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Reliable measures of poverty are an essential statistical tool for public policies aimed at reducing poverty.
In this article we consider the reliability of income poverty measures based on survey data which are typ-
ically plagued by missing data and measurement error. Neglecting these problems can bias the estimated
poverty rates. We show how to derive upper and lower bounds for the population poverty rate using the
sample evidence, an upper bound on the probability of misclassifying people into poor and nonpoor, and
instrumental or monotone instrumental variable assumptions. By using the European Community House-
hold Panel, we compute bounds for the poverty rate in 10 European countries and study the sensitivity
of poverty comparisons across countries to missing data and measurement error problems. Supplemental
materials for this article may be downloaded from the JBES website.
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1. INTRODUCTION

Income poverty measures are designed to count the poor
and to diagnose the extent and distribution of poverty. For this
reason, they are an essential statistical tool for public policies
aimed at reducing poverty (Deaton 1997). Estimation of income
poverty is usually based on survey data and is typically plagued
by missing data and measurement error.

Missing data arises from the failure to obtain a complete re-
sponse from all individuals included in a survey. It may occur
because individuals refuse to return their questionnaire (unit
nonresponse) or do not provide an answer for some of the ques-
tions (item nonresponse), and may depend on both individual
attitudes and survey procedures. Measurement error represents
instead the deviation between the recorded answer to a sur-
vey question and the underlying attribute being measured. It
may reflect systematic misreporting or unreliable response by
the interviewee, and may depend on data collection procedures
(questionnaire design and interview methods), the way the in-
terviewer interacts with the interviewee, and data processing
(data entry, editing, coding, etc.).

Missing data and measurement error are especially important
in the case of income. Questions about income are sensitive in
nature and people may refuse to answer because of privacy in-
vasion or a perceived risk of disclosure of information to third
parties. Moreover, even when people are willing to report their
income, they might misreport it because of memory problems
or a tendency to overestimate or underestimate it.

Imputation and weighting methods are the approaches to
missing data usually adopted by survey methodologists (see
Little and Rubin 1987 and Rubin 1989, 1996). They typically
assume a missing at random (MAR) condition, that is, indepen-
dence between the missing data mechanism and the outcome of
interest after conditioning on a set of observed variables. Con-
versely, econometricians usually adopt methods which also take

into account selection due to unobserved variables (see Vella
1998 for a survey). While these methods relax the MAR condi-
tion, they typically impose various types of restrictions on the
distribution of the unobservables.

The most common statistical approaches to measurement er-
ror rely on either the classical measurement error model or on
mixture models (see van Praag, Hagenaars, and van Eck 1983,
Ravallion 1994, and Chesher and Schulter 2002 for the classical
measurement error model; Cowell and Victoria-Feser 1996 and
Pudney and Francavilla 2006 for mixture models; and Bound,
Brown, and Mathiowetz 2001 for a general survey of the liter-
ature). The former assumes that the observed outcome is equal
to the true outcome (the “signal”) plus an additive error that
has mean zero and is independent of the signal. This strong as-
sumption is often not justified empirically but adopted merely
for convenience. A notable violation of this assumption occurs
when the outcome is a categorical variable, such as a binary in-
dicator of poverty. On the other hand, mixture models assume
that the outcome of interest is mismeasured for a fraction of in-
dividuals and that the observed outcome is equal to a mixture of
two variables, the true outcome, and an unknown contaminating
variable.

Most estimation methods proposed for missing data or mea-
surement error problems focus on point estimation of the pa-
rameters of interest, typically at the cost of imposing strong
untestable assumptions. Manski and co-authors (see, e.g., Man-
ski 1989 and Horowitz and Manski 1998 for missing data prob-
lems; Horowitz and Manski 1995 for measurement error prob-
lems; and Manski 2003 for a review of the partial identifica-
tion approach) have shown how to use the empirical evidence,
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alone, or in conjunction with additional assumptions, to learn
something about the parameters of interest. Their approach in-
volves a shift from point identification to partial identification,
that is, a shift from the attempt to uncover the “true value” of
the parameter of interest to a description of the set of values that
are logically possible given the measurement error or missing
data mechanisms and the maintained assumptions.

In this article we follow the partial identification approach
and provide bounds on poverty rate in 10 European countries
using the microdata from the last wave (2001) of the European
Community Household Panel. These bounds take account of the
presence of both measurement error and missing data problems,
and are meant to establish a “domain of consensus” that repre-
sents a starting point for subsequent analyses. To our knowl-
edge, this is the first study which formally considers identifica-
tion issues caused by the presence of both types of problems.
We combine results in Nicoletti and Peracchi (2002) and Nico-
letti (2010) to bound the poverty rate in the presence of miss-
ing data with the approach suggested by Horowitz and Manski
(1995) and Molinari (2003, 2008) to take measurement errors
into account.

The data used in our application are described in Section 2.
We formalize the partial identification approach to poverty rates
in Section 3, first in the presence of either missing data or mea-
surement errors, and then in the presence of both together. We
derive analytical bounds by exploiting the availability of par-
tial information on income under different assumptions on the
probability of misclassifying poverty status. Section 4 presents
our empirical results. Finally, Section 5 draws some conclu-
sions.

2. DATA

We begin by describing the problems that arise when estimat-
ing poverty measures using the European Community House-
hold Panel (ECHP), a dataset that we take as representative of
the kind of survey data typically used for this purpose.

The ECHP is a longitudinal household survey centrally de-
signed and coordinated by the Statistical Office of the European
Communities (Eurostat) and conducted annually from 1994 to
2001. The ECHP is patterned after the U.S. Panel Study of In-
come Dynamics, and was explicitly designed to derive indica-
tors of poverty and social exclusion for the European Commis-
sion. Its target population consists of all individuals living in
private households in the 15 member countries of the European
Union before its enlargement. All sampled individuals aged 16
or more are asked to complete a personal questionnaire. More-
over, a reference person in each household, usually the house-
hold head or the spouse/partner of the head, is asked to fill in a
household questionnaire.

In its first wave (1994), the survey covered about 60,000
households and 130,000 individuals in 12 countries, namely
Belgium, Denmark, France, Germany, Greece, Ireland, Italy,
Luxembourg, the Netherlands, Portugal, Spain, and the U.K.
Austria, Finland, and Sweden began to participate in the ECHP
only later, respectively, from the second (1995), third (1996)
and fourth (1997) wave. We exclude the countries which did not
participate for the whole period 1994–2001. We also exclude

France because of the doubtful quality of the gross/net conver-
sion of income variables. This gives a sample of 10 countries,
namely Belgium, Denmark, Germany, Greece, Ireland, Italy,
the Netherlands, Portugal, Spain, and the U.K.

We focus on nonresponse and measurement error on house-
hold income for individuals belonging to responding house-
holds, namely those for which at least the household question-
naire was returned. The resulting sample consists of the 103,605
individuals observed in the most recent wave (2001). In all our
empirical applications, we take account of sampling design and
the presence of nonresponding households (those for which no
questionnaire was returned) by using the weights provided in
the public-use files of the ECHP.

Our poverty measure is the headcount ratio, namely the frac-
tion of people (both children and adults) living in households
with income below a certain threshold (the “poverty line”). For
brevity, we refer to this measure as the poverty rate. The key
variable in the construction of our poverty measure is total net
household income, computed in the ECHP as the sum of all
annual incomes (wages and salaries, self-employment income,
pensions, etc.) reported by all members of a household. Annual
income is the amount received in the year before the survey, net
of taxes and expressed in national currency and current prices.
Following conventional practice, we divide real household in-
come by the modified OECD equivalence scale to take account
of household size and composition. We define an individual as
poor if her equivalized household income is below a poverty
line defined as 60% of the national median value, estimated us-
ing the imputed values and the sampling weights provided by
the ECHP.

Because of the way household income is constructed, nonre-
sponse may occur either because of item nonresponse to some
income questions or because of unit nonresponse by household
members who fail to return the personal questionnaire. While
income nonresponse can be observed (see the last column of
Table 1), the amount of measurement error cannot. The assess-
ment of measurement error requires validation studies (see, e.g.,
Bound and Krueger 1991; Rodgers, Brown, and Duncan 1993;
and Bound et al. 1994). In this article we focus on misclas-
sification error, namely measurement error in the indicator of
poverty status. A useful source of information in this case is the
validation study of Epland and Kirkeberg (2002), who compare
true and reported income by matching administrative data with
the 1996 Norwegian Survey of Living Conditions. We use their
results in our empirical application to impose credible assump-
tions on misclassification probabilities.

Table 1 shows, for each of the countries considered, point
estimates of the population poverty rates and their estimated
standard errors (in parenthesis). We report estimates computed
ignoring individuals with nonresponse to household income
(poverty rates for respondents) and estimates that use the im-
puted income values provided by the ECHP (poverty rates with
imputation).

Ignoring income nonresponse does not cause any bias when
data are missing completely at random (MCAR), that is, when
the response probability is constant across individuals. This as-
sumption contrasts sharply with the evidence from the ECHP,
where nonresponse can be predicted using variables such as
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Table 1. Estimated poverty rates and nonresponse rates by country in
2001 (standard errors in parentheses)

Poverty rate Poverty rate Nonresponse
Country No. obs. with imputation for respondents rate

Belgium 5607 0.116 0.127 0.201
(0.005) (0.006) (0.005)

Denmark 4975 0.110 0.101 0.144
(0.009) (0.008) (0.005)

Germany 13,489 0.111 0.109 0.157
(0.004) (0.005) (0.003)

Greece 11,114 0.192 0.195 0.131
(0.004) (0.004) (0.003)

Ireland 5421 0.185 0.194 0.099
(0.008) (0.008) (0.004)

Italy 15,317 0.195 0.211 0.190
(0.004) (0.005) (0.003)

Netherlands 10,395 0.116 0.109 0.073
(0.004) (0.004) (0.003)

Portugal 12,917 0.211 0.222 0.138
(0.007) (0.007) (0.003)

Spain 13,689 0.172 0.173 0.123
0.004) (0.004) (0.003)

U.K. 10,681 0.160 0.165 0.102
(0.004) (0.004) (0.003)

household size, the number of active members in the house-
hold, the level of education of the household head, and char-
acteristics of the data collection process (Nicoletti and Perac-
chi 2002). Using imputed values to replace missing income is
the standard approach adopted to compute poverty rates in offi-
cial statistics. This produces unbiased estimates of poverty rates
only if the data is missing at random (MAR) and the imputation
model is correct. Since MAR is an untestable assumption, how-
ever, it is impossible to evaluate the potential bias caused by
imputation.

In the rest of this article we check whether relaxing these
untestable assumptions still allows us to identify meaningful
bounds on the population poverty rates. As we argue in the next
section, the fraction of income nonrespondents and the proba-
bility of misclassifying poverty status are a direct measure of
how severe the identification problem is. Since nonresponse
rates and misclassification probabilities are usually not small,
the identified bounds can be wide. For this reason, in the next
section we suggest to narrow the bounds by using partial infor-
mation on income, by introducing some untestable but “cred-
ible” assumptions on the misclassification process and by im-
posing some instrumental and monotone instrumental variable
assumptions.

3. PARTIAL IDENTIFICATION OF POVERTY RATES

We consider partial identification of population poverty rates
from data subject to nonsampling errors similar to those that
plague the ECHP. Section 3.1 considers the case of missing
data but no measurement error, Section 3.2 considers the case
of measurement error but no missing data problems, while Sec-
tion 3.3 considers the case of both missing data and measure-
ment error.

3.1 Partial Identification in the Presence of
Missing Data

Let Y represent the equivalized income of a household, let
γ be the poverty line, and let DY be the indicator of poverty
status, equal to one if a person lives in a household with Y ≤ γ

and equal to zero otherwise. The population poverty rate is the
fraction of people living in households for which Y does not
exceed γ . Formally, the population poverty rate is just Pr(DY =
1) = Pr(Y ≤ γ ).

Suppose that there is no measurement error in Y and γ but,
because of nonresponse, household income is missing for a
fraction of the individuals. Following Manski (1989), let DR be
a binary indicator equal to one if a person belongs to a respond-
ing household, namely one whose income is fully reported, and
equal to zero otherwise. By the law of total probability, the pop-
ulation poverty rate satisfies

Pr(DY = 1) = Pr(DY = 1 | DR = 1)Pr(DR = 1)

+ Pr(DY = 1 | DR = 0)Pr(DR = 0). (1)

Because only Pr(DY = 1 | DR = 1), Pr(DR = 1), and Pr(DR =
0) can be point-identified from the sampling process, the pop-
ulation poverty rate is not point-identified unless additional as-
sumptions are made. However, it is partially identified by the
fact that the unknown element Pr(DY = 1 | DR = 0) must neces-
sarily lie between zero and one. Substituting these bounds in (1)
gives the following upper and lower bounds on the population
poverty rate

UB = Pr(DY = 1 | DR = 1)Pr(DR = 1) + Pr(DR = 0),

LB = Pr(DY = 1 | DR = 1)Pr(DR = 1).

These bounds are sharp, that is, they exhaust the information
about Pr(DY = 1) available from the sampling process and the
maintained assumptions. The width UB−LB of the identifica-
tion region for Pr(DY = 1) is equal to the nonresponse proba-
bility Pr(DR = 0), which therefore represents a direct measure
of the uncertainty about the population poverty rate caused by
nonresponse.

An important question is how to shrink these “worst-case”
bounds, that is, how to narrow the identification region for the
population poverty rate. One possibility is to impose instrumen-
tal variable (IV) restrictions. A random variable Z, with values
in a subset Z of the real line, is an IV if it helps predict response
but does not help predict poverty, possibly after conditioning on
a set X of observable covariates with values in X . Formally, Z
is an IV if, for any (x, z) ∈ X × Z ,

Pr(DR = 1 | X = x,Z = z) �= Pr(DR = 1 | X = x)

but

Pr(DY = 1 | X = x,Z = z) = Pr(DY = 1 | X = x).

Manski (1994, 2003) shows that if Z is an IV, then upper and
lower bounds on the conditional poverty rate Pr(DY = 1 | X =
x) are

UBIV(x) = inf
z

{
Pr(DY = 1 | X = x,Z = z,DR = 1)

× Pr(DR = 1 | X = x,Z = z)

+ Pr(DR = 0 | X = x,Z = z)
}
,
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LBIV(x) = sup
z

{
Pr(DY = 1 | X = x,Z = z,DR = 1)

× Pr(DR = 1 | X = z,Z = z)
}
.

Further, these bounds are sharp. Although it is generally dif-
ficult to find valid instrumental variables, we believe that a
convincing case can be made for data collection characteris-
tics (characteristics of the interviewer, interview mode, length
and design of the questionnaire, etc.), because they help predict
nonresponse (see, e.g., Lepkowski and Couper 2002; Schrä-
pler 2004; and Nicoletti and Peracchi 2005) but lack predictive
power for household income or poverty status.

Since IV restrictions are often controversial, another pos-
sibility is to impose weaker monotone instrumental variable
(MIV) restrictions. A random variable Z is a MIV if it shifts
monotonically the poverty rate, possibly after conditioning on a
set X of observable covariates. Formally, Z is a MIV if, for any
x ∈ X ,

Pr(DY = 1 | X = x,Z = z) ≥ Pr(DY = 1 | X = x,Z = z′) (2)

whenever z ≥ z′ (or z ≤ z′). It is often easier to find a variable
which is monotonically related to the outcome of interest than
to find a proper IV. Manski and Pepper (2000) show that if Z
is a MIV, then sharp bounds on the conditional poverty rate
Pr(DY = 1 | X = x,Z = z) are

UBMIV(x, z) = inf
z′≥z

{
Pr(DY = 1 | X = x,Z = z′,DR = 1)

× Pr(DR = 1 | X = x,Z = z′)

+ Pr(DR = 0 | X = x,Z = z′)
}
,

LBMIV(x, z) = sup
z′≤z

{
Pr(DY = 1 | X = x,Z = z′,DR = 1)

× Pr(DR = 1 | X = z,Z = z′)
}
.

Bounds on the population poverty rate Pr(DY = 1) are sim-
ply obtained by averaging the conditional bounds LBIV(x) and
UBIV(x) with respect to the distribution of X, or the conditional
bounds LBMIV(x, z) and UBMIV(x, z) with respect to the joint
distribution of (X,Z).

As a third possibility, we suggest exploiting another source of
information, namely the fact that nonrespondents may provide
partial information on their income. In the ECHP, and many
other surveys where household income is obtained by adding
up a number of different income components across household
members, nonresponse to household income is only partial, in
the sense that at least some household members provide infor-
mation on at least some of the income components that they re-
ceived. This information on partially reported income provides
a simple but effective way of shrinking the worst-case bounds,
or the bounds obtained by imposing IV or MIV restrictions.

For example, if Y∗ denotes partially reported income, that
is, the sum of all reported income components across all mem-
bers of the household, then the unknown poverty rate among
the nonrespondents may be decomposed as follows

Pr(DY = 1 | DR = 0)

= Pr(DY = 1 | DY∗ = 1,DR = 0)Pr(DY∗ = 1 | DR = 0)

+ Pr(DY = 1 | DY∗ = 0,DR = 0)

× Pr(DY∗ = 0 | DR = 0), (3)

where DY∗ equals one if Y∗ ≤ γ and equals zero otherwise. In
the absence of measurement error, Pr(DY = 1 | DY∗ = 0,DR =
0) = 0 because partially reported income Y∗ cannot exceed true
income Y . Since the probability Pr(DY = 1 | DY∗ = 1,DR = 0)

must necessarily lie between zero and one, we obtain the fol-
lowing upper and lower bounds on the population poverty rate

UB∗ = Pr(DY = 1 | DR = 1)Pr(DR = 1)

+ Pr(DY∗ = 1 | DR = 0)Pr(DR = 0),

LB∗ = LB = Pr(DY = 1 | DR = 1)Pr(DR = 1).

Thus, the information on partially reported income provides a
smaller upper bound but does not affect the lower bound, which
remains the same as the worst-case bound LB. This narrows the
width of the identification region from Pr(DR = 0) to Pr(DY∗ =
1 | DR = 0)Pr(DR = 0).

Our use of partially reported income to narrow the “worst-
case” bounds is similar in spirit to the use of income bracket
information by Vasquez-Alvarez, Melenberg, and van Soest
(1999, 2001) to bound income quantiles. They consider a sam-
ple survey where people who fail to provide their income are
then asked to report whether their income exceeds a given
threshold. We instead know that the income of nonrespondents
is at least equal to partially reported income Y∗, which is not
a fixed threshold but varies across individuals and can take any
value between zero and Y .

3.2 Partial Identification in the Presence of
Measurement Error

Measurement error in the poverty status occurs when either
total household income or the household equivalent scale are
measured with error. When the poverty line is also estimated, it
may itself be affected by sampling noise or systematic bias.

If W denotes the observed (error-ridden) equivalized net in-
come of a household and γ̂ denotes the estimated poverty line,
then the observed poverty indicator DW is equal to one if W ≤ γ̂

and is equal to zero otherwise, and the observed poverty rate is
Pr(DW = 1) = Pr(W ≤ γ̂ ). When DY �= DW , poverty status is
measured with error. Since DY and DW are categorical indi-
cators, the measurement error problem becomes a problem of
misclassification that may arise either because Y �= W due to
measurement error in total household income or in the equiv-
alence scale, or because γ̂ �= γ due to sampling noise or sys-
tematic bias in the estimated poverty line. Ignoring the prob-
lem may lead to biased estimates of the population poverty rate
Pr(DY = 1). An alternative approach, introduced by Horowitz
and Manski (1995) and adopted by Chavez-Martin del Campo
(2004), Pudney and Francavilla (2006), and Molinari (2003,
2008), is to partially identify Pr(DY = 1) using the sample in-
formation along with weak assumptions about the measurement
error process.

Horowitz and Manski (1995) model the observed outcome as
a mixture of the true outcome and an unknown contaminating
variable (the corrupted sampling model), and provide a general
framework for partially identifying population parameters of in-
terest by imposing a nontrivial upper bound on the probability
of observing the contaminating variable. For a binary poverty
indicator, their mixture model takes the form

DW = DY(1 − D∗) + DVD∗, (4)
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where D∗ is equal to zero when we observe the true poverty
indicator DY and is equal to one when we observe the contami-
nating binary indicator DV .

Chavez-Martin del Campo (2004) specializes the results of
Horowitz and Manski (1995) to poverty measures. By consid-
ering a mixture model for household income and by assuming
a nontrivial upper bound on the measurement error probability,
he shows how to bound poverty measures that are additively
separable, a class which includes the headcount ratio.

Pudney and Francavilla (2006) also consider a mixture model
for household income to investigate the effect of measurement
error on estimation of poverty rates. Assuming that there are
nontrivial levels of well being at which people can be clas-
sified without error as poor or nonpoor, that the contaminat-
ing variable does not depend on the level of well being, and
that the measurement error depends neither on the level of well
being nor on true or contaminated income (after conditioning
on a set of variables), they show that one can exactly identify
the poverty rate. They also show how to partially identify the
poverty rate when some of these assumptions are relaxed.

An alternative approach, pioneered by Molinari (2003,
2008), is to directly bound the poverty rate by exploiting the
identity

Pr(DW = 1) = Pr(DW = 1 | DY = 1)Pr(DY = 1)

+ Pr(DW = 1 | DY = 0)Pr(DY = 0). (5)

This is just an implication of the law of total probability and
places no restrictions on the relation between the error-ridden
indicator DW and the error-free indicator DY . When coupled
with assumptions about its elements, however, it generates a
statistical model which Molinari (2008) calls a direct misclas-
sification model. The main advantage of this approach is that it
takes into account all the errors which may lead to misclassi-
fying poverty status—errors affecting the income measure, the
equivalence scale, or the poverty line—without having to ex-
plicitly model their role.

Molinari’s base-case assumptions are nontrivial upper
bounds on either the overall misclassification probability
Pr(DW �= DY) or the direct misclassification probabilities
Pr(DW = i | DY = j), for i �= j.

Assumption B. Pr(DW �= DY) ≤ λ < 1.

Assumption D. Pr(DW = i | DY = j) ≤ λ < 1, for i �= j.

Notice that Assumption D is stronger than Assumption B. In
some cases, for example when validation studies are available,
one may be able to directly estimate the upper bound λ in these
two assumptions. Even when this is not possible, it may still
be of interest to determine how inference about the population
poverty rate changes with changes in the assumed bounds.

Proposition 3 in Molinari (2008) presents the bounds on the
population poverty rate implied by the two assumptions. As-
sumption B gives

UBB = min{Pr(DW = 1) + λ,1},
LBB = max{Pr(DW = 1) − λ,0}.

These are the same bounds obtained by Horowitz and Manski
(1995) under the assumption of an upper bound λ on Pr(D∗ =
1) in the mixture model (4). Assumption D gives instead

UBD = min

{
Pr(DW = 1)

1 − λ
,1

}
,

LBD = max

{
Pr(DW = 1) − λ

1 − λ
,0

}
.

These are the same bounds obtained by Horowitz and Manski
(1995) when replacing the mixture model (4) by a contaminated
sampling model, namely one where DY and D∗ are indepen-
dent.

Molinari (2008) also shows how to identify narrower bounds
by imposing additional restrictions on the direct misclassifica-
tion probabilities. One such restriction is that the direct misclas-
sification probabilities are constant, which together with As-
sumption D implies the following:

Assumption CD. Pr(DW = 1 | DY = 0) = Pr(DW = 0 | DY =
1) ≤ λ < 1.

Another restriction is monotonicity in correct reporting, that
is, Pr(DW = j | DY = j) ≥ Pr(DW = j + 1 | DY = j + 1), which
together with Assumption D implies the following:

Assumption MD. Pr(DW = 1 | DY = 0) ≤ Pr(DW = 0 | DY =
1) ≤ λ < 1.

Assumption MD states that it is more likely for poor people
to report an income above the poverty line than for rich people
to report an income below the poverty line. This may possibly
be the case when poverty (low income) is perceived by survey
respondents as a stigma. The assumption that people under-
report social undesirable characteristics is often made by sur-
vey methodologists and cognitive psychologists (see, e.g., De-
Maio 1984; Groves 1989; and Tourangeau, Lance, and Rasinski
2004). Assumption MD is also supported by several validations
studies which find that measurement error in income is nega-
tively correlated with true income (see, e.g., Bound and Krueger
1991; Rodgers, Brown, and Duncan 1993; Bound et al. 1994).

Although our approach is very similar in spirit to Molinari’s
direct misclassification approach, our starting point is neither
the mixture model (4) nor the direct misclassification model (5).
Instead, we consider the following relationship

Pr(DY = 1) = Pr(DY = 1 | DW = 1)Pr(DW = 1)

+ Pr(DY = 1 | DW = 0)Pr(DW = 0). (6)

Again, this is simply an implication of the law of total prob-
ability and imposes no restriction on the relation between the
error-free and the error-ridden indicator of poverty. However,
placing assumptions on its elements Pr(DY = i | DW = j) gives
a new statistical model which we call an indirect misclassifica-
tion model.

Given (6), an assumption that partially identifies the popula-
tion poverty rate is the following:

Assumption I. Pr(DY = i | DW = j) ≤ λ < 1, for i �= j.

While Assumption D restricts the conditional distribution of
DW given DY by placing an upper bound on the direct misclas-
sification probabilities Pr(DW = i | DY = j), for i �= j, Assump-
tion I restricts the conditional distribution of DY given DW by
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placing an upper bound on the indirect misclassification prob-
abilities Pr(DY = i | DW = j), for i �= j. It is easy to verify that,
while Assumption I implies Assumption B, there is no simple
relation between Assumption I and Assumption D.

For expositional convenience, and without loss of generality,
we use the same symbol λ for the upper bounds in Assump-
tions B, D, and I, and the rest of our theoretical presentation.
On the contrary, in our empirical application we allow λ to vary
depending on the assumption considered.

The next proposition presents the bounds on the population
poverty rate implied by Assumption I. To save space, all proofs
are omitted but can be downloaded as Supplemental Materials
from the JBES website.

Proposition 1. If Assumption I holds, then

UBI = (1 − λ)Pr(DW = 1) + λ,

LBI = (1 − λ)Pr(DW = 1).

Further, these bounds are sharp.

Figure 1 plots the upper and lower bounds implied by As-
sumptions B, D, and I against λ for different values of Pr(DW =
1). If λ = 0, then Pr(DY = 1) is point-identified and coincides
with Pr(DW = 1). When λ > 0, the identification region im-
plied by Assumption B contains those implied by Assumptions
D and I. This is not surprising since Assumption B is weaker
than Assumptions D and I.

Assumptions D and I are different, and there are no theoreti-
cal reasons to prefer one to the other. Their validity can be sup-
ported only by validation studies, while their usefulness in nar-
rowing the bounds depends on the values of λ and Pr(DW = 1).
One important difference between the bounds based on As-
sumption D and those based on Assumption I is that, unlike the
former, the latter are always informative (i.e., they are different
from zero and one whenever 0 < λ < 1) and change smoothly

with λ. As for the width of the implied bounds, LBD is always
lower or equal to LBI if λ > 1 − Pr(DW = 0)/Pr(DW = 1),
while UBD is lower or equal to UBI if λ < Pr(DW = 0) and
λ > 1 − Pr(DW = 1)/Pr(DW = 0). Moreover, if λ(1 − λ) ≤
Pr(DW = 1) ≤ 1 − λ(1 − λ), then the interval identified by As-
sumption I is narrower than the one identified imposing As-
sumption D. On the contrary, if Pr(DW = 1) lies outside the
interval [λ(1 − λ),1 − λ(1 − λ)], then Assumption D implies a
narrower interval.

We also consider two additional assumptions, which repre-
sent the analogues of assumptions CD and MD in Molinari
(2008). The first is the assumption that the probability of in-
direct misclassification is constant:

Assumption CI. Pr(DY = 0 | DW = 1) = Pr(DY = 1 | DW =
0) ≤ λ < 1.

The second is the assumption that the probability of indirect
misclassification is monotonic:

Assumption MI. Pr(DY = 0 | DW = 1) ≤ Pr(DY = 1 | DW =
0) ≤ λ < 1.

The next result gives the identification intervals for the pop-
ulation poverty rate under these two assumptions.

Proposition 2.

(i) If Assumption CI holds, then

UBCI =
{

(1 − 2λ)Pr(DW = 1) + λ, if Pr(DW = 1) ≤ 1/2

Pr(DW = 1), otherwise,

LBCI =
{

Pr(DW = 1), if Pr(DW = 1) ≤ 1/2

(1 − 2λ)Pr(DW = 1) + λ, otherwise.

(ii) If Assumption MI holds, then

UBMI = (1 − λ)Pr(DW = 1) + λ,

LBMI = LBCI .

Figure 1. Bounds on the population poverty rate under Assumptions B, D, and I as functions of λ for different values of Pr(DW = 1). The
online version of this figure is in color.
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Tables showing the identification intervals and their width
under our Assumptions CI and MI, and the analogue assump-
tions CD and MD in Molinari (2008), can be downloaded as
Supplemental Materials from the JBES website.

Following Manski and Pepper (2000) and Manski (2003), we
may further narrow the bounds by imposing IV and MIV re-
strictions. Adopting the notation in Section 3.1, let Z be the IV
or the MIV, let X be a set of covariates, and replace Assump-
tions B, D, and I by the stronger assumptions:

Assumption B∗. Pr(DW �= DY | X = x,Z = z) ≤ λ < 1 for
any (x, z) ∈ (X × Z).

Assumption D∗. Pr(DW = i | DY = j,X = x,Z = z) ≤ λ < 1
for i �= j and any (x, z) ∈ (X × Z).

Assumption I∗. Pr(DY = i | DW = j,X = x,Z = z) ≤ λ < 1
for i �= j and any (x, z) ∈ (X × Z).

Since these assumptions are stronger than Assumptions B,
D, and I, in our application we choose higher values of λ when
considering IV and MIV restrictions. Except for this, the basic
idea is very simple. We first use these restrictions to bound the
conditional poverty rate Pr(DY = 1 | X = x,Z = z), and then
we obtain bounds on the population poverty rate Pr(DY = 1)

by averaging the conditional bounds with respect to the joint
distribution of (X,Z).

3.3 Partial Identification in the Presence of Missing
Data and Measurement Error

In the presence of both missing data and measurement error,
identification of the poverty rate becomes more problematic. In
the equation

Pr(DY = 1) = Pr(DY = 1 | DR = 1)Pr(DR = 1)

+ Pr(DY = 1 | DR = 0)Pr(DR = 0),

both Pr(DY = 1 | DR = 1) and Pr(DY = 1 | DR = 0) are now un-
known. This is because for responding people we only observe
a contaminated poverty indicator DW instead of the unobserved
indicator DY , while for nonresponding people we observe nei-
ther DW nor DY .

The partial identification approaches discussed in Section 3.2
can be directly applied to find upper and lower bounds for
Pr(DY = 1 | DR = 1), the poverty rate for the respondents. All
we need is an upper bound on either the misclassification prob-
ability, the direct misclassification probabilities, or the indirect
misclassification probabilities, after conditioning on the event
DR = 1. For example, let BR denote Assumption B modified
by conditioning on the event DR = 1, and let LBR and UBR de-
note the implied upper and lower bounds on Pr(DY = 1 | DR =
1), the poverty rate for the respondents. These are the same
bounds obtained in Section 3.2, except that we now condition
on the event DR = 1. The resulting bounds on the unconditional
poverty rate Pr(DY = 1) are

UBBR = UBR Pr(DR = 1) + Pr(DR = 0),

LBBR = LBR Pr(DR = 1).

The same argument may be repeated for Assumptions D, I, CD,
MD, CI, and MI modified by conditioning on the event DR = 1.

In what follows, we denote these modified assumptions as DR,
IR, CDR, MDR, CIR, and MIR, respectively.

When nonrespondents provide partial information on their
income, these bounds can be narrowed further. If W∗ is error-
ridden partially reported income and γ̂ is the estimated poverty
line, then Equation (3) must be modified as follows:

Pr(DY = 1 | DR = 0)

= Pr(DY = 1 | DW∗ = 1,DR = 0)Pr(DW∗ = 1 | DR = 0)

+ Pr(DY = 1 | DW∗ = 0,DR = 0)Pr(DW∗ = 0 | DR = 0).

In the absence of measurement error, one can safely assume that
Pr(DY = 1 | DW∗ = 0,DR = 0) = 0. In the presence of mea-
surement error, this assumption is still quite reasonable because
a household with partially reported income above the poverty
line is unlikely to be poor. Under this assumption, it is enough
to replace the term Pr(DR = 0) in UBBR, UBDR and UBIR by
Pr(DR = 0)Pr(DW∗ = 1 | DR = 0), leaving the lower bounds
LBBR, LBDR, and LBIR unchanged. In this case, the information
on reported income causes the various identification regions to
shrink by an amount equal to Pr(DR = 0)[1 − Pr(DW∗ = 1 |
DR = 0)].

Computation of the bounds using IV and MIV is straight-
forward after conditioning Assumptions B∗, D∗, and I∗ on the
event DR = 1.

4. EMPIRICAL RESULTS

We now present the estimated bounds for the population
poverty rates based on the results in Section 3. These bounds
are computed considering both measurement error and missing
data problems. In Section 4.1, we derive bounds by first impos-
ing an upper bound on the misclassification probabilities and
by then imposing the additional assumption of monotonicity in
correct reporting. In Section 4.2 we study how the identification
intervals for the poverty rates change when we choose different
upper bounds on the misclassification probabilities. Finally, in
Section 4.3 we impose additional IV and MIV assumptions.

4.1 Bound Estimates

This section presents, separately by country, the estimated
bounds for the population poverty rates. These bounds are func-
tions of probabilities which are estimated nonparametrically by
simple weighted empirical frequencies using the survey weights
provided by the ECHP. Since the bounds are estimated, we also
take their sampling variability into account. This is done by
constructing 90%-level bootstrap confidence intervals based on
the percentile method and 1000 bootstrap replications. These
confidence intervals cover the entire identification region with
90% probability. Unlike standard asymptotic confidence inter-
vals, they are generally not symmetric. The bootstrap sam-
ples are obtained by sampling with replacement households,
not individuals. Further, for each bootstrap sample, the cross-
sectional weights are rescaled to have unit mean (Biewen 2002).

The choice of the upper bounds for the misclassification
probabilities are based on the validation study of Epland and
Kirkeberg (2002), who compare true and reported income by
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Table 2. Misclassification probabilities in Epland
and Kirkeberg (2002)

Estimated value SE

Pr(DW �= DY ) 0.065 0.004
Pr(DW = 1 | DY = 0) 0.052 0.005
Pr(DW = 0 | DY = 1) 0.094 0.009
Pr(DY = 1 | DW = 0) 0.041 0.004
Pr(DY = 0 | DW = 1) 0.119 0.010

matching administrative data with the 1996 Norwegian Sur-
vey of Living Conditions. Using their table 1, and setting the
poverty line at 100,000 Norwegian crowns (which roughly cor-
responds to 60% of median equivalized household income),
we find that the estimated probability that true and reported
poverty status differ (the misclassification probability) is about
6.5%. The estimated direct, indirect, and overall misclassifica-
tion probabilities, and their standard error, are shown in Table 2.

Assumption MD of monotonicity in correct reporting is con-
firmed by the results in Table 2, whereas the assumption MI is
not. Results hardly change when increasing or decreasing the
poverty line by 50%. Thus, in our empirical application, we
consider the following assumptions:

Assumption BR. Pr(DW �= DY | DR = 1) ≤ λBR.

Assumption MDR. Pr(DW = 1 | DY = 0,DR = 1) ≤
Pr(DW = 0 | DY = 1,DR = 1) ≤ λMDR.

Assumption IR. Pr(DY = i | DW = j,DR = 1) ≤ λIR, for
i �= j.

The bounds on the misclassification probabilities are set to
the estimated values in Table 2 plus twice their standard er-
ror, that is, λBR = 0.073, λMDR = 0.113, and λIR = 0.140. In
Section 4.2 we also conduct a sensitivity analysis to study how
results change when we vary the upper bounds.

Table 3 reports the estimated upper and lower bounds on
the population poverty rate and the corresponding upper and
lower limits of their bootstrap confidence interval under the
three assumptions. We denote the three identification intervals
as [LB∗

BR,UB∗
BR], [LB∗

DR,UB∗
DR], and [LB∗

IR,UB∗
IR] (the super-

script ∗ indicates that partially reported income is used to com-
pute the bounds). Upper bounds tend to be lower under As-
sumption MDR than under Assumptions IR and BR, whereas
lower bounds are higher under Assumption IR than under As-
sumptions MDR and BR. Assumption MDR produces the nar-
rowest bounds, whose length goes from 0.136 for Denmark to
0.164 for the U.K. This is unsurprising since Assumption MDR
combines Assumption DR and the monotonicity assumption.

If all three Assumptions BR, IR, and MDR hold at the same
time, then we can compute narrower bounds. The resulting
identification interval for the population poverty rate is denoted
by [LB∗

J ,UB∗
J ], where LB∗

J is the maximum between LB∗
BR,

LB∗
MDR and LB∗

IR, while UB∗
J is the minimum between UB∗

BR,
UB∗

MDR and UB∗
IR. Estimates of this new set of bounds are pre-

sented in Table 4. The range of plausible values is reduced
considerably, as the width now varies between 0.055 (0.089
in terms of bootstrap confidence intervals) and 0.101 (0.186).
Although the estimated identification regions overlap partially
for several countries some clear results emerge. In Denmark

Table 3. Estimated bounds by country. For each country, the
estimates of the upper (lower) bounds are reported in the first row,

while the corresponding upper (lower) limits of the bootstrap
confidence intervals are reported in the second row

Country LB∗
BR UB∗

BR LB∗
MDR UB∗

MDR LB∗
IR UB∗

IR

Belgium 0.043 0.214 0.012 0.156 0.086 0.253
0.027 0.248 0.000 0.188 0.072 0.289

Denmark 0.024 0.199 0.000 0.136 0.074 0.244
0.003 0.263 0.000 0.198 0.054 0.311

Germany 0.031 0.212 0.000 0.150 0.080 0.256
(SOEP) 0.020 0.238 0.000 0.175 0.070 0.283

Greece 0.107 0.299 0.081 0.235 0.147 0.334
0.094 0.324 0.067 0.259 0.135 0.360

Ireland 0.109 0.290 0.083 0.225 0.151 0.326
0.084 0.339 0.055 0.272 0.127 0.378

Italy 0.113 0.298 0.091 0.238 0.149 0.329
0.099 0.326 0.075 0.265 0.135 0.358

Netherlands 0.034 0.210 0.000 0.142 0.087 0.258
0.023 0.235 0.000 0.166 0.077 0.284

Portugal 0.124 0.321 0.103 0.260 0.159 0.351
0.099 0.384 0.076 0.321 0.136 0.417

Spain 0.085 0.277 0.057 0.215 0.126 0.313
0.072 0.311 0.044 0.248 0.113 0.350

U.K. (BHPS) 0.083 0.283 0.053 0.217 0.128 0.322
0.072 0.307 0.040 0.240 0.118 0.348

NOTE: BR (DR and IR) stands for the assumption that the overall (the direct and the in-
direct) misclassification probability is lower than 0.073 (0.113 and 0.140). The superscript∗ indicates that the bounds are computed using information on partial reported income.

the estimated upper bound on the poverty rate is lower than
the lower bounds estimated for Greece, Ireland, Italy, Portugal,
Spain, and the U.K. Similarly, the Netherlands has an estimated

Table 4. Estimates of UBJ , LBJ and of the width � = UBJ −LBJ by
country. For each country, the estimates of the upper (lower) bounds
are reported in the first row, while the corresponding upper (lower)

limits of the bootstrap confidence intervals are reported in the second
row. �1 is the part of the interval width due to missing data problems,

while �2 is that due to measurement error problems

Country LB∗
J UB∗

J Width = � �1/� % �2/� %

Belgium 0.086 0.156 0.070 0.056 79.8 0.014 20.2
0.072 0.188 0.117

Denmark 0.074 0.136 0.062 0.050 80.6 0.012 19.4
0.054 0.198 0.144

Germany 0.080 0.150 0.071 0.058 81.7 0.013 18.3
(SOEP) 0.070 0.175 0.106

Greece 0.147 0.235 0.088 0.064 72.7 0.024 27.3
0.135 0.259 0.124

Ireland 0.151 0.225 0.074 0.049 66.8 0.025 33.2
0.127 0.272 0.145

Italy 0.149 0.238 0.090 0.066 73.1 0.024 26.9
0.135 0.265 0.130

Netherlands 0.087 0.142 0.055 0.041 74.3 0.014 25.7
0.077 0.166 0.089

Portugal 0.159 0.260 0.101 0.075 74.4 0.026 25.6
0.136 0.321 0.186

Spain 0.126 0.215 0.089 0.068 76.8 0.021 23.2
0.113 0.248 0.135

U.K. (BHPS) 0.128 0.217 0.088 0.068 76.4 0.021 23.6
0.118 0.240 0.122
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upper bound which is lower than the ones estimated for Greece,
Ireland, Italy, and Portugal; the estimated upper bound for Ger-
many is lower than for Ireland and Portugal; and the one for
Belgium is lower than for Portugal. Based on these results we
can reject the hypotheses that poverty rates in Belgium, Den-
mark, Germany, and the Netherlands are higher than in the re-
maining countries.

Furthermore, by ranking countries in terms of their upper
bound on the poverty rate, we are able to identify three groups
of countries: Belgium, Denmark, Germany, and the Netherlands
belong to the low-poverty group; Greece, Italy, and Portugal be-
long to the high-poverty group; while, Spain, Ireland, and the
UK make up an intermediate group. Ireland moves from the in-
termediate group to the high-poverty group if we rank the coun-
tries using the lower bound. Interestingly, this is in line with the
country ranking obtained using the point estimates of poverty
rates in Section 2, with Ireland being positioned between the
high-poverty group and the intermediate one.

Table 4 also presents a decomposition of the width � =
UB∗

J −LB∗
J of the identification region into two additive com-

ponents. The first component, �1 = Pr(DR = 0)Pr(DW∗ = 1 |
DR = 0), is caused by the presence of missing data. The second
component, �2 = UBJ −LBJ −�1, is instead caused by mea-
surement errors affecting the observed poverty indicator. For
all countries, at most 33.2% of the interval width is determined
by the presence of measurement errors problems. This suggests
that the lack of identification is mainly due to missing data prob-
lems, at least for the values of λ that have been chosen for this
application.

4.2 Sensitivity Analysis

Even if based on validation studies, the choice of upper
bounds on the misclassification probabilities is to some extent
arbitrary. Thus, we also carry out a sensitivity analysis by look-
ing at how results change when we allow these upper bounds to
vary. We compute for each country the width of [LB∗

J ,UB∗
J ]

(the intersection between [LB∗
BR,UB∗

BR], [LB∗
IR,UB∗

IR], and
[LB∗

MDR,UB∗
MDR]) for different values of λBR, λMDR, and λIR.

More precisely, we allow the upper bound of the indirect mis-
classification probability, λIR, to change from 0.01 to 0.99 and
the upper bounds λMDR and λBR to vary proportionally with λIR.

We keep the ratio between λMDR (λBR) and λIR equal to the ra-
tio between 0.113 (0.073) and 0.140, which are the values used
in the previous section.

In presenting the results, we focus on the width of the inter-
vals defined by the estimated bounds because it is a measure
of how serious the identification problem is. A zero width cor-
responds to point identification of the true poverty rate, while
a width that is positive but less than one corresponds to partial
identification.

Table 5 reports the minimum and the maximum widths over
all countries of the estimated interval [LB∗

J ,UB∗
J ] for different

values of the λ’s. Both the minimum and the maximum widths
increase with λ. The widths are always smaller than 0.251 for
values of λIR less than or equal to 0.95. Of the three assump-
tions, MDR produces the lowest upper bound when λMDR is less
than 1 − Pr(DW = 1,DR = 1), while BR produces the highest
lower bound. It is only when λMDR > 1 − Pr(DW = 1,DR = 1)

that Assumption IR produces a lower upper bound than As-
sumption MDR, and this happens only for Italy and Portugal
when λMDR is fixed at its highest value.

These results may be useful to survey methodologists inter-
ested in improving the quality of a survey by adopting tech-
niques aimed at reducing nonresponse rates or measurement er-
rors. For example, from these results, it seems that the missing
data problem is the main cause of lack of identification. When
λIR ≤ 0.2, the missing data problem is always the main explana-
tion for the lack of identification. When λIR = 0.5, there are still
countries where the missing data problem is the main explana-
tion for the lack of identification. Even when λIR = 0.99, we
still find that the missing data problem explains between 10%
and 38.7% of the interval length. We can reject the assumption
that the missing data problem is the main explanation for the
lack of identification only when we assume that λIR = 0.500,
λMDR = 0.404 and λBR = 0.261. Notice that these values are
more than three times higher than the corresponding misclassi-
fication probabilities found in the validation studies of Epland
and Kirkeberg (2002) (see Table 2). For this reason, we con-
clude that measurement error is of secondary importance rela-
tive to missing data in our empirical application.

4.3 Restricting the Bounds Using IV and
MIV Assumptions

When IV and MIV restrictions are introduced, estimation of
the bounds is complicated by issues of finite-sample bias, due

Table 5. Minimum and maximum width � = UBJ −LBJ across countries for different values of
λIR and λMDR. �1/� is the part of the width due to missing data problems over the total width

λBR λMDR λIR min width max width min �1/� max �1/� mean �1/�

0.005 0.008 0.010 0.042 0.077 0.966 0.984 0.977
0.026 0.040 0.050 0.046 0.084 0.849 0.926 0.896
0.052 0.081 0.100 0.051 0.094 0.738 0.862 0.813
0.104 0.161 0.200 0.061 0.112 0.585 0.757 0.686
0.156 0.242 0.300 0.071 0.131 0.484 0.675 0.594
0.261 0.404 0.500 0.092 0.168 0.360 0.555 0.469
0.365 0.565 0.700 0.110 0.205 0.287 0.471 0.388
0.417 0.646 0.800 0.119 0.223 0.260 0.438 0.357
0.469 0.726 0.900 0.128 0.242 0.238 0.410 0.331
0.495 0.767 0.950 0.132 0.251 0.229 0.397 0.319
0.516 0.799 0.990 0.135 0.688 0.100 0.387 0.274
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to the small size of the cells over which we impose these as-
sumptions. As shown by Kreider and Pepper (2007), sample
estimates based on infima and suprema will be systematically
biased and the estimated bounds will be too narrow, so we cor-
rect the estimates and the confidence interval using the boot-
strap bias correction that they propose. The Monte Carlo ex-
periments conducted by Manski and Pepper (2009) to study the
small sample properties of this correction show that the bias
reduces considerably and becomes negligible.

In our application, we explored various IV candidates—in
particular variables related to the data collection process—by
testing their statistical significance in a probit model for the re-
sponse probability. In the end, our best choice is the total num-
ber of successful interviews in the previous waves. We use this
variable as an IV after controlling for household size, the num-
ber of workers, the number of children, and the education level
of the reference person.

As MIV’s, we consider the size of the household and the
number of its working members. We use them as alternative
MIV’s after controlling for the number of children, the refer-
ence person’s education, and, in addition, either the number
of working household members (for the former MIV) or the
household size (for the latter). Thus, we replace Assumptions
BR, MDR, and IR in Section 4.1 by analogues based on the
assumed IV or MIV and the additional covariates. For exam-
ple, Assumption BR, is replaced by the more restrictive as-
sumption that Pr(DW �= DY | DR = 1,X = x,Z = z) ≤ λ for any
(x, y) ∈ X × Z , where Z is the IV or the MIV and X contains
the control variables. We proceed in the same way with As-
sumptions MDR and IR. In Table 6 we report the means of the
IV and MIV’s considered in our application.

Because misclassification probabilities may depend on X and
Z, one may in principle consider different upper bounds for
each x and z value. This approach is not feasible due to the
lack of validation studies reporting misclassification probabili-
ties by household size, number of children, etc. For this reason,
we fix a common upper bound valid for any x and z value. This
upper bound is equal to the largest misclassification probability
estimated by Epland and Kirkeberg (2002) plus four times the
standard error of this estimate. Although arbitrary, the choice of
multiplying the standard errors by four is for caution.

Table 7 presents the estimated bounds, separately for our IV
and MIV restrictions, under the assumption that BR, MDR, and

Table 6. Means of the instrumental and monotone instrumental
variables and the control variable

Country IV MIV1 ≤ 2 MIV1 = 3 MIV2 = 0 MIV2 = 1 x

Belgium 0.767 0.351 0.188 0.227 0.244 0.305
Denmark 0.699 0.444 0.176 0.161 0.242 0.188
Germany 0.750 0.364 0.223 0.164 0.297 0.183
Greece 0.777 0.252 0.215 0.187 0.317 0.596
Ireland 0.871 0.21 0.151 0.157 0.272 0.538
Italy 0.672 0.216 0.261 0.148 0.332 0.626
Portugal 0.766 0.254 0.255 0.15 0.245 0.684
Spain 0.722 0.252 0.22 0.172 0.323 0.608
U.K. 0.762 0.379 0.206 0.217 0.284 0.405

NOTE: IV is the dummy variable for households that participated in the survey for at
least 7 waves; MIV1 is the household size (the excluded category is a household of size
greater than 3); MIV2 is the number of working household members (the excluded cate-
gory is 2 or more); and x is the control for lower education.

Table 7. Estimated bounds by country. For each country, the
estimates of the upper (lower) bounds are reported in the first row, the
estimated finite-sample bias is reported in the second row while the

corresponding upper (lower) limits of the corrected bootstrapped
90% confidence intervals are reported in the third row

Country LB∗
IV UB∗

IV LB∗
MIV1

UB∗
MIV1

LB∗
MIV2

UB∗
MIV2

Belgium 0.088 0.129 0.085 0.155 0.081 0.154
0.007 −0.007 0.004 −0.008 0.001 −0.003
0.078 0.141 0.075 0.168 0.069 0.171

Denmark 0.083 0.100 0.068 0.113 0.061 0.122
0.003 −0.005 0.002 −0.011 0.001 −0.009
0.069 0.111 0.060 0.126 0.052 0.132

Germany 0.119 0.139 0.087 0.154 0.083 0.159
0.006 −0.006 0.002 −0.005 0.001 −0.003
0.108 0.149 0.080 0.164 0.076 0.169

Greece 0.168 0.240 0.184 0.228 0.160 0.202
0.008 −0.008 0.005 −0.003 0.002 −0.007
0.160 0.252 0.166 0.258 0.151 0.233

Ireland 0.174 0.202 0.160 0.192 0.126 0.183
0.007 −0.015 0.007 −0.003 0.001 −0.003
0.140 0.218 0.130 0.217 0.111 0.206

Italy 0.204 0.232 0.162 0.261 0.160 0.254
0.003 −0.002 0.003 −0.004 0.001 −0.013
0.188 0.246 0.151 0.272 0.150 0.268

Portugal 0.176 0.257 0.204 0.255 0.168 0.262
0.007 −0.008 0.003 −0.002 0.001 −0.008
0.168 0.265 0.184 0.270 0.157 0.273

Spain 0.149 0.211 0.127 0.217 0.128 0.185
0.004 −0.008 0.003 −0.005 0.001 −0.005
0.133 0.221 0.119 0.231 0.117 0.203

U.K. 0.158 0.199 0.125 0.222 0.126 0.219
0.006 −0.004 0.003 −0.004 0.000 0.000
0.143 0.211 0.118 0.234 0.116 0.233

NOTE: The overall (the direct and the indirect) misclassification probabilities are as-
sumed to be lower than 0.081 (0.130 and 0.159).

IR all hold when conditioning on the IV or MIV and the addi-
tional covariates. We exclude the Netherlands from the analysis
because the quality of the data on education is doubtful. The
narrowest bounds are those identified by the stronger IV re-
striction, and their widths vary from 0.02 (0.04 for the bootstrap
confidence interval) to 0.07 (0.09). For all countries except Por-
tugal, the intervals identified by these bounds are narrower than
those obtained under the joint Assumptions BR, MDR, and IR.

By comparing the estimated bounds across countries, we
draw the following conclusions: (1) Belgium, Denmark, and
Germany are the countries with the lowest poverty rates (UB∗

IV
for these countries is lower than LB∗

IV for all other countries);
(2) Italy and Portugal have higher poverty rates than Ireland,
Spain and the U.K. (LBIV for Italy is higher than UBIV for
Ireland and the U.K., while UBMIV2 for Spain and LBMIV1

for Portugal are higher than UBMIV1 for Ireland and UBIV for
the U.K.); (3) Greece has a higher poverty rate than Ireland
(LBMIV1 for Greece is higher than UBMIV2 for Ireland). If we
look at the confidence interval, then the identification regions
become slightly larger and this weakens some of our conclu-
sions. Nevertheless, our results suggest the presence of three
groups of countries with different levels of poverty: low for Bel-
gium, Denmark, and Germany, medium for Ireland, Spain, and
the U.K., and high for Greece, Italy, and Spain.
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5. CONCLUSIONS

In this article we suggest new ways of partially identifying
poverty rates in the presence of both measurement error and
missing data problems. We show that one can analytically com-
pute bounds for the poverty rates by assuming the existence
of a nontrivial upper bound on the overall misclassification
probability, the direct misclassification probability, or the in-
direct misclassification probability. While assumptions on the
existence of an upper bound on the misclassification probabil-
ity and on the direct misclassification probability have already
been used to partially identify probability distributions (see,
e.g., Horowitz and Manski 1995 and Molinari 2008), we are the
first to use assumptions on the indirect misclassification prob-
ability. Furthermore, we show how to extend the partial iden-
tification approach to the case where measurement error and
missing data problems coexist, and how to use assumptions on
misclassification probabilities together with instrumental vari-
ables and monotone instrumental variables assumptions.

By applying this extended partial identification approach, we
estimate upper and lower bounds for the poverty rates in 10 Eu-
ropean countries. Our main main results can be summarized as
follows. First, the use of assumptions on misclassification prob-
abilities jointly with IV and MIV restrictions are very useful in
partial identification of poverty rates. In our empirical applica-
tion, these assumptions allow us to identify bounds which are
narrow enough to be informative about the ranking of countries
by level of poverty.

Second, in the presence of both measurement errors and
missing data, partial identification provides information on
which of the two problems survey methodologists and applied
social scientists should be more concerned with. This is pos-
sible by decomposing the identification intervals into the part
due to the missing data and that due to the measurement error.
To reject the assumption that the missing data problem is the
main explanation for the lack of identification, we have to in-
crease the upper bounds on the misclassification probabilities
to values which are much larger than those observed in valida-
tion studies. We conclude that missing data should be the major
concern when estimating poverty rates using surveys similar to
the ECHP.

SUPPLEMENTAL MATERIALS
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and MI for λ ≥ 1/2 and different values of p = Pr(DW = 1).
All supplemental items are contained in a single PDF file.
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