
Mandatory Disclosure and Financial

Contagion∗

Fernando Alvarez

University of Chicago and NBER
f-alvarez1‘at’uchicago.edu

Gadi Barlevy

Federal Reserve Bank of Chicago
gbarlevy’at’frbchi.org

July 16, 2013

Abstract

The paper analyzes the welfare implications of a policy of mandatory disclosure
of information on the value of directly held investments by banks. It is based on a
model of payments in a network where the value of a bank’s equity depends on the
value of directly held investment of its trading partners, i.e. there is “contagion”.
Additionally banks have a profitable investment project for which they need funding
from outsiders, but due to agency problems they can only obtain financing if their
equity is large enough. Furthermore, banks can, at a cost, disclose the information of
their directly held investments. We find that there are equilibrium with no disclosure
and no funding for new investments projects. Yet when the disclosure costs are not too
large, mandatory disclosure increases ex-ante welfare of banks and outside investors
if and only if contagion is severe. The difference for the social and private benefits
is that an individual bank’s disclosure of the value of its directly held investment can
be uninformative due to counterparty default risk. Instead, mandatory disclosure of
information by all banks allows outside investors to assess the financial architecture of
the system and direct their funding to the solvent banks.

JEL Classification Numbers:

Key Words: Disclosure, Information, Networks, Contagion.

∗First draft May 2013. We thank Russ Cooper, Alp Simsek, Ezra Oberfield, and Simon Gilchrist for their
comments and suggestions. We thank the comments from seminars participants at Goethe University. The
views in this papers are solely those of the authors and may not represent the views of the Federal Reserve
Bank of Chicago or the Federal Reserve System.

mailto:falvare@uchicago.edu
mailto:gbarlevy@frbchi.org


1 Introduction

In trying to understand how the decline in U.S. house prices evolved into a financial cri-

sis in which trade between financial intermediaries nearly ground to a halt, one important

contributing factor that has been singled out is the prevailing uncertainty at the time regard-

ing which entities incurred the bulk of the losses associated with the housing market. For

instance, Gorton’s (2008) provides an early analysis of the crisis in which he argues

“The ongoing Panic of 2007 is due to a loss of information about the location

and size of risks of loss due to default on a number of interlinked securities,

special purpose vehicles, and derivatives, all related to subprime mortgages... The

introduction of the ABX index revealed that the values of subprime bonds (of the

2006 and 2007 vintage) were falling rapidly in value. But, it was not possible

to know where the risk resided and without this information market participants

rationally worried about the solvency of their trading counterparties. This led to

a general freeze of intra-bank markets, write-downs, and a spiral downwards of

the prices of structured products as banks were forced to dump assets.”

Market participants, using more colorful language, emphasized the same phenomenon as

the crisis was unfolding. Back in February 24, 2007, the Wall Street Journal attributed the

following to Lewis Ranieri, one of the originators of mortgage securitization:

“The problem ... is that in the past few years the business has changed so much

that if the U.S. housing market takes another lurch downward, no one will know

where all the bodies are buried. ‘I don’t know how to understand the ripple effects

through the system today,’ he said during a recent seminar.”

In line with this view, some have argued that an important force towards the eventual

stabilization of financial markets was the Fed’s implementation of bank stress tests. These

tests required banks to report to Fed examiners how their respective portfolios would fare

under various stress scenarios, thus revealing potential losses each bank was vulnerable to. In

contrast to the traditional confidentiality accorded to bank examination results, the results

of these stress tests were publicly released. Bernanke (2013) summarizes the view that this

public disclosure played an important role in stabilizing financial markets:

“In retrospect, the SCAP [Supervisory Capital Assessment Program] stands out

for me as one of the critical turning points in the financial crisis. It provided anx-

ious investors with something they craved: credible information about prospec-

tive losses at banks. Supervisors’ public disclosure of the stress test results helped
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restore confidence in the banking system and enabled its successful recapitaliza-

tion.”

In this paper, we seek to understand whether uncertainty regarding the identity of the

banks that incurred losses - that is, uncertainty as to where the bad apples are located -

can lead to market freezes, and under what circumstances if any mandatory disclosure that

reveals which banks incurred losses and which did not could represent a welfare-improving

intervention. The feature that turns out to be critical for this type of uncertainty to matter

is financial contagion, by which we mean a situation in which the losses of banks that are

directly hit by some shock trigger losses at other banks that are not themselves hit by the

same shock. In the context of the financial crisis, an example of contagion would be if the

losses at banks directly exposed to the housing market somehow lead to losses at banks that

hold very little housing-related assets in their portfolios.

In what follows, we consider a model of financial contagion that operates through balance

sheet effects, i.e. where banks that are hit by shocks default on their obligations to banks

that are not hit by shocks, potentially rendering the latter insolvent. We modify this model of

financial contagion in two ways. First, we allow banks to raise additional funds from outside

investors. However, we introduce an agency problem that makes it profitable for investors to

only invest in banks that have sufficient equity. When investors are uncertain about which

banks incurred losses, they may be leery about investing in a bank whose equity position is

uncertain. Contagion exacerbates this problem, since investors worry not only that the banks

they invest in were hit by shocks that wiped out their equity, but that these banks may be

indirectly exposed to such shocks because they have financial obligations from banks that

were directly hit. When linkages between banks are such that the potential for contagion is

greater, market freezes are more likely to occur.

Second, we allow banks to disclose whether they were hit by shocks. An important

question for whether mandatory stress-tests whose results will be publicly disseminated are

desirable is why banks don’t perform and release their own stress tests, especially banks

whose stress tests are likely to be favorable. Here, we show that contagion once again plays

an important role. Our main result is that when contagion is small, it will not be possible

for mandatory disclosure to be Pareto improving relative to a non-disclosure equilibrium,

even when non-disclosure is associated with a market freeze in which no bank can raise

funds from outside investors. But when contagion is large, there will exist a non-disclosure

equilibrium that can be improved upon through mandatory disclosure provided that the cost

of disclosure is low. Intuitively, contagion implies that information on the financial health

of one bank is relevant for assessing the financial health of other banks. Since banks fail to

internalize these informational spillovers, too little information will be revealed, creating a
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role for mandatory disclosure as a welfare improving intervention. Absent these spillovers,

banks that are not hit by shocks internalize the benefits of disclosure, and so if they choose

not to disclose in equilibrium it must be because the cost of stress-tests exceed the benefits. In

that case, forcing them to disclose will not be desirable. Compared to the existing literature

on disclosure, our result provides a new justification for mandatory disclosure that has not

been previously identified.

Since we build our model in several stages to highlight the role of each component, it

will help to provide a preliminary overview of the model as a whole. There is set of banks

arranged along a network that reflects the initial obligations among banks. Some of these

banks will be hit with shocks that prevent them from paying their obligations to other banks

in full. Consequently, banks that are not hit with shocks can still have their equity wiped

out. Regardless of whether a bank is hit by a shock or not, each bank has access to profitable

projects that it can undertake if it can raise funds from outside investors. However, because

of an agency problem that is present at each bank, outside investors will only want to invest

in banks that have enough equity. We allow each bank trying to raise funds to disclose to

outsiders at some cost whether it was hit by a shock. This disclosure must be made before

the bank knows which other banks were hit with shocks, and thus before it knows its own

equity value. Outside investors see all the information that is disclosed and decide which

banks to invest in and under what terms. Finally, banks learn their equity. Banks that

raised funds and realize their equity has been wiped out will take actions that inflict losses

on any outside investors who invested with them. This framework allows us to explore how

features of the underlying financial network that govern the extent of financial contagion

affect whether banks can raise funds in equilibrium as well as the desirability of mandatory

disclosure. For example, we find that banks are highly levered with funds borrowed from

other banks on the network, a shock that increases the losses at banks directly hit by shocks

will cause markets to freeze and may create a role for mandatory disclosure. However, when

banks are not very highly levered against other banks on the network, the same shock will

have no effect on the ability of banks to raise outside funding.

The paper is structured as follows. Section 2 reviews the related literature. Section 3

develops the model of contagion we use in our analysis. Section 4 we modify our model

so that banks can raise additional funds, and we introduce an agency problem that makes

investors leery of investing in banks with little equity. In Section 5, we introduce a disclosure

decision. We then examine whether non-disclosure can be an equilibrium outcome, and if so

whether mandatory disclosure can be welfare improving relative to that equilibrium. Section

6 considers more general network structures. Section 7 concludes.
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2 Literature Review

Our paper is related to several different literatures, specifically work on i) financial networks

and contagion, ii) disclosure, iii) market freezes, and iv) stress tests.

Turning first to the literature on financial networks and contagion, various channels have

been proposed for why contagion can occur. For a survey of this literature, see Allen and

Babus (2009). We focus on models of contagion based on balance sheet effects, i.e. where a

bank that is hit by shocks is unable to pay on its obligations, making it difficult for other banks

to meet their obligations. Examples of papers that explore this channel include Allen and Gale

(2000), Eisenberg and Noe (2001), Gai and Kapadia (2010), Caballero and Simsek (2012),

and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013). In most of our discussion, we follow

Caballero and Simsek (2012) in focusing on a particular network structure known as a ring

network or a circular network. However, we generalize their setup to allow losses at multiple

banks rather than at just one bank as they assume. This turns out to be important, since the

fraction of banks that are hit with shocks plays a role in our results. Our generalization to

multiple banks uncovers a connection between the problem of contagion in a circular network

and a geometric problem in applied probability known as the circle-covering problem.1 This

connection may be useful for analysis that uses circular networks. Although we focus much of

our discussion on circular networks, we subsequently show that our analysis extends to more

general class of networks, which includes several of the symmetric network structures that

have been discussed in this literature, e.g. many of the special cases described in Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2013).

In terms of how our result relates to existing work on disclosure, we note that there is a vast

literature on disclosure that precedes our work. Two good surveys of this literature include

Verrecchia (2001) and Beyer et al. (2010). A key result in this literature, first established

by Milgrom (1981) and Grossman (1981), is an “unravelling principle” which holds that

all private information will be disclosed because agents with better information want to

avoid being pooled together with inferior types and receive worse terms of trade. Beyer

et al. (2010) summarize the various conditions subsequent research has established that are

necessary for this unravelling result to hold: (1) disclosure must be costless; (2) outsiders

know the firm has private information; (3) all outsiders interpret disclosure in the same way,

i.e. outsiders have no private information (4) information can be credibly disclosed, i.e. the

information disclosed is verifiable; and (5) agents cannot commit to a disclosure policy ex-ante

before observing the relevant information. Violating any one of these conditions can result

in equilibria where not all relevant information is conveyed. We show that non-disclosure

1The same connection is made in Barlevy and Haikady (2013).
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can be an equilibrium outcome in our model even when all of these conditions are satisfied.

We thus highlight a distinct reason for the failure of the unravelling principle that is due to

informational spillovers: In order to know whether a bank in our model has equity and is

thus safe to invest in, outside investors need to know not just the bank’s own balance sheet,

but also the balance sheets of other banks as well.

Ours is certainly not the first paper to explore disclosure in the presence of informational

spillovers. A particularly important predecessor is Admati and Pfleiderer (2000), who explic-

itly model informational spillovers. Like in our model, their setup allows for non-disclosure

equilibria. However, these equilibria rely crucially on disclosure being costly; when the cost

of disclosure is zero in their model, some information will be disclosed. The reason our frame-

work allows for non-disclosure even when disclosure is costless is because it allows for strong

informational complementarities that are not present in their model. In particular, unilat-

eral disclosure in our model is not enough to ascertain whether a firm has positive equity,

since this requires knowing information on other banks in the network. This feature, which

has no analog in their model, is why non-disclosure equilibria can arise in our framework

despite satisfying all of the conditions listed above. However, Admati and Pfleiderer (2000)

are similar to us in showing that mandatory disclosure may be welfare-improving because

of informational spillovers.2 That said, there are other important differences between our

model and theirs. First, they study an environment where agents must choose whether to

commit to disclose information before they learn it. By contrast, we are interested in the

case where banks know what losses if any they incurred and must then decide whether to

disclose it. Second, our setup allows us to consider comparative static exercises with regards

to contagion that cannot be deduced from their setup.

Another literature that our paper is related to is concerned with explaining the phe-

nomenon of market freezes. As in our model, this literature has emphasized the importance

of informational frictions as a source of reduced trade. Some of these papers emphasize the

role of private information, where agents are reluctant to trade with others in fear of being

take advantage by others who are more informed than them. Examples include Rocheteau

(2011), Camargo and Lester (2011), Guerrieri, Shimer, and Wright (2010), Guerrieri and

Shimer (2012), and Kurlat (2013). Other papers have focused on uncertainty concerning

each agent’s own need for liquidity and the liquidity needs of others which discourages trade.

Examples include Caballero and Krishnamurthy (2008) and Gale and Yorulmazer (2013).

An important difference between our framework and these papers, aside from various model-

specific features, concerns the source of informational frictions. Since in our framework the

2Earlier work by Foster (1980) and Easterbrook and Fischel (1984) also argues that spillovers may justify
mandatory disclosure, although these papers do not develop a formal model to establish this.
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uncertainty concerns information that can in principle be revealed, namely whether a bank

incurred losses on a particular asset class, it naturally focuses attention on the possibility that

the information agents are uncertain about will be revealed. By contrast, previous papers

have focused on private information on individual assets or information that no agents are

privy to and thus cannot be disclosed.

Finally, there is an emerging literature on the use of stress tests. In contrast to our paper,

this literature is largely empirical. Some of the questions explored in this literature are related

to issues we study. For example, Peristian, Morgan, and Savino (2010) find evidence that

the release of stress test results in the US revealed relevant information to the market, as

evidenced by changes in the stock market values of the banks concerned. Bischof and Daske

(2012) study the 2011 stress test conducted on more than 60 banks in Europe and argue

that disclosure served a positive role. While these papers examine the positive effects of

disclosure, they have little to say on the normative question of whether mandatory disclosure

is desirable. We thus view our analysis as complementary to theirs.

3 A Model of Contagion

We begin with a stripped down version of our model in which banks make no decisions. This

allows us to highlight how contagion works in the model and what features determine the

extent of contagion, as well as to motivate the particular measure of contagion we use for our

analysis.

Our approach to modelling financial contagion follows Allen and Gale (2000), Eisenberg

and Noe (2001), Gai and Kapadia (2010), Caballero and Simsek (2012), and Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2013) in focusing on balance sheet effects as the source of

contagion. Formally, there are n banks indexed by j ∈ {0, ..., n− 1}. Each bank i is endowed

with a set of financial obligations Λij ≥ 0 to each bank j 6= i. Following Eisenberg and Noe

(2001), we take these obligations as given without modelling where they come from. For

much of our analysis, we follow Caballero and Simsek (2012) in restricting attention to the

special case in which

Λij =

{
λ if j = (i+ 1) (mod n)

0 else
(1)

This case is known as a ring network or a circular network, since we can depict these obli-

gations graphically as if the n banks are located along a circle, and each bank owes λ units

of resources to the bank that sits clockwise from it.In Section 6, we show that our analysis

can be extended to a larger class of networks than the circular network. However, since the

circular network is expositionally convenient, we prefer to focus on this network initially.
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In addition to the financial obligations Λij , each bank is endowed with some valuable

assets that can be liquidated if needed. We do not explicitly model the value of assets, and

simply set their value fixed at some value π.

A fixed positive number of banks b, which we shall refer to as “bad” banks, are hit with

a negative net worth shocks, where 1 ≤ b ≤ n − 1. This generalizes Caballero and Simsek

(2012), who only consider the case where b = 1. Each bad bank incurs a loss φ, where φ

represents a claim on the bank by an outside sector, i.e. by an entity that does not include

any of the remaining banks in the network. The obligation φ is senior to any obligation to

other banks in the network. That is, all of the bank’s available resources must first be used

to pay the outside sector, and only then can bank j make payments to bank j + 1 from any

remaining funds. For example, φ could represent a margin call against the bank by some

outside party because the value of some asset the bank used as collateral has fallen in value.

We shall refer to all remaining banks as “good.”

Let Sj = 1 if j is a bad bank and 0 otherwise. The vector S = (S0, ..., Sn−1) denotes the

state of the banking network. By construction,
∑n−1

j=0 Sj = b. Shocks are equally like to hit

any bank, i.e. each of the
(
n
b

)
possible locations of the bad banks within the network are

equally likely. In particular, Pr (Sj = 1) =
b

n
for any bank j.

We now analyze the financial position of banks assuming that payments are made in

accordance with our seniority rules. Banks can be insolvent – meaning they are unable to

fully repay their obligation λ to another bank – or solvent but with varying degrees of equity.

The feature we wish to draw attention to in this section is that our model exhibits contagion

effects whereby good banks may end up with a low equity value because of direct or indirect

exposure to bad banks.

Let xj denote the payment bank j makes to bank j + 1, and let yj denote the payment

bank j makes to the outside sector. Bank j has xj−1 + π resources it can draw on to meet

any of its obligations. Given our restrictions on the seniority, it must first pay the outside

sector. Let Φj ≡ φSj denote the obligation to the outsider sector. Then the payment yj must

satisfy

yj = min {xj−1 + π,Φj} (2)

Bank j can then use any remaining resources to pay bank j + 1, to which it owes λ. Hence,

the payment bank j makes to bank j + 1 is given by

xj = min {xj−1 + π − yj, λ} (3)

Substituting in for yj yields a system of equations involving only the payments between
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banks, {xj}
n−1
j=0 , that characterizes these payments:

xj = max {0,min (xj−1 + π − Φj , λ)} , j = 0, ..., n− 1 (4)

The system (4) involves n equations and n unknowns. Given a set of payments {xj}
n−1
j=0 that

solves (4), we can define the equity of bank j as any residual resources then bank can lay

claim to after settling all payments, i.e.

ej = max {0, π − Φj + xj−1 − xj} (5)

Although the variable ej is redundant given the payments xj , equity will turn out to play

an important role later on when we expand the model to allow banks to make decisions.

Although payments xj and equity values ej depend on the state of the network, i.e. xj =

xj (S) and ej = ej (S), we shall omit the explicit reference to S when this dependence does

not play an essential role.

We first show that the system of equations (4) has a generically unique solution.3

Proposition 1: Given the state of the network S, the system (4) has a unique solution{
x∗
j

}n−1

j=0
whenever φ 6= n

b
π.

In the knife-edge case where the total losses across all bad banks, bφ, are just equal to

the aggregate value of the asset endowments of banks, nπ, there can be multiple solutions if

the obligations λ that banks owe one another are sufficiently large. However, these solutions

are equivalent to one another in a particular sense. That is, across all such solutions, the

outside sector is paid in full, meaning wj = Φj for all j, and the equity values {ej}
n−1
j=0 of all

banks are the same, namely ej = 0 for all j. The only difference across the solutions are the

notional amounts by which banks default on to other banks in the network.

In analyzing the circular network, we restrict attention to the case where φ < n
b
π, i.e.

where the total total losses incurred by bad banks bφ cannot be so large that they exceed

the total resources of the banking system, nπ. Although Acemoglu, Ozdaglar, and Tahbaz-

Salehi (2013) show that explicitly allowing the case where losses are large can yield important

insights on the nature of contagion, for our purposes allowing for large shocks yields few im-

portant insights. In particular, when φ > n
b
π, there are two possible outcomes depending on

the value of λ. When λ is small, the distribution of equity values {ej}
n−1
j=0 will be independent

of φ, and so the implications of this case can be understood even if we restrict φ < n
b
π.

3Our result is a special case of Theorem 2 in Eisenberg and Noe (2001) and of Proposition 1 in Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2013). The latter result establishes uniqueness for a generic network Λij but
does not provide exact conditions for non-uniqueness as we do. Our finding that equity values are unique is
a special case of Theorem 1 in Eisenberg and Noe (2001).
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When λ is large, all n banks will be insolvent and have no equity when φ > n
b
π. Since we are

interested in the decisions banks make when are unsure about their equity, the case where

banks know their equity to be zero is of little interest.

At the same time, we don’t want the loss φ to be too small. As the next proposition

shows, when φ ≤ π even bad banks will be solvent, and so their losses will not affect the

equity of other banks in the network.

Proposition 2: If φ ≤ π, then x∗
j = λ for all j.

We therefore restrict the size of losses φ to a range of intermediate values:

Assumption A1: Losses at bad banks φ are restricted to the following range:

π < φ <
n

b
π (6)

The fact that φ > π ensures bad banks will be insolvent, since even if these banks receive

the full amount λ from the bank that is indebted to them, they will have less than λ resources

to pay the bank to which they are obligated. Consequently, the equity of each bad bank will

be 0.

To understand the nature of contagion from in this economy, it will help to begin with

the case where there is exactly one bad bank, i.e. b = 1, as in Caballero and Simsek

(2012). Without loss of generality, let bank j = 0 be the bad bank. Given that bank 0

receives xn−1 from bank n − 1, the total amount of resources bank 0 can give to bank 1 is

min {xn−1 + π − φ, 0}. Below we show in Proposition 3 that Assumption A1 ensures there is

at least one bank in the network will be solvent and pay its obligation λ in full. From this, it

follows that bank n− 1 must be solvent. This is because if any bank j ∈ {1, ..., n− 2} were

solvent, it would pay its debt to bank j + 1 in full, who in turn will pay its debt to bank

j + 2 in full, and so on, until we reach bank n− 1. Hence, xn−1 = λ.

Given that xn−1 = λ, deriving the equity positions of the remaining banks is straightfor-

ward. Since φ > π, the bad bank will fall short on its obligation to bank 1 by the amount

∆0 = min {φ− π, λ} .

Since bank 1 is endowed with π > 0 resources, it can use them to make up some of the

shortfall it inherits when it pays its obligation to bank 2. If the shortfall ∆0 > π, bank 1 will

also be insolvent, although its shortfall will be π less than shortfall it receives. The first bank

that inherits a shortfall that is less than or equal to π will be solvent, with an equity position

that is at least 0 but strictly less than π. Hence, we can classify banks into three groups: (1)

Insolvent banks with zero equity, which includes both the bad bank and potentially other
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good banks; (2) Solvent banks whose equity is 0 ≤ ej < π. When b = 1, there will be exactly

one such bank; (3) Solvent banks that are sufficiently far from the bad bank and have equity

equal to π.

Since equity will figure prominently in our analysis below, it will be convenient to work

with the case where ej can take on exactly two values, 0 or π. For b = 1, this requires

only that ∆0 = min {φ− π, λ} be an integer multiple of π, so either φ or λ must be integer

multiples of π. For general values of b, we will need to impose that both φ and λ are integer

multiples of π:

Assumption A2: φ and λ are both integer multiples of π.

For the case where b = 1, Assumption A2 implies that the one solvent bank with equity

less than π will have equity equal to 0, and so the number of good banks with zero equity

will be given by

k = min

{
φ

π
− 1,

λ

π

}
(7)

Caballero and Simsek (2012) refer to k as the size of the “domino effect” of a bad bank.

When there is only one bad bank, k can be viewed as a measure of contagion. When there

can be more than one bad bank, the variable k still captures the potential for contagion of

any given bad bank: It tells us the maximal amount of good banks that would have their

equity wiped out as a result of a shock to a single bad bank. This suggests that as many as

bk good banks can have their equity wiped out. But for reasons that will become apparent

when we turn to the case where b > 1, the actual number of good banks whose equity falls

because of their exposure to bad banks can fall below this amount. As such, we will need

to introduce a different metric by which to measure contagion for general values of b. This

metric will be a function of k, but will depend on other parameters as well.

Two conditions are required for the value of k in (7) to be large. First, a large k requires

losses φ to be large. Intuitively, when φ is small, a bad bank will still be able to pay back

a large share of its obligation λ, and so fewer banks will ultimately be affected by the loss.

Second, a large k requires the obligation λ be large. Intuitively, when λ is small, banks are

not very indebted to one another, and in the limit as λ → 0, there will be no contagion to

good banks regardless of how large losses φ at bad banks are. As λ rises, losses are shifted

from the outside sector, which bears all losses when λ = 0, to other banks in the network.

Essentially, higher gross flows between banks imply that the resources of any give bank travel

further along the network, including to bad banks where these resources will be captured by

the outside sector. The further resources flow along the network, the more they will tend to

ultimately end up in the hands of the outside sector. In fact, as we show in Proposition 4
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below, for sufficiently large λ the outside sector will incur no losses, and all losses will instead

be borne by the banks within the network.

Armed with this intuition, we can now move to the general case of an arbitrary number

of banks, i.e. 1 ≤ b ≤ n− 1. We begin with a preliminary result that under Assumption A1,

at least one bank will be solvent and can pay its obligation in full.

Proposition 3: If φ < n
b
π, then there exists at least one bank j which is solvent, i.e.

xj = λ. Moreover, among all solvent banks there exists at least one bank j with positive

equity, i.e. ej > 0.

As in the case with b = 1, there will be three types of banks when b > 1: (1) Insolvent

banks with zero equity; (2) Solvent banks whose equity is 0 ≤ ej < π; (3) Solvent banks

that are sufficiently far away from a bad bank whose equity ej = π. Since we know there is

at least one solvent bank j, we can start with this bank and move to bank j + 1. If bank

j + 1 is good, it too will be solvent and its equity will be ej+1 = π. We can continue this

way until we eventually reach a bad bank. Without loss of generality, we refer to this bad

bank as bank 0. By the same argument as in the case where b = 1, Assumption A2 implies

that banks 1, ..., k will have zero equity, where k is given by (7): Even if all of these banks

are good, each will inherit a shortfall of at least π and will have to sell off its π assets. If

any of these banks are bad themselves, the shortfall banks to them will inhereit will be even

larger, and so equity at the first k banks remains zero.

If bad banks are sufficiently spread out across the network, i.e. if there are at least k

banks between any two bad banks, the total number of banks with zero equity would equal

bk + b, i.e. bk good banks whose equity is wiped out because of their exposure to bad banks

and b bad banks. However, in general a bank that is exposed to a bad bank may be bad

itself. Because of this, the number of banks with zero equity need not equal bk+ b. Whether

it does or not depends on the size of the obligations across banks, as measured by λ. We now

show that when λ is large, the location of the bad banks within the network will not matter,

and exactly bk + b banks will have zero equity regardless of whether bad banks are spaced

out or not. But when λ is small, the number of banks with zero equity can be smaller than

bk + b and will depend on how close bad banks are located to one another.

We begin by showing that for sufficiently large λ, all banks will be able to make some

payment to the bank they are obligated to regardless of where the bad banks are located,

i.e. regardless of the state of the banking network S = (S0, ..., Sn−1).

Proposition 4: Under Assumption A1, payments xj > 0 for all j = 0, ..., n− 1 and all

states S if and only if λ > b (φ− π). When λ ≤ b (φ− π), there exist realizations of S for

which xj = 0 for at least one j.

11



If each bank j can pay some positive amount to bank j+1, then each bank j must pay the

outside sector in full given whose claims are senior to all other claims. Hence, Proposition 4

implies that regardless of the state of the network S, the outside sector will be paid in full.

This in turn implies that the the total amount of resources left within the banking network

is the same regardless of where bad banks are located. Since Assumption A2 implies banks

can have equity equal to either 0 or π and total equity is the same for all S, it follows that

the number of banks with zero equity is the same for all S whenever λ > b (φ− π). Formally:

Proposition 5: Under Assumptions A1 and A2, if λ > b (φ− π), the number of banks

with zero equity is equal to bk + b regardless of the state of the banking network S.

Next, consider the case where λ is small. In this case, resources do not travel far along the

network, and a bad bank may end up defaulting on the outside sector. Since defaulting on

the outside sector allows the network to retain more of the resources its member banks own,

the more banks default on their obligations to the outsider sector, the larger the number of

banks who maintain their equity. Proposition 4 suggests that when λ ≤ b (φ− π), there will

be states of the world in which some banks default on their obligation to the outside sector.

For sufficiently low values of λ, specifically when λ < φ−π, we can explicitly characterize

the distribution of the number of banks with zero equity. At such low values of λ, we are

at the other extreme where even if bad banks were paid in full by the banks that owe them

resources, they would still have to default on the outside sector and pay nothing to the bank

they themselves are obligated to. Thus, regardless of where the bad banks located, a bad

bank would wipe out the equity of the next k = λ
π
banks and no more. Denote the number

of banks with zero equity by ζ . The number of banks with zero equity ζ is now a random

variable, with a support that ranges from b+ k when all bad banks are located next to each

other to bk+b when there are at least k good banks between any two bad banks. By contrast,

for λ > b (φ− π), the number of banks with zero equity ζ has a degenerate distribution with

all of its mass at bk + b.

To obtain an exact distribution for ζ for λ < φ−π, we exploit the fact that when λ < φ−π,

our model corresponds to a discrete version of a well-studied geometric problem in applied

probability known as the circle-covering problem that was first introduced by Stevens (1939).

In this problem, a fixed number of points are drawn from random locations along a circle

of length 1, and then arcs of a fixed length less than 1 are drawn starting from each of

these points and proceeding clockwise. The circle-covering problem seeks to determine the

probability that the circle is fully covered by the arcs and the distribution of the length

that is uncovered given the number of points and the length of each arc. In our setting, the

number of bad banks is analogous to the number of points sampled from the circle, while

the potential for contagion k, expressed relative to the total number of banks in the network,

12



corresponds to the length of the arc. The region of the circle covered by arcs is analogous

to the fraction of all banks that have zero equity. The discrete version of this circle-covering

problem has been analyzed in Holst (1985), Ivchenko (1994), and ?. As first noted by Holst

(1985), the discrete version can be analyzed using results on Bose-Einstein statistics. This

insight can be used to obtain an exact expression for the distribution of ζ . However, for our

purposes only the expected value of E [ζ ] matters, which can be obtained using results in

Ivchenko (1994) and ?. This expectation is summarized in the next lemma.

Lemma 1: Under Assumptions A1 and A2, the expected number of banks with zero

equity ζ is given by

E [ζ ] = n−
(n− b)! (n− k − 1)!

(n− 1)! (n− b− k − 1)!

where k = λ
π
is integer-valued.

Finally, for intermediate values of λ between φ − π and b (φ− π), the number of banks

with zero equity ζ will again be random, with support ranging between b+ λ
π
and bφ

π
= bk+b.

Thus, the support of ζ depends not just on k but also on λ
π
which is different from k. For

these intermediate values of λ, the distribution of banks with zero equity is analogous to a

circle covering problem in which the length of the arcs is not fixed but rather depends on

the location of the points drawn at random. As far as we know, this variation of the circle-

covering problem case has yet to be studied. However, in Proposition 6 below we establish

some comparative static results for E [ζ ] for this case.

To recap, as long as the potential for contagion k in (7) is positive, at least one good bank

will end up with zero equity because of exposure to bad banks. When b > 1, how many good

banks will be affected this way depends on more than just k. One way to summarize this,

which will turn out to be convenient in our subsequent analysis, is to consider what happens

if we chose a good bank at random. The extent to which good banks are exposed to losses

will be captured by the probability that this bank will have equity equal to π, i.e. it will be

unaffected by losses at bad banks. The smaller the probability that the equity value is equal

to π, the more good banks that tend to have equity below π, and thus the greater the extent

of contagion. Formally, define pg as the probability that a good bank retains all of its equity,

i.e.,

pg = Pr (ej = π|Sj = 0) . (8)

We will use pg as our measure of contagion. As we show later on, even in more general

networks where ej can take on more than just two values, this definition for pg turns out to
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be useful. If we continue to define k as in (7), pg can be computed as follows:

pg =

bk+b∑

z=b+k

Pr (ej = π|Sj = 0, ζ = z) Pr (ζ = z)

=

bk+b∑

z=b+k

n− z

n− b
Pr (ζ = z) =

n− E [ζ ]

n− b
.

Intuitively, the expected number of banks with positive equity is n− E [ζ ]. Since only good

banks can have positive equity, and there are always n− b good banks, the fraction of good

banks with equity equal to π is just the ratio of the two. The next proposition summarizes

how pg varies in our model depending on the underlying parameters:

Proposition 6. Under Assumptions A1 and A2,

pg =





∏λ/π
i=1

(
n−b−i
n−i

)
if 0 < λ < φ− π

Ψ
(
b, n, φ

π
, λ
π

)
if φ− π ≤ λ ≤ b (φ− π)

1− b
n−b

(
φ
π
− 1
)

if b (φ− π) < λ

(9)

where the function Ψ is weakly decreasing in φ/π and in λ/π.

Proposition 6 reveals that pg generally depends on the magnitude of the losses at bad

banks relative to their assets, φ
π
, the depth of financial ties relative to assets, λ

π
, the number

of bad banks b, and the total number of banks n. One feature we wish to point out now and

that we will revisit below is that the effect of bank losses φ on pg depends on λ. For small

values of λ, specifically for λ < φ − π, changes in φ have no effect on contagion. That is, a

shock that results in bigger losses at bad banks only affects the outside sector, but has no

effect on banks within the network. For large values of λ, though, increasing φ will lower pg.

That is, when banks are more intensely interconnected, a shock that results in bigger losses

at bad banks will wipe out the equity of a larger number of good banks. Essentially, high

values of λ allow losses at bad banks to affect more good banks. While it will be useful to

keep this result in mind, in much of our analysis we can take pg as fixed given the underlying

network and losses at bad banks.

Remark: When λ < b (φ− π), the fraction of banks with zero equity, ζ
n
, is a random

variable – even though the number of bad banks b and the losses per bank φ are deterministic.

For some applications, it will be more convenient to work with a model where the fraction

of banks with zero equity is also deterministic. One way to achieve this is to increase the

number of banks n and exploit the law of large numbers. In particular, suppose we hold the

potential for contagion k in (7) fixed and keep the fraction of bad banks b
n
constant at some
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value θ, but let n → ∞. Let ζn denote the (random) number of banks with zero equity when

there are n banks in the network. When λ < φ − π, we can appeal to Theorem 4.2 in Holst

(1985) to establish that the random variable ζn
n
converges to a constant as n → ∞. Likewise,

the realized fraction of good banks that have zero equity, n−ζn
n−b

, converges to a constant. This

constant will be the same as pg, which recall is just the expected fraction of good banks with

zero equity. Taking the limit for the expression in (9) for the case where λ < φ − π reveals

that pg converges to a particularly simple expression:

lim
n→∞

pg = (1− θ)k (10)

Intuitively, a good bank will only have positive equity if each of the k banks located clockwise

from him are good. As n → ∞, the probability that any one bank is bad converges to

θ independently of what happens to any finite collection of banks around it. Hence, the

probability that the relevant k neighbor banks are all good is (1− θ)k. Although the location

of banks with zero equity remains random even when the size of the network becomes large,

the fraction of all good banks with positive equity n−ζn
n−b

will exhibit no randomness in the

limit and will equal the expected fraction pg. For any given θ, the limiting value of pg can

range between 0 and 1 as k varies from 0 to arbitrarily large integer values. Note that

since k = min
{

λ
π
, φ
π
− 1
}
, values of k that exceed 1

θ
− 1 will violate the second inequality

in Assumption A1, which requires that φ
π
be less than n

b
= 1

θ
. However, this restriction can

essentially be dispensed with for large values of n, since the probability that equity is wiped

out at all banks becomes exceedingly small even without this assumption. The limiting

case as n → ∞ is thus useful not only for eliminating uncertainty regarding the extent of

contagion, but also for demonstrating that the contagion measure pg in a circular network

can assume the full range of possible values, from nearly no contagion (pg → 1) to nearly full

contagion (pg → 0).

Finally, in some of our subsequent analysis we will need the unconditional probability

that a given bank chosen at random has positive equity. Denote this probability by p0. Since

there are exactly b bad banks and n− b good banks, and since all bad banks have zero equity

under Assumption A1, p0 can be expressed directly in terms of pg:

p0 =
n− b

n
pg +

b

n
× 0

=

(
1−

b

n

)
pg (11)
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4 Outside Investors and Bank Equity

We now build on the model of contagion introduced in the previous section by allowing banks

to raise external funds in order to finance productive opportunities. Although all banks can

use the funds they raise profitably regardless of their equity position, we introduce a moral

hazard problem that implies only banks with enough equity will go ahead and use the funds

for productive opportunities. Specifically, we allow banks to divert the funds they raise to

achieve private gains, a temptation that is mitigated by the equity a bank would have to

give if it diverts the funds it raised. More generally, there are various actions banks can

undertake when their equity is low that would be against the interests of outside investors,

e.g. investing in riskier projects or gambling for resurrection.

In this section, we focus on the full-information benchmark in which banks and outside

investors know precisely which banks are bad, and thus which banks have positive equity.

In this case, allowing banks to raise funds has no impact on the contagion that arises in the

model. In particular, since outside investors are only willing to finance banks with enough

equity, banks that would have had zero equity in the original model will not be able to raise

new funds. Letting banks raise funds merely accentuates the inequality between banks with

zero and positive equity. While this leads to no new insights regarding contagion, it does

introduce a reason for why bank equity can matter for the allocation of resources: Bank

equity facilitates gains from trade that would not occur in its absence. When we allow banks

to withhold information about whether they were hit by shocks or not, as we do in the next

section, policy can potentially affect what agents believe about the equity at any given bank

and thus whether trade takes place.

Formally, suppose that outside investors – which can be the same original outsiders that

banks are indebted to or a new group of outsiders – can choose whether to invest with any

of the n banks in the network. Banks have profitable projects they can undertake, but

funding these projects require outside financing; banks cannot use their assets to finance

them. For simplicity, we assume that each bank has a finite number of profitable projects it

can undertake. We set the capacity of the bank to 1 unit of resources. On their own, outside

investors can earn a gross return of r per unit of resources. Banks can earn a gross return of

R on the projects they undertake, where R > r. Thus, there is scope for gains from trade.

We restrict banks and outside investors to transact through debt contract that are junior

to all of the bank’s other obligations. Allowing for equity contracts would not resolve the

moral hazard problem we introduce below, and so we invoke this assumption for convenience

only. Let r∗j denote the equilibrium gross interest rate bank j offers outside investors for any

new funds they invest in the bank. We assume that the outside sector is large enough that
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r∗j is determined competitively, i.e. the expected gross returns to the outside sector from

investing with a bank must equal r. Hence, r∗j ≥ r, and the most a bank can earn from

raising new funds is R − r.

After banks raise funds from outsiders, they observe which banks in the network are bad,

from which they can deduce their equity position. At this point, a bank can choose to either

invest any funds they raised and earn a return R, or divert the funds to a project that accrues

a purely private benefit v per unit of resources. These private benefits cannot be seized by

outsiders. Outside investors cannot monitor what banks do with the funds they raise and

prevent banks from diverting funds. However, if the bank fails to pay the required obligation

r∗j , they can go after any assets the bank owns.

We want v to be large enough to ensure that banks with no equity at stake would divert

funds – so the moral hazard problem is binding – but not so large that even a good bank

that keeps its π worth of assets will be tempted to divert funds. To satisfy the first condition,

we need v > R− r, i.e. the private benefit v exceeds the most a bank can earn from raising

funds and undertaking projects with them. To ensure that a good bank will not be tempted,

we need to make sure that the payoff to the bank from undertaking the project, π +R− r∗j ,

exceeds the payoff if it diverts the funds, v +max
{
π − r∗j , 0

}
, i.e. the bank would earn v in

private benefits but would have to liquidate at least some of its assets to meet the promised

obligation of r∗j . Comparing the two expressions implies we need v < R − max
{
r∗j − π, 0

}
.

Since a bank that can be entrusted not to divert funds need not offer more than r to outsiders,

the condition that ensures banks with assets worth π can credibly promise to invest the funds

they raise is if

v < R−max {r − π, 0} (12)

In sum, we impose the following restriction on the private benefit term v:

Assumption A3: The private benefits v to a bank from diverting 1 unit of resources it

raises from outsiders are neither too high nor too low, specifically

R − r < v < R−max {r − π, 0} (13)

Note that the second inequality in Assumption A3 implies that v < R. Hence, diversion

is never socially optimal.

In the full information benchmark, banks know the entire state of the network S, i.e. they

know the location of the bad banks. In Section 3, we showed that when banks were unable

to raise new funds, Assumption A2 implies there will be ζ banks with zero equity and n− ζ

with equity equal to π, where ζ is a random variable (with possibly degenerate distribution).
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We now show that when banks can raise outside funds, the same ζ banks that would be left

with zero equity in the original model would be unable to attract additional funds and will

thus remain with zero equity, while the remaining n − ζ banks that would have had equity

equal to π in the original model would be able to raise funds and so their current equity will

now be π+R−r. In other words, allowing banks to raise funds when there is full information

does not change the pattern of contagion in our original model.

To derive this result, define a new variable Ij ∈ [0, 1] denote the amount outside investors

invest in bank j. Since Assumption A3 involves strict inequalities, banks will either divert

all of the funds the raise or none. Let Dj = 1 if bank j decides to divert the funds and 0

otherwise. Recall that yj denotes the obligation of bank j to its most senior creditors and

xj the payment bank j makes to bank j + 1. We introduce a new variable wj to denote the

payment bank j makes to outside investors who invest additional funds with bank j. Then

we have

yj = min {xj−1 + π +R (1−Dj) Ij,Φj}

xj = min {xj−1 + π +R (1−Dj) Ij − yj, λ}

wj = min
{
xj−1 + π +R (1−Dj) Ij − yj − xj , r

∗
j Ij
}

Finally, the equity each bank is given by

ej = max {0, xj−1 + π +R (1−Dj) Ij − yj − xj − wj}

For comparison, let {ŷj, x̂j}
n
j=1 denote the payments to senior creditors and other banks,

respectively, if outside investors did not fund any of the banks, i.e. if we set Ij = 0 for all j.

Likewise, define {êj}
n
j=1 as the equity positions given {ŷj, x̂j}

n
j=1, i.e.

êj = max {0, π − Φj + x̂j−1 − x̂j}

Note that êj corresponds to the equity positions we solved for in the previous section in the

absence of any additional investment in banks. Our claim is that in the full-information

benchmark, ej = 0 whenever êj = 0, and ej > 0 whenever êj > 0.

Proposition 7: Given Assumption A1-A3, with full information, ej = 0 for any bank j

for which êj = 0, and ej > 0 if êj > 0. Moreover, Ij = 0 if and only if êj = 0.

Proposition 7 reveals that even though all banks can raise funds and generate new profits

that they can use to repay their obligations, the banks with the greatest resource needs are

the same ones that would divert any funds they receive. Hence, when investors can identify
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which banks were hit with losses, banks that incur losses directly or indirectly will be unable

to raise new funds, and the pattern of contagion will continue unabated. Although letting

banks raise funds but subjecting them to moral hazard problems implies contagion will be

unaffected, modifying our model to include this possibility is important in two respects.

First, we can now assign a social cost to contagion, even if there is nothing in our model

that allows policymakers to prevent it. In particular, when bank balance sheets are linked,

shocks drain more equity away from the banking system and redirect it to senior creditors,

reducing the scope for trade. Second, in the full-information benchmark, some banks receive

funding and some banks do not. By contrast, if no information about the location of the bad

banks became public, investors would view all banks equally. Disclosure can thus affect the

allocation of resources, either by generating investment that would not take place otherwise

or preventing banks that would divert those funds for private gains from securing funds. We

explore whether these changes are desirable in the next section.

5 Disclosure

We can now analyze the implications of mandatory disclosure in our model. To do this, we

introduce one final component into our model, namely a decision by banks whether to incur a

cost and disclose their financial position before they raise funds. We first provide conditions

under which there exists a non-disclosure equilibrium where no bank reveals whether it was

hit by a shock. We then examine under what conditions mandatory disclosure that forces

all banks to reveal whether they were hit with losses can be Pareto improving relative to a

non-disclosure equilibrium.

Our main insight is captured in Theorem 1, which shows that the desirability of manda-

tory disclosure depend on the degree of financial contagion as captured by pg. In particular,

we show that when the extent of contagion is small, so pg is close to 1 and few good banks

fall victim to losses that hit bad banks, mandatory disclosure cannot be Pareto improving.

But when the extent of contagion is large, so pg is close to 0 and almost all good banks

fall victim to losses at bad banks, mandatory disclosure will be Pareto improving as long as

disclosure costs are not too large. Intuitively, when there is little contagion, the traditional

unravelling result applies: Banks that know they are good benefit more from disclosure than

a policymaker expects to gain from forcing a bank whose type is unknown to disclose. Thus,

absent contagion, if a policymaker wants to force disclosure, good banks would already be

willing to disclose. By contrast, when the extent of contagion is very high, so most banks are

likely to have little equity, outsiders would be reluctant to invest in any bank when no infor-

mation about the bank is known. Unilateral disclosure will not help, since even if the bank
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reveals it is good, without knowing anything about its neighbor banks it will remain highly

likely that the bank will have no equity. Good banks are thus stuck in a coordination trap in

which they might all be better off disclosing, but each bank unilaterally disclosing yields no

benefits. However, our analysis reveals some interesting results for intermediate values of pg.

For example, mandatory disclosure can be welfare improving even at intermediate valued of

pg when a bank that discloses it is good will be able to raise funds. Thus, the inefficiency

of equilibrium is not entirely a matter of coordination failures, but more generally reflects

inefficiencies due to informational spillovers.

Formally, we model the process of disclosure as follows. After nature chooses the location

of bad banks as summarized by the vector S, each bank observes whether it is good or

bad, i.e. each bank j observes Sj , but not whether any other bank is good or bad. At this

point, banks may choose to disclose their own situation, at a utility cost c ≥ 0. The cost

of disclosure c captures the fact that conducting and documenting the result of stress-test

exercises can be costly, but it can also crudely capture the fact that disclosure may entail

revealing information about trading strategies to competitors. The latter feature suggests

disclosure may be costly even if the bank is insolvent, which explains why we assume c is a

utility cost rather than a resource cost.

Outside investors observe which banks make which announcements, and decide whether

to invest in any of the banks, as well as the terms of such contracts, given all announcements.

Banks then learn the state of the network S, and only then do they decide whether to invest

the funds they may have received from outside investors or divert them to reap private

benefits. At the last stage, any potential profits are realized and payments are settled.

Since the cost c is borne regardless of whether the bank is solvent, a bad bank (i.e. a bank

with Sj = 1) will never choose to announce. As such, we can describe the bank’s decision

by aj ∈ {0, 1}, where aj = 1 means bank j discloses it is good and aj = 0 means it does

not disclose any information. For now, we assume banks choose aj simultaneously. Once all

banks choose whether to disclose, outside investors observe the vector a = (a1, ..., an) and

choose whether to allocate funds to any of the banks. Let Ij (a) denote the amount outside

investors allocate to bank j, and r∗j (a) denote the rate bank j is charged for any funds it

raises.

5.1 Existence of a Non-Disclosure Equilibrium

We begin by exploring when non-disclosure, meaning aj = 0 for all j, can be part of an

equilibrium. For our equilibrium concept, we use the notion of sequential equilibria as intro-

duced by Kreps and Wilson (1982). This means that off-equilibrium beliefs must correspond

to the limit of beliefs from a sequence of games in which players choose all strategies with
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positive probability but the weight on suboptimal policies tends to zero. Effectively, this

means that when outsiders observe banks act differently than is expected in equilibrium,

they cannot adopt beliefs that imply banks knew something about other banks when they

made their disclosure decisions. For example, our restriction implies that if a bank deviates

and discloses, outsiders must not believe that the disclosing bank is definitely located next

to a bad bank. Such beliefs are consistent with weaker notions of equilibria, but we view

them as implausible given the deviating bank remains ignorant about the financial position

of other banks in the network when it makes its disclosure decision, and so there is no reason

that would justify such pessimism on the part of outside investors.

We now show that the existence of a non-disclosure equilibrium in which aj = 0 for all j

depends on two parameters – the cost of disclosure, c, and the extent of contagion pg. For

non-disclosure to be an equilibrium, each good bank must weakly prefer not to disclose, i.e.

set aj = 0, when it anticipates all other banks choose not to disclose, i.e. a−j = 0. The

payoff to disclosure depends on what outside investors do when no bank discloses and when

one bank discloses it is good. If no bank discloses, the probability that any bank chosen at

random will have positive equity is p0 =
(
1− b

n

)
pg as defined in (11). Under Assumptions

A2 and A3, banks that learn they have zero equity would divert funds and leave nothing for

investors, while banks with positive equity all have π worth of assets. Whether the latter

would choose to invest depends on how much r∗j they promise outside investors. The next

lemma summarizes when banks would divert funds:

Lemma 2: Assume Assumptions A2 and A3 hold. For any bank j where pre-investment

equity would be positive, i.e. ej > 0 it is optimal not to divert funds, i.e to set Dj = 0, if

and only if

r∗j (a) ≤ r ≡ π +R− v. (14)

In other words, if outside investors charge a rate above some threshold r, banks will divert

funds they raise regardless of their equity. In principle, outside investors might still be willing

to fund banks at a rate above r, since they can count on grabbing part of the equity π of

viable. However, it turns out that the equilibrium interest rate charged to any bank will

never exceed r:

Lemma 3: Assume Assumptions A2 and A3 hold. In any equilibrium, r∗j (a) ≤ r for any

bank j that receives funding, i.e. for which Ij(a) = 1.

Assumption A3 ensures that the maximum pledgeable amount r is bigger than the outside

option of outside investors r.4 We now argue that if p0 is sufficiently low, specifically if it

4To see this, consider the two cases r > π and r ≤ π. If r > π, the second inequality in Assumption A3
implies r < R + π − v ≡ r. If r ≤ π, the second inequality in Assumption A3 implies v < R, and hence
r = π +R− v > π ≥ r.
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falls below r/r < 1, then the only possible non-disclosure equilibrium is where Ij = 0. The

reason is that Lemma 3 implies there is an upper bound on the rate banks can charge in

equilibrium. But when no information about banks is available, the rate outside investors

must charge banks to make it more profitable than their outside option is equal to r
p0
. If p0

is high enough, banks that do not receive funding can offer to pay a rate between r
p0

and r

and receive funding. Hence, the only possible non-disclosure equilibria when p0 < r/r would

involve Ij = 1 for all j. For low values of p0, the rate outside investors must charge banks

to make it worthwhile would exceed r, which contradicts Lemma 3. Hence, at these values

banks will be unable to raise any funds, i.e. any non-disclosure equilibrium would involve

Ij = 0 for all j. Since p0 is proportional to pg as seen in (11), whether a non-disclosure

equilibrium involves Ij = 0 or Ij = 1 can be expressed as a condition on pg rather than

p0, i.e. how pg compares with n
n−b

r/r. It will turn out to be more natural to think of these

conditions in terms of pg rather than p0.

We begin with the case where pg >
n

n−b
r/r. We just argued that if there is a non-disclosure

equilibrium, it will involve Ij = 1 for all j. We need to verify there is no incentive for a good

bank to disclose it is good if no other good bank discloses. Since each bank must already

receive funding in equilibrium, the benefit to disclosure will not be that a bank can attract

investment it would not be able to in equilibrium. Instead, the benefit to disclosure is that it

allows the bank to pay outside investors less than it would have to otherwise. In particular,

disclosure will increase the probability outsiders attach to the bank having positive equity

from p0 to pg. This would allow a bank to borrow at a lower promised rate. Along the

equilibrium path, the equilibrium interest rate all banks charge must equal r
p0
, since this is

the rate that ensures outside investors just earn their outside option in expectation. The

implied payoff for a good bank is then

pg

(
π +R −

r

p0

)
+ (1− pg) v (15)

Since a good bank knows it is good, the payoff in (15) is computed using the conditional

probability pg, even though outsiders assign probability p0 that the bank will have positive

equity. If the bank opts to disclose it is good, it will be able to still attract funding it offered

any rate between r
pg

and r
p0
. Hence, when no other good bank chooses to disclose, good banks

will be willing not to disclose its own position if and only if the disclosure cost exceeds the

maximal gain from lowering the rate they are charged, i.e.

c ≥ pg

(
r

p0
−

r

pg

)

=
br

n− b

22



Hence, when pg >
n

n−b
r/r, a non-disclosure equilibrium exists if and only if c > br

n−b
, i.e. when

disclosure costs exceed a fixed threshold. In this case, the unique non-disclosure equilibrium

is one where all banks receive funding, and investors who end up investing in banks with

zero equity will take losses. While this is the unique non-disclosure equilibrium, there may

be other equilibria with partial or full disclosure given these values for pg and c. Since we are

interested in whether there is scope for mandating disclosure when disclosure wouldn’t occur

otherwise, we only provide conditions that ensure non-disclosure equilibria exist rather than

characterize the full set of equilibria.

Next, we turn to the case where pg falls below n
n−b

r/r. In this case, we argued above that

the only possible non-disclosure equilibrium in one in which outside investors refrain from

investing in any bank, i.e. Ij = 0 for all j. We need to verify that no good bank would

wish to disclose its position given no other bank discloses. Since there is no investment in

equilibrium, the only way a bank could benefit from disclosure is if revealing it has equity will

induce outsiders to fund it. Hence, non-disclosure will be an equilibrium if either unilateral

disclosure will not induce outsiders to invest in that bank, or if unilateral disclosure will

induce investment but the cost of disclosure is too high relative to the gains from attracting

investment.

Given our restriction to sequential equilibria, a good bank that unilaterally discloses it

is good should expect outside investors to assign probability pg that the bank has positive

equity. Hence, outsiders will demand at least r
pg

to lend to the bank, since a bank that learns

it has zero equity will divert funds for sure. From Lemma 2, we know that if r
pg

> r, a

bank will not be able to both pay enough to outsiders and credibly commit not to divert

funds. Hence, if pg < r/r, a good bank will not be able to attract investment if it discloses

unilaterally. In this case, non-disclosure will be an equilibrium for any c ≥ 0. The fact that

non-disclosure is an equilibrium even when c = 0 is of particular interest, since it reveals that

our model gives rise to non-disclosure equilibria in cases not already captured by previous

work on disclosure as summarized in Beyer et al. (2010). What drives our result is that our

model exhibits a strong informational spillover in which information from more than one

agent is required to piece together whether a bank has sufficient equity to be worth investing

in. This feature is absent from previous work on disclosure that allowed for certain types of

informational spillovers, e.g. Admati and Pfleiderer (2000). In the latter case, a firm can

disclose all of the relevant information on its own when other firms fail to disclose, and their

model only yields non-disclosure equilibria when disclosure is costly.5

5Okuno-Fujiwara, Postlewaite, and Suzumura (1990) obtain a result that is closer in spirit to our finding.
They provide several examples where non-disclosure can be an equilibrium. In one of these (Example 4), a
firm can disclose information it has about another firm, and so piecing information about one agent requires
disclosure from others. In their setup, a firm does not benefit from disclosing unfavorable information about
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The only remaining case is the one where r/r < pg < n
n−b

r/r. Under these parameter

restrictions, p0 < r/r < pg. This means that when no bank discloses, investors will be too

worried about default to invest in any one bank, but once a single bank reveals it is good it

will be able to attract investment from outsiders. In particular, since pg > r/r, a bank that

discloses can offer a rate below r that remains competitive with the return r outsiders can

earn. By disclosing and attracting investment, the bank will change its utility by

pg (R− r/pg) + (1− pg) v − c

Hence, for non-disclosure to be an equilibrium, the cost c must be sufficiently large to make

disclosure unprofitable, i.e.

pg (R− v) + v − r < c

As in the case with pg > n
n−b

r/r, a non-disclosure equilibrium exists only if the cost of

disclosure c is sufficiently high.

We collect the analysis of the three cases above into the following proposition:

Proposition 8. Assume that Assumptions A2 and A3 hold. Then

1. A non-disclosure equilibrium with no investment can only exist if pg ≤ min
(
1, n

n−b
r/r
)
.

Such an equilibrium exists if either

(i) pg ≤ r/r; or

(ii) r/r < pg ≤
n

n−b
r/r and c ≥ pg(R − v) + v − r

2. A non-disclosure equilibrium with investment can exist only if pg ≥ n
n−b

(r/r). Such an

equilibrium exists if

(i) b
n
≤ 1− r/r; and

(ii) pg ≥
n

n−b
r/r and c ≥ b

n−b
r

Figure ?? shows the same results graphically. The shaded region corresponds to the set

of parameters for which a non-disclosure equilibria exists. Since the thresholds for c are not

generally comparable for pg <
n

n−b
r/r and pg >

n
n−b

r/r, we drew the figures for these two cases

separately.

While we characterize our results in terms of the contagion parameter pg, recall from

Proposition 6 that this measure in turn depends on primitives that describe the financial

its competitor because in the absence of disclosure the firm’s competitor is already at a corner and would
act the same way if the firm disclosed unfavorable information about it. In this case, the information doesn’t
matter. By contrast, in our case disclosure matters – outside investors are willing to charge the bank a lower
rate after it discloses, but the information isn’t enough to make an impact without disclosure by others.
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network for banks, e.g. the magnitude of losses φ and the magnitude of obligations λ across

banks. Acknowledging this connection reveals some interesting comparative statics. For

example, consider the case where φ is small. In that case, pg will be close to 1, and so if there

is a non-disclosure equilibrium it will be one in which all banks are able to raise funds. In

response to news that losses at banks are now much bigger, so φ is higher, the implications

for equilibrium depend on λ. When λ is small, pg will not change much. Indeed, recall from

Section 3 that when λ < φ, a change in φ will have no effect on pg. Thus, the economy can

remain in the same equilibrium. But if λ is large, pg will fall with φ. If pg falls sufficiently,

then if non-disclosure persists, the only possible equilibrium is one in which no banks are

able to attract funds. In this sense, the model suggests that large degrees of leverage against

other banks as measured by λ allow shocks to give rise to market freezes that would not

occur when λ is smaller.

5.2 Mandatory Disclosure and Welfare

We now turn to the question of whether if a non-disclosure equilibrium exists, a policy

of mandatory disclosure can Pareto improve upon this equilibrium. From Proposition 8, we

know that there are two types of non-disclosure equilibria, those where pg is low and outsiders

refrain from investing in any of the banks, and those where pg is high and outsiders invest in

all banks even when no information is disclosed.

We begin with non-disclosure equilibria where there is no investment, i.e. when pg <
n

n−b
r/r. In this case, mandatory disclosure induces a shift from a situation in which no bank

receives funding to one in which all banks that have positive equity before raising any funds

can attract funds they subsequently invest as a gross return of R. The expected number

of banks that will be able to attract investment under mandatory disclosure is equal to

(n− b) pg. Each of these can create a surplus of R − r, i.e. resources that are unavailable

when no disclosure and no investment takes place. Since each bank will have to incur a

cost c to disclose its information, the cost of revealing that information that lets banks with

positive equity raise funds is equal to cn. Hence, starting from a situation in which no banks

receive funding because no bank discloses, mandatory disclosure will be Pareto improving if

and only if

(n− b) pg (R− r)− cn > 0. (16)

To determine whether this condition is compatible with the existence of a non-disclosure

equilibrium with no investment in the first place, we need to compare (16) and the conditions

in Proposition 8 for the existence of such an equilibrium. There are two cases to consider.
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First, when pg < r/r, such an equilibrium always exists regardless of c. This is because for

very low values of pg, a bank that unilaterally discloses it is good will not be able to attract

investment. By contrast, (16) implies that forcing all firms to disclose in order to identify

banks with positive equity will only be valuable if the cost of disclosure c is not too large.

The next proposition summarizes the values of c that imply mandatory disclosure will be

Pareto improving for a given value of pg ≤ r/r:

Proposition 9. Assume that Assumptions A2 and A3 hold. If 0 < pg ≤ r/r and c ≤

(R − r) n−b
n
pg, mandatory disclosure will Pareto dominate the non-disclosure equilibrium.

Next, we consider the case where r/r < pg <
n

n−b
r/r. For these values of pg, non-disclosure

equilibria only exist if c is large enough. This is because for these values, a bank that

announces it is good will be able to attract investment, and so it will internalize the benefits

from disclosing that are inherent in determining when mandatory disclosure is beneficial.

However, the private benefit from unilateral disclosure can deviate from the social benefit

from mandatory disclosure. Mandatory disclosure would lead to a situation in which only

banks that have enough equity will get funding. Since no bank ends up diverting funds, the

value v does not appear in (16). By contrast, when a good bank is contemplating disclosing

its financial position unilaterally, it realizes that it may end up with too little equity because

it was exposed to losses at other banks, in which case it will divert funds and earn v. Thus,

in deciding whether to unilaterally disclose, a bank will care about the value of v. Hence,

the condition that ensures a non-disclosure equilibrium with no investment exists need not

coincide with the condition that ensures mandatory disclosure will be preferable to a non-

disclosure equilibrium with no investment. Hence, even for this range of values for pg, there

may be scope for mandatory disclosure to be Pareto improving.

The conditions for when a non-disclosure equilibrium exists for r/r < pg <
n

n−b
r/r but which

can nonetheless be improved upon are summarized in Proposition 10 below. Essentially,

there are two necessary conditions. First, we need v < r, i.e. diversion of funds is socially

inefficient, since the private benefits it generates are below what outsiders could earn on their

own. Without this condition, it must be the case that whenever it is socially optimal to force

mandatory disclosure, the private gains from unilateral disclosure will be even higher given a

bank expects to profit considerably even if the bank that owes it money defaults. But if v is

sufficiently low, banks may opt not to disclose even when it will be socially beneficial to do

so. The second condition is that the fraction of bad banks b
n
cannot be too large. Intuitively,

for a bank considering disclosing unilaterally, the cost of communicating to investors that it

is good is c. But for a policymaker who does know in advance which banks are good, the cost

of disclosure per good bank is n
n−b

c since mandatory disclosure of all banks implies getting
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not just good banks to disclose. This implicitly higher cost of disclosure can make mandatory

disclosure undesirable, and so for mandatory disclosure to be welfare improving we need the

fraction of bad banks to be small. Formally, the conditions for when mandatory disclosure

can impove upon a non-dislcosure equilibrium when pg ∈
(
r/r, n

n−b
r/r
]
can be summarized as

follows:

Proposition 10. Assume that Assumptions A2 and A3 hold. Suppose r/r < pg <
n

n−b
r/r.

Then

1. If v ≥ r and there exists a non-disclosure equilibrium, mandatory disclosure cannot

lead to a Pareto improvement upon this equilibrium.

2. If v < r, then

(a) If b
n
>
(

r
r
− 1
)

r−v
R−r

, there exists no non-disclosure equilibrium with no investment

which can be Pareto improved via mandatory disclosure.

(b) If b
n
≤
(

r
r
− 1
)

r−v
R−r

, a non-disclosure equilibrium with no investment exists but is

Pareto dominated by mandatory disclosure whenever

i. r/r < pg < min
{

n
n−b

r/r, r−v
(R−v)−(1−b/n)(R−r)

}
, and

ii. (R − v)pg + (v − r) ≤ c ≤ n−b
n
pg (R− r) .

Since min
{

n
n−b

r/r, r−v
(R−v)−(1−b/n)(R−r)

}
< 1, condition (i) only holds for pg < 1.

Note that the upper bound on pg in part (2.b.i) of Proposition 10 is strictly below 1.

Hence, using mandatory disclosure to induce investment when no investment would occur

otherwise will only be desirable when there is sufficiently high contagion, i.e. when pg is

sufficiently below 1.

Finally, we turn to the case where pg > n
n−b

r/r. Recall from Proposition 8 that in this

case, if no firm disclosed, outside investors will invest in all banks. This does not mean that

banks have no reason to disclose: A bank that reveals it is good will be able to offer a lower

return to outside investors who invest with it. This represents a purely private gain: The

bank is able to grab more of the surplus from outside investors, but disclosing it is good

yields no additional surplus given the bank was receiving funds already. As Jovanovic (1982)

points out, when disclosure decisions are driven by purely private gains, mandating disclosure

is typically undesirable: It represents a costly activity that yields no social gains. Fishman

and Hagerty (1989) also show that when disclosure is driven by rent-seeking, forcing more

disclosure than occurs in equilibrium is not necessarily desirable. By contrast, since our

model exhibits informational spillovers, disclosure may remain desirable even though each
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bank’s decision to disclose is entirely driven by rent-seeking. To see this, observe that the

expected amount of available resources is given by

(n− b) pg (π +R) + [n− (n− b) pg] v (17)

where (n− b) pg represents the expected number of banks with zero equity. While this

represents the wealth of the economy, these resources cannot be freely allocated since v are

private benefits and are only available to banks. Nevertheless, we can compare this amount

to the total available resources when all information is disclosed and investors know to avoid

banks with zero equity. In this case, the expected resources are given by

(n− b) pg (π +R) + [n− (n− b) pg] r (18)

When v < r, the private benefits banks obtain are less than the returns outsiders can earn

and diversion is socially wasteful. As long as the benefits from disclosure exceed the costs, i.e.

if [n− (n− b) pg] (r − v) exceeds cn, or alternatively if c <
(
1− n−b

n
pg
)
(r − v), mandatory

disclosure could be socially beneficial. Comparing with the condtion for the existence of

a non-disclosure equilibrium implies that for a given pg > n
n−b

r/r reveals that mandatory

disclosure can be welfare improving relative to a non-disclosure equilibrium when the cost of

disclosure c satsifies
br

n− b
< c <

(
1−

n− b

n
pg

)
(r − v) (19)

Once again, for this set of values to be non-empty, two conditions must be satisfied. First,

v < r. This is because when investment already takes place in the absence of any disclosure,

the value of disclosure can only come from preventing socially wasteful diversion. Second, the

fraction of bad banks b
n
cannot be too large. Again, a larger fraction of bad banks raises the

effective cost of mandatory disclosure relative to the considerations that determine whether

an individual bank would like to disclose. Formally, the conditions for when mandatory

disclosure can impove upon a non-dislcosure equilibrium when pg >
n

n−b
r/r can be summarized

as follows:

Proposition 11. Assume that Assumptions A2 and A3 hold. Suppose pg ≥ n
n−b

r/r.

Then

1. If v ≥ r and there exists a non-disclosure equilibrium, mandatory disclosure cannot

lead to a Pareto improvement upon this equilibrium.

2. If v < r, then

(a) If b
n
> r−v

(r−v)(1−r/r)+r
(1− r/r), there exists no non-disclosure equilibrium with in-
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vestment which can be Pareto improved via mandatory disclosure.

(b) If b
n
≤ r−v

(r−v)(1−r/r)+r
(1− r/r), a non-disclosure equilibrium with investment exists

but is Pareto dominated by mandatory disclosure whenever

i. n
n−b

r/r ≤ pg ≤
n

n−b

(
1− b

n−b
r

r−v

)
, and

ii. b
n−b

r ≤ c ≤ (1− n−b
n

pg)(r − v)r/r.

Since n
n−b

(
1− b

n−b
r

r−v

)
< 1, condition (i) only holds for pg < 1.

Note the parallel with Proposition 10. Once again, the upper bound on pg in part (2.b.i)

of Proposition 11 is strictly below 1. Hence, using mandatory disclosure to avoid wasteful

diversion of funds to low return private gains can only be beneficial when there is sufficiently

high contagion. Although banks who contemplate disclosure care are motivated by private

rents, when diversion is socially costly it will drive up how much banks have to pay to

borrow when outside investors do not know if they are good. Thus, banks will internalize

the benefits from disclosure, and in the absence of contagion will already be motivated to

disclose whenever mandatory disclosure is socially desirable.

Summarizing Propositions 9-11 yields the following result regarding the desirability of

mandatory disclosure as a function of the extreme values pg can assume:

Theorem 1. Assume that Assumptions A2 and A3 hold. For pg sufficiently close to 1,

mandatory disclosure cannot Pareto improve upon a non-disclosure equilibrium. Conversely,

for pg sufficiently close to but not equal to 0, if the c is low, the non-disclosure equilibrium

is Pareto-improveable.

While there are disclosure cost for which a Pareto improvement on the non-disclosure

equilibrium exists when pg is small but positive, this will not be true when pg = 0. In

that case, there are no banks worth investing in, and so disclosure serves no role. More

generally, for pg <
n

n−b
r/r̄, the maximal social gains from mandatory disclosure are increasing

in pg, since a higher value of pg implies a larger fraction of banks can profitably invest if

they could raise funding. This illustrates an important tension inherent in our model: More

contagion makes it more likely that mandatory disclosure can be Pareto improving, but it

also makes the gains from such intervention smaller. When pg > n
n−b

r/r̄, the maximal gains

from mandatory disclosure are instead decreasing in pg. This is because for these values,

investors finance all banks and the benefit of mandatory disclosure instead from avoiding

socially wasteful diversion. A higher pg implies more such diversion will take place. In

this case, more contagion makes it both more likely that mandatory dislcosure can be Pareto

improving and increases the gains from such intervention. But now there is a different tension:

Although more contagion makes the case for mandatory disclosure stronger, it also makes
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non-disclosure equilibria in which investors agree to invest when no information is disclosed

less likely.

Finally, returning to the question of what drives pg, we can relate our observation on

the implications of λ for contagion to the desirability of requiring banks to disclose their

potential losses. Recall that a shock which increases the losses φ at bad banks will have

no effect on the degree of contagion when λ is small but will increase contagion when λ is

large. Thus, a shock that would not have led to market freezes or made mandatory disclosure

desirable when banks were not strongly connected can both lead to market freezes and make

mandatory disclosure desirable when banks are more strongly connected.

6 Alternative Network Structures

So far, our model of financial contagion relied on a very particular network structure. Recall

that a network is generally defined by a set of financial obligations Λij that represent the

liabilities of each bank i ∈ {0, ..., n− 1} to all other banks j 6= i. We considered the special

case where Λij = λ for j = i + 1 (mod n). We now argue that our key result on welfare

extends to a larger class of networks.

Under the most general specification, the liabilities across banks can be summarized by

an n × n matrix Λ with zeros along the diagonal. We want to preserve the feature that in

the absence of any shocks, the equity at any given bank will equal π, the value of the assets

it is endowed with. This requires that each bank has a zero net position with the remaining

banks in the network, i.e. its obligations to other banks are equal to the obligations it has

from other banks: ∑

j 6=i

Λij =
∑

j 6=i

Λji (20)

Condition (20) is often described in the network literature as a statement that the weighted

network Λ is regular. See, for example, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013).

As in the case of the circular network, we let the financial network be hit by a shock

process governed by two parameters: b, the number of bad banks, and φ, the losses at each

bad bank. We continue to assume that each of the
(
n
b

)
possible locations of the bad banks

within the network are equally likely.

Rather than just n payments {xj}
n−1
j=0 we now have payments between all pairs of banks,

{xij}i 6=j . Since banks that are hit with shocks will be unable to meet all of their obligations,

we need to specify a rule for how available resources should be divided. We follow Eisenberg

and Noe (2001) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013) in assuming that an

insolvent bank pays the same pro-rata share to each of the banks it owes resources. That is,
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define

Λi =
∑n−1

j=0
Λij (21)

as the total obligations of bank i. If bank i is insolvent, it will pay each bank j it is obligated

to a fraction
Λij

Λi
of the resources is does have. This implies that the set of payments xij solve

the system of equations

xij =
Λij

Λi
max

{
min

{
Λi , π − Siφ+

∑n−1

j=0
xji

}
, 0
}
for all i 6= j (22)

where recall Si = 1 if bank i is bad. We can then define the equity of bank i as

ei = π +
∑n−1

j=0
xji − Sjφ−

∑n−1

j=0
xij (23)

An important feature of the circular network that makes it analytically tractable is that it

implies a particular symmetry: Each good bank is equally exposed to contagion regarldess of

its location along the network. This allows us to summarize contagion with a single statistic,

pg, the probability that a bank will be unaffected by contagion and will be able to keep all of

its initial endowment π. We shall now argue that for networks that exhibit a similar type of

symmetry, our key insight continues to hold regarding the connection between the degree of

contagion and whether mandatory disclosure can be welfare improving when a non-disclosure

equilibrium exists. Formally, we have

Definition: A financial network with payment obligations Λ is symmetrically vulnerable

to contagion given the shock process {b, φ} if with b bad banks that are each hit with a shock

of size φ, the distribution of equity for a good bank across all possible realizations of S does

not depend on its location in the network, i.e.

Pr (ej = x|Sj = 0) for all x ∈ [0, π] (24)

is independent of j.

The circular network we have focused on so far clearly satisfies this condition. However,

there are other networks that are symmetrically vulnerable to contagion. One example is the

class of circulant networks, i.e. networks in which the payment obligation Λij from bank i

to bank j can be expressed as a function of i− j (mod n), i.e. the distance between banks i

and j. In other words, the matrix of obligations Λ is a circulant matrix:
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Λ =




0 λ1 λ2 · · · λn−1

λn−1 0 λ1 · · · λn−2

λn−2 λn−1 0 · · · λn−3

...
...

...
. . .

...

λ1 λ2 λ3 · · · 0




(25)

The next lemma confirms that circulant networks exhibit symmetric vulnerability to

contagion:

Lemma 4: Suppose Λ is a circulant matrix. Then the financial network with payment

obligations Λ is symmetrically vulnerable to contagion.

Note that the circular network is a special case in which λ1 = λ and λj = 0 for all

j 6= 1. But the class of ciruclant networks encompasses other network structures that have

been discussed in the literature, including complete financial networks where banks maintain

equal liabilities with all other banks, i.e. λj = λ for all j 6= 0, partially complete networks

where banks have liabilities with more than one bank, e.g. the interconnected ring network

in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013), and symmetric isolated networks such as

isolated pairs.

Remark: Note that the symmetry property we impose concern the symmetry of an

outcome along the network rather than about the network itself. Circulant networks are

symmetric networks, in the sense that the nodes and links in the network are exchangeable,

which makes it easy to confirm symmetric vulnerability to contagion. Indeed, for any sym-

metric network, the same argument behind Lemma 4 can be used to show that the network

is symmetrically vulnerable to contagion. However, symmetric vulnerability to contagion

can also arise with asymmetric networks in which no nodes or links are exchangeable. In

the Appendix we give an example of an asymmetric network Λ that nevertheless exhibits

symmetric vulnerability to contagion, at least for particular values of b and φ.

For any network that is symmetrically vulnerable to contagion, we can continue to define

pg as Pr (ej = π|Sj = 0) for any j. That is, pg represents the probability that a good bank

will be unaffected by contagion, meaning it will not have to sell off any of its initial resources.

However, in contrast with the case of the circular network under Assumption A2, pg must

no longer represent the probability that a good bank will divert funds if it learns that it is

bad. This is because when banks have obligations to multiple banks, the distribution for ej

at any good bank j will assign positive probability to more than 0 and π. At intermediate

values, a bank affected by contagion might still have enough equity that it will prefer to

invest its funds. Hence, the conditions that determine whether a non-disclosure equilibrium
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exists we derived for the circular network under Assumption A2 do not apply in this more

general case, since the probability agents assign to a good bank investing the funds need not

equal pg. Nevertheless, we still obtain an analogous result to Theorem 1 on the connection

between pg and the improveability of non-disclosure equilibria:

Theorem 2. Suppose Λ is regular, i.e. it satisfies (20), and is symmetrically vulnerable to

contagion. Suppose that π < φ and that Assumption A3 holds. For pg sufficiently close to 1,

mandatory disclosure cannot Pareto improve upon a non-disclosure equilibrium. Conversely,

for pg sufficiently close to but not equal to 0, if the c is low, the non-disclosure equilibrium

is Pareto-improveable.

Note that Theorem 2 implies Theorem 1 and thus strictly generalizes our results for the

circular network. However, it would be incorrect to conclude that the structure of the network

is irrelevant. In fact, there are two reasons why network structure matters for the desirability

of mandatory disclosure.

First, for values of pg that are sufficiently below 1 that a non-disclosure equilibrium can

be Pareto improving, the values of c for which mandatory disclosure can be Pareto improving

will depend on the network structure. Interestingly, we find that for a given value pg, the

range of values of c for which a non-disclosure equilibrium exists but can be improved upon by

mandating disclosure is weakly larger than what we derived for the circular network under

Assumption A2. Intuitively, when a firm discloses it is good, it would reduce the risk of

investing with the banks that are exposed to that bank because of balance sheet effects.

That would allow those banks to borrow at lower rates. At a lower rate, the threshold level

of equity at which a firm would be willing to invest the funds it raised rather than divert

them rises. Since diversion is socially wasteful under Assumption A3 given v < R, this is an

implicit benefit of disclosure that banks do not take into account. In the circular network

under Assumption A2, this margin was missing because equity could only assume two values,

0 and π.

Second, the structure of the network determines the contagion probability pg. As such,

the structure of the network will certainly matter for whether mandatory disclosure can be

Pareto improving over a non-disclosure equilibrium, even if our result concerning what would

happen at extreme values of pg are unchanged. As an example, consider the complete network

in which λj = λ for all j 6= 0. In this case, the exact location of bad banks is irrelevant, since

the equity of any good bank will be the same regardless of which banks are bad given the

uniform exposure. Intuitively, mandatory disclosure can serve no positive role in this case.

Consistent with this, for this network pg can take on only two values, 0 and 1, and so pg never

falls in the region where Theorem 2 tells us mandatory disclosure can be Pareto improving.
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This is in contrast to the circular network, where recall pg can assume any value between 0

and 1, at least for large values of n.

As another example, suppose n is even, and consider the case where there are n/2 isolated

pairs indebted to one another. If φ and λ are both large, a good bank will have equity above

e only if the other bank it is paired with is good. Since there are b bad banks and n − 1

locations, the probability that a given good bank is paired with another good bank, or pg, is

equal to 1 − b
n−1

. In this case, the degree of contagion will be large if b is sufficiently large.

Hence, mandatory disclosure can be Pareto improving. However, for intermediate values pg,

mandatory disclosure can only be beneficial if b
n
is small, just as in the case with a circular

network under Assumption A2. But since high contagion requires relatively high values of b,

the two conditions may be incompatible.

7 Current Limitations and Future Work

The main result in this paper that in the when contagion is substantial and disclosure cost

are not too high a policy of mandatory disclosure results in a Pareto improvement relative to

an equilibrium without disclosure. The model is very simple, which makes the arguments, we

hope, transparent. Yet it leaves out many features which we briefly mention here. We first

comment on features that are mainly related to the modeling of the network of banks, and

second on those that are mainly related to the game played by banks and outside investors.

The simplicity of our game between banks and outside investors relies, in part, on the

symmetry of the network model of banks. In particular, in our set-up all banks that learn

the value of the shock to the directly held assets but that have no other information, i.e. that

known Sj ∈ {0, 1} , are alike. This simplifies the type of information that banks will have

at the time of their disclosure decision in an equilibrium with no disclosure. The restrictions

on the type of network we analyze, in particular that the obligations Λ are known to all,

that Λ is a circulant matrix, that the number of total bad banks is known, and that the

size of the negative shock is the same for all bad banks. This combination of assumptions

excludes several interesting cases. First, our set up excludes the case where some banks are

more centrally located with others, such as the core-periphery networks analyzed by Babus

and Kondor (2013). This type of heterogeneity is both realistic for financial institutions, and

may have interesting implications for the disclosure policy. For instance, it may be the case

that mandatory disclosure of the core-banks is enough to improve on an equilibrium without

disclosure, i.e. it may be just enough to require information disclosure for systemically

important institutions. Related to this, notice that stress tests are done on large banks only.

Second, we assume that banks and outside investors know the structure of the network.
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Relaxing this will be challenging, but interesting since it captures the idea of complexity

and opacity often associated with trading in derivatives. Third, we assume that in every

realization , i.e. for every S, the number of bad banks and the severity of the shocks to each

of them is the same. Our setup allows uncertainty on the total value of banks’ equity in

the networks across different realizations. For instance, as analyzed in the case of the circle

covering problem, the total equity across banks depend on whether the realization of the b

bad banks are spread out in the network (in which case the total equity in the banking system

is low) or bunch up, in which case the total equity in the banking system is higher. Yet a

more general specification, may better capture actual investors’ uncertainty about banks in

the case of stress tests.

Next we comment on features that our model left out and that are primarily related to the

game between banks and outside investors. First, in our model we use a simultaneous move

game for disclosure, which highlights the possibility of coordination failure and information

spillovers. We could, instead, assume that the information disclosure by banks is sequential.

This alternative set up allows for informational cascades and herding, where information

gets “trapped”. Second, our information structure and the modeling of disclosure is binary:

either banks completely and credibly reveal whether they had a negative shock on the value

of their directly held assets, or they don’t provide any information. Alternatively, banks

can face a continuous information disclosure decision. We conjecture that this will make

the cost for which there is an equilibrium without information disclosure vary continuously

with the degree of contagion. Third, we assume that banks can disclose an incontrovertible

proof of their state. A more realistic model will be that banks can give an informative, yet

imperfect signal. This open new possibilities which are relevant for the difference between

the social and private value of information disclosure. In particular in the presence of noisy

but correlated information -which is implied by the interconnection between banks- it may

be easier to find equilibrium without disclosure that can be Pareto dominated by mandated

disclosure. Forth, we have considered a policy in which all banks are forced to disclose their

state. But there is no presumption that such a policy is optimal subject to the informational

constraints and the contracting frictions. For instance, some form of partial forced disclosure,

where only some institutions are forced to disclose, may be better.

Finally, there are two features of our model which differ from even a stylized description of

stress tests. One is that our model the uncertainty is about realized losses of banks. Instead,

stress test emphasize the exposure to unrealized tail risks. Second, in our model the negative

outcome is zero equity: banks which either receive bad shocks or which are owned by those

with bad shocks go bankrupt. For banks subject stress tests, the negative outcome is low

equity, which may either mandate as a matter of policy, or require as a market outcome,
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recapitalization.

The result in our paper implies that stress test, at least insofar as they include mandatory

disclosure of information clauses, are socially beneficial provided that there is enough depen-

dence on their counterpart risk or enough “contagion” , a condition which several observers

of the crises regard as realistic for banks. Stress tests have other features too which are not

captures by our simple model. Our model also has implications for the recommendation of

migration of trade of derivatives from over-the-counter to centralized exchanges.6 One of the

reasons for this recommendation is the fragility that chain of indirect exposure of counter-

part risk, which we argue it is captured in our model. We do not model the equivalent to

migrating to an exchange, which can be considered to have a different network for trade, but

presumably there are cost and benefits of such different network. Instead we view the policy

of mandatory disclosure of information as a substitute to the migration to exchanges, i.e.

we view it as a policy that can address some of the shortcomings of over-the-counter trade

which motivate the policy of migration to centralized exchanges.
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A Proofs

Proof of Proposition 1: We can rewrite the system of equation as

xj = Tj (xj−1) ≡ max {0,min (xj−1 + π − Φj , λ)}

By repeated substitution, we have that the system of equations {xj = Tj (xj−1)}
n
j=1 can be

reduced to a single equation
x0 = T ∗ (x0)

where
T ∗ (x0) ≡ Tn ◦ Tn−1 ◦ · · · ◦ T1 (x0)
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The mapping T ∗ is continuous, monotone, bounded. Moreover, for any x and y in [0, λ], we
have |T ∗ (x)− T ∗ (y)| ≤ |x− y|. Let

x = lim
m→∞

(T ∗)m (0)

x = lim
m→∞

(T ∗)m (λ)

These limits exist given T is monotone and bounded. By continuity, x and x are solutions,
i.e.

x = T (x) and x = T (x)

Moreover, by monotonicity, (T ∗)m (0) ≤ (T ∗)m (λ) for any m. Taking the limit, x ≤ x.

Suppose x < x. Then for any µ ∈ (0, 1), the value xµ = µx + (1− µ) x must also be a
solution, i.e.

xµ = T (xµ)

For suppose
xµ > (T ∗) (xµ)

In this case, we have

xµ − x > T ∗ (xµ)− x

= T ∗ (xµ)− T ∗ (x) ≥ 0

But this counterfactually implies

|xµ − x| > |T ∗ (xµ)− T ∗ (x)|

Likewise, if
xµ < (T ∗) (xµ)

then we can show that

x− xµ > x− T ∗ (xµ)

= T ∗ (x)− T ∗ (xµ) ≥ 0

which again counterfactually implies

|xµ − x| > |T ∗ (xµ)− T ∗ (x)|

We conclude that T ∗ (x) = x for all x ∈ [x, x]. This in turn implies that for all x ∈ [x, x] and
all j ∈ {1, ..., n},

Tj ◦ · · · ◦ T1 (x) = x+ π − Φj

This condition would be violated if for some x ∈ [x, x], one of these two conditions must
hold:

(i) Tj−1 (x) + π − Φj > λ
(ii) Tj−1 (x) + π − Φj < 0
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But this implies there exist two values x′ 6= x′′ from[x, x] such that

Tj (x
′) = Tj (x

′′)

and hence T ∗ (x′) = T ∗ (x′′), which requires x′ = x′′, a contradiction. It follows that

T ∗ (x) = x+
n∑

j=1

(π − Φj)

for all x ∈ [x, x]. But since T ∗ (x) must equal x in this interval, we must have

n∑

j=1

(π − Φj) = 0

This implies that x = x, i.e. there is a unique solution, whenever

n∑

j=1

(π − Φj) 6= 0

This completes the proof for the case where nπ 6= bφ. �

Proof of Proposition 2: Since φ ≤ π <
n

b
φ, we know the solution is unique based

on Proposition 1. It will suffice to guess and verify that xj = λ is a solution. For any
j ∈ {1, ..., n}, we have

xj = max {0,min (λ+ π − Φj , λ)}

Since π − Φj ≥ 0 regardless of Φj , xj = λ represents a proper solution. �

Proof of Proposition 3: By construction, ej ≥ π − Φj + xj−1 − xj . Summing up over
all j yields

n∑

j=1

ej ≥

n∑

j=1

(π − Φj + xj−1 − xj)

= nπ − bφ

> 0

This contradicts the fact that ej = 0 for all j. Hence, there must exist at least one j for
which xj = λ.

Next, we argue that the fact that ej > 0 for some j implies xj = λ for some j.
For suppose not. Since xj = max {0,min {xj−1 + π − Φj , λ}}, it follows that xj−1 + π −
Φj < λ for all j. Hence, xj = max {0, xj−1 + π − Φj}. From this, it follows that ej =
max {π − Φj + xj−1 − xj , 0} = 0, since either π − Φj + xj−1 < 0 in which case xj = 0 and ej
is the maximum of a negative expression and 0, and thus equal to 0, or else xj = xj−1+π−Φj

and so ej = max {π − Φj + xj−1 − xj , 0} = max {0, 0} = 0. �
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Proof of Proposition 4: Define S∗ as the state of the world in banks n− b+1 through
n, are the bad banks. That is, S∗

j = 1 for j ∈ {n− b+ 1, ..., n}. This correspond to the case
where the location of the bad banks is concentrated in the sense that all of the bad banks
are adjacent to one another on the network.

Result 1: Suppose λ > b (φ− π). Then if S = S∗, we have xj > 0 for all j.
Proof of Result 1: Suppose xn = 0. Then xj = min {jπ, λ} for all j ∈ {1, ..., n− b}.

Since nπ > bφ, then

(n− b) π > b (φ− π)

Set λ = b (φ− π) + ε where ε > 0. Choose ε sufficiently small so that

(n− b) π > b (φ− π) + ε

Then xn−b = λ = b (φ− π) + ε. Since the next b banks are bad, it follows that

xn = min {0, xn−b − b (φ− π)}

= ε

Therefore, xn > 0, a contradiction. Since since T ∗ is weakly increasing in λ, then if T ∗ (0) > 0
for λ = b (φ− π) + ε, then T ∗ (0) > 0 for any λ′ > b (φ− π) + ε.

Let Tj (x;S) denote the operator Tj for a particular state of the network S. Likewise, let
T ∗ (x;S) denote T ∗ (x;S) = Tn (·;S) ◦ · · · ◦ T1 (x;S) for a particular S. Result 3 implies that
T ∗ (0;S∗) > 0 whenever λ > b (φ− π).

Result 2: T ∗ (0;S) ≥ T ∗ (0;S∗) for all S.
Proof : Take any S. Starting from a state of the banking network S∗, we can reach any

new state S 6= S∗ with a finite number of steps where in each step we find a pair of adjacent
banks, one good bank with a lower index and one bad bank with a higher index, and swap
them so that the bad bank has the lower index and the good bank has the higher index.
Formally, there exists a sequence of vectors of the state of the banking network S0, S1, ..., SQ

such that S0 = S∗, SQ = S, and for each q, we have

Sq+1
l =

{
Sq
l if l /∈ {jq − 1, jq}

1− Sq
l if l ∈ {jq − 1, jq}

for some jq. It is easy to construct one such sequence, but cumbersome to describe it formally,
so we omit the details.

By construction, starting with a given xn, define

xq
j = Tj (·;S

q) ◦ · · · ◦ T1 (xn;S
q)

xq+1
j = Tj

(
·;Sq+1

)
◦ · · · ◦ T1

(
xn;S

q+1
)

That is, xq
j is the payment bank j makes when the network is in state Sq given bank n makes

a payment xn, and likewise for xq+1
j . By construction, Sq

j = Sq+1
j for j ≤ jq−2, which implies

xq
jq−2 = xq+1

jq−2.
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Let G (ξ) denote the payment a good bank will make if it receives a payment ξ from its
neighboring bank, and let B (ξ) denote the payment a bad bank will make. Then

G (ξ) ≡ max {0,min {λ, ξ + π}}

B (ξ) ≡ max {0,min {λ, ξ + π − φ}}

Note that by definition
B (ξ) = G (ξ − φ) (26)

Note that G (ξ) is weakly increasing in ξ with slope bounded above by 1. We can now
characterize the payment made by bank jq when S = Sq and S = Sq+1 using G (·) and B (·)
as follows

xq
jq

= B
(
G
(
xq
jq−2

))

xq+1
jq = G

(
B
(
xq+1
jq−2

))

For any real number ξ, (26) implies

G (B (ξ)) = G (G (ξ − φ))

B (G (ξ)) = G (G (ξ)− φ)

Since G (·) has a slope bounded above by 1, then since φ > 0,

G (ξ − φ) ≥ G (ξ)− φ

Applying G (·) to both sides and using the fact that G (·) is monotone yields

G (G (ξ − φ)) ≥ G (G (ξ)− φ)

or alternatively

G (B (ξ)) ≥ B (G (ξ))

Setting ξ = xq
jq−2 = xq+1

jq−2, we have

xq
jq = B

(
G
(
xq
jq−2

))

≤ G
(
B
(
xq
jq−2

))

= G
(
B
(
xq+1
jq−2

))
= xq+1

jq

In other words, the state of the network that minimizes the resources bank n has at its disposal
is when bank n is bad as are the b−1 banks that precede it in the chain of obligations across
banks.

Results 1 and 2 together imply that for any S, there cannot be any bank pays 0 to the
bank to which it owes λ: Even in the worst case scenario, since λ is large enough, a bank
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that pays nothing must have positive resources with which it can pay.

Result 3: If λ = b (φ− π), then there exists an S such that xj = 0 for some j. In
particular, S = S∗.

Proof of Result 3: The proof is by construction for the case where λ = b (φ− π).
Suppose S = S∗, and consider xn = 0. Then xj = min {jπ, λ} for all j ∈ {1, ..., n− b}. Since
nπ > bφ, then

(n− b) π > b (φ− π)

Hence, xn−b = λ = b (φ− π). Since the next b banks are bad, it follows that

xn = min {0, xn−b − b (φ− π)}

= 0

Hence, the solution has xj = 0 for at least one bank j. �

Proof of Proposition 5: From Proposition 4, we know that xj > 0 for all j ∈ {1, ..., n}.
Hence,

xj = min {λ, xj−1 + π − Φj}

Given the state of the banking network S, equity is given by

ej (S) = max {0, xj−1 (S) + π − Φj (S)− xj (S)}

We consider the possible cases for the second term on the right hand side. If xj (S) =
xj−1 (S) + π − Φj (S), then

ej (S) = 0 = xj−1 (S) + π − Φj (S)− xj (S)

If xj (S) = λ, then xj−1 (S) + π − Φj (S) ≥ λ and so

ej (S) = max {0, xj−1 (S) + π − Φj (S)− λ} = xj−1 (S) + π − Φj (S)− λ

Hence, the fact that xj (S) > 0 implies

ej (S) = xj−1 (S) + π − Φj (S)− xj (S)

Summing up yields
n∑

j=1

ej (S) = nπ − bφ

That is, the sum of equity values is the same regardless of S. Assumption A2 implies
ej ∈ {0, π}. But this implies the cardinality of the set {j : ej = 0} is the same for all S. Let
ζ ≡ # {j : ej = 0}. Hence,

n∑

j=1

ej (S) = (n− ζ)π = nπ − bφ
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Since λ > b (φ− π), then min {φ− π, λ} = φ − π, and so φ − π is an integer. Recall we
previously defined

k ≡
min {φ− π, λ}

π
=

φ− π

π

From this, we get φ = (k + 1) π. It follows that

(n− ζ)π = nπ − b (k + 1)π

which gives
ζ = b (k + 1)

as claimed. �

Proof of the Proposition 6: For 0 < λ < φ− π, using Lemma 1 implies

pg =
n− E [ζ ]

n− b

=
(n− b)! (n− k − 1)!

(n− b) (n− 1)! (n− b− k − 1)!

=
k∏

i=1

(
n− b− i

n− i

)

From (7), we know that λ < φ− π implies k = λ/π, and so

pg =

λ/π∏

i=1

(
n− b− i

n− i

)

For λ > b (φ− π), Proposition 5 implies ζ = bk + b with probability 1. Hence,

pg =
n− bk − b

n− b

= 1−
bk

n− b

Since b ≥ 1, from (7), λ > b (φ− π) implies λ > φ− π, and so k = φ
π
− 1, and so

pg = 1−
b

n− b

(
φ

π
− 1

)

Finally, for φ− π ≤ λ ≤ b (φ− π), we have

pg =
n− E [ζ ]

n− b

Hence, the derivative of pg with respect to any parameter has the opposite sign as the
derivative of E [ζ ] with respect to that parameter.
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Let ζ (ω) denote the number of banks with zero equity when the state of the network
S = ω. Let Ω denote the set of all possible values s can take. Then

Ω =

{
x ∈ {0, 1}n :

n∑

j=1

xj = b

}

The expectation E [ζ ] is given by

E [ζ ] =
∑

ω∈Ω

Pr (S = ω)× ζ (ω)

Note that while ζ (ω) also depends on λ, φ, and π, the probability Pr (S = ω) only depends
on n and b. It will therefeore suffice to show that ζ (ω) is weakly increasing in φ

π
and λ

π
for

all ω ∈ Ω.

Define dj (ω) = λ − xj (ω) as the amount bank j is in default to bank j + 1, i.e. the
amount xj (ω) falls short of the promised obligation λ. For bank j to have zero equity, two
scenarios can happen. First, if dj (ω) > 0, then since the bank is not meeting its obligation
to bank j + 1, its equity must be zero given the priority of payments. The other scenario is
if dj (ω) = 0 and dj−1 (ω) is exactly equal to π. In this case, even though bank j pays his
obligation to bank j + 1 in full, it has to make up a shortfall of π to meet its obligation,
which exhausts its profits. For any other feasible configuation of shortfalls, equity must be
positive. Formally, the number of banks with zero equity ζ (ω) when S = ω can be expressed
as follows:

ζ (ω) =

n−1∑

j=0

1 {dj (ω) > 0 ∪ (dj (ω) = 0 ∩ dj−1 (ω) = π)}

We now show that for a given ω, the vector {dj (ω)}
n−1
j=0 is weakly increasing in φ

π
and λ

π
.

Inspection of the two cases associated with ej = 0 confirms that ζ (ω) must be increasing in φ
π

and λ
π
as well, since increasing φ

π
and λ

π
can only increase the value of the indicator function.

From Proposition 3, under Assumption A1, for every ω, there exists at least one bank j
for which xj (ω) = λ, and so dj (ω) = 0. Since xj (ω) is continuous in φ and λ, so is dj (ω).
Given that the number of banks is finite, for every λ, there exists an ε > 0 such that for all
λ′ ∈ [λ, λ + ε), there exists some j ∈ {0, ..., n− 1} such that dj (ω) = 0 for all values of λ′.
Simliarly, for every φ, there exists an ε > 0 such that for all φ′ ∈ [φ, φ+ ε), there exists some
j ∈ {0, ..., n− 1} such that dj (ω) = 0 for all values of φ′. Without loss of generality, we label
this bank as j = 0, and so d0 (ω) = 0 over the interval [λ, λ+ ε) or [φ, φ+ ε).

Next, using (4), we have

dj+1 (ω) =

{
max {dj (ω)− π, 0} if ωj+1 = 0

min {dj (ω) + φ− π, λ} if ωj+1 = 1
for j = 0, ..., n− 2 (27)

Observe that the solution to the system of equations given by (27) and d0 (ω) = 0 is homo-
geneous of degree 1 in (φ, λ, π). Hence, ζ (ω) must be homogeneous of degree 0 in (φ, λ, π),
and so ζ (ω) can be written as a function of the ratios φ

π
and λ

π
alone. From (27), it is clear
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that the solution {dj (ω)}
n−1
j=0 is weakly increasing in both π and φ, and so ζ (ω) is weakly

increasing. �

Proof of Proposition 7: Our proof is by construction. We know from Proposition 3
that there exists at least one bank for which êj > 0. Start with this bank and move to bank
j+1, continuing on until reaching the first bad bad bank. Without loss of generality, we can
refer to this as bank 1. Moreover, we know that x̂n = λ, i.e. if outsiders did not invest in
any of the banks, then bank n would be able to pay its obligation to bank 1 in full.

First, we argue that xn = λ, i.e. when banks can raise outside funds, it will still be the
case that bank n will be able to pay its debt obligation to bank 1 in full. To see this, define

Tj (x) = max {0,min {x+ π +R (1−Dj) Ij − Φj , λ}}

≥ max {0,min {x+ π − Φj , λ}} ≡ T̂j (x)

As before, the payment xn must solve the fixed point

xn = T ∗ (xn) = Tn ◦ · · · ◦ T1 (xn)

But we have
xn ≥ T̂n ◦ · · · ◦ T̂1 (xn)

Suppose there was a value x < λ such that x = T ∗ (x) ≥ T̂ ∗ (x). Then since T (0) < 0, it
follows from continuity that we can find an xn ∈ (0, x) s.t.

xn = T ∗ (xn)

But this contradicts Proposition 1 which implies x̂n = λ is the unique solution to xn =
T ∗ (xn).

Now, suppose bank 1 was able to raise funding, i.e. I1 = 1. If bank 1 diverted the funds
it obtained, its expected payoff would be v. If it invested the funds, it would get to keep

max {λ+ π + (R − r)− y1 − x1, 0}

where

y1 = min {φ, λ+ π + (R − r1)}

x1 = min {λ+ π +R− y1, λ}

If y1 = λ+ π + (R − r1), then the bank would get to keep 0, which is less than v. If y1 = φ,
the bank would get to keep

max {λ+ π + (R− r1)− φ− x1, 0}

which is 0 if x1 = λ+π+R−y1 and π+(R − r1)−φ if x1 = λ. Since φ > π under Assumption
A1, this is less than R− r1. Moreover, since r1 ≥ r in any equilibrium, R− r1 ≤ R− r < v,
where the last inequality follows from Assumption A3. Thus, bank 1 will not be able to raise
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outside funds, i.e. I1 = 0. From this we can conclude that e1 = 0, since its resources λ+π−φ
are less than its obligation to bank 2.

Next, suppose e1 = · · · = ej−1 = 0 and I1 = · · · = Ij−1 = 0 Under Assumption A2, there
are two possible cases to consider: êj = 0 and êj = π.

Consider first the case where êj = 0. We argue that Ij = 0. For suppose not. Given
I1 = · · · = Ij−1 = 0, we have that

xj−1 = x̂j−1

Since êj = 0, we know that under Assumptions A1 and A2, xj−1 = x̂j−1 ≤ λ − π. Suppose
bank j were able to raise funds. Then if bank j diverts the funds it obtains, its payoff would
be v. That is, since

yj = min {Φj , xj−1 + π} = ŷj

xj = max {0,min {xj−1 + π − y1, λ}} = x̂j

and since
êj = max {0, x̂j−1 + π − ŷj − x̂j} = 0

then even before paying back outside investors wj, the bank would have no resources left. By
contrast, if the bank invested, then since x̂j−1 ≤ λ− π, its payoff will be at most R − r∗j ≤
R−r < v. Hence, Ij = 0 as claimed. Since Ij = 0 implies xj = x̂j , it follows that ej = êj = 0.

Next, suppose êj = π. Note that this implies Sj = 0, i.e. j must be a good bank.We
argue that Ij = 1 and xj = λ. To see this, observe that êj = π implies xj−1 = x̂j−1 = λ.
Hence, we have

yj = min {Φj , λ+ π} = 0

xj = max {0,min {λ+ π +R (1−Dj) Ij, λ}} = λ

If the bank obtained funds from outside investors, i.e. Ij = 1, and did not divert funds, its
payoff would equal π+R− r. If it chose to divert funds, it would receive v +min {π − r, 0}.
At r = r, Assumption A3 ensures that the bank would prefer to invest than to divert the
funds. It follows that the unique equilibrium is one where r∗j = r and Ij = 1.

So far, we have established that starting from bank 1, continuing through all the consec-
utive banks for which êj = 0 implies Ij = 0. The first bank for which êj = π, since xj = λ,
we can keep going until we reach the next bad bank. Since this bank receives λ, the analysis
would be the same as for bank 1. The claim then follows. �

Proof of Lemma 2: If bank j has positive equity in equilibrium, it must be that
xj−1 = λ, i.e. bank j is paid in full. This is because Assumptions A1 and A2 imply that if
xj−1 < λ, then êj = 0, i.e. such a bank would have no equity prior to raising any funds from
outside investors. But we know from Assumption A3 that such a bank would divert funds,
i.e. Dj = 1, and so such a bank would have no equity. Given this, a bank that receives
outside funding would choose to invest the funds rather than divert them if and only if

v +max
{
π − r∗j , 0

}
< π +R− r∗j (28)
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Suppose r∗j < π. In this case, max
{
π − r∗j , 0

}
= π − r∗j . But then Assumption A3 tells

us that (28) must hold, since it implies v < R. Next, suppose r∗j ≥ π. In this case,

max
{
π − r∗j , 0

}
= 0. In that case, (28) only holds if π ≤ r∗j ≤ π + R − v. Since v < R, this

bound exceeds π. It follows that Dj = 0 if and only r∗j ≤ π +R− v. �

Proof of Lemma 3: From Lemma 2, the only scenario we have to explore is whether
there exists an equilibrium with rj > r in which a bank with positive equity chooses to divert,
i.e. Dj = 1. Let pj denote the probability that bank j has positive equity along the equilib-
rium path. Then the expected payoff to a bank is given by pj

(
r∗j (1−Dj) + min

{
π, r∗j

}
Dj

)
=

pjπ given that Dj = 1 requires r∗j > r > π. But suppose a lender were to charge rj = π + ε
where ε is sufficiently small so ensure that rj < r. In that case, the bank would be strictly
better off since it is charged a lower rate. Moreover, since π+ ε < r, the bank will invest and
pay rj = π + ε in full, so the bank that charges this amount will be better off. But then the
original outcome with r∗j > r could not have been an equilibrium. �

Proof of Proposition 10: First, suppose v ≥ r. Then for any pg ∈ (0, 1), we have

(R− v) pg + (v − r) = pg (R− r) + (1− pg) (v − r)

≥ pg (R− r)

> pg
n−b
n

(R− r)

Mandatory disclosure is preferable to no investment if

c < (R − r)n−b
n
pg

But from above it follows that

c < (R− v)pg + (v − r)

Since pg > r/r implies a good bank that unilaterally discloses will be able to raise funds,
while the above inequality implies the benefits from attracting funds exceed the disclosure
cost, it follows that non-disclosure cannot be an equilibrium whenever mandatory disclosure
is preferable to no investment.

Next, suppose v < r. For any pg > r
r
, a non-disclosure equilibrium with no investment

will exist if
pg ≤

n

n− b
r/r and c ≥ (R− v)pg + (v − r)

and mandatory disclosure will be preferable to no investment if

c ≤ pg
n− b

n
(R− r)

The only way both inequalities involving c can be satisfied is if

(R − v)pg + (v − r) ≤ pg
n− b

n
(R− r)
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Rearranging, improveability on a non-disclosure equilibirum with no investment is possible
only if

pg ≤
r − v

(R − v)− n−b
n

(R− r)

For this bound to exceed r/r requires

(r − v)

(R− v)− (1− b/n) (R − r)
≤ r/r

which, rearranging, implies
b

n
≤

(
r

r
− 1

)
r − v

R− r

Finally, from A3,

r − v

(R− v)− (1− b/n) (R− r)
=

r − v

(r − v) + b
n
(R − r)

< 1

which completes the proof. �

Proof of Proposition 11: First, suppose v ≥ r. The expected amount banks pay to
investors is r both when there is no disclosure and when there is mandatory disclosure. For a
good bank, then, the expected payoff under the non-dislcosure equilibrium with investment
is pgR + (1− pg) v − r. Under mandatory disclosure, the expected payoff for a good bank
is pg (R− r), which is strictly lower. This confirms some party will be made worse off with
mandatory dislcosure.

Next, suppose v < r. A non-disclosure equilibrium with investment can only exist if
c > br

n−b
. At the same time, mandatory disclosure will be Pareto improving relative to an

equilibrium where outsiders invest in all banks only if c <
(
1− n−b

n
pg
)
(r − v). For mandatory

disclosure to be Pareto improving and for there to exist a non-disclosure equilibrium with
investment, we need

br

n− b
<

(
1−

n− b

n
pg

)
(r − v)

or, rearranging, if

pg ≤
n

n− b

(
1−

b

n− b

r

r − v

)

If this inequality is violated at pg =
n

n−b
r
r
, then it will be violated for all pg ≥

n
n−b

(r/r). Hence,
a necessary condition for the existence of a Pareto-improveable non-disclosure equilibrium is
for

n

n− b

(
1−

b

n− b

r

r − v

)
≥

n

n− b
r/r
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Rearranging, we have the condition

b

n
≤

r − v

(r − v) (1− r/r) + r

(
1−

r

r

)

Hence, without this condition, there exists no Pareto-improveable non-disclosure equilibrium

with investment. With this condition, the interval
[

n
n−b

r/r, n
n−b

(
1− b

n−b
r

r−v

)]
will be non-

empty. For any pg in this interval, and so the as long as c ∈
[

b
n−b

r, (1− n−b
n
pg)(r − v)r/r

]
,

which is necessarily non-empty given the restriction on b
n
, a non-dislcosure equilibrium with

investment is Pareto-improveable. Finally, observe that since v < r, then

n

n− b

(
1−

b

n− b

r

r − v

)
<

n

n− b

(
1−

b

n− b

)

But then we have

n

n− b

(
1−

b

n− b

r

r − v

)
<

n

n− b

(
n− 2b

n− b

)

=
n2 − 2nb

n2 − 2nb+ b2

< 1 .

Proof of Lemma 4. We want to show that distribution of equity ej for the bank j
conditional on this bank being good (Sj = 0) is the same as the distribution of banks’ k
equity ek conditional on bank k being good (Sk = 0), for any pair k, j. First, notice that, by
assumption, Pr {S ′} = Pr {S} for any two S, S ′. Second, we will show that, using that Λ is
circulant, for any S for which ej(S) = e′ then there is a Ŝ for which ek(Ŝ) = e′.

For the second property we will first show a similar condition for the payments. Take, to
simply notation, 0 ≤ j < k and j < k ≤ n− 1. Take a set of payments solving the system 22
for S. We argue that we for the state of the network Ŝ satisfying:

Si = Ŝi+u for i = 0, ..., n− 1− u and Sn−1−u+i = Ŝi for i = 0, ..., u (29)

where u = k − j, then the payments:

x̂rk(Ŝ) = xij(S) where r − k = j − i (mod n) (30)

solve the system of equations 22 for the state of the network Ŝ. To see this note that for a
circulant matrix Λ we can write and network S we can write for any i = j + p with p > 0:

xij(S) = (λp/λ̄) max

{
min

{
λ̄ , π − Sjφ+

∑

r 6=j

xjr(S)

}
, 0

}
(31)
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where λ̄ ≡
∑n−1

s=0 λs. Likewise for state of the network Ŝ and any i = k + p:

x̂ik(Ŝ) = (λp/λ̄) max

{
min

{
λ̄ , π − Ŝkφ+

∑

r 6=k

x̂kr(Ŝ)

}
, 0

}
(32)

Inspection of (32) and (31) when Ŝ is given by (29) verifies (30), i.e. they are the same
system of equations once they are relabeled. Using this result we can obtain the required
equality:

ej(S) = π +
∑

r 6=j

xjr(S)− Sjφ−
∑

i 6=j

xij(S) = ek(Ŝ) = π +
∑

r 6=k

x̂kr(Ŝ)− Ŝkφ−
∑

i 6=k

x̂ik(Ŝ) .

Now we show that p0 = (1 − b/n)pg. For this we just need to argue that any bank with
Sj = 1, and given the assumption π < φ each bad bank equity will be wiped out, i.e. bank’s
j equity ej(S) = 0 < e. Note that since xjr ≤ Λjr. Take an i for which Λij > 0 we have: then

xij(S) = (λij/λ̄) max

{
min

{
λ̄ , π − φ+

∑

r 6=j

xjr(S)

}
, 0

}

≤ (λij/λ̄) max
{
min

{
λ̄ , π − φ+ λ̄

}
, 0
}
= 0

and hence ej(S) = 0 for any with Sj = 1. Hence: Pr {ej(S) > e | Sj = 1} = 0 since e > 0.
Then we have:

p0 = Pr {ej(S) > e} = Pr {ej(S) > e | Sj = 0} Pr {Sj = 0}

+ Pr {ej(S) > e | Sj = 0} Pr {Sj = 1} = pg

(
1−

b

n

)
.

�

The next lemma will be used to prove Theorem 2.

Lemma 5: Suppose Assumption A3 holds. Suppose a bank where charged rg to borrow.
Define e∗ = v+R−rg. Then a bank with ej > e∗ will choose not to divert funds, i.e. Dj = 0,
while a bank with ej < e∗ will choose to divert, i.e. Dj = 1.

Proof of Lemma 5: Note that under assumption A3, v < R. Hence, if we define
e∗ = v − R + rg, then e∗ < rg. The payoff to a bank with equity ej from investing the
funds it raises is ej + R − rg. The payoff from diverting the funds it raises is given by
v +max {ej − rg, 0}. A bank will prefer to divert the funds if

ej +R− rg ≤ v +max {ej − rg, 0} (33)

and to invest the funds if

ej +R− rg ≥ v +max {ej − rg, 0} (34)
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Consider first the case where ej < e∗. Since max {ej − rg, 0} = 0 , it follows that

ej +R− rg < v

= v +max {ej − rg, 0}

and so from (33) the bank would choose to divert. Next, suppose e∗ < ej ≤ rg. In that case,
max {ej − rg, 0} = 0, and we have

ej +R− r∗ > v

= v +max {ej − rg, 0}

and so the bank will prefer to invest from (34). Finally, suppose ej > rg > e∗. In that case,
max {ej − rg, 0} = ej − rg. Since v < R under Assumption A3, we have

R + ej − rg > v + ej − rg

= v +max {ej − rg, 0}

and so the bank will prefer to invest from (34).
Finally, we show that under (13), 0 < e∗ (r) ≤ π for all r ∈ [r, r]. Using the first inequality

in (13) we have that for any r ≥ r,

e∗ (r) = v + r −R ≥ v + r − R

> (R− r) + r − R

= 0

In the other direction, since r = π +R− v, for any r ≤ r we have

e∗ (r) = v + r −R ≤ v + r − R

= π

�

Proof of Theorem 2

For a the general symmetric network structure, Assumption A2 would no longer guarantee
that ej can only assume two values even if we imposed this assumption. To analyze this case,
we define a threshold equity e∗ (r) that can be expressed as a function of the interest rate r
that outside investors charge a given bank:

e∗ (r) = v + r − R

Lemma 4 below establishes that e∗ (r) is the level of equity at which a bank is indifferent
between diverting and not diverting if it were charged r to borrow, and that under Assumption
A3, 0 < e∗ (r) ≤ π for all r ∈ [r, r].

Consider e∗ (r), i.e. the threshold when banks are charged the risk-free rate r. With
full-disclosure, r is the natural benchmark for the interest rates banks will be charged by
outside investors. This is because with full disclosure, any bank with enough equity that
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they will not divert when borrowing at r will receive funding at rate r since they expose
outside investors to no risk. This would suggest that the analog to the number of banks
with zero equity ζ in the ring network under Assumption A2 is the number of banks with
pre-investment equity below e∗ (r). This suggests defining a new variable ζ (r) as the number
of banks with pre-investment equity below e∗ (r).

Before we proceed, one issue that deserves to be mentioned is that since we have a discrete
distribution, it can matter whether we define ζ (r) as the number of banks with equity strictly
below e∗ (r) or the number of banks with equality less than or equal to e∗ (r). However, this
distinction may not matter generically. Moreover, in principle we can impose symmetry in
the way we break indifference across all allocations, so the issue is more of consistency than
of how to properly define ζ (r). To be concrete, let us suppose that when indifferent between
diverting funds and not, banks choose not to divert. Hence, define ζ (r) as the number of
banks with equity strictly less than e∗ (r). Under this definition, for any r ∈ [r, r], which are
the only interest rates that will ever be charged in equilibrium, the ring network will imply
that ζ (r) = ζ , i.e. the number of banks with zero equity. As in the ring network, we can
define pg (r) as the probability that a good bank will have equity above e∗ (r), which is given
by

pg (r) = Pr (ej ≥ e∗ (r) |Sj = 0)

Since e∗ (r) is increasing in r, it follows that pg (r) is decreasing in r. Note that r here simply
determines a threshold level of equity that we are interested in and does not need to be
interpreted as an interest rate.

To determine whether mandatory disclosure will be welfare improving over an allocation in
which no outside investor agrees to finance banks, observe that after full-disclosure, there will
be n−E [ζ (r)] banks on average with equity at or above the treshhold e∗ (r). Each of these
banks will be able to trade with outside investors and create R− r worth of surplus. Hence,
full-disclosure is desirable ex-ante if this expected surplus exceeds the cost of disclosure, i.e.
if

(n−E [ζ (r)]) (R− r) > cn

Note that we can rewrite this condition as

(R− r)
n− b

n
pg (r) > c

where

pg (r) = Pr (ej ≥ e∗ (r) |Sj = 0) =
n−E [ζ (r)]

n− b

analogously to the condition in Proposition 9. Note that here we make use of the fact that
φ > π to ensure that ej < 0 if bank j is bad.

Next, we consider the condition for existence of a non-disclosure equilibrium. Starting
with a situation of no disclosure, if a bank unilaterally discloses, it will either be able to
borrow from outsiders at some rate rg that is uniquely determined given our restriction to
sequential equilibria, or else that it will not be able to receive funds at all.

Consider first the case where the bank anticipates it will not be able to borrow if it
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unilaterally discloses. This implies that even when the bank were charged the highest possible
rate r, outside investors would still expect to receive less than r in expected terms. If charged
r, the bank’s equity threshold will be e∗ (r) = v+R−r. For this to be profitable, it follows that
we obtain the condition that Pr (ej ≥ e∗ (r) |Sj = 0) < r/r̄. This condition can be rewritten
as

pg (r) < r/r̄

Hence, if pg (r) < r/r̄, a non-disclosure equilibrium with no investment exists for all values of
c. In addition, there exists a range of values for c related to pg (r) rather than to pg (r) under
which mandatory disclosure will be a Pareto improvement over no investment in any bank.
Since pg (r) > pg (r), the region is non-empty whenever pg (r) > 0. Thus, the relevant analog
to Theorem 1 is to let pg (r) be arbitrarily close to 0, which directly implies that pg(r̄) < r/r̄.
But, since definition of r̄, see equation (14), we have that for pg(r̄) = Pr{ej = π |Sj = 0}, the
conclusion that an equilibrium with non disclosure can be improved by mandatory disclosure
is identical to the one in Theorem 1.

Next, consider the case where the bank anticipates it will be able to borrow at rate rg
if it is the only bank that discloses. For the original non-dislcosure equilibrium to involve
on investment, it must be the case that even when banks charge r when no bank discloses,
expected profits would be negative. This means

n− b

n
pg (r̄) r +

b

n
× 0 ≤ r

or, rearranging, that

pg (r) <
n

n− b
r/r̄

Hence, the only non-disclosure equilibrium when pg (r) <
n

n−b
r/r̄ is one with no investment.

Conversely, for pg (r) > n
n−b

r/r̄, the only possible non-disclosure equilibrium is one where
outsiders invest in all banks.

For non-disclosure to be an equilibrium when a bank anticipates it can borrow from
outsiders at rate rg if it is the only bank that discloses, the cost of discLosure c must be large
enough to ensure that the expected gain from attracting funds is exceeded by the disclosure
cost, i.e.

pg (rg) (R− rg) + [1− pg (rg)] v < c

In equilibrium, rg = r/pg (rg), and so we have

pg (rg) (R− r) + [1− pg (rg)] (v − r) < c

or alternatively
pg (rg) (R− v) + v − r < c

Hence, when r/r̄ < pg (r) < n
n−b

r/r̄, a non-disclosure equilibrium exists and can be Pareto
improved upon whenever c falls within a particular region

pg (rg) (R− v) + v − r < c < (R− r)
n− b

n
pg (r) (35)
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where pg(rg) is given by a solution to rg pg(rg) = r. We need to determine when this region

is non-empty. In Proposition 10, we showed that if b
n
<
(

r
r
− 1
)

r−v
R−r

, then the region was

non-empty whenever pg (rg) = pg (r). Since

(R− r)
n− b

n
pg (r) > (R− r)

n− b

n
pg (rg)

it follows that there exists a non-empty region in this case as well. Note that there is a “bias”
towards a (weakly)larger region of inefficient non-disclosure in this more general case.

Consider what happens when we take the limit as pg (r) → 1. Since pg (r) ≤ pg (r) for
all r ∈ [r, r), it follows that pg (r) → 1 and pg (rg) → 1. In this case, the lower bound on
c that admits a non-disclosure equilibrium with no investment to be Pareo-dominated by
mandatory disclosure limits to R − r while the upper bound limits to n−b

n
(R− r) which is

strictly smaller. Hence, a non-disclosure equilibrium with no investment cannot be improved
upon when pg (r) → 1. Since e∗ (r) = v + r − R and r = π + R − v, then e∗ (r) = π and we
have

pg (r) = Pr (ej ≥ π|Sj = 0)

Since ej ≤ π, it follows that
pg (r) = Pr (ej = π|Sj = 0)

which is the same expression as in the ring network in Theorem 1.

It only reminds to consider the case where pg (r) >
n

n−b
r/r̄, in which case a non-disclosure

equilibrium must involve outsiders investing in all banks...[THIS CASE SHOULD BE EVEN
CLOSER TO THM 1, TO BE COMPLETED]

�

Positive equity and zero shortfall for some bank if bφ < nπ, general symmetric

case.

Proposition 3′. If φ < n
b
π then for all S there is a bank j for which xij(S) = Λij for all

i ∈ {0, ..., n− 1}, so bank’s j equity ej(S) > 0.

Proof of Proposition 3′. To see this, fix S an add all the payments of to firm j and all
the payments, including to its owner ( its equity ej) and the initial investors (yj), of firm j.
We get

∑

i

xij(S) + ej(S) + yj(S) = π +
∑

r

xjr(S)

Adding across the n banks:

∑

i,j

xij(S) +
∑

j

ej(S) +
∑

j

yj(S) = nπ +
∑

r,j

xjr(S)

Using the identity
∑

i,j xij(S) =
∑

r,j xjr(S), we get

∑

j

ej(S) = nπ −
∑

j

yj(S) ≥ nπ − bφ > 0
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and since 0 ≤ yj(S) ≤ φ, and equity is non-negative, then ej(S) must be positive for some j.
For that j we have xij = Λij for all i = 0, ..., n− 1.

�

Comparative static w.r.t µ and φ, general symmetric case

We start with a definition of shortfall.

Definition of shortfall

We define the shortfall as the difference between what a bank owes to another bank less
what the bank actually paid, so Dij = Λij − xij for all i, j ∈ {0, ..., n− 1} when the state of
the network is S. We suppress the state of the network from the notation whenever seems
clear. We define the shortfall operator as F : D → D where D ⊂ R

n
+ is given by

D = {Dij ∈ [0 , Λij] , i, j ∈ {0, ..., n− 1}}

as the following function

(F )(D)ij =

(
Λij

λ̄

)
max

{
min

{
λ̄ ,

∑

r

Djr − π + Sjφ

}
, 0

}
(36)

The explanation of this mapping is as follows. Bank j receives a short fall of
∑

r Djr from
other banks, which is reduced by adding all its profits π and increased by losses φ, if they
occur. Thus the contribution to the total shortfall of bank j is

∑
r Drj − π+ φSj. The most

the total shortfall can be is λ̄, when bank j pays nothing, so we take the minimum of the
total shortfall and the total debt λ̄. Shortfall cannot be negative, since at most the bank will
pay all its debt, so we take the maximum of this quantity and zero. Thus the total shortfall
is

Total shortfall of bank j = max

{
min

{
λ̄ ,

∑

r

Djr − π + Sjφ

}
, 0

}

We then take this total shortfall and we subtract it from the total debt of j, which equals λ̄,
to get the total payments that bank j will make, or

Total payments of j to other banks = λ̄−max

{
min

{
λ̄ ,

∑

r

Djr − π + Sjφ

}
, 0

}

Multiplying it by Λij/λ̄ we obtain the payments to be made to bank i.

xij =
Λij

λ̄

(
λ̄−max

{
min

{
λ̄ ,

∑

r

Djr − π + Sjφ

}
, 0

})
(37)

Finally we can subtract this payment to be made from the amount owed, so to get the
shortfall of bank j with bank i, i.e.

Dij = Λij −
Λij

λ̄

(
λ̄−max

{
min

{
λ̄ ,

∑

r

Djr − π + Sjφ

}
, 0

})
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Simplifying this equation, we obtain the expression for F in equation (36). Alternatively,
we can just show that xij as given in (22) equals (37) using that Djr = xjr − Λjr and that∑

r Λjr = λ̄. Indeed using these two equalities we can see that

λ̄ ≥
∑

r

Djr − π + Sjφ ⇐⇒ π − Sjφ+
∑

r

xjr ≥ 0 and

0 ≤
∑

r

Djr − π + Sjφ ⇐⇒ π − Sjφ+
∑

r

xjr ≤ λ̄ .

Then it is immediate that (22) is equivalent to (37).

For the next proposition we write the circulant vector λ describing the matrix Λ as the
product of a scalar λ̄ times a vector on the n − 1 simples λ̂. We will use this to make a
comparative static with respect to λ̂. In particular we let:

λs = λ̄ λ̂s for s ∈ {0, 1, ..., n− 1} where, (38)

1 =
n−1∑

j=0

λ̂j , and λ̂j ≥ 0 for j ∈ {0, 1, ..., n− 1} .

For fix values of π, the scalar λ̂ can be taken as a measure of the leverage of banks with
respect to other banks in the network.

Proposition 6′. Let {π, φ, n, b,Λ} be a network where the matrix Λ is given by a circu-
lant vector λ indexed by λ̂ as in equation (38). Assume that φ > π. The probability pg is
weakly decreasing in φ and λ̄.

Proof of Proposition 6′. The proof proceeds as follows. First we show that for each
S the shortfall D(S) are weakly increasing in φ and in λ̄. Next we argue that this implies
that the distribution of equity is stochastically decreasing with φ and in λ̄. Then the result
follows from the relationship between p0 and pg.

A fixed point of the shortfall is given by D∗ ∈ D satisfying D∗ = F (D∗). It is easy to see
that the operator is monotone on D in that F (D′) ≥ F (D) if D′ ≥ D, where the comparison
is component by component. It is easy to show that F (0) ≥ 0 and that (F )(Λ)ij ≥ Λij.

Let D∗ be a fixed point. If D0 ≤ D∗ then F (D0) ≥ D. Recall that successive iterations
converge to a fixed point, i.e. Dn ≡ F n(D0) will converge to a fixed point D∗.

Let D̂ be a fixed point of F̂ and consider a larger value of φ and/or λ̄, but the same
ratios Λij/λ̄ (so this corresponds to multiply the circulant vector λ by a scalar larger than
one). Let F the operator that uses the larger values of φ and/or λ̄. Then F (D′) ≥ D′ and
Dn = F n(D′) will converge to a fixed point D∗ ≥ D′.

This implies that for each S the set of fixed points are weakly increasing in λ̄/π and
on φ/π. While the operator may have multiple fixed points D, the corresponding vector of
equity values is unique, by Theorem 1 in Eisenberg and Noe (2001).

Next we link the shortfall with equity. Note that
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ej(S) = max

{
0, π − φSj −

∑

i

Λij +
∑

r

xjr(S)

}
(39)

= max

{
0, π − φSj − λ̄−

∑

r

Djr(S) + λ̄

}
(40)

= max

{
0, π − φSj −

∑

r

Djr(S)

}
(41)

so the equity of bank j when the state of the network is S is weakly decreasing in D. Thus,
if D(S) is weakly higher, each of the ej(S) are weakly lower. Since the probabilities of each
S do not depend on λ̄ or φ, and the right hand side of equation (39) is decreasing in φ (but
λ̄ is not an argument of it), we have that the distribution of ej is stochastically lower if the
D(S) are weakly higher for each S. Thus, p0 is weakly decreasing in λ̄ and φ.

Finally, we have shown that as φ and π increase, the unconditional probabilities of positive
equity ej = π decreases. But the unconditional probability of a bank being good (i.e. having
Sj = 0) is independent of φ and π so

p0 ≡ Pr {ej ≥ π} = Pr {ej ≥ π | Sj = 0} × Pr {Sj = 0} = pg ×

(
1−

b

n

)

where we use that, due to the assumptions that φ > π and that π > 0 that Pr {ej ≥ π | Sj = 1} =
0. Thus pg is weakly decreasing in φ and λ̄.

�

Example of a non-circulant network that is symmetrically vulnerable to contagion (the
cuboctahedral network):

Λ =




0 λ 0 0 λ 0 0 0 0 0 0 0
0 0 λ λ 0 0 0 0 0 0 0 0
0 0 0 λ 0 0 λ 0 0 0 0 0
0 0 0 0 λ λ 0 0 0 0 0 0
0 0 0 0 0 λ 0 0 λ 0 0 0
0 0 0 0 0 0 λ λ 0 0 0 0
0 0 0 0 0 0 0 λ 0 0 λ 0
0 0 0 0 0 0 0 0 λ λ 0 0
λ 0 0 0 0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 0 0 0 λ λ
0 0 λ 0 0 0 0 0 0 0 0 λ
λ λ 0 0 0 0 0 0 0 0 0 0



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