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Abstract

Learning about the shape of a probability distribution, not just about its location or dispersion, is
often an important goal of empirical analysis. Given a continuous random variable Y and a random
vector X defined on the same probability space, the conditional distribution function (CDF) and the
conditional quantile function (CQF) offer two equivalent ways of describing the shape of the con-
ditional distribution of Y given X . To these equivalent representations correspond two alternative
approaches to shape regression. One approach – distribution regression – is based on direct esti-
mation of the conditional distribution function (CDF); the other approach – quantile regression – is
instead based on direct estimation of the conditional quantile function (CQF). Since the CDF and
the CQF are generalized inverses of each other, indirect estimates of the CQF and the CDF may be
obtained by taking the generalized inverse of the direct estimates obtained from either approach,
possibly after rearranging to guarantee monotonicity of estimated CDFs and CQFs. The equivalence
between the two approaches holds for standard nonparametric estimators in the unconditional case.
In the conditional case, when modeling assumptions are introduced to avoid curse-of-dimensionality
problems, this equivalence is generally lost as a convenient parametric model for the CDF need not
imply a convenient parametric model for the CQF, and vice versa. Despite the vast literature on the
quantile regression approach, and the recent attention to the distribution regression approach, no
systematic comparison of the two has been carried out yet. Our paper fills-in this gap by comparing
the asymptotic properties of estimators obtained from the two approaches, both when the assumed
parametric models on which they are based are correctly specified and when they are not.
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1 Introduction

Learning about the shape of a probability distribution, not just about its location or dispersion, is often

an important goal of empirical analysis. In this paper we consider the relationships between alternative

approaches to the problem of shape regression, namely how to estimate the conditional distribution

of a continuous random variable Y given a random vector X , when the data are a sample from the

joint distribution of (X , Y ). If X is discrete and takes only a small number of values, the standard non-

parametric approach is to compute either the empirical distribution function or the empirical quantile

function of Y for any given value of X . If instead X takes many possible values or is continuous, several

nonparametric alternatives are available but all face the same curse-of-dimensionality problem.

A simple way out is local parametric modeling. One approach – distribution regression (DR) –

models parametrically the conditional distribution function (CDF) F(y | x) = Pr{Y ≤ y |X = x} at a

finite number of cutoff values −∞ < y1 < · · · < yJ <∞, and obtains direct estimates of the CDF

by fitting a sequence of binary regression models, each corresponding to the conditional mean of the

binary indicator Dj = 1{Y ≤ y j}. This approach, first proposed by Foresi and Peracchi (1995), has

recently been considered by Fortin, Lemieux and Firpo (2011), Rothe (2012), Rothe and Wied (2012),

and Chernozhukov, Fernández-Val and Melly (2013). Another approach – quantile regression (QR) –

models parametrically the conditional quantile function (CQF) Q(p | x) = inf{y ∈ R: F(y | x) ≥ p} at

a finite number of quantile levels 0 < p1 < · · · < pJ < 1, and obtains direct estimates of the CQF by

fitting a sequence of quantile regression models. This approach, first proposed by Koenker and Bassett

(1978), has been generalized in a variety of directions (see Koenker 2005 for a review).

The CDF and the CQF are equivalent characterizations of the conditional distribution of Y given X ,

as they are generalized inverses of each other, that is, Q(F(y | x) | x) ≤ y and F(Q(p | x)) ≥ p, which

implies that F(y | x) = inf{p : Q(p | x) ≥ y} and Q(p | x) = inf{y : F(y | x) ≥ p}. This nice relationship

also holds for standard nonparametric estimates in the unconditional case, as the empirical distribution

function and the empirical quantile function are generalized inverses of each other. It is generally lost,

however, when modeling assumptions are introduced, since a convenient parametric model for the CDF

need not imply an equally convenient parametric model for the CQF, and viceversa. Thus, the statistical

properties of a direct estimator of the CDF may be quite different from those of the derived indirect

estimators of the CQF. Similarly, the statistical properties of a direct estimator of the CQF may be quite

different from those of the derived indirect estimators of the CDF.

Despite the vast literature on the QR approach, and the growing attention to the DR approach, the

relationship between the two approaches has not been studied in detail, although some considerations
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on the choice between them appear in Peracchi (2002), Chernozhukov, Fernández-Val and Melly (2013)

and Koenker, Leorato and Peracchi (2013). Our paper fills-in this gap by comparing the performance

of estimators obtained from the two approaches, both when the assumed parametric models on which

they are based are correctly specified and when they are not.

Of course, when choosing between the two approaches, other aspects may be taken into account.

One is the possibility of generalizing to cases when Y is discrete, subject to censoring, or multivariate. In

these cases, the DR approach looks more natural. Another is interpretability. Suppose for example that

Y is income and X is a vector of socio-economic variables. If one wants to study differences in poverty

rates between population subgroups, then the DR approach may be more natural. If instead one wants

to compare income differentials within population groups, then the QR approach may be more natural.

We assume throughout the paper that the available data {(X i , Yi), i = 1, . . . , n} are a sample from the

distribution of the random vector (X , Y ) with supportX ×Y , whereX ⊆ Rk and Y ⊆ R. Although this

assumption is restrictive, our results can easily be generalized to the case of heterogeneous or dependent

observations. We also assume that X has finite nonsingular second moment matrix and that the CDF

of Y is continuous and strictly increasing in y for any x ∈ X . This implies that the conditional density

of Y exists and is finite and bounded away from zero, and that the CDF and the CQF are inverses of

each other. Finally, we denote by l∞(S ) the space of bounded and measurable real-valued functions

defined on S .

The remainder of the paper is organized as follows. Section 2 introduces our direct estimators of the

CDF and the CQF. Section 3 introduces indirect estimators based on inversion or rearrangement of the

direct estimators. Section 4 compares the asymptotic properties (as n→∞) of the different estimators,

both when the model on which they are based is correctly specified and when it is not. Finally, Section 5

summarizes and concludes.

2 Direct estimators

The direct DR approach relies on the fact that, for any fixed cutoff value y , the CDF F(y | x) is equal

to the conditional mean of the binary indicator Dy = 1{Y ≤ y}. Since F(· | x) takes values in the

unit interval, a convenient strategy is to model not F(y | x) directly, but rather the conditional log-odds

function (CLF)

ln
F(y | x)

1− F(y | x)
= t(y | x),

where t(· | x) is a function with values on the whole real line. This leaves the range of t(· | x) completely

unrestricted but guarantees that the estimates of the CDF obtained by inverting an estimate of the CLF
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are bounded between zero and one. An example is the linear location model

Y = α+ X>β + U , (1)

where α and β are unknown parameters and U is a random error distributed independently of X with

a smooth and strictly increasing distribution function G. The CDF for this model is F(y | x) = G(y−α−

x>β) and its CLF is t(y | x) = ln G(y − α− x>)− ln
�

1− G(y −α− x>β)
�

. In particular, if U has the

standard logistic distribution function Λ(u) = [1+ exp(−u)]−1, then t(y | x) = y −α− x>β , so the CLF

is linear in the parameters. Notice however that the logistic linear location model has the restrictive

feature that t(y | x)− t(y ′ | x) = y− y ′, that is, log-odds corresponding to different cutoff values are at a

constant distance from each other. More generally, one may consider a smooth parametric model for the

CLF, such as the linear-in-parameter model t(y | x) = x>θ (y), where x is a finite-dimensional vector

consisting of known transformations of the elements of x and all elements of the parameter vector θ (y)

may depend on the cutoff value y . Although restrictive, linear-in-parameter models are useful because

easy to interpret and to estimate. Further, any smooth CLF can be approximated arbitrarily well by a

linear-in-parameter model.

An alternative is to directly model the CQF. To fix ideas, consider again the linear location model

(1). Its CQF is Q(p | x) = α+ x>β+G−1(p), which is also linear in the parameters but has the restrictive

feature that conditional quantiles corresponding to two different quantile levels p and p′ are at a con-

stant distance |G−1(p)− G−1(p′)| from each other. Again, a straightforward generalization is a smooth

parametric model for the CQF, such as the linear-in-parameter model Q(p | x) = s(x;θ (y)), where all

elements of the parameter vector γ(p) now may depend on the quantile level p.

2.1 The direct DR estimator

Given a smooth parametric model h(x;θ (y)) for the CLF, the direct DR approach first estimates θ (y)

by maximizing over a finite-dimensional parameter space the average pseudo log-likelihood

Ln(θ ; y) = n−1
n
∑

i=1

�

Dyih(X i;θ )− ln
�

1+ exp h(X i;θ )
��

,

where Dyi = 1{Yi ≤ y}. Given an estimate θ̂ n(y) of θ (y), the direct DR estimate of the popu-

lation CDF at the cutoff value y is F̂‡
n(y | x) = Λ

�

h(x; θ̂ n(y))
�

. Its population analog is denoted

by F‡(y | x) = Λ
�

h(x;θ (y))
�

, where θ (y) maximizes the expected pseudo log-likelihood L(θ ; y) =

E
�

Dy h(X ;θ )− ln
�

1+ exp h(X ;θ )
��

over the parameter space.

We derive the asymptotic properties of the processes
p

n
�

θ̂ n(y)− θ (y)
�

and
p

n
�

F̂‡
n(y | x)− F‡(y | x)

�

,

indexed by y and (y, x) respectively, under the following assumptions:
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A.1: The function h(x;θ ) is continuously differentiable in x and square integrable for all θ ; it is also

injective and twice differentiable in θ for all x with continuous first and second derivatives ∂θh

and ∂ 2
θ

h uniformly bounded by square integrable functions.

A.2: There exist y < y in the interior of Y such that, for any y ∈ [y , y], θ (y) uniquely maximizes

L(θ ; y) on a compact subset Θ of the parameter space.

Assumption A.1 guarantees that Ln(θ ; y) is twice differentiable in θ and that its first and second

partial derivatives have finite second moments, while Assumptions A.1–A.2 together imply that the

function θ (y) is continuously differentiable in y , the function F‡(y | x) is continuously differentiable in

both y and x , and the matrix

H(y) = E
�

F‡(y |X )
�

1− F‡(y |X )
�

∂θh(X )∂θh(X )> −
�

Dy − F‡(y |X )
�

∂ 2
θ h(X )

�

is finite and positive definite for all y ∈ [y , y], where ∂θh(X ) and ∂ 2
θ

h(X ) are abbreviations for ∂θh(X ;θ (y))

and ∂ 2
θ

h(X ;θ (y)).

Theorem 1 If Assumptions A.1–A.2 hold, then:

(i) The process θ̂ n(·) is uniformly consistent for θ (·), that is, supy≤y≤y ‖θ̂ n(y)− θ (y)‖= op(1).

(ii) The process H(·)
p

n
�

θ̂ n(·)− θ (·)
�

converges weakly on l∞([y , y]) to a zero-mean multivariate Gaus-

sian process BD(·) with covariance function

ΣD(y, y ′) = E
��

Dy − F‡(y |X )
� �

Dy ′ − F‡(y ′ |X )
�

∂θh(X )∂θh(X )>
�

, y ≤ y ′.

(iii) For any compact subset K ⊂ [y , y]×X , the process
p

n
�

F̂‡
n(y | x)− F‡(y | x)

�

, indexed by (y, x),

converges weakly on l∞(K ) to a zero-mean Gaussian process W defined as

W (y | x) = F‡(y | x)
�

1− F‡(y | x)
�

∂θh(x)>H(y)−1BD(y).

Theorem 1 is more general than Theorem 5.2 in Chernozhukov, Fernández-Val and Melly (2013) be-

cause does not require the assumed model for the CLF to be correctly specified. It implies that the asymp-

totic variance of F̂‡
n(p | x) is equal to V(F̂‡

n(p | x)) =
�

F‡(y | x)(1− F‡(y | x)
�2
∂θh(x)>V(θ̂ n(y))∂θh,

where V(θ̂ n(y)) = H(y)−1ΣD(y, y)H(y)−1 denotes the asymptotic variance of θ̂ n(y). If the assumed

model for the CLF is correctly specified, then F‡(y | x) = F(y | x) soΣD(y, y) = E
�

σ2
y(X )∂θh(X )∂θh(X )>

�

=
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H(y), where σ2
y(x) = F(y | x)

�

1− F(y | x)
�

. In this case, the asymptotic variance of F̂‡
n(y | x) simpli-

fies to V
�

F̂‡
n(y | x)

�

=
�

σ2
y(x)

�2
∂θh(x)>H(y)−1 ∂θh(x). In particular, if the linear location model (1)

holds, then V
�

F̂‡
n(y | x)

�

=
�

g(x>θ (y))
�2

x>H(y)−1x , with x = (1, x>)> and

H(y) = E

�

g(X>θ (y))2

σ2
y(X )

XX>
�

,

where g = G′ denotes the density of U and X = (1, X>)>. Finally, if h is correctly specified as linear

in parameter, then σ2
y(x) = λ(x

>θ (y)), where λ = Λ′ denotes the logistic density and x and X now

denote vectors of known transformations of the elements of x and X , so H(y) = E
�

λ(X>θ (y))XX>
�

.

2.2 The direct QR estimator

Given a smooth parametric model s(x;γ(p)) for the CQF, an estimate γ̂n(p) of γ(p) may be obtained by

minimizing over a finite-dimensional parameter space the objective function

`n(γ; p) = n−1
n
∑

i=1

ρp

�

Yi − s(X i;γ)
�

,

where ρp(u) = u[p − 1{u ≤ 0}] is the asymmetric absolute loss function. Given γ̂n(p), the direct

QR estimate of the population CQF at the quantile level p is Q̂∗n(p | x) = s(x; γ̂n(p)). Its population

analog is denoted by Q∗(p | x) = s(x;γ(p)), where γ(p) minimizes the population analog `(γ; p) =

Eρp

�

Y − s(X ;γ)
�

of `n(γ; p) over the parameter space.

Our next result represents the QR counterpart of Theorem 1. It extends Theorem 3 in Angrist,

Chernozhukov and Fernández-Val (2006) to the case of a general misspecified parametric model for the

CQF and relies on the following two assumptions:

B.1: The function s(x;θ ) is continuously differentiable in x and square integrable for all γ; it is also

injective and twice differentiable in γ for all x with continuous first and second derivatives ∂γs

and ∂ 2
γ s uniformly bounded by square integrable functions.

B.2: There exist p < p in the interior of (0,1) such that, for any p ∈ [p, p], γ(p) uniquely minimizes

`(γ; p) on a compact subset Γ of the parameter space.

Assumptions B.1–B.2 represent the QR counterparts of A.1–A.2. Together, they imply that the func-

tion γ(p) is continuously differentiable in p, the function Q∗(p | x) is continuously differentiable in both

p and x , and the matrix

J(p) = E
�

f
�

s(X ;γ(p)) |X
�

∂γs(X )∂γs(X )
> −

�

p−1{Y ≤ s(X ;γ(p))}
�

∂ 2
γ s(X )

�

5



is finite and positive definite for all p in the closed interval [p, p],1 where f (y | x) denotes the conditional

density of Y and ∂γs(X ) and ∂ 2
γ s(X ) are abbreviations for ∂γs(X ;γ(p)) and ∂ 2

γ s(X ;γ(p)).

Theorem 2 If Assumptions B.1–B.2 hold, then:

(i) The process γ̂n(·) is uniformly consistent for γ(·), that is, supp≤p≤p ‖γ̂n(p)− γ(p)‖= op(1).

(ii) The process J(·)
p

n
�

γ̂n(·)− γ(·)
�

converges weakly on l∞([p, p]) to a zero-mean multivariate Gaus-

sian process BQ(·) with covariance function

ΣQ(p, p′) = E
��

p−1{Y <Q∗(p |X )}
� �

p′ −1{Y <Q∗(p′ |X )}
�

∂γs(X )∂γs(X )
>� , p ≤ p′.

(iii) For any compact subset H ⊂ [p, p]×X , the process
p

n
�

Q̂∗n(p | x)−Q∗(p | x)
�

, indexed by (p, x),

converges weakly on l∞(H ) to a zero-mean Gaussian process Z defined as

Z(p | x) = ∂γs>J(p)−1 BQ(p).

The theorem implies that the asymptotic variance of Q̂∗n(p | x) isV
�

Q̂∗n(p | x)
�

= ∂γs(x)>V(γ̂n(p))∂γs(x),

where V(γ̂n(p)) = J(p)−1ΣQ(p, p) J(p)−1 denotes the asymptotic variance of γ̂n(p). If the assumed

model for the CQF is linear in parameters, as in Theorem 3 of Angrist, Chernozhukov and Fernández-

Val (2006), then ∂γs(x) = x and the covariance function of BQ(·) simplifies to

ΣQ(p, p′) = E
��

p−1{Y <Q∗(p |X )}
� �

p′ −1{Y <Q∗(p′ |X )}
�

XX>
�

, p ≤ p′,

while the asymptotic variance of Q̂∗n(p | x) simplifies to V
�

Q̂∗n(p | x)
�

= x>V(γ̂n(p)) x . If the assumed

linear-in-parameter model is also correctly specified, then J(p) = E
�

f
�

X>γ(p) |X
�

XX>
�

. In particular,

under the linear location model (1), ΣQ(p, p) = p(1− p) PX and J(p) = gp PX , with gp = g(G−1(p)) and

PX = E XX>, so the asymptotic variance of γ̂n(p) simplifies to V(γ̂n(p)) = [p(1− p)/g2
p] P−1

X .

3 Indirect estimators

When the assumed CLF is correctly specified, a consistent indirect estimator of the population CQF Q

may simply be obtained by taking the generalized inverse of F̂‡
n . When it is misspecified, F̂‡

n converges

to a limit function F‡ that differs from the population CDF F on a subset of Y × X with positive

measure. This has two consequences. First, the direct estimator F̂‡
n is inconsistent for F , so the indirect

1 Assumption B.2 is also sufficient for conditions C2 and C3 in Oberhofer and Haupt (2015), who study the asymptotic
distribution of nonlinear QR estimator in the case of weakly dependent data.
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estimator obtained by taking the generalized inverse of F̂‡
n is inconsistent for Q. Second, although

bounded between zero and one, the limit function F‡ need not be a proper CDF because it need not

be nondecreasing in y for all x . This implies that the generalized inverse of F‡ is not a continuous

function, which prevents one from using the functional delta method to study the asymptotic properties

of the CQF estimator obtained by taking the generalized inverse of F̂‡
n . The same problem arises with

the direct QR estimator, since there is no guarantee that Q∗ is nondecreasing in p for all x .

One way to guarantee monotonicity is to adopt the rearrangement procedure suggested by Cher-

nozhukov, Fernández-Val and Galichon (2010). This relies on the fact that, given an estimate F̂‡
n , not

necessarily monotonic, a proper estimate of the CQF is

Q̂+n (p | x) =
∫ ∞

0

1{F̂‡
n(y | x)≤ p}d y −

∫ 0

−∞
1{F̂‡

n(y | x)> p}d y. (2)

Similarly, given an estimate Q̂∗n, not necessarily monotonic, a proper estimate of the CDF is

F̂◦n(y | x) =
∫ 1

0

1{Q̂∗n(p | x)≤ y}dp. (3)

Thus, taking the generalized inverses of Q̂+n and F̂◦n gives proper estimates F̂+n (y | x) = inf{p : Q̂+n (p | x)≥

p} and Q̂◦n(p | x) = inf{y : F̂◦n(y | x) ≥ p} of the CDF and the CQF respectively. Notice that F̂+n coincides

with F̂‡
n whenever the latter is strictly increasing in y , while Q̂◦n coincides with Q̂+n whenever the latter

is strictly increasing in p. Also notice that, unlike the direct approach, rearrangement always produces

joint estimates of both the CDF and the CQF.2

Rearrangement offers two main advantages. First, the rearranged estimators F̂+n and Q̂◦n are the con-

tinuous and Hadamard differentiable inverses of Q̂+n and Q̂∗n respectively, so their asymptotic properties

can be derived via the functional delta method. Second, as shown in Proposition 4 of Chernozhukov,

Fernández-Val and Galichon (2010), the rearranged estimators have a smaller bias than the original

direct estimators.

3.1 Rearranged DR estimators

To derive the asymptotic properties of F̂+n and Q̂+n , we make the following additional assumption:

A.3: For all (x , y, p), the equation F‡(y | x) = p has a finite number N(p | x) of roots, denoted by

y j(p | x), j = 1, . . . , N(p | x).

2 Rearrangement is not the only way to guarantee monotonicity, and other alternatives are discussed in Foresi and Peracchi
(1996), Hall, Wolff and Yao (1999), Hall and Müller (2003), and Dette and Volgushev (2008) among others.
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We denote by F+ and Q+ the rearranged versions of F‡. For any x ∈ X , we also denote by U ∗x ⊂ (0, 1)

the subset of the codomain of F‡(· | x) whose preimage does not contain critical points, namely points

where ∂y F‡(y | x) = 0. Further, we define (0, 1)X ∗ = {(p, x): p ∈ U ∗x , x ∈ X}.

Under Assumptions A.1–A.3, it follows by simply adapting the argument in Proposition 5 of Cher-

nozhukov, Fernández-Val and Galichon (2010) that, for any compact subset K ⊂ (0, 1)X ∗, the process
p

n
�

Q̂+n (p | x)−Q+(p | x)
�

, indexed by (p, x), converges weakly on l∞(K ) to a zero-mean Gaussian

process CW defined as

CW (p | x) = −
N(p | x)
∑

j=1

W
�

y j(p | x)
�

� x
�

�

�∂y F‡
�

y j(p | x)
�

� x
��

�

.

The function CW (p | x) is the Hadamard differential of Q+ at W , tangentially to the space of con-

tinuous functions defined on YX =
�

(y, x):
�

F+(y | x), x
�

∈ (0,1)X ∗
	

. In addition, letting K ∗ =
¦

(y, x) ∈ [y , y]×X :
�

F+(y | x), x
�

∈K
©

, the process
p

n
�

F̂+n (y | x)− F+(y | x)
�

, indexed by (y, x),

converges weakly on l∞(K ∗) to a zero-mean Gaussian process DW defined as

DW (y | x) = −





N( F‡(y|x) | x)
∑

j=1

1
�

�∂y F‡
�

y j(F+(y | x) | x)
�

� x
��

�





−1

CW

�

F+(y | x)
�

� x
�

.

If F‡ is strictly increasing in y , then the equation F‡(y | x) = p has a unique root and F+(y | x) =

F‡(y | x) for all (x , y, p), so CW (p | x) = −W
�

y(p | x)
�

� x
�

/∂y F‡
�

y(p | x)
�

� x
�

and DW (y | x) =W (y | x).

3.2 Rearranged QR estimators

As for the rearranged QR estimators F̂◦n and Q̂◦n, we make the following additional assumption:

B.3: For all (x , y, p), the equation Q∗(p | x) = y has a finite number N(y | x) of roots, denoted by

p j(y | x), j = 1, . . . , N(y | x).

We denote by Q◦ and F◦ the rearranged versions of Q∗. For any x ∈ X , we also denote by Y ∗x ⊂ Y

the subset of the codomain of Q∗(· | x) whose preimage does not contain critical points, namely points

where ∂pQ∗(p | x) = 0. Further, we define YX ∗ = {(y, x): y ∈ Y ∗x , x ∈ X}.

Under Assumptions B.1–B.3,3 it follows from Proposition 5 in Chernozhukov, Fernández-Val and

Galichon (2010) that, for any compact subset H ⊂ YX ∗, the process
p

n
�

F̂◦n(y | x)− F◦(y | x)
�

, in-

3 Assumptions B.1–B.3 imply Assumptions 1(a) and 1(b) in Chernozhukov, Fernández-Val and Galichon (2010). In partic-
ular, Assumption B.3 is equivalent to their Assumption 1(b), while Assumptions B.1–B.2 imply that the function Q∗(p | x) is
continuously differentiable in both its arguments, so their Assumption 1(a) is satisfied.
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dexed by (y, x), converges weakly on l∞(H ) to a zero-mean Gaussian process CZ defined as

CZ(y | x) = −
N(y | x)
∑

j=1

Z
�

p j(y | x)
�

� x
�

|∂pQ∗
�

p j(y | x)
�

� x
�

|
.

The function CZ(y | x) is the Hadamard differential of F◦ at Z tangentially to the space of continuous

functions defined on (0,1)X = {(p, x): (Q◦(p | x), x) ∈ YX ∗}. In addition, lettingH ∗ = {(p, x): (Q◦(p | x), x) ∈

K }, the process
p

n
�

Q̂◦n(p | x)−Q◦(p | x)
�

, indexed by (p, x), converges weakly on l∞(H ∗) to a zero-

mean Gaussian process DZ defined as

DZ(p | x) = −





N(Q∗(p | x) | x)
∑

j=1

1

|∂pQ∗
�

p j(Q◦(p | x) | x)
�

� x
�

|





−1

CZ

�

Q◦(p | x)
�

� x
�

.

If Q∗ is strictly increasing in p, then N(y | x) = 1 and Q◦(p | x) =Q∗(p | x) for all (x , y, p), so CZ(y | x) =

−Z
�

p(y | x)
�

/∂pQ∗
�

p(y | x) | x
�

and DZ(p | x) = Z(p | x).

4 Asymptotic comparisons

In this section we compare the asymptotic properties of direct and indirect estimators obtained under

the DR and the QR approach when the assumed parametric models on which they are based are correctly

specified and when they are not.

4.1 Asymptotic relative efficiency

From Theorem 1 and the results in Section 3.1, F̂‡
n and F̂+n are asymptotically equivalent if the assumed

model for the CLF is correctly specified. Similarly, from Theorem 2 and the results in Section 3.2, Q̂∗n and

Q̂◦n are asymptotically equivalent if the assumed model for the CQF is correctly specified. If both models

are correctly specified then, for any x and all y ∈ [y , y] such that p ≤ F(y | x) ≤ p, the asymptotic

variances of all estimators considered are linked by the following relationships

V
�

F̂‡
n(y | x)

�

= V
�

F̂+n (y | x)
�

= f (y | x)2 V
�

Q̂+n (F(y | x) | x)
�

,

V
�

F̂◦n(y | x)
�

= f (y | x)2 V
�

Q̂∗n(F(y | x) | x)
�

= f (y | x)2 V
�

Q̂◦n(F(y | x) | x)
�

.

It follows from these relationships that, for all x , p ∈ [p, p] and y ∈ [y , y] such that F(y | x) = p

and Q(p | x) = y , the asymptotic relative efficiency of F̂◦n(y | x) to F̂+n (y | x) is

ARE
�

F̂◦n(y | x), F̂+n (y | x)
�

=
V
�

F̂+n (y | x)
�

V
�

F̂◦n(y | x)
� =
V
�

Q̂+n (p | x)
�

V
�

Q̂◦n(p | x)
� = ARE

�

Q̂◦n(p | x), Q̂
+
n (p | x)

�

.
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Thus, the relative performance of the DR and QR approaches in estimating the CDF is asymptotically

the same as their relative performance in estimating the CQF. Consistently with this result, Azzalini

(1981) found that the approximate mean squared error (MSE) of the direct kernel estimator F̂ of a

distribution function (obtained by integrating a kernel density estimator) relative to the MSE of the

empirical distribution function is about the same as the MSE of the indirect estimator of the quantile

function, obtained by taking the generalized inverse of F̂ , relative to the MSE of the empirical quantile

function.

Since rearrangement produces estimates of the pair
�

F(y | x),Q(p | x)
�

, we can also compare the

asymptotic performances of the direct estimator T̂n =
�

F̂‡
n(y | x), Q̂

∗
n(p | x)

�

and the indirect estimator

T̃n =
�

F̂◦n(y | x), Q̂
+
n (p | x)

�

. The next theorem shows that the direct estimator is asymptotically as effi-

cient as the indirect estimator.

Theorem 3 Let F̂‡
n(y | x) be a uniformly consistent estimator of a CDF F(y | x) with a continuous density

f (y | x), and let Q̂∗n(p | x) be a uniformly consistent estimator of the associated CQF Q(p | x). Suppose

that, for any x ∈ X ,
p

n
�

F̂‡
n(· | x)− F(· | x)

�

converges weakly to a zero-mean Gaussian process defined

on a closed interval [y , y] of Y and
p

n
�

Q̂∗n(· | x)−Q(· | x)
�

converges weakly to a zero-mean Gaussian

process defined on a closed interval [p, p] of (0, 1). Let T̃n =
�

F̂◦n(y | x), Q̂
+
n (p | x)

�

be the estimator of

(F(y | x),Q(p | x)) obtained from T̂n =
�

F̂‡
n(y | x), Q̂

∗
n(p | x)

�

by rearrangement. Then ARE(T̃n, T̂n) = 1 for

any x ∈ X and all p ∈ [p, p] and y ∈ [y , y] such that F(y | x) = p.

Although Theorem 3 only holds for values of (x , y, p) that satisfy the relationship F(y | x) = p, it does

not depend on the particular choice of direct estimators, provided they are consistent and asymptotically

Gaussian.

4.2 Asymptotic bias

If the assumed model for the CLF is misspecified, the DR approach gives inconsistent estimates of the

CDF. This is also true for the QR approach if the assumed model for the conditional CQF is misspeci-

fied. In such cases, asymptotic comparisons between estimators may be based on their MSE, which is

asymptotically dominated by bias.

In this section we consider the case when the assumed models for the CLF and the CQF are linear

in parameters but the data are generated from the non-separable model

Y = α+ X>β +ψε(X , U), (4)
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where U is a random error distributed independently of X as standard logistic, ε is a scalar andψε(X , U)

is a term that captures potential misspecification and is equal to U only when ε = 0. Thus, when ε = 0,

model (4) reduces to a logistic linear location model, in which case our linear-in-parameter specifications

of the CLF and the CQF are both correct.4 The reason we focus on (4) is that it encompasses several

important types of departure from the logistic linear location model (see Section 4.3 below).

We assume that the function ψε(x , ·) is strictly increasing for all x ∈ X and ε ≥ 0, with inverse

ϕε(x , ·). Under this assumption, the CDF and the CQF implied by model (4) are, respectively, Fε(y | x) =

Λ
�

ϕε(x , y −α− x>β)
�

and Qε(p | x) = α + x>β +ψε
�

x ,Λ−1(p)
�

, where Λ−1(p) = ln p − ln(1 − p).

Evaluating Fε(y | x) and Qε(p | x) at ε = 0 returns the CDF F0(y | x) = Λ(y − α − x>β) and the CQF

Q0(p | x) = α+ x>β +Λ−1(p) of a logistic linear location model.

It is convenient to associate to the DR estimator θ̂ n(y) and the QR estimator γ̂n(p), based on linear-

in-parameter specifications of the CLF and the CQF, the statistical functionals θ y(F) and γp(F) defined

on a convex space of distribution functions for (X , Y ) which contains all empirical distribution functions

F̂n(x , y) = n−1
∑n

i=11{X i ≤ x , Yi ≤ y}. Evaluating these functionals at F̂n returns θ̂ n(y) and γ̂n(p),

while evaluating them at the distribution function Fε(x , y) = Fε(y | x) F(x) of (X , Y ) under (4), where

F(x) is the marginal distribution function of X , returns the limits in probability of θ̂ n(y) and γ̂n(p)

under (4). We also associate to the direct estimators F̂‡
n(y | x) and Q̂∗n(p | x) the functionals T ‡

y (F | x) =

Λ
�

x>θ y(F)
�

and T ∗p (F | x) = x>γp(F), where x = (1, x>)>, which we write more compactly as T ‡ and

T ∗. Evaluating T ‡ and T ∗ at F̂n returns F̂‡
n and Q̂∗n, evaluating them at Fε returns F‡

ε and Q∗ε, the limits

in probability of F̂‡
n and Q̂∗n under (4), while evaluating them at F0(x , y) = Λ(y−α− x>β) F(x) returns

F0 and Q0, the limits in probability of F̂‡
n and Q̂∗n under the logistic linear location model.

To illustrate our approach, consider the direct QR estimator Q̂∗n(p | x) = x>γ̂n(p). Since γ̂n(p) is a

regular M-estimator, its associated functional γp is Gateaux differentiable and its Gateaux differential at

F in the direction of some other distribution function G is a functional γ̇p(F;G−F), linear in G−F, with

the integral representation γ̇p(F;G−F) =
∫

Y

∫

X ϑ(x
′, y ′;F) d(G−F)(x ′, y ′), where ϑ(x ′, y ′;F) is called

the influence function associated with γp (see e.g. Hampel 1974). Since Q̂∗n is a linear transformation

of γ̂n(p), its associated functional T ∗ is also Gateaux differentiable and its Gateaux differential at F in

the direction G is Ṫ ∗(F;G− F) = x>γ̇p(F;G− F). Now suppose that there exists a function H(x , y) =

H(y | x) dF(x) such that the distribution function of (X , Y ) under (4) can be represented, at least for

small ε, as Fε = F0 + εH. Then we can approximate Q∗ε −Q0 = T ∗(Fε)− T ∗(F0) by ε Ṫ ∗(F0;H) with an

4 An alternative way of modeling misspecification is to allow a fraction ε of the observations to depart from the logistic
linear location model. This case is considered in Appendix A.

11



approximation error of smaller order than ε, so

Q∗ε −Q0 = ε x>γ̇p(F0;H) + o(ε) = ε x>
∫

Y

∫

X
ϑ(x ′, y ′;F0) dH(y ′ | x ′) dF(x ′) + o(ε).

A similar approximation holds for the difference F‡
ε − F0 = T ‡(Fε)− T ‡(F0). We can then approximate

the differences Q+ε −Q0 and F◦ε − F0 by applying the chain rule to the integral transforms (2) and (3) of

T ‡ and T ∗ respectively. Finally, we can approximate the differences F+ε − F0 and Q◦ε −Q0 by repeatedly

applying the chain rule to the generalized inverses of the integral transforms of T ‡ and T ∗.

Our next result collects all these approximations.

Theorem 4 Suppose that model (4) holds withψε(x , ·) strictly increasing and differentiable for any x ∈ X

and all ε. Also suppose that Ψ(x , u) = limε↓0[ψε(x , u)−u]/ε exists and is square integrable in x, uniformly

in u ∈ (0, 1). If Assumptions A.2–A.3 and B.2–B.3 hold then, for any x ∈ X and all y ∈ [y , y] and

p ∈ [p, p],

F‡
ε (y | x)− F0(y | x) = F+ε (y | x)− F0(y | x) = −ε λy(x) x

> �Eλy(X )XX>
�−1 �
Eλy(X )Ψy(X )X

�

+ o(ε),

Q+ε (p | x)−Q0(p | x) = ε x>
�

EλQ0(p|x)(X )XX>
�−1 �
EλQ0(p|x)(X )ΨQ0(p|x)(X )X

�

+ o(ε),

Q∗ε(p | x)−Q0(p | x) =Q◦ε(y | x)−Q0(y | x) = ε x>P−1
X

�

EΨ(X ,Λ−1(p))X
�

+ o(ε),

F◦ε (y | x)− F0(y | x) = −ε λy(x) x
>P−1

X

�

EΨ(X , y −α− x>β)X
�

+ o(ε),

where λy(x) = λ(y − α − x>β), Ψy(x) = Ψ(x , y − α − x>β), Q0(p | x) = α + Λ−1(p) + x>β , and all

expectations are with respect to the marginal distribution of X .

Notice that Assumptions A.1 and B.1 are not needed because automatically satisfied by our linear-

in-parameter specifications. Also notice that the assumption about ψε(x , u) implies that, for ε small

enough, we can rewrite the data generating process (4) as Y = α+X>β+εΨ(X , U)+U . Thus, Ψ(X , U)

is the “control function” that should be added to either the logistic linear location model or the linear

regression quantile model in order to consistently estimate α and β (see e.g. Blundell, Newey and Vella

2015).

4.3 Bias and MSE under local misspecification

One way of striking a balance between asymptotic precision and bias is to consider a sequence of data

generating processes of the form (4) with ε = n−1/2, so the logistic linear location model is misspecified

but its degree of misspecification and the sampling uncertainty both vanish asymptotically at exactly the
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same rate. From Theorem 4 we can derive the local asymptotic bias of estimators based on linear-in-

parameter specification of the CLF or the CQF, namely their asymptotic bias under this sequence of data

generating processes. We can then compute their local asymptotic MSE as the sum of their asymptotic

variance and their squared local asymptotic bias.

Thus, let Tn = T (F̂n) be any of F̂‡
n , F̂+n , Q̂+n , Q̂∗n, Q̂◦n or F̂◦n , and let τ be the functional that returns

either the CDF or the CQF of Y . Notice that τ(Fε) 6= T (Fε), except when ε = 0. The asymptotic local

bias of Tn is

B(Tn) = lim
ε→0

T (Fε)−τ(Fε)
ε

= lim
ε→0

T (Fε)−τ(F0)
ε

− lim
ε→0

τ(Fε)−τ(F0)
ε

,

where ε = n−1/2. Theorem 4 provides expressions for limε→0

�

T (Fε)−τ(F0)
�

/ε. The assumptions of

the theorem also imply that limε→0

�

τ(Fε)−τ(F0)
�

/ε = −λy(x)Ψy(x) if τ is the CDF functional, while

limε→0

�

τ(Fε)−τ(F0)
�

/ε = ΨQ0(p|x)(x) if τ is the CQF functional. This gives the following corollary.

Corollary 1 If the conditions of Theorem 4 hold with ε = n−1/2 then, for any x ∈ X and all y ∈ [y , y]

and p ∈ [p, p],

B
�

F̂‡
n(y | x)

�

= B
�

F̂+n (y | x)
�

= λy(x)
�

Ψy(x)− x>
�

Eλy(X )XX>
�−1 �
Eλy(X )Ψy(X )X

�

�

, (5)

B
�

Q̂+n (p | x)
�

= −
�

ΨQ0(p|x)(x)− x>
�

EλQ0(p|x)(X )XX>
�−1 �
EλQ0(p|x)(X )ΨQ0(p|x)(X )X

�

�

, (6)

B
�

Q̂∗n(p | x)
�

= B
�

Q̂◦n(p | x)
�

= −
�

ΨQ0(p|x)(x)− x>(E XX>)−1
�

EΨQ0(p|X )(X )X
��

, (7)

B
�

F̂◦n(y | x)
�

= λy(x)
�

Ψy(x)− x>(E XX>)−1
�

EΨ(X , y −α− x>β)X
��

. (8)

Notice that the term in square brackets in (7) is the error in approximatingΨQ0(p|x)(x) = Ψ(x ,Λ−1(p))

using the linear least-squares projection of ΨQ0(p|X )(X ) = Ψ(X ,Λ−1(p)) on X , while the corresponding

term in (6) is the error in approximating ΨQ0(p|x)(x) using the weighted linear least-squares projection

of ΨQ0(p|x)(X ) = Ψ(X ,Λ−1(p)+ (x − X )>β) on X with weights equal to λQ0(p | x)(X ). The term in square

brackets in (8) is instead the error in approximating Ψy(x) using the linear least-squares projection of

Ψ(X , y−α− x>β) on X , while the corresponding term in (5) is the error in approximating Ψy(x) using

the weighted linear least-squares projection of Ψy(X ) on X with weights equal to λy(X ).

Figures 1 and 2 illustrate these results for the case when α = 0, β = 2π and X is a single regressor

distributed uniformly on the unit interval, so X = (1, X )>. Figure 1 refers to the direct DR estimator

F̂‡
n and the rearranged QR estimator F̂◦n , while Figure 2 refers to the direct QR estimator Q̂∗n and the

rearranged DR estimator Q̂+n , all based on simple linear specifications of the CLF and the CQF. The rows

of each figure plot the local asymptotic squared bias, the asymptotic variance and the local asymptotic
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MSE of the various estimators, integrated over the distribution of X , under four types of departure from

a logistic linear location model. Our asymptotic calculations are in line with the Monte Carlo evidence

in Koenker, Leorato and Peracchi (2013) and Leorato and Peracchi (2015).

The first row is for a heteroskedastic model where ψε(x , u) =
�

1+ εφ(x)
�

u and Ψ(x , u) = φ(x)u,

with φ(x) = 10x2. Under this particular form of heteroskedasticity both approaches lead to asymptot-

ically biased estimators, but the QR approach dominates the DR approach in terms of MSE because of

its smaller bias and variance. Since B
�

Q̂∗n(y | x)
�

= Λ−1(p)
�

x>P−1
X

�

Eφ(x)X
�

−φ(x)
�

, the bias of Q̂∗n
actually vanishes when p = 1/2, reflecting the linearity-in-parameters of the conditional median of Y .

The second row is for an omitted variable model where ψε(x , u) = εφ(x) + u and Ψ(x , u) = φ(x),

withφ(x) = 50x2. Both approaches again lead to asymptotically biased estimators, but now the smaller

bias of DR estimators offsets their larger variance, which results in a smaller MSE than QR estimators.

Notice that B
�

Q̂∗n(y | x)
�

= x>P−1
X

�

Eφ(x)X
�

−φ(x) does not depend on p, so the integrated squared

bias of Q̂∗n is the same for all p.

The third row is for the case when the distribution of the error in the linear location model (1) is not

logistic. Specifically, we consider a mixture of standard logistic and Student t with 3 degrees of freedom,

with weights equal to 1−ε and ε respectively. In this case Ψ(x , u) depends only on u, say Ψ(x , u) = ζ(u),

so B
�

Q̂∗n(p | x)
�

= ζ
�

Λ−1(p)
� �

x>P−1
X µX − 1

�

and B
�

F̂◦n(y | x)
�

= λy(x)ζ(y−α− x>β)
�

1− x>P−1
X µX

�

,

where µX = E X . The asymptotic bias of the DR estimators F̂‡
n and Q̂+n is surprisingly small. On the other

hand, x>P−1
X µX −1= 0 for any x , so the QR estimators F̂◦n and Q̂∗n have no asymptotic bias. Since they

also have smaller asymptotic variance than F̂‡
n and Q̂+n , the QR approach clearly dominates.

The fourth row is for a monotonic transformation model of the form Y (1−ε) + 1 = α + βX + U ,

where Y (1−ε) is the Box-Cox transform of Y , that is, Y (1−ε) = (Y 1−ε − 1)/(1− ε) for ε 6= 1. In this case,

ϕε(x , u)− u = [1+ (1− ε)(α+ x>β + u− 1)]1/(1−ε) −α− x>β − u, so Ψ(x , u) = φ(α+ x>β + u) with

φ(z) = z ln(z) + 1− z. This is a case where the DR estimators are not affected by asymptotic bias.

Notice that, locally near the linear location model (1), QR estimators have smaller integrated asymp-

totic variance than DR estimators, as already pointed out by Koenker, Leorato and Peracchi (2013). So,

the main advantage of the DR approach is the lower integrated asymptotic bias, at least in some cases.

5 Conclusions

If the assumed parametric models for the CLF and the CQF are correctly specified, then the relative

efficiency of the DR and the QR approach in estimating the population CDF F is asymptotically the

same as their relative efficiency in estimating the population CQF Q. Further, the direct estimator of the
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pair (F,Q) is asymptotically as efficient as the indirect estimator based on rearrangement.

If the assumed models for the CLF and the CQF are incorrectly specified as linear in parameters, then

the relative performance of the various estimators may be judged by their asymptotic local MSE, which

depends on both asymptotic variance and asymptotic local bias. In general, estimators obtained from the

QR approach have smaller integrated asymptotic variance than those obtained from the DR approach.

Their local asymptotic bias under the relatively general non-separable model (4) depends instead on

how well the regressors in X help predict the value of the “control function”Ψ(x , u) in the asymptotically

equivalent representation of the data generating process as Y = α+ X>β + εΨ(X , U) + U , where U is

standard logistic error. In the case of a linear location model with non-logistic errors QR estimators

have no asymptotic bias, while in the case of a monotonic transformation model DR estimators have no

asymptotic bias. Under heteroskedasticity or omitted variables, the relative bias of the various estimators

depends instead on the precise nature of model misspecification.
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Figure 1: Integrated local asymptotic squared bias, integrated asymptotic variance and integrated local
asymptotic MSE of the direct DR estimator F̂‡

n and the rearranged QR estimator F̂◦n under model (4) with
a single covariate X ∼U (0,1), α= 0, β = 2π and standard logistic error. First row: heteroskedasticity,
Ψ(x , u) = (1+ 10x2)u. Second row: omitted variables, Ψ(x , u) = 50x2. Third row: non-logistic error,
Ψ(x , u) ≈ (G(u) − Λ(u))/Λ′(u) and G ∼ t3. Fourth row: Box-Cox transform, α = 2, β = 6π and
Ψ(x , u) = ln(α+ β x + u)(α+ β x + u)(1−α− β x − u).



Figure 2: Integrated local asymptotic squared bias, integrated asymptotic variance and integrated local
asymptotic MSE of the direct QR estimator Q̂∗n and the rearranged DR estimator Q̂+n under model (4) with
a single covariate X ∼U (0, 1), α= 0, β = 2π and standard logistic error. First row: heteroskedasticity,
Ψ(x , u) = (1+ 10x2)u. Second row: omitted variables, Ψ(x , u) = 50x2. Third row: non-logistic error,
Ψ(x , u) ≈ (G(u)−Λ(u))/Λ′(u) with G ∼ t3. Fourth row: row: Box-Cox transform, α = 2, β = 6π and
Ψ(x , u) = ln(α+ β x + u)(α+ β x + u)(1−α− β x − u).



A Model contamination

In this section we study the asymptotic bias of QR and DR estimators under the following contamination

model

Y = α+ X>β + U + DΨ(X , U), (9)

where U is a random error distributed independently of X as standard logistic and D is a Bernoulli

random variable distributed independently of X and U with probability of success 0 ≤ ε < 1. This

model differs from that in Section 4.2 because now the linear location model (1) is misspecified only for

a fraction ε of the observations drawn from a contaminating distribution (see e.g. Horowitz and Manski

1995).

Using the same notation of Section 4.2, we denote the joint distribution function of (X , Y ) under

model (9) by Fε(x , y) = F(x) Fε(y | x), where

Fε(y | x) = (1− ε)Λ(y −α− x>β) + ε Pr{U +Ψ(x , U)≤ y −α− x>β}

denotes the CDF of Y . We also denote by F‡
ε , F+ε , Q+ε , Q∗ε, Q◦ε and F◦ε the limits in probability of F̂‡

n ,

F̂+n , Q̂+n , Q̂∗n, Q̂◦n and F̂◦n under model (9), and by F0 and Q0 the CDF and the CQF of the logistic linear

location model corresponding to ε = 0. Then we have the following counterpart of Theorem 4.

Theorem 5 Suppose that model (9) holds with D distributed as Bernoulli with parameter ε and that

the function ψ(x , u): u 7→ u + Ψ(x , u) is strictly increasing in u for all x ∈ X with inverse ϕ(x , ·). If

Assumptions A.1–A.3 and B.1–B.3 hold then, for any x ∈ X and all p ∈ [p, p] and y ∈ [y , y],

F‡
ε (y | x)− F0(y | x) = F+ε (y | x)− F0(y | x) =

= −ε λy(x) x
> �Eλy(X )XX>

�−1 �
E∆(X , y −α− X>β)X

�

+ o(ε),

Q+ε (p | x)−Q0(p | x) = ε x>
�

EλQ0(p | x)(X )XX>
�−1 �
E∆(X ,Q0(p | x)− X>β)X

�

+ o(ε),

Q∗ε(p | x)−Q0(p | x) =Q◦(y | x)−Q0(y | x) =

= ε [p(1− p)]−1x>PX

�

E∆(X ,Λ−1(p))X
�

+ o(ε),

F◦ε (y | x)− F0(y | x) = −ε x>PX

�

E∆(X , y −α− x>β)X
�

+ o(ε),

where Q0(p | x) = α+ x>β +Λ−1(p), ∆(x , u) = Λ(u)−Λ(ϕ(x , u)).

Using Theorem 5 we immediately obtain the counterpart of Corollary 1, namely expressions for the

asymptotic bias of estimators based on linear-in-parameter specifications of the CLF and the CQF under

a sequence of data generating processes of the form (9) with Pr{D = 1}= ε = n−1/2.
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B Proofs

Theorem 1

Part (i) establishes uniform consistency of the process y 7→ θ̂ n(y); part (ii) establishes asymptotic

normality of
p

n[θ̂ n(y)− θ (y)] by a Bahadur representation; finally, part (iii) establishes convergence

of the process
p

n(F̂‡
n − F‡) by a Taylor expansion argument.

(i) Uniform consistency. Assumption A.1 implies that h is Lipschitz with a square integrable Lipschitz

bound K(x). Since E |h(X ;θ )|2 <∞, then also E
�

�Dyh(X ;θ )− ln
�

1+ eh(X ;θ )
��

� <∞ because ln(1 +

x) ≤ max(ln2, ln(2x)). Next we show that Ln(θ ; y) = L(θ ; y) + op(1) uniformly in (θ , y) ∈ Θ × Y .

This is because Ln(θ ; y) = L(θ ; y)+ op(1) for all fixed (θ , y), by Khintchine law of large numbers, and

the process (θ , y) 7→ Ln(θ ; y) is stochastically equicontinuous. In fact, for every (θ , y) and (θ ′, y ′) we

have

�

�Ln(θ ; y)− Ln(θ
′; y ′)

�

�=

�

�

�

�

�

1
n

∑

i

�

(Dyi − Dy ′,i)h(X i;θ
′)− Dyi

�

h(X i;θ
′)− h(X i;θ )

�

+ ln
1+ eh(X i ;θ )

1+ eh(X i ;θ
′)

�

�

�

�

�

�

=

�

�

�

�

�

E
�

(Dy − Dy ′)h(X ;θ ′)
�

−E
�

Dy

�

h(X ;θ ′)− h(X ;θ )
��

+E ln
1+ eh(X ;θ )

1+ eh(X ;θ ′)
+ op(1)

�

�

�

�

�

≤
��

�E
�

(F(y |X )− F(y ′ |X ))h(X ;θ ′)
��

�+ 2
�

�E
�

(θ − θ ′)>K(X ) +Op(‖θ − θ ′‖2)
��

�

�

(1+ op(1)),

where the last inequality follows from the fact that h is twice differentiable and

ln
1+ eh(X ;θ )

1+ eh(X ;θ ′)
≤ (θ − θ ′)>∂θh(X ;θ ) +Op

�

‖θ − θ ′‖2
�

.

In turn, this implies stochastic equicontinuity of the process (θ , y) 7→ Ln(θ ; y) because
�

�Ln(θ ; y)− Ln(θ
′; y ′)

�

�≤

≤
�

sup
x
|F(y | x)− F(y ′ | x)|E |K(X )|+ ‖θ − θ ′‖∞E |K(X )|+O

�

E |(θ ′ − θ )>K(X )|2
�

�

(1+ op(1)).

Convexity of L in h and Assumption A.1 then imply that, uniformly in y , L(θ (y); y)> supθ 6∈B L(θ ; y),

whereB is an open subset containing θ (y). It follows from Corollary 3.2.3 of van der Vaart and Wellner

(1996) that ‖θ (y)− θ̂ n(y)‖ → 0 in (outer) probability, uniformly in y .

(ii) Asymptotic normality. Assumption A.1 implies that h is continuously differentiable in θ with square

integrable Lipschitz bound K(x) ≥ ∂θh. Then, the class H = {h(x;θ ), θ ∈ Θ} satisfies the bracketing

inequality N[](2ε‖K‖,H ,‖ · ‖) ≤ N(ε,Θ, d) for any norm ‖ · ‖, where N[](ε,F ,‖‖) is the minimum

number of ε-brackets and N(ε,F ,‖‖) is the number of ε-balls with which F can be covered (van der

Vaart and Wellner 1996, Theorem 2.7.11). Moreover, because the parameter space Θ is a bounded
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subset of a finite-dimensional Euclidean space, the right-hand-side of the inequality is bounded above

by C(1/ε)2 if d is the Euclidean distance. It follows from Theorem 2.5.2 in van der Vaart and Wellner

(1996) that H is a Donsker class. Further, by the permanence of the Donsker property, both Λ(H ) =
�

eh/(1+ eh), h ∈H
	

andD = {1{Y ≤ y}, y ∈ Y } are bounded Donsker classes, and so is {D−Λ(H )}.

The class G = {(D −Λ(H ))H ′}= {g(θ , y), (θ , y) ∈ Θ×Y } is also Donsker, whereH ′ is the class of

partial derivativesH ′ = {∂θh(x;θ ),θ ∈ Θ} ⊆
∏

jH
′
j and everyH ′

j is Donsker.

Given the vector valued function g(θ , y) =
�

Dy −
�

1+ exp(−h(x;θ ))
�−1�

∂θh(x;θ ), it follows that

the mapping (θ , y) 7→ n−1/2
∑

i[g(θ , y)−E g(θ , y)], is stochastically equicontinuous over Θ×Y with

respect to the pseudometric d
�

(θ , y), (θ ′, y ′)
�2
=max j E

�

(g j(θ , y)− g j(θ
′, y ′))

�2
, where g j is the jth

component of g. Further, since supy ‖θ̂ n(y)−θ (y)‖= op(1) and each g j is Lipschitz in θ , we have that

supy d
�

(θ (y), y), (θ̂ n(y), y)
�2
= op(1) in outer measure. We conclude that

Un

�

g(θ̂ n(y), y)
�

= Un

�

g(θ (y), y)
�

+ op(1)

in l∞(R), where Un denotes the empirical process, i.e. Un[ f ] =
p

n
�

n−1
∑

i f (X i)−E f (X )
�

.

A Taylor expansion of E[g(θ , y)]θ=θ̂ n(y)
around θ (y) gives

E
�

g(θ , y)
�

θ=θ̂ n(y)
= E

�

g(θ (y), y)
�

+
∂

∂ θ

¦

E
�

g(θ , y)
�

θ=θ (y)

©�

θ̂ n(y)− θ (y)
�

+ op

�

‖θ̂ n(y)− θ (y)‖
�

=
�

−H(y) + op(1)
�

�

θ̂ n(y)− θ (y)
�

.
(10)

The first order condition for θ̂ n(y) implies that

p
nEn g(θ̂ n(y), y) = n−1/2

n
∑

i=1

�

Di,y −
1

1+ exp(−h(X i;θ ))

�

∂θh(X i;θ )≤ op(1).

Multiplying (10) by
p

n and subtracting
p

nEn g(θ̂ n(y), y)) gives

op(1) =
�

H(y) + op(1)
�p

n
�

θ̂ n(y)− θ (y)
�

+Un

�

g(θ (y), y)
�

+ op(1).

Positive definiteness of H(y) then implies
p

n
�

θ̂ n(y)− θ (y)
�

= −Un

�

H(y)−1 g(θ (y), y)
�

+ op(1).

(iii) Weak convergence of F̂‡
n . Follows from (ii) by the application of the continuous mapping theorem

and the continuity of F‡(y | x) in both arguments. In particular, by (ii), for every x ∈ X ,
p

n
�

h(x; θ̂ n(y))− h(x;θ (y))
�

=
p

n∂θh(x;θ (y))>
�

θ̂ n(y)− θ (y)
�

+ op

�p
n‖θ̂ n(y)− θ (y)‖2

�

−Un

�

∂θh(x;θ (y))>H(y)−1 g(θ (y), y)
�

+ op(1).

A Taylor expansion of F̂‡
n(y | x) =

�

1+ exp(−h(x; θ̂ n(y)))
�−1

around h(x;θ (y)) gives

F̂‡
n(y | x)− F‡(y | x) = F‡(y | x)(1− F‡(y | x))

�

h(x; θ̂ n(y))− h(x;θ (y))
�

+ op(n
−1/2),

so
p

n
�

F̂‡
n(y | x)− F‡(y | x)

�

= F‡(y | x)(1− F‡(y | x))Un

�

∂θh(x;θ (y))>H(y)−1 g(θ (y), y)
�

+ op(1).
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Theorem 2

The proof follows the same steps of the proof of Theorem 1, as they are both M-estimators.

Theorem 3

For notational convenience, we simply write F(y) = F(y | x). We similarly drop the x argument in the

CQF, the estimates of the CDF and the CQF, and the related limiting Gaussian processes. We also denote

by ZF and ZQ the limiting Gaussian processes of
p

n(F̂‡
n − F) and

p
n(Q̂∗n −Q), and by σ2

F and σ2
Q their

variance function.

The functional delta method applied to the functionals Q̂+n = τ(F̂
‡
n) = F̂‡−1

n and F̂◦n = τ(Q̂
∗
n) = Q̂∗−1

n

gives
p

n
�

τ(F̂‡
n)−τ(F)

�

=
p

n(Q̂+n −Q)⇒−
ZF (F−1)
F ′(F−1)

,

with⇒ denoting weak convergence, and

p
n
�

τ(Q̂∗n)−τ(Q)
�

=
p

n(F̂◦n − F)⇒−
ZQ(Q−1)

Q′(Q−1)
= −ZQ(F) f (Q(Q−1)),

which implies that V (Q̂+n ) = σ
2
F (F

−1)/F ′(F−1)2 and V (F̂◦n(y)) = f 2(y)σ2
Q(F(y)). Setting p = F(y), we

then have the following relationship between the determinants of the asymptotic variances of T̂ and T̃

|V (T̂ )(y)|= V
�

F̂‡
n(y)

�

V
�

Q̂∗n(F(y))
�

− C
�

F̂‡
n(y), Q̂

∗
n(F(y))

�2

= σ2
F (y)σ

2
Q(F(y))− C

�

ZF (y), ZQ(F(y))
�

=
σ2

F (y)

f 2(y)
V
�

σ2
Q(F(y))

�

f 2(y)− C

�

ZF (y)
f (y)

, f (y) ZQ(F(y))

�

= |V (T̃ )(y)|.

Theorem 4

Recall that, given a regular M-estimator T , its Gateaux differential at F in some direction G = H + F

is Ṫ (F;H) =
∫

X

∫

Y ϑ(x , y,F) dH, where ϑ(x , y,F0) is the influence function of the estimator (see e.g.

Serfling 1980, Chapter 7). Thus, the Gateaux differential for the DR functional θ y is

θ̇ y(F;H) =
�

EΛ′(y −α− X>β)XX>
�−1

∫

X

∫

Y

�

1{y ′ ≤ y} −Λ(y −α− x>β)}
�

x dH(x , y ′), (11)

while for the QR functional γp is

γ̇p(F;H) =
1

p(1− p)
P−1

X

∫

X

∫

Y

�

p−1{y ≤ α+ x>β +Λ−1(p)}
�

x dH(x , y). (12)

Both differentials are continuous, in (x , y) and (x , p) respectively.
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The joint distribution Fε of (X , Y ) under model (4) cannot be written as a convex combination of

two fixed distributions F0 and G, because Fε = F0 + εHε, with Hε(x , y) = F(x)Hε(y | x) and

Hε(y | x) =
Λ
�

ψ−1
ε (x , y −α− x>β)

�

−Λ(y −α− x>β)

ε
.

However, the existence of Ψ(x , u) = limε↓0[ψε(x , u) − u]/ε implies that, for ε small enough, Fε =

F0 + εH+ o(ε), with H(x , y) = F(x)H(y | x) and

H(y | x) = lim
ε→0

Hε(y | x) = −Λ′(y −α− x>β)Ψ(x , y −α− x>β).

The approximation error Fε−F0−εH= ε(Hε−H) is continuos and differentiable, asψε is differentiable

for all ε and ‖Hε −H‖= o(1). Thus, using linearity of the Gateaux differential in its second argument,

we can write

γ̇p(F0;Hε) = γ̇p(F0;H) + γ̇p(F0;Hε −H)

=

∫

X

∫

Y
ϑ(x , y,F0)dH+ γ̇p(F0;Hε −H)

=
1

p(1− p)
P−1

X

∫

X

∫

Y

�

p−1{y ≤ α+ x>β +Λ−1(p)}
�

x dH(y | x) dF(x) + o(1).

Therefore, under model (4),

Q∗(p | x)−Q0(p | x) = T ∗(Fε)− T ∗(F0) = x>γ̇p(F0;εHε) + o(ε)

= ε x>γ̇p(F0;H) + o(ε) = ε x>P−1
X

�

EΨ
�

X ,Λ−1(p)
�

X
�

+ o(ε).

Repeating the argument for the DR functional gives

θ̇ y(F0;Hε) = −
�

EΛ′(y −α− X>β)XX>
�−1 �
EΛ′(y −α− X>β)Ψ(X , y −α− X>β)X

�

+ o(1).

Thus, by applying the chain rule,

F‡(y | x)− F0(y | x) = T ‡(Fε)− T ‡(F0)

= ε Ṫ ‡(F0;H) + o(ε)

= −ε λy(x) x
> �Eλy(X )XX>

�−1 �
Eλy(X )Ψ(X , y −α− X>β)X

�

+ o(ε),

where λy(x) = Λ′(y −α− x>β). The asymptotic biases of F◦ and Q+ are instead obtained by applying

the chain rule to the transformations

F◦(y | x) = τ1(T
∗(F)) =

∫ 1

0

1{T ∗(F)(u | x)≤ y}du,

Q+(p | x) = τ2(T
‡(F)) =

∫ ∞

0

1{T ‡(F)(y | x)≤ p}d y −
∫ 0

−∞
1{T ‡(F)(y | x)> p}d y.
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For the former, we note that Λ(x>θ y(F0)) = F0(y | x) = Λ(y −α− x>β), so the root of p = F0(y | x) is

unique, that is, N j(p | x) = 1. Then, using the expression of the Hadamard differential of τ2 (which can

be derived symmetrically to that of the mapping τ1), we get

∂ τ2(T ‡(Fε))
∂ ε

= τ̇2

�

T ‡(F0); Ṫ ‡(F0;Hε)
�

=
N j(p | x)
∑

j=1

CṪ ‡(F0;Hε)
(p | x)

= −
Ṫ ‡(F0;Hε)

∂Λ(x>θ y(F0))/∂ y
= −

Ṫ ‡(F0;H)
p(1− p)

+ o(1).

By analogous reasoning we get

∂ τ1(T ∗(Fε))
∂ ε

(y | x) = −
Ṫ ∗(F0;Hε)

∂ F−1
0 (y | x)/∂ p

= −Λ′(y −α− x>β) Ṫ ∗(F0;H) + o(1).

The result then follows from the fact that τ1(Fε)−τ1(F0) = ε
�

∂ τ1(T ‡(F0))/∂ ε
�

ε=0+op(ε) and τ2(Fε)−

τ2(F0) = ε
�

∂ τ2(T ∗(F0))/∂ ε
�

ε=0 + op(ε), with y −α− x>β = Λ−1(p) when ε = 0.

Theorem 5

In this case, the distribution function of (X , Y ) under model (9) is exactly of the form Fε = F0+ε(G−F0)

for some contaminating distribution function G, so we can directly use the Gateaux differentials (11)

and (12) to derive the asymptotic bias of all our estimators after applying the chain rule in a way similar

to Theorem 4. Thus,

Ṫ ∗(F0;H) =
1

p(1− p)
x>0 P−1

X

∫

X

∫

Y

�

p0 −1{y − x>γp0
(F0)}

�

x dH

and

Ṫ ‡(F0;H) =
∂Λ

�

x>θ y0
(Fε)

�

∂ ε

�

�

�

�

�

ε=0

= Λ′
�

x>0 θ y0
(F0)

�

x>0 θ̇ y0
(F0;H).

where H=G−F0. The results about Q∗−Q0 and F‡− F0 then follow by setting G(x , y) = F(x) Pr{U +

Ψ(x , U) ≤ y − α − x>β}. In particular, the fact that Q∗(p | x) − Q0(p | x) = x>
�

γ(Fε)− γ(F0)
�

=

ε x>γ̇(F0,H) + o(ε) implies the first result, namely

Q∗(p | x0)−Q0(p | x0) =
ε

p(1− p)
x>0 P−1

X

∫

X

∫

Y

�

p−1{y ≤ α+ x>β +Λ−1(p)}
�

x dH+ o(ε)

=
ε

p(1− p)

�

p−Λ
�

ϕ(X ,Λ−1(p))
��

x>0 PX µX + o(ε),

where ψ(x , u) = u+Ψ(x , u) and µX = E X , while the fact that

x>θ̇ (F0;H) = x>
�

EΛ′(y −α− X>β)XX>
�−1
E X

�

Λ
�

ϕ(X , y −α− X>β)
�

−Λ(y −α− X>β)
�

implies the second result. The asymptotic biases of F◦ and Q+ are instead obtained by applying the

chain rule to the transformations τ1(T ∗) and τ2(T ‡) defined in the proof of Theorem 4.
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