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Abstract

This paper studies optimal monetary policy when decision-makers in firms choose how much

attention they devote to aggregate conditions. When the amount of attention that decision-

makers in firms devote to aggregate conditions is exogenous, complete price stabilization is

optimal only in response to shocks that cause efficient fluctuations under perfect information.

When decision-makers in firms choose how much attention they devote to aggregate conditions,

complete price stabilization is optimal also in response to shocks that cause inefficient fluctu-

ations under perfect information. Hence, recognizing that decision-makers in firms can choose

how much attention they devote to aggregate conditions has major implications for optimal

policy.
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1 Introduction

Decision-makers in firms have a limited amount of attention and they can choose how much atten-

tion they devote to aggregate conditions. What are the implications for optimal economic policy?

What are the implications for optimal monetary policy?

To address this question formally, we derive optimal monetary policy in two models. In the

first model the amount of attention that decision-makers in firms allocate to aggregate conditions

is exogenous. In the second model decision-makers in firms choose how much attention they devote

to aggregate conditions. Our main findings concerning optimal monetary policy are the following.

In the model with an exogenous allocation of attention by decision-makers in firms, complete price

stabilization is the optimal policy only in response to shocks that cause efficient fluctuations under

perfect information. In the model with an endogenous allocation of attention by decision-makers

in firms, complete price stabilization is the optimal policy also in response to shocks that cause

inefficient fluctuations under perfect information. Hence, recognizing that decision-makers in firms

can choose how much attention they devote to aggregate conditions has major implications for

optimal monetary policy. The optimality of complete price stabilization becomes a much more

general result.

There is a large literature on optimal monetary policy. Most of this literature studies optimal

monetary policy in the New Keynesian framework (see Woodford (2003) or Gali (2008) for a detailed

summary of the results).1 To make our results comparable to this benchmark in the literature on

optimal monetary policy, we maintain several assumptions of the standard New Keynesian model:

We assume that there is a large number of ex-ante identical firms supplying differentiated products

and setting prices for these products; the monetary policy instrument is a nominal variable; and the

central bank can affect real variables with the nominal monetary policy instrument because prices

adjust slowly. The economy is subject to different types of shocks. The main policy question is how

the central bank should adjust the monetary policy instrument in response to these shocks. We

make two changes to the standard New Keynesian model. First, we assume that slow adjustment

of prices to changes in aggregate conditions is due to limited attention by decision-makers in firms

rather than price stickiness à la Calvo (1983). Second, we endogenize the amount of attention

that decision-makers in firms devote to aggregate conditions. We then address two questions: (1)

1For recent work on optimal monetary policy in New Keynesian models, see, e.g., Giannoni and Woodford (2010).
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Does it matter for optimal monetary policy that slow adjustment of prices to changes in aggregate

conditions is due to limited attention by decision-makers in firms rather than price stickiness à la

Calvo (1983)? (2) Does it matter for optimal monetary policy whether the amount of attention that

decision-makers in firms devote to aggregate conditions is exogenous or endogenous? The answer

to the second question is the focus of this paper. This paper is the first paper solving a Ramsey

optimal policy problem for an economy where decision-makers in firms choose how much attention

they allocate to aggregate conditions.

We model the attention decision by decision-makers in firms following the literature on ratio-

nal inattention (see Sims (2003)). Paying limited attention to aggregate conditions is modeled as

receiving a noisy signal concerning aggregate conditions.2 Paying more attention to aggregate con-

ditions increases the precision of the signal. We assume that the noise in the signal is idiosyncratic

because this accords well with the idea that the source of noise is limited attention by individ-

ual decision-makers rather than lack of publicly available information. Decision-makers in firms

choose the amount of attention that they allocate to aggregate conditions facing an opportunity

cost of allocating attention to aggregate conditions. The main prediction concerning the alloca-

tion of attention is that when the benefit of paying attention to aggregate conditions is larger,

decision-makers in firms pay more attention to aggregate conditions.

In the model there are two types of shocks causing aggregate fluctuations: shocks that cause

efficient fluctuations under perfect information and shocks that cause inefficient fluctuations under

perfect information. In the benchmark model setup, these two types of shocks are aggregate tech-

nology shocks and markup shocks (i.e., shocks to the elasticity of substitution between goods). We

start with aggregate technology shocks and markup shocks because studying the optimal monetary

policy response to these shocks is common in the literature on optimal monetary policy. We then

show that our results extend to other shocks. Furthermore, in the benchmark model setup, we as-

sume that decision-makers in firms receive independent signals concerning aggregate technology and

the desired markup. We also show that optimal monetary policy is identical when decision-makers

in firms can decide to receive signals concerning any linear combination of aggregate technology and

the desired markup (e.g., they can decide to receive signals/pay attention to endogenous variables).

2Think of the noise in the signal as the noise in the answers you get when you ask a sample of economists what

the official CPI inflation rate for the United States was last year.
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We derive optimal monetary policy under commitment assuming that the central bank aims to

maximize expected utility of the representative household.

In the model with an exogenous information structure, complete price stabilization is optimal in

response to aggregate technology shocks but not in response to markup shocks. The reason for the

result about aggregate technology shocks is as follows. The response of the economy to aggregate

technology shocks is efficient under perfect information. Furthermore, by stabilizing prices the

central bank can replicate the perfect-information response of the economy to aggregate technology

shocks. Thus, complete price stabilization is optimal in response to aggregate technology shocks.

To understand the result concerning markup shocks, note first what happens when the monetary

policy instrument (i.e., the money supply or nominal interest rate) remains constant after a markup

shock. In this case, a positive markup shock (i.e., a shock that raises the desired markup) increases

the profit-maximizing price. Price setters in firms therefore put a positive weight on their signals

concerning the desired markup which causes inefficient price dispersion due to noise in the signal

(“cross-sectional inefficiency”). Furthermore, the price level increases which given the constant

monetary policy instrument causes a fall in consumption (“aggregate inefficiency”). To reduce

cross-sectional inefficiency, the central bank can counteract the effect of the markup shock on

the profit-maximizing price with a contractionary monetary policy (i.e., by lowering the money

supply or raising the nominal interest rate). The profit-maximizing price then increases by less

in response to a markup shock and price setters in firms therefore put less weight on their noisy

signals concerning the desired markup, which reduces inefficient price dispersion. Unfortunately,

the reduction in cross-sectional inefficiency comes at the cost of increased aggregate inefficiency:

The contractionary monetary policy amplifies the fall in consumption. Hence, there is a trade-off

between inefficient price dispersion and inefficient consumption variance. Furthermore, the marginal

benefit of reducing inefficient price dispersion goes to zero as inefficient price dispersion goes to zero.

Therefore, complete price stabilization in response to markup shocks is never optimal. This trade-

off between cross-sectional inefficiency and aggregate inefficiency in the presence of markup shocks

is emphasized a lot in the literature on optimal monetary policy and the result that complete price

stabilization is not optimal in response to these shocks is a classic result in monetary economics.

In the model with an endogenous information structure, complete price stabilization is optimal

in response to aggregate technology shocks and in response to markup shocks. This result is inde-
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pendent of parameter values. The reason for the result about markup shocks is the following. In

the model with an endogenous information structure, decision-makers in firms pay more attention

to aggregate conditions when the benefit of paying attention to aggregate conditions is larger. Con-

sider again what happens when the central bank counteracts the effect of a positive markup shock

on the profit-maximizing price with a contractionary monetary policy. There are two effects that

are already present in the model with an exogenous information structure: The profit-maximizing

price increases by less after a positive markup shock, implying that decision-makers in firms put

less weight on their noisy signals, which reduces inefficient price dispersion; but the contractionary

monetary policy by itself amplifies the fall in consumption. In addition, there is a new effect due to

the endogenous allocation of attention. When the profit-maximizing price responds less to markup

shocks, decision-makers in firms choose to pay less attention to the desired markup. Therefore,

the price level increases by less after a positive markup shock, which by itself mutes the fall in

consumption. It turns out that the new effect on consumption dominates for all parameter values.

Thus, so long as decision-makers in firms pay some attention to the desired markup, the central

bank can reduce both inefficient price dispersion and inefficient consumption variance by coun-

teracting markup shocks more strongly. The classic trade-off between cross-sectional inefficiency

and aggregate inefficiency disappears. The unique optimal monetary policy is the one that makes

decision-makers in firms pay just no attention to the desired markup. Hence, at the optimal mon-

etary policy, price setters in firms pay no attention to random variation in the desired markup

and therefore prices do not respond to markup shocks. Complete price stabilization in response to

markup shocks is optimal.

These results on optimal monetary policy in the model with an endogenous information structure

generalize in important ways. Most importantly, the result that complete price stabilization is

optimal in response to markup shocks extends to other shocks that cause inefficient fluctuations

under perfect information and the result that complete price stabilization is optimal in response

to aggregate technology shocks extends to other shocks that cause efficient fluctuations under

perfect information. Aggregate technology shocks and markup shocks are just simple examples.

Furthermore, these results on optimal monetary policy extend to more general signal structures. In

the benchmark model setup, we assume that decision-makers in firms receive independent signals

concerning aggregate technology and the desired markup and choose the precision of these two

5



signals. In an extension, we assume that decision-makers in firms can choose to receive signals

concerning any linear combination of aggregate technology and the desired markup (e.g., signals

concerning endogenous variables). Optimal monetary policy is identical in these two model setups.

To summarize, let us answer the question that is the focus of this paper: Does it matter for

optimal monetary policy whether the amount of attention that decision-makers in firms devote

to aggregate conditions is exogenous or endogenous? Our answer is: a lot. When the amount of

attention that decision-makers in firms devote to aggregate conditions is exogenous, complete price

stabilization is the optimal policy only in response to shocks that cause efficient fluctuations under

perfect information. When decision-makers in firms choose how much attention they devote to

aggregate conditions, complete price stabilization is the optimal policy also in response to shocks

that cause inefficient fluctuations under perfect information.

This paper is related to four recent papers studying optimal monetary policy in models with

information frictions. The most closely related paper is Adam (2007). He studies optimal monetary

policy in a model in which price setters in firms pay limited attention to aggregate conditions,

but the amount of attention that price setters devote to aggregate conditions is exogenous. He

shows that complete price stabilization is optimal in response to labor supply shocks but not in

response to markup shocks. Ball, Mankiw and Reis (2005) study optimal monetary policy in the

sticky-information model of Mankiw and Reis (2002). In this model price setters in firms update

their information sets with an exogenous probability. They show that complete price stabilization

is optimal in response to aggregate technology shocks but not in response to markup shocks.

Finally, Lorenzoni (2010) and Angeletos and La’O (2008) study optimal monetary policy in models

with dispersed information due to an island structure. In Lorenzoni (2010) price setters in firms

observe the complete history of the economy up to the previous period, the sum of aggregate

and idiosyncratic productivity, and a noisy public signal concerning aggregate productivity. There

are several differences between his paper and our paper. In his paper the “noise” in the private

signal concerning aggregate productivity is idiosyncratic productivity while in our paper the noise

arises from limited attention; in his paper the information structure is exogenous whereas in our

paper the information structure is endogenous; and in his paper the central bank has imperfect

information. We initially assume that the central bank has perfect information about the state of

the economy to derive the optimal monetary policy response to shocks, and we then study whether
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the central bank can also implement the optimal monetary policy with less information. Angeletos

and La’O (2008) study optimal monetary policy when agents observe signals concerning endogenous

variables with exogenous variance of noise. There is an information externality because a stronger

response of agents to their private signals increases the signal-to-noise ratio of the signals concerning

endogenous variables. Angeletos and La’O (2008) study how this information externality affects

optimal fiscal and monetary policy. To recapitulate, the main difference between this paper and

the papers cited above is that we derive optimal monetary policy when decision-makers in firms

choose the amount of attention that they allocate to aggregate conditions.

This paper is also related to the literature on rational inattention. See, for example, Sims

(2003, 2006, 2010), Luo (2008), Máckowiak and Wiederholt (2009, 2010), Van Nieuwerburgh and

Veldkamp (2009, 2010), Woodford (2009), Matejka (2010), Mondria (2010) and Paciello (2010).

However, none of these papers studies optimal policy.

The rest of the paper is organized as follows. Section 2 presents the model setup. Section 3

specifies the objective of the central bank. Section 4 states the optimal monetary policy problem

under commitment in the model with an exogenous information structure and in the model with

an endogenous information structure. Section 5 derives the equilibrium allocation under perfect

information as a benchmark. Section 6 derives the optimal monetary policy response to aggregate

technology shocks. Section 7 derives the optimal monetary policy response to markup shocks.

Section 8 contains several additional results, including the results about more general shocks and

more general signal structures. Section 9 concludes.

2 Model setup

The economy is populated by firms, a representative household, and a government.

Household: The household’s preferences in period zero over sequences of consumption and

labor supply {Ct, Lt}∞t=0 are given by

E0

" ∞X
t=0

βt

Ã
C1−γt − 1
1− γ

− L1+ψt

1 + ψ

!#
, (1)

where Ct is composite consumption and Lt is labor supply in period t. The parameter β ∈ (0, 1)

is the discount factor, the parameter γ > 0 is the inverse of the intertemporal elasticity of substi-

tution, and the parameter ψ ≥ 0 is the inverse of the Frisch elasticity of labor supply. E0 denotes
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the expectation operator conditioned on information of the household in period zero. Composite

consumption in period t is given by a Dixit-Stiglitz aggregator

Ct =

Ã
1

I

IX
i=1

C
1

1+Λt
i,t

!1+Λt
, (2)

where Ci,t is consumption of good i in period t. There are I different consumption goods and the

elasticity of substitution between consumption goods in period t equals (1 + 1/Λt). We call the

variable Λt the desired markup because Λt equals the desired markup by firms in period t. We

assume that the log of the desired markup follows a stationary Gaussian first-order autoregressive

process

ln (Λt) = (1− ρλ) ln (Λ) + ρλ ln (Λt−1) + νt, (3)

where the parameter Λ > 0, the parameter ρλ ∈ [0, 1), and the innovation νt is i.i.d.N
¡
0, σ2ν

¢
. We

call the innovation νt a markup shock. We introduce the markup shock in the model as an example

of a shock that has the following property: The response of the economy to the shock under perfect

information is inefficient.3 In Section 7 we derive the optimal monetary policy response to markup

shocks. In Section 8.4 we show that our results concerning markup shocks extend to other shocks

that cause inefficient fluctuations under perfect information.

The flow budget constraint of the representative household in period t reads

Mt +Bt = Rt−1Bt−1 +WtLt +Dt − Tt +

Ã
Mt−1 −

IX
i=1

Pi,t−1Ci,t−1

!
. (4)

The right-hand side of the flow budget constraint is pre-consumption wealth in period t. Here

Bt−1 are the household’s holdings of government bonds between period t − 1 and period t, Rt−1

is the nominal gross interest rate on those bond holdings, Wt is the nominal wage rate in period

t, Dt are nominal aggregate profits in period t, Tt are nominal lump sum taxes in period t, and

the term in brackets are unspent money balances carried over from period t − 1 to period t. The

representative household can transform pre-consumption wealth in period t into money balances,

Mt, and bond holdings, Bt. The purpose of holding money is to purchase goods. We assume that

the representative household faces the following cash-in-advance constraint

IX
i=1

Pi,tCi,t =Mt. (5)

3We define efficiency formally in Section 3.
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The representative household also faces a no-Ponzi-scheme condition.

We introduce the cash-in-advance constraint because it allows us to explain the intuition for

our results about optimal monetary policy in a simple way. In Section 8.6 we show that our

results about optimal monetary policy extend to a cashless economy à la Woodford (2003). In

addition, in Section 8.6 we study optimal monetary policy in a version of the economy with monetary

transaction frictions. The formulation of the cash-in-advance constraint given above implies that

there are no monetary transaction frictions because wage income can be transformed immediately

into cash and cash can be spent immediately on goods. We decided to abstract from monetary

transaction frictions in the benchmark economy for two reasons. First, abstracting from monetary

transaction frictions is common in the New Keynesian literature on optimal monetary policy and

thus abstracting from monetary transaction frictions facilitates comparison of our results to results

about optimal monetary policy in the New Keynesian literature. Second, we think it is useful to

study in isolation the implications of different frictions for optimal monetary policy. Therefore, we

first abstract from monetary transaction frictions and we then add monetary transaction frictions

in Section 8.6 by changing the timing of the cash-in-advance constraint, i.e., by assuming that cash

has to be held for one period before it can be spent on goods.

In every period, the representative household chooses a consumption vector, labor supply, money

balances and bond holdings. The representative household takes as given the nominal interest rate,

the nominal wage rate, nominal aggregate profits, nominal lump sum taxes and the prices of all

consumption goods.

Firms: There are I firms. Firm i supplies good i. The technology of firm i is given by

Yi,t = AtL
α
i,t, (6)

where Yi,t is output and Li,t is labor input of firm i in period t. At is aggregate productivity in

period t. The parameter α ∈ (0, 1] is the elasticity of output with respect to labor input. The log

of aggregate productivity follows a stationary Gaussian first-order autoregressive process

ln (At) = ρa ln (At−1) + εt, (7)

where the parameter ρa ∈ [0, 1) and the innovation εt is i.i.d.N
¡
0, σ2ε

¢
. We call the innovation εt

an aggregate technology shock. The processes {At}∞t=0 and {Λt}
∞
t=0 are assumed to be independent.

We introduce the aggregate technology shock in the model as an example of a shock that has the
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following property: The response of the economy to the shock under perfect information is efficient.

In Section 6 we derive the optimal monetary policy response to aggregate technology shocks. In

Section 8.4 we show that our results concerning aggregate technology shocks extend to other shocks

that cause efficient fluctuations under perfect information.

Nominal profits of firm i in period t equal

(1 + τp)Pi,tYi,t −WtLi,t, (8)

where τp is a production subsidy paid by the government.

In every period, each firm sets a price and commits to supply any quantity at that price. Each

firm takes as given the laws of motion for composite consumption, the nominal wage rate and the

following price index4

Pt =

Ã
1

I

IX
i=1

P
− 1

Λt
i,t

!−Λt
I. (9)

Government: There is a monetary authority and a fiscal authority. The monetary authority

commits to set the money supply according to the following rule

ln (Ms
t ) = Ft (L) εt +Gt (L) νt, (10)

whereMs
t denotes the money supply in period t. Ft (L) andGt (L) are infinite-order lag polynomials

which can depend on t. The last equation simply says that the log of the money supply in period t

can be any linear function of the sequence of shocks up to and including period t. We will ask the

question which linear function is optimal.

To study the optimal monetary policy response to shocks, we initially assume that the central

bank has perfect information. In Section 8.7 we show that the central bank has a high incentive

to be informed about the aggregate state of the economy and that the central bank can implement

the optimal monetary policy also with less information. In addition, in Section 8.5 we show that

the set of equilibria that the central bank can implement with a money supply rule of the form

(10) equals the set of equilibria that the central bank can implement with an interest rate rule of

4Dixit and Stiglitz (1977), in their seminal article on monopolistic competition, also assume that there is a finite

number of physical goods and that firms take the price index as given. Moreover, it seems to be a good description

of the U.S. economy that there is a finite number of consumption goods and that firms take the consumer price index

as given.
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the form

ln (Rt) = Ft (L) εt +Gt (L) νt. (11)

The drawback of committing to an interest rate rule rather than a money supply rule is that

multiplicity of equilibria at a given monetary policy arises more easily. Therefore, we assume in the

benchmark economy that the central bank can commit to a money supply rule and we postpone

the discussion of unique implementation in the case of an interest rate rule to Section 8.5.5

Next, consider fiscal policy. The government budget constraint in period t reads

Tt +Bt = Rt−1Bt−1 + τp

Ã
IX

i=1

Pi,tYi,t

!
. (12)

The government has to finance maturing nominal government bonds and the production subsidy.

The government can collect lump sum taxes or issue new one-period nominal government bonds. We

assume that the fiscal authority pursues a Ricardian fiscal policy. In particular, for ease of exposition

we assume that the fiscal authority fixes nominal government bonds at some non-negative level

Bt = B ≥ 0. (13)

Furthermore, we assume that the fiscal authority sets the production subsidy so as to correct the

distortion arising from monopolistic competition in the non-stochastic steady state:

τp = Λ. (14)

Alternatively, one could assume that the fiscal authority sets the production subsidy so as to correct

perfectly at each point in time the distortion arising from monopolistic competition:

τp,t = Λt. (15)

However, since in the United States fiscal policy has to be approved by Congress while monetary

policy decisions are implemented directly by the Federal Reserve, we find it more realistic to assume

that the fiscal authority cannot adjust the production subsidy quickly while the monetary authority

can adjust the money supply quickly.
5A remark about the money market may be useful. In the model, the money market clears in the usual way.

In equilibrium, endogenous variables (e.g., the price level, consumption and the nominal interest rate) adjust such

that the demand for money balances by the representative household equals the supply of money balances by the

monetary authority.
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Information: We now specify the assumptions about the information structure. We consider

two models. In the model with an exogenous information structure, the amount of attention

that decision-makers in firms allocate to aggregate conditions is exogenous. In the model with

an endogenous information structure, decision-makers in firms choose how much attention they

allocate to aggregate conditions.

In both models, the information set of the price setter in firm i in period t is

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (16)

where Ii,−1 is the initial information set of the price setter in firm i and si,t is the signal that

he or she receives in period t. The latter is a two-dimensional vector consisting of a noisy signal

concerning aggregate technology and a noisy signal concerning the desired markup:

si,t =

⎛⎝ ln (At) + ηi,t

ln (Λt/Λ) + ζi,t

⎞⎠ . (17)

We assume that the noise in the signal is due to limited attention by the decision-maker.6 The noise

in the signal has the following properties: (i) the processes
©
ηi,t
ª∞
t=0

and
©
ζi,t
ª∞
t=0

are independent

of the processes {At}∞t=0 and {Λt}
∞
t=0, (ii) the processes

©
ηi,t
ª∞
t=0

and
©
ζi,t
ª∞
t=0

are independent

across firms and independent of each other, and (iii) ηi,t and ζi,t follow Gaussian white noise

processes with variances σ2η and σ2ζ . The assumption that the noise in the signal is idiosyncratic

accords well with the idea that the source of noise is limited attention by individual decision-makers

rather than lack of publicly available information. The assumption that decision-makers in firms

receive independent signals concerning aggregate technology and the desired markup is only for

ease of exposition. In Section 8.3, we show that optimal monetary policy in the model with an

endogenous information structure is identical when decision-makers in firms can decide to receive

signals concerning any linear combination of aggregate technology and the desired markup (e.g.,

they can pay attention to endogenous variables).

In the model with an exogenous information structure, the variances of noise σ2η and σ2ζ are

exogenous. In the model with an endogenous information structure, decision-makers in firms choose

the precision of the signals facing an opportunity cost of allocating attention to aggregate condi-

tions. Following the literature on rational inattention (see Sims (2003)), we quantify the amount

6See Footnote 2.
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of attention allocated to aggregate conditions by uncertainty reduction. The timing is as follows.

In period minus one, decision-makers in firms choose the precision of the signals so as to maximize

expected profits net of the opportunity cost of devoting attention to aggregate conditions. In the

following periods, decision-makers in firms receive the signals and take the optimal price setting

decisions given the signals that they have received. Formally, the price setter in firm i solves the

following decision problem in period minus one:

max
(1/σ2η,1/σ2ζ)∈R2+

(
Ei,−1

" ∞X
t=0

βtπ (Pi,t, Pt, Ct,Wt, At,Λt)

#
− μ

1− β
κ

)
, (18)

subject to equations (16)-(17) and

Pi,t = arg max
Pi∈R++

E[π (Pi, Pt, Ct,Wt, At,Λt) |Ii,t], (19)

and

κ = h (At,Λt|Ii,t−1)− h (At,Λt|Ii,t) . (20)

Consider first objective (18). Here Ei,−1 denotes the expectation operator conditioned on the

information of the price setter in firm i in period minus one. The function π denotes the real

profit function defined as the nominal profit function divided by Pt times the marginal utility of

consumption by the representative household. The variable κ is the amount of attention that the

decision-maker devotes to aggregate conditions. The parameter μ > 0 is the per-period marginal

cost of devoting attention to aggregate conditions. We interpret the cost μ as an opportunity

cost. Paying more attention to the price setting decision means paying less attention to some

other activity. Following Sims (2003), we quantify the amount of attention devoted to aggregate

conditions by uncertainty reduction, where uncertainty is measured by entropy. See equation (20).

Here h (At,Λt|Ii,t−1) denotes the conditional entropy of At and Λt given Ii,t−1 and h (At,Λt|Ii,t)

denotes the conditional entropy of At and Λt given Ii,t. The difference between the two quantifies

the information received in period t. Finally, equation (19) specifies the price setting behavior.

The basic trade-off is the following. A higher precision of the signals improves the price setting

behavior but requires paying more attention to aggregate conditions.

Finally, we make a simplifying assumption. To abstract from transitional dynamics in condi-

tional second moments, we assume that at the end of period minus one (i.e., after the decision-maker

has chosen the precision of the signals), the decision-maker receives information such that: (i) the
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conditional distribution of (ln (A0) , ln (Λ0)) given information at the end of period minus one is

normal, and (ii) the conditional covariance matrix of (ln (A0) , ln (Λ0)) given information at the

end of period −1 equals the steady-state conditional covariance matrix of (ln (At) , ln (Λt)) given

information in period t− 1.

Before we proceed, it is useful to point out two features of the decision problem (18)-(20) that

one may expect to be important for our results about optimal monetary policy but that turn out

to be irrelevant for our results about optimal monetary policy. First, in equation (17) we assume

that decision-makers in firms receive independent signals concerning aggregate technology and the

desired markup. In Section 8.3, we show that optimal monetary policy in the model with an

endogenous information structure is identical when decision-makers in firms can decide to receive

signals concerning any linear combination of aggregate technology and the desired markup (e.g.,

signals concerning endogenous variables). Second, in the decision problem (18)-(20) we assume

that decision-makers in firms choose a constant signal precision once and for all. Our propositions

about optimal monetary policy in the model with an endogenous information structure also hold

when decision-makers in firms choose signal precision period by period or when decision-makers in

firms choose signal precision as a function of time in period minus one.

We assume that the representative household has perfect information. We make this assump-

tion for two reasons. First, this assumption facilitates the comparison of our results about optimal

monetary policy to the results about optimal monetary policy in the basic New Keynesian model,

where the only friction apart from monopolistic competition is price stickiness. Second, this as-

sumption allows us to isolate the implications of limited attention by price setters in firms for

optimal monetary policy.

Aggregation: When computing the price index, terms will appear that are linear in 1
I

XI

i=1
ηi,t

and 1
I

XI

i=1
ζi,t. These averages are random variables with mean zero and variance 1

Iσ
2
η and

1
Iσ

2
ζ ,

respectively. We will neglect these terms because these terms have mean zero and a variance that

can be made arbitrarily small by setting the number of firms sufficiently high. For example, one

can set I = 10100. Alternatively, one could work with a continuum of firms and apply the law of

large numbers in Uhlig (1995). We work with a finite number of firms rather than a continuum

of firms because we find that it makes the derivation of the central bank’s objective in the next

section more transparent.
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3 Objective of the central bank

We assume that the central bank aims to maximize expected utility of the representative household,

given by equations (1)-(2).

We now derive a simple expression for expected utility of the representative household by

using the fact that one can express period utility at a feasible allocation as a function only of the

consumption vector at time t, aggregate productivity at time t, and the desired markup at time t.

First, at any feasible allocation the representative household has to supply the labor that is needed

to produce the consumption vector:

Lt =
IX

i=1

µ
Ci,t

At

¶ 1
α

. (21)

Furthermore, equation (2) for the consumption aggregator can be written as

1 =
1

I

IX
i=1

Ĉ
1

1+Λt
i,t ,

where Ĉi,t = (Ci,t/Ct) is relative consumption of good i in period t. Rearranging yields

ĈI,t =

Ã
I −

I−1X
i=1

Ĉ
1

1+Λt
i,t

!1+Λt
. (22)

Substituting equations (21) and (22) into the period utility function in (1) yields the following

expression for period utility at a feasible allocation

U
³
Ct, Ĉ1,t, . . . , ĈI−1,t, At,Λt

´
=

C1−γt − 1
1− γ

− 1

1 + ψ

µ
Ct

At

¶ 1
α
(1+ψ)

⎡⎣I−1X
i=1

Ĉ
1
α
i,t +

Ã
I −

I−1X
i=1

Ĉ
1

1+Λt
i,t

! 1
α
(1+Λt)

⎤⎦1+ψ .(23)

Thus, expected utility at a feasible allocation equals

E

" ∞X
t=0

βtU
³
Ct, Ĉ1,t, . . . , ĈI−1,t, At,Λt

´#
.

To summarize, by substituting the technology and the consumption aggregator into the period

utility function one can express period utility at a feasible allocation as a function only of the

consumption vector at time t, aggregate productivity at time t, and the desired markup at time t.
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We define the efficient allocation in period t as the feasible allocation in period t that maximizes

utility of the representative household. The efficient allocation in period t is given by

C∗t =
³ α

I1+ψ

´ 1

γ−1+ 1
α (1+ψ) A

1
α (1+ψ)

γ−1+ 1
α (1+ψ)

t ,

and, for all i = 1, . . . , I − 1,

Ĉ∗i,t = 1.

The efficient consumption level in period t is strictly increasing in aggregate productivity in period t

and is independent of the desired markup. The efficient consumption mix in period t is to consume

an equal amount of each good.

In the following sections, we work with a log-quadratic approximation to the period utility

function (23) around the non-stochastic steady state. In the following, variables without time

subscript denote values in the non-stochastic steady state and small variables denote log-deviations

from the non-stochastic steady state (e.g., ct = ln (Ct/C) and ĉi,t = ln
³
Ĉi,t/Ĉi

´
). Due to the

production subsidy (14), the non-stochastic steady state is efficient (i.e., C = C∗ and Ĉi = Ĉ∗i ).

Expressing the period utility function U defined by equation (23) in terms of log-deviations from

the non-stochastic steady state and using C = C∗ and Ĉi = Ĉ∗i yields the following expression for

period utility at a feasible allocation

u (ct, ĉ1,t, . . . , ĉI−1,t, at, λt)

=
C1−γe(1−γ)ct − 1

1− γ

−C
1−γe

1
α
(1+ψ)(ct−at)

1
α (1 + ψ)

⎡⎣1
I

I−1X
i=1

e
1
α
ĉi,t +

1

I

Ã
I −

I−1X
i=1

e
ĉi,t

1

1+Λeλt

! 1
α(1+Λe

λt)
⎤⎦1+ψ . (24)

A second-order Taylor approximation to this function at the non-stochastic steady state yields the

result stated in Proposition 1.

Proposition 1 (Objective of the central bank) Let ũ denote the second-order Taylor approximation

to the period utility function u at the origin. Let E denote the unconditional expectation operator.
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Let xt, zt, and ωt denote the following vectors

xt =
³
ct ĉ1,t · · · ĉI−1,t

´0
,

zt =
³
at λt

´0
,

ωt =
³
x0t z0t 1

´0
.

Let ωn,t denote the nth element of ωt. Suppose that there exist two constants δ < (1/β) and φ ∈ R

such that, for each period t ≥ 0 and for all n and k,

E |ωn,tωk,t| < δtφ. (25)

Then

E

" ∞X
t=0

βtũ (xt, zt)

#
−E

" ∞X
t=0

βtũ (x∗t , zt)

#
=

∞X
t=0

βtE

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
, (26)

where the matrix H is given by

H = −C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − 1 + 1
α (1 + ψ) 0 · · · · · · 0

0 2 1+Λ−αI(1+Λ)α
1+Λ−α
I(1+Λ)α · · · 1+Λ−α

I(1+Λ)α
... 1+Λ−α

I(1+Λ)α

. . . . . .
...

...
...

. . . . . . 1+Λ−α
I(1+Λ)α

0 1+Λ−α
I(1+Λ)α . . . 1+Λ−α

I(1+Λ)α 2 1+Λ−αI(1+Λ)α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

and the vector x∗t is given by

c∗t =
1
α (1 + ψ)

γ − 1 + 1
α (1 + ψ)

at, (28)

and

ĉ∗i,t = 0. (29)

Proof. See Appendix A.

After the log-quadratic approximation to the period utility function (23) around the non-

stochastic steady state, the efficient consumption vector in period t is given by equations (28)-(29)

and the loss in expected utility in the case of deviations of the actual consumption vector from

the efficient consumption vector is given by equation (26). The upper-left element of the matrix H

determines the loss in utility in the case of an inefficient consumption level. The lower-right block of
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the matrix H determines the loss in utility in the case of an inefficient consumption mix. Condition

(25) ensures that in the expressions on the left-hand side of equation (26) one can change the order

of integration and summation and the infinite sum converges. In the models that we consider,

condition (25) is always satisfied.

4 The Ramsey problem

In this section, we state the maximization problem of the central bank that aims to commit to the

policy rule that maximizes expected utility of the representative household.

In the model with an exogenous information structure, the problem of the central bank is

max
{Ft(L),Gt(L)}∞t=0

E

" ∞X
t=0

βtU
³
Ct, Ĉ1,t, . . . , ĈI−1,t, At,Λt

´#
, (30)

subject to

PtCt =Mt, (31)

Ci,t =

Ã
Pi,t
1
IPt

!− 1+ 1
Λt

Ct, (32)

Wt

Pt
= Lψ

t C
γ
t , (33)

Pt =

Ã
1

I

IX
i=1

P
− 1

Λt
i,t

!−Λt
I, (34)

Pi,t = arg max
Pi∈R++

E[π (Pi, Pt, Ct,Wt, At,Λt) |Ii,t], (35)

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (36)

si,t =

⎛⎝ ln (At) + ηi,t

ln (Λt/Λ) + ζi,t

⎞⎠ , (37)

Lt =
IX

i=1

µ
Ci,t

At

¶ 1
α

, (38)

ln (At) = ρa ln (At−1) + εt, (39)

ln (Λt/Λ) = ρλ ln (Λt−1/Λ) + νt, (40)

and

ln (Mt) = Ft (L) εt +Gt (L) νt. (41)
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The objective (30) is expected utility of the representative household. The function U defined by

equation (23) gives period utility at a feasible allocation. Equations (31)-(34) are the household’s

optimality conditions.7 Equation (35) states that price setters in firms take the optimal price setting

decisions given their information. Equations (36)-(37) specify the information set of the price setter

in firm i in period t. Equation (38) is the labor market clearing condition. Equations (39)-(40)

specify the laws of motion for the exogenous variables. Finally, equation (41) is the equation for

the money supply, where Ft (L) and Gt (L) are infinite-order lag polynomials which can depend on

t.8 The innovations εt, νt, ηi,t and ζi,t have the properties specified in Section 2. In the model with

an exogenous information structure, the variances of noise σ2η and σ2ζ are structural parameters.

They do not depend on monetary policy.

In the model with an endogenous information structure, the variances of noise σ2η and σ2ζ are

given by the solution to the attention problem (18)-(20) and the central bank understands that the

choice of the policy rule affects the firms’ allocation of attention.

In the literature on optimal monetary policy it is common practice to study the Ramsey problem

after a log-quadratic approximation of the central bank’s objective and a log-linear approximation of

the equilibrium conditions. See Woodford (2003), Gali (2008), Adam (2007) and Ball, Mankiw and

Reis (2005). We follow this common practice. This makes our results comparable to their results.

A log-quadratic approximation of the central bank’s objective and a log-linear approximation of the

equilibrium conditions around the non-stochastic steady state yields the following linear quadratic

Ramsey problem in the model with an exogenous information structure:

min
{Ft(L),Gt(L)}∞t=0

∞X
t=0

βtE

"
(ct − c∗t )

2 + δ
1

I

IX
i=1

(pi,t − pt)
2

#
, (42)

subject to

c∗t =
φa
φc

at, (43)

ct = mt − pt, (44)

pt =
1

I

IX
i=1

pi,t, (45)

7We do not state the consumption Euler equation because here the consumption Euler equation is only a pricing

equation determining the equilibrium nominal interest rate.
8The requirement that each firm produces the quantity demanded is embedded in the profit function π and the

money market clearing condition Mt =Ms
t is embedded in equation (41). See Footnote 5.
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pi,t = E
£
p∗i,t|Ii,t

¤
, (46)

p∗i,t = pt + φcct − φaat + φλλt, (47)

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (48)

si,t =

⎛⎝ at + ηi,t

λt + ζi,t

⎞⎠ , (49)

at = ρaat−1 + εt, (50)

λt = ρλλt−1 + νt, (51)

and

mt = Ft (L) εt +Gt (L) νt, (52)

where

φc =
ψ
α + γ + 1−α

α

1 + 1−α
α

1+Λ
Λ

> 0, (53)

φa =
ψ
α +

1
α

1 + 1−α
α

1+Λ
Λ

> 0, (54)

φλ =
Λ
1+Λ

1 + 1−α
α

1+Λ
Λ

> 0, (55)

δ =

1+Λ−α
(1+Λ)α

¡
1 + 1

Λ

¢2
γ − 1 + 1

α (1 + ψ)
> 0. (56)

The objective (42) follows from substituting the log-linear demand function for good i into equation

(26) and by using equation (45). The variable c∗t is efficient composite consumption in period t and

the parameter δ is the relative weight on cross-sectional inefficiency versus aggregate inefficiency in

the central bank’s objective. The variable p∗i,t is the profit-maximizing price of good i in period t.

In the model with an exogenous information structure, the variances of noise σ2η and σ2ζ are

exogenous. In the model with an endogenous information structure, price setters in firms choose

the precision of the signals. After a log-quadratic approximation of the real profit function π around

the non-stochastic steady state, the attention problem (18)-(20) reads:

min
(1/σ2η,1/σ2ζ)∈R2+

(
Ei,−1

" ∞X
t=0

βt
ω

2

¡
pi,t − p∗i,t

¢2#
+

μ

1− β
κ

)
, (57)

subject to

pi,t = E
£
p∗i,t|Ii,t

¤
, (58)
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and

κ =
1

2
log2

Ã
σ2a|t−1
σ2a|t

!
+
1

2
log2

Ã
σ2λ|t−1
σ2λ|t

!
, (59)

where the coefficient ω determining the profit loss in the case of a deviation of the actual price from

the profit-maximizing price is given by

ω = C−γ
WLi

P

1+Λ
Λ

α

µ
1 +

1− α

α

1 + Λ

Λ

¶
. (60)

Here p∗i,t denotes the profit-maximizing price of good i in period t given by equation (47) and Ii,t
denotes the information set of the price setter in firm i in period t given by equations (48)-(49).

Equation (20) reduces to equation (59) because the conditional distribution of (at, λt) is Gaussian

both given Ii,t−1 and given Ii,t and because at and λt are conditionally independent both given

Ii,t−1 and given Ii,t. In the following, σ2λ, σ2λ|t−1 and σ2λ|t denote the unconditional variance of λt,

the conditional variance of λt given Ii,t−1 and the conditional variance of λt given Ii,t, respectively.

5 Perfect information solution

As a benchmark, we now derive the response of the economy to aggregate shocks under perfect

information.

Suppose that price setters in firms have perfect information. Each firm then charges the profit-

maximizing price and equations (44)-(47) imply

ct =
φa
φc

at −
φλ
φc

λt, (61)

pi,t − pt = 0, (62)

and

pt = mt − ct. (63)

Under perfect information, the response of the economy to aggregate technology shocks is efficient

while the response of the economy to markup shocks is inefficient. To see this, note that there is

no inefficient price dispersion under perfect information and compare equations (43) and (61). The

response of the economy to markup shocks under perfect information is inefficient because under

perfect information firms vary the actual markup with the desired markup which causes inefficient

consumption fluctuations.
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6 Optimal monetary policy response to technology shocks

In this section, we derive the optimal monetary policy response to aggregate technology shocks in the

model with an exogenous information structure and in the model with an endogenous information

structure. We show that in both models complete price stabilization is the optimal policy in

response to aggregate technology shocks.

6.1 Exogenous information structure

Proposition 2 (Exogenous signal precision) Consider the Ramsey problem (42)-(56), where the

variances of noise σ2η and σ2ζ are exogenous. Consider equilibria with the property that the price

level pt is a linear function of the shocks. If σ2η > 0, the unique optimal monetary policy response

to aggregate technology shocks is

Ft (L) εt =
φa
φc

at. (64)

At the optimal monetary policy, the price level does not respond to aggregate technology shocks.

Proof. See Appendix B.

The reason for this result about optimal policy is the following. The response of the economy to

aggregate technology shocks under perfect information is efficient. Furthermore, by offsetting the

effect of aggregate technology shocks on the profit-maximizing price the central bank can replicate

the perfect-information response of real variables to aggregate technology shocks. To see this, note

that the profit-maximizing price (47) can be written as

p∗i,t = (1− φc) pt + φc

µ
mt −

φa
φc

at +
φλ
φc

λt

¶
.

By setting Ft (L) εt =
φa
φc
at, the central bank can offset the effect of aggregate technology shocks

on the profit-maximizing price. Price setters in firms then put no weight on their noisy signals

concerning aggregate technology and thus there is no inefficient price dispersion due to the noise

in the signal concerning aggregate technology. In addition, the price level then does not respond

to aggregate technology shocks and therefore the response of the consumption level to aggregate

technology shocks equals φa
φc
at, which equals the efficient response of the consumption level to

aggregate technology shocks. See equations (44) and (43).
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6.2 Endogenous information structure

Proposition 3 (Endogenous signal precision) Consider the Ramsey problem (42)-(60), where the

signal precisions
¡
1/σ2η

¢
and

³
1/σ2ζ

´
are given by the solution to problem (57)-(60). Consider

equilibria with the property that the price level pt is a linear function of the shocks. If μ > 0, the

unique optimal monetary policy response to aggregate technology shocks is

Ft (L) εt =
φa
φc

at. (65)

At the optimal monetary policy, the price level does not respond to aggregate technology shocks.

Proof. See Appendix C.

The reason for this result about optimal policy is the same as in the previous subsection: The

response of the economy to aggregate technology shocks under perfect information is efficient and

by offsetting the effect of aggregate technology shocks on the profit-maximizing price the central

bank can replicate the perfect-information response of real variables to aggregate technology shocks.

There is one difference to the previous subsection. At the optimal monetary policy, price setters

in firms now devote no attention to aggregate technology because the profit-maximizing price does

not respond to aggregate technology shocks.

7 Optimal monetary policy response to markup shocks

In this section, we derive the optimal monetary policy response to markup shocks. Our main result

is the following. Complete price stabilization in response to markup shocks is never optimal in the

model with an exogenous information structure, whereas complete price stabilization in response

to markup shocks is always optimal in the model with an endogenous information structure.

For ease of exposition, we assume in this section that there are no aggregate technology shocks.

This assumption simplifies the notation in Propositions 4, 5 and 6, and has no impact on the

optimal monetary policy response to markup shocks.

7.1 Exogenous information structure

In the model with an exogenous information structure, the optimal monetary policy response to

markup shocks in the case of an i.i.d. desired markup is given by the following proposition.
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Proposition 4 (Exogenous signal precision) Consider the Ramsey problem (42)-(56), where the

variances of noise σ2η and σ2ζ are exogenous. Suppose σ
2
ν > 0, ρλ = 0 and σ2ε = a−1 = 0. Consider

policies of the form Gt (L) νt = g0νt and equilibria of the form pt = θλt. The unique equilibrium at

any monetary policy g0 ∈ R is

pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

λt, (66)

ct =

σ2ζ
σ2λ
g0 − φλ

φc +
σ2ζ
σ2λ

λt, (67)

pi,t − pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

ζi,t. (68)

Furthermore, if σ2ζ > 0, the unique optimal monetary policy g0 ∈ R is

g∗0 =
(1− δφc)φλ
σ2ζ
σ2λ
+ δφ2c

. (69)

At the optimal monetary policy, the price level strictly increases in response to a positive markup

shock, composite consumption strictly falls in response to a positive markup shock, and there is

inefficient price dispersion.

Proof. See Appendix D.

The main result in Proposition 4 is that in the model with an exogenous information structure

and an i.i.d. desired markup, complete price stabilization in response to markup shocks is never

optimal. To understand this result, note first what happens when the central bank does not change

the monetary policy instrument in response to markup shocks (i.e., g0 = 0). In this case, a positive

markup shock (i.e., a shock that raises the desired markup) increases the profit-maximizing price.

Price setters in firms therefore put a positive weight on their signals concerning the desired markup

which causes inefficient price dispersion due to noise in the signal (“cross-sectional inefficiency”).

Furthermore, the price level increases which - given the constant money supply - causes a fall in

consumption (“aggregate inefficiency”). To reduce inefficient price dispersion, the central bank can

counteract the effect of a positive markup shock on the profit-maximizing price with a contrac-

tionary monetary policy (i.e., by lowering the money supply). The profit-maximizing price then

increases by less in response to a positive markup shock, implying that price setters in firms put less
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weight on their noisy signals concerning the desired markup, which reduces inefficient price disper-

sion. Unfortunately, the contractionary monetary policy amplifies the fall in consumption after a

positive markup shock. Thus, reducing cross-sectional inefficiency increases aggregate inefficiency.

There exists a trade-off between cross-sectional inefficiency and aggregate inefficiency. Moreover,

driving inefficient price dispersion to zero (by stabilizing completely the profit-maximizing price

and thereby prices) is never optimal because as inefficient price dispersion goes to zero the benefit

of further reducing inefficient price dispersion goes to zero while the cost of further reducing ineffi-

cient price dispersion increases. Hence, complete price stabilization in response to markup shocks

is never optimal. Formally, substituting the optimal monetary policy (69) into equations (66) and

(68) yields

pt =
φλ

σ2ζ
σ2λ
+ δφ2c

λt,

pi,t − pt =
φλ

σ2ζ
σ2λ
+ δφ2c

ζi,t.

The existence of a trade-off between cross-sectional inefficiency and aggregate inefficiency in the

presence of markup shocks and the result that complete price stabilization in response to markup

shocks is not optimal are classic results in monetary economics. These results hold in a variety of

other models. See, for example, Woodford (2003), Gali (2008), Adam (2007), and Ball, Mankiw

and Reis (2005).

We now turn to the case of an autocorrelated desired markup. We want to know whether

complete price stabilization in response to markup shocks is still suboptimal when the desired

markup is autocorrelated. When ρλ > 0 we solve the Ramsey problem (42)-(56) numerically. We

turn this infinite-dimensional problem into a finite-dimensional problem by restricting Gt (L) to

be the same in each period and by restricting Gt (L) to be the lag polynomial of an ARMA(2,2)

process.9 Following the procedure in Woodford (2002), one can then compute an exact linear

rational expectations equilibrium of the model (43)-(56) for a given monetary policy by solving a

Riccati equation. We then run a numerical optimization routine to obtain the optimal monetary

policy.

9We choose an ARMA(2,2) parameterization because it is well known from time series econometrics that an

ARMA(p,q) parameterization is a very flexible and parsimonious parameterization.
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Figure 1 shows the optimal monetary policy response to a markup shock in the model with an

exogenous signal precision for the following parameter values: β = 0.99, γ = ψ = 1, α = (2/3),

Λ = (1/4), σν = 0.2, and σζ = 0.4. The upper panel of Figure 1 shows optimal monetary policy

when ρλ = 0. The lower panel of Figure 1 shows optimal monetary policy when ρλ = 0.9. The

value for β is a standard value for a quarterly model. The values for γ, ψ and α are standard

values in the business cycle literature. The value for Λ implies a steady-state price elasticity of

demand of five. This value for the price elasticity of demand is half way between the value of three

used by Midrigan (2010) and the value of seven used by Golosov and Lucas (2007).10 The values

ρλ = 0.9 and σν = 0.2 are within the range of estimates of markup shocks in the New Keynesian

literature. For comparison, Figure 1 also shows the optimal monetary policy in the Calvo model.

In the Calvo model, decision-makers in firms have perfect information and in every period each firm

can adjust its price with an exogenous probability. Following Nakamura and Steinsson (2008), we

set the fraction of firms that can adjust their price in a quarter equal to 0.4. Finally, the standard

deviation of noise, σζ , is set such that the model with an exogenous signal precision and the Calvo

model yield the same response of the price level to a markup shock when the component of the

profit-maximizing price driven by markup shocks is a random walk. The idea is that we want to

compare the model with an exogenous signal precision and the Calvo model for parameter values

that imply the same degree of stickiness of the price level. All impulse responses are to a positive

one standard deviation markup shock. A response equal to one means a one percent deviation from

the non-stochastic steady state. Time is measured in quarters along the horizontal axis.

The main result is the following. In the model with an exogenous signal precision, complete

price stabilization in response to markup shocks is still suboptimal when ρλ > 0. At the optimal

monetary policy, the price level strictly increases on impact of a positive markup shock. Figure 1

shows this result for our benchmark parameter values. We solved the Ramsey problem (42)-(56)

for many sets of parameter values with ρλ > 0 and we always obtained this result.

Furthermore, comparing the optimal monetary policy response to markup shocks in the model

with an exogenous signal precision and in the Calvo model, we obtain the following results. First,

the optimal monetary policy is qualitatively similar in these two models: At the optimal monetary

policy, the price level strictly increases on impact of a positive markup shock, the consumption

10A price elasticity of demand of five is towards the upper end of estimates in the empirical IO literature.
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level strictly falls on impact of a positive markup shock, and there is inefficient price dispersion.

Second, whether optimal monetary policy is also quantitatively similar in these two models depends

on parameter values. When ρλ = 0.9 the impulse responses at the optimal monetary policy are

very similar in the model with an exogenous signal precision and in the Calvo model. By contrast,

when ρλ = 0 the optimal monetary policy in the model with an exogenous signal precision is to

respond to the markup shock only in the period of the shock, whereas the optimal monetary policy

in the Calvo model is to respond to the markup shock also in the periods after the shock.

To summarize, in the model with an exogenous signal precision, there exists a trade-off between

reducing inefficient price dispersion and reducing inefficient consumption variance and complete

price stabilization in response to markup shocks is not optimal. Furthermore, qualitatively optimal

policy is similar to optimal policy in the Calvo model.

7.2 Endogenous information structure

In the model with an endogenous information structure, the optimal monetary policy response to

markup shocks in the case of an i.i.d. desired markup is given by the following two propositions.

Proposition 5 treats the case of φc ∈
£
1
2 ,∞

¢
and Proposition 6 treats the case of φc ∈

¡
0, 12

¢
.

Proposition 5 (Endogenous signal precision) Consider the Ramsey problem (42)-(60), where the

signal precisions
¡
1/σ2η

¢
and

³
1/σ2ζ

´
are given by the solution to problem (57)-(60). Suppose that

μ > 0, σ2ν > 0, ρλ = 0 and σ2ε = a−1 = 0. Consider policies of the form Gt (L) νt = g0νt and

equilibria of the form pt = θλt. Define

b ≡

s
ω (φcg0 + φλ)

2 σ2λ ln (2)

μ
. (70)

First, we characterize the set of equilibria at a given monetary policy g0 ∈ R. Let κ∗ denote the

equilibrium attention devoted to the desired markup. If and only if b ≤ 1, there exists an equilibrium

with

κ∗ = 0. (71)

If and only if φc ∈
¡
0, 12

¤
and b ∈

hp
4φc (1− φc), 1

i
, there exists an equilibrium with

κ∗ = log2

Ã
b−

p
b2 − 4φc (1− φc)

2φc

!
. (72)
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If and only if either φc ∈
¡
0, 12

¤
and b ≥

p
4φc (1− φc) or φc > 1

2 and b ≥ 1, there exists an

equilibrium with

κ∗ = log2

Ã
b+

p
b2 − 4φc (1− φc)

2φc

!
. (73)

The equilibrium price level, consumption level and price dispersion are given by

pt =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
λt, (74)

ct =

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#
λt, (75)

and

E
h
(pi,t − pt)

2
i
=

μ
ω

ln (2)

³
1− 2−2κ∗

´
. (76)

Second, we characterize optimal monetary policy. If φc ∈
£
1
2 ,∞

¢
, there exists a unique equilibrium

for any monetary policy g0 ∈ R and the unique optimal monetary policy is

g∗0 =

⎧⎨⎩ 0 if ωφ2λσ
2
λ ln(2)
μ ≤ 1

−φλ
φc
+ 1

φc

q
μ

ωσ2λ ln(2)
if ωφ2λσ

2
λ ln(2)
μ > 1

. (77)

At the optimal monetary policy, price setters in firms pay no attention to the desired markup

(i.e., κ∗ = 0), the price level does not respond to markup shocks, and there is no inefficient price

dispersion.

Proof. See Appendix E.

Proposition 5 states that in the model with an endogenous information structure, complete

price stabilization in response to markup shocks is optimal when μ > 0, ρλ = 0 and φc ∈
£
1
2 ,∞

¢
.

The condition μ > 0 means that there is some cost of paying attention to the desired markup.

This cost can be arbitrarily small. The condition ρλ = 0 means that the desired markup follows

a white noise process. The condition φc ∈
£
1
2 ,∞

¢
means that strategic complementarity in price

setting is not strong enough for multiple equilibria to arise. Below we show analytically that in

the model with an endogenous information structure complete price stabilization in response to

markup shocks is also optimal when φc ∈
¡
0, 12

¢
, μ > 0 and ρλ = 0. Hence, when μ > 0 and ρλ = 0

complete price stabilization in response to markup shocks is always optimal in the model with an

endogenous information structure. This result is in the starkest possible contrast to Proposition 4
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stating that when σ2ζ > 0 and ρλ = 0 complete price stabilization in response to markup shocks is

never optimal in the model with an exogenous information structure.

To understand Proposition 5, let us first focus on the optimal allocation of attention by price

setters in firms. This is the new feature in the model with an endogenous information structure.

The profit-maximizing price of good i in period t equals

p∗i,t = (1− φc) pt + φcmt − φaat + φλλt

= [(1− φc) θ + φcg0 + φλ]λt.

A price setter’s optimal amount of attention devoted to the desired markup λt equals

κ∗ =

⎧⎨⎩
1
2 log2

³
ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ

´
if ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ ≥ 1

0 otherwise
. (78)

The ratio ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)
μ is the marginal benefit of devoting attention to the desired

markup when no attention is devoted to the desired markup (i.e., κ = 0) divided by the marginal

cost of devoting attention to the desired markup. If this ratio exceeds one, the price setter in a firm

devotes some attention to the desired markup. If this ratio increases, the price setter devotes more

attention to the desired markup. The benefit of paying attention to the desired markup depends on

[(1− φc) θ + φcg0 + φλ]
2 σ2λ which is the variance of the profit-maximizing price due to the desired

markup. This variance depends on the behavior of other firms through θ and on monetary policy

through g0. As pointed out by Máckowiak andWiederholt (2009) and Hellwig and Veldkamp (2009),

strategic complementarity in price setting leads to strategic complementarity in the allocation of

attention. When other firms are paying more attention to the desired markup, the price level

responds more to the desired markup, which in the case of (1− φc) > 0 raises the incentive for an

individual firm to pay attention to the desired markup. For this reason, multiple equilibria can

in principle arise. However, when φc ∈
£
1
2 ,∞

¢
, strategic complementarity in price setting is not

strong enough for multiple equilibria to arise. In this case, if the compound parameter b defined by

equation (70) is below one, the unique equilibrium attention is given by equation (71); and if the

compound parameter b is above one, the unique equilibrium attention is given by equation (73). To

illustrate this result, the upper panel of Figure 2 shows equilibrium attention as a function of the

compound parameter b for φc = (1/2). By contrast, when φc ∈
¡
0, 12

¢
, strategic complementarity

in price setting is strong enough for multiple equilibria to arise at some values of the compound
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parameter b. To illustrate this result, the lower panel of Figure 2 shows equilibrium attention as a

function of the compound parameter b for φc = (1/4).

Let us now turn to optimal monetary policy. Proposition 5 specifies optimal monetary policy

when φc ∈
£
1
2 ,∞

¢
, that is, when there exists a unique equilibrium for any monetary policy g0 ∈ R.

First, consider the case of ωφ2λσ
2
λ ln(2)
μ ≤ 1. In this case, if the central bank does not respond to

markup shocks (i.e., g0 = 0), decision-makers in firms pay no attention to the desired markup

because the marginal benefit of devoting attention to random variation in the desired markup is

smaller than the marginal cost of devoting attention to random variation in the desired markup.

Furthermore, when neither the central bank nor firms respond to markup shocks, markup shocks

create no inefficiencies. Hence, in the case of ωφ2λσ
2
λ ln(2)
μ ≤ 1, a monetary policy of no response to

markup shocks implements the efficient allocation and is thus the optimal monetary policy.

Second, consider the case of ωφ
2
λσ

2
λ ln(2)
μ > 1. In this case, if the central bank does not respond to

markup shocks (i.e., g0 = 0), decision-makers in firms pay attention to the desired markup because

the marginal benefit of devoting attention to random variation in the desired markup exceeds the

marginal cost of devoting attention to random variation in the desired markup. Hence, in the case

of ωφ2λσ
2
λ ln(2)
μ > 1, if the central bank does not respond to markup shocks, the price level increases

after a positive markup shock, the consumption level falls after a positive markup shock, and there

is inefficient price dispersion caused by the noise in the signal concerning the desired markup. Next,

suppose instead that the central bank counteracts the effect of a positive markup shock on the profit-

maximizing price with a contractionary monetary policy (i.e., g0 < 0). There are two effects that

are already present in the model with an exogenous information structure: (i) the profit-maximizing

price increases by less after a positive markup shock, implying that decision-makers in firms put

less weight on their noisy signals concerning the desired markup, which reduces inefficient price

dispersion; and (ii) the contractionary monetary policy by itself amplifies the fall in consumption

after a positive markup shock. In addition, there is a new effect that is only present in the model

with an endogenous information structure: When the profit-maximizing price increases by less

after a positive markup shock, the variance of the profit-maximizing price due to markup shocks

falls and thus decision-makers in firms decide to pay less attention to the desired markup. The

price level therefore increases by less after a positive markup shock, which by itself mutes the fall in

consumption after a positive markup shock. It turns out that this new effect on consumption which
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is only present in the model with an endogenous information structure dominates the old effect on

consumption which is already present in the model with an exogenous information structure for

all parameter values. Thus, so long as decision-makers in firms pay some attention to the desired

markup, the central bank can reduce both inefficient price dispersion and inefficient consumption

variance by counteracting the effect of a markup shock on the profit-maximizing price more strongly.

Hence, the classic trade-off between reducing cross-sectional inefficiency and reducing aggregate

inefficiency disappears. It is now straightforward to derive optimal monetary policy. So long as

price setters in firms pay some attention to the desired markup, the central bank can reduce both

inefficient price dispersion and inefficient consumption variance by counteracting markup shocks

more strongly. Once price setters in firms pay no attention to the desired markup, inefficient price

dispersion equals zero and reducing the money supply even more strongly after a positive markup

shock only increases the fall in consumption after a positive markup shock. Hence, the unique

optimal monetary policy is the one that makes decision-makers in firms just pay no attention to

the desired markup. The lower part of equation (77) specifies this policy. At the optimal monetary

policy, price setters in firms pay no attention to random variation in the desired markup (i.e., κ∗ = 0)

and therefore the price level does not respond to markup shocks. Complete price stabilization in

response to markup shocks is optimal.

Figure 3 illustrates Proposition 5 for the following parameter values: γ = ψ = 1, α = (2/3),

Λ = (1/4), ρλ = 0 and σ2ν =
h
(0.2)2 /

³
1− (0.9)2

´i
. Figure 3 depicts the optimal monetary policy,

the amount of attention that price setters devote to the desired markup at the optimal policy,

and the loss in welfare due to markup shocks at the optimal policy for different values of (μ/ω).

Recall that μ > 0 is the marginal cost of devoting attention for the decision-maker in a firm and

ω > 0 is the constant in the price setters’ objective (57). The optimal monetary policy makes

decision-makers in firms pay no attention to the desired markup independent of the value of (μ/ω).

Proposition 5 specifies optimal monetary policy when φc ∈
£
1
2 ,∞

¢
, that is, when strategic

complementarity in price setting is not large enough for multiple equilibria to arise. Proposition

6 specifies optimal monetary policy when φc ∈
¡
0, 12

¢
, that is, when strategic complementarity in

price setting is large enough for multiple equilibria to arise at some monetary policies g0 ∈ R.

Before one can make a statement about optimal monetary policy in this case, one has to make

an assumption about the central bank’s attitude towards multiple equilibria. The most common
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assumption in the literature is that central banks are very adverse to policies that yield multiple

equilibria. Therefore, we assume that the central bank aims to implement the best policy among

all those monetary policies g0 ∈ R that yield a unique equilibrium.

Proposition 6 (Endogenous signal precision) Consider the Ramsey problem (42)-(60), where the

signal precisions
¡
1/σ2η

¢
and

³
1/σ2ζ

´
are given by the solution to problem (57)-(60). Suppose that

μ > 0, σ2ν > 0, ρλ = 0 and σ2ε = a−1 = 0. Consider policies of the form Gt (L) νt = g0νt and

equilibria of the form pt = θλt. If φc ∈
¡
0, 12

¢
, there exist multiple equilibria for all g0 ∈ [ĝ0, ḡ0]

where

ĝ0 = −
φλ
φc
+

p
4φc (1− φc)

φc

r
μ

ωσ2λ ln (2)
, (79)

and

ḡ0 = −
φλ
φc
+
1

φc

r
μ

ωσ2λ ln (2)
. (80)

If ωφ2λσ
2
λ ln(2)
μ < 4φc (1− φc), the best policy among all g0 ∈ R that yield a unique equilibrium

is g∗0 = 0. If ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc), the best policy among all g0 ∈ R that yield a unique

equilibrium is a g0 marginally below ĝ0. At this policy, price setters in firms pay no attention to

the desired markup, the price level does not respond to markup shocks, and there is no inefficient

price dispersion.

Proof. See Appendix E.

The main result in Proposition 6 is that in the model with an endogenous information structure

complete price stabilization in response to markup shocks is also optimal when φc ∈
¡
0, 12

¢
. To

understand this result, note the following. When g0 ∈ [ĝ0, ḡ0], the compound parameter b governing

the benefit to the cost of paying attention to markup shocks lies in the interval
hp
4φc (1− φc), 1

i
.

Furthermore, the first half of Proposition 5 states that, if φc ∈
¡
0, 12

¢
and b ∈

hp
4φc (1− φc), 1

i
,

then multiple equilibria arise. See Figure 2 for an illustration. Hence, if φc ∈
¡
0, 12

¢
, the central bank

has to choose g0 /∈ [ĝ0, ḡ0] to avoid multiple equilibria. Next, think about optimal monetary policy.

When ωφ2λσ
2
λ ln(2)
μ < 4φc (1− φc) we have ĝ0 > 0. Thus, at the policy g0 = 0, κ∗ = 0 is the unique

equilibrium. When the central bank and firms do not respond to markup shocks, those shocks create

no inefficiencies. Hence, in the case of ωφ2λσ
2
λ ln(2)
μ < 4φc (1− φc), a monetary policy of no response

to markup shocks is the optimal monetary policy. By contrast, when ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc) we
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have ĝ0 ≤ 0. Thus, at the policy g0 = 0, κ∗ = 0 is not the unique equilibrium. To understand

optimal monetary policy in this case, consider the lower panel of Figure 2. When g0 > ḡ0 and thus

b > 1, both price dispersion and consumption variance fall when the central bank reduces g0 for the

same reasons given below Proposition 5. When g0 < ĝ0 and thus b <
p
4φc (1− φc), consumption

variance falls when the central bank increases g0. Finally, the no attention equilibrium at g0 = ĝ0

strictly dominates the high positive attention equilibrium at g0 = ḡ0. Hence, the best policy among

all policies that yield a unique equilibrium is a g0 marginally below ĝ0. At this policy, price setters

in firms pay no attention to the desired markup and therefore the price level does not respond to

markup shocks. Complete price stabilization in response to markup shocks is optimal.

Finally, we consider the case of an autocorrelated desired markup. When ρλ > 0 we solve the

Ramsey problem (42)-(60) numerically. In particular, we restrict the infinite-order lag polynomial

Gt (L) in equation (52) to be the lag polynomial of an ARMA(2,2) process.11 Following the proce-

dure in Woodford (2002), one can then compute an exact linear rational expectations equilibrium

of the model (43)-(56) for a given monetary policy and for given signal precision (1/σ2ζ). Further-

more, for a given law of motion for the endogenous variables, one can solve the attention problem

(57)-(60). Hence, solving for a linear rational expectations equilibrium of the rational inattention

model for a given monetary policy amounts to solving a fixed point problem. Finally, we solve for

the optimal monetary policy both by using an optimization routine and by evaluating the central

bank’s objective for different policies on a fine grid. Figure 4 depicts the optimal monetary policy

for the following parameter values: β = 0.99, γ = 1, ψ = 0, α = 1, Λ = (1/4), ρλ = 0.9, σν = 0.2,

and (μ/ω) = 10−4. The figure shows the impulse responses of the money supply, the consumption

level, the price level, and the profit-maximizing price to a one standard deviation positive markup

shock. The optimal monetary policy is to reduce the money supply on impact of a positive markup

shock so as to counteract the effect of the markup shock on the profit-maximizing price. At the op-

timal monetary policy, price setters in firms devote no attention to random variation in the desired

markup (i.e., κ∗ = 0) and therefore the price level does not respond to markup shocks. Com-

plete price stabilization in response to markup shocks is optimal. We solved the Ramsey problem

(42)-(60) for many sets of parameter values with ρλ > 0 and we always obtained this result.
12

11See Footnote 9.
12We solved the Ramsey problem (42)-(60) for values of (μ/ω) between 10−5 and 1. We also solved the Ramsey

problem (42)-(60) for ψ = 1 and α = (2/3).
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8 Additional results and robustness of the main results

In this section, we present additional results for the model with an endogenous information structure

(Sections 8.1-8.2). Furthermore, we show that the main results for the model with an endogenous

information structure are robust to several modifications of the model (Sections 8.3-8.6). The most

important results are the following. First, the result that complete price stabilization is optimal in

response to markup shocks extends to other shocks that cause inefficient fluctuations under perfect

information. Second, optimal monetary policy remains the same when decision-makers in firms can

decide to receive signals concerning any linear combination of at and λt (e.g., signals concerning

endogenous variables).

8.1 Welfare at the optimal monetary policy

How does welfare at the optimal monetary policy depend on price setters’ marginal cost of paying

attention to aggregate conditions?

In the model with an endogenous information structure and ρλ = 0, the value of the central

bank’s objective (42) at the optimal monetary policy specified in Propositions 3, 5 and 6 equals
∞X
t=0

βtE

"
(ct − c∗t )

2 + δ
1

I

IX
i=1

(pi,t − pt)
2

#
=

1

1− β
(g∗0)

2 σ2λ,

where g∗0 is given by Proposition 5 if φc ∈
£
1
2 ,∞

¢
and g∗0 is given by Proposition 6 if φc ∈

¡
0, 12

¢
.

Recall that the absolute value of g∗0 is weakly decreasing in μ. See Figure 3 for an illustration.

Therefore, welfare is weakly increasing in price setters’ marginal cost of paying attention to ag-

gregate conditions. The intuition is simple. When price setters’ marginal cost of paying attention

to markup shocks is smaller, the central bank has to counteract markup shocks more strongly to

discourage price setters from paying attention to these shocks that cause inefficient fluctuations.

Hence, in the model with an endogenous information structure, easier access to information con-

cerning markup shocks reduces welfare. This result extends to other shocks that cause inefficient

fluctuations under perfect information. See Section 8.4.

8.2 Gain from commitment

In the model with an endogenous information structure, there is a gain from commitment to a

policy rule when there are markup shocks and the central bank has to counteract the effect of
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markup shocks on the profit-maximizing price to discourage price setters from paying attention to

these shocks (g∗0 < 0). In this case, only when the central bank can commit, price setters can trust

the central bank that paying no attention to aggregate conditions is optimal. In the Calvo model,

there is also a gain from commitment to a monetary policy rule when there are markup shocks. In

particular, when the central bank can commit, price setters can trust the central bank that they

will not be exploited during the period where they cannot adjust their prices. We find it interesting

that the gain from commitment in the rational inattention model is of different nature than the

gain from commitment in the Calvo model.

8.3 More general signal structure

We have so far assumed that paying attention to aggregate technology and paying attention to

the desired markup are independent activities. Formally, in equation (17) we assume that the

price setter in firm i receives independent signals concerning aggregate technology and the desired

markup. We now relax this assumption. We now assume that the price setter in firm i can pay

attention to any variable that is a linear combination of at and λt. Formally, the signal that the

price setter in firm i receives in period t can be any signal of the form

si,t = ξaat + ξλλt + ζi,t. (81)

The decision-maker chooses both the coefficients (ξa, ξλ) ∈ R2 and the variance of noise σ2ζ ∈ R+.13

The choice of (ξa, ξλ) can be interpreted as the choice of which variable to pay attention to. More

precisely, when ρa = ρλ = 0 all endogenous variables are just linear functions of at and λt and thus

equation (81) implies that the price setter in a firm can pay attention to any endogenous variable.

For example, the price setter can choose the coefficients ξa and ξλ such that the linear combination

ξaat+ξλλt equals the equilibrium price level or equilibrium output (i.e., the price setter can choose

si,t = pt + ζi,t or si,t = ct + ζi,t). The choice of σ
2
ζ can then be interpreted as the choice of how

much attention to devote to the price level or output.

For the signal structure (17), equation (20) reduces to equation (59). For the signal structure

(81), this is not the case and we have to work with the original equation (20). Thus, in the new

model with an endogenous information structure, the Ramsey problem (42)-(60) changes as follows:

13Adam (2007) and Mondria (2010) model the attention decision in a similar way.
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Equation (81) replaces equation (49), equation (20) replaces equation (59), and the price setter in

a firm chooses
³
ξa, ξλ, 1/σ

2
ζ

´
instead of

³
1/σ2η, 1/σ

2
ζ

´
.

In the case of ρa = ρλ = 0, we can solve this new Ramsey problem analytically. In particular,

the optimal monetary policy is again the monetary policy specified in Propositions 3, 5 and 6. The

reason is quite simple. Consider first the attention decision of the decision-maker in a firm who

has to set a price. When ρa = ρλ = 0, the decision-maker chooses to pay attention directly to the

profit-maximizing price, that is, the optimal choice of (ξa, ξλ) is the (ξa, ξλ) with the property that

ξaat + ξλλt equals the equilibrium profit-maximizing price.14 Furthermore, the optimal amount of

attention devoted to the profit-maximizing price equals

κ∗ =

⎧⎪⎨⎪⎩
1
2 log2

µ
ωσ2

p∗ ln(2)

μ

¶
if

ωσ2
p∗ ln(2)

μ ≥ 1

0 otherwise
, (82)

where σ2p∗ denotes the variance of the profit-maximizing price. The signal-to-noise ratio of the

signal (81) then equals
σ2p∗

σ2ζ
= 22κ

∗ − 1.

The price set by the decision-maker in firm i equals

pi,t = E
£
p∗i,t|Ii,t

¤
=
³
1− 2−2κ∗

´ ¡
p∗i,t + ζi,t

¢
.

Let us now turn to optimal monetary policy. First, consider the monetary policy response to

aggregate technology shocks. Suppose that the central bank conducts the monetary policy specified

in Proposition 3. This policy yields the efficient response of composite consumption to aggregate

technology shocks and no response of the profit-maximizing price to aggregate technology shocks.

Due to the second property, this policy is the monetary policy response to aggregate technology

shocks that yields the smallest price dispersion and the smallest κ∗. Moreover, a small κ∗ is good

because then prices respond less to markup shocks. For these reasons, the optimal monetary policy

response to aggregate technology shocks is the monetary policy specified in Proposition 3. Second,

once the profit-maximizing price does not respond to aggregate technology shocks, equation (82)

reduces to equation (78). In other words, the firms’ optimal allocation of attention is exactly the

same as in the model with no aggregate technology shocks. For this reason, the optimal monetary

policy response to markup shocks is the monetary policy specified in Propositions 5 and 6.
14The argument is the same as the argument given in Máckowiak and Wiederholt (2009), page 794.
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8.4 More general shocks

We now show that the results for aggregate technology shocks and markup shocks presented in

Sections 6-7 extend to a much larger class of shocks. The results for aggregate technology shocks

extend to other shocks that cause efficient fluctuations under perfect information. The results for

markup shocks extend to other shocks that cause inefficient fluctuations under perfect information.

We begin by introducing a general exogenous aggregate variable. This variable, denoted zt,

may affect efficient composite consumption and/or the profit-maximizing price:

c∗t = ϕzt, (83)

and

p∗i,t = pt + φcct + φzzt, (84)

where ϕ ∈ R and φz ∈ R++. The variable zt is assumed to follow a stationary Gaussian first-order

autoregressive process. One example of the variable zt is aggregate technology in the model given in

Section 2. In this case, zt = −at, ϕ = −φa
φc
and φz = φa. Another example of the variable zt is the

desired markup in the model given in Section 2. In that case, zt = λt, ϕ = 0 and φz = φλ. Apart

from introducing a general aggregate exogenous variable the Ramsey problem (42)-(60) remains

unchanged.15 In the new Ramsey problem, equations (83) and (84) replace equations (43) and (47),

and si,t = zt+ζi,t and κ =
1
2 log2

µ
σ2
z|t−1
σ2
z|t

¶
replace equations (49) and (59). Price setters choose the

precision of their signals concerning zt knowing that a more precise signal requires more attention.

The question is: What is the optimal monetary policy response to an innovation in zt?

If price setters in firms had perfect information, each firm would set the profit-maximizing price,

implying that

ct = −
φz
φc

zt,

and

pi,t − pt = 0.

Hence, the response of the economy to an innovation in the variable zt under perfect information

is efficient if and only if ϕ = −φz
φc
.

15For ease of exposition, we now assume in equations (83)-(84) that there is only one exogenous variable.
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Turning to optimal policy, consider the model with an exogenous information structure. It is

straightforward to extend Proposition 4 from the variable λt to the more general variable zt. The

new version of equation (69) reads

g∗0 =

(1− δφc)φz + ϕ

µ
φc +

σ2ζ
σ2z

¶
σ2ζ
σ2z
+ δφ2c

.

The price level at the optimal monetary policy equals

pt =
φz + ϕφc
σ2ζ
σ2z
+ δφ2c

zt.

Hence, in the model with an exogenous information structure and ρz = 0, complete price stabiliza-

tion in response to an innovation in zt is optimal if and only if the response of the economy to the

shock under perfect information is efficient (i.e., ϕ = −φz
φc
).

Next consider the model with an endogenous information structure. Here we distinguish three

cases: (1) ϕ = −φz
φc
, (2) ϕ > −φz

φc
, and (3) ϕ < −φz

φc
. Case (1) means that the response of the

economy to an innovation in zt under perfect information is efficient. In this case, the reasoning

of Section 6 applies. By setting mt = −φz
φc
zt the central bank can replicate the response of the

economy to the shock under perfect information and this response is efficient. Hence, the optimal

monetary policy is mt = −φz
φc
zt. Complete price stabilization in response to the shock is optimal.

Case (2) means that the response of the economy to an innovation in zt under perfect information

is inefficient because the response is too large in magnitude (0 ≥ ϕ > −φz
φc
) or has the wrong sign

(ϕ > 0 > −φz
φc
). An example of a variable zt with the property ϕ > −φz

φc
is the desired markup in the

model given in Section 2 because under perfect information composite consumption responds to a

markup shock while the efficient response of composite consumption to a markup shock equals zero.

The proofs of Propositions 5 and 6 extend in a straightforward way from the desired markup to any

variable zt with the property ϕ > −φz
φc
.16 The beginning of the generalized version of Proposition 5

reads: ϕ > −φz
φc
, σ2z > 0, ρz = 0, mt = g0zt and pt = θzt. The only changes in equations (70)-(76)

are that φz, σ
2
z and zt replace φλ, σ

2
λ and λt. The equation for optimal monetary policy becomes

g∗0 =

⎧⎨⎩ ϕ if ω(φcϕ+φz)
2σ2z ln(2)

μ ≤ 1

−φz
φc
+ 1

φc

q
μ

ωσ2z ln(2)
if ω(φcϕ+φz)

2σ2z ln(2)
μ > 1

.

16Statement and proof of the generalized version of Proposition 5 and of the generalized version of Proposition 6

are in the Technical Appendix to this paper which is available on our websites.
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At the optimal monetary policy, price setters in firms pay no attention to the variable zt and

therefore the price level does not respond to an innovation in zt. In other words, complete price

stabilization is optimal in response to any variable zt with the property ϕ > −φz
φc
. Finally, case

(3) means that the response of the economy to an innovation in zt under perfect information is

inefficient because the response is too small. The proofs of Propositions 5 and 6 do not extend

in a straightforward way to variables that cause fluctuations under perfect information that are

too small. Therefore, we do not know yet whether complete price stabilization in response to such

shocks is optimal. This may or may not be the case.

To summarize, in the model with an exogenous information structure, complete price stabi-

lization is optimal only in response to variables zt that cause efficient fluctuations under perfect

information (i.e., ϕ = −φz
φc
). In the model with an endogenous information structure, complete

price stabilization is optimal also in response to variables zt that cause fluctuations under perfect

information that are too large or have the wrong sign (i.e., ϕ ≥ −φz
φc
).17 The optimality of complete

price stabilization becomes a much more general result.

8.5 Interest rate rule

We now assume that the central bank commits to an interest rate rule instead of a money supply

rule. Assuming that the central bank can commit to an interest rate rule of the form (11) instead

of a money supply rule of the form (10) does not change optimal monetary policy. This is because

the set of equilibria that the central bank can implement with an interest rate rule of the form (11)

equals the set of equilibria that the central bank can implement with a money supply rule of the form

(10). To see this, note the following. We so far did not use the log-linearized consumption Euler

equation in the Ramsey problem (42)-(60) because in the case of a money supply rule this equation

only determines the equilibrium nominal interest rate. Now take a law of motion of the economy

that is an equilibrium law of motion under some money supply rule of the form (10). One can then

compute the equilibrium law of motion for the nominal interest rate from the consumption Euler

equation and the central bank can commit to this law of motion as an interest rate rule. Similarly,

17One example of a variable zt with the property ϕ > −φz
φc
is a markup shock. Another example of a variable zt

with the property ϕ > −φz
φc
is an aggregate technology shock or a labor supply shock in an economy with a positive

production or consumption externality.
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take a law of motion of the economy that is an equilibrium law of motion under some interest rate

rule of the form (11). One can then compute the equilibrium law of motion for the money supply

from equation (44) and the central bank can commit to this law of motion as a money supply rule.18

8.6 Monetary transaction frictions

So far we have studied an economy without monetary transaction frictions. In equations (4)-(5) we

assume that wage income can be transformed immediately into cash and cash can be used immedi-

ately to purchase goods. Therefore, the requirement that households need cash to purchase goods

creates no distortions. Another interpretation of this economy is that this is a cashless economy à

la Woodford (2003). To see this, note that substituting equation (5) into equation (4) yields the

flow budget constraint of a cashless economy and the first-order conditions of the household are

identical to the first-order conditions in a cashless economy. Furthermore, the monetary policy rule

(10) can be interpreted as saying that the central bank commits to a law of motion for nominal

spending. The central bank can implement this law of motion for nominal spending with a short-

term nominal interest rate, as described in Section 8.5. Hence, the results presented up to here can

be interpreted as the results for a cashless economy.

We now study an economy with transaction frictions. In particular, we assume that cash has

to be held for one period before it can be used to purchase goods. Formally, we replace the flow

budget constraint (4) and the cash-in-advance constraint (5) with

Mt +Bt = Rt−1Bt−1 +WtLt +Dt − Tt +

Ã
Mt−1 +Xt −

IX
i=1

Pi,tCi,t

!
,

and
IX

i=1

Pi,tCi,t =Mt−1 +Xt.

Here Xt =Ms
t −Ms

t−1 is a nominal transfer and Mt denotes money demand which in equilibrium

equals money supply (i.e., Mt = Ms
t ). The new formulation of the flow budget constraint and

the new formulation of the cash-in-advance constraint change one of the equations characterizing

18One issue that arises when the central bank commits to an interest rate rule of the form (11) instead of a money

supply rule of the form (10) is the following. When the policy rule specifies the nominal interest rate as a function

of exogenous events, the equilibrium is typically not unique. One way to address this issue is to allow the nominal

interest rate to depend on endogenous variables and to allow the policy rule to differ on and off the equilibrium path.
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equilibrium in the Ramsey problem (30)-(41). In particular, equation (33) for the optimal labor

supply becomes

Wt

Pt
= Lψ

t C
γ
t

Ã
βEt

"
C−γt+1Pt

C−γt Pt+1

#!−1
.

This implies that equation (47) for the profit-maximizing price becomes

p∗i,t = pt + φcct − φaat + φλλt

+
1

1 + 1−α
α

1+Λ
Λ

Et [γ (ct+1 − ct) + (pt+1 − pt)] .

In the new Ramsey problem for the economy with transaction frictions, we assume that the central

bank corrects the distortion due to transaction frictions in the non-stochastic steady state by

implementing the Friedman rule in the non-stochastic steady state. The money supply rule (41)

becomes

ln (Mt) = ln (β) t+ Ft (L) εt +Gt (L) νt.

The variable mt in equations (44) and (52) now denotes the log-deviation of the money supply

from its deterministic trend βt. When the desired markup is i.i.d. across time, one can again

solve analytically for the equilibrium allocation as a function of monetary policy.19 It is then

straightforward to solve numerically for the optimal monetary policy. For our benchmark parameter

values (i.e., γ = ψ = 1, α = (2/3), Λ = (1/4) and σ2λ =
h
(0.2)2 /

³
1− (0.9)2

´i
), we obtain the

following results concerning optimal monetary policy in the economy with transaction frictions.20

There is a threshold value for the ratio (μ/ω) above which complete price stabilization in response

to markup shocks is optimal and below which complete price stabilization in response to markup

shocks is no longer optimal. In particular, for values of (μ/ω) above the threshold, the optimal

monetary policy is again to make price setters in firms pay no attention to the desired markup.

When ρλ = 0 the threshold value for (μ/ω) equals 0.9∗10−4 and when ρλ = 0.9 the threshold value

for (μ/ω) is even lower. For comparison, note the following. Máckowiak and Wiederholt (2010)

solve a DSGE model with rational inattention and a Taylor rule and find that for a value of (μ/ω)

between 1 ∗ 10−4 and 2 ∗ 10−4 the model matches various empirical impulse responses of prices

to shocks. For this value of (μ/ω), complete price stabilization in response to markup shocks is

optimal in our economy with markup shocks and transaction frictions.
19See Proposition 3 in the Technical Appendix to this paper which is available on our websites.
20Here σ2λ denotes the variance of λt.
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8.7 Information of the central bank

So far we did not model the information choice of the central bank. We simply assumed that the

central bank has perfect information and can therefore implement the optimal monetary policy.

We now study the central bank’s benefit of learning aggregate conditions. If the central bank has

no information about aggregate conditions, the central bank cannot respond to aggregate technol-

ogy shocks and markup shocks. Figure 5 shows the central bank’s benefit of learning aggregate

conditions for the following parameter values: γ = ψ = 1, α = (2/3), Λ = (1/4), ρa = ρλ = 0,

σ2a =
h
(0.0085)2 /

³
1− (0.95)2

´i
and σ2λ =

h
(0.2)2 /

³
1− (0.9)2

´i
.21 In particular, the upper panel

shows the loss in welfare (compared to the efficient allocation) in the case of the optimal monetary

policy response to aggregate technology shocks and in the case of no policy response to aggregate

technology shocks. The lower panel of Figure 5 shows the loss in welfare (compared to the efficient

allocation) in the case of the optimal monetary policy response to markup shocks and in the case

of no policy response to markup shocks. For values of (μ/ω) between 1 ∗ 10−4 and 4 ∗ 10−4, the

per-period welfare gain from implementing the optimal monetary policy is quite large: about one

third of a percent of steady state consumption.22 Hence, for these values of (μ/ω), the central

bank has a substantial incentive to become informed about aggregate conditions to implement the

optimal monetary policy. At the same time, this optimal monetary policy makes the variance of the

profit-maximizing price due to aggregate shocks sufficiently small such that price setters in firms

pay no attention to aggregate conditions.23

Furthermore, the central bank does not literally have to know aggregate technology and the

desired markup. Suppose that the central bank knows output, the output gap and the price level,

where the output gap is defined as output minus efficient output. The central bank can then

21The parameter values ρa = 0.95 and σε = 0.0085 are a standard calibration of the aggregate productivity process.

We set ρa = 0 and σ
2
a = (0.0085)2 / 1− (0.95)2 to make Figure 5 comparable to Figure 3. The figure looks similar

for ρa = 0.95 and σε = 0.0085, which again implies σ2a = (0.0085)2 / 1− (0.95)2 .
22Máckowiak and Wiederholt (2010) solve a DSGE model with rational inattention and a Taylor rule. They find

that for a value of (μ/ω) between 1 ∗ 10−4 and 2 ∗ 10−4 the model matches various empirical impulse responses of

prices to shocks.
23 In the welfare calculations, we are not taking into account that the optimal monetary policy has additional welfare

benefits due to the fact that price setters do not have to pay attention to aggregate conditions and can thus focus on

firm-specific conditions. Taking these additional welfare benefits into account would strengthen the case for complete

price stabilization in response to aggregate shocks and would increase the welfare gain from optimal monetary policy.
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implement a monetary policy that is arbitrarily close to the optimal monetary policy. The idea is

simple: if the central bank encourages firms to pay a little bit of attention to the desired markup, the

price level reveals the desired markup to the central bank and nevertheless the loss in welfare due

to deviations from the optimal monetary policy can be made arbitrarily small. Formally, consider

the case of ρλ = 0, φc ∈
£
1
2 ,∞

¢
, and ωφ2λσ

2
λ ln(2)
μ > 1.24 Suppose that the central bank implements

the following monetary policy

mt = c∗t + g0
1− (1− φc)

¡
1− 2−2κ∗

¢
(φcg0 + φλ) (1− 2−2κ

∗)
pt. (85)

Here c∗t is efficient composite consumption, g0 ∈ (g∗0, 0) where g∗0 is given by equation (77), κ∗ is

given by equations (70) and (73), and the ratio in front of the price level is the inverse of the ratio

in equation (74). Since g0 > g∗0, price setters pay some attention to markup shocks and the price

level reveals the desired markup to the central bank. At the same time, by making the difference

g0−g∗0 arbitrarily small, the central bank can approximate the optimal monetary policy arbitrarily

well.

In the New Keynesian literature on optimal monetary policy, it is typically assumed that the

central bank knows the output gap and inflation, where the output gap is defined as output minus

efficient output. See for example Woodford (2003), Chapter 8, and Giannoni and Woodford (2010).

Thus, when we assume that the central bank knows output, the output gap and the price level,

we make essentially the same assumption about information of the central bank as the standard

New Keynesian literature. Despite this, we obtain a markedly different result concerning optimal

monetary policy: the optimal monetary policy is arbitrarily close to complete price stabilization in

response to markup shocks and the only purpose of arbitrarily small fluctuations in the price level

is to reveal the desired markup to the central bank.

We think it would be interesting to study optimal monetary policy when the central bank only

observes noisy indicators of the output gap and inflation. Svensson and Woodford (2003, 2004)

study this question in a New Keynesian model and Lorenzoni (2010) studies this question in a model

with exogenous dispersed information. For studying this question, it will be useful to know what

the central bank should do when the central bank has perfect information, which is the content of

this paper.

24The case ωφ2λσ
2
λ ln(2)

μ
> 1 is the interesting case because in the case of ωφ2λσ

2
λ ln(2)

μ
≤ 1 the central bank needs no

information about the realization of the desired markup to implement the optimal policy. See Proposition 5.
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9 Conclusion

This paper is the first paper studying a Ramsey optimal policy problem for an economy where

decision-makers in firms choose how much attention they devote to aggregate conditions. Our main

finding is that complete price stabilization is the optimal monetary policy not only in response to

shocks that cause efficient fluctuations under perfect information but also in response to shocks

that cause inefficient fluctuations under perfect information. At the optimal monetary policy, price

setters in firms pay no attention to aggregate conditions.

Furthermore, we find that reducing price setters’ marginal cost of paying attention to aggregate

conditions reduces welfare, because then the central bank has to counteract the effect of markup

shocks on the profit-maximizing price more strongly to discourage price setters in firms from paying

attention to these shocks that cause inefficient fluctuations.

In addition, we find that there is a gain from commitment by the central bank, because only

when the central bank can commit, price setters can trust the central bank that paying no attention

to aggregate conditions is optimal.
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A Proof of Proposition 1

First, we introduce notation. The function u is given by equation (24). Let xt denote the vector of

all arguments of the function u that are endogenous variables

xt =
³
ct ĉ1,t · · · ĉI−1,t

´0
.

Let zt denote the vector of all arguments of the function u that are exogenous variables

zt =
³
at λt

´0
.

Second, we compute a log-quadratic approximation to the period utility function (23) around the

non-stochastic steady state. Let ũ denote the second-order Taylor approximation to the function

u at the origin. We have

E

" ∞X
t=0

βtũ (xt, zt)

#

= E

" ∞X
t=0

βt
µ
u (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¶#
, (86)

where hx is the vector of first derivatives of u with respect to xt evaluated at the origin, hz is the

vector of first derivatives of u with respect to zt evaluated at the origin, Hx is the matrix of second

derivatives of u with respect to xt evaluated at the origin, Hz is the matrix of second derivatives of

u with respect to zt evaluated at the origin, and Hxz is the matrix of second derivatives of u with

respect to xt and zt evaluated at the origin. Third, we rewrite equation (86) using condition (25).

Let ωt denote the following vector

ωt =
³
x0t z0t 1

´0
,

and let ωn,t denote the nth element of ωt. Condition (25) implies that
∞X
t=0

βtE

¯̄̄̄
u (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¯̄̄̄
<∞.

It follows that one can change the order of integration and summation on the right-hand side of

equation (86):

E

" ∞X
t=0

βtũ (xt, zt)

#

=
∞X
t=0

βtE

∙
u (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¸
. (87)
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See Rao (1973), p. 111. Condition (25) also implies that the infinite sum on the right-hand side of

equation (87) converges to an element in R. Fourth, we define the vector x∗t . In each period t ≥ 0,

the vector x∗t is defined by

hx +Hxx
∗
t +Hxzzt = 0. (88)

We will show below that Hx is an invertible matrix. Therefore, one can write the last equation as

x∗t = −H−1
x hx −H−1

x Hxzzt.

Hence, x∗t is uniquely determined and the vector ωt with xt = x∗t satisfies condition (25). Fifth,

equation (87) implies that

E

" ∞X
t=0

βtũ (xt, zt)

#
−E

" ∞X
t=0

βtũ (x∗t , zt)

#

=
∞X
t=0

βtE

∙
h0x (xt − x∗t ) +

1

2
x0tHxxt −

1

2
x∗0t Hxx

∗
t + (xt − x∗t )

0Hxzzt

¸
. (89)

Using equation (88) to substitute for Hxzzt in the last equation and rearranging yields

E

" ∞X
t=0

βtũ (xt, zt)

#
−E

" ∞X
t=0

βtũ (x∗t , zt)

#

=
∞X
t=0

βtE

∙
1

2
(xt − x∗t )

0Hx (xt − x∗t )

¸
. (90)

Sixth, we compute the vector of first derivatives and the matrices of second derivatives appearing

in equations (88) and (90). We obtain

hx = 0, (91)

Hx = −C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − 1 + 1
α (1 + ψ) 0 · · · · · · 0

0 2 1+Λ−αI(1+Λ)α
1+Λ−α
I(1+Λ)α · · · 1+Λ−α

I(1+Λ)α
... 1+Λ−α

I(1+Λ)α

. . . . . .
...

...
...

. . . . . . 1+Λ−α
I(1+Λ)α

0 1+Λ−α
I(1+Λ)α . . . 1+Λ−α

I(1+Λ)α 2 1+Λ−αI(1+Λ)α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (92)
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and

Hxz = C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α (1 + ψ) 0

0 0
...

...
...

...

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (93)

Seventh, substituting equations (91)-(93) into equation (88) yields the following system of I equa-

tions:

c∗t =
1
α (1 + ψ)

γ − 1 + 1
α (1 + ψ)

at, (94)

and, for all i = 1, . . . , I − 1,

ĉ∗i,t +
I−1X
k=1

ĉ∗k,t = 0. (95)

Finally, we rewrite equation (95). Summing equation (95) over all i 6= I yields

I−1X
i=1

ĉ∗i,t = 0. (96)

Substituting the last equation back into equation (95) yields

ĉ∗i,t = 0. (97)

Collecting equations (90), (92), (94) and (97), we arrive at Proposition 1.

B Proof of Proposition 2

Step 1: We consider rational expectations equilibria with the property that the price level pt is a

linear function of the shocks. In the following, we call this a linear rational expectations equilibrium.

When the price level pt is a linear function of the shocks, the price level can be written as

pt = pat + pλt , (98)

where pat denotes the component of the price level that is linear in aggregate technology shocks and

pλt denotes the component of the price level that is linear in markup shocks. Substituting equations

(44), (52) and (98) into equation (47) for the profit-maximizing price of good i in period t yields

p∗i,t = (1− φc)
³
pat + pλt

´
+ φc

µ
Ft (L) εt +Gt (L) νt −

φa
φc

at +
φλ
φc

λt

¶
. (99)
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When Ft (L) εt =
φa
φc
at, equations (45)-(46), (98)-(99) and (48)-(49) imply that in a linear rational

expectations equilibrium the component pat is given by

pat = (1− φc)
1

I

IX
i=1

E [pat |Ii,t] . (100)

The unique solution to the last equation is pat = 0. Hence, when Ft (L) εt =
φa
φc
at, a linear rational

expectations equilibrium has the property that the profit-maximizing price and the price level do

not respond to aggregate technology shocks. When the profit-maximizing price does not respond

to aggregate technology shocks, price setters in firms put no weight on their signals concerning

aggregate technology and thus there is no inefficient price dispersion caused by the noise in the

signal concerning aggregate technology. In addition, when Ft (L) εt =
φa
φc
at and the price level does

not respond to aggregate technology shocks, the equilibrium response of composite consumption to

aggregate technology shocks equals the efficient response of composite consumption to aggregate

technology shocks. See equations (44), (52) and (43).

Step 2: If σ2η > 0, any monetary policy rule with Ft (L) εt 6=
φa
φc
at yields inefficient price disper-

sion caused by the noise in the signal concerning aggregate technology or an inefficient response of

composite consumption to aggregate technology shocks. If price setters in firms put weight on their

signals concerning aggregate technology, there is inefficient price dispersion caused by the noise in

the signal concerning aggregate technology. If price setters in firms put no weight on their signals

concerning aggregate technology, the price level does not respond to aggregate technology shocks.

The condition Ft (L) εt 6= φa
φc
at then implies that the equilibrium response of composite consump-

tion to aggregate technology shocks differs from the efficient response of composite consumption to

aggregate technology shocks. See equations (44), (52) and (43).

Step 3: The choice of Ft (L) affects neither the equilibrium response of composite consumption

to markup shocks nor the extent to which there is inefficient price dispersion caused by the noise

in the signal concerning the desired markup.

C Proof of Proposition 3

Step 1: Identical to step 1 in the proof of Proposition 2.

Step 2: If μ > 0, any monetary policy rule with Ft (L) εt 6= φa
φc
at yields inefficient price disper-

sion caused by the noise in the signal concerning aggregate technology or an inefficient response of
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composite consumption to aggregate technology shocks. If price setters in firms pay attention to

aggregate technology (i.e.,
¡
1/σ2η

¢
> 0), there is inefficient price dispersion caused by the noise in

the signal concerning aggregate technology. If price setters in firms pay no attention to aggregate

technology (i.e.,
¡
1/σ2η

¢
= 0), the price level does not respond to aggregate technology shocks.

The condition Ft (L) εt 6= φa
φc
at then implies that the equilibrium response of composite consump-

tion to aggregate technology shocks differs from the efficient response of composite consumption to

aggregate technology shocks. See equations (44), (52) and (43).

Step 3: Identical to step 3 in the proof of Proposition 2.

D Proof of Proposition 4

Step 1: Substituting the cash-in-advance constraint (44), at = 0, the monetary policy mt = g0λt,

and pt = θλt into the equation for the profit-maximizing price (47) yields

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt.

The price of good i in period t then equals

pi,t = [(1− φc) θ + φcg0 + φλ]E [λt|Ii,t]

= [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ

¡
λt + ζi,t

¢
, (101)

and the price level in period t equals

pt = [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ
λt. (102)

Thus, the unique rational expectations equilibrium of the form pt = θλt is given by the solution to

the following equation

θ = [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ
.

Solving the last equation for θ yields

θ =
φcg0 + φλ

φc +
σ2ζ
σ2λ

. (103)
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Substituting equation (103) into equations (101) and (102) yields

pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

λt, (104)

pi,t − pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

ζi,t. (105)

Finally, substituting the monetary policy mt = g0λt and equation (104) into equation (44) yields

ct =

σ2ζ
σ2λ
g0 − φλ

φc +
σ2ζ
σ2λ

λt. (106)

Step 2: Substituting equations (105), (106), (43) and at = 0 into the central bank’s objective (42)

yields

1

1− β

⎡⎢⎣
⎛⎜⎝ σ2ζ

σ2λ
g0 − φλ

φc +
σ2ζ
σ2λ

⎞⎟⎠
2

σ2λ + δ

⎛⎜⎝φcg0 + φλ

φc +
σ2ζ
σ2λ

⎞⎟⎠
2

σ2ζ

⎤⎥⎦ .
If σ2ζ > 0, the unique g0 ∈ R that minimizes this expression is

g∗0 =
(1− δφc)φλ
σ2ζ
σ2λ
+ δφ2c

. (107)

Step 3: Substituting the optimal monetary policy g∗0 into equations (104) and (106) yields

pt =
φλ

σ2ζ
σ2λ
+ δφ2c

λt, (108)

ct = − δφcφλ
σ2ζ
σ2λ
+ δφ2c

λt. (109)

E Proof of Propositions 5 and 6

Step 1: Characterizing equilibrium attention by two equations. We begin by rewriting

the equation for the profit-maximizing price (47). Substituting the cash-in-advance constraint (44),

at = 0, the monetary policy mt = g0λt and pt = θλt into the equation for the profit-maximizing

price (47) yields

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt. (110)
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Since the profit-maximizing price is given by the last equation and the desired markup follows a

white noise process, the attention problem of firm i reads

min
κ∈R+

nω
2
E
h¡
pi,t − p∗i,t

¢2i
+ μκ

o
,

subject to

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt,

pi,t = E
£
p∗i,t|sλ,i,t

¤
,

sλ,i,t = λt + ζi,t,

and
1

2
log2

Ã
σ2λ
σ2λ|sλ

!
= κ,

where σ2λ denotes the unconditional variance of λt and σ2λ|sλ denotes the conditional variance of λt

given sλ,i,t. Substituting the constraints into the objective, the attention problem of firm i can be

expressed as

min
κ∈R+

nω
2
[(1− φc) θ + φcg0 + φλ]

2 σ2λ2
−2κ + μκ

o
. (111)

The solution to this attention problem is

κ∗ =

⎧⎨⎩
1
2 log2

³
ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ

´
if ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ ≥ 1

0 otherwise
. (112)

The price set by firm i in period t then equals

pi,t = [(1− φc) θ + φcg0 + φλ]E [λt|sλ,i,t]

= [(1− φc) θ + φcg0 + φλ]

σ2λ
σ2ζ

σ2λ
σ2ζ
+ 1

¡
λt + ζi,t

¢
, (113)

where
σ2λ
σ2ζ
= 22κ

∗ − 1. (114)

The price level in period t equals

pt = [(1− φc) θ + φcg0 + φλ]
³
1− 2−2κ∗

´
λt. (115)
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Thus, the set of rational expectations equilibria of the form pt = θλt is given by the solutions to

the following two equations:

θ = [(1− φc) θ + φcg0 + φλ]
³
1− 2−2κ∗

´
, (116)

and

κ∗ =

⎧⎨⎩
1
2 log2

³
ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ

´
if ω[(1−φc)θ+φcg0+φλ]2σ2λ ln(2)

μ ≥ 1

0 otherwise
. (117)

Equation (116) determines θ (the responsiveness of the price level to the desired markup) as a

function of κ∗ (equilibrium attention), while equation (117) determines κ∗ as a function of θ.

Solving equation (116) for θ yields

θ =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
. (118)

The set of rational expectations equilibria of the form pt = θλt for given monetary policy g0 consists

of the pairs (κ∗, θ) that solve equations (117)-(118).

Step 2: Zero attention equilibrium. We now study under which conditions there exists a

solution to equations (117)-(118) with the property κ∗ = 0. We call this a zero attention equilibrium.

It follows from equation (118) that κ∗ = 0 implies θ = 0. Furthermore, it follows from equation

(117) that at θ = 0 we have κ∗ = 0 if and only if

ω (φcg0 + φλ)
2 σ2λ ln (2)

μ
≤ 1. (119)

Hence, there exists a rational expectations equilibrium of the form pt = θλt with κ∗ = 0 if and only

if condition (119) is satisfied. Note that the central bank can always ensure the existence of a zero

attention equilibrium by making the term (φcg0 + φλ)
2 sufficiently small through an appropriate

choice of g0.

Step 3: Interior attention equilibrium. Next we study under which conditions there exists

a solution to equations (117)-(118) with the property

κ∗ =
1

2
log2

Ã
ω [(1− φc) θ + φcg0 + φλ]

2 σ2λ ln (2)

μ

!
. (120)

We call this an interior attention equilibrium because in such an equilibrium the non-negativity

constraint κ ≥ 0 in the firms’ attention problem (111) is not binding. Substituting equation (118)
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into equation (120) yields

κ∗ =
1

2
log2

⎛⎜⎝ω (φcg0+φλ)
2

[1−(1−φc)(1−2−2κ
∗)]

2σ
2
λ ln (2)

μ

⎞⎟⎠ . (121)

Rearranging the last equation yields a quadratic equation in 2κ
∗
:

φc

³
2κ
∗
´2
−

s
ω (φcg0 + φλ)

2 σ2λ ln (2)

μ
2κ
∗
+ 1− φc = 0.

Defining x ≡ 2κ∗ , the last equation can be written as

φcx
2 −

s
ω (φcg0 + φλ)

2 σ2λ ln (2)

μ
x+ 1− φc = 0. (122)

An interior attention equilibrium has to satisfy this quadratic equation as well as: x ∈ R and x ≥ 1.

Define

b ≡

s
ω (φcg0 + φλ)

2 σ2λ ln (2)

μ
. (123)

The quadratic equation (122) has two solutions:

xH =
b+

p
b2 − 4φc (1− φc)

2φc
, (124)

and

xL =
b−

p
b2 − 4φc (1− φc)

2φc
. (125)

We now check whether these two solutions to the quadratic equation (122) satisfy: x ∈ R and x ≥ 1.

First, consider the case of φc ∈
¡
0, 12

¤
. Then xH and xL are real if and only if b ≥

p
4φc (1− φc).

At b =
p
4φc (1− φc), we have xH = xL =

q
1
φc
− 1 ≥ 1. Furthermore, xH is increasing in b

and thus xH ≥ 1 for all b ≥
p
4φc (1− φc), whereas xL is decreasing in b and xL ≥ 1 for all

b ∈
hp
4φc (1− φc), 1

i
. Hence, if φc ∈

¡
0, 12

¤
, then xH is an interior attention equilibrium so long as

b ≥
p
4φc (1− φc), while xL is an interior attention equilibrium so long as b ∈

hp
4φc (1− φc), 1

i
.

Second, consider the case of φc ∈
¡
1
2 , 1
¤
. Again xH and xL are real if and only if b ≥

p
4φc (1− φc).

At b =
p
4φc (1− φc), we have xH = xL =

q
1
φc
− 1 < 1. Furthermore, xH is increasing in b and

xH ≥ 1 for all b ≥ 1, whereas xL is non-increasing in b and thus xL < 1 for all b ≥
p
4φc (1− φc).

Hence, if φc ∈
¡
1
2 , 1
¤
, then xH is an interior attention equilibrium so long as b ≥ 1, while xL is not

an interior attention equilibrium. Finally, consider the case of φc > 1. Then xH and xL are real
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for all b ≥ 0. At b = 0, we have xH =
q
1− 1

φc
< 1 and xL = −

q
1− 1

φc
< 0. Furthermore, xH is

increasing in b and xH ≥ 1 for all b ≥ 1, whereas xL < 0 for all b ≥ 0. Hence, if φc > 1, then xH is

an interior attention equilibrium so long as b ≥ 1, while xL is not an interior attention equilibrium.

In summary, if and only if either φc ∈
¡
0, 12

¤
and b ≥

p
4φc (1− φc) or φc >

1
2 and b ≥ 1, then xH is

an interior attention equilibrium. In addition, if and only if φc ∈
¡
0, 12

¤
and b ∈

hp
4φc (1− φc), 1

i
,

then xL is an interior attention equilibrium.

Step 4: Uniqueness and multiplicity of equilibria. When φc ≥ 1
2 , there exists a unique

rational expectations equilibrium of the form pt = θλt for any monetary policy g0 ∈ R. In particular,

if b ∈ [0, 1) then κ∗ = 0 is the unique equilibrium; if b = 1 then κ∗ = log2 (xH) = 0 is the unique

equilibrium; and if b > 1 then κ∗ = log2 (xH) is the unique equilibrium. By contrast, when

φc ∈
¡
0, 12

¢
, there exist multiple rational expectations equilibria of the form pt = θλt for some

monetary policies g0 ∈ R. In particular, if b ∈
h
0,
p
4φc (1− φc)

´
then κ∗ = 0 is the unique

equilibrium; if b =
p
4φc (1− φc) then κ∗ = 0 and κ∗ = log2 (xL) = log2 (xH) = log2

³q
1
φc
− 1
´

are equilibria; if b ∈
³p

4φc (1− φc), 1
´
then κ∗ = 0, κ∗ = log2 (xL) and κ∗ = log2 (xH) are

equilibria where xL is decreasing in b and xH is increasing in b; if b = 1 then κ∗ = log2 (xL) = 0

and κ∗ = log2 (xH) = log2

³
1
φc
− 1
´
are equilibria; and if b > 1 then κ∗ = log2 (xH) is the unique

equilibrium. See steps 2 and 3.

Step 5: Price dispersion and consumption variance. We now derive expressions for price

dispersion and consumption variance at an equilibrium. First, we derive expressions for individual

prices and the price level. Substituting equations (114) and (118) into equation (113) yields

pi,t =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

¡
λt + ζi,t

¢
. (126)

Substituting equation (118) into equation (115) yields

pt =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
λt. (127)

Second, we derive a simple expression for price dispersion at an equilibrium. Consider the case of

an equilibrium with κ∗ > 0. An equilibrium with κ∗ > 0 is an interior attention equilibrium and in

an interior attention equilibrium equation (121) holds. Equations (126) and (127) imply

E
h
(pi,t − pt)

2
i
=

"
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#2
σ2ζ .
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Substituting equation (121) into the last equation yields

E
h
(pi,t − pt)

2
i
=

μ
ω

σ2λ ln (2)
22κ

∗
³
1− 2−2κ∗

´2
σ2ζ .

Furthermore, substituting equation (114) into the last equation and rearranging yields

E
h
(pi,t − pt)

2
i
=

μ
ω

ln (2)

³
1− 2−2κ∗

´
. (128)

Next consider the case of an equilibrium with κ∗ = 0. Equation (128) holds again because in

an equilibrium with κ∗ = 0 we have E
h
(pi,t − pt)

2
i
= 0. In summary, in any equilibrium, price

dispersion is given by equation (128). It follows that equilibrium price dispersion is an increasing

function of equilibrium attention. Third, we derive an expression for consumption variance at an

equilibrium. Substituting the monetary policy mt = g0λt and the equation for the price level (127)

into the cash-in-advance constraint (44) yields

ct =

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#
λt, (129)

implying

E
£
c2t
¤
=

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#2
σ2λ. (130)

The first term in square brackets in equation (129) equals the response of nominal spending to the

desired markup, while the second term in square brackets in equation (129) equals the response of

the price level to the desired markup. The difference between the two determines the response of

composite consumption to the desired markup.

Step 6: Optimal monetary policy has to satisfy g0 ≥ −φλ
φc
. Having characterized the set of

rational expectations equilibria of the form pt = θλt for given monetary policy g0 and having derived

expressions for price dispersion and consumption variance, we now derive results concerning optimal

monetary policy. We begin by showing that optimal monetary policy has to satisfy g0≥ −φλ
φc
. The

proof is as follows. First, at the monetary policy g0 = −φλ
φc
we have b = 0 and thus the unique

rational expectations equilibrium of the form pt = θλt is a zero attention equilibrium, implying that

price dispersion equals zero and consumption variance equals E
£
c2t
¤
=
³
φλ
φc

´2
σ2λ. Second, consider

a monetary policy g0 < −φλ
φc
. Price dispersion at a monetary policy g0 < −φλ

φc
is weakly larger

than price dispersion at the monetary policy g0 = −φλ
φc
because price dispersion is always weakly

larger than zero. Furthermore, consumption variance at a monetary policy g0 < −φλ
φc
is strictly
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larger than consumption variance at the monetary policy g0 = −φλ
φc
. This result follows from the

fact that consumption variance at an equilibrium is given by equation (130) and, for all g0 < −φλ
φc
,

we have

g0 −
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
< −φλ

φc
< 0. (131)

In summary, a monetary policy g0 < −φλ
φc
yields weakly larger price dispersion and strictly larger

consumption variance than the monetary policy g0 = −φλ
φc
. Hence, a monetary policy g0 < −φλ

φc

cannot be optimal. To see what this result means economically, note that the condition g0 ≥ −φλ
φc

can be written as φcg0 + φλ ≥ 0. Furthermore, substituting equation (118) into equation (110)

yields the following equation for the profit-maximizing price at an equilibrium

p∗i,t =
φcg0 + φλ

1− (1− φc) (1− 2−2κ
∗)
λt. (132)

The result that optimal monetary policy has to satisfy g0 ≥ −φλ
φc
means that at an optimal monetary

policy the profit-maximizing price cannot be decreasing in the desired markup, implying that

individual prices and the price level cannot be decreasing in the desired markup.

Step 7: Optimal monetary policy when φc ≥ 1
2 . First, when φc ≥

1
2 , there exists a unique

rational expectations equilibrium of the form pt = θλt for any monetary policy g0 ∈ R: if b ∈ [0, 1)

then κ∗ = 0 is the unique equilibrium; if b = 1 then κ∗ = log2 (xH) = 0 is the unique equilibrium;

and if b > 1 then κ∗ = log2 (xH) is the unique equilibrium. See step 4. Second, in the derivation

of optimal monetary policy we can focus on g0 ≥ −φλ
φc
. See step 6. Furthermore, equation (123)

implies that the variable b is an increasing function of the monetary policy g0 for all g0 ≥ −φλ
φc
.

Define ḡ0 as the value of g0 ∈
h
−φλ

φc
,∞
´
at which b = 1. Equation (123) implies that

ḡ0 = −
φλ
φc
+
1

φc

r
μ

ωσ2λ ln (2)
. (133)

If g0 ∈
h
−φλ

φc
, ḡ0

´
then κ∗ = 0 is the unique equilibrium; if g0 = ḡ0 then κ∗ = log2 (xH) = 0 is

the unique equilibrium; and if g0 > ḡ0 then κ∗ = log2 (xH) is the unique equilibrium. Note that

the condition ωφ2λσ
2
λ ln(2)
μ ≤ 1 implies ḡ0 ≥ 0, whereas the condition ωφ2λσ

2
λ ln(2)
μ > 1 implies ḡ0 < 0.

Hence, when ωφ2λσ
2
λ ln(2)
μ ≤ 1 the monetary policy g0 = 0 yields a zero attention equilibrium, whereas

when ωφ2λσ
2
λ ln(2)
μ > 1 the central bank has to lower the money supply after a positive markup shock

to attain a zero attention equilibrium. Third, consider the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ ≤ 1.

At the monetary policy g0 = 0, we have b ≤ 1 and therefore κ∗ = 0 is the unique equilibrium,
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implying that price dispersion equals zero, E
h
(pi,t − pt)

2
i
= 0, and consumption variance equals

zero, E
£
c2t
¤
= g20σ

2
λ = 0. See equations (128) and (130). Thus, in the case of φc ≥ 1

2 and
ωφ2λσ

2
λ ln(2)
μ ≤ 1 the monetary policy g0 = 0 attains the efficient allocation. Furthermore, any

monetary policy g0 6= 0 does not attain the efficient allocation. If the equilibrium at the monetary

policy g0 6= 0 is an equilibrium with κ∗ = 0 then consumption variance is strictly positive, while if

the equilibrium at the monetary policy g0 6= 0 is an equilibrium with κ∗ > 0 then price dispersion is

strictly positive. See equations (128) and (130). Hence, in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ ≤ 1 the

unique optimal monetary policy is g∗0 = 0. Fourth, consider the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1.

We derive optimal monetary policy in this case by showing that the monetary policy minimizing

objective (42) among all monetary policies g0 ∈
h
−φλ

φc
, ḡ0

i
is g0 = ḡ0 and by showing that the

monetary policy minimizing objective (42) among all monetary policies g0 ∈ [ḡ0,∞) is g0 = ḡ0.

Combining results then yields that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1 the unique optimal

monetary policy among all monetary policies g0 ∈ R is g0 = ḡ0. For all g0 ∈
h
−φλ

φc
, ḡ0

i
, we have

b ≤ 1 and thus κ∗ = 0 is the unique equilibrium, implying that price dispersion equals zero and

consumption variance equals E
£
c2t
¤
= g20σ

2
λ. Furthermore,

ωφ2λσ
2
λ ln(2)
μ > 1 implies ḡ0 < 0. It follows

that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1 the monetary policy minimizing objective (42) among

all monetary policies g0 ∈
h
−φλ

φc
, ḡ0

i
is g0 = ḡ0. Next, for all g0 ∈ [ḡ0,∞), we have b ≥ 1 and thus

κ∗ = log2 (xH) is the unique equilibrium. Let us study price dispersion. Since equilibrium price

dispersion is strictly increasing in κ∗, κ∗ = log2 (xH), xH is strictly increasing in b, and b is strictly

increasing in g0 for all g0 ≥ ḡ0, it follows that price dispersion is strictly increasing in g0 for all

g0 ≥ ḡ0. See equations (123), (124) and (128). Let us turn to consumption variance. Equilibrium

consumption is given by equation (129). Furthermore, when κ∗ = log2 (xH), equation (121) holds.

Rearranging equation (121) using g0 ≥ −φλ
φc
yields

φcg0 + φλ
1− (1− φc) (1− 2−2κ

∗)
=

r
μ

ωσ2λ ln (2)
2κ
∗
. (134)

Substituting the last equation into equation (129) yields

ct =

∙
g0 −

r
μ

ωσ2λ ln (2)

³
2κ
∗ − 2−κ∗

´¸
λt. (135)

In addition, solving the definition of the variable b (i.e., equation (123)) for g0 using g0 ≥ −φλ
φc
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yields

g0 = −
φλ
φc
+

b

φc

r
μ

ωσ2λ ln (2)
. (136)

Substituting equation (136), κ∗ = log2 (xH) and equation (124) into equation (135) yields

ct =

⎡⎢⎣−φλ
φc
+

r
μ

ωσ2λ ln (2)

⎛⎜⎝ b

φc
− b+

p
b2 − 4φc (1− φc)

2φc
+

1

b+
√
b2−4φc(1−φc)
2φc

⎞⎟⎠
⎤⎥⎦λt.

Rearranging the last equation yields

ct =

"
−φλ
φc
+

r
μ

ωσ2λ ln (2)

2

b+
p
b2 − 4φc (1− φc)

#
λt. (137)

Hence, when g0 ≥ −φλ
φc
and κ∗ = log2 (xH), equilibrium consumption is given by equation (137).

The term in square brackets in equation (137) is strictly decreasing in b for all b ≥ 1. Furthermore,

in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1, the term in square brackets in equation (137) is strictly

negative at b = 1. Thus, in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1, consumption variance is strictly

increasing in g0 for all g0 ≥ ḡ0. It follows that, in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1, the

monetary policy minimizing objective (42) among all monetary policies g0 ∈ [ḡ0,∞) is g0 = ḡ0

because both price dispersion and consumption variance are strictly increasing in g0 for all g0 ≥ ḡ0.

Combining results yields that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1 the unique optimal monetary

policy among all monetary policies g0 ∈ R is g0 = ḡ0.

Step 8: Optimal monetary policy when φc ∈
¡
0, 12

¢
. First, when φc ∈

¡
0, 12

¢
, there exist

multiple rational expectations equilibria of the form pt = θλt for some monetary policies g0 ∈ R.

We will use the following results below. If b ∈
h
0,
p
4φc (1− φc)

i
then κ∗ = 0 is an equilibrium.

If b ≥ 1 then κ∗ = log2 (xH) is an equilibrium. Furthermore, if b ∈
h
0,
p
4φc (1− φc)

´
or b > 1

then there exists a unique equilibrium, while if b ∈
hp
4φc (1− φc), 1

i
then there exist multiple

equilibria. See step 4. Second, in the derivation of optimal monetary policy we can focus on

g0 ≥ −φλ
φc
. See step 6. Furthermore, equation (123) implies that b is strictly increasing in g0 for all

g0 ≥ −φλ
φc
. Define ĝ0 as the value of g0 ∈

h
−φλ

φc
,∞
´
at which b =

p
4φc (1− φc). Define ḡ0 as the

value of g0 ∈
h
−φλ

φc
,∞
´
at which b = 1. Formally,

ĝ0 = −
φλ
φc
+

p
4φc (1− φc)

φc

r
μ

ωσ2λ ln (2)
, (138)
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and

ḡ0 = −
φλ
φc
+
1

φc

r
μ

ωσ2λ ln (2)
. (139)

For all g0 ∈
h
−φλ

φc
, ĝ0

´
, κ∗ = 0 is the unique equilibrium. For all g0 > ḡ0, κ∗ = log2 (xH) is

the unique equilibrium. Note that the condition ωφ2λσ
2
λ ln(2)
μ < 4φc (1− φc) implies ĝ0 > 0. Third,

consider the case of φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ < 4φc (1− φc). At the monetary policy g0 = 0,

we have g0 < ĝ0 and thus κ∗ = 0 is the unique equilibrium, implying that price dispersion equals

zero and consumption variance equals zero, E
£
c2t
¤
= g20σ

2
λ = 0. See equations (128) and (130).

Thus, when φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ < 4φc (1− φc) the monetary policy g0 = 0 attains the

efficient allocation as the unique equilibrium allocation. Moreover, any monetary policy g0 6= 0

does not attain the efficient allocation. If the equilibrium at the monetary policy g0 6= 0 is an

equilibrium with κ∗ = 0 then consumption variance is strictly positive, while if the equilibrium

at the monetary policy g0 6= 0 is an equilibrium with κ∗ > 0 then price dispersion is strictly

positive. See equations (128) and (130). Hence, when φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ < 4φc (1− φc)

the unique optimal monetary policy is g∗0 = 0. Fourth, consider the case of φc ∈
¡
0, 12

¢
and

ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc). For all monetary policies g0 ∈

h
−φλ

φc
, ĝ0

i
, κ∗ = 0 is an equilibrium. Let

us rank these zero attention equilibria for different monetary policies g0 ∈
h
−φλ

φc
, ĝ0

i
. In a zero

attention equilibrium price dispersion equals zero and consumption variance equals E
£
c2t
¤
= g20σ

2
λ.

The condition ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc) implies ĝ0 ≤ 0. Hence, in the case of φc ∈

¡
0, 12

¢
and

ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc), the value of objective (42) at an equilibrium with κ∗ = 0 is strictly

decreasing and continuous in g0 for all g0 ∈
h
−φλ

φc
, ĝ0

i
. Next, for all monetary policies g0 ≥ ḡ0,

κ∗ = log2 (xH) is an equilibrium. Let us rank these equilibria with κ∗ = log2 (xH) for different

monetary policies g0 ≥ ḡ0. It follows from equations (128), (123) and (124) that price dispersion at

an equilibrium with κ∗ = log2 (xH) is strictly increasing in g0 for all g0 ≥ ḡ0. Furthermore, the same

derivation as in step 7 yields that when g0 ≥ −φλ
φc
and κ∗ = log2 (xH) equilibrium consumption

equals

ct =

"
−φλ
φc
+

r
μ

ωσ2λ ln (2)

2

b+
p
b2 − 4φc (1− φc)

#
λt. (140)

The term in square brackets in equation (140) is strictly decreasing in b for all b ≥ 1. Moreover,

in the case of φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc), the term in square brackets in equation

(140) is strictly negative at b = 1. Hence, in the case of φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc),
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both price dispersion and consumption variance at an equilibrium with κ∗ = log2 (xH) are strictly

increasing in g0 for all g0 ≥ ḡ0, implying that the value of objective (42) at an equilibrium with

κ∗ = log2 (xH) is strictly increasing in g0 for all g0 ≥ ḡ0. Finally, in the case of φc ∈
¡
0, 12

¢
and

ωφ2λσ
2
λ ln(2)
μ ≥ 4φc (1− φc), we compare the equilibrium with κ∗ = 0 at g0 = ĝ0 to the equilibrium

with κ∗ = log2 (xH) at g0 = ḡ0. At g0 = ḡ0 we have b = 1 and thus log2 (xH) = log2
³
1
φc
− 1
´
> 0

in the case of φc ∈
¡
0, 12

¢
. See equation (124). It follows from equation (128) that price dispersion

is strictly smaller in a zero attention equilibrium than in the equilibrium with κ∗ = log2 (xH) at

g0 = ḡ0. In addition, consumption variance is strictly smaller in the zero attention equilibrium at

g0 = ĝ0 than in the equilibrium with κ∗ = log2 (xH) at g0 = ḡ0 because the conditions φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc) imply"

−φλ
φc
+

p
4φc (1− φc)

φc

r
μ

ωσ2λ ln (2)

#2
σ2λ <

⎡⎣−φλ
φc
+

r
μ

ωσ2λ ln (2)

2

1 +
q
(1− 2φc)2

⎤⎦2 σ2λ.
Hence, in the case of φc ∈

¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc), the zero attention equilibrium at

g0 = ĝ0 yields a strictly smaller value of objective (42) than the equilibrium with κ∗ = log2 (xH) at

g0 = ḡ0. In summary, in the case of φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc), we have the following

four results: (i) there exists a unique rational expectations equilibrium of the form pt = θλt for all

g0 ∈
h
−φλ

φc
, ĝ0

´
and g0 > ḡ0, whereas there exist multiple rational expectations equilibria of the

form pt = θλt for all g0 ∈ [ĝ0, ḡ0], (ii) the value of objective (42) at an equilibrium with κ∗ = 0 is

strictly decreasing and continuous in g0 for all g0 ∈
h
−φλ

φc
, ĝ0

i
, (iii) the value of objective (42) at an

equilibrium with κ∗ = log2 (xH) is strictly increasing in g0 for all g0 ≥ ḡ0, and (iv) the equilibrium

with κ∗ = 0 at g0 = ĝ0 yields a strictly smaller value of objective (42) than the equilibrium with

κ∗ = log2 (xH) at g0 = ḡ0. It follows that, in the case of φc ∈
¡
0, 12

¢
and ωφ2λσ

2
λ ln(2)
μ ≥ 4φc (1− φc),

the best the central bank can do among all monetary policies g0 ∈ R if the central bank wants to

obtain a unique equilibrium of the form pt = θλt is to choose a g0 marginally below ĝ0. At this

policy, price setters in firms devote no attention to the desired markup, the price level does not

respond to markup shocks, and there is no inefficient price dispersion.
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Figure 1: Optimal Monetary Policy, Exogenous Information Structure
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Figure 3: Optimal Monetary Policy, Endogenous Information Structure, iid Desired Markup
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Figure 4: Optimal Monetary Policy, Endogenous Information Structure, Persistent Desired Markup
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Figure 5: Welfare Losses under Endogenous Information for Alternative Policies
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