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Abstract

We analyze a sticky price model where a firm chooses a price plan, namely a set
of 2 prices. Changing the plan entails a “menu cost”, but either price in the plan can
be charged at any point in time. We analytically solve for the optimal policy and for
the output response to a monetary shock. The setup generates a persistent reference
price level and short lived deviations from it, as well as a decreasing hazard function
for price changes, consistent with some datasets. We show that the temporary price
changes substantially increase the flexibility of the aggregate price level.
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1 Introduction

Transitory price changes, i.e. temporary deviations above or below a reference price level,

appear in many datasets. Kehoe and Midrigan (2015) conclude that over 70% of price changes

in the BLS data are temporary. Such transitory price changes do not fit neatly in simple

sticky price models, though they might be important since they make a large difference in

the measured frequency of price changes. This difference is apparent in the way different

authors have approached the treatment of sales in the data: some authors, such as Bils

and Klenow (2004), count sales as price changes since they view temporary price changes

as a source of price flexibility. Others, such as Golosov and Lucas (2007) or Nakamura and

Steinsson (2008), exclude sales from the counting of price changes believing they are not a

useful instrument to respond to aggregate shocks.1 This paper proposes a simple theoretical

model that produces transitory, as well as persistent, price changes. The objective is to

provide a theoretical benchmark to asses whether the temporary price changes matter for

the propagation of monetary shocks. Our model provides a sharp analytical answer which

squarely aligns to Bils and Klenow’s (2004) view that temporary price changes provide non

negligible price flexibility.

We develop the analysis using a menu cost model with idiosyncratic shocks in the spirit

of Eichenbaum, Jaimovich and Rebelo (2011). The setup modifies the model of Golosov and

Lucas (2007) by assuming that upon paying the menu cost the firm can choose 2 prices,

instead of 1, say P ≡ {pH , pL}. We call the set P a price plan, which is a singleton in the

standard model, and the firm is free to change prices as many times as it wishes within the

plan. Instead, changes of the plan require paying the fixed cost ψ. As is customary, we

assume that the firm’s marginal cost are hit by idiosyncratic shocks which affect the firm’s

markup and create a motive for adjusting the price. We analytically solve for the optimal

1 Klenow and Kryvtsov (2008) put it very clearly (page 871): “Focusing on regular prices begs the question
of whether one should exclude sale prices for macro purposes. This is not obvious. First, sales may have
macro content. Items may sell at bigger discounts when excess inventory builds up or when inflation has
been low.”
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policy of a representative firm, and for the cumulative impulse response function of output

to a once and for all monetary shock.

While it is intuitive the price plan will be able to generate some temporary price changes,

namely some oscillations between the high and the low price within the plan, our analytic

solution unveils several properties of the model that cannot be analyzed with intuition alone:

what parameters determine the total number of price changes? how many temporary versus

permanent price changes will there be? How much time will prices spend at the “reference”

(or modal) price? How does the price plan affect the hazard rate of price changes? Other

nontrivial questions relate to the propagation of monetary shocks: does the price plan affect

the flexibility of the aggregate price level? Does the plan mostly affect the impact effect or

the persistence of the CPI response? Our analytic model provides tight answers to each of

these questions.

We show that the model with plans generates lots of price changes that are reversed,

since the price of each firm oscillates between a high and a low value within the plan. These

reversals have several implications. First, price plans generate a large number of price changes

and, simultaneously, several time spells where the price stays at the modal (or reference) price

over a given time period (e.g. a quarter). In other words, price plans generate a persistent

“reference” price level and short lived deviations from it, as seen in the scanner price data

analyzed by e.g. Eichenbaum et al. (2011). Second, the introduction of the price plan

generates a novel economically motivated reason for a downward sloping hazard-rate of price

changes, a feature we find interesting because is connects with empirical evidence by e.g.

Nakamura and Steinsson (2008) as well as by Campbell and Eden (2014).

Finally, our results identify an important role of price plans for the transmission of ag-

gregate shocks. We show how to characterize the output effect purely in terms of a notion of

the frequency of price changes that is reminiscent of the idea of “regular” or “reference” price

changes introduced by Eichenbaum et al. (2011).2 We find that the cumulative output effect

2A related, complementary approach, is whether one can find empirical evidence on the cyclicality of sales,
or in their response, either in their frequency or depth, after a monetary shock.
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of a monetary shock (the area under the output impulse response function) in an economy

with the price plan is 1/3 of the cumulative effect in a standard economy without the plan

provided that the two economies feature the same (average) number of plan changes per

year. In other words, if we identify plan changes as regular price changes, we obtain the 1/3

ratio of cumulative output impulse responses. The economics of this difference is that on

impact many firms switch from the low price pL to the high price pH as a reaction to the

permanent common positive cost shock, thus increasing the aggregate price level. We note

that in steady state there are lots of firms that are ready to make this change, which is the

same reason why this model can produce many “price reversals”. The extra flexibility of

the economy with plans is due exclusively to price changes within the plan, not to a higher

responsiveness of plan changes to the state of the economy. We prove that the main difference

in the propagation of a monetary shock, between models with price plans and those without,

stems from the the impact effect on prices and output. We have shown elsewhere that for a

general class of time dependent models as well as for a large class of state dependent models,

a small monetary shock has a second order impact effect on prices (see Alvarez et al. (2016a)).

Instead in the setup with price plans the impact effect of a monetary shock on prices is first

order. We view this feature as the hallmark of this type of models.

A few theoretical contributions analyze the relevance of temporary price changes using

micro founded sticky price models. Guimaraes and Sheedy (2011) develop a model of sales, i.e.

of temporary low prices, where the firm’s profit maximizing behavior implies a randomization

between a regular price and a low price. They assume that the timing for the adjustment of

the regular price follows an exogenous rule a la Calvo. The real effects of monetary shocks

in their model are essentially identical to the real effects produced by a Calvo model. This

is because their model features a strong strategic substitutability in the firm’s price setting

decisions that, in the quantitative parametrization chosen by the authors, completely mutes

the individual firm’s incentive to use less sales in order to respond to e.g. a positive monetary

shocks. Such effect is not present in our framework since the firm’s pricing decision is not
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subject to any form of strategic interaction with other firms. Our paper is also related to

Kehoe and Midrigan (2015) who set up a model where the firm faces a regular menu cost

for permanent price changes and a smaller menu cost for temporary price changes (which

are reversed after 1 month). Their model implies that firms will not use the temporary price

changes to respond to monetary policy shocks, from which they conclude that temporary

price changes are not a relevant measure of the firm’s price flexibility. Our result is different

because the implementation of a temporary price change is not automatically reversed.3

We thus offer a theoretical model where the temporary price changes do matter for the

transmission of monetary policy because firms use the temporary price changes to respond

to shocks. Analyzing empirically whether firms use temporary price changes to respond to

the aggregate macroeconomic conditions, as in the recent papers by Kryvtsov and Vincent

(2014) and Anderson, Malin, Nakamura, Simester and Steinsson (2015), is a useful way to

select between these alternative models.

Our model is uniquely poised to analyze new evidence on high frequency (weekly or

daily) price changes. It has been noticed empirically that high frequency observations tend

to display a larger number of price changes. Our model provides a tractable laboratory to

analyze how the length of the time-period affects observable outcomes, which is useful to

measure the frequency of price changes across datasets and to assess its consequences. For

instance, the daily Japanese data discussed in Sudo, Ueda and Watanabe (2014) display a

much larger number of price changes than the US weekly data of Eichenbaum et al. (2011), in

spite of the fact that the frequency of regular price changes is similar across the two datasets

(the annual number of price changes the Japanese daily scanner data is just above three

times the average number of price changes in the US weekly scanner data). We argue that

these facts are consistent with a model in which the US and Japan have identical real effects

of monetary policy and the only difference pertains to the frequency with which the data are

sampled.

3See Section 5 and Appendix D for a detailed analysis of the relation with the Kehoe and Midrigan paper.
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The paper is organized as follows. Section 2 sets up the price setting problem and derives

the firm’s optimal policy. Section 3 derives analytically the cumulative output response of the

economy to an unexpected small monetary shock (increase of the money supply). The results

in this section allow a straightforward comparison with the size of the real effects produced

by the canonical menu cost model. The model with price plans produces two types of price

changes: changes within the plan, i.e. oscillations between pH and pL, and changes of the

plan. Thus when matching the model to the frequency of price changes in the data one has to

take a stand on what constitutes a “price change”: all types of price changes, including short

lived temporary oscillations between pH and pL, or only the “regular” persistent (i.e. plan)

changes. Section 4 formalizes the different definitions for the frequency of price changes and

compares the real effects of a monetary shock across models with and without plans while

keeping fixed alternative definitions of frequency. Section 5 concludes by discussing the scope

and robustness of our results, in particular we discuss what features of our analytical results

are robust to alternative modeling assumptions.

2 The firm’s problem

This section describes the firm’s price setting problem and derives approximate analytic ex-

pressions for the optimal price setting rules. The section also characterizes the hazard func-

tion for price changes implied by the optimal decision rule: price plans produce a downward

sloping hazard rate function, a feature that it is found in several empirical studies.

Consider a firm whose (log) profit-maximizing price at time t, p∗(t), follows the process

dp∗(t) = σ dW (t)

whereW (t) is a standard brownian motion with no drift and i.i.d. innovations with a variance

per unit of time given by σ2. We will call the profit-maximizing price p∗(t) the ideal price.

The firm that charges the (log) price p(t) at time t has a loss, relative to what it will get
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charging the desired price, equal to B (p(t) − p∗(t))2 where B is a constant that relates to

the curvature of the profit function.4 The firm discounts losses at rate r ≥ 0. A firm making

decisions at time t observes the history of {p∗(s)} from the initial time s = 0 up to the

current time s = t.

At any moment of time the firm has a price plan available. A price plan is given by

two numbers P ≡ {pL, pH} so that the firm can charge either (log) price in this set at t, i.e.

p(t) ∈ P at t. At any time the firm can pay a cost ψ and change its price plan to any P ∈ R
2.

We let Pi be the i
th price plan and let τi be the stopping time at which this ith price plan was

chosen, so this plan will be in effect between τi and τi+1. The stopping times and the price

plans can depend on all the information available until the time they are chosen. The problem

for the firm is then to choose the stopping times τ1 < τ2 < τ3 < · · · , the corresponding price

plans P1, P2, P3, ..., as well as the two prices p(t) ∈ Pi at times t ∈ [τi, τi+1). The state of

the firm’s problem is given by the triplet: {p∗, pL, pH}, where p∗ is the current desired price

level, and where {pL, pH} is the price plan currently available. Thus the firm’s optimization

problem is

V (p∗, pL, pH) =

min
{τi,Pi}∞i=1

E

[ ∞
∑

i=1

∫ τi

τi−1

e−r t min
p(t)∈Pi−1

B (p(t)− p∗(t))2 dt+

∞
∑

i=1

e−rτiψ

∣

∣

∣

∣

∣

p∗ = p∗(0), P0 = {pL, pH}
]

where τ0 = 0 and {τi, Pi}∞i=1 are the (stopping) times and corresponding price plans. The

key novel element compared to the standard menu-cost problem is the min operator which

appears inside the square bracket: at each point in time the firm can freely choose to charge

any of the prices specified by the Plan, for instance the plan P0 lets the firm freely choose

either pL or pH at any point in time.

4See Appendix B in Alvarez and Lippi (2014) for a detailed derivation of these expressions as a second
order approximation to the general equilibrium problem in which firms face a CES demand for their goods.
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Symmetry of the value function. We note that V : R
3 → R is symmetric in the

following sense:

V (p∗, pL, pH) = V (p∗ +∆, pL +∆, pH +∆) for all ∆, p∗, pL, pH , (1)

a property that follows directly from the fact that the period return function is a function of

the difference between the price charged p(t) and the desired price p∗(t).5

Considering the value function right after the decision of a change of plan, and in particular

right after the fixed cost ψ has been paid and right after the plan {pL, pH} has been adopted:

V (p∗, pL, pH) =

min
τ

E

[
∫ τ

0

e−r t min
p(t)∈{pL,pH}

B (p(t)− p∗(t))2 dt+ e−rτ [ψ + V ∗ (p∗(τ)) ]

∣

∣

∣

∣

p∗ = p∗(0)

]

where V ∗ (p∗) ≡ min
(p̄L,p̄H)∈R2

V
(

p∗, p̄L, p̄H
)

Using the property in equation (1) that V depends on differences only, then we can conclude

that V ∗ (p∗) is a constant which, abusing notation, we denote by V̄ ∗. We can then measure

the value function right after the fixed cost has been paid, but just before the price plan was

chosen, to obtain

V̄ ∗ = min
τ,pL,pH

E

[
∫ τ

0

e−r t min
p(t)∈{pL,pH}

B (p(t)− p∗(t))2 dt + e−rτ
[

ψ + V̄ ∗]
∣

∣

∣

∣

p∗ = p∗(0)

]

(2)

where we used that, given the symmetry stated in equation (1), the value of p∗ is immaterial

for the level of the value function.

Centered and symmetric price plans. Let p∗i be the desired price at the time at which

the ith price plan is decided, i.e. define p∗i ≡ p∗(τi) where τi ≤ t < τi+1 . The optimal policy

has the following property:

5A second symmetry property is: V (p∗, p∗ − g̃ − ∆, p∗ + g̃) = V (p∗, p∗ − g̃, p∗ + g̃ + ∆) for all ∆, p∗, g̃

which follows from the symmetric objective function (p(t)− p∗(t))
2
and the lack of drift of the desired price.
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Lemma 1. The optimal price plans are centered and symmetric, i.e. they satisfy

Pi = {p∗i − g̃, p∗i + g̃}

This lemma follows from the symmetry of the objective function in the right hand side of

equation (2) as well as the symmetry of the distribution of the standard Brownian motion.

Hence, the optimal plan must be centered and symmetric.

Redefined value function. Using the property in equation (1) and Lemma 1, it follows

that we can write the value function for a centered symmetric price plan, decided when the

desired price was p∗i and the current desired price is p∗, as

v(g ; g̃) ≡ V (p∗ , p∗i − g̃ , p∗i + g̃) with g(t) ≡ p∗(t)− p∗i = p∗(t)− p∗(τi)

where we define the new state variable g and the second equality uses the definition of p∗i .

In words, g measures the current desired price relative to the desired price at the time of

the last change in plans. With this new definition the state g is reset to zero every time a

new price plan is chosen. We refer to the state g as the normalized desired price. Figure 1

illustrates a sample path for the main variables of interest in this investigation: it displays

the normalized desired price g(t) = p∗ (t)−p∗(τi), the (normalized) price charged by the firm

at each point in time p(t)− p∗(τi) = ±g̃, and the barriers that determine the revision of the

price plan ±ḡ. The stationarity produced by the normalization of the prices (both desired

and actual) simplifies the analysis substantially.

2.1 Firm’s optimal policy

We look for an optimal policy that is described by two positive numbers 0 < g̃ < ḡ. The

value of g̃ is the width of a centered price plan as defined in Lemma 1. The value of ḡ is the

8



Figure 1: Example of model generated sample paths
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smallest change in the desired price, since the last price plan was decided, which triggers a

new price plan. The value of ḡ defines the inaction set for which the centered price plan g̃

applies.

In the inaction region g ∈ [−ḡ , ḡ] the value function solves:

r v(g; g̃) = min
ĝ∈{−g̃,g̃}

B (g − ĝ)2 +
1

2
σ2 v′′(g; g̃)

Note that: minĝ∈{−g̃,g̃} (g − ĝ)2 = min {(g − g̃)2 , (g + g̃)2} = g2+ g̃2−2|g|g̃, so we can write

the value function in the inaction region g ∈ [−ḡ , ḡ] as:

r v(g; g̃) = B
(

g2 + g̃2 − 2|g|g̃
)

+
1

2
σ2 v′′(g; g̃)

Since at any time price plans can be changed by paying a cost ψ, the value function must

satisfy for all g: v(g; g̃) ≤ ψ + ming̃′ v(0; g̃
′). Note that ming̃′ v(0; g̃

′) = V̄ ∗ as defined in

equation (2).
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The value function v(g; g̃) and optimal thresholds g̃, ḡ must satisfy the following condi-

tions, where primes denote the partial derivatives with respect to the first argument of the

function:

∂

∂g̃
v(0; g̃) = 0 , (3)

v(ḡ; g̃) = ψ + v(0, g̃) , (4)

v′(ḡ; g̃) = 0 , (5)

r v(g, g̃) = B ( |g| − g̃ )2 +
1

2
σ2 v′′(g; g̃) for all − ḡ ≤ g ≤ ḡ, g 6= 0 , (6)

lim
g↑0

v(g; g̃) = lim
g↓0

v(g; g̃) . (7)

These conditions are of two types. First in the inaction range the value function should

satisfy the Hamilton-Jacobi-Bellman equation (6), except at interior points where the period

return is non-differentiable, where instead we have equation (7). Notice that the function

v(·, g̃) is symmetric around g = 0 and hence its first derivative should satisfy:

v′(0; g̃) = 0 , (8)

which is the familiar optimality condition for the return point in an sS model. Equation (8)

and the symmetry condition v(g; g̃) = v(−g; g̃) in g ∈ [0, ḡ] can replace the boundary condi-

tion of equation (7). Second, we have the familiar value matching condition at the boundary

of the inaction set for an sS model, namely equation (4), and the smooth pasting condition in

equation (5). Lastly, the prices within the plan should be optimally decided, which requires

equation (3) to hold.

Optimal reset prices g̃. We turn to the determination of g̃, given a value of the inaction

threshold ḡ. Consider a firm that has just reset its price plan, that takes as given the value of

ḡ. Let τ(ḡ) be the stopping time associated with threshold ḡ. The relevant objective function
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for this problem, until the next time the plan is changed, is:

min
g̃

E

[

∫ τ(ḡ)

0

e−rt
(

g̃2 − 2 g̃ |g(t)|+ g(t)2
)

dt
∣

∣ g(0) = 0

]

Note that this is a one dimensional quadratic minimization problem, with a convex objective

function. The first order condition for this problem is:

g̃ =
E

[

∫ τ(ḡ)

0
e−rt |g(t)| dt

∣

∣ g(0) = 0
]

E

[

∫ τ(ḡ)

0
e−rt dt | g(0) = 0

]

We compute the numerator and denominator separately: consider the following functions

computing the corresponding expected discounted values as function of an arbitrary g:

a(g) = E

[

∫ τ(ḡ)

0

e−rt |g(t)| dt
∣

∣ g(0) = g

]

, d(g) = E

[

∫ τ(ḡ)

0

e−rt dt | g(0) = g

]

We are interested in evaluating them at g = 0 to get: g̃ = a(0)/d(0). Analysis of these

functions gives the following characterization of g̃.

Proposition 1. Let g̃ be the optimal decision rule for the prices within a plan given a

barrier ḡ for change of plans. The value of the prices is given by a function ρ of the variable

φ ≡ r ḡ2/σ2, satisfying:

g̃ =
a(0)

d(0)
= ḡ ρ(φ)

The function ρ(·) satisfies:

ρ(φ) =
e
√
2φ − e−

√
2φ − 2

√
2φ√

2φ
(

e
√
2φ + e−

√
2φ − 2

) so that

ρ(0) =
1

3
, ρ′(φ) < 0 , lim

φ→∞
ρ(φ) = 0 and lim

φ→∞
ρ(φ)

√

2φ = 1 .

Thus the ratio g̃/ḡ is equal to 1/3 for small φ ≡ rḡ2/σ2, and an even smaller fraction for
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larger values. Indeed as φ becomes arbitrary large, as implied by very large values ḡ (hence

of the fixed cost ψ), then the g̃/ḡ converges to zero and g̃ converges to σ/
√
2r.

We now turn to the characterization of the optimal decision concerning the width of the

inaction range, ḡ, taking as given g̃. This involves solving the value function explicitly, which

we show is differentiable at g = 0, in spite of the fact that the objective function is not.

The following proposition, together with Proposition 1, shows that indeed the optimal policy

is given by two thresholds g̃, ḡ and gives a complete characterization of the value of these

thresholds.

Proposition 2. The optimal policy of the problem is given by two thresholds ḡ and g̃.

The value of ḡ is the unique solution to the equation:

η2 r
ψ

B
= κ ( ηḡ ) with η =

√

2 r/σ2 , (9)

where the function κ is given by:

κ (x) ≡
[

1− 2 ρ
(

x2/2
)]

[

x2 − 2 x
(ex + e−x − 2)

(ex − e−x)

]

where the function ρ(·) is given in Proposition 1. The function κ is strictly increasing, with

κ(0) = 0, limx→∞ κ(x) = ∞, for small values we have: κ(x) = x4/36 + o(x4), and for large

values κ(x)/x2 → 1 as x→ ∞. The value of g̃ is obtained by g̃ = ḡ ρ (η2 ḡ2/2).

We can use Proposition 2 to compute a simple approximation to the solution ḡ, which is

very accurate for small values of (r2/σ4)ψ/B. Note that this is accurate if either the fixed

cost ψ is small, or if r is small. In this case we can disregard the term of order higher than

x4 and write:

g̃ =
1

3
ḡ and ḡ =

(

18
ψ

B
σ2

)1/4

(10)

Note also that this approximation for ḡ does not invoke r. Indeed differentiating equation (9)

with respect to r one can show that ∂ḡ/∂r = 0 when evaluated at r = 0. It is interesting to
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compare the expression for ḡ in equation (10) with the one that obtains in the standard menu

cost model, which we refer to as the Golosov-Lucas model, or simply GL model for short. In

the GL model g̃ = 0 since each price plan has only one price. The expression for ḡ in such

a model is identical expect that instead of the factor 18 it has a factor 6, or in other words,

it will lead to the same value of ḡ if it had a fixed cost three times higher. This is intuitive:

if the firm had the same fixed cost but it has access to price plans the firm choses to have a

wider band, by a factor of 31/4 or approximately 32% wider than in the case without access to

price plans. Note that otherwise it is the same quartic root expression than in Barro (1972)

or Dixit (1991). Indeed the quartic root is not obvious at all in this context, since the period

objective function is not quadratic -as in these two papers -it is given by (g̃ − |g|)2, which

includes the absolute value.6

2.2 Hazard Rates

In this section we explain how to compute the hazard rates in this model and explain why they

are decreasing. We compute the instantaneous hazard rate of price changes in two versions

of our model. The first version, which is the one developed so far, has price plans that

change when the absolute value of the normalized desired price |g| reaches a critical value,

the threshold that we denote by ḡ. We refer to this version as the menu cost version, and

we denote the hazard rate for a price with duration t > 0 as hMC(t). In Appendix C we also

consider a version of the model where price plans are changed at (exogenous) exponentially

distributed times, in which case we denote the hazard rate for price changes by hexp(t). In

both cases we provide an analytical solution to the hazard rate of price changes. These

analytical expressions depend on only one parameter, namely Np: the expected number of

plan changes per unit of time. In the benchmark price plan model, the expected number

of price plan changes per unit of time has a simple expression Np = ḡ2/σ2, an expression

whose derivation and interpretation we return to in Section 4. In the version where price

6For instance, Dixit (1991) finds that when the period objective function is purely |g| the approximation
for the optimal rule has a cubic root.
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plans are changed at exponentially distributed times, Np is simply the expected number of

price plan changes per unit of time. Both hazard rates are downward slopping, very much so

for low durations, behaving approximately as 1/2t for low t, and they asymptote to different

constants. The asymptote for hMC is a multiple of the number of price plan changes per

year, namely π2/2Np ≈ 5Np. While the asymptote for in the exponential case is simply Np.

Appendix B provides more information and the exact definition of the hazard rates, and on

their analytical characterization. We summarize that analysis in the following proposition:

Proposition 3. The hazard rate hMC for the baseline model with price plans is:

hMC(t) =

∞
∑

m=1,3,5,...

m2Np
π2

2
θ(t,m;Np) where (11)

θ(t,m;Np) ≡
e−tm

2Np
π2

2

∑∞
m′=1,3,5,... e

−t (m′)2Np
π2

2

where for each t > 0, the θ(t, ·;Np) are non-negative and add up to one over m = 1, 3, 5, . . . .

The hazard hMC has the following properties:

h′MC(t) < 0 for t > 0 , lim
t→0

hMC(t) = ∞ , lim
t→0

hMC(t) t =
1

2
, and lim

t→∞
hMC(t) =

π2

2
Np .

For the case with exponentially distributed price plans times we have:

hexp(t) = Np +
1

2 t
for all t > 0 . (12)

Figure 2 plots the two hazard rates. As explained in the proposition the hazard rate

depends on one parameter, the expected number of plan changes, and hence 1/Np is the

expected time between price changes. In the figure we normalize Np to one, so that duration,

i.e. time, on the horizontal axis can be interpreted relative to the average duration of a plan.

As it can be seen they are very similar for short durations, say for durations below 10% of
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Figure 2: The hazard rate of price changes in two models
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the expected duration of a price plan, and very similar to the function 1/2t. They differ in

the level of asymptotic hazard rate, which is reached much sooner for the model with “state

dependent” plans and is reached later for the model with exponential plans.

Next we provide an intuitive explanation of why the hazard rate of price plans are de-

creasing, while in the model without plans they are not. For instance, in the standard Calvo

model of price setting without plans, hazard rates are constant by assumption. Likewise,

hazard rates are increasing in the canonical menu cost model, such as in Golosov and Lucas

(2007), since right after a price change the firm charges the profit maximizing price, so that

the probability to observe a new price change right after an adjustment is near zero. Instead,

in the case of price plans with with two prices, the firm is indifferent between charging p∗i ± g̃

right after a price change. Given that the upper threshold is preferred when g > 0 and the

lower threshold is preferred when g < 0, the fact that g = 0 right after a price change makes

it very likely that its sign with reverse many times, which triggers lots of price changes. We
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can also understand why h(t) ≈ 1/(2t) for small duration t. The reason is that a Brownian

motion has, for a small enough time interval, approximately the same probability of an in-

crease as a decrease, so if g(t) > 0, but g(t) is small, then with probability roughly 1/2 it

returns to zero, and thus the hazard rate is 1/(2t).

3 Cumulative output response to a monetary shock

In this section we analyze the aggregate output’s cumulative impulse response to an un-

expected once and for all monetary shock. We consider an economy whose cross sectional

distribution of normalized desired prices is invariant at the time the monetary shock occurs.

Price gaps. As customary in the literature we find it useful to define the price gap as the

difference between the price charged and the desired price. Denoting price gaps by p̂(t) the

next line gives its definition and notes that price gaps are related to the normalized desired

price g as follows:

p̂(t) ≡ p(t)− p∗(t) = [p∗(τi) + g̃ sgn (g(t))]− [p∗(τi) + g(t)]

= g̃ sgn (g(t))− g(t) , for τi ≤ t < τi+1

where sgn(x) is defined as

sgn(x) =















+1 if x ≥ 0

−1 if x < 0

Prices and Output’s IRF to a monetary shock. We are interested in measuring the

effect of an unexpected once and for all monetary shock of size δ > 0 on output. In particular

we consider the impulse response of output to such a shock, and focus on the area below

such impulse response function as a summary measure. To be precise, we start the economy

at steady state, with zero inflation, and consider the effect of such a shock. We let P(t, δ)
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be the response of the aggregate price level to a monetary shock of size δ after t ≥ 0 units of

time. Using the notation in Alvarez and Lippi (2014) we can denote the IRF of prices t ≥ 0

periods after the shock by:

P(t, δ) = Θ(δ) +

∫ t

0

θ(s, δ)ds (13)

The notation in equation (13) uses that the aggregate price level, just before the shock, is

normalized to zero. So that Θ(δ) is the instantaneous jump in the price level at the time of

the monetary shock and θ(δ, t) is the contribution to the price level at time t.

We consider models where the effect of output is proportional to the difference between

the monetary shock and the price level, i.e. denoting by Y (t, δ) the impulse response of

aggregate output t units of time after the shock of size δ as: Y (t, δ) = (1/ǫ)[δ −P (t, δ)],

where ǫ is an elasticity that translates the increase in real balances (or real wages) into

increases in output. Below we consider the summary measure M(δ), the cumulative impulse

response function:

M (δ) =

∫ ∞

0

Y (t, δ) dt ≡
∫ ∞

0

1

ǫ
[δ −P (t, δ)] dt (14)

Our approach to characterize equation (14) is to compute the corresponding measure for each

firm, and then aggregate over firms using the steady state distribution.

The firm’s expected contribution to cumulative output IRF. As announced, in

what follows we compute m̂(g), the contribution to output of a firm that starts with a

normalized price g until the first plan change. By contribution we refer to the expected

discounted value of the (minus) the price gap defined above. A firm with a high price gap

charges a high price and thus it contributes negatively to output. We stop the computation

once a price plan is changed, because at the beginning of a price plan prices are as likely

to go up as to go down and so their expected contribution to output is zero. We will use

this function to compute the cumulative impulse response of output to a once and for all
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monetary shock by integrating the contribution of each firm m̂(g) over the measure of firms

at the time of the shock f(g). We start by defining m̂(g):

m̂(g) = −E

[
∫ τ

0

p̂(t) dt | g(0) = g

]

(15)

where τ is the stopping time indicating the next change of price plans. Note that by definition

we have

m̂(g) = m(g)− g̃ D(g)

where

m(g) = E

[

∫ τ(ḡ)

0

g(t) dt | g(0) = g

]

D(g) = s(g)− s(−g)

s(g) = E

[

∫ τ(ḡ)

0

1g(t)≥0 dt | g(0) = g

]

The solution for m(g) is found in closed form by noting that m(g) obeys the following

differential equation 0 = −g + σ2

2
m′′(g) with boundary conditions m(0) = 0 and m(ḡ) = 0,

which gives m(g) = −g
(

g2−ḡ2
3σ2

)

.7 The next lemma solves for D(g).

Lemma 2. Given thresholds g̃, ḡ the function D(g) is:

D(g) ≡ s(g)− s(−g) =















g
σ2

[ḡ + g] if g ∈ [−ḡ, 0]

g
σ2

[ḡ − g] if g ∈ [0, ḡ]

Intuitively the function s(g) measures the expected time that the normalized desired price

will be positive g(t) > 0 until the next change of price plan, conditional on the current value

7 We derive a more general version of this solution in Alvarez et al. (2016b) to analyze the model by
Golosov and Lucas and compare it to other models.
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of g. Thus D(g) measures the differential between the time spent with positive g(t) in excess

of the time spent with negative g(t), conditional on the current g.

Output cumulative IRF’s to a monetary shock. We use the function m̂ derived above,

as well as the invariant distribution of normalized desired prices f(g), to compute the cu-

mulative impulse of aggregate output for a once and for all shock to the money supply

of size δ. The invariant density function is easily shown to be a triangular tent, namely

f(g) = (ḡ − |g|)/ḡ2 for g ∈ (−ḡ, ḡ).8 We assume that the economy is in a steady state that

corresponds to zero inflation when the unexpected permanent shock occurs. The shock per-

manently increases money, nominal wages, and aggregate nominal demand by δ log points.

The cumulative response of output, relative to the steady state level, is given by:

M(δ) =

∫ ḡ

−ḡ
m̂ (g + δ) f (g) dg (16)

Note that the shock δ displaces all the normalized desired prices, increasing them by δ. We

use results from Alvarez and Lippi (2014) to justify why the decision rules of the firms (g̃

and ḡ) are kept constant and equal to their steady state values after a small monetary shock

occurs. We have:

M(δ) = M′(0)δ + o(δ) = δ

∫ ḡ

−ḡ
m̂′ (g) f (g) dg

= δ

[
∫ ḡ

−ḡ
m′ (g) f (g) dg − g̃

∫ ḡ

−ḡ
D′ (g) f (g) dg

]

+ o(δ) (17)

since by definition M(0) = 0. We summarize the solution of this integration in the next

lemma, where we use Np = σ2/ḡ2 to denote the expected number of plan changes per period

(see Proposition 6 below for a proof):

Lemma 3. The cumulative output effect after a small monetary shock δ is M(δ) =

8This follows since the invariant density solves the Kolmogorov forward equation: f ′′(g) = 0 which
immediately implies the linearity, with the boundary conditions f(ḡ) = 0.
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δ M′(0) + o(δ) where

M′(0) =
ḡ2

18 σ2
=

1

18Np

(18)

The lemma shows that the cumulated output effect is a decreasing function of the number

of price plan changes per period, Np. This is intuitive: the monetary shock is permanent so

it requires a permanent adjustment of the prices changed by the firms, which can only occur

when the price plan of the firm is changed.

One of the objectives of our analysis is to compare the output effect in equation (18)

with the corresponding effect in a standard GL model with a threshold for price adjustment

equal to ḡ. Notice that the expected number of price changes per period in GL is NGL =

σ2/ḡ2. The cumulative output effect is MGL(δ) =
∫ ḡ

−ḡ m (g + δ) f (g) dg, which is given by

MGL(δ) = δ M′
GL(0) + o(δ) where

M′
GL(0) =

∫ ḡ

−ḡ
m′ (g) f (g) dg =

ḡ2

6 σ2
=

1

6NGL

which is the real cumulative output effect in the GL model, i.e. in a menu cost model without

the price plans.9 The next proposition compares the real cumulative effects in the two models:

Proposition 4. Let Np be the per-period mean number of plan changes and NGL be the

mean number of price changes in the canonical menu cost model without plans. The ratio of

the cumulative output responses in the two models is:

lim
δ↓0

lim
ψ
B
↓0

M(δ)

MGL(δ)
= lim

δ↓0
lim
r↓0

M(δ)

MGL(δ)
=

1

3

NGL

Np
,

lim
δ↓0

∂

∂ ψ
B

M(δ)

MGL(δ)
≥ 0 and lim

δ↓0, ψ
B
↑∞

M(δ)

MGL(δ)
= 1 .

9For more details see our computation in Alvarez et al. (2016b) where the difference in the sign of δ and
g is due to the difference in the interpretation, in particular in Alvarez, Le Bihan and Lippi −g was the price
gap, as opposed to the normalized desired price.
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Figure 3: Accuracy of approximation: Ratio of areas under output’s IRF
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changes is equal to the number of price plan changes in the economy with price plans (i.e. NGL = Np).

The proposition shows that, for small fixed cost ψ/B or small discount factor r, price

plans give up to 3 times more flexibility -and hence three times less effect on output- than

the menu cost model with the same number of regular price changes i.e. assuming NGL = Np

(in Section 4 we discuss other comparisons with different measures of price changes). As the

fixed cost ψ diverges, prices spend more time far away from the desired value, and hence it

is less likely that they cross the threshold for which they move from one value of the price

plan to another. In this sense, a high fixed cost implies that the output effect becomes more

similar between the two models.

While the results of proposition Proposition 4 clarify that price plans deliver more flexi-

bility for small values of ψ/B or of r, we argue that very large values of ψ/B are implausible.

For instance Figure 3 plots the ratio of the areas under the IRF for two economies defined as

in Proposition 4 for different values of the fixed cost ψ in the economy with price plans. The

21



fixed cost ψ is measured as a ratio of the annual profits for a firm in the frictionless case, for

instance the value of 1 indicates that to change the price plan the firm must give the profits

made in one year (!). The interpretation of B, the benefit of adjusting, is the curvature of

the profit function, which in the simple case can be taken to be B = (1/2)η(η − 1), where η

is the elasticity of demand. So a markup of about 15%, or an elasticity of about 7, implies

a value of B ≈ 20. We have chosen a high but reasonable interest rate r = 0.04, since as

r → 0 the ratio converges to 1/3. As can be seen from Figure 3, even for unreasonably

large values of the fixed cost ψ, such as two years of frictionless profits, the ratio of the area

under the output IRFs is smaller than 0.35, as opposed to the limit value of 1/3 obtained in

Proposition 4. Thus we conclude that, for this model we can safely use the approximation

that the ratio M/MGL = 1/3 for the comparison in Proposition 4.

Impact Effect. It is interesting to compare the impact effect in the model with price plans

with the impact effect in the Golosov-Lucas model. As shown in Alvarez and Lippi (2014)

the impact effect on prices, which we denote by Θ(δ), is of second order in δ in the standard

menu cost model. This is because, for a shock δ < ḡ, the mass of firms that change price on

impact is given by δ2/(2 ḡ2). The zero impact effect is a pervasive feature of time-dependent

models almost by definition, since in those settings the firm’s decision to adjust prices does

not depend on the state (i.e. on the value of the price). This feature is likewise widespread in

state-dependent models where the density of the invariant distribution of the firm’s desired

price is zero at the boundaries of the inaction region.10 It is intuitive that a zero density at the

boundaries of the inaction region implies that a small shift of the support of the distribution,

say of size δ, triggers a very small mass of adjustments in canonical menu cost models, since

this mass is roughly given by the product between the (near zero) density at the boundary

and δ. While this basic observation remains true in the model with plans concerning the

mass of firms that adjust their plan, it is not true concerning within-plan price changes. This

10This result can be seen analytically from equations (19) and (20) in Caballero and Engel (2007). See
proposition 1 in Alvarez, Lippi and Passadore (2016a) for analytic results on a large class of models in which
the impact effect is second order.
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is because a shift of the invariant distribution pushes many firms to change the sign of the

normalized desired price, thus triggering a price change. Since the invariant distribution of

desired prices has a high mass at zero, this generates a large impact effect on the aggregate

price level in the model with plans, which we formally analyze next.11

We consider now the impact effect in the model with price plans. On impact there are

two types of price changes, those that come with a change of price plan, and those within the

existing price plans. Those that come from a change in price plans are given by an expression

identical to the one in Golosov and Lucas, and those are of second order. We let Θ̃(δ) denote

the impact effect on prices due to price changes within the existing price plan. The effect is

given by the mass of firms whose negative desired price g < 0 becomes positive following the

shock times the size of their price change 2g̃. Using the form of f(g) we obtain

Θ̃(δ) = g̃

[

1− δ2

2 ḡ2
− (ḡ − δ)2

ḡ2

]

(19)

Note that one can understand this simple expression by computing the fraction of firms with

normalized desired price g that the shock shifts from a negative to a positive desired price.

For a small δ this fraction is f(0) δ. The effect on price of this is 2 g̃ f(0) δ. Thus, we have:

Θ̃(δ) = Θ̃(0) + Θ̃′(0) δ + o(δ) = 2 g̃ f(0) δ + o(δ) = 2
g̃

ḡ
δ + o(δ) . (20)

We highlight that the first equality in equation (20) will hold for other cases, i.e. even if f

is different (see for instance the extension that assumes costly price changes within the plan,

developed in Appendix D). The next proposition summarizes these results (the proof follows

immediately from equation (19) and Proposition 1):

11The non-zero impact effect of the model with plans is a robust feature of models with plans. It also
appears in the version of the model where the times of the plan changes have an exogenous constant hazard
(see Appendix C). Interestingly, it also appears if the within-plan change of prices is subject to a small but
positive menu cost, see Appendix D.
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Proposition 5. Replacing the optimal value of g̃ when r → 0 we obtain:

lim
δ→0

lim
r→0

Θ̃(δ)

δ
= lim

δ→0
lim
ψ
B
→0

Θ̃(δ)

δ
=

2

3

Thus, for either a small discount rate r or a small fixed cost ψ/B, the response of the

aggregate price level on impact is 2/3 of the monetary expansion, very close to the flexible

price, and hence the impact effect on output is Y (0) = (1/ǫ)(1/3)δ.

4 Mapping the frequency of price changes to data

The previous section compared the real effects of a monetary shock between an economy with

price plans and a traditional menu cost economy. The frequency of plan changes Np played

a key role in the analysis. But it is not straightforward to measure Np in the data because

the model with price plans produces two types of price changes: changes within the plan,

i.e. oscillations between pH and pL and changes of the plan. Thus when matching this model

to the data one has to take a stand on how to count the number price changes: all types of

price changes, including short lived temporary oscillations between pH and pL, or only the

“regular” persistent (i.e. plan) changes? Below we formalize this idea and compare the real

effects in the model with plans with those of a menu cost model matched to various notions

of the frequency of price changes. Finally, this section provides some analytic results on the

“prevalence” of reference prices, namely an analysis of how much time the actual prices will

spend at the modal price (defined over a period of length T ). This statistic is of interest

because it has been analyzed empirically both by Eichenbaum et al. (2011) and by Kehoe

and Midrigan (2015).

We start by setting up a discrete time / discrete state representation of the model, for

three reasons. First, in the continuous time version the expected number of price changes

within a price plan diverges to +∞ (see equation (22) below for a proof). Second, the source
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of the empirical study in Eichenbaum et al. (2011) comes from a grocery chain where price

changes are decided (and recorded) weekly. Third, a finite number of total price changes

per period allows us to to compare the effect of introducing price plans into an otherwise

stylized version of the Golosov-Lucas model by keeping the total number of price changes

fixed, this differs from the analysis of Proposition 4 which assumes the two models have the

same number of plan (i.e. low frequency) price changes.

Frequency of price changes in a discrete time version of the model. The discrete

state / discrete time representation has time periods of length ∆ and the normalized desired

price following

g(t+∆)− g(t) =















+
√
∆ σ with probability 1/2

−
√
∆ σ with probability 1/2

(21)

We assume that g reaches ±ḡ after an integer number of periods (or steps), we define this

value as n̄ = ḡ/
[√

∆σ
]

, an integer greater than or equal to 2 (a requirement which allows

us to have price changes within a plan). Let g(t) follow equation (21) for −ḡ < g < ḡ and

let τ(ḡ) be the stopping time denoting the first time at which |g(t)| reaches ḡ.

We define N to be the total number of price changes per unit of time, Np the number of

price plans per unit of time, and Nw the number of price changes per unit of time without a

price plan change, so that N = Nw + Np. The next proposition characterizes the expected

number of plans per unit of time, Np:

Proposition 6. Let ∆ > 0 be the length of the discrete-time period. Assume that

ḡ/(σ
√
∆) is an integer larger than 2. Given the threshold ḡ, the number of plan changes per

unit of time is Np =
σ2

ḡ2
.

It is immediate to realize that Np is independent of ∆ and hence its value coincides with

the number of adjustments of the continuous time model, i.e. the limit for ∆ → 0. We also

notice that Nw depends only on Np and ∆, and no other parameters. This is because the

computation for Nw requires knowing the number of steps n̄ that are necessary to get from

25



g = 0 to |g| = ḡ (at which time the plan is terminated), which is n̄ =
√

Np/∆ as shown in

the proposition. Thus the value of Nw, which in principle depends on ḡ, σ,∆, can be fully

characterized in terms of 2 parameters only: Np and ∆.

We now establish two inequalities bounding Nw as a function of the length of the time

period ∆, and of the number of price plans per unit of time Np. The inequality follows

directly from Doob’s uncrossing inequality applied to our set-up.

Proposition 7. Let ∆ > 0 be the length of the time period, and ḡ be the width of the

inaction band. The expected number of price changes within a plan Nw (per unit of time)

has the following bounds

1
√

∆
Np

+ ∆
2

[

1+
√

∆Np

1−
√

∆Np

] ≤ Nw ≤ 2

√

Np

∆
− Np

2
(22)

Note that both the lower and upper bounds for Nw are increasing in Np and decreasing

in ∆. As ∆ → 0, then Nw → ∞, and indeed Nw behaves as ∆−1/2 for small values of ∆.12

Next we use the lower bound in equation (22) to derive an approximation for N as a

function of ∆ and Np which is accurate for small ∆. To this end we first define the function

N = N (∆, Np) which gives the total number of price changes as function of ∆ and Np. This

implicitly defines the function Np = Np (∆, N). We have the following approximation:

N ≈
√

Np/∆ for small ∆ or formally lim
∆→0

Np(∆, N)

∆N2
= 1 (23)

Figure 4 illustrates the upper and lower bounds using ∆ = 1/52, so that the time period

is a week, and plot the total number of price changes N as a function of the number of price

12 Note also that both bounds for Nw are increasing in Np, at least for small Np. This is because as Np

becomes large, the price gap is reset to values closer to zero more often, which is the time when price changes
without a price plan tend to happen. Finally note that fixing ∆ > 0, and letting Np → 0 then Nw → 0,
and hence N = Np +Nw → 0. Summarizing, letting N ≡ Nw +Np = N (∆, Np) we have N (0, Np) = ∞ for
Np > 0 and N (∆, 0) = 0 for ∆ > 0, with the upper bound and lower bound of N (∆, Np) being increasing in
Np and decreasing in ∆.
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Figure 4: Total number of price changes N as function of Np, for ∆ = 1/52
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plan changes. Indeed we plot the exact number of price changes, via simulation, as well as

the upper and lower bound described above. Note that, as explained above, the total number

of price changes in this discrete version of the model is only a function of Np and ∆.

The previous results provide novel insights on the measurement of flexibility for an actual

economy featuring both temporary and permanent price changes. It is common practice to

measure the flexibility of an economy by the measured frequency of the price changes, at

least since Blinder (1994). Indeed this statistic is central in Klenow and Malin (2010) who

also carefully distinguish between permanent and short-lived price changes. Our theory is

useful to interpret those findings: the result in Lemma 3 establishes that it is the number

of permanent changes Np (i.e. Plan changes) that concur to determine the output effect

of a monetary shock, not the overall number of price changes. Yet another implication of

our theory is novel and interesting to interpret the data: equation (23) shows that, for a

given Np, the total number of price changes depends on the length of the decision period
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∆. This result provides an interpretation for the findings of Sudo et al. (2014) who analyze

the frequency of price changes using a unique daily dataset for selected Japanese restaurants

finding that (i) the frequency of posted prices is about three times as high as the frequency of

US scanner data, and that (ii) regular prices are almost as flexible as those in the U.S.13 Our

theory suggests that the much higher frequency of posted prices reflects the different time

aggregation frequency, and in particular that they should scale approximately with the square

root of the time period. Figure 10 of Sudo et al. (2014) compares the daily, weekly, monthly,

quarterly and annual frequency of price changes computed using their daily scanner prices.

They find that the probabilities of price changes are quite sensitive to the time interval, but

that they vary less than the ratio of the square root of the time interval. For instance from

Figure 10 one can see that the ratio between daily and monthly probability of price changes in

their data set is about 3 times at the start of their sample and even smaller at the end, while
√
30 ≈ 5.5. This observation per se is not informative about the real effects of a monetary

shock: what matters for aggregate flexibility is the number of regular price changes, which

appears similar between these economies.

Fraction of time spent at the reference price. Reference prices are defined as the

modal price during an interval of time, say during [0, T ] a concept introduced by Eichenbaum

et al. (2011). In this section we analyze the “prevalence” of reference prices: the idea is to

highlight that while there are many price changes during a time interval, prices spend a large

fraction of time at the modal value during this interval, i.e. prices are often at the reference

price. The comparison between the large frequency of price changes and the prevalence of

reference prices captures the idea that prices return to the previous values.

To analyze this effect, we compute a statistic that depends on 2 parameters: a time

13Sudo et al. (2014) compute daily probabilities of price changes of about 13%, depending of the type of
good. See their Table 1 where they estimate daily probabilities which they express by linearly extrapolating
them to monthly probabilities of of about 415%, which corresponds to about 50 price changes per year. In
page 245 of Eichenbaum et al. (2011) they report a probability of a price changes corrected for the presence
of measurement error, of 0.29 per week, or about 15 price changes per year. Thus the ratio of 50/15 gives
3.3 more prices changes per year when measured at daily as opposed to weekly frequency.
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interval of length T and a fraction α ∈ [1/2, 1]. The statistic F (T, α) is the fraction of sample

periods of length T in which the firm price spends at least αT time at the modal price. The

parameter T is the time-window chosen by the statistician who measures references prices in

the data, for instance T is a quarter in Eichenbaum et al. (2011). The parameter α defines

what fraction of time prices spend at the modal value in a sample path of length T . We will

show that it is possible to have F (T, α) ≈ 1 even for α close to one, and at the same time

that we have an arbitrarily large number of price changes, N .

Next we formally define reference prices and the statistic F . We fix an interval [0, T ] and

index each price-path in the interval by ω, so the prices for this path are denoted by p(ω, t)

for each t ∈ [0, T ]. We let µT be the measure of these sample paths. We will fix a path ω

and define three concepts. First we define the set of prices observed in a interval of length T

for a given price path ω: P(ω) ≡ {y : y = p(ω, t) for some t ∈ [0, T ]}. Second we define the

modal price in an interval of length T for a given price path ω, or the reference price:

pref(ω) ≡ mode of P(ω)

Third, we define the duration of the reference price as the time spent at the modal price in

[0, T ] for a given sample path ω:

dref(ω) ≡
∫ T

0

1{p(ω,t)=pref (ω)} dt

Finally, the statistic F (T, α) measures the mass of price paths of length T for which the

duration of the reference price is higher than αT :

F (T, α) = µT
(

ω : dref(ω) ≥ α T
)

.

Recall that our model assumes that the (log of the) ideal price follows a random walk. We

will next consider both the continuous time as well as the discrete time version, with a time
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period of length ∆ > 0 and symmetric steps of size ±σ
√
∆, each with probability one half.

In the continuous time case the log of the ideal price follows a standard BM with variance

per period of time σ2, and we denote it as the ∆ = 0 case. We have:

Proposition 8. Fix σ2 > 0 and let ∆ ≥ 0 be the length of the time period, with ∆ = 0

denoting the case of a Brownian motion. Consider an interval length T > 0, a fraction

1/2 ≤ α < 1 and a number 0 < ǫ ≤ 1. Then there exists a threshold value G > 0 such

that for all ḡ ≥ σ G then F (T, α) ≥ 1 − ǫ. The threshold G depends on ǫ, α and T but it is

independent of σ.

In words, the proposition states that for any fraction α ∈ (1/2, 1), it is possible to choose

a value of ḡ large enough so that the price will equal the reference price at least a fraction

1− ǫ of the times “on average”. Recall that in our continuous time model with ḡ large, but

finite, the expected number of price changes per unit of time diverges towards ∞. Thus, our

model can simultaneously have prices spending a large fraction of time at the reference price,

as well as lots of price changes. The extreme results of infinitely many price changes holds

in the continuous time limit, which is a tractable but unrealistic idealization when dealing

with price spells that have very small duration. For this reason we complemented these two

analytical results with the discrete time approximations and with numerical simulations for

a weekly version of the model.

Quantitative Evaluation. Table 1 summarizes the main implications of our model con-

cerning the patterns of price setting behavior. We use a weekly time period (i.e. ∆ = 1/52)

and a range of Np. The statistics in the table depend only on 2 parameters: ∆, which is

fixed at the weekly frequency, and Np, for which we consider 4 values reported in the first

line of the table (one can use equation (10) to map these values to different primitives, e.g.

values of the fixed cost ψ). The table also reports some statistics for the “reference price”,

defined as the modal price in a quarter following Eichenbaum et al. (2011). It appears that

the frequency of plan changes and reference price changes do not coincide but that they are
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Table 1: Summary statistics on price setting behavior (weekly model)

# Plan changes per year (Np) 5.8 3.3 1.4 0.4
# Price changes per year (N = Np +Nw) 20 15 10 5
# Reference Price changes per year∗ 4.1 3.3 2.4 1.2
Prob. of Price changes (per week) 0.35 0.27 0.18 0.10
Prob. of Reference price change (per quarter) 1.0 0.8 0.6 0.29
Fraction of time spent at reference price 0.50 0.63 0.79 0.95
Fraction of time spent below the reference price 0.25 0.17 0.10 0.02

∗ The reference price is defined as the modal price in a quarter. All results refer to a discrete

time model where the time period is one week, i.e. ∆ = 1/52.

quite close and strongly correlated. The entries in the second column are the ones that closely

replicate the frequency of total weekly price changes reported by Eichenbaum et al., with a

total number of about 15 price changes per year.14 In our model (which differs from theirs

because, among others, we focus on unit root shocks), this implies about 3 reference price

changes per year, a value that is above the one of Eichenbaum et al. We use the calibration

to compute a measure of the prevalence of reference prices, i.e. what fraction of the time the

prices spend at the reference price, as well as below it. The second to last row of the table

shows that the stickier the plan (i.e. the smaller Np), the larger the fraction of time that

prices spend at their modal value, consistently with the theoretical result in Proposition 8.

The remaining time is equally split in visits to other prices that are both “above” as well

as “below” the reference price. The calibration in the second column shows that the prices

spend about 63% of the time at their modal value, a statistic that is almost identical to the

one by Eichenbaum et al. and not far from the BLS statistics of Kehoe and Midrigan (2015)

on the prevalence of reference prices which indicate that prices spend about 75% of the time

at the modal price (see their Table 4).15

14They estimate that weekly price changes have a duration of 0.18 quarters of a year, and correcting for
measurement error, a duration of 0.27 quarters.

15We compare our model to the statistics in Eichenbaum et al. (2011) because their data is weekly. Instead
the BLS data used by Kehoe and Midrigan (2015) is monthly, which requires further time aggregation. Also
the value of the period length T to compute the fraction of time at the modal price is different, it is four
times longer in statistics computed by Kehoe and Midrigan relative to those computed by Eichenbaum et al.
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The cumulated real output effects in models with and without plans. In Table 2

we compare the models with and without price plans. Two comparisons are done: the first

one imposes that the two models have the same number of plan changes, the second one

imposes that the two models have the same number of total price changes.

As a benchmark, and for consistency with e.g. Eichenbaum et al. (2011), we use a weekly

model with a total number of about 15 price changes per year. Note that according to

Table 1 this corresponds to a frequency of plan changes, Np, around 3. In Table 2 we refer

to the number of price changes for the model without price plans as NGL, and use Np for

the number of plan changes for the model with price plans. The second row of Table 2

compares the area under the impulse response of a monetary shock for an economy with

price plans and one without price plans, where both economies have the same number of

total price changes N = 15. It appears that the monetary shock has larger real effects in the

economy with price plans. This has a simple explanation: when the two models are rigged

to produce the same total number of price changes, the model with plans has only a small

fraction of adjustments that allow the firm to respond permanently to the aggregate shock.

Instead, every adjustment in the menu cost model is a permanent one. Because of this, the

real effects are larger in the model with plans that are calibrated to the same number of total

price changes.

An analytical approximation allows us to highlight how the total number of price changes

N and the length-of-time period ∆ (which we assumed to be weekly) affect the result in the

second row of the table. The ratio of the area under the output’s IRF is M(δ)
MGL(δ)

=NGL
3Np

, which

can be written in terms of the time period length ∆ and the total number of price changes,

assumed the same in both models: NGL = N for the Golosov-Lucas and N = N (∆, Np) in

the model with plans. Using the approximation in equation (23) we have:

lim
δ→0

M(δ)

MGL(δ)
=
NGL

3Np
=

1

3

N

Np (∆, N)
≈ 1

3

1

N ∆
(24)

Indeed as ∆ → 0 the ratio of the effects diverges towards infinity. To see this notice that using
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Table 2: Comparison of Effects of a Monetary Shock

With Price Plans Without Price Plans Ratio With Price Plans
Without Price Plans

Theoretical Expressions M(δ) ≈ δ
6

1
3Np

MGL(δ) ≈ δ
6

1
NGL

M(δ)
MGL(δ)

= NGL
3Np

Both models have N = 15 M(δ) ≈ δ
6
1
9

MGL(δ) ≈ δ
6

1
15

M(δ)
MGL(δ)

≈ 1.7

(based on ∆ = 1/52) (Np = 3) (NGL = 15)

Both models have Np = 3 M(δ) ≈ δ
6
1
9

MGL(δ) ≈ δ
6
1
3

M(δ)
MGL(δ)

= 1
3

(based on ∆ = 1/52) (N ≈ 15) (NGL = 3)

the lower bound of the number of total price changes we haveN = Np+

(

√

∆
Np

+ ∆
2

[

1+
√

∆Np

1−
√

∆Np

])−1

,

which can be regarded as Np as a function of N and ∆. Note that, keeping N > 0 fixed, as

∆ → 0 then Np → 0. Thus, to match a given number of price changes with a small time

period ∆, the number of plan changes has to be very small, and thus the effect of a monetary

shock becomes arbitrarily large.

Finally, the third row of Table 2 compares the real effects under the assumption that

Np = NGL, i.e. that the number of plan changes is the same as the number of price changes

in the menu cost model. Under this assumption the two setups have the same “low-frequency”

ability to respond to the monetary shock. We see this case as a good approximation to the

practice of “ignoring” temporary price fluctuations (e.g. by focusing on reference prices)

when calibrating menu cost models to the data. The heuristic behind this practice is that

temporary price changes are not counted because they are not seen as a regular form of price

adjustment (e.g. Golosov and Lucas (2007) and Nakamura and Steinsson (2008)). In terms of

the model, this means calibrating the menu cost model and the model with plans to the same

frequency of plan changes, Np. It is apparent though that the model with plans will feature

more price changes per period, due to the presence of the temporary changes. The table

shows that those high frequency price changes provide a significant amount of flexibility to
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respond to the shock in the short run, so that the cumulative output effect under this scenario

is 1/3 of the one in the menu cost model, as was shown in Proposition 4.

4.1 The cyclicality of sales over the business cycle

We conclude by discussing the model’s implications for the cyclicality of sales in an economy

featuring both aggregate productivity and monetary shocks. In the model we analyzed the

temporary price changes matter for the propagation of aggregate prices because of the state

dependence of decision rules. In other theoretical analyses, as in Kehoe and Midrigan (2015),

temporary price changes do not affect the flexibility of the aggregate price level because they

end up not being used to respond to monetary shocks. Analyzing empirically whether firms

use temporary price changes to respond to the aggregate macroeconomic conditions, as in

the recent papers by Kryvtsov and Vincent (2014) and Anderson et al. (2015), is a useful

way to select between alternative models of temporary price changes.

Previous empirical analyses have focused on testing whether the fraction of prices on sale,

taken as a measure of temporary prices, correlate with business cycle indicators.16 In what

follows we want to make a simple observation that will be useful to guide future empirical

analysis, namely that the business cycle correlation with the prevalence of sales depends on

the type of shock that underlies the cycle. To illustrate this point we consider the propagation

of a permanent aggregate productivity shock in the model. We derive a result that relates

the cumulated response of output after a monetary shock to the response after a productivity

shock.

We introduce some notation that helps make the point in a simple and transparent way.

Let δm denote the monetary shock analyzed above and δz denote a permanent innovation to

aggregate productivity. Let Y f
t denote aggregate (log) output (as a deviation from the steady

state level) in the economy without price setting frictions (e.g. where ψ = 0) and Y s
t the

(log) output (as a deviation from the steady state level) in the economy with the menu cost

16 Sudo et al. (2014) argue that the frequency of temporary sales is influenced by macro business cycle.
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friction (the superscripts {f, s} refer to flexible and sticky, respectively). We let Y j
t (δm, δz)

denote output as a function of monetary as productivity shocks, which appear respectively

as the first and second argument, where j = {f, s}. We note that Y f
t (δm, 0) = 0 and that

Y f
t (0, δz) = δz for all t.

17 We have:

Proposition 9. Consider a permanent shock of size δ, either monetary or to productivity.

The following relation holds: Y s
t (δ, 0)− Y f

t (δ, 0) = Y f
t (0, δ)− Y s

t (0, δ), or

Y s
t (δ, 0) = δ − Y s

t (0, δ) (25)

which implies the following equivalence:

L(δ) ≡
∫ ∞

0

(

δ − Y s
t (0, δ)

)

dt = M(δ) (26)

In words, the proposition states that the cumulated output in excess of the steady state

M(δ) that follows a positive monetary shock of size δ is equal to the cumulated output below

steady state that follows a positive productivity shock of the same size, L(δ). Intuitively,

in the presence of stickiness, prices fail to adjust on impact following the reduction in costs

triggered by the productivity shock, thus output remains below the new steady state for some

time. The key implication is that whether the frequency of temporary variation on prices (say

sales) are pro- or countercyclical depends on the nature of shocks. Both a positive monetary

shock as well as a positive productivity shock increase output above its steady state level.

But the implications for the prevalence of sales are opposite: after a positive monetary shock

the desired prices of all firms increase, which increases the firm’s incentives to charge higher

prices so that sales are countercyclical. For positive productivity shocks, instead, the desired

prices of all firms go down so that sales are procyclical.

17See the online appendix B of Alvarez and Lippi (2014) for a formal derivation of those results.
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5 Scope of results, robustness and extensions

This paper showed that the introduction of a 2-price plan in a standard menu cost envi-

ronment generates a persistent reference price level and short lived deviations from it, as

seen in many datasets, as well as decreasing hazard rate for price changes. We also showed

that the temporary price changes substantially increase the flexibility of the aggregate price

level. In this concluding section we discuss three substantive extensions that are useful to

clarify which results are robust to changes in the modeling environment and which ones are

not. The extensions, whose analytical details and formal propositions are given in dedicated

appendices, are of intrinsic interest and also allow us to clarify the origin of the differences

between our contribution and some important related papers in the literature. In short, we

find that the emergence of a persistent reference price level and a downward sloping hazard

rate are robust features, i.e. they are found in a large class of sticky price models. Likewise,

the finding that price plans deliver a significant amount of additional flexibility is a robust

feature emerging from several different models. Other features of our results are less robust,

in particular the exact distribution of the size and timing of price changes depends on the

details of the specific model that is used.

Price plans a la Calvo. Appendix C analyzes the consequences of introducing price

plans P ≡ {pH , pL} in a setting where the adjustment times for the plan are exogenous and

follow the standard Calvo model in which the probability of adjusting the plan has a constant

hazard rate. The model retains tractability and we can derive the optimal prices within the

plan and analytically characterize the hazard rate of price changes, which is also decreasing

as for the model in the main text.18 There are three main differences of the “Calvo” version

of the model compared to the version in the main body of the paper. The first difference is

that the ratio of the area under the output impulse response of output of an economy with

price plans and one without, but with the same number of price plans, is 1/2 instead of 1/3

18In the Calvo version of the model the hazard rate function is simply h(t) = 1/(2t) + λ, where λ is the
Poisson arrival rate of a price plan change.
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as in the model in the body of the paper. The second difference is that the Calvo version

of the model produces a hump shaped response of output to monetary shocks, as we briefly

explain below. The third difference is that the Calvo model shows that some implications

of the model in the main body of the paper for the size and the duration of price changes,

measured at and just prior to a plan change, are not a robust feature of this class of models.

The hump shaped response of output to a monetary shock in the Calvo version of the

model is due to its higher price flexibility on impact. In turn, this added flexibility comes

because the mass of firms that are ready to switch from a “low” to a “high” price is higher

with a Calvo plan, and thus the model produces full price flexibility on impact, i.e. that the

price level increases by the full amount of the monetary shock in the moment that it occurs.

This response is partially reversed in later periods, so that the impulse response function of

output is hump shaped, a remarkable feature of this very simple model displayed in Figure 5.

Figure 5: Output impulse response in model with exponential adjustments
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Note: Response to a 1 percent δ = 0.01 monetary shock. Parameters are σ = 0.20, λ =
2, r = 0. The number of plan adjustment per period equal the number of price adjustments
in Calvo: Np = N = λ.

The behavior of the size and duration of price changes prior (and at) the time of a plan

change differ in the two versions of the price plan model. In the benchmark version of the

model in the main body of the paper, since a price plan ends when the normalized desired
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price is large, the duration of a price spell immediately before a plan change cannot be very

small. In words, just before a change of the plan, there cannot be many temporary price

changes. Related to this feature, the size of a price change that coincides with a plan change

should be large. Both implications come from the fact that in the model in the body of

the paper price plans are changed when the (absolute value of the) normalized desired price

reaches a threshold ḡ. In principle, one may try to devise a test of these implications, by

identifying the times at which price plans have occurred. Yet these implications are not

central to models with price plans and temporary price changes, instead they come from

the particular mechanism assumed to change price plans, namely by paying a fixed cost. If

Instead price plans are changed at exponentially distributed time, i.e. a la Calvo, there are

no implications of the typical length of price changes before a price change, and price changes

can be small even if they coincide with a plan change.

Costly price changes within the plan. Appendix D discusses a modified model which

assumes that price changes within the plan are not free, although they are cheaper than

changes of the plan. This extension is useful to understand the differences with the model

of Kehoe and Midrigan (2015) who allow for costly temporary price changes that automat-

ically revert to the baseline price after one period. The main finding of this extension is a

“continuity property” of our main result, namely that the model with price plans continues

to feature a lot of additional price flexibility even if the price changes (within the plan) are

not free.19 Of course for the price plan to deliver a significant amount of additional flexibility

the cost of price changes within the plan must be small, an assumption that is consistent

with the large number of temporary price changes in the data. This extension highlights the

important role of the assumption of the automatic-price reversion in the model of Kehoe and

Midrigan: under this assumption it becomes very costly for the firm to use the temporary

price change to track the permanent monetary shock, since this implies paying the temporary

19This result, formally given in Proposition 13 extends the result of Proposition 5. The economics is that
even in the presence of a small adjustment cost within the plan there is a non-negligible mass of firms in the
neighborhood of the price-adjustment threshold (within a plan).
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cost several times (to offset the automatic reversal).

Transitory cost shocks . Appendix E changes the baseline model by considering innova-

tions to the firm’s desired price that are iid (temporary) rather than permanent. Temporary

shocks are useful to relate to the model by Eichenbaum et al. (2011). The results show

that, even in this case, the presence of price plans significantly increases the flexibility of the

economy. The cumulated output effect in the economy with the plans is much smaller than

in the corresponding menu cost economy, as was the case for the economies with permanent

shocks considered in the main text.
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A Proofs

Proof. (of Proposition 1). The functions a(g) and d(g) are the solution to the following
o.d.e.’s and boundary conditions:

r a(g) = |g(t)|+ σ2

2
a′′(g) for all g ∈ [−ḡ, ḡ] , g 6= 0

a(−ḡ) = a(ḡ) = 0 and a′(0) = 0

r d(g) = 1 +
σ2

2
d′(g) for all g ∈ [−ḡ, ḡ]

d(−ḡ) = d(ḡ) = 0 .

First we develop the expressions for a. The function a must be symmetric around g = 0
so that a(g) = a(−g) for all g ∈ [0, ḡ], thus:

a(g) =

{

+g/r + A1 e
√

2r/σ2 g + A2 e
−
√

2r/σ2 g if g ∈ [0, ḡ]

−g/r + A2 e
√

2r/σ2 g + A1 e
−
√

2r/σ2 g if g ∈ [−ḡ, 0]

We have the following three boundary conditions:

1 = r (A2 − A1)
√

2r/σ2

0 = ḡ + r A1 e
√

2r/σ2 ḡ + r A2 e
−
√

2r/σ2 ḡ

Hence

−ḡ − e−
√

2r/σ2 ḡ

√

2r/σ2
= r A1

(

e
√

2r/σ2 ḡ + e−
√

2r/σ2 ḡ
)

r (A1 + A2) =
1

√

2r/σ2
+ 2rA1 =

1
√

2r/σ2
− 2

ḡ + e−
√

2r/σ2 ḡ√
2r/σ2

e
√

2r/σ2 ḡ + e−
√

2r/σ2 ḡ

1



since we are interested in:

r a(0) = r (A1 + A2) = ḡ







1
√

2r/σ2 ḡ
− 2

1 + e−
√

2r/σ2 ḡ√
2r/σ2ḡ

e
√

2r/σ2 ḡ + e−
√

2r/σ2 ḡ







For d we have, as shown in Alvarez et al. (2016b) that:

r d(0) =
e
√

2r/σ2 ḡ + e−
√

2r/σ2 ḡ − 2

e
√

2r/σ2ḡ + e−
√

2r/σ2ḡ

We can write:

r a(0) = ḡ
e
√
2φ − e−

√
2φ − 2

√
2φ√

2φ
(

e
√
2φ + e−

√
2φ
)

r d(0) =
e
√
2φ + e−

√
2φ − 2

e
√
2φ + e−

√
2φ

Thus

g̃ =
r a(0)

r d(0)
= ḡ ρ(φ) = ḡ

e
√
2φ − e−

√
2φ − 2

√
2φ√

2φ
(

e
√
2φ + e−

√
2φ − 2

)

The properties of ρ follows directly from this expression. The limit as φ → 0 follows by
letting x =

√
2φ into the expression for g̃/ḡ and expanding the exponentials, canceling to

obtain:

g̃

ḡ
=

ex − e−x − 2x

x [ex + e−x − 2]
=

2(x+ x3/3! + x5/5! + · · · )− 2x

x [2(1 + x2/2 + x4/4! + · · · )− 2]

=
2(x3/3! + x5/5! + · · · )
x [2(x2/2 + x4/4! + · · · )] =

x3(2/3!) + x5(2/5!) + x7(2/7!) + · · ·
x3(2/2!) + x5(2/4!) + x7(2/6!) + · · ·

=
(2/3!) + x2(2/5!) + x4(2/7!) + · · ·
(2/2!) + x2(2/4!) + x4(2/6!) + · · ·

Taking the limit x→ 0 we obtain g̃/ḡ = (2/3!)/(2/2!) = 1/3. That ρ is decreasing it follows
by inspection of the previous expression since each of the coefficients of x is smaller in the
numerator. That the limit as φ → 0 of ρ(φ)

√
2φ → 1 follows immediately since φ > 0. This

also implies that ρ→ 0 as φ→ ∞. �

Proof. (of Proposition 2). We first establish an intermediate result in the following lemma.

Lemma 4. Let g̃ ≥ 0 be an arbitrary width for the reset prices. We derive an equation
solving for the optimal inaction threshold ḡ, where we write the width of the price threshold
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as g̃ = γ ḡ for a constant 0 ≤ γ. The optimal inaction threshold ḡ must solve:

η2r
ψ

B
= ϕ (x ; γ) with x ≡ η ḡ , and ϕ (x ; γ) ≡ (1− 2 γ)

(

x2 − 2 x
[ex + e−x − 2]

[ex − e−x]

)

(27)

The function ϕ(x; γ) is: i) strictly increasing in x ≥ 0 for each 0 ≤ γ < 1/2, ii) strictly
decreasing in γ for each x > 0, and iii) for 0 ≤ γ < 1/2, then limx→∞ ϕ(x; γ)/x2 = 1, and
limx→0 ϕ(x; γ)/ (x

4/12) = 1 .

Using Lemma 4 we obtain the function κ by simply replacing ρ into ϕ and using that
x2/2 ≡ (ηḡ)2/2 = r ḡ2/σ2 ≡ φ, where φ is defined in Proposition 1. Since ϕ(x, γ) is increasing
in x and decreasing in γ, and since ρ is decreasing in γ, then κ is strictly increasing in x.
Since ρ′(0) is finite, then we can just substitute the limit value of ρ(0) = 1/3 and obtain
κ(x) = (1 − 2/3)x4/12 + o(x4) = x4/36 + o(x4). For large x we established that ρ(x) → 0
and hence limx→∞ κ(x)/x2 = limx→∞ ϕ(x)/x2 = 1. �

Proof. (of Lemma 4). The solution of the value function in inaction is given by the sum of
a particular solution and the solution to the homogenous function. The particular solution
vp(g) is:

vp(g) =
B

r

[

g2 + g̃2 − 2|g|g̃ + σ2

r

]

and the homogenous solutions vf(g), for g > 0 is:

vf(g) = A1 e
η1 g + A2 e

η2 g where ηi = ±
√

2 r/σ2 (28)

Thus the solution of v is:

v(g; g̃) =



























(B/r)g2 − (B 2 g̃/r) g + (B/r)
[

g̃2 + σ2

r

]

+A1 e
√

2 r/σ2 g + A2 e
−
√

2 r/σ2 g for all g ∈ (0, ḡ]

(B/r)g2 + (B 2 g̃/r) g + (B/r)
[

g̃2 + σ2

r

]

+A2 e
√

2 r/σ2 g + A1 e
−
√

2 r/σ2 g for all g ∈ [−ḡ, 0)

(29)

Value matching and smooth pasting are:

A1 + A2 + ψ = (B/r)ḡ2 − (B 2 g̃/r) ḡ + A1 e
√

2 r/σ2 ḡ + A2 e
−
√

2 r/σ2 ḡ (30)

0 = 2(B/r)ḡ − (B 2 g̃/r) +
√

2 r/σ2
[

A1 e
√

2 r/σ2 ḡ −A2 e
−
√

2 r/σ2 ḡ
]

(31)

If v is differentiable at g = 0, then equation (8) implies:

√

2 (r/σ2) [A1 − A2 ] = B 2 (g̃/r) (32)

3



For r > 0 we can rewrite this system as:

a1 + a2 + r
ψ

B
= (ḡ − 2 g̃) ḡ + a1 e

η ḡ + a2 e
−η ḡ (33)

0 = 2 (ḡ − g̃) + η
[

a1 e
η ḡ − a2 e

−η ḡ] (34)

a1 − a2 = 2 g̃/η (35)

Solving for a1 and replacing it we get:

r
ψ

B
= (ḡ − 2 g̃) ḡ + a2

(

eη ḡ + e−η ḡ − 2
)

+ 2 g̃

(

eη ḡ − 1

η

)

0 = 2 (ḡ − g̃) + η a2
[

eη ḡ − e−η ḡ
]

+ 2 g̃ eη ḡ or

a2 = −2
ḡ + g̃ (eη ḡ − 1)

η [eη ḡ − e−η ḡ]

Solving for ḡ we get

r
ψ

B
= (ḡ − 2g̃) ḡ + 2g̃

(

eηḡ − 1

η

)

− [eηḡ + e−ηḡ − 2]

(eηḡ − e−ηḡ)
2

[

ḡ

η
+ g̃

(

eηḡ − 1

η

)]

(36)

Thus we can define

η2r
ψ

B
= ϕ (x; γ) with x ≡ η ḡ , g̃ ≡ γ ḡ and φ(·) defined as

ϕ (x; γ) ≡ x (x− 2 γ x) + 2 γ x (ex − 1)− 2
[ex + e−x − 2]

[ex − e−x]
(x+ γ x (ex − 1))

or equivalently

ϕ (x; γ) ≡ x (x− 2 γ x) + 2 γ x (ex − 1)− 2
[ex + e−x − 2]

[ex − e−x]
(x+ γ x (ex − 1)) (37)

We can rewrite this expression as follows. Collecting the first two terms we have:

x (x− 2 γ x) = x2 (1− 2 γ)

4



and that collecting the remaining terms we have:

2 γ x (ex − 1)

[

1− ex + e−x − 2

ex − e−x

]

− 2

[

ex + e−x − 2

ex − e−x

]

x

2 γ x (ex − 1)

[

ex − e−x − ex − e−x + 2

ex − e−x

]

− 2

[

ex + e−x − 2

ex − e−x

]

x

2 γ x (ex − 1)

[−2e−x + 2

ex − e−x

]

− 2

[

ex + e−x − 2

ex − e−x

]

x

= 2 γ x 2
(ex − 1)(1− e−x)

ex − e−x
− 2

[

ex + e−x − 2

ex − e−x

]

x

= 2 γ x 2

[

ex + e−x − 2

ex − e−x

]

− 2

[

ex + e−x − 2

ex − e−x

]

x

= (2 γ − 1) x 2

[

ex + e−x − 2

ex − e−x

]

Thus we can write:

ϕ (x; γ) ≡ (1− 2 γ)

(

x2 − 2
[ex + e−x − 2]

[ex − e−x]
x

)

To see that ϕ is increasing in x note that:

∂ϕ (x; γ)

∂x
≡ (1− 2 γ)

(

2
[ex + e−x − 2]

[ex − e−x]

)(

x
[ex + e−x]

[ex − e−x]
− 1

)

≥ 0

since

2
[ex + e−x − 2]

[ex − e−x]
= 2

(ex − 1) (1− e−x)

[ex − e−x]
≥ 0 and

x
[ex + e−x]

[ex − e−x]
=
x+ x3/2! + x5/4! + x7/6! + · · ·
x+ x3/3! + x5/5! + x7/7! + · · · ≥ 1

To see that limx→∞ ϕ (x; γ) = ∞ note that:

lim
x→∞

ϕ (x; γ)

x
= lim

x→∞
x− 2 lim

x→∞

[ex + e−x − 2]

[ex − e−x]
= ∞− 2 = ∞ .

and thus:

lim
x→∞

ϕ (x; γ)

x2
= 1

5



Finally to obtain the expansion for small x we write:

ϕ (x; γ)

(1− 2γ)
= x2 − 2

[ex + e−x − 2]

[ex − e−x]
x = x2

(

1− 2
1

x

[

x2/2 + x4/4! + · · ·
x+ x3/3! + x5/5! + · · ·

])

= x2
(

1− x2 + x4(2/4!) + x6(2/6!) + · · ·
x2 + x4/3! + x6/5! + · · ·

)

= x2
(

x4/3! + x6/5! + · · · − x4(2/4!)− x6(2/6!) + · · ·
x2 + x4/3! + x6/5! + · · ·

)

= x2
(

x4(1/3!− 2/4!) + x6(1/5!− 2/6!) + · · ·
x2 + x4/3! + x6/5! + · · ·

)

= x2
(

x2(1/3!− 2/4!) + x4(1/5!− 2/6!) + · · ·
1 + x2/3! + x4/5! + · · ·

)

= x4
1

12
+ o(x4)

�

Proof. (of Lemma 2 )By symmetry we have:

E

[

∫ τ(ḡ)

0

1g(t)<0 dt | g(0) = g

]

= s(−g)

So

D(g) = s(g)− s(−g) = E

[

∫ τ(ḡ)

0

1g(t)≥0 dt | g(0) = g

]

− E

[

∫ τ(ḡ)

0

1g(t)<0 dt | g(0) = g

]

For s we have:

0 = 1 +
σ2

2
s′′(g) for g ∈ [0, ḡ]

0 =
σ2

2
s′′(g) for g ∈ [−ḡ, 0)

s(ḡ) = s(−ḡ) = 0

lim
g↑0

s(g) = lim
g↓0

s(g)

lim
g↑0

s′(g) = lim
g↓0

s′(g)

Note that the ode is different for negative and positive values of g since in the negative values
1g(t)≥0 = 0. The boundary conditions may require some explanation. That s(ḡ) = s(−ḡ) = 0
follows because when |g(t)| = ḡ the barrier is reached, so t = τ(ḡ). The continuity of s and
its derivative at g = 0 follow because the brownian regularizes the discontinuous function
1g≥0. Thus the function is linear for negative values and quadratic for positive values with

6



coefficients a0, a1, q0, q1 to be determined by the four boundary conditions

s(g) =

{

a0 + a1g if g ∈ [−ḡ, 0]
q0 + q1g − 1

σ2
g2 if g ∈ [ḡ, 0]

The conditions are :

0 = a0 − a1ḡ

0 = q0 + q1ḡ −
1

σ2

(

ḡ2
)

a0 = q0

a1 = q1

the solution is thus:

s(g) =

{

ḡ2

2σ2
+ ḡ g

2σ2
if g ∈ [−ḡ, 0]

ḡ2

2σ2
+ ḡ g

2σ2
− 1

σ2
g2 if g ∈ [0, ḡ]

This gives the desired result. �

Proof. (of Proposition 4) We have

M′(0) =
ḡ2

6 σ2
− 2 g̃

∫ ḡ

0

D′ (g) f (g) dg

=
ḡ2

6 σ2
− 2 g̃

σ2ḡ

∫ ḡ

0

[ḡ − 2g]

[

1− g

ḡ

]

dg

=
ḡ2

6 σ2
− 2 g̃

σ2ḡ

ḡ2

6
=

ḡ2

6 σ2

[

1− 2 g̃

ḡ

]

where we use that f(g) is symmetric and D(g) is negative symmetric around g = 0. Based
on this we can compare the cumulative response the cumulative impulse response into the
fraction of the corresponding menu cost economy:

lim
δ↓0

MGL(δ)

M(δ)
=

M′
GL(0)

M′(0)
=

1

1− 2 g̃
ḡ

The previous expression takes a given the location of the threshold g̃. Next we evaluate this
expression for the optimal value the the threshold. Using Proposition 1 considering the limit
of small discount factor or fixed cost , and given that ρ = g̃/ḡ → 1/3 as r ↓ 0 or ψ/B → 0.
Using Proposition 2 we know that ḡ is increasing in ψ/B, and using Proposition 1 we have
that ρ is decreasing in ḡ, which establish the inequality as well at the limit as ψ/B → ∞.
This gives the desired result. �

Proof. (of Proposition 6) Let T (g) be the expected time until the next change of price plan,
i.e. until |gn| reaches ḡ. We can index the state by i = 0,±1, ...,±n̄. We have the discrete
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time version of the Kolmogorov backward equation:

Ti = ∆ +
1

2
[Ti+1 + Ti−1] for all i = 0,±1,±2, ...,±(n̄− 1) .

and at the boundaries we have Tn̄ = T−n̄ = 0. We use a guess a verify strategy, guessing a
solution of the form:

Ti = a0 + a2 i
2 for all i = 0,±1,±2, ...,±n̄ .

for some constants a0, a2. Inserting this into the KBE we obtain

a0 + a2 i
2 = ∆ +

1

2

[

a0 + a2 (i+ 1)2 + a0 + a2 (i− 1)2
]

for all i = 0,±1,±2, ...,±(n̄− 1) .

so that a2 = −∆. Using this value, into the equation for the boundary condition, we get:

a0 −∆(n̄)2 = 0 , =⇒ a0 = ∆(n̄)2 .

and since n̄
√
∆ σ = ḡ and T0 = a0 we have:

T0 = a0 = ∆(n̄)2 = ∆

(

ḡ√
∆σ

)2

=
( ḡ

σ

)2

=
1

Np

�

Proof. (of Proposition 7) We now derive formally the expression that give the inequalities
described in equation (22). The proof focus on the case n̄ ≥ 2 (see the discussion following
equation (21)), which is equivalent to Np∆ ≤ 1/4. We first obtain an upper bound on the
number of price changes within a price plans. We first state the 2 parts of the inequality in
two lemmas, and then prove each of them.

Lemma 5. Let ∆ > 0 be the length of the time period, and ḡ be the width of the inaction
band. Let nw be the expected number of price changes during a price plan. We have:

nw ≤ 2√
∆

1
√

Np

− 1

2
(38)

Hence the total number of price changes per unit of time within price plans, denoted by Nw,
and equal to nwNp, satisfies:

Nw ≤ 2

√

Np

∆
− Np

2

where Np = σ2/ḡ2 and ḡ/(σ
√
∆) = 1/

√

Np∆ is an integer larger than 2.

It is straightforward to obtain an upper bound on expected number of all price changes
N = Np +Nw. We obtain:

N = Nw +Np ≤ 2

√

Np

∆
+
Np

2

8



Next we obtain a lower bound on the number of price changes within a plan.

Lemma 6. The expected number of price changes per unit of time within a plan Nw has
the following lower bound:

Nw ≥ 1
√

∆
Np

+ ∆
2

[

1+
√

∆Np

1−
√

∆Np

] ,

where Np = σ2/ḡ2 and ḡ/(σ
√
∆) = 1/

√

Np∆ is an integer larger than 2.

Proof. (of Lemma 5) We first start with a lemma that relates the expected number of
up-crossings within a plan and the expected number of plans.

Lemma 7. In the discrete-time discrete-state model we have: nw = 2E [U(τ)] − 1
2
.

Proof of Lemma 7. We relate the price changes within a price plan to the number of
up-crossing, U(τ), and number of down-crossings, D(τ), between g = 0 and g =

√
∆ σ. We

assume that the optimal policy within a plan that has just started at g(0) = 0 has a price
g̃ > 0 if g ≥

√
∆ σ and price −g̃ < 0 if g ≤ 0. We focus on upcrossing where g goes from

g(t) = 0 to g(t + ∆) =
√
∆ σ, so there is a price increase. For a down crossing, g(t) goes

from g(t) =
√
∆ σ to g(t + ∆) = 0, so there is price decrease. We will denote by U(τ) the

number of up-crossings, and D(τ) the number of down-crossings at the time where the price
plan ends. Notice that in any path from g(0) = 0 to g(τ) = +ḡ there are U(τ) = D(τ) + 1
up-crossings, while in any path where g(τ) = −ḡ there are U(τ) = D(τ) up-crossings. Since
the number of price changes is the sum of up-crossings plus down-crossings, and since the
price plan is as likely to end with g(τ) = ḡ as well as with g(τ) = −ḡ, thus

Pr {U(τ)−D(τ) = 1} = Pr {U(τ)−D(τ) = 0} =
1

2
.

and hence: nw = 2E [U(τ)] − 1
2
. This finishes the proof of the lemma.

We now return to the proof of Lemma 5 and use Doob’s inequality for the expected
number of up-crossings obtaining:

(b− a)E [U(τ)] ≤ sup
t=0,∆,2∆,...

(a + E [ |g(t)| ])

so that using the values a = 0, b =
√
∆ σ and that E [ |g(t)| ] ≤ ḡ we have

E [U(τ)] ≤ ḡ√
∆ σ

Hence:

nw = 2E [U(τ)] − 1

2
≤ 2

ḡ√
∆ σ

− 1

2
=

2√
∆

1
√

Np

− 1

2
. �

Proof. (of Lemma 6) The proof proceeds in several steps. First we define a stopping time
that counts consecutive price changes, the first an increase of size 2g̃ and the second a decrease
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of 2g̃, starting from a normalized desired price g = 0 and ending in the same value g = 0.
Call this event a cycle. Because of the Markovian nature of g and because it starts and ends
at the same value then consecutive cycles are independent so that the expected number of
cycles is, by the fundamental law of renewal theory, the inverse of the expected duration
of such a cycle. We know that by construction each cycle has 2 price changes of the same
absolute value, 2g̃. Second we decompose this into two events, whose expected values we
compute separately. Third we use the fundamental theorem of renewal theory to compute
the expected number of price changes per unit of time which do not involve a change in price
plan. We use the following normalization for price changes within a plan:

p(t) =

{

p∗(t) + g̃ if g(t) > 0

p∗(t)− g̃ if g(t) ≤ 0
(39)

Note that the normalization consists on charging p(t) = p∗(t) − g̃ when g(t) = 0. The
normalization affects the definition below, but not the final result.

1. Define the stopping times τu and τd as:

τu = min
{

t : p(t)− p(t−∆) = +2 g̃ , g(t) =
√
∆σ , g(0) = 0 , t = ∆, 2∆, ...

}

(40)

τd = min
{

t : p(t)− p(t−∆) = −2 g̃ , g(t) = 0 , g(0) =
√
∆σ , t = ∆, 2∆, ...

}

(41)

In words τu is the time elapsed until the first price increase starting from a state where
g = 0, i.e. at the beginning of a price plan. Instead τd is the time elapsed until the
first price decrease starting from the state where g = σ

√
∆, i.e. after a price increase

has just occurred. Note that at τd the state is the same as in the beginning of a price
plan. The expected value of τu + τd gives the expected value of a cycle of at least one
price increase followed by a price decrease, within a price plan. In this cycle the initial
state is equal to the final one, namely g = 0. Notice that in each cycle there are at least
two price changes, one (or more) increases and one (or more) decreases. There could
be more than two price changes because in each τu there could be price decreases and
during each τd there can be price increases caused by changes of the plan.

2. We compute the expected value of τu and τd separately.

(a) We discuss how to compute E[τu]. For this quantity we use the operator T u, for
which T u(0) = E[τu]. The operator T u is the expected first time for which g goes
from 0 to

√
∆ σ, which coincides with a price increase, conditional on g(0) = 0.

Note that there may be none or several plan changes before this event occurs. The
function Tu solves:

T u(i) = ∆ +
1

2
[T u(i− 1) + T u(i+ 1)] for i = −1,−2, ...,−n̄ + 1

which is a version of the backward Kolmogorov equation, and the boundary condi-
tions: T u(−n̄) = T u(0), because when the price plan ends it is restarted at g = 0,
or index i = 0, and T u(0) = ∆ + (1/2)T u(−1), because at g =

√
∆σ, which is
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index i = 1 there is a price increase, and we stop counting time. We show that
T u(i) = a + b i + c i2. First, the Kolmogorov Backward equation implies that
c = −∆. We use this into the two boundary conditions. The boundary condition
T u(−n̄) = T u(0) gives a = a + bn̄ − ∆(n̄)2 = 0 or b = −∆(n̄). The boundary
condition at i = 0 gives a = ∆+ (1/2)[a− b−∆], or a+ b = ∆. These equations
imply that T u(0) = a = ∆− b = ∆(1 + n̄).

(b) Now we discuss how to compute E[τd]. For this quantity we use the operator
T d, for which T d(1) = E[τd]. The operator T d is the expected time for which
g goes from

√
∆ σ to 0, which coincides with a price decrease, conditional on

g(0) =
√
∆ σ. Note that there may be none or several price plan changes before

this event occurs, as well as none, one, or more price increases. The function T d

solves:

T d(i) = ∆ +
1

2

[

T d(i− 1) + T d(i+ 1)
]

for i = 1, 2, ..., n̄− 1

which is a version of the backward Kolmogorov equation, and the boundary con-
ditions. At the top we have T d(n̄) = T u(0) + T d(1), since at this point there
is a price plan change which returns the process to g = 0 and thus there must
be an increase in prices within a plan before we can have a decrease. The other
boundary condition is T d(1) = ∆ + (1/2)T d(2) which uses the fact that a price
decrease within a price plan must occur when g =

√
∆σ which correspond to the

i = 1 index. In this event we stop counting time. We try a solution of the type
T d(i) = α + β i+ γ i2. Using the Kolmogorov Backward equation we obtain that
γ = −∆. Using the boundary condition at the top, as well as the solution for
T u(0), we obtain:

α + βn̄−∆n̄2 = ∆(1 + n̄) + α + β −∆

This implies that β = ∆(n̄2 + 1)/(n̄− 1). The other boundary gives:

α + β −∆ = ∆+ (1/2) [α + β2−∆4]

or α = (1/2)α which implies α = 0. Hence we have

T d(1) = β −∆ = ∆(n̄2 + 1− n̄ + 1)/(n̄− 1) = ∆n̄ +∆
2

n̄− 1

3. Now we use the previous result to obtain the desired expression for Nw. First note that

T u(0) + T d(1) = E[τu] + E[τd] = 2∆n̄ +∆
2 + n̄− 1

n̄− 1
= 2∆n̄+∆

1 + n̄

n̄− 1

Because the cycles start and end at g = 0 and consecutive cycles are independent, we
can use the Fundamental theorem of renewal theory. Hence the expected number of
cycles per unit of time is 1/(E[τu] + E[τd]). Also recall that in each cycle there are
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at least two price changes, hence the expected number of price changes Nw per unit of
time is at least two times the (reciprocal of) expected duration of the cycle, i.e.:

Nw ≥ 2

2∆n̄+∆1+n̄
n̄−1

=
1

∆n̄+∆ 1+n̄
2(n̄−1)

.

Using
√
∆ σ n̄ = ḡ and n̄ =

√

1/(∆Np) we can write

Nw ≥
(
√

∆

Np

+
∆

2

[

1 +
√

1/(∆Np)
√

1/(∆Np)− 1

])−1

.

�

Proof. (of Proposition 8) The proof proceed by first defining a subset of the path at which
the price spent at least αT of the time at the reference price. This will give a lower bound
for F . The advantage is that this lower bound is easier to compute. Then we will show the
proposition for the lower bound.

We first consider the most delicate case, i.e the continuous time case with ∆ = 0. We
note that, without loss of generality given the symmetry in the model, we will consider that
at the beginning [0, T ] the normalized desired price g(0) is positive. Using the invariant
distribution for the normalized desired prices, and conditioning that g = g(0) > 0 we have
that it has density f(g) = 2/ḡ − 2g/ḡ2. Fixing g = g(0) > 0 we can consider the path of
price that will follow during [0, T ]. If 0 < g(ω, t) < ḡ for all 0 < t < αT then the price will
remain at p(ω, t) = p∗−(ω) + g̃ where p∗−(ω) is the ideal price at the start of the current price
plan corresponding to this price path. Thus if α > 1/2 the reference price in this path is
p∗−(ω) + g̃. If otherwise for g(ω, t) = 0 or g(ω, t) = ḡ at some 0 < t < αT , then the reference
price may be a different number. If g reaches the upper bound there will be a new price plan.
If g reaches zero then there will be a price change within the plan. Notice that in either of
these two events it is possible that p∗−(ω) will still be the reference price (depending of what
happens subsequently), we will ignore this possibility so that we obtain a lower bound on F .
We denote our lower bound as F̃ (T, α) which is given by:

F (T, α) ≥ F̃ (T, α) ≡
∫ ḡ

0

Pr
{

0 < B(t) <
ḡ

σ
for all t ∈ [0, αT ] |B(0) =

g

σ

}

f(g) dg

where B is a standard Brownian motion (BM). We compute the lower bound for the proba-
bility of a BM not hitting a barrier as follows. First we denote this probability as:

Q
(

αT,
ḡ

σ

∣

∣

∣

g

σ

)

≡ Pr
{

0 < B(t) <
ḡ

σ
for all t ∈ [0, αT ] |B(0) =

g

σ

}

so we can write:

F̃ (T, α) =

∫ ḡ

0

Q
(

αT,
ḡ

σ

∣

∣

∣

g

σ

)

f(g) dg

12



We break the interval [0, ḡ] in three parts. Let n ≥ 2 be an integer and let a = 1
n
ḡ
σ
so that:

Q
(

αT,
ḡ

σ

∣

∣

∣

g

σ

)

≥















0 if g
σ
∈ [0 , a)

Q
(

αT, 2 a
∣

∣

∣
a
)

if g
σ
∈ [a , a(n− 1)]

0 if g
σ
∈ (a(n− 1) , a n]

where the inequality for the middle range follows immediately by the assumption that ḡ/σ =
na for n ≥ 2. The density for the first hitting time of either of two barriers for a BM, from
which we can obtain Q, is as follows:

Q
(

αT, n a
∣

∣

∣
a
)

=
2π

a2n2

∞
∑

j=0

(2j + 1) (−1)j cos

[

π(2j + 1)
(n− 2)

2n

]
∫ ∞

αT

exp

(

−(2j + 1)2 π2 t

2n2a2

)

dt

=

∞
∑

j=0

(−1)j cos

[

π(2j + 1)
(n− 2)

2n

]

4

(2j + 1) π
exp

(

−(2j + 1)2 π2 αT

2n2a2

)

and for n = 2 we get:

Q
(

αT, 2 a
∣

∣

∣
a
)

=
2π

a24

∞
∑

j=0

(2j + 1) (−1)j
∫ ∞

αT

exp

(

−(2j + 1)2 π2 t

8a2

)

dt

=
∞
∑

j=0

(−1)j
4

(2j + 1) π
exp

(

−
(

(2j + 1) π

2

)2
αT

2a2

)

Clearly Q
(

αT, 2 a
∣

∣

∣
a
)

is increasing in a, since for larger a the BM starts further away from

the two barriers. Using the Gregory-Leibniz’s formula for π, for any αT > 0 we have:

lim
a→∞

Q
(

αT, 2 a
∣

∣

∣
a
)

=

∞
∑

j=0

(−1)j
4

(2j + 1) π
= 1

Thus, for any δ > 0 we can find an Aδ such that Q
(

αT, 2 a
∣

∣

∣
a
)

≥ 1− δ for a > Aδ.

We also have:
∫ a

0

f(g)dg +

∫ na

(n−1)a

f(g)dg =
2

n

Thus

F̃ (T, α) ≥
[

1− 2

n

]

Q
(

αT, 2 a
∣

∣

∣
a
)

≥
[

1− 2

n

]

(1− δ) ≥ 1− ǫ

Hence setting n and a large enough we show the desired result. In particular set n and δ to
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satisfy

n

n− 2
<

1

1− ǫ
and 0 < δ < 1− n

n− 2
(1− ǫ)

and let G to be higher than G ≥ nAδ.
Now we briefly comment on the differences with the discrete time model with period

length ∆ > 0. The summary is that steps of the proof are identical. There are only two
minor differences. One is that the invariant distribution of g takes a discrete number of values,
but it is also triangular, so the calculations that involve f are virtually identical. The second

difference is that probability Q
(

αT, 2 a
∣

∣

∣
a
)

does not take the expression we used above.

Nevertheless, it is easy to see that for any ∆ > 0 one can in fact chose a large enough so that

Q
(

αT, 2 a
∣

∣

∣
a
)

= 0. For instance, if a/
(

σ
√
∆
)

> Tα/∆ or equivalently if a ≥ T ασ/
√
∆

thenQ
(

αT, 2 a
∣

∣

∣
a
)

= 0 since it will take at least a/
(

σ
√
∆
)

consecutive ups (or downs) to hit

either of the barriers. Thus in the discrete time case with length ∆ we can take n > 2/ǫ (using

the expression derived from the continuous case) and G/σ ≥ nT α/
√
∆ ≥ 2 T α/

(√
∆ ǫ
)

. �

B Derivation of Hazard Rates

We compute the instantaneous hazard rate of price changes in two versions of our model. The
first version has price plans that change when the (absolute value of the) normalized desired
price |g| reaches a critical value, a threshold that we denote by ḡ. We refer to this version
as the menu cost version. We also consider another version where price plans are changed
at exponentially distributed plans. In both cases we provide an analytical solution to the
hazard rate of price changes. These analytical expressions depends on only one parameter,
namely Np: the expected number of price plans changes per unit of time. Both hazard rates
are downward slopping, very much so for low durations (behaving approximately at 1/2t),
and they asymptote to different constants.

Hazard rate when price plans changes subject to menu cost. To describe the hazard
rate in this case we discuss the mathematical objects we use to define them and compute
them. These results comes from the analysis in Alvarez et al. (2015b), which themselves
borrow some results from Kolkiewicz (2002). In our model a price change occurs when either
a new price plan is in place or when within the same price plan prices are changed. In either
case, at the instant right before price change takes place, the value of the desired normalized
price satisfies g = 0. Thus, we compute the hazard rate for the following objects. We take
g(0) = ǫ, with 0 < ǫ < ḡ and consider the following three stopping times:

τ̃ (ǫ) = inf
t
{σW (t) ≤ 0 | σW (0) = ǫ} (42)

τ̄ (ǫ) = inf
t
{σW (t) ≥ ḡ | σW (0) = ǫ} (43)

τ(ǫ) = min {τ̄ (ǫ) , τ̃ (ǫ)} (44)
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where W is a standard Brownian notion, so that we can use the desired normalized price
until a price plan as g(t) = σW (t). The stopping time τ̃ gives the first time that the desired
normalized price g reaches back to 0, and hence the price changes, in logs, by 2 g̃. Instead
τ̄ gives the firms that the desired normalized price g reaches the upper barrier ḡ, and hence
there is a new price plan, which new price. Thus, a price changes occurs, the first time that
either event takes place, which is denoted by the stopping time τ . Note that in all cases we
started with a normalized desired price equal to ǫ. Since right after price change g = 0, we
will compute the limit of these stopping times as ǫ→ 0. We require g(0) = ǫ to be small but
strictly positive, because if we set g(0) exactly equal to zero, then the distribution of τ is
degenerate, i.e. τ̃ = 0 with probability one.20 A convenient expressions for the distribution
of τ̄(ǫ) and τ̃(ǫ) can be found in Kolkiewicz (2002) expressions (15) and (16). In Alvarez et
al. (2015b), we derive the hazard rates, and compute the limit as ǫ → 0. Letting h(t) the
hazard rate of price changes, and adapting the expression in Alvarez et al. (2015b) we obtain
equation (11) in Proposition 3.

Hazard rate when price plans have exponentially distributed durations Again a
price change occurs when either a new price plan is in place or within the same price plan. In
this version we simply assume that price plans are changed at durations that are exponentially
distributed, and independent of the normalized desired price g. This exponential distribution
is assumed to have expected duration denoted by 1/Np, so Np is the expected number of price
plans per unit of time. Price changes within a plan are given by the stopping time as τ̂ , define
in equation (43). The price changes that occur within a price plan are described by the same
(limit of) the stopping time τ̃ define above. Thus the stopping time for price changes is given
by:

τ(ǫ) = min {τ̂ , τ̃ (ǫ)} (45)

where W is g(t) are defined as above. Since τ̂ and τ̃(ǫ) are independent, then the hazard
rate is simple the sum of the two hazard rates. The hazard rate corresponding to τ̂ is simply
Np. The hazard rate corresponding to τ̃ can be computed as the hazard rate corresponding
to the first time that a BM (with zero and volatility σ) and that starts at ǫ > 0 and reaches
0. This stopping time is distributed according to the stable Levy law with density and CDF
equal to21:

f(t; ǫ) =
ǫ

σ
√
2 π t3

e−
ǫ2

2 t σ2

F (t; ǫ) = 1− 2√
π

∫

√

ǫ2

2 t σ2

0

e−z
2

dz .

20Give the symmetry of the problem we could have defined ǫ < 0 and concentrate on the fist time that it
comes back to zero, or it reaches −ḡ. Clearly we obtain the same stopping times.

21See Alvarez et al. (2015a) for a derivation for the case of a BM with drift.
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Defining the hazard rate in terms of f and F , and taking ǫ to zero we obtain:

h̃(t) ≡ lim
ǫ→0

f(t; ǫ)

1− F (t; ǫ)
= lim

ǫ→0

ǫ

σ
√
2 π t3

e−
ǫ2

2 t σ2

2√
π

∫

√

ǫ2

2 t σ2

0 e−z2 dz

=

1

σ
√
2π t3

2√
π

√

1
2 t σ2

=
1

2 t
,

where we use L’Hopital rule to evaluate the limit. Thus we have equation (12) in Proposi-
tion 3.

We briefly comment on the nature the limit hazard rates displayed in equation (11) and
equation (12). We note that in continuous time both cases hMC and hExp are not hazard
rates that corresponds to a proper survivor function. The survivor function that correspond
to ǫ = 0 has S(0) = 1 and S(t) = 0 for all t > 0. The hazard rates in equation (11) and
equation (12) are the limits of the approximation as ǫ → 0, so they should be regarded
as approximations that are accurate for very small ǫ, or alternatively, as the hazard rates
conditional on surviving a very small duration.22

B.1 A remark on the size of Price changes.

We conclude with a remark on the size of price changes in the model with plans. The
distribution of price changes takes four values, as opposed with the two values of the standard
GL model. We denote a price change at time t as ∆p(t). Price changes happen either within
a plan, when g crosses zero, or when there is a change of plans. A price change within a
plan is given by ∆p(t) = ±2 g̃ since the price changes from the top (bottom) to the bottom
(top) of the barriers. This price change happens at times τi < t < τi+1 whenever g(t) hits
zero. In particular if g crosses zero from above, then ∆p(t) = −2 g̃ and it if crosses from
below ∆p(t) = +2 g̃. Price changes also occur at the time of a plan change, when |g(τi)| = ḡ.
Immediately after the plan change g is reset to zero, and the firm is indifferent to start the
new plan with either the high or the low price. We follow the convention of resetting the price
(under the new plan) so that |∆p(τi)| = ḡ. This means that if a firm was charging the “high”
price in the old plan, it will initiate the new plan by charging the (new) high price. We stress
that this convention does not affect the propagation of monetary shocks since prices within
the new plan reverse very frequently at the beginning of the plan and end up being at the
“high” price exactly half of the times, irrespectively of whether they were started from the
high or the low value within the plan.23

C Plans with exponentially distributed duration

In this section we consider an alternative model to the menu cost model. Specifically, we
assume that the duration of the price plans is exogenous and has a constant hazard rate λ,

22The derivation in Alvarez et al. (2015a) takes the second limit, i.e. the hazard rates conditional on a
strictly positive duration.

23 For this reason we we could have followed the convention of resetting the price at the opposite barrier
(which will make the price change smaller). In this case we will get: ∆p(τi) = (p∗(τi)− g̃)− (p∗(τi−1) + g̃) =
ḡ − 2 g̃. A similar argument shows that ∆p(τi) = −ḡ or ∆p(τi) = −ḡ + 2 g̃ if the price changes was triggered
when g(τi) = −ḡ. The only consequences of this convention concern the size-distribution of the price changes.
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so that the duration of a plan is exponentially distributed. This version model corresponds
to the well known Calvo (1983) pricing, if the price plan is a singleton. Thus this section
can also be viewed as introducing price plans, or menu of prices, into the Calvo price setting.
The reason for exploring this case is the pervasive use of the Calvo pricing in the sticky price
literature. First we discuss the optimal value for g̃. Then we characterize output’s cumulative
IRF to a monetary shock.

Optimal threshold g̃. The determination of the optimal threshold g̃ follows exactly the
same logic as in the case where the firm must pay a fixed cost, and thus price plans has
duration given by the first time a top or bottom thresholds ḡ or −ḡ is hit. Instead in this
case the stopping time is given by an exponentially distributed random variable, independent
of g. Using the same first order condition as in Section 2.1.

Proposition 10. The optimal threshold for the exponentially distributed price plan is:

g̃ =
σ

√

2 (r + λ)
(46)

The result in equation (46) is intuitive: the threshold is increasing in σ since for higher
values of it the deviations will be larger to each side. It is decreasing in r + λ because this
decreases the duration of the price plan, hence it is more likely that gaps will be smaller.
Note also that it is the same as the limit obtained in Proposition 2 as ḡ → ∞.

The firm’s contribution to the IRF. The logic of the firm’s contribution to the cumu-
lative output response after a shock is the same as in the benchmark case discussed in the
main text, so that the price gap is p̂(t) ≡ p(t)−p∗(t) = g̃ sgn (g(t))−g(t) for τi ≤ t < τi+1 as
in Section 3. The difference concerns the stopping time that determines the change of plan,
so the definition of m̂ is the same as in equation (15). In this set-up the we have that s(g) is:

s(g) = E

[
∫ τ

0

1g(t)≥0 dt | g(0) = g

]

=

∫ ∞

0

e−λ t E
[

1g(t)≥0| g(0) = g
]

dt (47)

where we use that e−λ t is the probability that the price plan survived at time t, and
E
[

1g(t)≥0| g(0) = g
]

is the fraction of paths that at t have positive g(t), conditional on
g(0) = g. The following lemma gives an expression for s:

Lemma 8. The derivative of D(g) = s(g)− s(−g), where s is equation (47) is given by:

D′(g) =
2

σ

e−
g
√

2λ
σ√
2 λ

(48)

The invariant distribution of the normalized desired prices is described by the density

17



f(g) which is a Laplace distribution, i.e.:

f (g) =

√
2 λ /σ

2
e−

√
2 λ/σ |g| for all g .24 (49)

Notice that the definition of the cumulative real output effect in equation (16) is, again
except for the specification of τ , the same. Likewise, equation (17) also holds. Simple
computations than leads to

Lemma 9. With exponentially distributed revisions of plan the cumulative output effect
after a small monetary shock δ is M(δ) = δ M′(0) + o(δ) where

M′(0) =
1

2 λ
=

1

2Np

(50)

For comparison with the well known Calvo pricing with NC = λ price adjustments per
period we define MC(δ) =

∫ ḡ

−ḡ m (g + δ) f (g) dg as the cumulative impulse response where

f(g) is the same exponential density defined above.25 Simple analysis along the lines followed
above reveals that the cumulative real effect of a small monetary shock in the Calvo model
are given by:

MC(δ) = δ
1

λ
+ o(δ) ≈ δ

1

NC

Proposition 11. Assume plans are adjusted at the exogenous constant rate λ. Let Np = λ
be the mean number of plan changes per period. Let NC denote the mean number of price
changes per period in a Calvo model without plans. The ratio of the cumulative output
responses in the two models is:

lim
δ↓0,r↓0

M(δ)

MC(δ)
=

NC

2 Np

(51)

The proposition shows that, as was observed for the menu cost model, the introduction
of the plans introduces a flexibility that reduces the real effects of monetary shocks assuming
the number of plan changes is the same across models, i.e. Np = NC .

Table 3 provides a summary of the effects of introducing price plans in the various mod-
els where the notation there uses Np the number of plans and N for the total number of
price changes in the model without plans. The cumulative output response in a model with
exponentially distributed plan’s adjustments is 1/2 of the effect in the corresponding Calvo

24This is easily seen by noticing that the invariant density solves the Kolmogorov forward equation:

λ f (g) = σ2

2
f ′′ (g) and also that

∫

∞

0
f(g)dg = 1/2.

25As noted above, the price gap in the Calvo model is p̂ = −g. Since the density f is symmetric around
zero this is also the density of price gaps.
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Table 3: Synopsis of theoretical effect of price-plans across models: M′(0)

“Menu cost model” “Calvo model”
Without Price Plans With Price Plans Without Price Plans With Price Plans

1
6 N

1
18 Np

1
N

1
2 Np

Note: N denotes the total number of price changes, Np denotes the total number of plan changes.

model, as it appears comparing the expressions in the third and fourth panels of the table
with N = Np. This result is to be compared with the one in Proposition 4 where, for small
r the ratio was 1/3.26

Figure 5 reports the impulse response (numerically computed) to a 1 percent monetary
shock (δ = 0.01). The exercise assumes that the number of plan adjustment per period equals
the number of price adjustments in the Calvo model (without plans): Np = N = λ. The
figure confirms that area under the IRF in Calvo is twice the area in the model with plans.
Interestingly the figure shows that the introduction of plans gives rise to a hump-shaped
profile of the output response: output does not respond on impact because the model with
plans has a large impact effect of the monetary shock. This is very different from the model
without plans and it is due to the fact that in the model with plans there is a mass point
of firms responding on impact to the shock, as was also shown for the menu cost model in
Section 3, whereas in the model with plans the max of firms responding on impact is typically
negligible.

Impact effect It is immediate to see that, as was the case for the menu cost model, the
introduction of the plans leads to a non-negligible mass of adjustments on impact when
the shock occurs. This happens because the monetary shock δ shifts the distribution of
the normalized desired prices f(g) given in equation (49) and a mass of agents

∫ δ

0
f(g) dg

switches from negative to positive values of g, therefore switching from the low to the high
price within the price plan, i.e. each firm increases its price by 2g̃. The next proposition
summarizes this result

Proposition 12. The impact effect of a monetary shock δ on the aggregate price level is:

lim
r→0

Θ̃(δ) = lim
r→0

g̃

∫ δ

0

f(g) dg = δ lim
r→0

√

λ

λ+ r
= δ .

The proof follows immediately by using the density in equation (49) and the expression

for g̃ in equation (46). This result shows that the impact effect that results from the firm
adjustments on impact yields an immediate jump of the price level of the same size of the

26 The table also shows that for models without price plans, the area under the output’s IRF in the menu
cost model is 1/6 of the area in a Calvo model, a result first proved by Alvarez et al. (2016b). For models
with price plans, the table shows that ratio of the cumulated real effects is even smaller: the real effects of
the menu cost model with plans is 1/9 of the real effect of a Calvo model with plans.
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monetary shock, so that output does not change at all on impact, as seen in the impulse
response of Figure 5.

C.1 Proofs for the model with “Calvo” plans

Proof. (of Proposition 10)

g̃ =
E
[∫ τ

0
e−rt |g(t)| dt

∣

∣ g(0) = 0
]

E
[∫ τ

0
e−rt dt

∣

∣ g(0) = 0
]

=

∫∞
0
λ e−(r+λ)t

E
[

|g(t)| dt
∣

∣ g(0) = 0
]

dt
∫∞
0
λ e−(r+λ)t dt

=

∫∞
0
e−(r+λ)t σ

√

t 2/π dt
∫∞
0
e−(r+λ)t dt

=

∫ ∞

0

(r + λ) e−(r+λ)t σ
√

2 t/π dt =

∫ ∞

0

(r + λ) e−(r+λ)t σ
√

2 t /π dt

=
σ

√

2 (r + λ)

where we use that g(t) is, conditional on g(0) = 0, normally distributed with mean 0 and vari-
ance σ2 t, and hence E

[

|g(t)| dt
∣

∣ g(0) = 0
]

= σ
√

2 t/π. The last line follows by performing
the integration. �
Proof. (of Lemma 8 ) Since g(t) in normally distributed with mean g and variance σ2 t, so
denoting by Φ the CDF of a standard normal, we can write

s(g) =

∫ ∞

0

e−λ t
[

1− Φ

( −g
σ
√
t

)]

dt , and s(−g) =
∫ ∞

0

e−λ t
[

1− Φ

(

g

σ
√
t

)]

dt .

Thus we have:

s′(g) =

∫ ∞

0

e−λ t√
σ2 t

φ

( −g
σ
√
t

)

dt , and s′(−g) = −
∫ ∞

0

e−λ t√
σ2 t

φ

(

g

σ
√
t

)

dt

D′(g) = s′(g) + s′(−g) = 2

∫ ∞

0

e−λ t e
− 1

2

(

g

σ
√
t

)2

√
2 π σ2 t

dt

Note we can write:

e
−λ t− 1

2

(

g

σ
√
t

)2

= e−
g2+2σ2λt2

2σ2 t = e−
g
√

2λ
σ e−

g2+2σ2λt2−2g σ
√

2λ t

2σ2 t = e−
g
√

2λ
σ e−

(g−σ
√
2λ t)2

2σ2 t

= e−
g
√

2λ
σ e

− (1−
√

2λ t(σ/g))2

2 (σ/g)2 t
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Hence we can write:

D′(g) = 2 e−
g
√

2λ
σ

∫ ∞

0

e
− (1−

√
2λ t(σ/g))2

2 (σ/g)2 t

√
2 π σ2 t

dt

= 2
e−

g
√

2λ
σ

g

∫ ∞

0

e
− (1−

√
2λ t(σ/g))2

2 (σ/g)2 t

√

2 π (σ/g)2 t
dt = 2

e−
g
√

2λ
σ

g

∫ ∞

0

e
− (1−

√
2λ t(σ/g))2

2 (σ/g)2 t

√

2 π (σ/g)2 t3
t dt

Using that the last term is the expected value of an inverse gaussian so that

∫ ∞

0

e
− (1−

√
2λ t(σ/g))2

2 (σ/g)2 t

√

2 π (σ/g)2 t3
t dt =

g/σ√
2 λ

we have:

D′(g) = 2
e−

g
√

2λ
σ

g

(g/σ)√
2 λ

=
2

σ

e−
g
√

2λ
σ√
2 λ

�

Proof. (of Proposition 11) Differentiating the definition of M we have:

M′(0) =
1

λ
− 2 g̃

∫ ∞

0

D′ (g) f (g) dg =
1

λ
− 2 g̃

∫ ∞

0

2

σ

e−
g
√
2 λ
σ√
2 λ

√
2 λ /σ

2
e−

√
2λ/σ g dg

=
1

λ
− 2

g̃

σ2

∫ ∞

0

e−
g
√
2 λ
σ e−

√
2λ/σ g dg =

1

λ
− 2

g̃

σ2

∫ ∞

0

e−
g 2

√
2λ

σ dg

=
1

λ
− 2

g̃

σ2

1
2
√
2λ
σ

=
1

λ
− 2

g̃

σ2

σ

2
√
2 λ

=
1

λ
− g̃

σ
√
2 λ

Replacing the optimal value of g̃:

M′(0) =
1

λ
− σ

σ
√

2 (r + λ)
√
2 λ

Considering the case when r ↓ 0:

M′(0) =
1

λ
− 1

2λ

Using that MC(δ) = δ
(

1− e−λ t
)

,

lim
δ↓0,r↓0

MC(δ)

M(δ)
=

1/λ
1
λ
− 1

2λ

= 2. �
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D Costly adjustments within plan

This appendix generalizes the model of the paper by assuming that prices changes within
the plan, i.e. changes back and forth between the low and the high price within the plan,
are also costly. In particular we assume the firm must pay a menu cost ν to change the price
within the plan, and a larger menu cost ψ to change the plan.

Let ν > 0 be the cost for a price change within the plan −g̃ ⇄ +g̃. Our baseline
model assumes that ν = 0. This modified problem gives rise to 2 value functions vh(·), vl(·);
symmetric : vh(g) = vl(−g), since the value of a given normalized price g depends on the
price currently charged, i.e. ±g̃.

In such a setting the optimal policy is given by 3 thresholds: −g ≤ 0 ≤ g̃ < ḡ, such that
the profit maximizing firm sets the price g̃ as long as g ∈ (−g, ḡ) and −g̃ for g ∈ (−ḡ, g). We
have that g̃, ḡ and value functions vh(·), vl(·) solve for all g:

r vh(g) ≤ B (g − g̃)2 +
σ2

2
v′′h(g)

r vl(g) ≤ B (g + g̃)2 +
σ2

2
v′′l (g)

with equality if inaction is optimal, and

vh(g) ≤ ν + vl(g) and vl(g) ≤ ν + vh(g; g̃)

vh(g) ≤ ψ + vh(0) and vl(g) ≤ ψ + vl(0; g̃)

if either changing from high to low price (or vice-versa) or if changing the plan is optimal.
Thus at least one of this inequality must hold with equality at each g.

Solving the problem requires solving a system of 5 equations in 5 unknowns: g, g̃, ḡ and
the 2 parameters of the second order ODE for the bellman equation. The five equations are
given by:

2 value matching at g and ḡ : vh(−g) = ν + vl(−g) , vh(ḡ) = ψ + vh(0)

smooth pasting at g : v′h(−g) = v′l(−g) = −v′h(g) by symmetry

smooth pasting at ḡ : v′h(ḡ) = 0 and the optimal return v′h(g̃) = 0 .

This system can be solved numerically to deliver the three optimal thresholds −g ≤ 0 <
g̃ < ḡ. The classic menu cost problem with one price is obtained when ν = ψ so that
g̃ = 0, ḡ > 0 and g = ḡ. The price plan model discussed in the paper has ψ > 0 and ν = 0
so that g̃ > 0, ḡ > 0 and g = 0.

Next, for given thresholds, we compute the density of the price gaps f(g) as well as
the density of high prices p̃, which we denote by ff (g), and the density of low prices −p̃,
which we denote by fl(g). The density f(g) is the usu The Kolmogorov forward equation
0 = f ′′(g)σ2/2, which implies a linear density function, and the boundary conditions f(ḡ) =
f(−ḡ) = 0 (due to the fact that these are exit points and no mass can be accumulated here)
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Figure 6: Density function for high and low prices when ν > 0
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imply that the density f(g) is

f(g) =

{

ḡ+g
ḡ2

for g ∈ [−ḡ, 0]
ḡ−g
ḡ2

for g ∈ [0, ḡ]
(52)

Notice that the densities fh(g), fl(g) follow the same Kolmogorov equation, hence they
are linear, but they have different boundaries. In particular we have that the density fh(g)
is continuous in (−ḡ, ḡ), the density is zero between [−ḡ,−g), it is upward sloping between
−(g, 0), it is upward sloping between (0, g), and it coincides with f(g) between (g, ḡ). Using
linearity and the boundary conditions fh(−g) = 0, fh(0) = f(0)/2 and fh(g) = f(g) yields
the following density for high prices

fh(g) =



























0 for g ∈ [−ḡ,−g)
1
2ḡ

+ 1
2ḡg

g for g ∈ [−g, 0)
1
2ḡ

+
(

1
2ḡg

− 1
ḡ2

)

g for g ∈ [0, g)

1
ḡ
− 1

ḡ2
g for g ∈ [g, ḡ]

(53)

The density for low prices fl(g) is the symmetric counterpart of fh(g), in particular we
have that fl(−g) = fh(g). Figure 6 plots the two densities as an illustration of for the case
in which ν > 0 so the price gaps in the interval (−g, g) are associated with both high and
low prices.

Next we use the solution in equation (53) to discuss the impact effect of a monetary
shock. The next proposition shows that the impact effect is still approximately the same
than the impact effect in a model where ν = 0, i.e. that the shock δ has a first order effect
on the aggregate price level, provided the fixed cost ν is small enough. More formally, the
proposition states that the impact effect is continuous in ν, so that for small values of ν,
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which are necessary to get many temporary price changes as in the data, the impact effect
is close to the impact of a model where ν = 0:

Proposition 13. Continuity of the impact effect on g. Fix a 0 < δ < ḡ and ǫ > 0. Then

there exist a G(ǫ, δ) such that for all 0 < g < G(ǫ, δ) the impact effect |Θ̃(δ; g)− Θ̃(δ; 0)| < ǫ.

Note that the optimal threshold g → 0 as the fixed cost ν → 0, so that the impact effect
can be made arbitrarily close to the impact discussed in Proposition 5 in the main text.

E Price plans with iid shocks

The models above assumed that the dynamics of the desired price followed a random walk,
i.e. that innovations were permanent. While this extreme assumption is useful for analytical
reasons, some previous quantitative analyses such as Eichenbaum et al. (2011) focused on
models where shocks are temporary rather than permanent. We consider the case of iid
shocks as a useful case to contrast with the case of permanent shocks discussed in the main
text.

Assume the desired price x is drawn from a normal distribution with cdf F (x) with zero
mean (a normalization). The value function for a firm with price p before the price is drawn
is

v(p) =

∫

x

min

{

B(p− x)2 + βv(p) , ψ +min
p̂

(

B(p̂− x)2 + βv(p̂)
)

}

dF (x) (54)

with the inaction region x, x̄ is a pair of barriers (for each p) defined by

B(p− x)2 + βv(p) = ψ +min
p̂
B(p̂− x)2 + βv(p̂)

and
B(p− x̄)2 + βv(p) = ψ +min

p̂
B(p̂− x̄)2 + βv(p̂)

such that for every p the inaction range is x(p) < x < x̄(p) it is optimal to keep the price
unchanged.

Upon adjustment, i.e. when for a given p we have x /∈ (x(p), x̄(p)) then we have the
optimal return point p̂(x) that satisfies

2B(p̂− x) + βv′(p̂) = 0 or p̂ = x− βv′(p̂)

2B
(55)

Notice that the optimal return point depends only on x (i.e. conditional on adjusting it is
independent of the state p).

Inaction region. Define p̄ as the value of p > 0 above which the value function is flat, i.e.
it has a zero derivative, formally v′(p) = 0 for all |x| > p̄. Notice that under this assumption
if p < p̄ and x ≥ p̄ then the new price is p̂(x) = x since v′(x) = 0.
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Formally p̄ solves

v(p̄) =

∫

x

min

{

B(p̄− x)2 + βv(p̄) , ψ +min
p̂

(

B(p̂− x)2 + βv(p̂)
)

}

dF (x)

If the state happens to be at p > p̄ (as after a large shock) the price will be adjusted if
the new price is sufficiently away from it. Otherwise it is left unchanged. The inaction region
at p̄ is g, ḡ, where these values solve the following:

for p̄ < x < p̄+ ḡ we have inaction, where Bḡ2+βv(p̄) = ψ+βv(p̄+ ḡ) =⇒ ḡ =
√

ψ/B

for p̄−g < x < p̄ we have inaction, where Bg2+βv(p̄) = ψ+min
p̂

(

B(p̂− p̄+ g)2 + βv(p̂)
)

E.1 Introducing price plans

As before assume the desired price x is drawn from a normal distribution with cdf F (x)
with zero mean (a normalization). The firm now chooses a plan, namely a pair of prices
P ≡ {pL, pH}. Changing the plan involves a menu cost ψ, but price changes within the plan
(from one price to the other) are free. The value function for a firm with price plan P before
the price is drawn is

v(pL, pH) =

∫

x

min

{

min
pj∈P

[

B(pj − x)2 + βv(pL, pH)
]

, ψ + min
{p′L,p′H}

(

B(p̂− x)2 + βv(p′L, p
′
H)
)

}

dF (x)

(56)
A new plan involves choosing 2 prices. We can think of one price as the optimal response

to this period shock (which is expected to last only one period). The other price will be used
to hedge against future expected shocks. Thus if one of the two prices is positive, the other
one will be negative (remember that the distribution of desired prices is symmetric around
zero).

The following symmetry properties are useful to speed up the computation:

v(pL, pH) = v(pH , pL) symmetry around the 45% line

v(pL, pH) = v(−pL,−pH) symmetry around the -45% line .

Figure 7 summarizes the results on the reponse to a once and for all permanent monetary
shock. The analysis, developed using numerical methods, compares an standard menu cost
economy to one with an optimal plan with 2 prices. Both economies are calibrated such that
the number of plan changes equals the number of price changes in the menu cost economy.
The results show that the presence of price plans significantly increases the flexibility of the
economy. The left panel of the figure shows that this flexibility occurs because of an extensive
margin: firms with the plan are much more likely to change prices after the aggregate shock.
The right panel of the figure shows that this produces a much more transient output response
to the monetary shock and hence a much smaller cumulated output, as was the case for the
economies with permanent shocks considered in the main text.
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Figure 7: Comparison of IRF in the economy with iid shocks
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Note: The simulation compares two economies, with and without price plans. Both economies are calibrated
to have the same number of plan changes per quarter (for the economy without plans every price change is
a plan change).
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