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a b s t r a c t

Recent dynamic factor models have been almost exclusively developed under the assumption that the
common components span a finite-dimensional vector space. However, this finite-dimension assumption
rules out very simple factor-loading patterns and is therefore severely restrictive. The general case has
been studied, using a frequency domain approach, in Forni et al. (2000). That paper produces an estimator
of the common components that is consistent but is based on filters that are two-sided and therefore
unsuitable for prediction. The present paper, assuming a rational spectral density for the common
components, obtains a one-sided estimator without the finite-dimension assumption.
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1. Introduction

The dynamic factor model

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t

+ · · · + biq(L)uqt + ξit , (1.1)

where i ∈ N, t ∈ Z, has been studied in a vast literature starting
with Stock andWatson (2002a,b), Forni et al. (2000) and Forni and
Lippi (2001).

The components ξit , called idiosyncratic, are assumed to be
orthogonal to the common components χit and cross-sectionally
weakly correlated (see Section 2), so the comovement of the x’s is
mainly accounted for by the q common shocks ujt . Usually, the as-
sumptions also include that the Hilbert space spanned by the com-
mon components χit , for a given t and i ∈ N, is finite dimensional.
Under this assumption, the components χit and ξit can be consis-
tently estimated, as n and T (the number of series and the number
of observations for each series, respectively) tend to infinity, using
principal components (standard or generalized) of the observable
series xit (see Stock and Watson, 2002a,b; Bai and Ng, 2002; Forni
et al., 2005, 2009).Moreover, these estimators only involve present
and past values of the variables xit .

Dynamic principal components, based on the spectral density
of the x’s, have been used in Forni et al. (2000), where the above
mentioned finite-dimension assumption is not required. However,
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dynamic principal components result in two-sided filters, involv-
ing present and past but also future values of the variables xit , with
the consequence that the estimates are unreliable at the end of the
sample and therefore useless for prediction.

The present paper starts with the observation that the finite-
dimension assumption is very strict, as it does not include a model
as simple as

xit =
1

1 − αiL
ut + ξit , (1.2)

with the coefficients αi independently drawn, for example, from
the uniform distribution between −0.9 and 0.9.

This seems sufficientmotivation to go back tomodel (1.1) with-
out the finite-dimension assumption. Combining the approach
taken in Forni et al. (2000) with recent results obtained by Ander-
son, Deistler and coauthors (see Section 3), we show that under
the assumption that the filters bij(L) are rational, plus reasonable
technical assumptions, model (1.1) can be rewritten as

Hn(L)xnt = Rnut + Hn(L)ξnt , (1.3)

where xnt and ξnt stack the firstn series xit and ξit respectively,ut =

(u1t u2t · · · uqt)
′,Hn(L) is a finite matrix polynomial. Moreover:

(i) Hn(L), which is n × n, and Rn, which is n × q, can be obtained
from the spectral density of χnt .

(ii) Hn(L)ξnt is idiosyncratic (this is not obvious; see Section 4).

Though the paper is limited to representation results, Eq. (1.3),
combinedwith the estimate of the spectral density ofχnt proposed
in Forni et al. (2000), can be seen as a basis for estimating the com-
mon components χit , without the finite-dimension assumption
and using only contemporaneous and past values of the series xit .

http://dx.doi.org/10.1016/j.jeconom.2010.11.003
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:ml@lippi.ws
http://dx.doi.org/10.1016/j.jeconom.2010.11.003


24 M. Forni, M. Lippi / Journal of Econometrics 163 (2011) 23–28
Section 2 reviews previous results on model (1.1). Section 3
introduces and discusses the main assumptions. Section 4 derives
representation (1.3). Section 5 discusses estimation based on (1.3).
Section 6 concludes.

2. Previous results

2.1. The general model

Let us rewrite model (1.1) in vector form:

xnt = χnt + ξnt

χnt = Bn(L)ut
(2.4)

with bij(L) being the (i, j) entry of Bn(L) for all n ≥ i (the matrices
Bn(L) are nested). We assume that:

A1. (Common components) ut is an orthonormal q-dimensional
white noise. The filters bij(L) are square summable.

A2. (Idiosyncratic components) ξnt is weakly stationary.
A3. (Orthogonality of common and idiosyncratic components)

ξnt ⊥ us, for all n, t, s.
A4. (Eigenvalues of the idiosyncratic components) Let Σξ

n (θ) be
the spectral densitymatrix of ξnt andλ

ξ

n1(θ) its first eigenvalue
(in descending order). We assume that there exists a positive
real number λ such that λξn1(θ) ≤ λ for all n.

A5. (Eigenvalues of the common components) Let Σχ
n (θ) be the

spectral density matrix of χnt and λχnq(θ) its qth eigenvalue.
We assume that λχnq(θ) → ∞, for all θ , for n → ∞.

Forni and Lippi (2001) prove that (2.4) and Assumptions A1
through A5 impose little structure on the x’s. They show that the
following two assumptions: (1) xnt is stationary for all n, (2) there
exists an integer q such that, for n → ∞, the qth eigenvalue
of the spectral density matrix of xnt diverges for all frequencies
while the (q + 1)th is uniformly bounded, imply that the x’s can
be represented as in (2.4) with A1 through A5 holding.

Under Assumptions A1 through A5, the decomposition of the
x’s into common and idiosyncratic components is unique. To be
precise, if

xit = χ ′

it + ξ ′

it = b′

i1(L)u
′

1t + b′

i2(L)u
′

2t

+ · · · + b′

iq(L)u
′

q′t + ξ ′

it (1.1′)

for all i ∈ N and t ∈ Z, and Assumptions A1 through A5 are fulfilled
for (1.1′), then

q′
= q, χ ′

it = χit , ξ ′

it = ξit

for all i ∈ N and t ∈ Z (see Forni and Lippi, 2001).
Note that the asymptotic condition in Assumption A4 does

not require mutual orthogonality of the idiosyncratic components,
a standard identification condition in finite-n factor models. For
example, a non-zero correlation of ξit with ξi+1,t does not conflict
with A4. As a consequence, the decomposition of the x’s into
common and idiosyncratic components is identified only under
xit = χit + ξit = χ ′

it + ξ ′

it , for all i ∈ N and t ∈ Z. Note also that
uniqueness does not extend to Bn(L) or the common shocks ut . For,
ifB(L) is a q×q filter such thatB(z)B ′(z−1) = Iq for |z| = 1, then
defining

B̃n(L) = Bn(L)B(L), ũt = B ′(L−1)ut , (2.5)

we have χnt = B̃n(L)ũt , which can replace the second equation
in (2.4).

Now consider Σx
n(θ), its first q eigenvalues and corresponding

eigenvectors:

λxn1(θ) λ
x
n2(θ) · · · λ

x
nq(θ),

pxn1(θ) p
x
n2(θ) · · · p

x
nq(θ),
where |pxn1(θ)|
2
+|pxn2(θ)|

2
+· · ·+|pxnq(θ)|

2
= 1 for all θ ∈ [−π π ].

Define Pnj(L) as the inverse Fourier transform of

1
λxnj(θ)

pxnj(θ).

The vector

ut,n = (Pn1(L)′Pn2(L)′ · · · Pnq(L)′)′xnt

is a q-dimensional orthonormal white noise. Moreover, define

χit,n = Proj(xit |span(us,n, s ∈ Z)).

Then as n → ∞ we have χit,n → χit in quadratic mean.
The above matrices and vectors have sample counterparts:

Σx
nT (θ), PnT ,j(L), ut,nT , χit,nT ,

and the result is that

χit,nT → χit

in probability as n, T → ∞ (see Forni et al., 2000).
The following elementary example shows how the dynamic

principal components work and their main drawback:

χit =


ut−1 if i is odd
ut if i is even. (2.6)

Moreover, assume that Σξ
n (θ) =

1
2π In (the idiosyncratic compo-

nents are orthogonal to one another and have unit variance). Then

Σx
n(θ) =

1
2π


e−iθ

1
...

e−iθ

1

 
eiθ 1 · · · eiθ 1


+

1
2π

In.

The first eigenvalue is 1 + n, with eigenvector 1
√
n


eiθ 1 · · ·

eiθ 1

, so

Pn1(L) =
1

√
n(1 + n)


L−1 1 · · · L−1 1


,

where L−1 is the forward shift operator: L−1xit = xi,t+1. As a con-
sequence this estimator can be used only for t ≤ T − 1.

2.2. The restricted model

An important simplification is obtained with the following
assumption, which is used in Stock and Watson (2002a,b), Bai and
Ng (2002), Forni et al. (2005) and Forni et al. (2009). For a given
t , we will denote by Sχt the Hilbert space span(χit , i ∈ N), i.e. the
closure of the set of all linear combinations of the variablesχit . Note
that stationarity of the vectorsχnt implies that the dimension of Sχt
is independent of t .
AF. The space Sχt is finite dimensional.

Under A1 through A5 plus AF, denote by r the dimension of Sχt .
There exist:

(I) an r-dimensional stationary process Ft , which has the repre-
sentation

Ft = N(L)ut , (2.7)

N(L) being a square-summable r × q filter;
(II) nested n × r matrices Cn, such that

χnt = Bn(L)ut = CnFt (2.8)
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(for a proof of this fairly trivial statement, see Forni et al. (2009).
The processes Fjt are called the static factors. Note that the static
factors evolve according to a dynamic equation; see (2.7). ‘‘Static’’
only refers to the loading of Ft by the χ ’s; see (2.8).

Summing up, in general, the stochastic variables {χit , i ∈ N,
t ∈ Z}, span an infinite-dimensional Hilbert spaceX, which is con-
tained in the Hilbert space spanned by {ujt , j = 1, . . . , q, t ∈ Z}.
Under AF the Hilbert space spanned by {χit , i ∈ Z}, for any given
t , is finite dimensional with stationary basis Ft . Of course in that
case X is also contained in the Hilbert space spanned by {Fjt , j =

1, . . . , r, t ∈ Z}.
Let Γ x

n be the covariance matrix of xnt . Under AF, estimation
of the common components can be achieved using the first r
eigenvalues and corresponding eigenvectors of Γ x

n to obtain Ft,n,
then projecting xit on Ft,n. In this case only contemporaneous
values of the x’s are involved, so no two-sidedness problem arises.

3. Back to the general model

Aswe have observed in the Introduction, taking the simple case
(1.2), rewritten here:

xit =
1

1 − αiL
ut + ξit ,

where αi is drawn from the uniform distribution on the interval
[−.9 .9], we see that Sχt is not finite dimensional; thus, so to speak,
we have an infinite number of static factors.

Criteria for determining r , the number of static factors, when
applied to models like (1.2), will produce wrong results, with
the estimated r growing to infinity with n. Moreover, all criteria
for determining q that are based on firstly estimating Ft , then
estimating a VAR for Ft , are misspecified. To our knowledge, the
only criterion for determining q, which does not depend on the
assumption of a finite r and has therefore general applicability, is
that of Hallin and Liška (2007).

3.1. Fundamental and zeroless representations

We believe that model (1.2) provides a strong motivation for
not assuming AF. Instead, we assume here that:

A6. The spectral density of χnt is rational.

Assumptions A6 and A5 imply that there exists n̄ ≥ q such that
for n ≥ n̄, rank (Σχ

n (θ)) = q for θ a.e. in [−π π ]. As a consequence,
for n ≥ n̄ the vector χnt has a fundamental rational representation
of rank q, i.e.

χnt = Cn(L)v
(n)
t , (3.9)

where: (1) the entries of Cn(L), denoted by cij(L), are rational
functions

cij(L) =
dij(L)
eij(L)

,

where dij and eij have no common roots and eij(0) = 1; (2) v(n)t is a
q-dimensional orthonormal white noise; (3) Cn(z) has no zeros for
|z| < 1, a zero of Cn(z) being defined as a complex number ζ such
that the rank of Cn(ζ ) is lower than the maximum rank of Cn(z),
and no poles for |z| ≤ 1, the poles of Cn(z) being defined as the
poles of the polynomials eij(z). This implies that v(n)t belongs to the
space spanned byχn,t−k, for k ≥ 0. As (3.9) implies thatχnt belongs
to the space spanned by v(n)t−k, for k ≥ 0, the two spaces coincide.

Fundamental representations are unique up to an orthogonal
matrix. To be precise,

χnt = C̃n(L)ṽ
(n)
t

is fundamental if and only if there exists an orthogonal matrix Kn
such that

C̃n(L) = Cn(L)Kn

ṽ(n)t = K ′

nv
(n)
t .

To understand the relationship between representations (3.9)
and (2.4), consider again example (2.6):

χit =


ut−1 for i odd
ut for i even.

In this case a fundamental white noise for χnt is ut−1 for n = 1, ut
for n > 1. Note also that the (1, 1) entry of Cn(L) is 1 for n = 1, L
for n > 1. The example shows that, firstly, reference to n in
v(n)t is necessary and, secondly, that the matrices Cn(L), unlike the
matrices Bn(L), are not necessarily nested.

In the following example, though Cn(L) ≠ Bn(L) for all n, the
matrices Cn(L) are nested. Let q = 1 and let representation (1.1) be

χit = b(L)ut , b(L) =
1 − α−1L
1 − αL

,

with |α| < 1. As the polynomial 1 − α−1L is not invertible, the
white noise ut does not belong to the space spanned by present
and past values of the χ ’s. However, elementary calculations show
that

1 − α−1L
1 − αL

ut = −α−1
[
1 − αL−1

1 − αL
(Lut)

]
= −α−1wt ,

and that the spectral density of wt is equal to unity at all frequen-
cies. Thuswt is a unit-variance white noise. Representation (3.9) is
immediately obtained:

χit = cwt , c = −α−1.

Thus the matrices Cn(L) are nested and v(n)t = wt is independent
of n.

More generally, under Assumption A7′, to be introduced below,
we can choose the fundamental representations (3.9) in such away
that v(n)t is independent of n and the matrices Cn(L) are nested.

Now consider the set of all n × q matrices D(L), with rational
entries

dij(K) =
fij(L)
gij(L)

,

with gij(0) = 1, such that

degree(fij) ≤ p1, degree(gij) ≤ p2.

The parameter space for D(L) has dimension nq(p1 + p2 + 1). If
the matrix D(L) is tall, i.e. if n > q, then, for generic values of the
parameters, D(L) is zeroless, i.e. the rank of D(z) is q for all complex
numbers z.

To see why this result holds, consider firstly the following ex-
ample, in which q = 1:

χit = (αi + βiL)ut , (3.10)

for i = 1, . . . , n, with n > 1. Obviously in this case D(z) is zeroless
unless αi/βi = γ for all i. In general, existence of a zero of D(z)
means that the determinants of all the q × q submatrices of D(z)
vanish for the same complex number. This implies algebraic re-
strictions on the coefficients ofD(L), as argued in Forni et al. (2009)
and Zinner (2008). For a formal proof see Anderson and Deistler
(2008a) and Deistler et al. (2010).

This motivates the following assumption, which will be
enhanced in the next section:

A7. For n ≥ q + 1, the matrix Cn(z), corresponding to the funda-
mental representation χnt = Cn(L)v

(n)
t , is zeroless.
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3.2. Autoregressive representations for n > q

Tall, zeroless moving average rational matrices possess a finite
inverse:
(F) Let n > q. Consider the rational representation yt = D(L)zt ,
where yt is n-dimensional and zt is an orthonormal q-dimensional
white noise. If D(L) is zeroless then yt has a finite autoregressive
representation

A(L)yt = D(0)zt .

For a formal proof see Anderson and Deistler (2008b) and
Deistler et al. (2010). Example (3.10) for n = 2 provides an
intuition:

χ1t = α1ut + β1ut−1

χ2t = α2ut + β2ut−1.
(3.11)

We see that

ut =
1

α1β2 − α2β1
(β2χ1t − β1χ2t),

and so
1 − δβ1β2L δβ2

1L
−δβ2

2 1 + δβ1β2L

 
χ1t
χ2t


=


α1
α2


ut ,

where δ = 1/(α1β2 − α2β1). Note that the autoregressive repre-
sentation exists if and only if α1β2 − α2β1 ≠ 0, that is when D(z)
is zeroless. Moreover, χ1t−1 and χ2t−1 are linearly independent.
Therefore the autoregressive representation of order 1 is unique.

But as soon as n = 3,

χ1t = α1ut + β1ut−1

χ2t = α2ut + β2ut−1

χ3t = α3ut + β3ut−1,

(3.12)

we see that infinitelymany autoregressive representations of order
1 are possible. For, setting α = (α1 α2 α3)

′, we have

ut =
1
cα
(c1χ1t + c2χ2t + c3χ3t), (3.13)

where c = (c1 c2 c3) is any vector orthogonal to (β1 β2 β3) and
such that cα ≠ 0. Using (3.13) to replace ut−1 in (3.12), we obtain
an autoregressive representation of order one depending on c .

Consider now q + 1 integers i1, i2, . . . , iq+1, with 1 ≤ ik < ik+1
≤ n, and let

χi1,...,iq+1,t = (χi1t χi2t · · ·χiq+1t)
′
= Cn;i1,...,iq+1(L)v

(n)
t (3.14)

be obtained from (3.9) by selecting the rows i1, i2, . . . , iq+1. The
vector (3.14) is tall (it has dimension q + 1 and rank q), so
for generic values of the parameters the matrix Cn;i1,...,iq+1(L) is
zeroless. As a consequence, by Proposition (F), for generic values
of the parameters the vector χi1,...,iq+1,t has a finite autoregressive
representation. Thismotivates almost all of Assumption A7′ below,
which enhances Assumption A7. The uniqueness in part (ii) is
motivated by the discussion of examples (3.11) and (3.12).

A7′. For all n and all choices of i1, i2, . . . , iq+1, we assume that (i)
Cn;i1,...,iq+1(z) is zeroless, and that (ii) χi1,...,iq+1,t has a unique
minimum-lag autoregressive representation.

As the vector (3.14) is tall, being of dimension (q + 1) but of
rank q, part (i) of A7′ can be motivated by the genericity argument.
Part (ii) has a motivation in the discussion of examples (3.11) and
(3.12).

A consequence of A7′(i) is that the space spanned by present
and past values of {χit , i ∈ Z} is equal to that spanned by present
and past values of any q + 1 among the variables χit . For, present
and past values of χi1,...,iq+1,t span the same space as is spanned by

present and past values of v(n)t , and therefore by present and past
values of χnt , for any n.

Assumption A7′ rules out examples like (2.6), which fulfills
A7. Note however that (2.6) is a special case of (3.10), in which
Assumption A7′ is fulfilled for generic values of αi and βi.

Lastly, consider a fundamental representation for χq+1,t :

χq+1,t = F(L)vt .

By A7′, for i > q + 1, χit belongs to the space spanned by present
and past values of χq+1,t and therefore of vt , so

χit = fi1(L)v1t + fi2(L)v2t + · · · + fiq(L)vqt ,

for all i ∈ N. Thus under A7′ representation (3.9) can be written
with a white noise vt , which is independent of n, and nested
matrices Cn(L):

χnt = Cn(L)vt . (3.15)

3.3. Non-stationary variables; cointegration

Application of our dynamic factor model requires stationarity.
If the data set contains non-stationary variables, as is the case
with macroeconomic data sets, the data must be transformed
either by removing a deterministic trend or by differencing (this
is current practice in dynamic factor literature). Name as yit the
variables in the data set and xit the corresponding transformed
stationary variables. The question that we want to briefly discuss
here is whether some of our assumptions may fail to hold for
the transformed variables xit . We find that strong cointegration
relationships among the common components of the y’s imply that
Assumption A7′ does not hold for some choice of i1, i2, . . . , iq+1.

Assume for simplicity that all the variables yit in the data set are
I(1) and that

yit = φit + ψit ,

where:

(i) φit is I(1) for all i ∈ N.
(ii) The variables xit , χit and ξit , defined as the first differences of

yit , φit and ψit respectively, evolve according to model (2.4)
and fulfill Assumptions A1 through A6.

Consider now a q-dimensional vector obtained by selecting q
variables among the φ’s:

φi1,...,iq,t = (φi1t φi2t · · ·φiqt)
′.

The vector φi1,...,iq,t has the representation

χi1,...,iq,t = Bi1,...,iq(L)ut ,

which is obtained by selecting the rows i1, i2, . . . , iq in (2.4). The
vector φi1,...,iq,t is cointegrated if and only if Bi1,...,iq,t(1) is singular.

Now consider a (q + 1)-dimensional vector

φi1,...,iq+1,t = (φi1t φi2t · · ·φiq+1t)
′,

whose representation is

χi1,...,iq+1,t = Bi1,...,iq+1(L)ut ,

where the matrix Bi1,...,iq+1(L) is (q + 1) × q. If we assume that
all q-dimensional subvectors of φi1,...,iq+1,t are cointegrated, the
matrix Bi1,...,iq+1(z) has a zero at z = 1. Thus A7′ does not hold
for χi1,...,iq+1,t . In particular, χi1,...,iq+1,t has no finite autoregressive
representation.

The problem has no obvious solution as the variables φit and
χit are not observable. Direct estimation of non-stationary factors
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and common components has been obtained in Bai and Ng (2004),
but only for the restricted model. Methods allowing estimation
of the components φit and testing for their cointegration in the
generalmodel are not available. On the other hand,wedonot really
need as much as Assumption A7′. In the next section we show that
what is needed to obtain a finite autoregressive representation for
χnt is the existence of a partition of χnt into (q + 1)-dimensional
subvectors each fulfilling A7′. In empirical situations, careful
grouping of the variables, based for example on their economic
relationships, should help with avoiding ‘‘dangerous’’ (q + 1)-
dimensional vectors.

4. Transforming the dynamic model into a static model with q
factors

We assume for convenience that n = (q + 1)m and partition
χnt as

χnt = (χ′

[1]t χ′

[2]t · · · χ
′

[m]t)
′,

where χ′

[s]t = (χ(s−1)(q+1)+1,t χ(s−1)(q+1)+2,t · · ·χs(q+1),t)
′.

We start with (3.15) and denote by

A[s](L)χ[s]t = R[s]vt (4.16)

the minimum-lag autoregressive representation of the (q + 1)-
dimensional vector χ[s]t (see Assumption A7′). Combining Eq.
(4.16), χnt has the following autoregressive representation:

A[1](L) 0 · · · 0
0 A[2](L) · · · 0

. . .

0 0 · · · A[m](L)

 χnt = Rnvt , (4.17)

where Rn = (R′

[1] · · · R
′

[m]
)′. Of course other representations like

(4.17) can be obtained by reordering the components of χnt .
However, the component of Rnvt which corresponds to a given
component of χnt is independent of which ordering has been
chosen.

A8. We assume that the qth eigenvalue of RnR′
n, call it νn, tends to

infinity as n → ∞.

AssumptionA8 is not a consequence of A5. In example (3.10), A5
requires that

∑
|αi + βie−iθ

|
2 diverges for all θ , while A8 requires

that
∑
α2
i diverges. Note that A8 is not affected if Rn is multiplied

on the right by an orthogonal matrix.
We denote by G∗ the complex conjugate of the matrix G.

A9. Let Ai1,...,iq+1(L) be the minimum-lag autoregressive matrix of
χi1,...,iq+1,t . Denote byµi1,...,iq+1(θ) themaximumeigenvalue of

Ai1,...,iq+1(e
−iθ )Ai1,...,iq+1(e

−iθ )∗.

We assume that µi1,...,iq+1(θ) ≤ µ for a positive real µ, for all
choices of ik, k = 1, . . . , q + 1, for all θ .

Assumption A9 is reasonable but not trivial. Take

A(L) =


1 αL
βL 1


.

The trace of A(e−iθ )A(e−iθ )∗ is |1 + αe−iθ
|
2
+ |1 + βe−iθ

|
2, which

is not bounded under the stability condition |αβ| < 1.
Defining Hn(L) as the autoregressive matrix in (4.17), we have

Hn(L)xnt = Rnvt + Hn(L)ξnt (4.18)

or, setting x̃nt = Hn(L)xnt , χ̃nt = Rnvt and ξ̃nt = Hn(L)ξnt ,

x̃nt = Rnvt + ξ̃nt = χ̃nt + ξ̃nt . (4.19)
Let us prove that this is a static factor model with q factors, i.e.
that as n → ∞ the first q eigenvalues of the covariance matrix of
χ̃nt diverge and the first eigenvalue of the covariance matrix of ξ̃nt
is bounded. The first statement is a consequence of A8. Moreover,
using A4 and A9, we have

aΣ ξ̃
n (θ)a

∗
= aHn(e−iθ )Σξ

n (θ)Hn(e−iθ )∗a∗

≤ λ
ξ

n1(θ)aHn(e−iθ )Hn(e−iθ )∗a∗
≤ λµ|a|2.

Thus the first eigenvalue of the spectral density Σ ξ̃
n (θ), call it

λ
ξ̃

n1(θ), is bounded by λµ. On the other hand, the first eigenvalue
of the covariance matrix of ξ̃nt is bounded by∫ π

−π

λ
ξ̃

n1(θ)dθ.

The result follows.
Other choices of the autoregressive representation of χnt

may turn out into representations x̌nt = χ̌nt + ξ̌nt with a non-
idiosyncratic ξ̌nt . As an example, consider again model (3.10):

χnt = αnut + βnut−1.

If c = (c1 c2 · · · cn) is orthogonal to βn, then an autoregressive
representation is
I − (δβncL)


χnt = αnut ,

where δ = (cαn)
−1 and therefore

I − (δβncL)

xnt = αnut +


I − (δβncL)


ξnt = χ̌nt + ξ̌nt .

We have

ξ̌it = ξit + δβi[cξn,t−1].

Thus the vector ξ̌nt is not idiosyncratic.

5. Estimation; a sketch

In the previous section we have shown that Assumption A7′

implies the existence of representation (4.18). We now provide
a procedure for constructing Hn(L), Rn and vt starting with the
spectral density of the common componentsΣχ

n (θ). As we assume
thatΣχ

n (θ) is known, this is to be considered only as a sketch of an
estimation procedure. In practical situationsΣχ

n (θ) is not known;
we start with an estimate Σ̂χ

n (θ) and compute the corresponding
sample-dependent Ĥn(L), R̂n and v̂t . A proof of consistency of such
estimates, for n and T tending to infinity, is beyond the scope of
the present paper and left for future research. Let us only observe
here that our assumptions, A1 through A9, must be enhanced with
conditions ensuring consistency of a smoothed periodogram of xnt
(see e.g. Brockwell and Davis, 1991, pp. 445–7).

Firstly we determine Hn(L) and Rn. We keep assuming that n =

(q + 1)m. Using them diagonal (q + 1)× (q + 1) blocks ofΣχ
n (θ)

we can obtain the matrices

G[j](L), Γ[j], j = 1, 2, . . . ,m,

corresponding to the Wold representation

χ[j]t = G[j](L)w[j]t . (5.20)

Note that neither the χ[j]t nor the w[j]t are observable. The matrix
G[j](L) is (q + 1) × (q + 1) and has rational entries. Moreover,
G[j](0) = Iq+1. The matrix Γ[j] is the covariance matrix of the
(q+1)×1 one-step-ahead prediction error vectorw[j]t . Thematrix
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Γ[j] (like w[j]t ) is of rank q. By Assumption A7′(ii), (5.20) can be
rewritten as

A[j](L)χ[j]t = w[j]t ,

where A[j](L) is the unique minimum-lag left inverse of G[j](L). The
matrix Γ[j] can be factored as

Γ[j] =


P[j]Λ[j]

1
2

 
Λ[j]

1
2 P ′

[j]


,

the matrix P[j] being (q + 1) × q with the normalized first q
eigenvectors of Γ[j] on the columns, while Λ[j] is q × q with the
(non-zero) corresponding eigenvectors on the diagonal. The
columns of P[j] are mutually orthogonal. We define

v[j]t = Λ
−

1
2

[j] P ′

[j]wj[]t = Λ
−

1
2

[j] P ′

[j]A[j](L)χ[j]t . (5.21)

It is easily seen that v[j]t is an orthonormal q-dimensional white
noise. Moreover, projecting w[j]t on v[j]t we find w[j]t = P[j]Λ[j]

1
2

v[j]t . Defining S[j] = P[j]Λ
1
2
[j], we obtain

A[j](L)χ[j]t = S[j]v[j]t .

The white noise vectors v[j]t are different in general but, by As-
sumption A7′, span the same space. Therefore, for j = 2, . . . ,m,

v[j]t = K[j]v[1]t ,

where Kj is orthogonal. Using (5.21),

K[j] = E

v[j]tv ′

[1]t


=

1
2π

∫ π

−π

[
Λ

−
1
2

j P ′

[j]A[j](e−iθ )Σ
χ

[j1](θ)A[1](e−iθ )∗P[1]Λ
−

1
2

[1]

]
dθ,

whereΣχ

[j1](θ) is the (q + 1)× (q + 1) cross-spectrum of χ[j]t and
χ[1]t (a submatrix of Σχ

n (θ)). In conclusion, setting vt = v[1]t , we
have

A[1](L) 0 · · · 0
0 A[2](L) · · · 0

. . .

0 0 · · · A[m](L)




χ[1]t
χ[2]t
...

χ[m]t



=


S[1]
S[2]K ′

[2]
...
S[m]K ′

[m]

 vt , (5.22)

and therefore

Hn(L)xnt = Rnvt + Hn(L)ξnt ,

where Hn(L) and Rn are defined in (5.22).
The next step determines vt . Note that the matrix Rn has mu-

tually orthogonal columns. As a consequence, R′
nRn has the eigen-

values of RnR′
n on the main diagonal (this is easily seen) and zero

elsewhere. SettingMn = (R′
nRn)

−1,

MnR′

nHn(L)xnt = MnR′

nRnvt + MnR′

nHn(L)ξnt
= vt + MnR′

nHn(L)ξnt .

Denoting by Rij the entries of Rn, the sth row ofMnR′
n is

1
n∑

k=1
R2
ks

(R1s R2s · · · Rns) .
Thus the sum of its squares is

1
n∑

k=1
R2
ks

,

i.e. the reciprocal of the sth eigenvalue of RnR′
n. By Assumption

A8, this reciprocal tends to zero as n → ∞. Because Hn(L)ξnt is
idiosyncratic, the termMnR′

nHn(L)ξnt tends to zero in mean square
as n → ∞ (see e.g. Forni and Lippi, 2001). Thus

MnR′

nHn(L)xnt → vt
in mean square as n → ∞. Lastly, χnt results from inversion of
Hn(L).

6. Conclusions

Forni et al. (2000) estimate Σχ
n (θ), the spectral density of

the common components of model (1.1), by means of q dynamic
principal components, and provide a factorization of Σχ

n (θ).
However, the estimator of the common components based on such
factorization, though consistent, applies two-sided filters to the
observable variables xit .

In the present paper, under the assumption of rationality for
Σ
χ
n (θ) and other mild requirements, we obtain a factorization of

Σ
χ
n (θ)which only employs one-sided filters.
An important feature of our method is that the problem of

factoring Σχ
n (θ), which is of dimension n and rank q, is solved by

separately factoring many spectral matrices of dimension q + 1.
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