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Abstract

Option value arises in environments where an investment needs to be made under
uncertainty. The decision to invest in postsecondary education is a perfect example.
Students, as they learn about the uncertain educational outcomes, can drop out or
transfer up to harder and more rewarding schools or even down to easier and less
rewarding institutions, carrying a fraction of the accumulated human capital; here,
academic 2-year colleges serve as a stepping stone towards more demanding environ-
ments as it provides a cheaper learning technology. A positive theory of postsecondary
education is built and contrasted empirically. Using an estimated version of the model,
it is found that option value explains a large share of the returns to postsecondary
education. The elimination of academic 2-colleges, with freshmen enrollment of nearly
40% of that of 4-year colleges, would decrease total enrollment by 6% with very limited
effect on the ex-ante returns to education.
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1 Introduction

Option value is a feature of environments where an investment needs to be made under

uncertainty, as in Pindyck (1982), Abel (1983) or Dixit (1989). When there is learning and

capital is at least partially transferable, a stepping stone arises as in Jovanovic and Nyarko

(1997). Notably, academic 2-year colleges constitute one of these stepping stones; as they

provide a cheaper learning technology, they act as a safer path towards more rewarding and

demanding environments, namely, 4-year colleges.

Evidence from the National Longitudinal Study of the High School Class of 1972 (NLS-

72) is compelling both in terms of transitions and returns. Dropout rates are high in both

academic 2- and 4-year colleges. Graduation rates are 6 times higher in 4-year colleges and

transfer rates are mostly one-sided from academic 2- to 4-year colleges. For students enrolling

in academic 2-year colleges, the return to graduation is negligible while that to transferring

is large. Academic 2-year colleges are cheaper, easier and some fraction of the accumulated

credits can be transferred to a 4-year college. Students sort across institution types with

respect to how uncertain is their likelihood of success.1 For students with low expectations,

academic 2-year colleges are an ideal training ground. In the educational ladder, 4-year

colleges play the role of the step above academic 2-year colleges.

This paper produces a theory of post-secondary education where academic 2-year colleges

act a stepping stone following from the availability of dropout and transfer options in both

steps of the ladder. An estimated version of the model is then used to evaluate the value-

added of each option to each step, how substitutable the steps are, and how does the provision

of full insurance affects total enrollment and its composition across types of colleges.

The model incorporates academic 2-year colleges together with 4-year colleges and work.

High-school graduates are uncertain about their ability to accumulate human capital. Pes-

simistic agents join the workforce, optimistic agents enroll in 4-year colleges and those with

intermediate beliefs enroll in academic 2-year colleges. During their tenure as students,

1Similar to the likelihood of investing by firms facing uncertain demand as in Pindyck and Solimano
(1993), Caballero and Pindyck (1996), or Leahy and Whited (1996).
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agents are presented with exams, which govern the accumulation of credits and provide

information that updates beliefs about ability, inducing dropouts and transfers.

Academic 2-year colleges are ideal for students with aspirations regarding graduation at

4-year colleges but with low expectations about their ability to accumulate human capital.

Depending on the evolution of their beliefs and accumulation of credits, students can decide

to transfer to 4-year colleges and carry with them a proportion of their stock of credits,

implying that academic 2-year colleges act as a stepping-stone, similar to Jovanovic and

Nyarko (1997) where workers move up in the work ladder once they acquired the necessary

skills. Further, the model has features of bandit models as students learn about their innate

ability to accumulate human capital, similar to Johnson (1978) and Miller (1984). Jovanovic

and Nyarko (1997) evaluate the predictive power of bandit and stepping stone models in

terms of job mobility and find that there is some evidence favoring a combination of both.

Post-secondary education also presents features of bandit and stepping stone models.

The model relates to that one of Miao and Wang (2007), that studies the problem of

an investor facing two investment projects, one risky and one riskless. The riskiness follows

from uncertainty regarding the true quality of the project. For agents investing in the risky

project, the arrival of information might induce re-balancing the investment portfolio towards

the riskless one. The model developed here has, as a limiting case, a configuration similar to

the model in Miao and Wang (2007). When grades provides only information and graduation

is random with poisson arrival rate, the model can be casted in a very similar fashion to

Miao and Wang (2007) with the only difference that in this model agents face 3 investment

opportunities with two that are not absorbing, while in Miao and Wang (2007) they only

face two with only one non absorbing. Even in this simplified setup, academic 2-year colleges

can be used to learn in a cheaper and less risky environment.

This paper also relates to Groes, Kircher, and Manovskii (2010). They document, using

a large panel of workers from Denmark, that for a given occupation, high and low wage

earners are more likely to switch occupations, the first to more rewarding occupations and

the second to occupations with lower mean wage. Later, they produce a theory of learning
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about the worker’s own ability that explains the sorting and the transitions. In postsecondary

education, and in the model developed here, the same pattern of sorting and transitions

occurs.

An important feature of the model is its tractability, which allows for a clear character-

ization of the optimal policy that governs enrollment, dropout and transfer behavior. The

model is parameterized using data from NLS-72 by assuming that observable measures of

ability are correlated with the high-school graduate initial beliefs. The model is consistent

with the following facts: (1) among those initially enrolled in academic 2-year colleges, more

able agents are less likely to graduate, more likely to transfer, and less likely to dropout;

(2) among those initially enrolled in 4-year colleges, more able agents are more likely to

graduate and less likely to dropout or transfer; (3) there is a higher concentration of high

ability students among transferees.

Using the parameterized version of the model, a counterfactual analysis of the value

added of each option (dropout and transfer), the importance of the lack of full insurance,

and the value added of academic 2-year colleges as a whole are performed. To do this not

only changes in the enrollment pattern are analyzed but also how the return to enrollment,

relative to joining the workforce directly after high school graduation, are affected by each

of these options.

The decomposition of returns to enrollment shows that the dropout option accounts for

31% of the full average return to enrolling in an academic 2-year college while the transfer

option accounts for 69%. No one would enroll in an academic 2-year college if these options

were not available. For 4-year colleges, the dropout option accounts for 87% of the full aver-

age return to enrollment while the rest is explained by simple human capital accumulation

that follows from enrollment until graduation. Full insurance would reduce enrollment in

academic 2-year colleges from nearly 16% to 10%, while enrollment in 4-year colleges would

rise from 27% to nearly 50%. The interaction of risk and option value proves to be an

important force in post-secondary education.

Finally, the paper then turns to evaluate how close of a substitute are academic 2-year
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colleges for 4-year colleges to find a high degree of substitutability. In accordance with

this high degree of substitutability, the welfare effect of the availability of academic 2-year

colleges is at most moderate and is primarily driven by an increase in participation of nearly

7%. This result contrasts with the common wisdom that academic 2-year colleges are a key

part of the educational system as they train the students at the margin.

2 Evidence on Option Value: Patterns and Returns of

Postsecondary Education

This section presents statistics on postsecondary educational patterns and returns based on

the NLS-72. The unit of analysis are high-school graduates that join the workforce directly

after leaving school (with no spells of post-secondary education) or join a post-secondary

institution with no discontinuities in their educational spells.2 NLS-72 follows the educational

histories of the senior class of 1972 up to 1980. A final wave in 1986 was performed to acquire

long-run job market information.

The postsecondary educational system broadly consists of 4-year colleges, academic 2-

year colleges and vocational/technical school. The goal of academic 2-year colleges is to

prepare students for transferring to 4-year colleges while vocational schools offer specialized

education through terminal programs that require either 2 or 3 years to complete.

Table 1 can be used to evaluate the dynamic pattern of postsecondary educational histo-

ries. Individuals are faced with an initial enrollment choice between 4-year colleges, academic

2-year colleges, vocational schools or joining the workforce. The first spell of education can

end in three different ways. First, a student can dropout (D) and join the workforce. Second,

a student can transfer (T ) to a different type of educational institution.3 Third, a student

can graduate (G) and join the workforce.4 The proportion of students that transfer more

than once is negligible and therefore the analysis that follows is reduced to only account for

2Discontinuous spells are treated as educational histories that include periods of work.
3Within-type transfers (e.g. 4-year college to 4-year college) are not understood here as transfers.
4A student that transfer holding a degree is counted as a transfer.
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students that transfer at most once. Students that transfer can end their second spell of

education in two ways: obtaining a degree or becoming a dropout.

Table 1
Transitional dynamics

sh
ar

e j
vocational schools academic 2-year colleges 4-year colleges

T to j G at j D at j T to j G at j D at j T to j G at j D at j
voc. school 9 - 6 88 3 22 78 3 22 78
ac. 2-year c. 15 4 14 86 - 5 59 32 56 44

4-year c. 25 3 11 89 2 11 89 - 54 41

The transitions are for first and second educational spells after high-school graduation. T stands for Transfer,
G for graduation and D for drop out. Share: share of high-school graduates that enroll either at vocational
school, academic 2-year colleges or 4-year colleges. Source: NLS-72.

Only half of the sample pursues higher education directly after high-school graduation.

Among them, nearly 20% enroll in vocational school, around 30% enroll in academic 2-year

colleges and the rest enroll in 4-year colleges.

Dynamics (i.e. dropout, graduation and transfer behavior) differ for students depending

on their initial enrollment choice. Dropout rates are high in the three types of institutions

but are higher in vocational schools and academic 2-year colleges than in 4-year colleges.5

Transfer rates are important in academic 2-year colleges: approximately 32% of students that

initially enroll in this type of institution eventually transfer to 4-year colleges; Only 4-year

colleges graduate a large percent of their students. Note that the graduation rate at 4-year

colleges is similar for those initially enrolled at 4-year colleges and for those that transferred

from academic 2-year colleges. This fact favors the idea that the initial enrollment choice

does not hinder the probability of graduation at 4-year colleges.6

Low enrollment and high attrition rates can be associated with the risk (possibly due to

heterogeneity in returns) and costs attached to education. Costs include foregone earnings

5Dropout rates at vocational schools are inflated since vocational schools have students that enroll in
particular classes such as Pottery, learning to use Excel, etc. Once they acquire the particular skill, these
students leave the school and return to the workforce. These students don’t get terminal degrees and so they
are recorded as dropouts.

6Similar patterns are present in NELS:88 that correspond to a cohort that graduates from high-school in
1992.
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(income stream that a student ’loses’ by attending school) and direct costs of education that

include tuition (and associated fees) and housing. Table 2 shows that 4-year colleges cost

twice as much as academic 2-year colleges, providing one reason why students might enroll

in academic 2-year colleges.

Table 2
Average Cost of Education

Tuition Tuition + R&B

vocational school 3803.84 5904.74
academic 2-year college 1811.36 2729.65
4-year college 3420.73 5038.8

R&B: Room and Board. Missing Values were imputed by running a cost regression and imputing missing
values through observables. The values are measured in 1984 dollars. Source: NLS-72.

2.1 Returns to Education

Table 3 presents the Internal Rate of Return for the average student with a particular

educational path relative to joining the workforce directly after high-school graduation. The

Internal Rate of Return takes into account direct and indirect costs of education together with

its benefits. Controlling for observable measures of ability, a mincer and growth regressions

are used to back out the wages for different educational histories (benefit) relative to the

foregone wage due to education (indirect cost).7 The direct cost of education includes tuition,

books and, sometimes, room and board.

Few agents join the workforce after graduating from academic 2-year colleges providing

low confidence in the estimated coefficients in the mincer and growth regressions. In fact,

Table 15 presents the results of a test that evaluates whether the estimated wage differential

of graduating at academic 2-year colleges differs from the estimate for dropouts. The test

can not reject the equality of the coefficients. With this in mind, Internal Rates of Return are

calculated in two different ways. The first uses direct results from both mincer and growth

regressions. The second calculates Internal Rates of Return by assuming that graduates at

7The regressions are in Appendix B.
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academic 2-year colleges enjoy similar wage profiles than dropouts.

The results in Table 3 do not represent the true internal rate of return of each alter-

native since it relies on estimates of wage differentials that do not adjust for self-selection

but nonetheless provide intuition regarding to the value attached to each of the possible

educational paths.

Table 3
Internal Rates of Return

Voc. school Ac. 2-year C. 4-year C.

Graduation 9.37 -0.63 / 4.06 9.93
Dropout 2.07 6.4 8.55
Transfer to V.S. - 1.44 0
Transfer to Ac. 2-year 3.71 / 4.74 - 3.37 / 3.46
Transfer to 4-year 8.49 8.84 -
Enrollment 2.75 / 2.78 6.63 / 6.87 8.93 / 8.94

The cost of education includes Room and Board for 4-year colleges only. All the values are in percentage
points. Appendix B presents the details of the calculations and show how to obtain the wage estimates that
are imputed using mincer and growth regressions. Statistics for the direct cost of education can be found
in Table 2. The excluded group are agents that join the workforce directly. Finite lifetime of 47 years is
assume through out the calculations. Returns to graduation at academic 2-year colleges are computed in two
different ways: (1) using the parameters obtained by both mincer and growth regressions and (2) imposing
a similar wage profile for graduates than for dropouts.

Table 3 shows that enrollment in 4-year colleges provides the highest return and is mostly

driven by the return for graduates.8 Among agents that enroll in academic 2-year colleges

the results show that the best educational path is to eventually transfer to 4-year colleges

rather than staying and eventually graduating, reinforcing the ’transfer function’ associated

with academic 2-year colleges. Finally, note that the internal rates of return conditional on

initial enrollment choice are ordered: low in vocational school, average in academic 2-year

colleges and high in 4-year college.

8The results are in line with empirical studies. See, for example, Belzil and Hansen (2002), or Cunha,
Heckman, and Navarro (2005).
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2.2 Sorting in Initial Enrollment

Students that enroll in 2-year colleges have observable measures of ability that lie between

those of high-school graduates that join the workforce directly and those of students that

enroll in 4-year colleges as noted by Grubb (1993) and Kane and Rouse (1999). Table 4

presents summary statistics for measures of ability affecting enrollment decisions tabulated

by initial enrollment choice, extending the analysis of Grubb (1993) and Kane and Rouse

(1999) by splitting 2-year colleges between vocational schools and academic 2-year colleges.

From left to right the table shows that there is evidence of an ordered enrollment choice.

For example, see the Rank in the senior year at high-school class. The rank decreases

monotonically with the enrollment choice.

Table 4
Summary Statistics for Measures of Ability Conditional on Initial Enrollment Choice

work V.S. Ac. 2-year 4-year C.

0.492 0.4 0.54 0.524
Male

(0.5) (0.49) (0.5) (0.5)

0.108 0.126 0.085 0.105
Black

(0.31) (0.33) (0.28) (0.3)

0.415 0.294 0.192 0.166
Socio. Status: Low

(0.49) (0.45) (0.39) (0.37)

0.506 0.582 0.55 0.407
Medium

(0.5) (0.49) (0.49) (0.49)

0.078 0.122 0.253 0.426
High

(0.27) (0.33) (0.43) (0.49)

0.516 0.391 0.289 0.215
Education of Father: <HS

(0.5) (0.48) (0.45) (0.41)

0.323 0.398 0.344 0.288
HS

(0.46) (0.49) (0.47) (0.45)

0.108 0.145 0.211 0.19
4-year C. (no degree)

(0.31) (0.35) (0.41) (0.39)

0.051 0.064 0.155 0.305
4-year C. graduate

(0.22) (0.24) (0.36) (0.46)

0.495 0.435 0.395 0.271
Rank

(0.31) (0.28) (0.27) (0.24)

Rank=rank in high-school class. Socio-Status: Socioeconomic Status of Family at moment of high-school
graduation. Source: NLS-72.
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2.3 Academic 2-year colleges as a Stepping Stone in an Educa-

tional Ladder

Ladders have been associated with the growth of skill as discussed in Jovanovic and Nyarko

(1997). Lower steps of the ladder are characterized as stepping stones because they provide

a less risky environment to learn compared to higher steps. As agents acquire the necessary

skills, they move upwards in the ladder. The process that starts after high-school graduation

and culminates with 4-year college graduation is a ladder with two steps. The first step, the

stepping stone, is academic 2-year colleges. The second step is 4-year colleges. But there

also ways of going down. First, a student at 4-year college can decide to transfer to academic

2-year colleges. Second, a student can decide to dropout.

In contrast with the characterization of the ladder discussed above where agents move on

once they acquire the necessary skills, this ladder also present features of bandit models as

those discussed in Johnson (1978), Miller (1984) and Jovanovic and Nyarko (1997). Models

of skill accumulation imply that agents should enroll first in the lower step of the ladder,

as it provides a less riskier environment for learning and experimentation. Bandit models

suggest that students should enroll in the harder step - the last step - since the learning

technology provides more information about innate ability.

3 Model

The economy is populated by agents that, upon high-school graduation, decide whether to

join the labor force or pursue a degree at a post-secondary educational institution. At t = 0

agents graduate from high-school endowed with asset level a0. Agents differ in their ability

to accumulate human capital at college, that can either be low or high. Let µ ∈ {0, 1} denote

the ability level, with µ = 0 denoting low ability. The ability level µ is not observable by

the agent. Instead, a high-school graduate inherits a signal about her true type denoted by

p0 ∈ [0, 1], where p0 = Pr(µ = 1).
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At any period in time an agent can either be working, studying at 4-year colleges (or C)

or at academic 2-year colleges (or A). Let i ∈ I = {A,C} denote the type of institution.

The cost of education per period of schooling is denoted by τ i, with τC > τA. A student

graduates from institution i after accumulating T i credits, with TC > TA. The evolution

of credits is closely tied to signals that arrive during an agent’s tenure as student that are

labeled by η.

Work is assumed to be an absorbing state with constant wage function h(GS, i, µ), where

the first argument accounts for the graduation status of the agent, the second for the type

of institution where the agent graduated from (highest degree) and the third for her true

ability level.9 Further, the wage function h(GS, i, µ) is specified as follows:

h(GS, i, µ) =

h
w if GS=0;

hi(µ) if GS=1.

with hi(1) ≥ hi(0) > hw for all i and hC(µ) ≥ hA(µ) > hw for all µ. That is, for any

ability level, graduation at a 4-year college implies higher wage profiles than graduation at

an academic 2-year college and, for any institution i, wage profiles of graduates are increasing

in their ability level.

The evolution of the asset level a is given by

at+1 =

(1 + r)at − τ i − ct if enrolled at i;

(1 + r)at + h(GS, i, µ)− ct if working.

where no borrowing constraints are present.10

9In the current setup dropouts do not enjoy higher wage profiles. That is, increases in wages only occur
after graduation. The model can be easily extended to include this feature by making the function h(·) to
depend on amount of credits s but it will loose much of its tractability.

10The assumption of no borrowing constraints is consistent with Cameron and Heckman (2001), Cameron
and Taber (2004) and Keane and Wolpin (2001), who found no evidence in favor of constraints for the
NLSY and with Stinebrickner and Stinebrickner (2008) who found no evidence of credit constraints affecting
dropout behavior of student for a panel designed for evaluating dropout behavior. Some studies, on the
other hand, found evidence in favor of borrowing constraints (see, for example, Belley and Lochner (2008)).
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During tenure as students agents receive signals in form of exams labeled as η. Let η

denote the signal with PDF given by fi(η|µ).

Assumption 1 The ratio of densities fi(η|µ=1)
fi(η|µ=0)

satisfies the Monotone Likelihood Ratio Prop-

erty (MLRP). That is, for any η1 > η0, fi(η|µ=1)
fi(η|µ=0)

is well defined (full support) and

fi(η1|µ = 1)

fi(η1|µ = 0)
≥ fi(η0|µ = 1)

fi(η0|µ = 0)

The assumption states that high ability students are prone to receiving better signals

than low ability students.

The evolution of credits is a function of current signal η and amount of accumulated

credits s,

s′ = s+ Ω(η, s)

with

Ω(η, s) =

Ω(η) if s < T i;

0 if s ≥ T i.

(1)

with Ω′(η) ≥ 0 so that the evolution of credits is a non-decreasing function on the received

signal.11 Equation (1) states that, while the amount of current credits is less than the

necessary amount for graduation, accumulation of credits is only a function of the received

signal η.

Students are allowed to transfer and can carry with them part of the credits earned in

the current institution. Let θi denote the operator that maps credits s in institution i to

credits s in institution j, j 6= i. Formally,

θi(s) : R+ × I →
[
0, T j

]
11Obtaining a C or an A in a particular subject provides the same accumulation of credits but a different

re-evaluation of own’s ability by Assumption 1.
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where it is assumed that θi(s) is non-decreasing in credits s.

A high-school graduate, endowed with her prior p0 and initial asset level a0 chooses her

consumption stream {Ct : t ≥ 0} and whether to enroll in, dropout or transfer in A or C,

in order to maximize her time-separable expected discounted lifetime utility derived from

consumption,

E

{
∞∑
0

(
1

1 + r

)t(
e−γct − 1

−γ

)∣∣∣∣∣z0

}
where z0 = {p0, a0} and γ is the coefficient of Constant Absolute Risk Aversion (CARA).

Let Vi(a, s, p) denote the value for a student currently enrolled in institution type i with

asset level a, amount of credits accumulated s and prior p. Also, let W (a;h(GS, i, µ)) denote

the value for a worker with asset level a and wage profile h(GS, i, µ). Finally, let Λ(a0, p0)

denote the value for a high-school graduate with asset level a0 and prior p0.

The value for a high-school graduate Λ(a0, p0) equals

Λ(a0, p0) = max (W (a0;hw), VA(a0, 0, p0), VC(a0, 0, p0))

as the agent chooses whether to join the workforce or pursue higher education (either in

academic 2-year colleges or 4-year colleges) by comparing the value of each alternative.

3.1 The problem of a worker

A worker with current asset level a and constant wage h faces the following problem:

W (a;h) = max
c,a′

e−γc − 1

−γ
+

1

1 + r
W (a′;h) (2)

where a′ is

a′ = (1 + r)a+ h− c

That is, the worker has to decide her consumption in the current period and the asset

level for next period. The timing of the model is such that decisions (c and a′) are made
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before the worker receives the payment for her work, h. The value for a worker with asset

level a and wage profile h is

W (a;h) = −1 + r

γr
e−γ(ra+h) +

1 + r

γr
(3)

where the details can be found in Appendix C.

Taking the limit when γ approaches 0 (using L’Hopital rule) provides the value for a risk

neutral worker,

lim
γ→0

W (a;h) =
1 + r

r
(ra+ h)

that is, the value is just the present value of labor income in addition of the current wealth

level.

3.2 The problem of a student

The student’s beliefs are updated by the stream of information that arrive through the signal

η. Let p′ = b(η; p) denote the posterior that depends on the prior p and the signal η. For a

given institution i, Bayes’ rule is

b(η; p) =
1

1 + fi(η|µ=0)
fi(η|µ=1)

1−p
p

The evaluation of expectations about future income flows depends on the likelihood of the

signals. Any new signal can be produced by either fi(η|µ = 1) or fi(η|µ = 0) so that

expectations about the governing pdf have to be accounted for. Define

Hi(η, p) ≡ pFi(η|µ = 1) + (1− p)Fi(η|µ = 0)

as the CDF that accounts for this uncertainty.

The problem faced by a student in institution type i can be written as

13



Vi(a, s, p) = max
c,a′

e−γc − 1

−γ
+

1

1 + r

∫
η

Ṽi(a
′, s′, p′)Hi(dη, p) (4)

with 
a′ = (1 + r)a− τ i − c

s′ = s+ Ω(η)

p′ = b(η; p)

The value
∫
η
Ṽi(a

′, s′, p′)Hi(dη, p) accounts for the continuation value, where a student

evaluates the different available options after updating the state of the problem. In any given

period a student that accumulated s′ credits faces alternatives. If s′ < T i she can decide

to stay in the current institution, transfer or drop. If s′ = T i graduation is a fact and the

options are reduced to graduation or transfer as dropping out is dominated.12 Let I = 1 if

s′ < T i and = 0 otherwise. Ṽi(a
′, s′, p′) is equal to

max
{
W (a′;hw), IVi(a′, s′, p′) + (1− I)[p′W (a′;hi1) + (1− p′)W (a′;hi0)], V−i(a

′, θi(s′), p′)
}

(5)

The timing of the problem, presented in Figure 1, is as follows. For a given an institutional

choice i at the beginning of a period a student chooses her consumption and level of assets

for the next period given her expectations about future income streams. Next, she receives

the signal η, producing bayesian updating of prior p′ = b(η, p), and the amount of credits

accumulated for next period s′. When the new period begins the student chooses whether

to dropout or remain a student and whether to transfer to another institution.

The solution to the student’s problem is

Vi(a, s, p) = −1 + r

γr
e−γ(ra+vi(s,p)) +

1 + r

γr
(6)

12As hi1 > hi0 > hw and W (a;h) increasing in wage h, it follows directly that pW (a;hi1)+(1−p)W (a;hi0) >
W (a;hw) as p ∈ [0, 1]. Then, the dropout option is strictly dominated by the graduation option.
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Figure 1
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At the beginning of the period, Vi(a, s, p) denotes the value of enrollment at institution type i with wealth level
a, accumulated credits s and prior p. The student chooses her consumption level producing the accumulated
wealth for next period a′. Later, she takes an exam, receiving grade η. This produces a reevaluation of
beliefs p′ = b (η; p) and accumulation of credits s′ = s+ Ω (η). The student then chooses between staying in
institution type i (or graduating if enough credits where accumulated), transferring or dropping out.

where vi(s, p) solves a recursive equation,

vi(s, p) =
ṽi(s, p)− rτ i

1 + r
(7)

with

ṽi(s, p) = − 1
γ ln

∫
η
−max

 −e−γhw ,−e−γv−i(θi(s′),p′),

−
(
I
(
p′e−γh

i
1 + (1− p′)e−γhi0

)
+ (1− I)e−γvi(s′,p′)

)
Hi(dη, p)

 (8)

being the consumption equivalent of the continuation value and where p′ = b(η, p) and

s′ = s + Ω(η). The details of the calculations can be found in Appendix D. Also, the value

for a student V (a, s, p) is both increasing and convex in credits s and prior p.13

13 See Appendix E.
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Taking the limit when γ approaches 0 produces the value under risk neutrality,

Vi(a, s, p) =
1 + r

r
(ra+ vi(s, p))

with

vi(s, p) =
limγ→0 ṽi(s, p)− rτ i

1 + r

where

limγ→0 ṽi(s, p) =
∫
η

max

 hw, v−i(θ
i(s+ Ω(η)), b(η, p)),

I
(
b(η, p)hi1 + (1− b(η, p))hi0

)
+ (1− I) vi(s+ Ω(η), b(η, p))

Hi(dη, p)

The proof can be found in Appendix F.

3.3 Characterization of Solution

The model is built to analyze a particular pattern of education. That is, students with high

priors enroll in 4-year colleges, average priors enroll in academic 2-year colleges and low

priors join the workforce directly. The next assumption addresses this point.

Assumption 2 The primitives of the model are such that
ṽC(0,1)−rτC

1+r
≥ ṽA(0,1)−rτA

1+r
≥ hw

ṽC(0,0)−rτC
1+r

≤ ṽA(0,0)−rτA
1+r

≤ hw

The assumption states that high-school graduates with low ability to accumulate human

capital are better off joining the workforce and, in the eventuality of enrollment, they are

better off in academic 2-year colleges than in 4-year colleges. The opposite idea applies for

high ability agents. They are better off by pursuing higher education and the best enrollment

choice for them are 4-year colleges.

Assumption 2 has an interesting interpretation. The existence of academic 2-year colleges

in this model is driven by the learning mechanism and the option value.
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The next proposition describes the optimal policy.

Proposition 1 For a given institution i and amount of credits s, the optimal policy is a

collection of dropout and transfer thresholds {pid(s), pit(s)}s∈[0,T i] independent of the current

wealth level a. The optimal policy for students enrolled in institution i is

Enrolled in i today:


join workforce tomorrow if p < pid(s)

enrolled in A tomorrow if p ∈ [pid(s), p
i
t(s)]

enrolled in C tomorrow if p > pit(s)

The proof is straightforward and therefore not presented. Independence of the optimal

policy function with respect to current wealth level a is a result of the choice of CARA utility

function and the dependence of the policy function on credits s follows as the amount of

accumulated credits affect both the amount of credits that can be transferred and also the

likelihood and time to graduation. Assumption 2 drives the optimal policy not only at time

0 but also as credits accumulate. Consider the case where T i is large so that in terms of

distance until graduation an agent with s = 0 and one with s = 1 are very similar. It follows

that a similar condition holds for s = 1 but the difference in the value functions should

decrease as students get closer to graduation.

The next proposition evaluates the interaction of accumulated credits s and the evolution

of the thresholds for the case where the support of credits s is R+.

Proposition 2 If (i) Fi(η|µ) is continuous and differentiable for all i and µ, (ii) Ω(η) is

continuous and differentiable, and (iii) θi(s) is continuous, differentiable and concave with

∂θi(0)
∂s

< 1, it is the case that

∂pid
∂s
≤ 0 ,

∂pAt
∂s
≥ 0 ,

∂pCt
∂s
≤ 0
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Proof. See Appendix G.

The proposition states that as credits accumulate, the likelihood of transferring or drop-

ping out decreases as the terminal payoff at institution i is getting closer.

3.4 Returns to Enrollment

The lack of available assets to diversify the risk that comes from education (as income flows

are unknown) imply that standard techniques to value the option to pursue post-secondary

education can not be applied. To value the option and compute returns, define Σi(p) as

the value-added of enrollment in institution i relative to joining the workforce directly after

high-school graduation for an individual with prior p.14 Σi(p) is the compensating variation

of enrollment in institution i over the outside option and can be understood also as the

maximum amount of units of consumption a high-school graduate is willing to forego in

order to remain enrolled in i and not be forced to drop out (note that the option includes

tuition),

Vi(a− Σi(p), 0, p) = W (a;hw)

Solving the above equation yields an expression for the value-added by enrollment,

Σi(p) =
vi(0, p)− hw

r

The intuition behind the formula for Σi(p) has a clear interpretation. It is simply the

difference between the risk-adjusted expected discounted flow of income due to enrollment

and the discounted flow of income of the outside option.

The price of the option is given by the opportunity cost of becoming a student, 1+r
r
hw.

That is, the discounted income flow from joining the workforce directly after high-school

graduation. The return to enrollment at institution i relative to joining the workforce Ri(p)

14Miao and Wang (2007) uses a similar approach to value an investment project where the income flow is
uncertain and the risk is uninsurable.
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is defined as

Ri(p) ≡
Σi(p)
1+r
r
hw

4 Parametrization

The model explores the dynamic interaction of academic 2-year colleges and 4-year colleges.

The evidence obtained from NLS-72 shows that vocational school (excluded from the model

analysis) can be merged with the workforce as little interaction occurs between vocational

school and other types of institutions (see Table 1) and the sorting in initial enrollment,

presented in Table 14 and Table 13, places vocational school below academic 2-year colleges.

Version B in all of the tables accounts for the case where work and vocational school are

merged. Further, as in the model, column 2 on the tables accounts for the cases where

increases in wages only occur upon graduation.

The operator that maps credits s in institution i to credits that remain after transferring

θi(s) is simplified to be of the multiplicative form,

θi(s) =

 θis if θis < T−i

T−i if θis ≥ T−i

The signal η plays two different roles in the model. First, it updates beliefs p as the signal

conveys information regarding the likelihood of the true talent level of the student. Under

this definition, the signal η accounts for grades in exams, in subjects, problem sets, overall

experience as a student, etc. The second role of the signal η is to generate accumulation of

credits through the function Ωi(η), which suggests that the signal is closely tied to grades in

subjects.

To simplify the model, think that the signal η is the mean of the grades in a quarter

obtained by a student.15 The set of possible values of η is simply the set of possible grades.

15It is possible to relax this assumption by choosing functional forms for the signal η that allows for a
decomposition of the signal in two parts: one that accounts for grades in subjects and another that accounts
for the rest.
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For simplicity assume three possible grades: {F,N,E}. That is, a student can fail, get a

neutral grade or excel in a particular exam. Let qiµ(η) denote the probability of each event.

Further, assume that qA1 (F ) = qC0 (E) = 0. That is, high ability students never fail an exam

at academic 2-year colleges and low ability students never excel at 4-year colleges.

The function Ω(η), that maps grade η into credits s is chose to be as follows:

Ω(η) =


0 if η = F

1 if η = N

1 if η = E

The time period is chosen to be a quarter, therefore TA = 8 and TC = 16 (a student needs

to accumulate T i quarters of accumulated credits at institution i to graduate). The risk-free

interest rate r is set to be 0.45% which implies a yearly interest rate of 1.81% and a yearly

discount factor of 0.9822. All the monetary values in the model are measured in logs and

further standarized by the wage of agents with no degrees hw, so that hw = 1.16 Academic

2-year colleges are located in every city and town while 4-year colleges are scarce. This way,

the cost of education includes housing for 4-year colleges and does not include housing for

academic 2-year colleges because students there can live with their parents. The standarized

cost of education is then τA = 0.1152 for academic 2-year colleges and τC = 0.3205 for 4-year

colleges (see Table 2). The risk aversion parameter, γ, is chosen to be equal to 8.17

Figure 2 plots the fraction of the initial population of academic 2-year colleges that drop,

transfer or graduate for a given period. As seen in the figure, transfer occurs, on average,

after the completion of the first year of education.18 Then, θA is chosen to be 1
2
.

16The mean wage in 1985, in 1984 dollars, for agents with no degrees was 17740.63.
17 The risk aversion parameter γ is hard to identify and the literature didn’t spend much time estimating

risk aversion parameters using CARA utility functions (for natural reasons). There is a whole string of
literature in asset pricing that argues that the CRRA risk aversion parameter σ lies between 4 and 10. Using
the definition of relative risk aversion it is possible to relate σ and γ, γc = σ. Here, the consumption level c
has a lower bound given by ra+ hw ≥ 1 so γ < 10.

18Students transfer before obtaining a degree or completing the course-work at academic 2-year colleges.
Only 12.5% of students that transfer from academic 2-year colleges to 4-year colleges in the NLS-72 sample
holds a degree and usually transfer around one year later than those not holding a degree.
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The evidence for students that transfer from 4-year colleges to academic 2-year colleges

is less revealing as the fraction of students that transfer is very low (see Table 1). Figure 3

shows that students transfer during their first year of education. Among academic 2-year

college graduates, those that started their educational career at 4-year colleges spend more

time in school prior to graduation (4.5 years vs. 3.84 years). Then, θC = 0.

Figure 2
Transitions in ac. 2-year colleges
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Figure 3
Transitions in 4-year colleges
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The remaining parameters, qiµ(η) and hi(µ) are estimated using a two-stage Simulated

Method of Moments. In the first stage an ordered probit regression on the initial enrollment

choice is used to produce estimates of the initial prior p0. In the second stage, conditional

on the distribution of priors obtained in the first stage, enrollment and transition choices are

simulated for each individual on the sample to match an over-identified set of moments.

Let

p0 =
(

1 + e−(X′β+ε)
)−1

, ε ∼ N(0, 1) (9)

where X is a vector that includes all the observable characteristics of high-school graduates

that are correlated with the ability level of the agent and β is the vector of factor loadings,

identified by an ordered probit for the initial choice of agents. The estimates for β are

presented in Table 13.

Students with high priors join 4-year colleges, with average priors join academic 2-year

colleges and with low priors join the workforce. The thresholds are those of the optimal
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policy considered above for s = 0 as agents that graduate from high-school didn’t acquire

any credits yet. Further, monotonicity of p0 as a function of X ′β + ε implies that β can be

estimated by an ordered probit on the initial choice (Table 13 - Version B) and then upper

and lower bounds for ε can be computed using X ′β̂ and the enrollment choice of the agent.

Further, the cutoffs shown in Table 13 (version B) are monotonic transformations of the

threshold for p.

Conditional indirect inference, through Simulated Method of Moments, is used to esti-

mate the remaining 10 parameters (the 6 learning parameters, and the four wages). The

chosen moments are: (1) proportion of students that join workforce from high-school, (2)

proportion of students that enroll in academic 2-year colleges, (3) proportion of students

that enroll in 4-year colleges, (4) proportion of students initially enrolled in academic 2-year

colleges that dropped-out, (5) proportion of students initially enrolled in academic 2-year

colleges that transfer to 4-year colleges, (6) proportion of students initially enrolled in aca-

demic 2-year colleges that graduate at 2-year colleges (highest degree), (7) proportion of

students initially enrolled in 4-year colleges that dropped-out, (8) proportion of students

initially enrolled in 4-year colleges that transfer to academic 2-year colleges, (9) proportion

of students initially enrolled in 4-year colleges that graduate at 4-year colleges, (10) mean

wage for academic 2-year college graduates after first spell of education, and (11) mean wage

for 4-year college graduates after first spell of education.19 The estimated parameters for

the learning process are presented in Table 6 and in Table 5 for the wage distribution. Ta-

ble 7 compares the moments for data with those generated by the model conditional on the

distribution of priors implies by the data.

To produce the different moments it is necessary to compute the probability of dropout,

transfer and graduation at both academic 2-year colleges and 4-year colleges for each level

of the initial prior p0. A simple way of computing these values is via the Kolmogorov

Forward Equation. To fixate ideas see the next example. Let PrA(D|p, s) denote the dropout

probability at A with current prior p and accumulated credits s. Also, define ωAη = pqAη (1) +

19Local identification was checked by computing the derivative of the moments and noting that they are
different from zero.
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(1− p)qAη (0) as a set of weights. Finally, let p′η denote the posterior for grade η and prior p.

For p ∈ [pAd (s), pAt (s)],

PrA(D|p, s) =
∑
η

ωAη
[
I{p′η > pAt (s′)} ∗ 0 + I{p′η < pAd (s′)} ∗ 1

+I{pAd (s′) ≤ p′η ≤ pAt (s′)} ∗ PrA(D|p′η, s′)
]

with terminal condition PrA(D|p, TA) = 0 for p ∈ [pAd (TA), pAt (TA)].

Using this recursive equation it is possible to back-out PrA(D|p0, 0). This can be easily

extended to all the other probabilities.

Estimation of the model requires the next steps: (1) pick values for the learning param-

eters and wages, (2) solve the model numerically, (3) for every value of X ′β (that is, for

every individual on sample - using the results of the ordered probit regression in Table 13

and the initial choice of each individual -) produce the censored distribution of initial priors

p0, (4) for every p0, use the Kolmogorov Forward Equations to produce the probabilities of

each different event, (5) using step (3) compute the probabilities of each different event and

wages upon graduation for every individual on sample, (6) produce a set of moments, and

(7) repeat the procedure until the convergence criterion is reached (objective is to minimize

the squared difference of the simulated and true moments from data).

Table 5 shows that the wage differential to graduation at both academic 2- and 4-year

colleges relative to joining the workforce without holding a degree. For high ability graduates

the differential is almost three times bigger in 4-year colleges than in academic 2-year colleges

suggesting that students with high expectations currently enrolled in academic 2-year colleges

should be eager to transfer to 4-year colleges. As students can transfer credits, many enroll

in academic 2-year colleges as individuals are risk-averse and therefore care about the high

volatility of wages.

Table 6 shows the estimated learning parameters. Trivially, by assumption, failing an

exam at academic 2-year colleges signals low ability while an excelling at 4-year colleges
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Table 5
Estimated Wage Differentials by Conditional Simulated Method of Moments

estimate
academic 2-year colleges

low ability hA(0)−hw
hw

0.03

high ability hA(1)−hw
hw

0.08
4-year colleges

low ability hC(0)−hw
hw

0.04

high ability hC(1)−hw
hw

0.22

signals high ability as the probability of failing an exam at academic 2-year colleges was set

to be zero for high ability students and the probability of excelling in an exam at 4-year

college was set to zero for low ability students. The likelihood of obtaining a neutral or an

excellent at academic 2-year colleges is higher for high ability students and thus receiving

these signals improves the expectations about the innate ability. Similar idea happens for a

neutral grade at 4-year colleges while a fail lowers the expectations.

Table 6
Learning Parameters estimated by Conditional Simulated Method of Moments

academic 2-year colleges 4-year colleges
low ability high ability low ability high ability

µ = 0 µ = 1 µ = 0 µ = 1

Fail 0.23 0a 0.2275 0.01

Neutral 0.695 0.87 0.7725 0.81

Excel 0.075 0.13 0b 0.18

a by assumption.
b by assumption.

Figure 4 presents the graphic analysis of the evolution of credits and beliefs as signals

arrive. Receiving a fail in either academic 2- or 4-year college makes the posterior to fall

sharply and the credits to remain constant. Obtaining a neutral or an excellent in both types

of school increase by one the amount of credits and makes the posterior to be higher than

the prior. A neutral grade at academic 2-year colleges has a higher effect on the belief than

in 4-year colleges while an excellent provides much less information. These results show an

important characteristic of post-secondary education: academic 2-year colleges are easy and
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thus provide more information in the left tail while 4-year colleges are hard and thus provide

more information in the right tail. Further, note that the higher tuition at 4-year colleges

relative to academic 2-year colleges is not only due to higher wages upon graduation. As

seen in the figure, the variance of the signals is higher at 4-year colleges meaning that it

provides more information.

Figure 4
Example of the Evolution of Prior and Credits as a result of the received grade
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As initial priors are generated by using the empirical distribution of X ′β the estimation

strategy is attempting to match not only the 11 aggregate moments but instead the marginal

density of them. Table 7 presents the value of the eleven moments used in the estimation

for both the NLS-72 and the simulated version of the model.

The evolution of thresholds as a function of accumulated credits are presented in Figure 5

and Figure 6. In a broad way, as discussed in Proposition 2, the inaction region in both

academic 2- and 4-year colleges increases with credits. Opposed to Proposition 2 the inaction

does not increase monotonically provided that signals are discrete and, as a result, the

amount of credits s can only take a finite amount of values and thus the proof does not go

through: the discreteness of the accumulated credits s together with the transfer function

25



Table 7
Moments in Data and Model

% of High-school graduates that Data Model
join Workforce 59.4 56.9

enroll in A 15.2 15.69

enroll in C 25.4 27.41

% of those initially enrolled in A that
drop at A (1st spell) 63.2 48.63

transfer from A to C (1st spell) 32.2 43.79

graduate at A (1st spell) 4.6 7.58

% of those initially enrolled in C that
drop at C (1st spell) 40.9 42.1

transfer from C to A (1st spell) 2 0.11

graduate at C (1st spell) 57.1 57.79

Mean Wage Differential for Graduates after (1st spell)
graduated from A 0.045 0.045

graduated from C 0.212 0.1482

Moments to Discipline Priors
FOCs from ordered probit (for β) YES

distribution of X YES

To simulate the moments first it is necessary to produce initial priors. Let p0 =
(

1 + e−(X
′β+ε)

)−1
where

X is a vector of observable measures of ability and ε ∼ N(0, 1). β is estimated using an Ordered Probit
regression on the initial enrollment choice. Bounds for ε are also produced by looking at the choices of the
individuals after high-school graduation.

θi(s) being increasing, imply that non-monotonicity can arise naturally in the framework.20

5 Fit of Model

The prior p0 is positively correlated with the measure of ability X ′β obtained from the

ordered probit regression (Table 13 and Table 14) so that the enrollment pattern generated

20 To fully understand this results consider the case where θi(s) = 0. Let s1 > s0 be two different amounts
of credits. Further, let pAt (s0) denote the transfer threshold at s0 at academic 2-year colleges. By definition,
vA(s0, p

A
t (s0)) = vC(0, pAt (s0)). As both functions are increasing and convex in p and vA(0, 1) < vC(0, 1),

the fact that vA(s1, p
A
t (s0)) > vA(s0, p

A
t (s0)) = vC(0, pAt (s0)) implies that pAt (s1) > pAt (s0).
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Figure 5
Regions at Academic 2-year Colleges
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Figure 6
Regions at 4-year colleges
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The dropout and transfer thresholds at both academic 2- and 4-year colleges are as a function of amount of
accumulated credits s.

by the model fits the empirical distribution obtained from NLS-72.

The model also has predictions regarding the dropout, transfer and graduation behavior

of students. In particular, conditional on the initial enrollment choice, the model produces

probabilities of different educational patterns as a function of the initial prior p0, as shown

in Figure 7. The initial prior p0 affects the decision making of the student and the dynamic

pattern in two different ways. First, it affects the likelihood of different educational histories

as the distance to different threshold values changes with the prior. Second, the value of the

prior is related to the likelihood of different signals as p0 = Pr[µ = 1]. In fact, the estimation

of the model attempted to match the empirical marginal density of dropouts, transfers and

graduation at both academic 2- and 4-year colleges.

Figure 7 has three different regions (the straight vertical lines separate the different

regions). The first region, given for low values of the prior p0, is for agents that join the

workforce directly. The second region, the middle one, is for agents that enroll in academic 2-

year colleges (average values for the prior) and the third region, the top one, is for agents that

enroll in 4-year colleges. Conditional on the initial enrollment choice , Figure 7 presents the

likelihood of each of the three possible events (i.e. drop, transfer or graduation) in the first

spell of education for a student with a given initial prior p0. The likelihood of graduation and
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dropping out in academic 2-year colleges are decreasing functions of the initial prior p0 while

the likelihood of transferring to 4-year colleges is increasing. For students that initially enroll

in 4-year colleges, the likelihood of graduation increases with the prior while the likelihood

of dropping out decreases with the prior. Another interesting aspect observed in Figure 7 is

that students that transfer from 4-year colleges to 2-year colleges have above average priors

(relative to students that enroll in 4-year colleges).21

Figure 7
Probability of Dropout, Transfer, and Graduation conditional on initial enrollment
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The probabilities are computed according to the initial enrollment choice of an individual with initial prior
p0. The plot has three regions (from left to right). The first region is empty as individuals with low priors
join the workforce. The second region is for individuals enrolling in academic 2-year colleges, while the third
region is for individuals that enroll in 4-year colleges.

To evaluate the predictions of the model regarding the transition probabilities, Table 8

shows students by behavior (i.e. dropout, transfer, graduation) in the first spell of edu-

cation and size of the measure of talent X ′β̂. For students initially enrolled in academic

2-year colleges, the pattern observed for dropout and transfer probabilities is similar to the

21The shape of the figure is robust to different calibrations of the model. In particular, calibrations that
match more closely dropout and transfers (in detriment of enrollment moments).
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model’s predictions. A similar thing happens for the dropout and graduation probabilities

for students initially enrolled in 4-year colleges. Graduation probability in academic 2-year

colleges and transfer probability in 4-year colleges are less revealing due to the low number

of students included in these cells. Still, the evidence in these two cases does not conflict

with the model’s predictions.

Table 8
Proportion of agents initially enrolled in i with particular history

Ac. 2-year C. 4-year C.

D T G D T G

Low X ′β̂ 77.3% 17.6% 5.1% 51.7% 1.7% 46.6%

Med X ′β̂ 66.1% 29.4% 4.5% 45.4% 2.4% 52.2%

High X ′β̂ 44.9% 50% 5.1% 35.6% 2.4% 62%

# of obs. 332 192 26 392 47 474

These proportions are conditional on the initial enrollment status of the student. D: Drop, T: Transfer, G:
Graduate. X ′β̂: estimator of the observable measures of ability. Recall that p0 = 1

1+e−(X′β+ε) and that a

student enrolls in 4-year college if her prior is high enough and in an academic 2-year college if it is average
(so that she compares her initial prior with thresholds). Then, the enrollment problem can be estimated by
using an Ordered Probit regression from where β is estimated.

An alternative, and more involved way of evaluating Figure 7 would be, conditional on

the initial enrollment choice of agents, to do a nonparametrical estimation of the densities

of each of the different educational histories. Weighting these densities accordingly, it is

possible to produce the empirical counterpart of Figure 7. First, the density associated with

a given history is weighted by its share on initial enrollment in a given institution. For a

given measure of talent X ′β̂, now it is possible to compute the proportion of agents that

eventually end their first spell of education either by becoming dropouts, transferring or by

graduation. Figure 8 presents the results. Notice how the patterns in Figure 7 (model) are

very similar to those in Figure 8 (data).
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Figure 8
Density for the NLS-72 cohort of dropout, transfer, and graduation probabilities
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As a function of ability measure X ′β̂ and conditional on initial enrollment choice. First, a conditional (on
the initial enrollment choice) nonparametric estimation of each event was performed. Next, each density was

weighted by their share in initial enrollment. Finally, for every level of X ′β̂, the proportion of each event
was constructed.

6 Insurance and Option Value

High dropout and transfer rates are features commonly associated with risk and thus the

availability of transfer and dropout options should be highly valued by agents as they provide

lower bounds to the risk of the investment. In terms of risk, keeping the primitives unaltered

the model is solved again letting γ tend to zero. This case maps to risk full insurance.

Comparing the benchmark model (i.e. γ = 8) with the risk-neutral case provides insights

regarding the interaction of risk and insurance with the optimal policy and returns in this

economy.22 A similar strategy is followed to evaluate the size of the option value. Still

keeping the primitives unaltered, the model is solved two more times. The first time, the

22The analysis will abstract from Moral Hazard that can potentially arise from credit provision.
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transfer option is discarded and the second time eliminates both the transfer and dropout

options. The value-added of each option is then evaluated using a decomposition of returns.

6.1 Insurance

For a high-school graduate with any given prior p0, Figure 9 presents the returns for the

benchmark model (γ = 8) and the model where γ → 0. The comparison is important

since risk aversion is tightly connected to market completeness. The more complete the

markets, the lower the value for γ. Figure 9 therefore compares the benchmark model with

an economy where markets are complete. When risk aversion decreases, the enrollment

thresholds shift to the left as the risk implied by education is discounted less heavily by

agents. The fact that the shift to the left is stronger in the threshold between 4-year colleges

and academic 2-year colleges than for the one between academic 2-year colleges and work is

not casual: enrollment at 4-year colleges is more risky than enrollment at academic 2-year

colleges (simple comparison of the ratio of wages). It follows that a decrease in risk aversion

has a stronger effect on 4-year colleges than in academic 2-year colleges. Figure 9 also shows

that risk aversion hinders the returns to education in an important way, and the effect is

stronger the more uncertain the prior is.

Table 9 presents the mean return for the cross-section of agents that initially enroll at ei-

ther academic 2-year colleges and 4-year colleges for both the benchmark and the risk-neutral

models using the estimated distribution of priors for the NLS-72 data. The provision of in-

surance increases returns unambiguously for every prior p0 but decreases measured returns

in academic 2-year colleges through the compositional change that follows the provision of

full insurance.

Providing insurance not only increases returns for every prior but also affects enrollment

decisions (this can be seen in Figure 9 where the vertical dotted lines denote the enrollment

thresholds). Table 10 computes the distribution of initial enrollment for both cases. As

expected, full insurance increases total enrollment by nearly 40% and enrollment in 4-year

colleges - where risk matters the most as the wedge in wages and cost of education are
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Figure 9
The Effect of Full Insurance on Individual Returns
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The full insurance case is when γ → 0. The vertical lines define the indifference prior for enrollment
between work and academic 2-year colleges and between academic 2-year colleges and 4-year colleges. Return:
measures the return at high-school graduation of enrollment at institution i relative to joining the workforce.

Table 9
The Effect of Full Insurance on Average Measured Returns

ac. 2-year college 4-year college

γ = 8 0.41 3.09
γ → 0 0.29 3.42

All the numbers in the table are in percentage points. 10,000 samples of priors p0 were generated using
the measures of ability X ′β̂, the functional form p0 = 1

1+e−(X′β+ε) and the initial enrollment choice of each

individual.

higher and time until graduation longer -by around 81%. Finally, the mass of students still

enrolling in academic 2-year colleges with full insurance highlights the importance of the

learning channel as a feature of academic 2-year colleges. Insurance affects the enrollment

distribution both at the extensive and intensive level. At the extensive level, providing full

insurance increases total enrollment. At the intensive level, the provision of full insurance

affects the composition of enrollment as risk (through differential learning), tuition and wages
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upon graduation differ across types of institutions.

Table 10
The Effect of Full Insurance on the Initial Enrollment Distribution

workforce ac. 2-year college 4-year college

γ = 8 56.9 15.68 27.42
γ → 0 39.82 10.42 49.76

All the numbers in the table are in percentage points. 10,000 samples of priors p0 were generated using
the measures of ability X ′β̂, the functional form p0 = 1

1+e−(X′β+ε) and the initial enrollment choice of each

individual.

6.2 How much Option Value?

The model is solved again once more to evaluate the size of the option value, this time

reducing the amount of options. First, the transfer option is discarded and therefore the only

available alternative after the initial enrollment choice is to dropout. Second, the dropout

option is discarded thus no action, other than consumption decisions, is possible during

tenure as student. Let RE+D+T
i (p0), RE+D

i (p0), and RE
i (p0) denote the value of enrollment

at institution i: with both options available to the agent; with only the dropout option

available; and with no dropout or transfer options available.23

Trivially,

RE+D+T
i (p0) = RE+D+T

i (p0) +RE+D
i (p0)−RE+D

i (p0) +RE
i (p0)−RE

i (p0)

Rearranging and dividing byRE+D+T
i (p0) provides the following decomposition of returns,

1 =
RE+D+T
i (p0)−RE+D

i (p0)

RE+D+T
i (p0)

+
RE+D
i (p0)−RE

i (p0)

RE+D+T
i (p0)

+
RE
i (p0)

RE+D+T
i (p0)

The first term in the right hand side is the value-added to total returns RE+D+T
i (p0) by

the transfer option, the second term provides the value-added by the dropout option and

the third term accounts for the value accrued through enrollment. Figure 10 shows that

23An alternative decomposition would be first to discard the dropout option and later discard the transfer
option.
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returns at 4-year colleges are explained by the dropout option and by simply having the

enrollment choice, in accordance with high graduation and dropout rates observed for 4-year

college students at NLS-72. Also, Figure 10 accounts for the importance of the transfer

option in explaining returns to academic 2-year college enrollment. As observed in NLS-72

(see Table 1), the value-added by the enrollment option that accounts for the simple human

capital accumulation story has zero share of the returns.

Figure 10
Decomposition of Returns
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Table 11 produces the same decomposition this time for the mean return of the population

distribution of priors p0. The transfer option is very valuable in academic 2-year colleges,

accounting for 69% of total value. The dropout option is valuable in both types of institutions

but more so in 4-year colleges.
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Table 11
The Averaged Value Added of each Option

ac. 2-year C. 4-year C.

value-added cumulative value-added cumulative
Enrollment 0 0 12.96 12.96

Dropout Option 30.81 30.81 87.04 100
Transfer Option 69.19 100 0 100

All the numbers in the table are in percentage points. 10,000 samples of priors p0 were generated using
the measures of ability X ′β̂, the functional form p0 = 1

1+e−(X′β+ε) and the initial enrollment choice of each

individual.

7 How close of a Substitute are Academic 2-year Col-

leges for 4-year Colleges?

The main purpose of enrollment in academic 2-year colleges is to learn in a less demanding

and cheaper environment and eventually transfer to 4-year colleges with a fraction of the

already accumulated credits. Still, agents have the choice to enroll at 4-year colleges. Given

that a set of agents prefer to enroll in academic 2-year colleges, the question that arises is

how much value academic 2-year colleges provide to these agents relative to initial enrollment

at 4-year colleges. That is, how close of a substitute are these institutions? To answer this,

Figure 11 evaluates how the elimination of academic 2-year colleges affects the return for an

agent with prior p0. For students that enroll in 4-year colleges in the benchmark model, the

availability of academic 2-year colleges provides no value since the transfer option has no

value for them. For students that enroll in academic 2-year colleges in the benchmark model

what happens when academic 2-year colleges are eliminated is: (1) most students simply

enroll in 4-year colleges and the difference in value is very small, and (2) the rest join the

workforce. Overall, academic 2-year colleges are very close substitutes for 4-year colleges.

In order to characterize the welfare effect of academic 2-year colleges, an analysis of

population aggregates is needed. Specifically, it is important to evaluate how participation

in post-secondary education and welfare change due to the availability of academic 2-year

colleges. Recall that Ri(p) is a monotonous transformation of vi(0, p) that in turn is the
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Figure 11
Value added by the availability of Academic 2-year colleges
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certainty equivalent of enrollment at institution i abstracting from the wealth level a. As a

result, Ri(p) is a good measure of utility and therefore a comparison of returns provides a

good approximation for welfare losses or gains. Table 12 compares total participation and

measured returns for the benchmark model where academic 2-year colleges are available and

the only enrollment option are 4-year colleges. The availability of academic 2-year colleges

increases participation by nearly 7% and generates a drop in measured returns of around 6%

mostly due to the compositional change in total participation.

Table 12
The Effect of Academic 2-year Colleges on Enrollment and Returns

total participation return
4-year colleges + ac. 2-year colleges 43.11% 2.12%
Only 4-year colleges 40.3% 2.25%

10,000 samples of priors p0 were generated using the measures of ability X ′β̂, the functional form p0 =
1

1+e−(X′β+ε) and the initial enrollment choice of each individual.
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8 Conclusion

This paper proposes a simple, highly tractable, model of post-secondary education, that

incorporates together the work decision, academic 2- and 4-year colleges. In the model,

students are allowed to drop out and transfer to more/less rewarding institutions as credits

are accumulated and expectations are adjusted. The decision is not a trivial one. Higher

rewards imply higher costs of education and more risk.

The parameterized version of the model is consistent with the data in terms of transitions,

sorting, and returns. Therefore, it sheds some light on the role played by academic 2-year

colleges. These institutions act as a stepping stone towards more rewarding, and demanding,

environments, namely, 4-year colleges.

In line with the literature of investment under uncertainty, the drop out and transfer

options, and the availability of academic 2-year colleges, have an attached option value. A

novel feature of this paper is that presents structural estimates of the different option values.

The drop out option explains a large share of ex-ante returns on both academic 2- and

4-year colleges. In fact, very few students would pursue higher education if dropping out is

not allowed. The transfer option is not valued at 4-year colleges but explains nearly 70% of

ex-ante returns at academic 2-year colleges, consistent with the idea of a stepping stone.

Interestingly, academic 2-year colleges as a whole are not highly valued, even though

there are 4 students enrolling in this institutions per 10 enrolling in a 4-year college. Their

value comes mostly by a modest increase in participation from the marginal students. All

the other, would simply enroll in a 4-year college given that they are still allowed to drop out.

This raises the question on how the government should target its spending in postsecondary

education.
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Appendix

A Ordered Probit on Initial Enrollment Choice

Ordered returns to enrollment together with the evidence presented in Table 4 suggest that
the initial enrollment choice is ordered as follows: work, vocational school, academic 2-year
colleges, and 4-year colleges. Table 13 in Appendix A presents the results of an ordered
probit regression of the initial enrollment choice on a vector X of observable measures of
ability. Let β denote the vector of factor loadings. Relative to Kane and Rouse (1999),
the analysis is extended here to consider vocational school and academic 2-year colleges
as separate institutions. The reference column in Table 13 is Version A (Version B pools
vocational school and work together).

The value X ′β is a composite measure of ability, consistently estimated by X ′β̂. To
evaluate a measure of the degree of sorting in initial enrollment, Table 14 produces the mean
and standard deviation (in the cross-section) of X ′β̂ across the different alternatives. See
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Table 13
Ordered Probit Regression

Variable Version A Version B

0.181 0.234
Male

(0.041) (0.044)

0.357 0.365
Black

(0.068) (0.073)

-0.896 -0.9
Socio. Status: Low

(0.088) (0.093)

-0.596 -0.609
Medium

(0.071) (0.074)

-0.363 -0.381
Education of Father: <HS

(0.072) (0.076)

-0.137 -0.115
HS graduate

(0.065) (0.068)

0.324 0.352
4-year graduate

(0.083) (0.086)

-1.301 -1.41
Rank

(0.072) (0.078)

-1.129 -0.893
Cut 1

(0.077) (0.079)

-0.859 -0.368
Cut 2

(0.077) (0.078)

-0.339 -
Cut 3

(0.075) -

# of observations 3462 3462

Ordered Probit estimation of the initial enrollment choice on observable measures of ability. Version B
merges vocational school with work. Source: NLS-72.

Version A in the first row of the table. The measure of ability X ′β is unitless as it is just
an ordinal representation of ability measures. Start with high-school graduates that join the
workforce - labeled as work in the table - and move upwards across enrollment options. The
mean value for the measure of ability increases monotonically with the enrollment options.

B Internal Rates of Return

B.1 Backing Out Wage Profiles

The typical Mincer regression evaluates the effect of educational histories on lifetime earn-
ings by estimating a wage regression on years of education and work experience. There is
a significant ongoing literature that accounts for non-linearities in years of education (see
Grubb (1993), Heckman, Lochner, and Todd (2006), Heckman, Lochner, and Todd (2008)
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Table 14
Measure of Ability X ′β̂

Version work vocational school academic 2-year college 4-year college

-1.782 -1.609 -1.348 -0.972
A

(0.567) (0.571) (0.604) (0.649)

-1.426 -1.013 -0.633
B

(0.572) (0.609) (0.654)

Constructed from Ordered Probit Estimation (see Table 13). In version B work and vocational school are
collapsed together. Source: NLS-72.

and Kane and Rouse (1995)). The typical example in favor of non-linearities is the gradua-
tion premium or sheepskin effect. This literature has treated years of education (or amount
of credits earned) in different type of institutions as perfect substitutes. Instead, it is now as-
sumed that different educational histories affect lifetime earnings in different ways. Further,
as has been already discussed in the literature, this analysis breaks the additive form (in the
log version in the Mincer regression) of years of education and experience by estimating a
growth equation.

Table 15 presents the results of the extended mincer regression, accounting for the dif-
ferent types of education and graduation premium. See Version A. Graduation in both
vocational schools and 4-year colleges is associated with higher wages relative to dropping
out. The same idea does not apply to academic 2-year colleges as the return to becoming
a dropout is higher than the return from graduation. The low number of students that
graduate at academic 2-year colleges raises questions about the significance of the difference.
The significance test presented in Table 15 shows that there is not enough evidence to reject
that the return to graduation is similar (or even higher) to the return to dropping out.

Table 16 presents the results of a growth regression where the dependent variable is the
average growth rate of wages between 1979 and 1985. The growth rate for vocational school
graduates, αVG is around half the growth rate of 4-year college graduates αCG. This fact,
together with the results from Table 15 reads as follows: graduation at vocational schools
provide a higher wage and 4-year colleges provide steeper profiles of wages, while graduation
at academic 2-year colleges is dominated.

Backing out the initial wage upon graduation can not be done directly from the data
because wage information prior to 1979 is scarce. To produce the initial wage, it is possible
to combine the results of Table 15 and Table 16.

B.2 Computing Internal Rates of Return

Let w0 denote the wage for an agent that joins the workforce at t = 0. Let L denote the
lifetime of an agent, Si the proportion of time spent at institution i, τi the flow cost of
attendance, $D

i the increase in wages due to dropping out at instituion i, $G
i the gradua-

tion premium, αi the increase in wages due to experience, Gi a dummy that accounts for
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Table 15
Mincer Regression

description Version A Version B

(1) (2)

0.24 0.22
$D
C drop at 4-year C.

(0.042) (0.041)
-

0.09 0.077
$D
A drop at Ac. 2-year C.

(0.045) (0.044)
-

0.072
$D
V drop at Voc. school

(0.046)
- -

0.304 0.286 0.2122
$G
C graduation at 4-year C.

(0.04) (0.04) (0.037)

0.015 0.0149 0.0445
$G
A graduation at Ac. 2-year C.

(0.1) (0.104) (0.104)

0.284
$G
V graduation at Voc. school

(0.15)
- -

Prob > F Prob > F

Test: $G
A = $D

A 0.5698 0.5735 -

Test: $G
C = $G

V 0.9092 - -

Dependent Variable: log of wages in 1985. Independent Variables: graduation and dropout dummies for
each type of institution and controls for ability measures. Version B collapse together vocational schools and
workforce. Source: NLS-72.

graduation at institution i and Di a dummy that accounts for dropping out at institution i.
Further, assume that students transfer only once.24

The initial wage for a student with history H = {S,G,D}i∈{V,A,C} when joining the
workforce is

w0(H) = w0e
∑
i$

D
i Di+$

G
i Gi

The present value of costs K(H, r) attached to history H is

K(H, r) =

∫ Si

0

e−rsiτidsi +

∫ Si+S−i

Si

e−rs−iτ−ids−i

that can be reduced to

K(H, r) =
(
1− e−rSi

) τi
r

+ e−rSi
(
1− e−rS−i

) τ−i
r

24Very few students transfer more than once in NLS-72. Also, the assumption makes the presentation of
the methodology much easier.
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Table 16
Growth Regression

description Version A Version B

(1) (2)

0.0447 0.0457 0.0507
αCG growth rate for C. grads.

(0.0144) (0.011) (0.0143)

-0.0036 -0.0071 0.0046
αAG growth rate for A. grads.

(0.0351) (0.018) (0.0358)

0.0268
αVG growth rate for V. grads.

(0.0536)
- -

0.024 0.0236
αCD growth rate for C. dropouts

(0.0165) (0.0164)
-

0.0103 0.0091
αAD growth rate for A. dropouts

(0.0196) (0.0194)
-

-0.0071
αVD growth rate for V. dropouts

(0.0202)
- -

-0.009 -0.006 0.0101
α0

(0.0166) (0.0164) (0.0147)

Dependent Variable: average growth rate of wages between 1979 and 1985. Source: NLS-72

The internal Rate of Return is the interest rate r(H) that solves,∫ L

Si+S−i

e−(r(H)−αi)tw0(H)dt−K(H, r(H)) =

∫ L

0

e−(r(H)−α0)tw0dt−K(0, r(H))

The variables Si, Di and Gi can be obtained directly from inspection of the dynamic patterns
of education. L is chosen so that agents are alive until they are 65 years old. Then, L = 47.

Table 15 shows the results of an extended Mincer regression using the log of wages in
1985 as dependent variable and years of education at a particular institution and graduation
dummies as explanatory variables. The coefficients $D

i and $G
i can be obtained from that

table (see Version A).
Table 16 present the results of a growth regression on the graduation status and type of

every individual. The results of this table are interpreted here as estimates of αi (see Version
A).

The average time spent in each institution for a given educational path used in the
calculations can be found in the Supplementary Material.

C Computing the Value for a Worker

Solving for c from the budget constraint and substituting back into equation (2) reduces
the problem to a single variable problem. Further, it is straightforward to check that the
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conditions for unique solution to equation (2) are satisfied (see Lucas and Stokey (1989)).
The first order condition with respect to a′ reads

e−γ((1+r)a−a′+h) =
1

1 + r

dW (a′;h)

da′

Substituting back into equation (2) provides the maximized value function,

W (a;h) =
1

−γ(1 + r)

dW (a′;h)

da′
+

1

1 + r
W (a′;h) +

1

γ

This equation is satisfied for W (a;h) = −1+r
γr
e−γ(ra+h) + 1+r

γr
.

D Computing the Value for a Student

Solving for c from the budget constraint and substituting back into equation (4) reduces the
problem to a single variable problem.

The lowest level for a′ that can be chosen is 0 and the highest is (1 + r)a − τ i. Define
Γ(a) = [0, (1 + r)a− τ i] so that the choice variable a′ belongs to the graph Γ(a).

The next claim shows that there exists a unique solution to equation (4).

Claim 1 Vi(a, s, p) is single-valued.

Proof. First note that the only choice variable is a, that p evolves stochastically and s′ is a
function of p and signals.

Signals η that arrive produce updating in the state p, which is thus stochastic. 25 Let P
be such that p ∈ P . Trivially, P = [0, 1] and thus P is compact. Also s ∈ [0, T i] so the set
for s is compact. The union of compact sets is compact. Further, the transition from p to p′

satisfies the feller property.
Next, note that Γ(a) is non-empty, compact and continuous. Also, as c > 0, e−γc−1

−γ is
bounded.

Then, Theorem 9.6 of Lucas and Stokey (1989) is satisfied and thus the proposition holds.

After substituting the first order condition into equation (4) provides the maximized
value function,

Vi(a, s, p) =
1

−γ(1 + r)

d
∫
η
Ṽi(a

′, s′, p′)H(dη, p)

da′
+

1

1 + r

∫
η

Ṽi(a
′, s′, p′)H(dη, p) +

1

γ
(10)

25In principle the function p′ = b(η, p) can be inverted to produce a stochastic process for the evolution of
p.

44



Conject that
∫
η
Ṽi(a

′, s′, p′)H(dη, p) = −1+r
γr
e−γ(ra′+ṽi(s,p)) + 1+r

γr
and substitute into equa-

tion (10) together with a′ = a− τ i

1+r
− ṽi(s,p)

1+r
to obtain

Vi(a, s, p) = −1 + r

γr
e−γ(ra+vi(s,p)) +

1 + r

γr

where vi(s, p) solves the recursive equation

vi(s, p) =
ṽi(s, p)− rτ i

1 + r

Further, applying the conjecture and using equation (5) reads,

ṽi(s, p) = −1

γ
ln

[∫
η

−max

{
−e−γhw ,−e−γv−i(θi(s′),p′),

−
(
I
(
p′e−γh

i
1 + (1− p′)e−γhi0

)
+ (1− I)e−γvi(s′,p′)

) }Hi(dη, p)

]

with s′ = s+ Ω(η) and p′ = b(η, p).
Finally, note that the conjecture for ṽi holds as a result of the functional form of Vi(a, s, p).

E Properties of Value Function of Students

The proof for p follows by induction. The ultimate goal in post-secondary education is
graduation at 4-year colleges so start with a student that accumulated s = TC − 1 credits.
VC(a,TC−1,p)

dp
> 0 as (1) the wage upon graduation is increasing in the agent’s true ability

level, (2) the prior p measures the probability of high ability, (3) the pdf of grades satisfy the
Monotone Likelihood Ratio property and (4) Ω(η) non-decreasing. For a student enrolled
in academic 2-year colleges with s = TA − 1 the same proof applies but it is necessary to
add that the continuation value (through the transfer option) is increasing in the prior p.
For s = TC − 2 and any institution i the proof follows as properties (2)-(4) still hold and
the continuation values are increasing in p. Convexity follows directly as, (a) for any p the
continuation value is bounded below by the dropout option, (b) the continuation value of
transferring or remaining at institution i increasing in p, (c) the function max() being convex.

The proof for s is very similar and simpler so it is left as an exercise to the interested
reader.

F Computing the Value for a Risk Neutral Student

See equation (8). For any given prior p, each of the exponentials inside the max{} as function
of η are bounded as the set of attainable b(η, p) being compact (b(η, p) ∈ [0, 1]) and the set

of attainable payoff being
[
e−γh

w
, e−γh

C
1

]
, also compact. It follows that each of the functions

inside the max{} can be arbitrarily well approximated by a Taylor expansion (each of these
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functions is also differentiable). As an example, see that

e−γv−i(θ
i(s+Ω(η)),b(η,p)) ≈ 1− γv−i(θi(s+ Ω(η)), b(η, p)) +O(−γv−i(θi(s+ Ω(η)), b(η, p)))

where the term O(−γv−i(θi(s + Ω(η)), b(η, p))) is a sequence of terms of order higher than
one. Moreover, each of the functions O(−γv−i(θi(s + Ω(η)), b(η, p))) is a convergent series
and thus bounded.

The previous argument can be used to approximate the elements of max{}. For example,

b(η, p)e−γh
i
1 + (1− b(η, p))e−γhi0 ≈ 1− γ(b(η, p)hi1 + (1− b(η, p))hi0) +O(γ, hi1, h

i
0, b(η, p))

whereO(γ, hi1, h
i
0, b(η, p)) = b(η, p)O(−γhi1)+(1−b(η, p))O(−γhi0) is bounded and convergent

by composition of bounded and convergent series.
Rewrite the original expression as

ṽi(s, p) = −1

γ
ln


∫
η

1−max


γ
(
hw − O(γ,hw)

γ

)
, γ
(
v−i − O(−γv−i)

γ

)
,

Iγ
(
vi − O(−γvi)

γ

)
+

(1− I)γ
(
p′hi1 + (1− p′)hi0 −

O(γ,hi1,h
i
0,p
′)

γ

)

Hi(dη, p)


where p′ = b(η, p) and the state of vi and v−i is omitted to ease notation.

The claim follows by taking the limit when γ approaches 0. L’Hopital is required as
limγ→0 ṽi(s, p) = 0

0
. The issue is whether the function max{} is differentiable with respect

to γ and, in the affirmative case, how to characterize the derivative.
Recall that both vi and v−i depend of credits s and prior p. Define

J1(γ, p′, s′) = γ
(
hw − O(γ,hw)

γ

)
J2(γ, p′, s′) = γ

(
v−i − O(−γv−i)

γ

)
J3(γ, p′, s′) = Iγ

(
vi − O(−γvi)

γ

)
+ (1− I)γ

(
p′hi1 + (1− p′)hi0 −

O(γ,hi1,h
i
0,p
′)

γ

)
so that the previous expression for ṽi(s, p) can be written as

ṽi(s, p) = −1

γ
ln

1−
∫
η

max


J1(γ, b(p, η), s+ Ω(η)),
J2(γ, b(p, η), s+ Ω(η)),
J3(γ, b(p, η), s+ Ω(η))

Hi(dη, p)


Claim 2∫

η

max {J1(γ, b(p, η), s+ Ω(η)), J2(γ, b(p, η), s+ Ω(η)), J3(γ, b(p, η), s+ Ω(η))}Hi(dη, p)
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differentiable with respect to γ.

Proof. J1, J2 and J3 are continuous functions and under the assumptions discussed in the
paper, there is a unique threshold value for the signal η (that depends on s, p γ, and other
parameters) that equates J1 with J2 and J2 with J3. Let ηL(γ, p, s) and ηH(γ, p, s) denote
these thresholds. Note that, as J1, J2 and J3 are differentiable with respect to γ, these
thresholds are also differentiable by construction. It follows that the expression of the claim
can be rewritten as∫ ηL(γ,p,s)

−∞
J1(γ, p′, s′)Hi(dη, p)+

∫ ηH(γ,p,s)

ηL(γ,p,s)

J2(γ, p′, s′)Hi(dη, p)+

∫ ∞
ηH(γ,p,s)

J3(γ, p′, s′)Hi(dη, p)

(11)
where p′ = b(p, η) and s′ = s+ Ω(η). that is differentiable with respect to γ.

Let Q(γ, p, s) denote the object in equation (2).

Claim 3

dQ(γ, p, s)

dγ
=

∫
η

max

{
∂J1(γ, p′, s′)

∂γ
,
∂J2(γ, p′, s′)

∂γ
,
∂J3(γ, p′, s′)

∂γ

}
Hi(dη, p)

Proof. Follows by applying Leibniz’s rule to equation (11) and by noting that

J1

(
γ, b(p, ηL), s+ Ω(ηL)

)
∂ηL

∂γ
= J2

(
γ, b(p, ηL), s+ Ω(ηL)

)
∂ηL

∂γ

J2

(
γ, b(p, ηH), s+ Ω(ηH)

)
∂ηH

∂γ
= J3

(
γ, b(p, ηH), s+ Ω(ηH)

)
∂ηH

∂γ

by construction of the thresholds ηL and ηH .
Now, the result follows by applying L’Hopital’s rule for the case where γ → 0 and by the

results of Claim 3.

G Proof of Proposition 2

Pick two amount of accumulated credits s1 and s0. Without loss of generality assume that
s1 > s0. Let pid(s0) > 0 be the dropout threshold associated with s0 so that Vi(a, s0, p

i
d(s0)) =

W (a;hw). As Vi(a, s, p) increasing in credits s, Vi(a, s1, p
i
d(s0)) > W (a;hw). Finally, as

W (a;hw) independent of p and Vi(a, s, p) increasing in p, pid(s1) < pid(s0). Note that if
pid(s0) = 0, then the same argument implies that pid(s1) = pid(s0) = 0.

Next the proof for pAt (s1) > pAt (s0) is provided (the proof for pCt (s1) < pCt (s0) is almost
identical). Let pAt (s0) < 1 be the dropout threshold associated with s0 so that

VA(a, s0, p
A
t (s0)) = VC(a, θi(s0), pAt (s0))

Consider the case where the value Vi for s = s0 do not include the transfer option. The next
claim shows that, in this case, VA(a, s1, p

A
t (s0)) > VC(a, θA(s1), pAt (s0)).
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Claim 4 VA(a, s1, p
A
t (s0))− VC(a, θA(s1), pAt (s0)) > 0.

Proof. Let s1 = s0 + ε where ε ∈ (0, TA− s0]. Let (to ease on notation) Υq
j = {a, sj, pAt (sq)}

and Ψq
j = {a, θA(sj), p

A
t (sq)}. Applying a Taylor Expansion of second order to both VA(a, s1, p

A
t (s0))

and VC(a, θA(s1), pAt (s0)) around s0 provides (the assumptions on the proposition guarantees
that the value function is continuous and differentiable with respect to s),

VA(Υ0
1) ≈ VA(Υ0

0) +
∂VA(Υ0

0)

∂s
ε+

1

2

∂2VA(Υ0
0)

∂s2
ε2

and

VC(Ψ0
1) ≈ VC(Ψ0

0) +
∂VC(Ψ0

0)

∂s

∂θA(s0)

∂s
ε+

1

2

∂2VC(Ψ0
0)

∂s2

[
∂θA(s0)

∂s

]2

ε2 +
1

2

∂VC(Ψ0
0)

∂s

∂2θA(s0)

∂s2
ε2

Note that, by definition of pAt (s0), VA(Υ0
0) = VC(Ψ0

0). Moreover, by the optimality of the

policy,
∂VA(Υ0

0)

∂s
=

∂VC(Ψ0
0)

∂s
and

∂2VA(Υ0
0)

∂s2
=

∂2VC(Ψ0
0)

∂s2
as when s is moved away from s0 it is the

case that both VA and VC coincide. Then, VA(a, s1, p
A
t (s0)) − VC(a, θA(s1), pAt (s0)) reduces

to

VA(Υ0
1)− VC(Ψ0

1) =
∂VA(Υ0

0)

∂s

[
1− ∂θA(s0)

∂s

]
ε+ 1

2

∂2VA(Υ0
0)

∂s2

[
1−

(
∂θA(s0)
∂s

)2
]
ε2

−1
2

∂VA(Υ0
0)

∂s
∂2θA(s0)
∂s2

ε2

Finally, as VA(a, s, p) increasing and convex in s, θA(s) increasing and concave and ∂θA(0)
∂s

< 1,
VA(Υ0

1)− VC(Ψ0
1) > 0, which completes the proof.

Claim 5 For any p > min
{
pAd (s), pCd (s)

}
, the difference VA(a, s, p)− VC(a, θA(s), p) satisfy

the single-crossing property.

Proof. Follows from strict convexity of VA(a, s, p) and VC(a, s, p) as a function of p together
with VC(a, s, 1) > VA(a, s, 1) and VC(a, s, 0) < VA(a, s, 0).

Assume now that pAt (s1) ≤ pAt (s0) (the proof follows by contradiction). Then, by the
single crossing property VA(a, s1, p

A
t (s0))−VC(a, θA(s1), pAt (s0)) < 0 (Claim 5) which violates

Claim 4. Then, it follows that pAt (s1) > pAt (s0).
Note that the only case where pAt (s1) = pAt (s0) is when both thresholds are inactive (that

is, equal to 1). The proof in this case is trivial.
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