroeconomists expect empirical
evidence to be relevant to our understanding of the world. But
if that evidence only can be viewed through totalizing a priori
theory, then it cannot be used to revise the theory.

... The Marshallian approach is archaeological. We have some
clues that a systematic structure lies behind the complexities of
economic reality. The problem is how to lay this structure bare.
To dig down to find the foundations, modifying and adapting our
theoretical understanding as new facts accumulate, becoming ever
more confident in our grasp of the super structure, but never quite
sure that we have reached the lowest level of the structure.”

For example, the significant finding of two shocks rather than one and the
rejection of long-run price homogeneity are two examples of important infor-
mation in the data signalling the need to dig deeper in order to understand
more. By taking this information in the data seriously, instead of just ignor-
ing it, we have been able to uncover more structure and, thus, to improve
our understanding, as demonstrated in Frydman et al (2008), Johansen et
al. (2007) and Juselius (2008). Needless to say, the need to dig deeper does
not stop here.
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