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ECARES, Université Libre de Bruxelles

Marco Lippi¶

Einaudi Institute for Economics and Finance, Roma

Paolo Zaffaroni‖

Imperial College London and Università di Roma La Sapienza
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Abstract. Factor models, all particular cases of the Generalized Dynamic Factor Model

(GDFM) introduced in Forni, Hallin, Lippi and Reichlin (2000), have become extremely

popular in the theory and practice of large panels of time series data. The asymptotic prop-

erties (consistency and rates) of the corresponding estimators have been studied in Forni,

Hallin, Lippi and Reichlin (2004). Those estimators, however, rely on Brillinger’s dynamic

principal components, and thus involve two-sided filters, which leads to rather poor fore-

casting performances. No such problem arises with estimators based on standard (static)

principal components, which have been dominant in this literature. On the other hand, the

consistency of those static estimators requires the assumption that the space spanned by the

factors has finite dimension, which severely restricts the generality afforded by the GDFM.

This paper derives the asymptotic properties of a semiparametric estimator of the loadings

and common shocks based on one-sided filters recently proposed by Forni, Hallin, Lippi and

Zaffaroni (2015). Consistency and exact rates of convergence are obtained for this estimator,

under a general class of GDFMs that does not require a finite-dimensional factor space. A

Monte Carlo experiment and an empirical exercise on US macroeconomic data corroborate

those theoretical results and demonstrate the excellent performance of those estimators in

out-of-sample forecasting.

JEL subject classification : C0, C01, E0.

Key words and phrases: High-dimensional time series. Generalized dynamic factor models.

Vector processes with singular spectral density. One-sided representations of dynamic factor

models. Consistency and rates.

1 Introduction

In the present paper, we provide consistency results and consistency rates for the estimators

recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015) (hereafter, FHLZ) for the

Generalized Dynamic Factor Model (GDFM).

Let

{xit, 1 ≤ i ≤ n0, 1 ≤ t ≤ T0} (1.1)

be an observed (n0 × T0)-dimensional panel, namely, a n0-tuple of time series observed over
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a time period of length T0. The GDFM, as introduced in Forni et al. (2000) and Forni and

Lippi (2001) consists in modeling that panel as a finite realization of a stochastic process of

the form {xit, i ∈ N, t ∈ Z}, that is, a countable number of stochastic processes {xit, t ∈ Z}

admitting a decomposition of the form

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1.2)

where ut = (u1t u2t · · · uqt)′ is unobservable q-dimensional orthonormal white noise and

the filters bif (L), i ∈ N, f = 1, . . . , q, are square-summable (L, as usual, stands for the lag

operator); the unobservable processes χit and ξit are called the common and idiosyncratic

components, respectively. Detailed assumptions on (1.2) are given below. Let us only recall

here that the idiosyncratic components ξit and the common shocks uft, also called dynamic

factors, are mutually orthogonal at any lead and lag, and that the idiosyncratic components

are “weakly” cross-correlated in a sense to be defined below—cross-sectional orthogonality

being an extreme case.

Much of the literature on Dynamic Factor Models is based on (1.2) under the assumption

that the space spanned by the stochastic variables χit, for t given and i ∈ N, is finite-

dimensional.1 Under that assumption, model (1.2) can be rewritten in the so-called static

representation

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = (F1t . . . Frt)
′ = N(L)ut.

(1.3)

The variables Fjt, j = 1, 2, . . . , r are usually called the static factors, as opposed to the

dynamic factors ujt. Criteria to determine r consistently have been given in Bai and Ng (2002)

and, more recently, in Alessi et al. (2010), Onatski (2010), and Ahn and Horenstein (2013).

The vectors Ft and the loadings λij can be estimated consistently using the first r standard

principal components, see Stock and Watson (2002a,b), Bai and Ng (2002). Moreover, the

second equation in (1.3) is usually specified as a possibly singular VAR, so that (1.3) becomes

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

D(L)Ft = (I−D1L−D2L
2 − . . .−DpL

p)Ft = Kut,
(1.4)

where the matrices Dj are r× r while K is r× q, r ≥ q. Under (1.4), Bai and Ng (2007) and

1The definition of χit obviously implies that this dimension does not depend on t.
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Amengual and Watson (2007) provide consistent criteria to determine q. We refer to esti-

mators and predictors based on the existence of the static representation (1.3) and standard

principal components as the static method, as opposed to the method developed in FHLZ

and the present paper, referred to as the dynamic method.

The assumption of a finite-dimensional factor space, however, is far from being innocuous.

For instance, (1.3) is so restrictive that even the very elementary model

xit = ai(1− αiL)−1ut + ξit, (1.5)

where q = 1, ut is scalar white noise, and the coefficients αi are drawn from a uniform

distribution over the stationary region, is ruled out. In this case, the space spanned, for

given t, by the common components χit, i ∈ N, is easily seen to be infinite-dimensional unless

the αi’s take only a finite number of values.

On the other hand, in the absence of the finite-dimensionality assumption, estimation of

model (1.2) cannot be based on a finite number r of standard principal components. That

situation is the one studied in Forni et al. (2000), who are using q principal components in the

frequency domain (Brillinger’s dynamic principal components; see Brillinger (1981)) to esti-

mate the common components χit.
2 However, their estimators involve the application of two-

sided filters acting on the observations xit, and hence perform poorly at the end/beginning

of the observation period. As a consequence, they are of little help for prediction.

In FHLZ, we show how one-sided estimators without the finite-dimensionality assumption

can be obtained, under the additional condition that the common components have a rational

spectral density, that is, each filter bif (L) in (1.2) is a ratio of polynomials in L:

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt, i ∈ N, f = 1, 2, . . . , q, (1.6)

where

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 and dif (L) = dif,0 + dif,1L+ . . .+ dif,s2L

s2

(the degrees s1 and s2 of the polynomials are assumed to be independent of i and f for the

sake of simplicity).

2Criteria to determine q without assuming (1.3) or (1.4) are obtained in Hallin and Lǐska, 2007

and Onatski, 2009.
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Denote by xt, χχχt, ξξξt the infinite-dimensional column vectors with components xit, χit,

and ξit, respectively. Elaborating upon recent results by Anderson and Deistler (2008a, b),

FHLZ prove that, for generic values of the parameters cif,k and dif,k (i.e. apart from a lower-

dimensional subset in the parameter space, see FHLZ for details), the infinite-dimensional

idiosyncratic vector χχχt = (χ1t χ2t · · · χnt · · · )′ admits a unique autoregressive representation

with block structure of the form

A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0

. . .

0 0 · · · Ak(L)
...

. . .


χχχt =



R1

R2

...

Rk

...


ut, (1.7)

where Ak(L) is a (q+ 1)× (q+ 1) polynomial matrix with finite degree and Rk is (q+ 1)× q.

Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides of (1.7),

respectively, and letting Zt = A(L)xt, it follows that

Zt = Rut + A(L)ξξξt. (1.8)

Under the assumptions of the present paper, the term A(L)ξξξt is still idiosyncratic, so

that (1.8) is a static representation of the form (1.4), with D(L) = I. That static rep-

resentation can be estimated via traditional principal components, which does not require

two-sided filters. The transformation of the dynamic model (1.6) into the static form (1.8) is

the central idea of the paper.

FHLZ thus obtain one-sided estimators for the common components without imposing the

standard finite-dimension restriction. Moreover, the high-dimensional VAR (1.7) is obtained

by piecing together the low-dimensional matrices Ak(L), each one depending only on the

covariances of q + 1 common components. Therefore, no curse of dimensionality occurs with

the procedure. Estimation of the common components χit, the shocks ut and the filters bif (L)

is based on the sample analogues of representations (1.7) and (1.8):

(i) We start with a lag-window estimator of the spectral density matrix of the observed

vector xnt = (x1t x2t · · · xnt), call it Σ̂̂Σ̂Σx
n(θ).
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(ii) Using the first q frequency domain principal components of Σ̂̂Σ̂Σx
n(θ) (with q determined

via the Hallin-Lǐska (2007) criterion), we construct an estimator of the spectral density

of χχχnt = (χ1t χ2t · · · χnt), call it Σ̂̂Σ̂Σχ
n(θ). Estimators of the autocovariances of χχχnt

are then obtained from Σ̂̂Σ̂Σχ
n(θ); call Γ̂̂Γ̂Γχn,h the estimator of the covariance between χχχnt

and χχχn,t−h. Those Γ̂̂Γ̂Γχn,h’s are used, in a traditional, low-dimensional way, to construct

the autoregressive estimators Âk(L).

(iii) Blockwise estimators of the variables Zjt are obtained by applying the finite-degree

filters Âk(L) to the observed variables xit. Estimators for the shocks uft and the

matrices Rk are obtained by using the first q standard principal components of the

variables Zit. Inverting the same Âk(L)’s provides

(iv) Lastly, estimators for the filters bif (L), i.e. the row impulse-response functions are

obtained as Âk(L)−1Rk.

We are providing here a careful analysis of the asymptotic behavior (consistency with

rates) of the estimators described in (ii) and (iii) above. Our asymptotic analysis is based

on recent results on lag-window spectral estimators in Shao and Wu (2007) and Liu and

Wu (2010), as extended to the multivariate case by Wu and Zaffaroni (2015). Starting with

the observable time series xit, denoting by T the number of observations for each series

and by σ̂ij(θ) a lag-window estimator of the cross-spectrum between xit and xjt, the (i, j)

entry of Σ̂̂Σ̂Σ(θ), under quite general assumptions on the processes xit, xjt and the kernel,

these papers prove that σ̂ij(θ) is consistent, as T → ∞, uniformly with respect to θ, with

rate
√
BT logBT /T , where BT is the size of the lag window. As an important innovation with

respect to the previous literature on spectral estimation, these results are obtained without

assuming linearity nor Gaussianity of the processes xit.

Exploiting those results here, however, requires some enhancement of the FHLZ assump-

tions on the common shocks and the idiosyncratic components. In particular, the vector ut,

which is second-order white noise in FHLZ, is i.i.d. here. This, as well as some other changes

in the FHLZ assumptions, is discussed in detail in Section 2. Under this enhanced set of

assumptions, we prove that the estimators Σ̂̂Σ̂Σχ(θ), Γ̂̂Γ̂Γχ and Âk(L) are consistent with rate

ζnT = max
(√

n−1,
√
T−1BT logBT

)
, (1.9)
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where BT diverges as T δ, with 1/3 < δ < 1. Establishing those rates raises some nontrivial

difficulties. Although model (1.8) is finite-dimensional, indeed, the series Zit are estimated,

not observed. As a consequence, the well-known results from static-factor literature (Stock

and Watson, 2002a and b, Bai and Ng, 2002) do not readily apply, and proving that consis-

tency holds with the same rates ζnT as if Zit were observed requires non negligible efforts.

As pointed out in FHLZ (end of Section 4.5), despite the fact that the dynamic model

studied in this paper is more general than model (1.4), when a dataset with finite n = n0

and T = T0 is given, the static approach might perform well even though the required finite-

dimension assumptions are not satisfied. A Monte Carlo study is provided in Section 4, in

which the static and dynamic methods have been applied to simulated data. A very short

summary of our results is that (i) when the data are generated by infinite-dimensional models

which are simple generalizations of (1.5), the estimation of impulse-response functions and

predictions via the dynamic method is by far better than those obtained via the static one;

(ii) even when the data are generated by (1.4), still the dynamic method performs slightly

better. Though not conclusive, our Monte Carlo results strongly suggest that the FHLZ

method may be uniformly competitive. A pseudo out-of-sample forecasting exercise with US

quarterly macroeconomic series provides further evidence in favour of the dynamic method.

The paper is organized as follows. In Sections 2, we present and comment the main

assumptions to be made throughout. Section 3 provides the main asymptotic results. Sec-

tions 4 and 5 contain a detailed description and analysis of the Monte Carlo experiments and

the empirical exercise respectively. Section 6 concludes. Short proofs are given in the body

of the paper, the longer ones in the Appendix.

2 Main assumptions and some preliminary results

The assumptions in this section reproduce those in FHLZ with some important additional

specifications. Assumption 1 decomposes the x’s into common and idiosyncratic components.

The common components are driven by the q-dimensional i.i.d. vector of common shocks ut

via rational filters, see (1.6). The idiosyncratic components, unlike in FHLZ, are modelled

here as moving averages of an infinite-dimensional i.i.d. vector ηηηt = (η1t η2t · · · )′. Assuming

that ut is i.i.d. instead of a second-order white noise (as in FHLZ), as well as modelling
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the idiosyncratic components, is necessary for the assumptions and results on estimation,

see below. Assumption 2 imposes standard conditions on the rational functions in (1.6).

Assumption 3 is the standard condition on the eigenvalues of the spectral density of the

common components as n, the number of series, tends to infinity, see FHLZ, enhanced with

their separation, which is necessary in the consistency proof, see in particular, Lemma 3,

Appendix B. Assumption 4 imposes that both serial and cross-sectional dependence of the

idiosyncratic components declines geometrically. As a consequence, the first eigenvalue of the

spectral density of the idiosyncratic components is bounded as n tends to infinity, which is

the definition of idiosyncratic components in FHLZ.

Assumption 5 is borrowed, together with its motivation, from FHLZ. Its consequence is

the transformation of the dynamic model into the static form (1.8). Assumption 6 imposes

divergence and separation of the eigenvalues of the common components in (1.8).

The first two assumptions in Section 3 are necessary to invoke the results in Wu and

Zaffaroni (2015) on the uniform convergence of the spectral density estimates. Assumption 8

imposes a bound on the p-th moments of uft, f = 1, 2, . . . , q, and ηjt, j ∈ N, uniform with

respect to f and j, with p > 4. Together with Assumption 9 it implies a crucial result, namely

that the estimated cross-spectral density of xit and xjt converges uniformy with respect to

the frequency θ, i and j, see Proposition 6. Assumption 7 and 10 are technical.

2.1 Common and idiosyncratic components

The Dynamic Factor Model studied in the present paper is a decomposition, of the form

xit = χit + ξit, i ∈ N, t ∈ Z

of an observed variable xit into a nonobserved common component χit and a nonobserved id-

iosyncratic component ξit. Throughout, we are assuming that the family of random variables

{xit, χit, ξit, i ∈ N, t ∈ Z}

satisfies the assumptions listed below as Assumptions 1 through 10.

Assumption 1 There exist a natural number q > 0 and
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(1) a q-dimensional stochastic zero-mean process ut = (u1t u2t · · · uqt)′, t ∈ Z, and an

infinite-dimensional stochastic process ηηηt = (η1t η2t · · · )′, t ∈ Z;

(2) square-summable filters bif (L), i ∈ N, f = 1, . . . , q;

(3) coefficients βij,k, for i, j ∈ N, k = 0, 1, . . . ,∞, where
∑∞

j=1

∑∞
k=0 β

2
ij,k < ∞ for all i ∈

N;

such that

(i) the vector St = (u′t ηηη
′
t)
′, t ∈ Z, is i.i.d. and orthonormal, i.e. E(StS

′
t) = I∞; in

particular, cov(uft, ηj,t−k) = 0, f = 1, . . . , q, j ∈ N, k = 0, 1, . . . ,∞;

(ii) χit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt = bi(L)ut

ξit =

∞∑
j=1

∞∑
k=0

βij,kηj,t−k.
(2.1)

Clearly, neither ut nor the polynomials bif (L) are identified. Indeed, for any orthogonal

matrix Q, the common component χit has the alternative representation

χit =
[
bi(L)Q−1

]
[Qut] = b∗i (L)u∗t .

Note that (i) and (2.1) imply cov(uft, ξi,t−k) = 0 for all f, i, k.

Assumption 2 Conditions on the filters bif (L).

(i) The filters bif (L) are rational. More precisely, there exist natural numbers s1, s2 such

that bif (L) = cif (L)/dif (L), where

cif (L) = cif,0 + cif,1L+ · · ·+ cif,s1L
s1 and dif (L) = 1 + dif,1L+ · · ·+ dif,s2L

s2 , (2.2)

for i ∈ N, f = 1, . . . , q.

(ii) There exists φ > 1 such that none of the roots of dif (L) is less than φ in modulus,

for i ∈ N, f = 1, . . . , q.

(iii) There exists Bχ, 0 < Bχ <∞, such that |cif,j | ≤ Bχ, i ∈ N, f = 1, . . . , q, j = 0, . . . , s1.

Under Assumption 2, the vector χχχnt = (χ1t χ2t · · · χnt)′ has a rational spectral density

matrix ΣΣΣχ
n(θ); denote by λχnj(θ) its j-th eigenvalue (in decreasing order).
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Assumption 3 Common component spectral density eigenvalues: divergence and separation.

There exist continuous functions

αχf (θ), f = 1, . . . , q and βχf (θ), f = 0, . . . , q − 1, θ ∈ [−π, π],

and a positive integer nχ such that, for n > nχ,

βχ0 (θ) ≥ λχn1(θ)

n
≥ αχ1 (θ) > βχ1 (θ) ≥ λχn2(θ)

n
≥ · · · ≥ αχq−1(θ) > βχq−1(θ) ≥

λχnq(θ)

n
≥ αχq (θ) > 0,

for all θ ∈ [−π, π].

Assumption 4 Serial and cross-sectional dependence of idiosyncratic components.

There exists finite positive numbers B, Bis, i ∈ N, s ∈ N, and ρ, 0 ≤ ρ < 1, such that

∞∑
s=1

Bis ≤ B, for all i ∈ N (2.3)

∞∑
i=1

Bis ≤ B, for all s ∈ N (2.4)

|βis,k| ≤ Bisρ
k, for all i, s ∈ N and k = 0, 1, . . . (2.5)

An immediate consequence of (2.3) and (2.4) is that

∞∑
i=1

∞∑
s=1

BisBjs ≤ B2, for all j ∈ N. (2.6)

Conditions (2.3) and (2.4) are obviously satisfied in the “purely idiosyncratic” case ξit = ηit,

and for finite “cross-sectional moving averages” such as ξit = ηit+ηi+1,t. It follows from (2.5)

that the time dependence of the variables ξit declines geometrically, at the common rate ρ.

Under Assumption 4, setting βis(L) =
∑∞

k=0 βis,kL
k and ξit =

∑∞
s=1 βis(L)ηst, and de-

noting by ı the imaginary unit,

|βis(e−ıθ)| =

∣∣∣∣∣
∞∑
k=0

βis,ke
−ıkθ

∣∣∣∣∣ ≤
∞∑
k=0

|βis,k| ≤
∞∑
k=0

Bisρ
k ≤ Bis

1

1− ρ
.

Therefore, letting σξij(θ) be the cross-spectral density of ξit and ξjt,

∞∑
i=1

|σξij(θ)| ≤
1

2π

∞∑
i=1

∞∑
s=1

|βis(e−ıθ)βjs(e−ıθ)| ≤ 1

2π(1− ρ)2

∞∑
i=1

∞∑
s=1

BisBjs

≤ B2 1

2π(1− ρ)2
,

(2.7)
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by (2.6). Assumption 4 thus implies that the cross-spectra σξij(θ) are bounded, in θ, uniformly

in i and j. On the other hand, Assumption 2, (ii) and (iii), implies that σχij(θ) is bounded,

in θ, uniformly in i and j. Therefore, σxij(θ) = σχij(θ) +σξij(θ) is bounded, in θ, uniformly in i

and j.

The spectral density matrices of the ξ’s and the x’s, and their eigenvalues, ordered in

decreasing order, are denoted by ΣΣΣξ
n(θ), ΣΣΣx

n(θ), λξnj(θ) and λxnj(θ), respectively; under the

above assumptions, they satisfy the following properties.

Proposition 1 Under Assumptions 1 through 4,

(i) there exists Bξ > 0 such that λξn1(θ) ≤ Bξ for all n ∈ N and θ ∈ [−π, π] (thus, the ξ’s

are idiosyncratic, see FHLZ, Section 2.2);

(ii) there exists nx ∈ N such that, for n > nx and all θ ∈ [−π, π],

λxn1(θ)

n
> αχ1 (θ) >

λxn2(θ)

n
> · · · > αχq−1(θ) >

λxnq(θ)

n
> αχq (θ),

where the functions αχj (θ) are defined in Assumption 3;

(iii) there exists Bx > 0 such that λxn,q+1(θ) ≤ Bx for all n ∈ N and θ ∈ [−π, π].

Proof. The column and row norms of ΣΣΣξ
n(θ) are equal, and, by (2.7), satisfy

max
j=1,2,...,n

n∑
i=1

|σξij(θ)| ≤ max
j=1,2,...,n

∞∑
i=1

|σξij(θ)| ≤ B
2 1

2π(1− ρ)2
.

On the other hand, the product of the row and the column norms, the square of the column

norm in our case, is greater than or equal to the square of the spectral norm, see Lancaster and

Tismenetsky (1985), p. 366, Exercise 11. As a consequence, setting Bξ = B21/2π(1− ρ)2,

we have λξn1(θ) ≤ Bξ for all n and θ.

Regarding (ii), ΣΣΣx
n(θ) = ΣΣΣχ

n(θ) + ΣΣΣξ
n(θ) implies that

λxnf (θ) ≥ λχnf (θ) + λξnn(θ) and λxnf (θ) ≤ λχnf (θ) + λξn1(θ)

(these are two of the Weyl inequalities, see Franklin (2000), p. 157, Theorem 1; see also

Appendix B). By Assumption 3,

λxnf (θ)

n
≥
λχnf (θ) + λξnn(θ)

n
> αχf (θ),
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for f = 1, . . . , q, and, for f = 2, . . . , q,

λxnf (θ)

n
≤
λχnf (θ) + λξn1(θ)

n
≤
λχnf (θ)

n
+
Bξ

n
≤ βχf−1(θ) +

Bξ

n
< αχf−1(θ),

for n > nχ, nχ being such that Bξ/nχ < minf=1,2,...,q

[
minθ∈[−π, π](α

χ
f (θ)− βχf (θ))

]
.

As for (iii), λxn,q+1 ≤ λ
χ
n,q+1(θ) + λξn1(θ). On the other hand, λχn,q+1(θ) = 0 for all θ. The

result then follows from (i). �

Proposition 2 Under Assumptions 1 through 4, the cross-spectral densities σxij(θ) possess

derivatives of any order and are of bounded variation uniformly in i, j ∈ N; namely, there

exists Ax > 0 such that
ν∑
h=1

|σxij(θh)− σxij(θh−1)| ≤ Ax

for all i, j, ν ∈ N and all partitions

−π = θ0 < θ1 < · · · < θν−1 < θν = π

of the interval [−π, π].

Proof. Denoting by γξij,h, h ≥ 0, the covariance between ξit and ξj,t−h,

|γξij,h| =

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

βis,kβjs,k+h

∣∣∣∣∣ ≤
∞∑
k=0

∞∑
s=1

BisBjsρ
kρk+h ≤ ρh

∞∑
k=0

ρ2k
∞∑
s=1

BisBjs ≤ ρh
B2

1− ρ2
,

(2.8)

by (2.6). For h < 0, γξij,h = γξji,−h, so that |γξij,h| ≤ ρ
|h|B2/(1− ρ2). This implies that

σξij(θ) =
1

2π

∞∑
h=−∞

γξij,he
−ıhθ

has derivatives of all orders. Moreover,∣∣∣∣ ddθσξij(θ)
∣∣∣∣ =

1

2π

∣∣∣∣∣
∞∑

h=−∞
(−ıh)γξij,he

−ıhθ

∣∣∣∣∣ ≤ B2

π(1− ρ2)

∞∑
h=1

hρh =
B2ρ

π(1− ρ2)(1− ρ)2
,

which entails bounded variation of σξij(θ) uniformly in i and j. Bounded variation of σχij(θ),

uniformly in i and j, is an obvious consequence of Assumption 2. The conclusion follows

from the fact that σxij(θ) = σχij(θ) + σξij(θ). �
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2.2 Transforming the dynamic into a static model

In FHLZ we prove that, for generic values of the parameters cif,k and dif,k in (2.2), the space

spanned by uf,t−k, f = 1, 2, . . . , q, k ≥ 0, is equal to the space spanned by any (q + 1)-

dimensional subvector of χχχt and its lags. In other words, ut is fundamental for all the (q+1)-

dimensional subvectors of χχχt (but not for all q-dimensional ones). Moreover, we prove that,

generically, the (q+ 1)-dimensional subvectors of χχχt admit a finite and unique autoregressive

representation (see, in particular, Section 4.1, Lemma 3). Following FHLZ, we use these

genericity results as a motivation for assuming that each of the vectors(
χ1t χ2t · · · χq+1,t

)
,
(
χq+2,t χq+3,t · · · χ2(q+1),t

)
, . . . ,

that is, each of the vectors

χχχkt =
(
χ(k−1)(q+1)+1,t · · · χk(q+1),t

)
, k ∈ N,

and its lags spans the space spanned by ut and its lags and admits a unique finite-order

autoregressive representation.

Assumption 5 Each vector χχχkt , k ∈ N, admits an autoregressive representation

Ak(L)χχχkt = Rkut, (2.9)

where

(i) Ak(L) is (q+ 1)× (q+ 1) of degree not greater than S = qs1 + q2s2, Ak(0) = Iq+1, the

roots of det Ak(L) are greater than one in modulus;

(ii) Rk is (q + 1)× q and has rank q;

(iii) Representation (2.9) is unique. Precisely, if Ãk(L)χχχkt = R̃ũt, where the degree of Ãk(L)

does not exceed S, then Ãk(L) = Ak(L), R̃k = RkQ′, ũt = Qut, where Q is a q × q

orthogonal matrix independent of k.

Writing A(L) for the (infinite) block-diagonal matrix with diagonal blocks A1(L),A2(L), . . .,

and letting R = (R1′,R2′, · · · )′, we thus have

A(L)χχχt = Rut. (2.10)

13



The upper n×n submatrix of A(L) and the upper n×q submatrix of R are denoted by An(L)

and Rn respectively. If n = m(q + 1), so that the first m blocks of size q + 1 are included,

An(L)χχχnt = Rnut. (2.11)

Inverting A(L) in (2.10), χχχt = A(L)−1Rut. Because ut is an orthonormal white noise:

Proposition 3 (i) The i-th row of A(L)−1R is equal to bi(L) = (bi1(L) bi2(L) · · · biq(L)).

(ii) In particular, the i-th row of R is (ci1,0 ci2,0 · · · ciq,0).

Assumption 5 is a weaker version of Assumption A.3 in FHLZ, the difference being that

FHLZ assume that all (q+ 1)-dimensional subvectors (χi1t χi2t · · ·χiq+1t) and their lags span

the same space spanned by ut and its lags, and have an autoregressive representation as

in (2.9).

Letting Zt = A(L)xt, we have

Zt = ΨΨΨt + ΦΦΦt with ΨΨΨt = Rut ΦΦΦt = A(L)ξξξt. (2.12)

This is a static form, linking Zt to the common shocks ut. However, using standard principal

components of Zt to estimate R and ut requires further assumptions. Denote by ΓΓΓΦ
n and ΓΓΓψn

the variance-covariance matrices of ΦΦΦnt and ΨΨΨnt, with eigenvalues µφnj and µψnj , respectively.

Assumption 6 (Eigenvalues of the covariance matrix of ΨΨΨt: divergence and separation)

There exist real numbers αψf , f = 1, . . . , q, βψf , f = 0, . . . , q − 1, and a positive integer nψ

such that, for n > nψ,

βψ0 ≥
µψn1

n
≥ αψ1 > βψ1 ≥

µψn2

n
≥ αψ2 > βψ2 ≥ · · · ≥ α

ψ
q−1 > βψq−1 ≥

µψnq
n
≥ αψq > 0.

Note that the eigenvalues µψnf depend on the “deep parameters” cif,0, see Proposition 3(ii),

and are invariant if R and ut are replaced by RQ′ and Qut respectively. Assumption 6 ensures

that Rut is a genuine common component.

In order to introduce the next assumption we must go over the procedure leading from

the spectral density of the χ’s to the matrices Ak(L) appearing in (2.9). This procedure,

with the population quantities replaced by their estimates, produces our estimator, see in

Section 3. It proceeds in two steps:

14



(i) Denoting by ΣΣΣχ
jk(θ) the (q+ 1)× (q+ 1) cross-spectral density between χχχjt and χχχkt , and

by ΓΓΓχjk,s the covariance between χχχjt and χχχkt−s, we have

ΓΓΓχjk,s = E
(
χχχjtχχχ

k
t−s
′ )

=

∫ π

−π
eısθΣΣΣχ

jk(θ)dθ. (2.13)

(ii) The minimum-lag matrix polynomial Ak(L) and the variance-covariance function of

the unobservable vectors

ΨΨΨ1
t = A1(L)χχχ1

t , ΨΨΨ2
t = A2(L)χχχ2

t . . . (2.14)

follow from that autocovariance function ΓΓΓχjk,s. Indeed, defining

Ak(L) = Iq+1 −Ak
1L− · · · −Ak

SL
S ,

A[k] =
(
Ak

1 Ak
2 · · · Ak

S

)
, Bχ

k =
(
ΓΓΓχkk,1 ΓΓΓχkk,2 · · · ΓΓΓχkk,S

)
(2.15)

and

Cχ
jk =


ΓΓΓχjk,0 ΓΓΓχjk,1 · · · ΓΓΓχjk,S−1

ΓΓΓχjk,−1 ΓΓΓχjk,0 · · · ΓΓΓχjk,S−2
...

...

ΓΓΓχjk,−S+1 ΓΓΓχjk,−S+2 · · · ΓΓΓχjk,0

 , (2.16)

we have

A[k] = Bχ
k

(
Cχ
kk

)−1
= Bχ

k

(
Cχ
kk

)
ad

det
(
Cχ
kk

)−1
, (2.17)

where
(
Cχ
kk

)
ad

stands for the adjoint of the square matrix Cχ
kk.

Non-singularity of Cχ
kk is necessary for the uniqueness of the A[k]’s, and is implied by

Assumption 5. However, we require a slightly stronger condition to ensure that the A[k]’s are

(uniformly) bounded, in norm, as n tends to infinity.

Assumption 7 There exists a real d > 0 such that
∣∣det Cχ

kk

∣∣ > d for all k ∈ N.

For any fixed n and, in particular, for n = n0 (supposed to be a multiple of q + 1), the

existence of a constant dn > 0 such that
∣∣det Cχ

kk

∣∣ > dn for 1 ≤ k ≤ n/(q + 1) is a consequence

of Assumption 5. Assumption 7, however, is more demanding, as it imposes
∣∣det Cχ

kk

∣∣ > d

for all k ∈ N and a value of d that does not depend on n. This is reasonable if we require the

(fictitious) “cross-sectional future” of the panel to resemble what has been observed, i.e. the

n0-dimensional panel (1.1)—a form of cross-sectional stationarity.
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Proposition 4 Under Assumptions 1 through 7, there exists BΦ > 0 such that µΦ
n1 ≤ BΦ

for all n ∈ N.

Proof. Let λΦ
nj(θ) be the j-th eigenvalue of the spectral density matrix of ΦΦΦnt. Let us show

that there exists a constant CΦ such that λΦ
n1(θ) ≤ CΦ for all n and θ. Because λΦ

n1(θ), for

all θ, is non-decreasing with n (see Forni and Lippi, 2001), we can assume without loss of

generality that n = m(q + 1). The spectral density of ΦΦΦnt is

An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ),

where An(L) (see equation (2.11)) has the matrices Ak(L) on the diagonal. If a(θ) is an n-

dimensional complex column vector such that a(θ)′a(θ) = 1 for all θ, we have

a(θ)′An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ)a(θ) ≤ λξn1(θ)

(
a′(θ)An(e−ıθ)A′n(eıθ)a(θ)

)
≤ λξn1(θ)λAn

1 (θ),

where λAn
1 (θ) is the first eigenvalue of An(e−ıθ)A′n(eıθ), which is Hermitian, non-negative

definite. By Proposition 1 supn λ
ξ
n1(θ) ≤ Bξ. Moreover, given the diagonal structure

of An(L), λAn
1 (θ) = supk=1,2,...,m λ

Ak

1 (θ) ≤ supk∈N λ
Ak

1 (θ), where λA
k

1 (θ) is the first eigenvalue

of Ak(e−ıθ)Ak ′(eıθ). Assumptions 2 and 7 imply that supk∈N λ
Ak

1 (θ) ≤ DΦ for some DΦ > 0

and all θ. On the other hand,

λΦ
n1(θ) = sup a(θ)′An(e−ıθ)ΣΣΣξ

n(θ)A′n(eıθ)a(θ) ≤ BξDΦ,

the sup being over all the vectors a(θ) such that a(θ)′a(θ) = 1. Lastly,

µΦ
n1 = sup b′ΓΓΓΦ

nb =

∫ π

−π

(
b′ΣΣΣΦ

n (θ)b
)
dθ ≤

∫ π

−π
λΦ
n1(θ)dθ ≤ 2πBξDΦ,

the sup being over all the n-dimensional column vectors b such that b′b = 1. �

Proposition 4 ensures that ΨΨΨt is a genuine idiosyncratic component. Because ΦΦΦt and ΨΨΨt

are mutually orthogonal, a consequence of Assumption 1(i), the model (2.12) is a factor model

with a static representation—a special case of (1.4), with r = q and N(L) = Iq.

3 Estimation: asymptotics

Our estimation procedure follows the same steps as the population construction in Section 2.2,

with the population spectral density of the x’s replaced with an estimator Σ̂̂Σ̂Σx
n(θ) fulfilling
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Assumption 9 below. Based on Forni et al. (2000), we obtain the estimator Σ̂̂Σ̂Σχ
n(θ) by means

of the first q frequency-domain principal components of the x’s (using the first q eigenvectors

of Σ̂̂Σ̂Σx
n(θ)). Then the matrices Γ̂̂Γ̂Γχjk, B̂χ

jk, Ĉχ
jk and Ân(L) are computed as natural counterparts

of their population versions in Section 2.2. Finally, estimators for Rn and ut are obtained

via a standard principal component analysis of Ẑnt = Â(L)xnt. Consistency with exact rate

of convergence ζnT , as defined in equation (1.9), for all the above estimators are provided in

Propositions 7 through 11.

Explicit dependence on the index n has been necessary in Section 2. From now on, it

will be convenient to introduce a minor change in notation, dropping n whenever possible.

In particular,

(i) ΣΣΣx(θ) =
(
σxij(θ)

)
i,j=1,...,n

and λxf (θ) replace ΣΣΣx
n(θ) and λxnf (θ), respectively.

(ii) ΛΛΛx(θ) denotes the q × q diagonal matrix with diagonal elements λxf (θ).

(iii) Px(θ) denotes the n×q matrix the q columns of which are the unit-modulus eigenvectors

corresponding to ΣΣΣx(θ)’s first q eigenvalues. The columns and entries of Px(θ) are

denoted by Px
f (θ) and pxif (θ), f = 1, . . . , q, i = 1, . . . , n, respectively.

(iv) ΣΣΣχ(θ) =
(
σχij(θ)

)
i,j=1,...,n

, λχf (θ), ΛΛΛχ(θ), Pχ(θ), ΣΣΣξ(θ), etc. are defined as in (i).

(v) All the above matrices and scalars depend on n; the corresponding estimators,

Σ̂̂Σ̂Σx(θ), λ̂xf (θ), Λ̂̂Λ̂Λx(θ), P̂x(θ) and Σ̂̂Σ̂Σχ(θ), λ̂χf (θ), Λ̂̂Λ̂Λχ(θ), P̂χ(θ)

(precise definitions are provided below) depend both on n and the observed values

xit, i = 1, . . . , n, t = 1, . . . , T . For simplicity, we say that they depend on n and T .

(vi) The same notational change applies to ΓΓΓψn and related eigenvalues and eigenvectors.

(vii) A(L) and R, denoting the upper left n × n and n × q submatrices of A(L) and R,

respectively, are used instead of An(L) and Rn; Â(L) and R̂ stand for their estimated

counterparts.

(viii) To avoid confusion, however, we keep explicit reference to n in xnt, χχχnt, Znt etc., with

estimated counterparts of the form χ̂̂χ̂χnt, Ẑnt, etc.; thus, we write, for instance,

Znt = A(L)xnt = Rut + ΦΦΦnt.

(ix) Lastly, if F is a matrix, we denote by F̃ its conjugate transpose, and by ||F|| its spectral

norm (see Appendix B).
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3.1 Estimation of ΣΣΣx(θ)

The following definition, coined by Wu (2005), generalizes the usual measures of time depen-

dence for stochastic processes.

Definition 1 Physical dependence. Let εεεt be an i.i.d. stochastic vector process, possibly

infinite-dimensional, and let zt = F (εεεt, εεεt−1, . . .), where F : [R×R×· · · ]→ R is a measurable

function; assume that zt has finite p moment for p > 0. Let εεε∗ be a stochastic vector with

the same dimension and distribution as the εεεt’s, such that εεε∗ and εεεt are independent for all t.

For k ≥ 0 the physical dependence δ
[zt]
kp is defined as

δ
[zt]
kp = (E (|F (εεεk, . . . , εεε0, εεε−1, . . .)− F (εεεk, . . . , εεε

∗, εεε−1, . . .)|p))1/p .

Assumption 8 There exist p, A, with p > 4, 0 < A <∞, such that

E (|uft|p) ≤ A, E (|ηit|p) ≤ A, (3.1)

for all i ∈ N and f = 1, . . . , q.

The main result of the section, that the estimate of the cross-spectral density between xit

and xjt converges uniformly with respect to the frequency and to i and j, see Proposition 6,

requires the following results on the p-th moments and the physical dependence of the x’s.

Proposition 5 Under Assumptions 1 through 8, there exist ρ1 ∈ (0, 1) and A1 ∈ (0,∞)

such that, for all i ∈ N,

E (|xit|p) ≤ A1 and δ
[xit]
kp ≤ A1ρ

k
1. (3.2)

Proof. By the Minkovski inequality,

(E (|xit|p))
1
p = (E (|χit + ξit|p))

1
p ≤ (E (|χit|p))

1
p + (E (|ξit|p))

1
p .

Using the Minkovski inequality again, condition (2.3) and Assumption 8, we obtain

(E (|ξit|p))
1
p =

(
E

(∣∣∣∣∣
∞∑
s=1

∞∑
k=0

βis,kηs,t−k

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

∞∑
k=0

(E (|βis,kηs,t−k|)p)
1
p

≤
∞∑
s=1

∞∑
k=0

|βis,k|E (|ηs,t−k|p)
1
p ≤ A

1
p

∞∑
s=1

∞∑
k=0

Bisρ
k ≤ A

1
pB

1

1− ρ
.
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An analogous inequality can be obtained for the common components, using Assumption 2

and the first of inequalities (3.1). The first inequality in (3.2) follows.

Turning to the second inequality, for k ≥ 0,

ξik − ξ∗ik =

∞∑
s=1

βis,k(ηsk − η∗s),

where ξ∗ik has the same definition as ξik, with ηs0 replaced by η∗s . The Minkovski inequality,

condition (2.3) and Assumption 8 imply

δ
[ξit]
k,p =

(
E

(∣∣∣∣∣
∞∑
s=1

βis,k(ηsk − η∗s)

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

(E (|βis,k(ηsk − η∗s)|p))
1
p

≤ ρk
∞∑
s=1

Bis (E (|ηsk − η∗s)|p))
1
p ≤ ρk2BA

1
p .

An analogous inequality can be ontained for the common components, using Assumption 2

and the first of inequalities (3.1), with ρ replaced by φ−1, φ being defined in Assumption 2.

Then,

δ
[xit]
kp = (E |xit − x∗it|p)

1
p =

(
E (|(χit − χ∗it) + (ξit − ξ∗it)|p)

1
p

)
≤ (E (|χit − χ∗it|)

p)
1
p + (E (|ξit − ξ∗it|)

p)
1
p = δ

[χit]
kp + δ

[ξit]
kp .

The conclusion follows. �

Consider now the lag-window estimator

Σ̂̂Σ̂Σx(θ) =
1

2π

T−1∑
k=−T+1

K

(
k

BT

)
e−ıkθΓ̂̂Γ̂Γxk, (3.3)

of the spectral density ΣΣΣx(θ), where Γ̂̂Γ̂Γxk = 1
T
∑T

t=|k|+1 xtxt−|k|.

Assumption 9 Lag-window estimation of ΣΣΣx(θ).

(i) The kernel function K is even, bounded, with support [−1, 1]; moreover,

(1) for some κ > 0, |K(u)− 1| = O(|u|κ) as u→ 0,

(2)
∫∞
−∞K

2(u)du <∞,

(3)
∑

j∈Z sup|s−j|≤1 |K(jw)−K(sw)| = O(1) as w → 0;

(ii) For some c1, c2 > 0, δ and δ such that 0 < δ < δ < 1 < δ(2κ+ 1), c1T
δ ≤ BT ≤ c2T

δ.
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Proposition 6 Under Assumptions 1 through 9, there exists C > 0 such that

E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2) ≤ C (T−1BT logBT

)
, (3.4)

where θ∗h = πh/BT , for all T , i and j in N.

See Appendix A for the proof.

3.2 Estimation of σχij(θ) and γχij,k

Our estimator of the spectral density matrix of the common components χχχnt is the Forni

et al. (2000) estimator Σ̂̂Σ̂Σχ(θ) = P̂x(θ)Λ̂̂Λ̂Λx(θ) ˜̂Px(θh).

Proposition 7 Under Assumptions 1 through 7,

max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| = OP (ζnT ) ,

where θ∗h = πh/BT , as T → ∞ and n → ∞, uniformly in i and j. Precisely, for any ε > 0,

there exists η(ε), independent of i and j, such that, for all n and T ,

P

(
maxh≤BT

|σ̂χii(θ∗h)− σχii(θ∗h)|
ζnT

≥ η(ε)

)
< ε.

See Appendix B for the proof.

Our estimator of the covariance γχij,` of χit and χj,t−` is, as in Forni et al. (2005),

γ̂χij,` =
π

BT

∑
|h|≤BT

eı`θ∗h σ̂χij(θ
∗
h), (3.5)

where θ∗h = πh/BT . Recalling that γχij,` =
∫ π
−π e

ı`θσχij(θ)dθ, we have
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|γ̂χij,` − γ
χ
ij,`| ≤

π

BT

∑
|h|≤BT

|eı`θ∗h σ̂χij(θ
∗
h)− eı`θ∗hσχij(θ

∗
h)|

+

∣∣∣∣∣∣ πBT
∑
|h|≤BT

eı`θ∗hσχij(θ
∗
h)−

∫ π

−π
eı`θσχij(θ)dθ

∣∣∣∣∣∣
≤ π

BT

∑
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗hσχij(θ
∗
h)− eı`θσχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| +

πB

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗h − eı`θ|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|σχij(θ
∗
h)− σχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| (3.6)

+
πB

BT

∑
|h|≤BT

(
|eı`θ∗h−1 − eı`θ̃∗h−1 |+ |eı`θ̃∗h−1 − eı`θ∗h−1 |

)
+
π

BT

∑
|h|≤BT

(
|σχij(θ

∗
h−1)− σχij(θ̌

∗
h−1)|+ |σχij(θ̌

∗
h−1)− σχij(θ

∗
h)|
)
,

whereB is the bound in Proposition 1(i), and θ̃∗h−1 and θ̌∗h−1 are points in the interval [θh−1, θh]

where the functions of θ, |ei`θ∗s − ei`θ| and |σij(θ∗s)− σij(θ)|, respectively, attain a maximum.

Of course, the function eı`θ is of bounded variation, while the functions σχij(θ) are of bounded

variation by Assumption 2, so that the second and third terms are O(1/BT ).

Using Proposition 7, we obtain that |γ̂χij,` − γ
χ
ij,`| is OP (ζnT ) + O(1/BT ). Since ζnT =

max(1/
√
n, 1/

√
T/BT log T ), the latter term is absorbed in the former under Assumption 10

below. Proposition 8 follows.

Assumption 10 The lower bound δ in Assumption 9 satisfies δ > 1/3.

Proposition 8 Under Assumptions 1 through 10, for each ` ≥ 0,

|γ̂χij,` − γ
χ
ij,`| = OP (ζnT ) , (3.7)

as T →∞ and n→∞.
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3.3 Estimation of Ak(L)

Under our assumptions, the common component admits the block-diagonal vector autore-

gressive representation (1.6) of finite order. If the χt’s were observed, estimation by OLS

would be appropriate. However, although we do not observe the χt’s, we do have (consistent)

estimates of their autocovariance function. This naturally leads to Yule-Walker estimators of

the autoregressive coefficients and the innovation covariance matrix. The definition of Â[k]

then is straightforward from (2.15), (2.16) and (2.17).

Proposition 9 Under Assumptions 1 through 10, ‖Â[k] − A[k]‖ = OP (ζnT ) as T → ∞

and n→∞.

See Appendix C for the proof.

3.4 Estimation of R and ut

We start with Znt = ΨΨΨnt + ΦΦΦnt = Rut + ΦΦΦnt. The covariance matrix of ΨΨΨnt is

RR′ = PψΛΛΛψPψ′ = Pψ(ΛΛΛψ)1/2(ΛΛΛψ)1/2Pψ′,

where ΛΛΛψ is q×q with the non-zero eigenvalues of RR′ on the main diagonal, while Pψ is n×q

with the corresponding eigenvectors on the columns. Thus, we have the representation

Znt = Pψ(ΛΛΛψ)1/2vt + ΦΦΦnt = Rvt + ΦΦΦnt,

say, where vt = Hut, with H orthogonal. Note that, for given i and f , the (i, f) entry of R

depends on n, so that the matrices R are not nested; nor is vt independent of n. However,

the product of each row of R by vt yields the corresponding coordinate of ΨΨΨnt, which does

not depend on n.

Our estimator of R = Pψ(ΛΛΛψ)1/2 is R̂ = P̂z(Λ̂̂Λ̂Λz)1/2, where P̂z and Λ̂̂Λ̂Λz are the eigenvectors

and eigenvalues, respectively, of the empirical variance-covariance matrix of Ẑnt = Â(L)xnt,

that is, xnt filtered with the estimated matrices Â(L). This is the reason for the complications

we have to deal with in Appendix D.

Proposition 10 Under Assumptions 1 through 10, ‖R̂i − RiŴq‖ = OP (ζnT ), as T → ∞

and n → ∞, where Ri is the i-th row of R, and Ŵq is a q × q diagonal matrix, depending

on n and T , whose diagonal entries are either 1 or −1.
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See Appendix D for the proof.

Let us point out again that the i-th row ofR depends on n. Therefore, Proposition 10 only

states that the differences between the entries of R̂ and those ofR converge to zero (upon sign

correction), not that the estimated entries converge. Now, suppose that the common shocks

can be identified by means of economically meaningful statements. For example, suppose that

we have good reasons to claim that the upper q× q matrix of the “structural” representation

is lower triangular with positive diagonal entries (an iterative scheme for the first q common

components). As is well known, such conditions determine a unique representation, denote

it by Zt = R∗u∗t + ΦΦΦt, or Znt = R∗u∗t + ΦΦΦt, where the n × q matrices R∗ are nested. In

particular, starting with Znt = Rvt + ΦΦΦnt, there exists exactly one orthogonal matrix G(R)

(actually G(R) only depends on the q × q upper submatrix of R) such that R∗ = RG(R).

Thus, while the entries of R depend on n, those of RG(R) do not.

Applying the same rule to R̂ we obtain the matrices R̂∗ = R̂G(R̂). It is easily seen

that each entry of R̂∗ (depending on n and T ) converges to the corresponding entry of R∗

(independent of n and T ) at rate ζnT .

Lastly, define the population impulse-response functions as the entries of the n × q ma-

trix B∗(L) = A(L)−1R∗, and their estimators as those of B̂∗(L) = Â(L)−1R̂∗. Denoting

by b∗if (L) = b∗if,0 + b∗if,1L + · · · and b̂∗if (L) = b̂∗if,0 + b̂∗if,1L + · · · , respectively, such entries,

Propositions 9 and 10 imply that |b̂∗if,k − b∗if,k| = OP (ζnT ) for all i, f and k.

An iterative identification scheme will be used in Section 4 to compare different estimates

of the impulse-response functions.3

Our estimator of vt is simply the projection of ẑt on P̂z(Λ̂z)−1/2, namely,

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt.

For that estimation v̂t we have the following consistency result.

Proposition 11 Under Assumptions 1 through 10, ‖v̂t − Ŵqvt‖ = OP (ζnT ), as T → ∞

and n → ∞, where Ŵq is a q × q diagonal matrix, depending on n and T , whose diagonal

entries equal either 1 or −1.

3All just-identifying rules considered in the SVAR literature can be dealt with along the same lines,

see Forni et al. (2009).
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See Appendix E for the proof.

3.5 Estimation and cross-sectional ordering

Let us now focus on the observed (n0 × T0)-dimensional panel (1.1), and assume for conve-

nience that n0 = m0(q + 1). Because the ordering of the n0 variables is arbitrary (macroe-

conomic datasets are standard in this literature), sensible concepts and sensible inference

methods, as a rule, should be invariant under cross-sectional permutations.

The estimators of the cross-spectral densities σ̂xij(θ) are of course independent of the

order of the variables in panel (1.1). Moreover, if the order of the variables undergoes a

permutation (i1 i2 · · · in0), the eigenvalues of Σ̂̂Σ̂Σx(θ) are unaffected while the coordinates of

the eigenvectors undergo the same permutation, so that the estimators of σ̂χij(θ) and γ̂χij,` are

unaffected as well.

Trivially the matrices Ak(L) and their estimators depend on the order of the variables.

However, we are not interested in such matrices per se but only insofar as they enter the

impulse-response functions A(L)−1R∗ and their estimators. We show below that although

the impulse-response functions do not depend on the order of the variables in population,

their estimators do. The following statement is an obvious consequence of the assumption

that ut is an orthonormal white-noise vector.

Proposition 12 Suppose that Assumption 5 holds for all (q + 1)-dimensional subvectors

(χj1t χj2t · · ·χjq+1t), with is ≤ n0. Let p = (i1 i2 · · · in0) be a permutation of the first n0

variables and let χχχ
[p]
n0t

= (χ11t χi2t · · · χin0 t
)′. The vector χχχ

[p]
n0t

has a block-diagonal represen-

tation of the form (2.10):

A[p](L)χχχ
[p]
n0t

= R∗[p]ut.

Reverting to the natural order,

A(p)(L)χχχn0t = R∗(p)ut,

where the matrix A(p)(L) has q+ 1 non-zero entries in each row and column but is not block-

diagonal. We have: (i) A(p)(L)−1R∗(p)= A(L)−1R∗, and, in particular, (ii) R∗(p)= R∗.
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Thus the infeasible populations impulse-response functions A(p)(L)−1R∗(p) do not depend

on the permutation p (acting on the first n0 variables). However, such independence fails

when we consider their estimated counterpart Â(p)(L)−1R̂∗(p). For, consider the i-th row

of Â(p)(L)−1R̂∗(p), the estimate of b∗i (L). This involves the i-th row of Â(p)(L)−1, call

it αααp,i(L). The filter αααp,i(L) is a function of a set of estimated covariances γ̂jk,h which depends

on the grouping determined by p (see equation (2.17)), call Kp,i this set of covariances. The

sets Kp1,i and Kp2,i, corresponding to the permutations p1 and p2, contain different estimated

covariances γ̂jk,h, and the distance between γ̂jk,h and γjk,h, for given n0 and T0, may be far

from uniform with respect to j, k and h.

Thus, different permutations of the cross-sectional items yield distinct estimators. This

is confirmed in the numerical illustration in Section 4. That dependence on the ordering of

the cross-section, of course, is highly undesirable, and those estimators somehow should be

aggregated into a unique one, which should improve performances while enjoying permuta-

tional invariance. We propose to achieve this, from a theoretical perspective, by averaging

them. More precisely, we propose to average the estimated impulse-response functions (or

forecasts) over the n∗0 = n0!/[(q + 1)!]m0 possible orderings of the cross-sectional items of

the (n0, T0)-dimensional panel.

Now, computing the estimators for n∗0 permutations, even for moderately large values

of n0, is, of course, numerically infeasible. The averaging solution just proposed is thus

inapplicable. Fortunately, it appears that, selecting a few permutations at random and

averaging the corresponding estimators leads to rapidly stabilizing results. Going through

all n∗0 permutations thus is not required in order to attain the desired average, hence an

order-free final result. See Section 4 for an empirical justification, practical details, and a

numerical illustration.

To conclude, let us observe that the averaging procedure just described requires enhancing

Assumption 5 within the panel (1.1), see Proposition 12. Now, if we consider the n∗0 infinite

sequences

xi1,t, xi2,t, . . . , xin0 ,t
; xn0+1,t, xn0+2,t, . . . ,

that is, the original infinite sequence with reordering of the first n0 items, all the asymptotic

consistency results hold for each of the corresponding n∗0 estimators, and therefore for the
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average of any subset of them.

4 A simulation exercise

In this section, we use simulated data to compare the estimator proposed in the present paper

with estimators based on the existence of a static representation. We focus on (i) estimation

of impulse response function, (ii) estimation of structural shocks and (iii) one-step-ahead

forecasts. Regarding (i) and (ii), we compare FHLZ with the method proposed in Forni et

al. (2009), referred to as FGLR. As regards (iii), the results of FHLZ are compared to the

method in Stock and Watson (2002a), referred to as SW. Let us recall that both FGLR and

SW assume the existence of the static factor representation (1.4), and are based on ordinary

principal components. We generate artificial data according to two simple models: (I) a

dynamic factor model with no static factor model representation (so that neither FGLR nor

SW are consistent) and (II) a model admitting a static factor model representation (under

which all methods are consistent).

In our exercises we generate panels with increasing numbers of variables and observa-

tions. As the panels are independent (and therefore non-nested), they must be considered

as unrelated examples of the observed panel (1.1). However, we use here the notation (n, T )

instead of the heavy (n0, T0) of Section 3.5.

4.1 Data-generating processes

We consider the following data-generating processes.

Model I (no static factor model representation)

xit = ai1(1− αi1L)−1u1t + ai1(1− αi2L)−1u2t + ξit.

We generate ujt, j = 1, 2 and ξit, i = 1, . . . , n, t = 1, . . . , T as i.i.d. standard Gaussian

variables; aij as independent variables, uniformly distributed on the interval [−1, 1]; αij as

independent variables, uniformly distributed on the interval [−0.8, 0.8].

Estimation of the shocks and the impulse-response functions requires an identification

rule. Our exercise is based on a Choleski identification scheme on the first q variables. Pre-
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cisely, denote by Bq(0) the matrix with bif (0), i = 1, 2, . . . , q, f = 1, 2, . . . , q, in the (i, f) en-

try, and let H be the lower triangular matrix with positive diagonal entries such

that HH′ = Bq(0)Bq(0)′. Then, the “structural” shocks, denoted by u∗t , and the impulse-

response functions, denoted by b∗i (L), are b∗i (L) = bi(L)Bq(0)−1H and u∗t = H′Bq(0)′ut,

respectively.

Model II (with static factor representation)

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = DFt−1 + Kut.

Here Ft = (F1t . . . Frt)
′ and ut = (u1t . . . uqt)

′, D is r × r and K is r × q. Again, ujt,

j = 1, . . . , q and ξit, i = 1, . . . , n, t = 1, . . . , T are i.i.d. standard Gaussian and mutually

independent white noises. Moreover, λhi, h = 1, . . . , r, i = 1, . . . , n and the entries of K

are independently, uniformly distributed on the interval [−1, 1]. Finally, the entries of D are

generated as follows: first we generated entries independently, uniformly distributed on the

interval [−1, 1]; second, we divided the resulting matrix by its spectral norm to obtain unit

norm; third, we multiplied the resulting matrix by a random variable uniformly distributed

on the interval [0.4, 0.9], to ensure stationarity while preserving sizable dynamic responses.

Precisely, bi(L) = λλλi(I−DL)−1K, λλλn being the 1×r matrix having λih as its (i, h) entry. To

identify the “structural” shocks u∗t and the corresponding impulse response functions b∗i (L)

we impose a Cholesky identification scheme on the first q variables as in Model I.

4.2 Estimation details and accuracy evaluation

Let b∗if (L) =
∑∞

k=0 b
∗
if,kL

k be the f -th entry of b∗i (L). Our target is the estimate of b∗if,k,

i = 1, . . . , n, f = 1, . . . , q, k = 0, . . . ,K and u∗ft, f = 1, . . . , q, t = 1, . . . , T , as well as the

forecast of xi,T+1, i = 1, . . . , n.

The structural impulse response functions and the structural shocks are estimated by

FHLZ and FGLR. Both methods require the calibration of some parameters. As regards

FHLZ, we must determine:

(i) The lag-window size in the estimation of the spectral density ΣΣΣx(θ). We use a Bartlett

lag window of size BT =
√
T . Then the spectral density ΣΣΣχ(θ) and the covariances γχij,` are

estimated as described in Section 3.2.
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(ii) The number q of structural shocks. This is assumed to be known when estimating the

structural shocks and impulse response functions. Identification is obtained by imposing the

Cholesky scheme above.

(iii) The number of lags for each (q+ 1)-dimensional VAR matrix Ak(L). This is determined

by the BIC criterion.

As regards FGLR, we estimate a VAR for the principal components of the data. The

number of principal components is either assumed known or determined by Bai and Ng’s

ICp2 criterion, the number of lags is determined by the BIC criterion.

FHLZ forecasts are computed by filtering the estimated shocks with the estimated impulse

response functions:

x̂i,T+1 =

q∑
f=1

(
b̂∗if,1û

∗
fT + b̂∗if,2û

∗
f,T−1 + · · ·

)
.

The number of structural shocks is no longer assumed known. Rather, it is estimated by the

Hallin and Lǐska (2007) method.4 SW forecasts are obtained by regressing xi,T+1 onto either

the ordinary principal components at T and xiT , or the principal components at T alone.

The former method corresponds to the original Stock and Watson (2002a) method; the latter

is motivated by the fact that in both of the models above the idiosyncratic components are

serially uncorrelated. The number of principal components is determined with Bai and Ng’s

ICp2 criterion.

The estimation error for the impulse-response functions is defined as the normalized sum

of the squared deviations of the estimated from the “structural” impulse response coefficients.

Precisely, let b̂∗if,k be the estimated impulse-response coefficient of variable i, shock f , lag k:

the estimation error on the impulse response functions is measured by∑n
i=1

∑q
f=1

∑K
k=0

(
b̂∗if,h − b∗if,h

)2

∑n
i=1

∑q
f=1

∑K
k=0(b∗if,k)

2
.

The truncation lag K is set to 60. Similarly, denoting by û∗ft the estimate of u∗ft, the estima-

tion error on the “structural” shocks is measured by∑q
f=1

∑T
t=1

(
û∗ft − u∗ft

)2

∑q
f=1

∑T
t=1(u∗ft)

2
.

4We used the log criterion ICT
2;n with penalty function p1 and lag window equal to

√
T . The

“second stability interval” was evaluated over the grid nj = b(3n/4 + jn/40)c, Tj = T , j = 1, . . . , 10.
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Finally, the accuracy of the forecast is measured by the sum of the squared deviations of

the forecasts from the unfeasible forecasts obtained by filtering the true structural shocks

with the true structural impulse response functions, i.e. xPi,T+1 =
∑q

f=1

∑T
k=1 b

∗
if,ku

∗
f,T+1−k.

Again, we normalize by dividing by the sum of the squared targets:∑n
i=1

(
x̂i,T+1 − xPi,T+1

)2

∑n
i=1(xPi,T+1)2

.

Model I is evaluated for different sample size combinations, with n = 30, 60, 120, 240

and T = 60, 120, 240, 480. Model II is evaluated for a fixed sample size of n = 120 and T = 240,

but different configurations of q and r, i.e. r = 4, 6, 8, 12 and q = 2, 4, 6, r > q.5 For each

couple (n, T ), Model I, and (r, q), Model II, we generated 500 data sets and computed the

average MSE.

4.3 Cross-sectional permutations

As argued in Section 3.5, the estimators obtained via the FHLZ method should be averaged

over different permutations of cross-sectional items. In order to study the influence of such

permutations, we simulated 500 datasets from Model I and various values of n and T . For

each of the resulting panels, we computed (with the Choleski identification rule described in

Section 4.1) the estimated impulse response functions averaged over µ = 1, . . . ,M randomly

chosen permutations. For each value of µ, the MSEs (over the 500 replications) of the averaged

estimators were recorded, leading to the following conclusions:

(i) as expected, estimates corresponding to different random permutations do differ;

(ii) averaging those estimates yields a clear improvement in the MSE;

(iii) the rate of that improvement declines steadily as the number µ of permutations in-

creases, and rapidly stabilizes until additional permutations produce negligible effect;

(iv) as n and T increase, the improvement decreases, both in absolute and relative terms,

and the number of permutations required for “stabilization” decreases: 10 for (n = 60,

T = 120), only 5 for (n = 240, T = 480).

5We impose r > q since for the case r = q, method FHLZ, the regressors of the (q+ 1)-dimensional

VARs are asymptotically collinear.
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Figure 1: Model I. Average MSE of estimated impulse response functions over 500 experiments, as

a function of the number of random reorderings of the variables used in estimation.

The results are reported in Figure 1. Summing up, averaging over random permutations

until the resulting estimates stabilize is essentially equivalent to averaging over all possible

permutations, hence restores the independence of the FHLZ method with respect to the

panel ordering, while significantly improving the small-sample performance of FHLZ. Such

averaging moreover does not modify the asymptotic results of Section 3.

4.4 Results

We now turn to a performance comparison between the FHLZ method and its competitors.

Table 1, Appendix F, reports the results for the estimation of impulse response functions

and structural shocks, Model I. The upper panel reports results for the FHLZ method with-

out averaging; the central panel for the FHLZ with averaging over 30 reorderings; the lower

panel for the FGLR method. The estimates obtained with FGLR, despite being theoreti-

cally inconsistent, approach the target as n and T get larger. This is because the number

of estimated static factors increases with n and T , so that the static model achieves a fairly
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good approximation of the underlying “infinite-factor” model.6 However, FHLZ clearly out-

performs FGLR. Regarding impulse response functions, FHLZ, with and without averaging,

dominates the static method for all n-T configurations. The error is up to 50-60% smaller

than the one of FGLR. As for the shocks, the performance of FHLZ with averaging is sim-

ilar to that of FGLR for large T , but dominates FGLR for small T . Forecast results are

reported in Table 2. Not surprisingly, the SW method (central and lower panels) performs

better when lagged x’s are not included among the regressors, owing to the fact that the

idiosyncratic components are serially uncorrelated. Indeed, we are comparing forecasts of the

common components of the x’s, i.e. the χ’s, rather than the x’s themselves. FHLZ forecasts

(with averaging) outperforms SW for all (n, T ) configurations, with an improvement ranging

from 20 to 40%.7 Observe that here we no longer impose the correct q, but estimate it via

the Hallin and Lǐska (2007) criterion, so that both forecasts in the upper an central panels

are feasible.

Table 3 reports results for Model II, estimation of impulse response functions and struc-

tural shocks. Here both FHLZ and FGLR are consistent. Somewhat surprisingly, FHLZ (with

averaging, upper panel) over-performs FGLR for all (r, q) configurations. With this model,

Bai and Ng’s criterion tends to underestimate the number of factors.8 Hence, we computed

the (unfeasible) FGLR estimation obtained by imposing the correct r (lower panel), to see

whether the above result can be ascribed to underestimation of r. In general, FGLR performs

better when imposing the correct number of factors; nonetheless, FHLZ still exhibits the best

performance in most cases.

Forecasts errors, reported in Table 4, confirm the result that FHLZ performs better than

SW for most (r, q) configurations.

6The average r̂ is 2.01 for n = 30, T = 60 and 4.00 for n = 240, T = 480.
7FHLZ without averaging, not reported here, performs better than SW but worse than FHLZ with

averaging, in line with the results in Table 1.
8On average, r̂ is smaller than r for all n and T configurations.
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5 Empirical application

In this section we present a pseudo real-time forecast evaluation exercise with US quarterly

data. We take as target variables real GDP, real private fixed investment, real consumption

expenditures, the number of unemployed and the consumer price index. We compare results

obtained with FHLZ, SW and a simple univariate autoregressive model. The forecasts are

computed within a rolling window scheme. An extensive pseudo real-time forecasting analysis

based on US monthly data is found in Forni, Giovannelli, Lippi and Soccorsi (2016).

5.1 Data and methods

We use the data set in Forni and Gambetti (2014), complemented with the inclusion of

twelve additional series, taken from the Survey of Professional Forecasters. The time span

is 1968:Q4—2010:Q4.9 The data set includes NIPA series, industrial production, employment

and unemployment data, prices, interest rates, money, credit and financial data, as well as

leading indicators and survey series. To get stationarity, we take first differences of logs for

real variables and second differences of logs for price indexes and money aggregates. The

complete list of the series, along with data treatment details, is reported in Appendix G.

After transformation, each series consists of 168 data points, ranging from 1969:Q1

to 2010:Q4. We chose t = 1985:Q4 as the starting date for forecasting, so that 68 obser-

vations are used for the first estimation. We then proceed with a rolling window of length 68

quarters (17 years). At each t, t = 1985:Q4, . . . ,2009:Q4, we compute h-quarter ahead fore-

casts for horizons h = 1, 2, 3, 4, thus 101− h forecasts for each h.

If xit denotes the transformed variable, our target is xi,t+h − xit; hence, we predict the

growth rate of GDP, investment and consumption, the percentage change of the number of

unemployed and the inflation rate variation, between t and t+ h.

We compare the forecasts obtained by the dynamic method (FHLZ), the static method

(SW), and a univariate AR model. Following Stock and Watson (2012), we use an AR(4)

model for all variables.

As regards the calibration of the parameters in FHLZ (see Section 4.2),

9The starting date of the sample is that of the series reported in the Survey.
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(i) We use, as in the simulation exercise, the rule of thumb BT =
√
T , which gives BT = 8.

However, we also report some results obtained with BT = 12.10

(ii) The number of factors is kept fixed across all t. The Hallin and Lǐska log criterion applied

in the first sub-sample 1969:Q1—1985:Q4 gives q = 4.11 The results with 2, 3, 4 and 5 factors

are similar, those with q = 2 being slightly worse. In Tables 5 and 6 we report results for

three factor-window combinations: (q = 3, BT = 8), (q = 4, BT = 8) and (q = 3, BT = 12).

(iii) As in the previous section, we use the BIC criterion to set the number of lags in the (q+1)-

dimensional VARs.

FHLZ forecasts are computed by averaging across 30 random permutations of the original

ordering, as in the previous Section.12

Static factor forecasts are computed by regressing the target variable onto the constant,

the first r ordinary principal components of the standardized data, and p lags of the dependent

variable.

(I) We keep the number of static factors r fixed for all t. The Bai and Ng ICp2 criterion finds 6

factors for the first sub-sample 1969:Q1—1985:Q4. However, when using the refinement

proposed by Alessi, Barigozzi and Capasso (2010), we are left with just 2 factors. The same

result of 2 factors is found with the Ahn and Horenstein Eigenvalue Ratio and Growth Ratio

criteria. We tried 2, 4 and 6 factors.

(II) As for p, we tried a fixed p = 0, 1, 4 and a floating p determined by the BIC criterion.

We found that generally the inclusion of the dependent variable does not improve results.13

In Tables 5 and 6, we report results for four (r, p) specifications: (r = 2, p = 0),

(r = 4, p = 0), (r = 6, p = 0), and (r = 4, p = 1).

10We found very similar results for BT = 12 and BT = 16, whereas results are considerably worse

for BT = 4.
11We used the log criterion ICT

2;n with penalty function p1 and BT = 8. The “second stability

interval” was evaluated over the grid nj = n− 15 + j, Tj = 68, j = 1, . . . , 15. We kept fixed Tj since

the number of time observation is relatively small.
12We first standardize the variables and estimate the model. Then we filter the estimated shocks

with the estimated impulse response functions (truncation lag = 60) and compute the simple average of

the forecasts obtained with different permutations. Finally we restore the original mean and standard

deviation.
13A similar result is found in D’Agostino and Giannone (2012).
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The forecasting performance is evaluated by the mean square forecast error, normalized

by dividing by the mean square error of the autoregressive forecasts. We refer to this measure

as the Relative Mean Square Forecast Error (RMSFE). For example, a RMSFE equal to 0.8

means that the mean square error is 20% smaller than that of AR(4) forecasts.

5.2 Results

The results are reported in Appendix F. Inspection of Table 5 reveals the following main

facts.

(I) Factor models outperform the autoregressive model, according to the RMSFE, with the

noticeable exception of consumption.

(II) FHLZ generally outperforms the static method. For GDP and inflation FHLZ has the

best RMSFE at all horizons, whereas for investment and unemployment results are mixed.

(III) The improvement of FHLZ with respect to the benchmark AR(4) model is substantial,

particularly at longer horizons, reaching about 30% for investment and inflation and 15-20%

for GDP and unemployment. In several cases, the improvement is significant according to

the Diebold-Mariano test, particularly for GDP and unemployment.

In Table 6, we report results for government spending, imports, exports, labor productiv-

ity, total factor productivity, the federal funds rate and stock prices, along with the average

RMSFE for the NIPA series included in the data set. Results are broadly in line with the

above findings. The performance of the dynamic method is very good for all variables, as

compared to the AR(4) benchmark, with the exception of government spending and the in-

dustrial production index, h = 1. Moreover FHLZ outperforms the static method for most

variables, particularly for h > 1.

We conclude that FHLZ outperforms standard techniques in the prediction of several

macroeconomic variables, including GDP and inflation.

6 Conclusions

An estimate of the common-component spectral density matrix Σ̂̂Σ̂Σχ is obtained using the

frequency-domain principal components of the observations xit. The central idea of the
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present paper is that, because Σ̂̂Σ̂Σχ has large dimension but small rank q, a factorization of Σ̂̂Σ̂Σχ

can be obtained piecewise. Precisely, the factorization of Σ̂̂Σ̂Σχ only requires the factorization

of (q + 1)-dimensional subvectors of χχχt. Under our assumption of a rational spectral density

for the common components, this implies that the number of parameters to estimate grows

as n, not n2.

The rational spectral density assumption also has the important consequences that χχχt has

a finite autoregressive representation and that the dynamic factor model can be transformed

into the static model zt = Rvt+φφφt, where zt = A(L)xt. We construct estimators for A(L), R

and vt starting with a standard non-parametric estimator of the spectral density of the x’s.

This implies a slower rate of convergence as compared to the usual T−1/2. However, in

Section 3, we prove that our estimators for A(L), R and vt do not undergo any further

reduction in their speed of convergence.

The main difference of the present paper with respect to previous literature on GDFM’s

is that although we make use of a parametric structure for the common components, we do

not make the standard, but quite restrictive assumption that our dynamic factor model has a

static representation of the form (1.4). Sections 4 and 5 provide important empirical support

to the richer dynamic structure of unrestricted GDFM’s.
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[19] Hallin M. and R. Lǐska (2007). Determining the number of factors in the general dynamic

factor model, Journal of the American Statistical Association 102, 603- 617.

[20] Hannan, E.J. (1970). Multiple Time Series, New York: Wiley.

[21] Lancaster, P. and M. Tismenetsky (1985). The Theory of Matrices, second edition, New

York: Academic Press.

[22] Liu, W.D. and W.B. Wu (2010). Asymptotics of spectral density estimates, Econometric

Theory, 26 , 1218-1245.

[23] Onatski, A. (2009). Testing hypotheses about the number of factors in large factor

models, Econometrica 77, 1447-1479.

[24] Onatski, A. (2010) Determining the number of factors from empirical distribution of

eigenvalues, The Review of Economics and Statistics 92, 1004-1016.

[25] Shao, W. and W.B. Wu (2007). Asymptotic spectral theory for nonlinear time series,

Annals of Statistics 35, 1773-1801.

[26] Stock, J.H. and M.W. Watson (2002a). Macroeconomic Forecasting Using Diffusion

Indexes, Journal of Business and Economic Statistics 20, 147-162.

[27] Stock, J.H. and M.W. Watson (2002b). Forecasting using principal components from a

large number of predictors, Journal of the American Statistical Association 97, 1167-

1179.

[28] Stock, J.H., and M.W. Watson (2012). Generalized Shrinkage Methods for Forecasting

Using Many Predictors, Journal of Business & Economic Statistics 30, 481-493.

[29] Wu, W.B. (2005). Nonlinear system theory: Another look at dependence. Proceedings

of the National Academy of Sciences USA, 102, 14150-14154.

[30] Wu, W.B. and P. Zaffaroni (2015). On Uniform Moments Convergence of Spectral Den-

sity Estimates, arXiv 1505.03659, available at http://arxiv.org/abs/1505.03659.

37



Appendix

A Proof of Proposition 6

Adding and subtracting E(σ̂xij(θ
∗
h)) within the absolute value in E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 )

and re-arranging gives

E
(

max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 ) ≤ E( max

|h|≤BT

∣∣σ̂xij(θ∗h)− Eσ̂xij(θ∗h)
∣∣2 )+

(
max
|h|≤BT

∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)
∣∣2 ).

The first term (variance) on the right hand side of the above inequality satisfies

E
(

max
|h|≤BT

∣∣σ̂xij(θ∗h)− Eσ̂xij(θ∗h)
∣∣2 ) ≤ C∗(BT logBT /T ),

where C∗ depends only on p (see Assumption 8), ρ1 (see Proposition 5), δ (see Assumption 9).

This is proved in Wu and Zaffaroni (2015) Lemma 10, with ν = 2.

As for the second term (the squared bias), simple calculations give

Sij(θ) = 2π
(
Eσ̂xij(θ)− σxij(θ)

)
=

T−1∑
l=−T+1

(
1− |l|

T

)
K

(
l

BT

)
γxij,l e

−ılθ −
∞∑

l=−∞
γxij,l e

−ılθ

≤

∣∣∣∣∣
T−1∑

l=−T+1

(
K

(
l

BT

)
− 1

)
γxij,l e

−ılθ

∣∣∣∣∣+

∣∣∣∣∣
T−1∑

l=−T+1

K

(
l

BT

)
|l|
T
γxij,l e

−ılθ

∣∣∣∣∣+

∣∣∣∣∣∣
∑
|l|≥T

γxij,l e
−ılθ

∣∣∣∣∣∣
= ATij(θ) + BTij(θ) + CTij(θ).

Assumptions 2 and 4 imply that, for some φ ∈ (0, 1) and someD, |γxij,l| ≤ |γ
χ
ij,l|+|γ

ξ
ij,l| ≤ Dφ

|l|,

for all i and j (see equation 2.8)). This inequality and Assumption 9(i) ensure that, for some F

and all i, j and θ, ATij(θ) ≤ FD
∑∞

l=−∞ φ
|l|(|l|/BT )κ ≤ [2DFφ/(1 − φ)2]T−δκ = HT−δκ.

Moreover, BTij(θ) ≤ DT−1
∑∞

l=−∞ φ
|l||l| = [2Dφ/(1 − φ)2]T−1 = KT−1, for all i, j, and θ.

Finally, CTij(θ) ≤ D
∑
|l|≥T φ

|l||l|κ/T κ, since |l|κ/T κ ≥ 1 for |l| ≥ T . Hence, it follows

that CTij(θ) ≤MT−κ ≤MT−δκ for all i, j and θ. Thus,

Sij(θ)/2π ≤ KT−1 + (H +M)T−δκ ≤ PT−µ,

where µ = min(δκ, 1), for all i, j and θ. Now, 2δκ > 1 − δ > 1 − δ, by Assumption 9(ii).

Hence, max|h|≤BT

∣∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)
∣∣∣2 ≤ P 2T−2µ ≤ C∗∗(BT logBT /T ) for all i and j. �
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B Proof of Proposition 7

The proof below closely follows Forni et al. (2009). Denote by µj(A), j = 1, 2, . . . , s, the (real)

eigenvalues, in decreasing order, of an s × s Hermitian matrix A, and by ‖B‖ =
√
µ1(B̃B)

the spectral norm of an s1× s2 matrix B. The norm ‖B‖ coincides with the Euclidean norm

of B when B is a column matrix and is equal to |µ1(B)| when B is square and Hermitian.

Recall that, if B1 is s1 × s2 and B2 is s2 × s3, then

‖B1B2‖ ≤ ‖B1‖‖B2‖. (B.1)

We will use the fact that, for any two s× s Hermitian matrices A1 and A2,

|µj(A1 + A2)− µj(A1)| ≤ ‖A2‖, j = 1, . . . , s. (B.2)

This fact is an obvious consequence of Weyl’s inequality µj(A1 + A2) ≤ µj(A1) + µ1(A2)

(Franklin, 2000, p. 157, Theorem 1). The proof of Proposition 7 is divided into several

intermediate propositions. Denote by Si the n × 1 matrix with 1 in entries (i, 1) and 0

elsewhere, so that S ′1A is the i-th row of A, and define ρT = T/BT logBT .

As most of the arguments below depend on equalities and inequalities that hold for

all θ ∈ [−π, π], the notation has been simplified by dropping θ. Also, properties holding

for max|h|≤BT
F (θh), where F is some function of θ, are often phrased as holding for F

uniformly in θ. The meaning of uniformity in i, or i and j, has been clarified in the statement

of Proposition 7.

All lemmas in this Appendix hold and are proved under Assumptions 1 through 10.

Lemma 1 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣx‖ = OP (ρ

−1/2
T );

(ii) max|h|≤BT
n−1/2‖S ′i(Σ̂̂Σ̂Σx −ΣΣΣx)‖ = OP (ρ

−1/2
T ) uniformly in i;

(iii) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ = OP (max(n−1, ρ

−1/2
T ));

(iv) max|h|≤BT
n−1/2‖S ′i(Σ̂̂Σ̂Σx −ΣΣΣχ)‖ = OP (max(n−1/2, ρ

−1/2
T )) = OP (ζnT ) uniformly in i.

Proof. We have

µ1((Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) ≤ trace((Σ̂̂Σ̂Σx −ΣΣΣx)(

˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) =

n∑
i=1

n∑
j=1

|σ̂xij − σxij |2.
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Using (3.4) and the Markov inquality,

n−2 max
|h|≤BT

n∑
i=1

n∑
j=1

|σ̂xij − σxij |2 ≤ n−2
n∑
i=1

n∑
j=1

max
|h|≤BT

|σ̂xij − σxij |2 ≤ Cρ−1
T .

Statement (i) follows. In the same way,

n−1S ′i(Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)Si = n−1

n∑
j=1

|σ̂xij − σxij |2 ≤ Cρ−1
T ,

where C is independent of i. Statement (ii) follows. As regards (iii), ΣΣΣx = ΣΣΣχ + ΣΣΣξ implies

that Σ̂̂Σ̂Σx −ΣΣΣχ = Σ̂̂Σ̂Σx −ΣΣΣx + ΣΣΣξ, so that, by the triangle inequality for matrix norm,

‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ ≤ ‖Σ̂̂Σ̂Σx −ΣΣΣx‖+ ‖ΣΣΣξ‖.

The statement follows from (i) and the fact that ‖ΣΣΣξ‖ = λξ1 is bounded. Statement (iv) is

obtained in a similar way, using (ii) instead of (i). �

Lemma 2 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1

∣∣∣λ̂xf − λχf ∣∣∣ = OP (max(n−1, ρ
−1/2
T )) for f = 1, 2, . . . , q;

(ii) letting

Gχ =

 Iq if λχq = 0,

n(ΛΛΛχ)−1 otherwise,
and Ĝx =

 Iq if λ̂xq = 0,

n(Λ̂̂Λ̂Λx)−1 otherwise,
,

max|h|≤BT
n−1‖ΛΛΛχ‖ and max|h|≤BT

‖Gχ‖ are O(1), max|h|≤BT
n−1‖Λ̂̂Λ̂Λx‖ and max|h|≤BT

‖Ĝx‖

are OP (1).

Proof. Setting A1 = ΣΣΣχ and A2 = Σ̂̂Σ̂Σx −ΣΣΣχ, (B.2) yields |λ̂xf − λ
χ
f | ≤ ‖Σ̂̂Σ̂Σ

x −ΣΣΣχ‖; hence,

statement (i) follows from Lemma 1 (iii). Boundedness of n−1‖ΛΛΛχ‖ and ‖Gχ‖, uniformly

in θ, is a consequence of Assumption 3. Boundedness in probability of n−1‖Λ̂̂Λ̂Λx‖ and ‖Ĝx‖,

uniformly in θ, follows from statement (i). �

Lemma 3 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = OP (max(n−1, ρ

−1/2
T ));

(ii) max|h|≤BT
‖ ˜̂PxPχP̃χP̂x − Iq‖ = OP (max(n−1, ρ

−1/2
T ));

(iii) there exist diagonal complex orthogonal matrices Ŵq = diag(ŵ1 ŵ2 · · · ŵq), |ŵj |2 = 1,

j = 1, . . . , q depending on n and T , such that max|h|≤BT
‖ ˜̂PxPχ−Ŵq‖ = OP (max(n−1, ρ

−1/2
T )).
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Proof. Using inequality (B.1) and the fact that ‖P̃χ‖ = ‖P̂x‖ = 1, we have

‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = ‖P̃χ(Σ̂̂Σ̂Σx −ΣΣΣχ)P̂x‖ ≤ ‖Σ̂̂Σ̂Σx −ΣΣΣχ‖.

Statement (i) thus follows from Lemma 1 (iii). Turning to (ii), set

a = ˜̂PxPχP̃χP̂x, b =
[
˜̂PxPχP̃χP̂x

]
n−1Λ̂̂Λ̂ΛxĜx = ˜̂PxPχ

[
P̃χP̂xn−1Λ̂̂Λ̂Λx

]
Ĝx,

c = ˜̂PxPχ
[
n−1ΛΛΛχP̃χP̂x

]
Ĝx=

[
n−1 ˜̂PxΣΣΣχP̂x

]
Ĝx, d =

[
n−1 ˜̂PxΣ̂̂Σ̂ΣxP̂x

]
Ĝx = n−1Λ̂̂Λ̂ΛxĜx,

and f = Iq: we have∥∥∥ ˜̂PxPχP̃χP̂x − Iq

∥∥∥ ≤ ‖a− b‖+ ‖b− c‖+ ‖c− d‖+ ‖d− f‖. (B.3)

Using Lemma 2, statement (i), and the boundedness in probability, uniformly in θ, of ‖ ˜̂PxPχ‖,

‖Ĝx‖ and ‖ ˜̂PxPχP̃χP̂x‖, all terms on the right-hand side of inequality (B.3) can be shown

to be OP (max(n−1, ρ
−1/2
T )), uniformly in θ.

Turning to (iii), note that, from statement (i), n−1 ˜̂Px
hPχ

k (λχk−λ̂
x
h) = OP (max(n−1, ρT

−1/2)).

Assumption 3 (asymptotic separation of the eigenvalues λχf (θ)) implies that, for h 6= k,

˜̂Px
hPχ

k = OP (max(n−1, ρT
−1/2)). Moreover,

∑q
f=1 |

˜̂Px
hPχ

f |
2 − 1 = OP (max(n−1, ρT

−1/2))

from statement (ii). Therefore,

| ˜̂Px
hPχ

h|
2 − 1 = (| ˜̂Px

hPχ
h| − 1)(|P̃χ

hP̂x
h|+ 1) = OP (max(n−1, ρT

−1/2)).

The conclusion follows. �

Note that Lemma 3 clearly also holds for n−1‖ ˜̂PxPχΛΛΛχ− Λ̂̂Λ̂Λx ˜̂PxPχ‖, ‖P̃χP̂x ˜̂PxPχ − Iq‖

and ‖ ˜̂PχP̂x − ˜̂Wq‖.

Lemma 4 As T → ∞ and n→∞,

max
|h|≤BT

‖S ′i
(
Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2

)
‖ = OP (ζnT ), (B.4)

uniformly in i.

Proof. We have

‖S ′i(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ ≤ ‖S ′i(n1/2PχŴq − n1/2P̂x)(n−1ΛΛΛχ)1/2‖

+‖S ′iP̂x(n−1/2(ΛΛΛχ)1/2 − n−1/2(Λ̂̂Λ̂Λx)1/2)‖.
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By Lemma 2 (i), thus, we only need to prove that

‖n1/2S ′iPχŴq − n1/2S ′iP̂x‖ = OP (max(n−1/2, ρT
−1/2)).

Firstly, we show that

‖n1/2S ′iPχ‖ ≤ A, (B.5)

for some A and all θ and i. Assumption 2 implies that σχii =
∑q

f=1 λ
χ
f |p

χ
if |

2 ≤ B, for some B

and all θ and i. As all the terms in the sum are positive, λχf |p
χ
if |

2 = (λχf /n)n|pχif |
2 ≤ B, for

all θ and i. By Assumption 3, λχf /n ≥ C > 0 for all θ and f , so that n|pχif |
2 ≤ D for all θ

and i. Hence, n S ′iPχP̃χSi is bounded uniformly in θ and i; (B.5) follows. Next, define

g = n1/2S ′iPχ
[
Ŵq

]
, h = n1/2S ′iPχ

[
P̃χP̂x

]
= n1/2S ′iPχ[P̃χP̂xΛ̂x/n](Λ̂x/n)−1,

i = n1/2S ′iPχ[(Λχ/n)P̃χP̂x](Λ̂x/n)−1 = [n−1/2S ′iΣΣΣχ]P̂x(Λ̂x/n)−1,

and
j = [n−1/2S ′iΣ̂̂Σ̂Σx]P̂x(Λ̂x/n)−1 = n1/2S ′iP̂x.

Lemma 3(iii) and inequality (B.5) imply that ‖g−h‖ is OP (max(n−1, ρT
−1/2)) uniformly in θ

and i. Inequality (B.5), Lemma 3(i) and Lemma 2(ii) imply that ‖h−i‖ isOP (max(n−1, ρT
−1/2))

uniformly in θ and i. Moreover, ‖P̂x(Λ̂x/n)−1‖ = OP (1), uniformly in θ, by Lemma 2(ii)

and the fact that ||P̂x|| = 1. Thus, using Lemma 1(iv), it is seen that, uniformly in θ and i,

‖i− j‖ is OP (max(n−1/2, ρT
−1/2)). The result follows. �

Proposition 7 now follows from

Σ̂̂Σ̂Σχ =

[
P̂x
(
Λ̂̂Λ̂Λx
)1/2

] [(
Λ̂̂Λ̂Λx
)1/2 ˜̂Px

]
= P̂χΛ̂̂Λ̂Λχ ˆ̃P

χ
.

and

ΣΣΣχ =
[
Px (ΛΛΛx)1/2 Ŵq

] [
ˆ̃Wq (ΛΛΛx)1/2 P̃x

]
= PχΛΛΛχP̃χ.

�

Note that the eigenvectors Pχ are defined up to post-multiplication by a complex diagonal

matrix with unit modulus diagonal entries. In particular, using the eigenvectors ΠΠΠχ = PχŴq,

(B.4) would hold for ΠΠΠχ(ΛΛΛχ)1/2− P̂x(Λ̂̂Λ̂Λx)1/2 . For the sake of simplicity, we avoid introducing

a new symbol and henceforth refer to the result of Lemma 4 as

max
|h|≤BT

‖S ′1(Pχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP (max(n−1/2, ρT
−1/2)) (B.6)
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and the result of Lemma 3(iii) as

‖ ˜̂PxPχ − Iq‖ = OP (max(n−1, ρT
−1/2)).

In the same way, we drop Ŵq in Lemmas 6, 7, 8, though not in the conclusion of Appendix D,

nor in Appendix E.

C Proof of Proposition 9

To start with, note that, as the extreme right-hand side in (3.6) contains the term

πB

BT

∑
|h|≤BT

(
|eı`θ∗h−1 − eı`θ̃∗h−1 |+ |eı`θ̃∗h−1 − eı`θ∗h−1 |

)
,

convergence in (3.7) is not uniform with respect to `. However, estimation of the matrices Bχ
k

and Cχ
jk only requires the covariances γ̂χij,` with ` ≤ S, where S is finite. Therefore, Propo-

sition 8 implies that ‖B̂χ
k −Bχ

k‖ and ‖Ĉχ
jk −Cχ

jk‖ are OP (max(n−1/2, ρ
−1/2
T )). From (2.17),

applying (B.1),

‖Â[k] −A[k]‖ ≤ ‖B̂χ
k‖‖(Ĉ

χ
kk)
−1 −

(
Cχ
kk

)−1 ‖+ ‖B̂χ
k −Bχ

k‖‖
(
Cχ
kk

)−1 ‖.

By Assumption 2, ‖Bχ
k‖ ≤ W for some constant W > 0, so that ‖B̂χ

k‖ is bounded in

probability. By Assumptions 2 and 7, ‖
(
Cχ
kk

)−1 ‖ ≤ W1 for some W1 > 0. Observing that

the entries of
(
Cχ
kk

)−1
are rational functions of the entries of Cχ

kk, and that det
(
Cχ
kk

)
> 0 by

Assumption 7, Proposition 8 implies that ‖(Ĉχ
kk)
−1 −

(
Cχ
kk

)−1 ‖ is OP (max(n−1/2, ρ
−1/2
T )).

The conclusion follows. �

D Proof of Proposition 10

Consider the static model Znt = Rvt + ΦΦΦnt. If Znt = A(L)xnt were observed, i.e. if the

matrices A(L) were known, then Proposition 10, with an estimator of R based on the em-

pirical covariance ΓΓΓz of the Znt, would be straightforward. However, we only have access

to Ẑnt = Â(L)xt and its empirical covariance matrix Γ̂̂Γ̂Γ
z
, which makes the estimation of R

significantly more difficult. The consistency properties of our estimator follow from the con-

vergence result (D.4) in Lemma 11, which establishes the asymptotic behavior of the diffe-

rence ΓΓΓz − Γ̂̂Γ̂Γ
z
; Lemmas 5 through 10 are but a preparation for that key result. All lemmas

in this Appendix hold, and are proved under Assumptions 1 through 10.
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Lemma 5 For f = 1, . . . , q, as T → ∞ and n→∞,

(i) | pχif |= O(n−1/2) and | p̂xif |= OP (n−1/2), uniformly in θ and i;

(ii) for any positive integer d, n−1
∑n

i=1 | p
χ
if |

d and n−1
∑n

i=1 | p̂xif |d are O(n−d/2)

and OP (n−d/2), respectively, uniformly in θ.

Proof. The first part of (i) follows from B.5. As regards the second part, let us first prove

that σ̂xii is OP (1) uniformly in θ and i. We have

max
h

σ̂xii(θh) ≤ max
h

σxii(θh) + max
h
|σ̂xii(θh)− σxii(θh)|.

By Assumptions 2 and 4, the first term on the right-hand side is bounded uniformly in i. By

the Markov inequality and (3.4),

P (max
h
|σ̂xii(θh)− σxii(θh)| ≥ η) ≤ η−2E

(
max
|h|≤BT

|σ̂xii(θ∗h)− σxii(θ∗h)|2
)

≤ η−2C(T−1BT logBT )

Thus, for any ε > 0, we can set

η(ε) ≥
[

maxT C(T−1BT logBT )

ε

]1/2

,

irrespective of θh and i. Because σ̂χii ≤ σ̂xii, we have that σ̂χii =
∑q

f=1 λ̂
x
f |p̂xif |2 = OP (1)

uniformly in θ and i. As all the terms in the sum are positive, λ̂xf |p̂xif |2 = (λ̂xf/n)n|p̂xif |2

is OP (1) as well, uniformly in θ and i. Lemma 2 (i) and Assumption 3 imply that λ̂xf/n

is OP (1) and bounded away from zero in probability uniformly in θ. The conclusion follows.

Statement (ii) is proved by induction. Consider Pχ
f . It follows from statement (i)

that n−1
∑n

i=1 |p
χ
if | is O

(
n−1/2

)
, uniformly in θ. Assume now that the result holds for d− 1,

with d ≥ 2. Using the first part of (i), uniformity in i in particular, we have

n−1
n∑
i=1

| pχif |
d = n−1

n∑
i=1

| pχif |
d−1| pχif |

≤
(
max
i≤n
|pχif |

)
n−1

n∑
i=1

| pχif |
d−1= O(n−1/2 n−(d−1)/2) = O

(
n−d/2

)
.

The same argument applies to P̂x
f . �

Lemma 6 As T → ∞ and n→∞,
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max
|h|≤BT

∥∥∥Pχ
(
ΛΛΛχ
)1/2 − P̂x

(
Λ̂̂Λ̂Λx
)1/2∥∥∥ = OP (n1/2 max(n−1, ρ

−1/2
T )). (D.1)

Proof. The left-hand side of (D.1) equals the left-hand side of (B.4) when Si is replaced

by In. The proof goes along the same lines as that of Lemma 4. Firstly, ‖n1/2Pχ‖ is O(n1/2).

Both ‖g−h‖ and ‖h− i‖ are OP (n1/2 max(n−1, ρ
−1/2
T )). As for ‖i− j‖, the conclusion follows

from Lemma 1 (iii). �

Lemma 7 For f = 1, . . . , q, as T → ∞ and n→∞, |pχif−p̂
x
if | = OP (n−1/2 max(n−1/2, ρ

−1/2
T )),

uniformly in θ and i.

Proof. By (B.6), pχif (λχf )1/2 − p̂xif (λ̂xf )1/2 = OP (max(n−1/2, ρ
−1/2
T )), uniformly in θ and i.

Now,

pχif (λχf )1/2 − p̂x(λ̂xf )1/2 = pχif

(
(λχf )1/2 − (λ̂xf )1/2

)
+ (λ̂xf )1/2

(
pχif − p̂

x
if

)
. (D.2)

The former term on the right-hand side can be written as

n1/2pχif
(λχf − λ̂

x
f )/n(

(λχf )1/2 + (λ̂xf )1/2
)
/n1/2

,

which isOP (max(n−1, ρ
−1/2
T )), uniformly in θ and i, since the numerator isOP (max(n−1, ρ

−1/2
T )),

uniformly in θ, by Lemma 2(i); the denominator is bounded away from zero, uniformly in θ,

by Assumption 3 and n1/2pχif is O(1), uniformly in θ and i, by Lemma 5(i). It follows that

the latter term in (D.2), (λ̂xf )1/2
(
pχif − p̂

x
if

)
, is OP (max(n−1/2, ρ

1/2
T )), uniformly in θ and i.

By Lemma 2(ii), n−1/2(λ̂xf )1/2 is bounded away from zero in probability, uniformly in θ. The

result follows. �

Lemma 8 For any integer d ∈ N, for f = 1, . . . , q, as T → ∞ and n→∞,

n−1
n∑
i=1

| pχif − p̂
x
if |d= OP ((n−1 max(n−1, ρ−1

T ))d/2), (D.3)

uniformly in θ.

Proof. Lemma 7 implies that
(
maxi≤n | pχif−p̂

x
if |
)
, and therefore n−1

∑n
i=1 | p̂xif − p

χ
if |,

are OP ((n−1 max(n−1, ρ−1
T ))1/2), uniformly in θ. By induction, assume now that the result
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holds for d− 1, d ≥ 2. We have

n−1
∑n

i=1 | p
χ
if − p̂

x
if |d = n−1

∑n
i=1 | p

χ
if − p̂

x
if |d−1| pχif − p̂

x
if |

≤
(
maxi≤n | pχif−p̂

x
if |
)
n−1

∑n
i=1 | p

χ
if−p̂

x
if |d−1

= OP ((n−1 max(n−1, ρ−1
T ))1/2) OP

(
(n−1 max(n−1, ρ−1

T ))(d−1)/2
)
,

uniformly in θ, as was to be shown. �

Lemma 9 For n→∞ and T →∞, uniformly in θ,

(i) n−2
n∑
i=1

n∑
j=1

| σ̂χij(θ)− σ
χ
ij(θ)|

d = OP ((max(n−1, ρ−1
T ))d/2);

(ii) n−1
n∑
i=1

| σ̂χij(θ)− σ
χ
ij(θ) |

d= OP ((max(n−1, ρ−1
T ))d/2) for any 1 ≤ j ≤ n;

(iii) n−1
n∑
i=1

| σ̂χii(θ)− σ
χ
ii(θ) |

d= OP ((max(n−1, ρ−1
T ))d/2).

Proof. We have

σ̂χij − σ
χ
ij = (λ̂x1 − λ

χ
1 )p̂xi1

¯̂pxj1 + · · ·+ (λ̂xq − λχq )p̂xiq
¯̂pxjq + λχ1 p̂

x
i1(¯̂pxj1 − p̄

χ
j1)

+λχ1 p̄
χ
j1(p̂xi1 − p

χ
i1) + . . .+ λχq p̂

x
iq(

¯̂pxjq − p̄
χ
jq) + λχq p̄

χ
jq(p̂

x
iq − p

χ
iq).

Using the triangular and Cr inequalities, by Lemmas 2, 5 and 8,

n−2
n∑
i=1

n∑
j=1

| σ̂χij − σ
χ
ij |

d

≤ (3q)d−1
(
| λχ1 − λ̂

x
1 |d

(
n−1

n∑
i=1

| p̂xi1 |d
)2

+ · · ·+ | λχq − λ̂xq |d
(
n−1

n∑
i=1

| p̂xiq |d
)2)

+ (3q)d−1(λχ1 )d
(
n−2

n∑
i=1

| p̂xi1 |d
n∑
j=1

| pχj1 − p̂
x
j1 |d +n−2

n∑
j=1

| pχj1 |
d

n∑
i=1

| pχi1 − p̂
x
i1 |d

)
+ · · ·

+ (3q)d−1(λχq )d
(
n−2

n∑
i=1

| p̂xiq |d
n∑
j=1

| pχjq − p̂
x
jq |d +n−2

n∑
j=1

| pχjq |
d

n∑
i=1

| pχiq − p̂
x
iq |d

)
= OP ((max(n−1, ρ

−1/2
T ))d) +OP ((max(n−1, ρ−1

T ))d/2) = OP ((max(n−1, ρ−1
T ))d/2).
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Statement (i) follows. For statement (ii),

n−1
n∑
i=1

| σ̂χij − σ
χ
ij |

d

≤ (3q)d−1
(
| λχ1 − λ̂

x
1 |d|p̂xj1|d n−1

n∑
i=1

|p̂xi1|d + · · ·+ | λχq − λ̂xq |d |p̂xjq|d n−1
n∑
i=1

| p̂xiq |d
)

+ (3q)d−1(λχ1 )d
( ∣∣∣pχj1 − p̂xj1∣∣∣d n−1

n∑
i=1

|p̂xi1|
d +

∣∣∣pχj1∣∣∣d n−1
n∑
i=1

| pχi1 − p̂
x
i1 |d

)
+ · · ·

+ (3q)d−1(λχq )d
(∣∣∣pχjq − p̂xjq∣∣∣d n−1

n∑
i=1

∣∣p̂xiq∣∣d +
∣∣∣pχjq∣∣∣d n−1

n∑
i=1

| pχiq − p̂
x
iq |d

)
= OP ((max(n−1, ρ

−1/2
T ))d) +OP ((max(n−1, ρ−1

T ))d/2) = OP ((max(n−1, ρ−1
T ))d/2).

Statement (iii) follows along the same lines, by setting j = i. �

Lemma 10 For n → ∞ and T → ∞, n−2
S∑
`=0

n∑
i=1

n∑
j=1

| γ̂χij,` − γ
χ
ij,`|

d and, for any given j

in {1, . . . , n}, n−1
S∑
`=0

n∑
i=1

| γ̂χij,` − γ
χ
ij,` |

d, are OP
(
(max(n−1, ρ−1

T ))d/2
)
.

Proof. We have |γ̂χij,` − γ
χ
ij,`| ≤ Uij + V` +Wij , where Uij , V` and Wij are the terms in the

extreme right-hand side of (3.6). Using the Cr inequality, we get

n−2
n∑
i=1

n∑
j=1

|γ̂χij,0 − γ
χ
ij,0|

d ≤ n−23d−1
n∑
i=1

n∑
j=1

Udij + n−23d−1
n∑
i=1

n∑
j=1

Vd` + n−23d−1
n∑
i=1

n∑
j=1

Wd
ij .

The first term on the right-hand side is bounded in view of Lemma 9. Since ` takes only a

finite number of values, the second term is O(B−dT ) (see the proof of Proposition 9). Because

the functions σxij are of bounded variation uniformly in i and j, see Proposition 2, the third

term is O(B−dT ). The same argument used to obtain Proposition 8 applies. The second

statement is proved in the same way. �

We are now able to state and prove the main lemma of this section. Assume, without

loss of generality, that n increases by blocks of size q + 1, so that n = m(q + 1).

Lemma 11 Denoting by Ẑ the T ×n matrix with Ẑit in entry (t, i), let Γ̂̂Γ̂Γz = Ẑ′Ẑ/T. Then,

as n→∞ and T →∞,

n−1‖Γ̂̂Γ̂Γz −ΓΓΓz‖ = OP (ζnT ) and n−1/2‖S ′i(Γ̂̂Γ̂Γz −ΓΓΓz)‖ = OP (ζnT ), (D.4)

where Γz is the population covariance matrix of Znt.
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Proof. Denote by Γ̌z = Z′Z/T the empirical covariance matrix we would compute from

the Znt’s, were the matrices A(L) known. We have

‖Γ̂̂Γ̂Γz −ΓΓΓz‖ ≤ ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖+ ‖Γ̌̌Γ̌Γz −ΓΓΓz‖, (D.5)

so that the lemma can be proved by showing that (D.4) holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced by

any of the two terms on the right-hand side of (D.5).

First consider ‖Γ̌̌Γ̌Γz −ΓΓΓz‖. Since A(L) = In −A1L− · · · −ASL
S , where

As =


A1
s 0 · · · 0

0 A2
s · · · 0

...
. . .

0 0 · · · Am
s

 , s = 1, . . . , S

and A0 = In, we obtain

‖Γ̌̌Γ̌Γz−ΓΓΓz‖2≤
S∑
s=0

S∑
r=0

‖AsΓ̂̂Γ̂Γ
x
s−rA

′
r−AsΓΓΓ

x
s−rA

′
r‖2 =

S∑
s=0

S∑
r=0

‖As

(
Γ̂̂Γ̂Γxs−r−ΓΓΓxs−r

)
A′r‖2, (D.6)

which is a sum of (S + 1)2 terms, where we set Γ̂̂Γ̂Γxs−r = T−1
∑T

t=1 xt−rx
′
t−s. Inspection of

the right-hand side of (D.6) shows that (D.4) holds, with ‖Γ̂̂Γ̂Γz −ΓΓΓz‖ replaced with ‖Γ̌̌Γ̌Γz −ΓΓΓz‖,

under Assumptions 2 and 7, and in view of Propositions 2 and 6.

Turning to ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖, since

‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖2 ≤
S∑
s=0

S∑
r=0

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r −AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖2,

it is sufficient to prove that (D.4) still holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. Denoting by ajsα, 1 ≤ α ≤ q + 1, the α-th column of Aj

s
′
,

we have

‖ÂsΓ̂̂Γ̂Γxs−rÂ
r′ −AsΓ̂̂Γ̂Γxs−rA

r ′‖2 ≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
âj′sαΓ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−ra

k
rβ

)2

≤ 2

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − aj′sα)Γ̂̂Γ̂Γxjk,s−râ

k
rβ

)2

+ 2

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
aj′sαΓ̂xjk,s−r(â

k
rβ − akrβ)

)2
,

(D.7)

where Γ̂̂Γ̂Γxjk,s−r is the (j, k)-block of Γ̂̂Γ̂Γxs−r, and the second inequality follows from applying

the Cr inequality to each term of the form

(âj′sαΓ̂̂Γ̂Γxjk,s−râ
k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−ra

k
rβ)2 = ((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γxjk,s−r(â

k
rβ − akrβ))2.
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The two terms on the right-hand side of (D.7) can be dealt with in the same way. Let us

focus on the first of them. Using twice the Cauchy-Schwartz inequality, then subsequently

the Cr and Jensen inequalities, we obtain

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ
k
rβ)2

≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′(âjsα − ajsα
)
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

=
m∑
k=1

q+1∑
β=1

m∑
j=1

q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)âk′rβΓ̂̂Γ̂Γ
x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

≤
m∑
k=1

q+1∑
β=1

[ m∑
j=1

[ q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)
]2]1/2[ m∑

j=1

(
âkrβ
′Γ̂̂Γ̂Γxjk,s−r

′Γ̂̂Γ̂Γxjk,s−râ
k
rβ

)2]1/2
= m

[ m∑
j=1

[ q+1∑
α=1

(âjsα − aj′sα)(âjsα − ajsα)
]2]1/2 1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2]1/2
≤ AB, say,

where

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
and

B =
1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
≤

[
(q + 1)/m

m∑
k=1

q+1∑
β=1

m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
= C, say.

First consider A. Letting aj′sα = (ajsα,1 ajsα,2 · · · a
j
sα,q+1), note that ajsα,δ = e′αA[j]gsδ,

where eα and gsδ stand for the α-th and (s − 1)(q + 1) + δ-th unit vectors in the (q + 1)-

and (q+1)S-dimensional canonical bases, respectively. Writing, for the sake of simplicity, Bj

and Cj instead of Bχ
j and Cχ

jj , as defined in (2.15) and (2.16), we obtain, from (B.1), and

applying subsequently the Cr, the triangular, the Cr again and then twice the Cauchy-

Schwartz inequalities,[
m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2
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≤ (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

(âjsα,δ − a
j
sα,δ)

4
)1/2

= (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

[
eα

(
(B̂j −Bj)Ĉ

−1
j + BjĈ

−1
j (Ĉj −Cj)C

−1
j

)
gsδ

]4 )1/2
≤ 23/2(q + 1)3/2

( m∑
j=1

‖(B̂j −Bj)Ĉ
−1
j ‖

4 + ‖BjĈ
−1
j (Ĉj −Cj)C

−1
j ‖

4
)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖

8
]1/2

+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂jĈ
−1
j ‖

8‖C−1
j ‖

8
]1/2)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖

8
]1/2

+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂j‖16
] 1
4
[ m∑
j=1

‖Ĉ−1
j ‖

16‖C−1
j ‖

16
] 1
4
)1/2

.

Denoting by bjiδ the entries of Bj , i = 1, . . . , q + 1, δ = 1, . . . , S(q + 1), the Cr inequality and

Lemma 10 entail

m∑
j=1

‖B̂j −Bj‖8 ≤
m∑
j=1

( q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

2
)4

≤ (q + 1)6S3
m∑
j=1

q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

8 = OP (m(max(n−1, ρ−1
T ))4).

In a similar way, one can prove that
∑m

j=1 ‖Ĉj −Cj‖8 is OP (m(max(n−1, ρ−1
T ))4). Moreover,

Assumptions 2 and 7 together with Lemma 10 imply that
∑m

j=1 ‖B̂j‖16 and
∑m

j=1 ‖C
−1
j ‖16,

as well as
∑m

j=1 ‖Ĉ
−1
j ‖8 and

∑m
j=1 ‖Ĉ

−1
j ‖16, are OP (m).

Collecting terms yields

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
≤ 23/2(q + 1)2m

( m∑
i=1

‖Âi
s −Ai

s‖4
)1/2

= OP
(
m3/2 max(n−1, ρ−1

T )
)
. (D.8)
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Turning to C, we obtain, by means of similar methods,

C ≤ ((q + 1)/m)1/2
{[ m∑

k=1

( q+1∑
β=1

(âk′rβâ
k
rβ)2

)2]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ ((q + 1)/m)1/2
{[

(q + 1)

m∑
k=1

q+1∑
β=1

(âk′rβâ
k
rβ)4

]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ (q + 1)1/2
[
(q + 1)4

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

m−1
m∑
j=1

m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4]1/4
≤ (q + 1)3/2

[ m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

((q + 1)6/m)

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(γ̂xjk,αβ(s− r))8
] 1
4

= OP (m1/2),

where γ̂xjk,αβ(s− r) stands for the (α, β) entry of Γ̂̂Γ̂Γxjk,s−r. Collecting terms again, we get

m−1‖ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r‖ ≤

(
1

m2
AC
)1/2

= OP (ζnT ) , r, s = 0, ..., S.

Now consider the second statement in (D.4). Again, it is sufficient to prove that it holds

with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the ‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. The two terms on

the right-hand side of (D.7) must be dealt with separately. In the first of those two terms,

dropping one of the summations for k = 1, . . . ,m and setting k = i,

m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − ajsα)′Γ̂̂Γ̂Γxji,s−râ

i
rβ

)2
= OP

(
m(max(n−1, ρ−1

T ))
)
.

Indeed, the left-hand side is bounded by a product DE , say, where

D = m1/2(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2
and

E =

q+1∑
β=1

( 1

m

m∑
j=1

(
âi′rβΓ̂̂Γ̂Γx′ji,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

i
rβ

)2)1/2

can be bounded along the same lines as A and B in the proof of the first statement.

As for the second term of (D.7), using arguments similar to those used in the first part

of the proof, we obtain
m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âisα − aisα)′Γ̂̂Γ̂Γx′jk,s−ra

j
rβ

)2

≤ m
[[ q+1∑
α=1

(âisα − aisα)′(âisα − aisα)
]2]1/2[ 1

m

m∑
j=1

q+1∑
β=1

(aj′rβΓ̂̂Γ̂Γ
x
ji,s−rΓ̂̂Γ̂Γ

x′
ji,s−ra

j
rβ)

= FG, say.
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It easily follows from Proposition 9 that F = OP (mζ2
nT ), while G = OP (1) can be obtained

from the arguments used to bound C in the proof of the first statement. Collecting terms,

we obtain, as desired,

m−1/2‖S ′i(ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r)‖ = Op (ζnT ) , r, s = 0, ..., S. �

Starting with Lemma 11, which plays here the same role as Proposition 6 does for the

proof of Proposition 7, we can easily prove statements that replicate in this context Lemmas 1,

2, 3 and 4, using the same arguments as in Section B, with x, χ and ξ replaced by Z, Ψ

and Φ, respectively. More precisely,

(I) In the results corresponding to Lemma 1 we obtain the rate ζnT for (i), (ii), (iii) and (iv).

Note that no reduction from 1/n to 1/
√
n occurs between (iii) and (iv), as in Lemma 1.

For, (iii) has OP (ζnT ) +O(1/n) = OP (ζnT ), while (iv) has OP (ζnT ) +O(1/
√
n), which

is OP (ζnT ).

(II) The same rate ζnT is obtained for the results of Lemma 2.

(III) The same holds for Lemma 3. The orthogonal matrix in point (iii), call it again Ŵq,

has either 1 or −1 on the diagonal; thus ˜̂Wq = Ŵq.

(IV) Lastly, Lemma 4 becomes∥∥∥S ′i (P̂z
(
Λ̂̂Λ̂Λz
)1/2

−Pψ
(
ΛΛΛψ
)1/2

Ŵq

)∥∥∥ =
∥∥∥R̂i −RiŴq

∥∥∥ = OP (ζnT ) . (D.9)

Going over the proof of Lemma 4, we see that ‖i − j‖ has the worst rate, whereas

here ‖g − h‖, ‖h − i‖ and ‖i − j‖ all have rate OP (ζnT ). This completes the proof of

Proposition 10. �

Finallly, in the same way as the proof of Lemma 4 can be replicated to obtain (D.9), the

proof of Lemma 6 can be replicated to obtain

‖P̂z(Λ̂̂Λ̂Λz)1/2 −Pψ(Λψ)1/2Ŵq‖ = OP

(
n1/2ζnT

)
. (D.10)
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E Proof of Proposition 11

We have

v̂t =
(
(Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2

)−1
(Λ̂z)1/2P̂z′Ẑt = (Λ̂z)−1/2P̂z′Ẑt

= (Λ̂z)−1/2P̂z′(Â(L)−A(L)
)
xt +

(
(Λ̂z)−1/2P̂z′ − Ŵq(Λ

ψ)−1/2Pψ′)A(L)xt

+Ŵq(Λ
ψ)−1/2Pψ′A(L)ξt + Ŵq(Λ

ψ)−1/2Pψ′Pψ(Λψ)1/2vt. (E.11)

Considering the first term on the right-hand side of (E.11),

‖(Λ̂z)−1/2P̂z′(Â(L)−A(L)
)
xt‖ = ‖(Λ̂z/n)−1/2P̂z′n−1/2

(
Â(L)−A(L)

)
xt‖

≤ ‖(Λ̂z/n)−1/2‖‖P̂z′‖‖n−1/2
(
Â(L)−A(L)

)
xt‖.

Since ‖(Λ̂z/n)−1/2‖ = OP (1) and ‖P̂z‖ = 1, by (D.8), we get

‖n−1/2
(
Â(L)−A(L)

)
xt‖ ≤ n−1/2

p∑
r=0

( m∑
i=1

xi′t−r(Â
i
r −Ai

r)
′(Âi

r −Ai
r)x

i
t−r

)1/2

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

n−1
m∑
i=1

( q+1∑
j=1

q+1∑
h=1

(âir,jh − air,jh)2
)2)1/4

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

(q + 1)3n−1
m∑
i=1

‖Âi
r −Ai

r‖4
)1/4

= OP (ζnT )

where xt = (x1′
t ...x

i′
t ...x

m′
t )′ stands for sub-vectors xit of size (q + 1)× 1.

Next, considering the second term on the right-hand side of (E.11),

‖
(

(Λ̂z)−1/2P̂z′ − Ŵq(Λ
ψ)−1/2Pψ′

)
A(L)xt‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − ŴqΛ̂
z(Λψ)−1/2Pψ′

)
A(L)xt/n‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − Ŵq[Λ̂
z −Λψ + Λψ](Λψ)−1/2Pψ′

)
A(L)xt/n‖

≤ ‖(Λ̂z/n)−1‖‖
(

(Λ̂z)1/2P̂z′ − Ŵq(Λ
ψ)1/2Pψ′

)
‖‖A(L)xt/n‖

+‖(Λ̂z/n)−1‖‖Ŵq(Λ̂
z −Λψ)(Λψ)−1/2Pψ′‖‖A(L)xt/n‖ = OP (ζnT ) ,

since, by (D.10), ‖(P̂z(Λ̂z)1/2 −Pψ(Λψ)1/2Ŵq)‖ = OP
(
n1/2ζnT

)
, and

‖Â(L)xt/n‖ = n−1/2
(
x′tÂ

′(L)Â(L)xt/n
)1/2

≤ n−1/2
p∑
r=0

(
x′t−rÂ

′
rÂrxt−r/n

)1/2

≤ n−1/2
p∑
r=0

(x′t−rxt−r/n)1/2(λ1(Â′rÂr))
1/2 = OP (n−1/2),
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boundedness of λ1(Â′rÂr) being a consequence of Assumptions 2 and 7. As for the third

term on the right-hand side of (E.11), (Λψ)−1/2Pψ′A(L)ξt is OP (n−1/2). To conclude, note

that the last term Ŵq(Λ
ψ)−1/2Pψ′Pψ(Λψ)1/2vt is equal to Ŵqvt. The conclusion follows. �
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F Sections 4 and 5: Tables

Table 1: Model I, estimated impulse response functions and structural shocks. Average

and standard deviation (in brackets) of normalized MSE across 500 data sets of different

size. For the static method, the number of static factors is determined by Bai and Ng’s

ICp2 criterion.

Impulse response functions Structural shocks

T 60 120 240 480 60 120 240 480

n FHLZ method , no averaging

30 0.93 (0.51) 0.54 (0.34) 0.32 (0.11) 0.22 (0.11) 0.84 (0.48) 0.59 (0.31) 0.48 (0.11) 0.45 (0.06)

60 0.68 (0.39) 0.41 (0.26) 0.25 (0.11) 0.17 (0.04) 0.55 (0.45) 0.38 (0.26) 0.30 (0.12) 0.28 (0.04)

120 0.58 (0.34) 0.34 (0.11) 0.22 (0.04) 0.15 (0.03) 0.38 (0.42) 0.23 (0.13) 0.18 (0.05) 0.16 (0.03)

240 0.55 (0.32) 0.33 (0.12) 0.21 (0.04) 0.15 (0.02) 0.31 (0.40) 0.17 (0.15) 0.11 (0.05) 0.10 (0.02)

n FHLZ method , with averaging

30 0.66 (0.31) 0.39 (0.19) 0.23 (0.06) 0.15 (0.04) 0.64 (0.30) 0.49 (0.18) 0.41 (0.07) 0.39 (0.05)

60 0.54 (0.29) 0.32 (0.15) 0.18 (0.05) 0.12 (0.03) 0.45 (0.32) 0.32 (0.16) 0.25 (0.05) 0.24 (0.03)

120 0.48 (0.24) 0.28 (0.10) 0.17 (0.04) 0.11 (0.02) 0.32 (0.29) 0.21 (0.11) 0.15 (0.04) 0.14 (0.02)

240 0.46 (0.23) 0.27 (0.09) 0.16 (0.04) 0.10 (0.02) 0.25 (0.29) 0.15 (0.10) 0.10 (0.04) 0.08 (0.02)

n static factor method (FGLR)

30 0.86 (0.45) 0.52 (0.20) 0.38 (0.07) 0.31 (0.05) 0.74 (0.45) 0.51 (0.20) 0.42 (0.08) 0.38 (0.06)

60 0.71 (0.38) 0.45 (0.13) 0.34 (0.05) 0.20 (0.03) 0.54 (0.44) 0.34 (0.15) 0.27 (0.05) 0.23 (0.04)

120 0.63 (0.32) 0.42 (0.09) 0.33 (0.04) 0.28 (0.03) 0.40 (0.38) 0.24 (0.11) 0.17 (0.05) 0.13 (0.03)

240 0.60 (0.28) 0.42 (0.10) 0.32 (0.03) 0.27 (0.02) 0.32 (0.34) 0.19 (0.13) 0.12 (0.04) 0.08 (0.02)
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Table 2: Model I, one-step-ahead forecasts. Average and standard deviation (in brack-

ets) of the normalized mean square deviation from the population forecasts across 500

data sets of different size. For the dynamic method, the number of dynamic factors is

determined by Hallin and Lǐska’s log criterion. For the static method, the number of

static factors is determined by Bai and Ng’s ICp2 criterion.

T = 60 T = 120 T = 240 T = 480

FHLZ method, with averaging

n = 30 0.97 (0.65) 0.91 (1.06) 0.73 (0.61) 0.74 (0.67)

n = 60 0.82 (0.32) 0.68 (0.35) 0.59 (0.95) 0.50 (0.35)

n = 120 0.74 (0.21) 0.58 (0.16) 0.47 (0.27) 0.39 (0.22)

n = 240 0.70 (0.18) 0.53 (0.14) 0.41 (0.14) 0.33 (0.14)

static factor method (SW), with lagged x’s

n = 30 2.58 (3.46) 1.65 (2.99) 1.12 (1.81) 0.89 (0.88)

n = 60 2.17 (2.22) 1.28 (1.00) 0.99 (2.31) 0.73 (0.61)

n = 120 1.94 (1.53) 1.16 (0.72) 0.83 (0.90) 0.64 (0.43)

n = 240 1.87 (1.51) 1.08 (0.62) 0.75 (0.47) 0.60 (0.35)

static factor method (SW), no lagged x’s

n = 30 1.90 (2.62) 1.33 (2.05) 0.94 (0.95) 0.80 (0.74)

n = 60 1.52 (1.54) 1.02 (0.75) 0.86 (1.84) 0.68 (0.54)

n = 120 1.32 (0.89) 0.89 (0.48) 0.72 (0.66) 0.61 (0.39)

n = 240 1.24 (0.69) 0.82 (0.41) 0.64 (0.38) 0.56 (0.33)
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Table 3: Model II, estimated impulse response functions and structural shocks. Average

and standard deviation (in brackets) of the normalized MSE across 500 data sets with

different configurations of static and dynamic factors. For the static method, the

number of static factors is determined by Bai and Ng’s ICp2 criterion.

Impulse response functions Structural shocks

r 4 6 8 12 4 6 8 12

q FHLZ method, with averaging

2 0.13 (0.05) 0.11 (0.05) 0.10 (0.05) 0.09 (0.07) 0.17 (0.08) 0.12 (0.07) 0.10 (0.06) 0.08 (0.07)

4 0.15 (0.09) 0.15 (0.11) 0.14 (0.15) 0.27 (0.15) 0.22 (0.16) 0.17 (0.17)

6 0.17 (0.09) 0.15 (0.10) 0.34 (0.13) 0.24 (0.16)

FGLR method, r determined with ICp2

2 0.16 (0.14) 0.16 (0.13) 0.15 (0.13) 0.12 (0.14) 0.21 (0.25) 0.17 (0.26) 0.12 (0.19) 0.08 (0.13)

4 0.18 (0.15) 0.19 (0.16) 0.20 (0.23) 0.35 (0.26) 0.31 (0.28) 0.23 (0.28)

6 0.20 (0.13) 0.22 (0.15) 0.43 (0.22) 0.35 (0.25)

FGLR method , r assumed known

2 0.10 (0.07) 0.09 (0.07) 0.08 (0.07) 0.07 (0.06) 0.17 (0.14) 0.13 (0.13) 0.12 (0.10) 0.11 (0.06)

4 0.14 (0.12) 0.15 (0.14) 0.14 (0.19) 0.28 (0.22) 0.25 (0.23) 0.21 (0.23)

6 0.18 (0.13) 0.17 (0.14) 0.38 (0.21) 0.28 (0.21)
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Table 4: Model II, one-step-ahead forecasts. Average and standard deviation (in brack-

ets) of the normalized mean square deviations from the population forecasts, across

500 data sets with different configurations of static and dynamic factors. For the dy-

namic method, the number of dynamic factors is determined by Hallin and Lǐska’s log

criterion. For the static method, the number of static factors is determined by Bai and

Ng’s ICp2 criterion.

r = 4 r = 6 r = 8 r = 12

FHLZ method, with averaging

q = 2 0.79 (1.59) 0.68 (0.75) 0.59 (0.97) 0.56 (0.52)

q = 4 0.44 (0.36) 0.44 (0.28) 0.40 (0.20)

q = 6 0.40 (0.28) 0.38 (0.18)

static factor method (SW), no lagged x’s

q = 2 1.00 (2.10) 0.67 (1.04) 0.52 (64) 0.49 (0.66)

q = 4 0.61 (1.37) 0.53 (0.67) 0.43 (0.37)

q = 6 0.50 (0.58) 0.42 (0.34)
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Table 5: Relative Mean Square Forecast Errors, AR(4) = 1, for five macroeconomic

variables, obtained with the FHLZ method and the static factor method (with p lags of

the dependent variable), with a quarterly US macroeconomic data set. Best forecasts

are in boldface. The Diebold-Mariano test statistic is computed for all factor model

specifications with respect to the AR(4) benchmark; its significance levels (p-values)

are indicated by means of superscripts + (15 %), ∗ (10 %), and ∗∗ (5 %), respectively.

Forecasting FHLZ (with averaging) Static Method (SW) AR(4)

horizon q = 3 q = 3 q = 4 r = 2 r = 4 r = 6 r = 4

BT = 8 BT = 12 BT = 8 p = 0 p = 0 p = 0 p = 1

Real Gross Domestic Product

h = 1 0.920+ 0.923+ 0.910+ 0.979 0.955 0.952 1.018 1.000

h = 2 0.883+ 0.890 0.882 1.021 0.990 1.060 1.012 1.000

h = 3 0.829∗ 0.835∗ 0.836∗ 1.026 0.901+ 1.000 0.979 1.000

h = 4 0.825∗ 0.830∗ 0.839∗ 0.993 0.881+ 1.023 1.040 1.000

Real Private Fixed Investment growth

h = 1 0.836 0.819 0.867 0.724∗∗ 0.682∗∗ 0.773∗ 0.665∗∗ 1.000

h = 2 0.708+ 0.707+ 0.737 0.784+ 0.700∗ 0.787 0.688∗ 1.000

h = 3 0.678 0.683 0.709 0.806 0.721 0.818 0.774+ 1.000

h = 4 0.689 0.696 0.722 0.836 0.743 0.865 0.869+ 1.000

Real Personal Consumption Expenditures

h = 1 1.109 1.099 1.136 1.188 1.239 1.223 1.244 1.000

h = 2 1.136 1.134 1.188 1.277 1.239 1.262 1.150 1.000

h = 3 1.137 1.140 1.202 1.327 1.269 1.327 1.271 1.000

h = 4 1.037 1.040 1.093 1.175 1.143 1.275 1.223 1.000

Number of Unemployed

h = 1 0.877+ 0.855∗ 0.872+ 0.823∗∗ 0.825+ 0.901 0.807∗ 1.000

h = 2 0.870 0.859 0.870 0.980 0.925 0.997 0.901 1.000

h = 3 0.841∗ 0.837∗ 0.845∗ 1.032 0.906 1.032 0.936 1.000

h = 4 0.836∗∗ 0.835∗∗ 0.839∗∗ 0.985 0.852∗∗ 1.001 0.942 1.000

Consumer Price Index

h = 1 0.844 0.846 0.823+ 0.885 0.979 1.032 1.138 1.000

h = 2 0.771 0.774 0.754+ 0.812 0.863 0.935 0.861 1.000

h = 3 0.685+ 0.696+ 0.691+ 0.714+ 0.761 0.896 0.855+ 1.000

h = 4 0.753+ 0.759+ 0.746+ 0.797 0.778 0.937 0.788 1.000



Table 6: Relative Mean Square Forecast Errors, AR(4) = 1, for seven macroeconomic

variables, and average RMSFE for NIPA variables 1-9, obtained with the FHLZ method

and the static factor method (with p lags of the dependent variable), with a quarterly

US macroeconomic data set. Best forecasts are in boldface. The Diebold-Mariano

test statistic is computed for all factor model specifications with respect to the AR(4)

benchmark (not computed for the average RMSFE of NIPA variables); its significance

levels (p-values) are indicated by means of superscripts + (15 %), ∗ (10 %), and ∗∗ (5

%), respectively (no superscripts means a p-value greater than 15 %).

Forecasting FHLZ (with averaging) Static Method (SW) AR(4)

horizon q = 3 q = 3 q = 4 r = 2 r = 4 r = 6 r = 4

BT = 8 BT = 12 BT = 8 p = 0 p = 0 p = 0 p = 1

Real Government Consumption Expenditures & Gross Investment

h = 1 1.042 1.042 1.063 1.172 1.242 1.171 1.264 1.000

h = 2 1.109 1.107 1.126 1.354 1.528 1.364 1.454 1.000

h = 3 1.064 1.065 1.082 1.538 1.712 1.463 1.502 1.000

h = 4 0.966 0.966 0.980 1.605 1.761 1.516 1.502 1.000

Real Exports of Goods & Services

h = 1 0.973 0.973 0.948 1.027 1.029 1.024 1.001 1.000

h = 2 0.916 0.923 0.892+ 1.124 1.057 1.067 0.972 1.000

h = 3 0.900 0.910 0.885+ 1.130 1.089 1.123 1.074 1.000

h = 4 0.883+ 0.891+ 0.871∗ 1.078 0.972 1.024 1.031 1.000

Real Imports of Goods & Services

h = 1 0.651∗ 0.642∗ 0.655∗ 0.561∗∗ 0.507∗∗ 0.541∗∗ 0.499∗∗ 1.000

h = 2 0.553∗∗ 0.559∗∗ 0.553∗∗ 0.636∗ 0.513∗ 0.568∗ 0.523∗∗ 1.000

h = 3 0.595∗∗ 0.604∗∗ 0.596∗∗ 0.720∗ 0.628∗ 0.693+ 0.708∗ 1.000

h = 4 0.692+ 0.702+ 0.707+ 0.857 0.729 0.826 0.854+ 1.000

Nonfarm Business Sector: Output Per Hour of All Persons

h = 1 0.908∗ 0.906∗ 0.898∗∗ 0.929 0.896 0.834∗∗ 0.897 1.000

h = 2 0.893∗ 0.890∗ 0.892∗ 0.884 0.873 0.846+ 0.878 1.000

h = 3 0.832∗ 0.828∗ 0.839∗ 0.815 0.788 0.728∗ 0.802 1.000

h = 4 0.832∗ 0.827∗ 0.845+ 0.777 0.770 0.793+ 0.813 1.000
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Table 6 (continued)

Forecasting FHLZ (with averaging) Static Method (SW) AR(4)

horizon q = 3 q = 3 q = 4 r = 2 r = 4 r = 6 r = 4

BT = 8 BT = 12 BT = 8 p = 0 p = 0 p = 0 p = 1

Utilization-Adjusted Total Factor Productivity

h = 1 0.917∗ 0.919∗ 0.914∗∗ 0.965 0.918 0.894∗ 0.900∗ 1.000

h = 2 0.914∗∗ 0.917∗∗ 0.913∗∗ 0.958+ 0.918∗∗ 0.974 0.953∗ 1.000

h = 3 0.869∗∗ 0.865∗∗ 0.866∗∗ 0.887∗∗ 0.932∗ 0.892∗ 0.942+ 1.000

h = 4 0.929∗∗ 0.927∗∗ 0.925∗∗ 1.004 0.905∗∗ 0.927+ 0.934+ 1.000

Industrial Production Index

h = 1 1.085 1.069 1.037 0.900 0.879 0.868 0.895 1.000

h = 2 0.933 0.930 0.902 1.028 0.951 1.064 0.928 1.000

h = 3 0.870 0.873 0.851 1.092 0.950 1.103 0.968 1.000

h = 4 0.841+ 0.845+ 0.832+ 1.012 0.821∗∗ 0.999 0.937 1.000

Effective Federal Funds Rate

h = 1 0.884 0.876 0.850+ 1.273 1.560 1.629 1.582 1.000

h = 2 0.882+ 0.872∗ 0.844∗ 1.469 1.802 1.887 1.637 1.000

h = 3 0.920∗ 0.914∗ 0.881∗∗ 1.575 1.855 2.016 1.746 1.000

h = 4 0.910∗∗ 0.906∗∗ 0.874∗∗ 1.460 1.661 1.816 1.614 1.000

Standard & Poor’s Index of 500 Common Stocks

h = 1 0.917∗ 0.912∗∗ 0.891∗∗ 1.070 1.071 1.126 1.073 1.000

h = 2 0.824+ 0.823∗ 0.810∗ 1.156 1.178 1.254 1.180 1.000

h = 3 0.782∗ 0.784∗ 0.781∗ 1.248 1.259 1.374 1.363 1.000

h = 4 0.768∗ 0.772∗ 0.770∗ 1.248 1.258 1.355 1.508 1.000

Average of NIPA variables 1-9

h = 1 0.923 0.915 0.923 0.900 0.905 0.915 0.919 1.000

h = 2 0.879 0.880 0.887 0.970 0.944 0.975 0.925 1.000

h = 3 0.883 0.887 0.895 1.056 1.004 1.052 1.023 1.000

h = 4 0.875 0.879 0.889 1.066 1.008 1.091 1.084 1.000
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G Data description

Transformation codes. 1 = levels; 2 = first differences of the original series; 4 = logs of the

original series; 5 = first differences of the logs of the original series; 6 = second differences of

the original series.

Data sources. Data on total factor productivity (series 49-50 and 57-60) are taken from Fer-

nald’s web site; the components of the consumer confidence indicator (53-56) are downloaded

from the web site of the University of Michigan; series 41-47 and 61 are from Datastream;

series 62-73 are taken from the Survey of Professional Forecast website; all other series are

taken from the FRED data base.

Further details. Several series are provided only with monthly frequency; in such cases we

computed the corresponding quarterly series by taking simple averages. For the SPF variables

62-73, we discarded the 4-quarter ahead forecasts since they have missing values until 1974.

We did not include investment, consumption and CPI forecasts since they are only available

from 1981:Q3. The target series for the forecasting exercise are 1, 3, 4, 26 and 36. After

transformation, we corrected for outliers as in Stock and Watson (2002b).

no.series Transf. Mnemonic Long Label

1 5 GDPC1 Real Gross Domestic Product

2 5 OUTNFB Nonfarm Business Sector: Output

3 5 FPIC1 Real Private Fixed Investment

4 5 PCECC96 Real Personal Consumption Expenditures

5 5 PCDGCC96 Real Personal Consumption Expenditures: Durable Goods

6 5 FGCEC1 Real Federal Consumption Expenditures & Gross Investment

7 1 CBIC1 Real Change in Private Inventories

8 5 EXPGSC1 Real Exports of Goods & Services

9 5 IMPGSC1 Real Imports of Goods & Services

10 5 CP/GDPDEF Corporate Profits After Tax/GDP deflator

11 5 CNCF/GDPDEF Corporate Net Cash Flow/GDP deflator

12 5 HOANBS Nonfarm Business Sector: Hours of All Persons

13 5 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons

14 5 ULCNFB Nonfarm Business Sector: Unit Labor Cost

15 5 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour

16 5 GDPCTPI Gross Domestic Product: Chain-type Price Index

17 5 GDPDEF Gross Domestic Product: Implicit Price Deflator

18 5 INDPRO Industrial Production Index

19 5 IPBUSEQ Industrial Production: Business Equipment

20 5 IPCONGD Industrial Production: Consumer Goods

21 5 IPMAT Industrial Production: Materials

22 5 CE16OV Civilian Employment

23 2 AWOTMAN Average Weekly Hours: Overtime: Manufacturing

24 5 UNEMPLOY Unemployed
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25 2 UEMPMEAN Average (Mean) Duration of Unemployment

26 2 UNRATE Civilian Unemployment Rate

27 4 HOUST Housing Starts: Total: New Privately Owned Housing Units Started

28 2 FEDFUNDS Effective Federal Funds Rate

29 2 TB3MS 3-Month Treasury Bill: Secondary Market Rate

30 2 GS10 10-Year Treasury Constant Maturity Rate

31 2 BAA Moody’s Seasoned Baa Corporate Bond Yield

32 6 M1SL M1 Money Stock

33 6 M2SL M2 Money Stock

34 6 BUSLOANS Commercial and Industrial Loans at All Commercial Banks

35 6 CONSUMER Consumer (Individual) Loans at All Commercial Banks

36 6 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items

37 6 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy

38 6 PPICPE Producer Price Index Finished Goods: Capital Equipment

39 6 PPIFCG Producer Price Index: Finished Consumer Goods

40 6 PPIFGS Producer Price Index: Finished Goods

41 5 USSHRPRCF US Dow Jones Industrial Share Price Index

42 5 US500STK US Standard & Poor’s Index Of 500 Common Stocks

43 5 USNOIDN.D Us Manufacturers New Orders For Nondefense Capital Goods

44 5 USCNORCGD Us New Orders Of Consumer Goods & Materials (Bci 8) Cona

45 1 USNAPMNO Us Ism Manufacturers Survey: New Orders Index Sadj

46 5 USCYLEAD Us The Conference Board Leading Economic Indicators Index Sadj

47 5 USECRIWLH Us Economic Cycle Research Institute Weekly Leading Index(Monthl

48 5 GCEC1 Real Government Consumption Expenditures & Gross Investment

49 1 dtfputil Utilization-adjusted TFP

50 1 dtfp TFP business sector

51 5 USSHRPRCF/GDPDEF Deflated Dow Jones Index

52 5 US500STK/GDPDEF Deflated S&P500 Index

53 1 ECFS Expected Change in Financial Situation

54 1 BC12M Business conditions expected during the next 12 months

55 1 BC5Y Business Conditions expected during the next 5 years

56 1 EI Expected Index

57 1 dtfpI TFP in equipment and consumer durables

58 1 dtfpC TFP in non-equipment business output (”consumption”)

59 1 dtfpIutil Utilization-adjusted TFP in equipment and consumer durables

60 1 dtfpCutil Utilization-adjusted TFP in non-equipment output

61 5 USI62...F US Share Price Index

62 1 SPFGDP1 SPF GDP growth 1 quarter ahead (mean)

63 1 SPFGDP2 SPF GDP growth 2 quarters ahead (mean)

64 1 SPFGDP3 SPF GDP growth 3 quarters ahead (mean)

65 2 SPFUNRATE1 SPF unemployment rate 1 quarter ahead (mean)

66 2 SPFUNRATE2 SPF unemployment rate 2 quarters ahead (mean)

67 2 SPFUNRATE3 SPF unemployment rate 3 quarters ahead (mean)

68 2 SPFDEF1 SPF price deflator growth for GDP 1 quarter ahead (mean)

69 2 SPFDEF2 SPF price deflator growth for GDP 2 quarters ahead (mean)

70 2 SPFDEF3 SPF price deflator growth for GDP 3 quarters ahead (mean)

71 1 SPFIP1 SPF IP change 1 quarter ahead (mean)

72 1 SPFIP2 SPF IP change 2 quarters ahead (mean)

73 1 SPFIP3 SPF IP change 3 quarters ahead (mean)
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