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Abstract: This paper proposes a two-step procedure to back out the conditional alpha of a given

stock from high-frequency returns. We first estimate the realized factor loadings of the stock, and

then retrieve the conditional alpha by estimating the conditional expectation of the stock return in

excess over the realized risk premia. The estimation method is fully nonparametric in stark contrast

with the literature on conditional alphas and betas. Apart from the methodological contribution,

we employ NYSE data to determine the main drivers of conditional alphas as well as to track

mispricing over time. In addition, we assess economic relevance of our conditional alpha estimates

by means of a market-neutral trading strategy that longs stocks with positive alphas and shorts

stocks with negative alphas. The preliminary results are very promising.
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1 Introduction

The unconditional CAPM does not provide a good description of equity markets. Apart from

the well-known market anomalies, nonzero alpha may arise even if the CAPM holds period by

period. Put differently, the absence of pricing error does not suffice to ensure a zero unconditional

alpha. This happens because time variation in the betas may correlate with market volatility

and/or with the risk premia. For instance, allowing for time-varying betas helps explain most of

the (unconditional) value premium given that value stocks are riskiest precisely when risk premium

is higher, namely, in recession times (Petkova and Zhang, 2005; Zhang, 2005).

The usual fix is to assume that the conditional alphas and betas are affine on pre-determined

predictor variables, e.g., stock characteristics, interest rates and spreads as well as other business-

cycle indicators. Ferson, Simin and Sarkissian (2008) discuss three stylized factors that emerge

from this literature. First, market betas do vary over time in a significant manner (Shanken, 1990;

Cochrane, 1996; Jagannathan and Wang, 2006; Lettau and Ludvigson, 2001; Santos and Veronesi,

2005). Second, the constant of the conditional alpha term is smaller than the unconditional alpha.

This means that conditional asset pricing models entail on average smaller pricing errors than

their unconditional versions. Third, despite of their better fit, conditional asset pricing models

still fail in that conditional alphas are not only nonzero, but also time-varying. See, among others,

Christopherson, Ferson and Glassman (1998), Wang (2002), Ang and Chen (2007), and Adrian and

Franzoni (2005).

This paper goes in search for these pricing errors, but using a much more robust and flexible

framework. We build on the realized beta technology (Barndorff-Nielsen and Shephard, 2004) to

come up with a two-step procedure to estimate conditional alphas. In the first stage, we employ

high-frequency data to retrieve a stock’s realized beta or, in general, any other risk factor loadings.

The second step then backs out the conditional alpha by estimating the conditional expectation

of the stock risk-adjusted return (i.e., the return in excess over the realized risk premia) at the

low frequency. The resulting estimator is nonparametric and hence as flexible and robust as it

gets. It does not require conditional alphas and betas to depend linearly on the conditioning state

variables, reducing misspecification risks in a substantial manner. Although we focus essentially on

the conditional CAPM case, our framework is general enough to include any multifactor model for
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asset returns. The conditional CAPM with higher-order moments ensues as one includes additional

powers of the S&P 500 index returns, whereas adding exchange-traded funds (ETFs) based on size

and book-to-market considerations would entail a conditional Fama-French three-factor model.

Alternatively, we could also think of continuous and discontinuous market betas as in Todorov and

Bollerslev (2010).

Integrating observations at different sampling frequencies is now new to finance. Merton (1980)

notes that one can accurately estimate the variance over a fixed interval of time by summing

squared returns at a sufficiently high sampling frequency. French, Schwert and Stambaugh (1987)

and Ghysels, Santa Clara and Valkanov (2005) thus exploit daily (squared) returns to estimate

the monthly volatility in their search for the risk-return tradeoff, whereas the realized measure

literature employs intraday returns to compute daily realized variances, covariances, and market

betas (Barndorff-Nielsen and Shephard, 2004; Ait-Sahalia and Mykland, 2009; Andersen, Bollerslev

and Diebold, 2009; Ait-Sahalia, Fan and Xiu, 2011) as well as to conduct statistical inference for

parametric continuous-time stochastic volatility models (Bollerslev and Zhao, 2002; Corradi and

Distaso, 2006; Todorov, 2009).

More recently, Chang, Kim and Park (2009) combine low- and high-frequency observations to

estimate continuous-time factor pricing models with constant factor loadings. They argue that

standard regression results are senseless for two reasons. First, asset returns are too volatile at

the high frequency. Second, stochastic volatility processes are nonstationary and endogenous due

to leverage effects. They show that a random sampling scheme based on the market volatility

circumvents these issues as long as the endogenous nonstationarity is completely driven by the

market volatility. They estimate the latter, as well as the other stochastic volatility components,

using high frequency data, whereas they run the multifactor regressions at the low frequency to

alleviate the excessive volatility at the high frequency.

There are also other nonparametric alternatives to estimate conditional alphas and betas in the

literature. Lewellen and Nagel (2006) and Kristensen and Ang (2009) estimate time-varying alphas

and betas by taking local averages in time either through rolling windows or through a kernel-based

approach. We differ by assuming that both alphas and betas are measurable functions of condition-

ing state variables and hence predictable. Note however that the realized beta measures already
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suffice to estimate the conditional alpha and hence we make no attempt to pin down conditional

betas as well. Although it is certainly tricky to nail down what drives the conditional alphas, it

allows for a more-than-descriptive analysis of pricing errors. Apart from looking at the main fea-

tures of the time-varying alphas (e.g., persistence), we can also ask all sort of interesting questions

about alpha portability and cross-sectional variation in the impact of the predictor variables.

We first ask what are the main forces driving mispricings in the New York Stock Exchange

(NYSE). In contrast to Welch and Goyal (2008), we work at the daily frequency, ruling out many

of the usual suspects for the conditioning state variables. Accordingly, we employ as lagged pre-

dictors various interest rates and spreads, market liquidity measures as well as characteristic-based

portfolios based on momentum, long-term reversal, short-term reversal, size, and value effects. We

examine how their cross-sectional average partial effects on the conditional alphas change over time

for a sample of 9 actively traded stocks. ANTICIPATE EMPIRICAL RESULTS.

We then investigate whether pricing errors are persistent. If stock markets are indeed near

efficient (Grossman and Stiglitz, 1980), pricing errors should not persist for long. ANTICIPATE

EMPIRICAL RESULTS.

Finally, we assess whether it is possible to exploit these pricing errors within a simple trading

strategy. In particular, we take long positions in stocks with positive conditional alphas and shorts

stocks with negative conditional alphas. The weights are such that the resulting portfolio is neutral

with respect to the S&P 500 index. Note that, as both alphas and betas change daily, we have

to update the portfolio weights every day. This raises the issue of whether the portfolio alpha

is portable after controlling for transaction costs. Persistence in alphas and betas thus plays a

major role, for otherwise portfolio rebalancing would cost too dearly. ANTICIPATE RESULTS:

conditional and unconditional alphas vs realized beta of the portfolio! justify any difference using

Ferson’s (2009) argument that superior information not necessarily entail a portfolio with positive

(conditional) alpha.

The rest of this paper is as follows. Section 2 spells out the assumptions we make on the

continuous-time multivariate process that governs the dynamics of asset prices. Note that we do

not start from the continuous-time version of the CAPM as in Mykland and Zhang (2006), for

otherwise the CAPM would not hold in discrete time (Longstaff, 1989). Section 3 develops the
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asymptotic justification of the conditional alpha estimator, controlling for the fact that we only

observe the realized beta and not the true conditional beta. Section 4 investigates whether there

are persistent pricing errors in actively traded stocks on the NYSE. Section 5 offers some concluding

remarks, whereas the Appendix collects all technical proofs.

2 Conditional factor model: From continuous to discrete time

Given that the estimation procedure rests on high-frequency data and infill asymptotic theory, we

must think carefully about the underlying continuous-time process. In what follows, we show how a

discrete-time conditional multifactor asset pricing model may ensue from the exact discretization of

a conditional semimartingale process in continuous time. Our discretization results complement well

those in Longstaff (1989) and Chang et al. (2009). The former shows that temporally aggregating

the continuous-time CAPM results in a multifactor model in discrete time, whereas the latter paper

considers a continuous-time model that is also consistent with a discrete-time multifactor model.

The main difference is that our setting delivers conditional alphas and betas, whereas pricing errors

and factor loadings are constant in theirs.

Let Pi(s) and F (s) respectively denote the log-prices at time s of the i-th asset (i = 1, . . . , N)

and of k portfolios representing common risk factors that drive the assets’ excess returns. For

instance, the CAPM considers the market portfolio as a single factor, whereas Fama and French

(1992) also include portfolios based on size and book-to-market effects. We assume that both Pi(s)

and F (s) follow continuous-time diffusion processes, with drift and volatility parameters evolving

in discrete time as measurable functions of conditioning factors Ct. One may think of the latter

as conditioning state variables that reflect changes in the future investment opportunity set as in

Merton’s (1973) ICAPM, for example. More precisely, for any t ≤ s < t+ 1 and i ∈ {1, . . . , N},

dPi(s) = µi,t ds+ Σ′i,t dW F (s) + σi,t dWi(s) (1)

dF (s) = µF,t ds+ ΣF,t dW F (s), (2)

where µi,t ≡ µi(Ct) and µF,t ≡ µF (Ct) are drift parameters, Σi,t ≡ Σi(Ct) is a k × 1 vector that

determines the exposure of asset i to each risk factor, ΣF,t ≡ ΣF (Ct) is the k×k covariance matrix

of the common risk factors, W F (s) is a k−dimensional standard Brownian motion, and Wi(s) is

a standard Brownian motion independent of W F (s). We next document under which conditions
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asset and factor prices are continuous-time semimartingale processes.

Lemma 1: Let Xi(s) = (Pi(s),F (s)) evolve as in (1) and (2). Let also C(s) = Ct for any

s ∈ [t, t+ 1) and define the filtration FC(s) = σ(C(τ), τ ≤ s) for s > 0. If C(s) is independent of

both Wi(s) and W F (s), then Xi(s) is a conditional semimartingale with independent increments

given FC(s).

The assumption that C(s) is independent of Wi(s) and W F (s) implies that E
[
Σ′i,tWi(s)

]
= 0

and that E [ΣF,tW F (s)] = 0. This does not imply however that F (s) and C(s) are independent. In

fact, the common risk factors F (s) depend on the conditioning state variablesCt for any s ∈ [t, t+1)

through the drift and diffusion parameters. In addition, it follows from Lemma 1 that, given the

value of Ct, the continuous-time process Xi(s) has independent increments for any s ∈ [t, t + 1).

This means that market microstructure effects are responsible for any autocorrelation pattern

within the interval [t, t + 1), say, a day. We show nonetheless that, due to the dependence on the

conditioning factors Ct, there is genuine autocorrelation in the daily increments xi,t =
∫ t+1
t dXi(s).

Suppose that we have M equidistant observations within a day: Pi,t+j/M and F t+j/M with

j = 0, . . . ,M − 1. We then define the vector of realized betas as

β̂
(M)
i,t+1 =

M−1∑
j=0

(
F t+ j+1

M
− F t+ j

M

)(
F t+ j+1

M
− F t+ j

M

)′−1 M−1∑
j=0

(
F i,t+ j+1

M
− F i, j

M

)(
Pt+ j+1

M
− Pt+ j

M

)
. (3)

Barndorff-Nielsen and Shephard (2004) show that, under very mild regularity conditions,

plimM→∞β̂
(M)

i,t+1 = Σ−1FF,t ΣF,t Σi,t ≡ βi,t+1, (4)

where ΣFF,t = ΣF,tΣ
′
F,t. To simplify matters, we assume without any loss of generality that

F t+j/M are orthogonal risk factors and hence ΣFF,t is diagonal. Note also that the conditioning

state variables Ct are the only drivers of the daily factor loadings βi,t+1 in that βi,t+1 ≡ βi(Ct).

We now move to the daily frequency by letting ri,t+1 ≡
∫ t+1
t dPi(s) and f t+1 ≡

∫ t+1
t dF (s) de-

note the daily returns with continuous compounding on asset i and on the common factor portfolios
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over the time interval [t, t+ 1), respectively. It then follows from (1) and (2) that

ri,t+1 = µi,t + σi,t

∫ t+1

t
dWi(s) + Σ′i,t

∫ t+1

t
dW F (s) (5)

f t+1 = µF,t + ΣF,t

∫ t+1

t
dW F (s), t = 1, . . . , T (6)

This means that

(
ri,t+1,f t+1

)
|Ct ∼ N

((
µi,t

µF,t

)
,

(
σ2i,t + Σ′i,t Σi,t Σ′i,t ΣF,t

ΣF,t Σi,t ΣFF,t

))

and hence further conditioning on the risk factor portfolio returns entails

ri,t+1|f t+1,Ct ∼ N
(
µi,t + (f t − µF,t)′Σ−1FF,tΣF,t Σi,t, σ

2
i,t + Σ′i,tΣi,t −Σ′i,tΣ

−1
FF,tΣi,t

)
.

Using the definition of the true betas in the last equality of (4) then yields the following discrete-time

factor model: ri,t+1 = αi,t + f ′t+1βi,t + εi,t+1, with αi,t = µi,t − µ′F,tΣ
−1
FF,tΣF,tΣi,t = µi,t − µ′F,tβi,t

and εi,t+1|f t+1,Ct ∼ N
(

0, σ2i,t + Σ′i,tΣi,t −Σ′i,tΣ
−1
FF,tΣi,t

)
.

Before showing how to estimate the conditional alphas, let us briefly stress the difference between

the above setup and Mykland and Zhang’s (2006) ANOVA for diffusions. The latter posits a single-

factor model for asset prices in which

dPi(s) = β(s) dF (s) + dZi(s), (7)

where Zi(s) is a residual process in continuous time. Given that beta is time-varying on a continuous

scale in (7), Mykland and Zhang (2006) have to estimate it by taking a localized version of (3).

In particular, they compute the ratio between the realized covariation and the realized variance

over time intervals of order M−1/2 (rather than over a single interval with M observations as in

daily realized measures). They also estimate the residual process for the M equidistant intraday

observations by

Zi,t+(j+1)/M − Zi,t+j/M = (Pi,t+(j+1)/M − Pi,t+j/M )− β̂j/M (Fi,t+(j+1)/M − Fi,t+j/M ).

Although this allows one to test whether the quadratic variation of the residual process is zero,

it does not entail conditional alpha estimates due to the impossibility of consistently estimating

nonzero drifts on a finite time span. The continuous-time CAPM formulation of Chang et al.’s

(2009) is actually quite similar to (7), though with constant alphas and betas. In particular, they
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consider an increasing time span so as to regress
∫ tj+1

tj
dPi(s) on

∫ tj+1

tj
dF (s), where t0, t1, . . . , tn

form a sequence of (possibly random) times. Checking whether the regression intercept is zero for

every asset then entails a simple test for the validity of the unconditional CAPM.

3 Retrieving conditional alphas from realized betas

To estimate the realized factor loadings, we must first orthogonalize the factors F t by taking

linear combinations of the intraday returns on the risk factors, namely, F̆m,t = BtFm,t with

F̆k,m,t ⊥ F̆κ,m,t for all 1 ≤ k ≤ κ ≤ K as well as for every instant m within day t (or week,

whatever). Note that the rotation matrix Bt is known even if it changes every day and hence

it is possible to recover the original (daily) factor loadings βi,k,t from the daily loadings of the

orthogonal factors β̆i,k,t. We estimate the latter using the standard realized beta approach, yielding

a realized loading for each orthogonal factor given by β̆
(M)
i,k,t and so a realized risk premium of∑K

k=1 β̆
(M)
i,k,t F̆k,t =

∑K
k=1 β

(M)
i,k,t Fk,t.

By subtracting the realized risk premia from the individual stock return, we find the realized

counterpart of Zi,t+1 = αi,t+ εi,t+1, that is to say, Z
(M)
i,t+1 ≡ ri,t+1−

∑K
k=1 β

(M)
i,k,t Fk,t+1. Identification

of the conditional alpha results from the fact that the conditional expectation of εi,t+1 is zero,

whereas αi,t is measurable in the information set. It thus follows that αi,t ≡ E(Zi,t+1|Ct), where

Ct is the vector of state variables. The second step of the procedure then amounts to estimating

α
(M)
i,t = E(Z

(M)
i,t |Ct) using kernel methods. Note that there is an extensive list of state variables

to include in Ct if we take the conditional alpha-beta literature seriously. This means that we

should think about employing dimension-reduction techniques by imposing either an additive or a

single-index dependence structure.

We use intraday observations on Pi(s) and F s to construct daily estimators βi,t. Note that βi,t

is not only time varying but it is also allowed to be a measurable function of Ct. The scope for

time varying betas, moving along market risk premia, expected dividend growth and fundamental

risk, has been outlined by Santos and Veronesi (2004), within a general equilibrium framework. We

then use the realized betas to risk adjust asset returns:

Ẑ
(M)
i,t+1 = ri,t+1 − f ′t+1β̂

(M)

i,t = ri,t+1 − f ′t+1βi,t − f ′t+1

(
β̂
(M)

i,t − βi,t
)

= αi,t + εi,t+1 − f ′t+1

(
β̂
(M)

i,t − βi,t
)

= Zi,t+1 − f ′t+1

(
β̂
(M)

i,t − βi,t
)
.
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Our objective is to obtain a consistent estimator for αi,t for all i, t. If we ignore the estimation

error due to the realized betas, it is immediate to see that E (εi,t+1|Ct) = 0. We therefore define

αi,t as the conditional expectation of the residual process Zi,t+1 = ri,t+1 − f ′t+1βi,t given Ct, that

is, αi,t = E (Zi,t+1|Ct). We can then estimate αi,t by standard Nadaraya-Watson kernel estimators.

However, we do not observe Zi,t+1, only observing Ẑ
(M)
i,t+1 = ri,t+1 − f ′t+1β̂

(M)

i,t . To retrieve αi,t, we

thus construct a Nadaraya-Watson estimator using as a dependent variable Ẑ
(M)
i,t . The next section

provides the conditions on the rate of growth of the number of intraday observations under which

the contribution of the estimation error is negligible.

Time varying alphas have been already considered. For example, Lewellen and Nagel (2006)

estimate alphas and betas using short data windows. Kristensen and Ang (2009) estimate alphas

and betas by kernel-weighted least squares. On the other hand, we explicitly model the alphas as

a generic function of Ct.

How we deal with data mining and spurious regressions due to persistent regressors (Ferson

et al., 2008).

Typically, the dimension of the vector Ct is relatively high. In order, to circumvent the curse

of dimensionality problem, as regressors we shall use the k largest principal components of Ct.

Indeed, there are several other methods for dimension reduction in a nonparametric setting, such

as sliced inverse regression (Li, 1991), the single index model of Ichimura (1993) or group Lasso type

criteria as in Huang, Horowitz and Wei (2010). However, identification of estimators based on these

dimension reduction methods require that alpha is neither zero nor constant. While we conjecture

that this is indeed the case for most stocks, we nevertheless want to allow for the possibility that

some stock has a zero or constant alpha. For this reason, we simply rely on the use of principal

components.

Let Ct = (P1,t, . . . , Pk,t)
′ be the k principal components of Ct, Ct = (P1,t, ..., Pk,t)

′ with k <

kB, say k = 2, 3. As E (εi,t+1|Ct) = 0, then E (εi,t+1|Ct) = 0, and it is immediate to see that

E (Zi,t+1|Ct) = αi,t+1. Define

α̂i,T,t+1 = m̂i,T,M (Ct)

=

1
ThkT

∑T−1
l=1 Ẑi,l+1,MK

(
C`−Ct
h

)
1

ThkT

∑T−1
l=1 K

(
C`−Ct
hT

) =

1
ThkT

∑T−1
l=1 Ẑi,l+1,MK

(
C`−Ct
h

)
ĝT (Ct)

(8)
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As Ct is a random variable, we need a uniform result over its support. However, we cannot

consistently estimate mi(c) over regions having very small density. Consider the following trimmed

version of m̂i,T,M (c), (Section 3.2 in Andrews 1995)

trT (m̂i,T,M (c)) = m̂i,T,M (c)1
{
c ∈ ĜT (c)

}
, (9)

where ĜT (c) = {c : ĝT (c) > dT }, where dT → 0 at an appropriate rate. In the sequel, we shall

establish the uniform consistency of m̂i,T,M (Ct), by showing that(∫
Rk
|trT (m̂i,T,M (c))−mi(c)|Q g(c)d(c)

)1/Q

= op(1), (10)

where g is the density of Ct.

4 Main results

In the sequel, we rely on the following Assumption.

Assumption A:

(i) For i = 1, .., N , µi,t, σi,t, and the elements of ΣiFB ,t, µFB ,t,ΣFB ,t, as defined in (1)-(??), are

FBt−1−measurable, and are β−dominated, with β defined in (ii).1

(ii) For i = 1, .., N , E
(
|Zi,t|β

)
<∞, with β > 2, (Zi,t+1,Ct), t = 1, ..., T − 1 is strictly stationary

and α−mixing with mixing coefficients α(j), such that
∑∞

j=1 α(j)
β−2
β <∞.

(iii) Ct has a distribution which is absolutely continuous with respect to the Lebesgue measure

on RkB , which density φ. φ(y) is bounded, and twice continuously differentiable, with bounded

derivatives.

(iv) The kernel functionK is a bounded density on Rk, such that
∫
Rk xK(x)dx = 0,

∫
Rk x

2K(x)dx <

∞. Also K has absolutely integrable characteristic function Ψ (u).2

(v) Let mi(c) = E (Zi,t+1|Ct = c) does not depend on t. mi(c)g(c) is bounded and twice continu-

ously differentiable on Rk, with bounded derivatives, for i = 1, .., N ,.

(vi) supc∈Rk |mi(c)| <∞, for some 0 < a < 1, and for i = 1, .., N,
∫
Rk g(c)1−adc <∞.

Assumption A(ii)-(iii) are stated in terms of the ”usual suspects” Ct; nevertheless the statistic

in (10) is constructed using the first k principal components of Ct. As each principal component

1 µi,t is said to be β−dominated, if |µi,t| ≤ Dt, and E
(
Dβ
t

)
<∞ (see e.g. Gallant and White 1988).

2 Note that Ψ (u) =
∫
Rk exp(iux)K (x) dx, and we require

∫
Rk |Ψ (u)|du <∞.
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is a linear combination of the kB elements of Ct, and as kB < ∞, it follows straightforwardly

that Ct is also α−mixing, of the same size as Ct. Hence, A(ii) holds also for Ct. The density of

each individual principal component is obtained via the direct convolution of the kB marginals and

is therefore absolutely continuous on R. As principal components are mutually orthogonal, their

joint density is absolutely continuous on Rk. Hence, A(iii) ensures that Ct has a density absolutely

continuous on Rk.

As pointed out by Bierens (1983), Assumption A1(iv) is satisfied by a multivariate standard

normal kernel, or by the product of k univariate standard normal kernels. A(v)-A(vi) are conditions

about the smoothness and the boundedness of the regression function, and on the thickness of

the tails of the regressors. For example, in the case of g(c) multivariate normal, the condition∫
Rk g(c)1−adc <∞ is satisfied for any a arbitrary close to 1.

Define the infeasible estimator,(∫
Rk
|trT (m̃i,T (c))−mi(c)|Q g(c)d(c)

)1/Q

,

where

α̃i,T,t+1 = m̃i,T (Ct)

=

1
ThkT

∑T−1
l=1 Zi,l+1K

(
C`−Ct
hT

)
1

ThkT

∑T−1
l=1 K

(
C`−Ct
hT

) =

1
ThkT

∑T−1
l=1 Zi,l+1K

(
C`−Ct
hT

)
ĝT (Ct)

We first show that the difference between the feasible and the infeasible estimator is op(1).

Proposition 1: Let the conditions of Lemma 1 hold, and let Assumption A(i)-(iv) hold. Then, if,

as T,M, h−1T →∞, d−1T M−1/2h−kT → 0,

trT (m̃i,T,M (c))− trT (m̂i,T,M (c)) = op(1),

where the op(1) terms holds uniformly in GT (c), as defined in (9).

It is immediate to see that M can grow at a slower rate than T . This is empirically important.

It should be note that the conditions on the rate of growth of M are much weaker than in Theorem

1 in Corradi and Swanson (2009). This is due to the fact the the estimation error affects only

dependent variable, and it does not enter in the kernel function.
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Proposition 2: Let the conditions of Lemma 1 hold, and let Assumption A(ii)-(vi) hold. Then,

for 0 < Q <∞,(∫
Rk
|trT (m̂i,T,M (c))−mi(c)|Q g(c)dc

)1/Q

= Op

(
d−1T M−1/2h−kT

)
+Op

(
T−1/2h−kT d−2T

)
+O

(
h2Td

−2
T

)
+Op

(
d
a/Q
T

)
,

where a is defined in A(vi).

5 Information Ratio

Define the information ratio as

IRi,t+1 = IRi(Ct) =
E (Zi,t+1|Ct)√
Var (Zi,t+1|Ct)

=
αi,t+1√

E
(
ε2i,t+1|Ct

) ,
where εi,t = Zi,t − αi,t, and define its estimator as

ÎRi,t+1,M = ÎRi,T,M (Ct) =
m̂i,T,M (Ct)√

m̂
(2)
i,T,M (Ct)− m̂2

i,T,M (Ct)
,

where m̂i,T,M (Ct) is defined in (8), and

m̂
(2)
i,T,M (Ct) =

1
ThkT

∑T−1
l=1 Ẑ2

i,l+1,MK
(
C`−Ct
h

)
ĝT (Ct)

,

with ĝT (Ct) defined in (8). In the sequel, we need a slightly strengthened version of Assumption

A.

Assumption A’:

(i’) For i = 1, .., N , E
(
|Zi,t|2β

)
<∞, with β > 2, (Zi,t+1,Ct), t = 1, ..., T − 1 is strictly stationary

and α−mixing with mixing coefficients α(j), such that
∑∞

j=1 α(j)
β−2
β <∞.

(ii’) Let m
(2)
i (c) = E

(
Z2
i,t+1|Ct = c

)
does not depend on t. m

(2)
i (c)g(c) is bounded and twice

continuously differentiable on Rk, with bounded derivatives, for i = 1, .., N .

(iii’) supc∈Rk
∣∣∣m(2)

i (c)
∣∣∣ <∞, for some 0 < a < 1, and for i = 1, .., N ,

∫
Rk g(c)1−adc <∞.

Define

trT

(
ÎRi,T,M (c)

)
= ÎRi,T,M (c)1

{
c ∈ ĜT (c)

}
,

12



where ĜT (c) is defined as in (9).

Proposition 3: Let the conditions of Lemma 1 hold, and let Assumption A(ii)-(vi) and A’(ii’)-(vi’)

hold. Then, for 0 < Q <∞,(∫
Rk

∣∣∣trT (ÎRi,T,M (c)
)
− IRi(c)

∣∣∣Q g(c)dc

)1/Q

= Op

(
d−1T M−1/2h−kT

)
+Op

(
T−1/2h−kT d−2T

)
+O

(
h2Td

−2
T

)
+Op

(
d
a/Q
T

)
,

where a is defined in A(vi’).
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Appendix

Proof of Lemma 1: Define the filtered probability space B =
(

ΩB,FB,
(
FBs
)
s≥0 ,P

B
)

, where

FBs = σ
(
FBτ , τ ≤ s

)
, s ∈ R+, FBτ = Ct for τ ∈ [t, t + 1). Also, define the filtered probability

space Ai =

(
ΩA,i,FA,i,

(
FA,is

)
s≥0

,PA,i
)

where FA,is = σ (Wτ , τ ≤ s), with Wτ =
(
Wi,τ ,WFA,τ

)
.

Given the independence of FBτ of Wτ , we can defined the enlarged filtered probability space B̃ =(
Ω̃, F̃ ,

(
F̃s
)
s≥0

, P̃
)

, where

Ω̃ = ΩB × ΩA,i, F̃ = FB ⊗FA,i

F̃s = ∩τ>sFBτ ⊗FA,iτ and P̃
(
dωBdωA,i

)
= PB

(
dωB

)
PA,i

(
dωA,i

)
,

with ωB ∈ ΩB, ωA,i ∈ ΩA,i, and with⊗ denoting the product measure. Now, Xi(s) = (Pi(s),FA(s))

can be defined on the enlarged filtered probability space B̃, and in fact Xi(s) is F̃s−measurable.

Since, FBτ is independent of Wτ , it also follows that all measurable function of FBτ are independent

of Wτ . Let ΣA,i,t =
(
µi,t, µF,t, σi,t,ΣiFA,t,ΣFA,t

)
, and define ΣA,i,τ = ΣA,i,t for t ≤ τ < t+ 1, and

note that ΣA,i,τ is also independent of Wτ . Thus, for each ωB ∈ ΩB, except of a set of PB−zero

probability, Xi(s) is a conditional semimartingale with independent increments (Jacod, 1997). �

Proof of Proposition 1: Given A(iv), K is a bounded density function, and so

|tr (m̃i,T,M (c))− tr (m̂i,T,M (c))| ≤ ∆d−1T

∣∣∣∣∣ 1

Thk

T−1∑
l=1

fA′l+1

(
β̂i,l+1,M − βi,l+1

)∣∣∣∣∣ .
Let f1,l denotes the first component of fA` , as fA` are orthogonal factors, β̂

(1)
i,l+1,M , the first component

of the vector β̂i,l+1,M , is given by

β̂
(1)
i,l+1,M =

∑M−1
j=0

(
Pi,l+(j+1)/M − Pi,l+j/M

) (
f1,l+(j+1)/M − f1,l+j/M

)∑M−1
j=0

(
f1,l+(j+1)/M − f1,l+j/M

)2 , (11)

and as ΣFB ,l is a diagonal matrix,

β
(1)
i,l+1 =

σi,1,FB ,lσFB ,11,l

σ2FB ,11,l
, (12)

where σi,1,FB ,l is the first element of Σi,FB ,l, σFB ,11,l, σ
2
FB ,11,l

are the 1, 1−th element of ΣFB ,l and

ΣFB ,l ×ΣFB ,l, respectively. Thus, it is enough to show that 1
Thk

∑T−1
l=1 f1,l+1

(
β̂
(1)
i,l+1,M − β

(1)
i,l+1

)
=

op (dT ).

1

Thk

T−1∑
l=1

f1,l+1

(
β̂
(1)
i,l+1,M − β

(1)
i,l+1

)

=
1

Thk

T−1∑
l=1

µf1

(
β̂
(1)
i,l+1,M − β

(1)
i,l+1

)
+

1

Thk

T−1∑
l=1

(f1,l+1 − µf1)
(
β̂
(1)
i,l+1,M − β

(1)
i,l+1

)
= IT,M,h + IIT,M,h, (13)
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where µf1 = E (f1,l). Given (11) and (12), β̂
(1)
i,l+1,M − β

(1)
i,l+1 writes as,

β̂
(1)
i,l+1,M − β

(1)
i,l+1

=
1

σ2FB ,11,l

M−1∑
j=0

∆Pi,l+(j+1)/M∆f1,l+(j+1)/M


+

∑M−1
j=0 ∆f21,l+(j+1)/M − σ

2
FB ,11,l∑M−1

j=0 ∆f21,l+(j+1)/Mσ
2
FB ,11,l

M−1∑
j=0

∆Pi,l+(j+1)/M∆f1,l+(j+1)/M

= Al,M +Bl,M , (14)

where ∆f1,l+(j+1)/M = f1,l+(j+1)/M − f1,l+j/M , ∆f21,l+(j+1)/M =
(
f1,l+(j+1)/M − f1,l+j/M

)2
and

∆Pi,l+(j+1)/M = Pi,l+(j+1)/M − Pi,l+j/M . Recalling (1) and (??),

∆Pi,l+(j+1)/M = µi,l
1

M
+ σi,l∆Wi,l+(j+1)/M + Σ′iFB ,l∆WFA,l+(j+1)/M

and

∆f1,l+(j+1)/M = µ1,FB ,l
1

M
+ σFB ,11,l∆W

(1)

FA,l+(j+1)/M
,

with ∆W
(1)

FA,l+(j+1)/M
denoting the first component of ∆WFA,l+(j+1)/M .

Thus, given A(i), and recalling (14), it follows

1

Thk

T−1∑
l=1

Al,M

=
1

Thk

T−1∑
l=1

1

σ2FB ,11,l

M−1∑
j=0

(
σFB ,11,lσi,l

∫ l+(j+1)/M

l+j/M
dWi(s)

∫ l+(j+1)/M

l+j/M
dW

(1)

FB ,s

+σi,1,FB ,lσFB ,11,l

(∫ l+(j+1)/M

l+j/M
dW

(1)

FB ,s

)2
− 1

+Op

(
M−1/2h−k

)

=
1

Thk

T−1∑
l=1

µ−1
σ2
FB,11

M−1∑
j=0

(
σFB ,11,lσi,l

∫ l+(j+1)/M

l+j/M
dWi(s)

∫ l+(j+1)/M

l+j/M
dW

(1)

FB ,s

+σi,1,FB ,lσFB ,11,l

(∫ l+(j+1)/M

l+j/M
dW

(1)

FB ,s

)2

− 1

M

 (1 + op(1)) +Op

(
M−1/2h−k

)

=
1

Thk

T−1∑
l=1

Al,M (1 + op(1)) +Op

(
M−1/2h−k

)
,

where µσ2
FA,11

= E
(
σ2FA,11,l

)
and the op(1) term holds as T →∞.
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Now, define

uj,l,M = σFA,11,lσi,l

∫ l+(j+1)/M

l+j/M
dWi(s)

∫ l+(j+1)/M

l+j/M
dWA(s)(1)

+σi,1,FA,lσFA,11,l

(∫ l+(j+1)/M

l+j/M
dWA(s)(1)

)2

− 1

M

 .

It is immediate to note that E (Al,M ) = 0. By Lemma 1, for l 6= ι, and/or k 6= j, E (uj,l,Muk,ι,M ) = 0,

and, because of A(i),

E
(
u2j,l,M

)
=

1

M2

(
σFA,11,lσi,l + σi,1,FA,lσFA,11,l

)2
.

Thus,

Var

(
1

Thk

T−1∑
l=1

Al,M

)

= µ−2
σ2
FA,11

1

T 2h2k

T−1∑
l=1

T−1∑
ι=1

E

M−1∑
j=0

uj,l,M

M−1∑
j=0

uj,ι,M


= µ−2

σ2
FA,11

1

T 2h2k

T−1∑
l=1

E

M−1∑
j=0

u2j,l,M


= O

(
1

TMh2k

)
.

Hence, 1
Thk

∑T−1
l=1 Al,M = Op

(
T−1/2M−1/2h−k

)
+Op

(
M−1/2h−k

)
. By a similar argument, 1

Thk

∑T−1
l=1 Bl,M =

Op
(
T−1/2M−1/2h−k

)
+Op

(
M−1/2h−k

)
. Thus, the first term on the RHS of (13) isOp

(
T−1/2M−1/2h−k

)
.

Finally, as for IIT,M,h in (13),

IIT,M,h ≤

(
1

Thk

T−1∑
l=1

(f1,l − µf1)2
)1/2

×

(
1

Thk

T−1∑
l=1

(
β̂
(1)
i,l,M − β

(1)
i,l

)2)1/2

= Op

(
M−1/2h−k

)
.

The statement in the Proposition then follows. �

Proof of Proposition 2: Given Proposition 1,(∫
Rk
|trT (m̂i,T,M (c))−mi(c)|Q g(c)dc

)1/Q

−
(∫

Rk
|trT (m̃i,T (c))−mi(c)|Q g(c)dc

)1/Q

= Op

(
M−1/2hkTd

−1
T

)
.

It remains to show that(∫
Rk
|trT (m̃i,T (c))−mi(c)|Q g(c)dc

)1/Q

= Op

(
T−1/2h−kT d−2T

)
+O

(
h2Td

−2
T

)
+Op

(
d
a/Q
T

)
.
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Note that, given (9),(∫
Rk
|trT (m̃i,T (c))−mi(c)|Q g(c)dc

)1/Q

≤
(∫

Rk
1 {ĝT (c) ≥ dT } |m̃i,T (c)−mi(c)|Q g(c)dc

)1/Q

+

(∫
Rk

1 {ĝT (c) < dT } |mi(c)|Q g(c)dc

)1/Q

= IT + IIT (15)

The statement in the Proposition will follow from Theorem 1(b) and Corollary 1 in Andrews (1995)

once we show that his assumptions NP1-NP7 are satisfied with η =∞ and d1,T = d2,T = dT . Now

A(ii) implies NP1 hold with η = ∞, as we require (Zi,t+1,Ct) to be α−mixing, instead of being

near epoch dependent (NED) on a mixing basis. A(iii) implies NP2. As we are not dealing with

adaptive (random) bandwidths and we deal with strong mixing processes, rather than NED process,

our A(iv) is equivalent to NP4 (see Andrews p.567). We do not need NP5, as we use the same

deterministic bandwidth for the numerator and the denominator. Also bandwidth chosen by cross-

validation of plug-in techniques straightforwardly satisfy NP5. A(v) is equivalent to his NP3 with

λ = 0 and ω = 2. Thus, A(ii)-A(v) ensures that the statement in Theorem 1(b) in Andrews

(1995) hold, and so IT = Op

(
T−1/2h−kT d−2T

)
+ O

(
h2Td

−2
T

)
. Now, the trimming device used in (9)

ensure that Andrew NP6 is satisfied, Finally, our A(vi) is equivalent to his NP7. Recalling that,

by Theorem 1(a) in Andrews (1995) supc∈Rk |ĝT (c)− g(c)| = op (dT ), it then follows that,

IIT ≤ sup
c∈Rk
|mi(c)|Q

(∫
Rk
daT

g(c)

ĝT (c)a
dc

)1/Q

≤ ∆

(∫
Rk
daT

g(c)

g(c)a
dc

)1/Q

(1 + op(dT )) = Op

(
d
a/Q
T

)
.

The statement in the Proposition then follows. �

Proof of Proposition 3: By the same argument as in Proposition 1, uniformly in c,

trT

(
ÎRi,T,M (c)

)
− trT

(
ĨRi,T (c)

)
= Op(M

−1/2h−kT d−1T ),

where ĨRi,T (c) is the infeasible counterpart of ÎRi,T,M (c), constructed using Zi,t instead of Ẑi,l+1,M .

Along the same lines used in the proof of Proposition 2,(∫
Rk

∣∣∣trT (ĨRi,T (c)
)
− IRi(c)

∣∣∣Q g(c)dc

)1/Q

≤
(∫

Rk
1 {ĝT (c) ≥ dT }

∣∣∣ĨRi,T (c)− IRi(c)
∣∣∣Q g(c)dc

)1/Q

+

(∫
Rk

1 {ĝT (c) < dT } |IRi(c)|Q g(c)dc

)1/Q

(16)
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Given A’(ii’)(v’), by Theorem 1(b) in Andrews (1995),

sup
{c:ĝT (c)>dT }

∣∣∣m̃(2)
i,T (c)−m(c)(2)

∣∣∣ = Op

(
T−1/2h−kT d−2T

)
+O

(
h2Td

−2
T

)
,

and so the first term on the RHS of (16) is Op

(
T−1/2h−kT d−2T

)
+O

(
h2Td

−2
T

)
. As for the second term

on the RHS of (16), given A(vi) and A’(vi’), and along the same lines as in the proof of Proposition

2, (∫
Rk

1 {ĝT (c) < dT } |IRi(c)|Q g(c)dc

)1/Q

≤ sup
c∈Rk
|IRi(c)|Q

(∫
Rk
daT

g(c)

ĝT (c)a
dc

)1/Q

≤ ∆

(∫
Rk
daT

g(c)

g(c)a
dc

)1/Q

(1 + op (dT )) = Op

(
d
a/Q
T

)
.

This completes the proof. �
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