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a b s t r a c t

Factor models, all particular cases of the Generalized Dynamic Factor Model (GDFM) introduced in
Forni et al., (2000), have become extremely popular in the theory and practice of large panels of time
series data. The asymptotic properties (consistency and rates) of the corresponding estimators have been
studied in Forni et al. (2004). Those estimators, however, rely on Brillinger’s concept of dynamic principal
components, and thus involve two-sided filters, which leads to rather poor forecasting performances. No
such problem arises with estimators based on standard (static) principal components, which have been
dominant in this literature. On the other hand, the consistency of those static estimators requires the
assumption that the space spanned by the factors has finite dimension, which severely restricts their
generality—prohibiting, for instance, autoregressive factor loadings. This paper derives the asymptotic
properties of a semiparametric estimator of the loadings and common shocks based on one-sided filters
recently proposed by Forni et al., (2015). Consistency and exact rates of convergence are obtained for
this estimator, under a general class of GDFMs that does not require a finite-dimensional factor space.
A Monte Carlo experiment and an empirical exercise on US macroeconomic data corroborate those
theoretical results and demonstrate the excellent performance of those estimators in out-of-sample
forecasting.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides consistency results and consistency rates
for the estimators recently proposed by Forni et al. (2015) (here-
after, FHLZ) for the Generalized Dynamic Factor Model (GDFM). Let

{xit , 1 ≤ i ≤ n0, 1 ≤ t ≤ T0} (1.1)

be an observed (n0 × T0)-dimensional panel, namely, a n0-tuple of
time series observed over a time period of length T0. The GDFM,
as introduced in Forni et al. (2000) and Forni and Lippi (2001),
consists inmodeling that panel as a finite realization of a stochastic
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process of the form {xit , i ∈ N, t ∈ Z}, that is, a countable number
of univariate processes {xit , t ∈ Z}, admitting a decomposition of
the form

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit ,

i ∈ N, t ∈ Z, (1.2)

where ut = (u1t u2t · · · uqt )′ is unobservable q-dimensional
orthonormal white noise and the filters bif (L), i ∈ N, f = 1, . . . , q,
are square-summable (L, as usual, stands for the lag operator).
The unobservable processes χit and ξit are called the common and
idiosyncratic components, respectively. Detailed assumptions on
(1.2) are given below. Let us only recall here that the idiosyncratic
components ξit and the common shocks uft , also called dynamic
factors, are mutually orthogonal at any lead and lag, and that
the idiosyncratic components are ‘‘weakly’’ cross-correlated in a
sense to be defined below—cross-sectional orthogonality being an
extreme case. The generality of such a representation has been
stressed in Hallin and Lippi (2013).

http://dx.doi.org/10.1016/j.jeconom.2017.04.002
0304-4076/© 2017 Elsevier B.V. All rights reserved.
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Much of the literature on Dynamic Factor Models is based on
(1.2) under the assumption that the space spanned by the stochas-
tic variables χit , for t given and i ∈ N, is finite-dimensional.1 Under
that assumption,model (1.2) can be rewritten in the so-called static
representation

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit
Ft = (F1t . . . Frt )′ = N(L)ut .

(1.3)

The variables Fjt , j = 1, 2, . . . , r are usually called the static factors,
as opposed to the dynamic factors ujt . Criteria to determine r con-
sistently have been given in Bai and Ng (2002) and, more recently,
in Alessi et al. (2010), Onatski (2010), and Ahn and Horenstein
(2013). The vectors Ft and the loadings λij can be estimated con-
sistently using the first r standard principal components, see Stock
and Watson (2002a, b), Bai and Ng (2002). Moreover, the second
equation in (1.3) is usually specified as a (possibly singular) VAR,
so that (1.3) takes the form

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit
D(L)Ft = (I − D1L − D2L2 − · · · − DpLp)Ft = Kut ,

(1.4)

where the matrices Dj are r × r while K is r × q, r ≥ q. Under
(1.4), Bai and Ng (2007) and Amengual andWatson (2007) provide
consistent criteria to determine q. We refer to estimators and pre-
dictors based on the existence of the static representation (1.3) and
standard principal components as the static method, as opposed to
the method developed in FHLZ and the present paper, referred to
as the dynamic method.

The assumption of a finite-dimensional factor space, however,
is far from being innocuous. For instance, (1.3) is so restrictive that
even the very elementary model

xit = ai(1 − αiL)−1ut + ξit , (1.5)

where q = 1, ut is scalar white noise, and the coefficients αi
are drawn from a uniform distribution over the stationary region,
is ruled out. In this case, the space spanned, for given t , by the
common components χit , i ∈ N, is easily seen to be infinite-
dimensional unless the αis take only a finite number of values.

On the other hand, in the absence of the finite-dimensionality
assumption, estimation of model (1.2) cannot be based on a fi-
nite number r of standard principal components. That situation
is the one studied in Forni et al. (2000) and (2004), who are
using q principal components in the frequency domain (Brillinger’s
dynamic principal components; see Brillinger (1981)) to estimate
the common components χit .2 However, their estimators involve
the application of two-sided filters acting on the observations xit ,
and hence perform poorly at the end/beginning of the observation
period. As a consequence, they are of little help for prediction.

In FHLZ, which only contains representation results, we
show how one-sided filters can be obtained without the finite-
dimensionality assumption, under the additional condition that
the common components have rational spectral density, that is,
each filter bif (L) in (1.2) is a ratio of polynomials in L. Elabo-
rating upon recent results by Anderson and Deistler (2008a, b),
FHLZ prove that, for generic values of the parameters cif ,k and
dif ,k (i.e. apart from a lower-dimensional subset in the parameter
space, see FHLZ for details), the infinite-dimensional idiosyncratic
vector χt = (χ1t χ2t · · · χnt · · · )′ admits a unique autoregressive

1 The definition ofχit obviously implies that this dimension does not depend on t .
2 Criteria to determine q without assuming (1.3) or (1.4) are obtained in Hallin

and Liška (2007) and Onatski (2009).

representation with block structure of the form⎛⎜⎜⎜⎜⎜⎜⎝

A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0
. . .

0 0 · · · Ak(L)
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠χt =

⎛⎜⎜⎜⎜⎜⎜⎝

R1

R2

...

Rk

...

⎞⎟⎟⎟⎟⎟⎟⎠ut , (1.6)

where Ak(L) is a (q + 1) × (q + 1) polynomial matrix with finite
degree and Rk is (q + 1) × q.

The contribution of the present paper is the construction of
estimators for Ak(L), Rk and ut , and their asymptotic analysis (con-
sistency and rates).

Our consistency results are based on recent advances on spec-
tral estimation: Shao and Wu (2007) and Liu and Wu (2010), as
extended to the multivariate case by Wu and Zaffaroni (2017).
These papers prove that lag-window estimators of spectra and
cross-spectra, under quite general assumptions on the processes
and the kernel, are consistent, as T → ∞, uniformly with respect
to the frequency θ , with rate

√
T−1BT log BT , where BT is the size of

the lag window.
Exploiting those results here requires some enhancement of the

FHLZ assumptions on the common shocks and the idiosyncratic
components. For example, the vector ut , which is second-order
white noise in FHLZ, is i.i.d. here. This, as well as other changes in
the FHLZ assumptions, is discussed in detail in Section 2. Under this
enhanced set of assumptions,we prove that the estimators ofAk(L),
Rk and ut are consistent with rate

ζnT = max
(√

n−1,
√
T−1BT log BT

)
, (1.7)

where BT diverges as T δ , 1/3 < δ < 1.
As pointed out in FHLZ (end of Section 4.5), despite the fact

that the dynamic model studied in this paper is more general
than model (1.4), when a dataset with finite n = n0 and T =

T0 is given, the static approach might perform well even though
the required finite-dimension assumptions are not satisfied. A
Monte Carlo study is discussed in Section 4, in which the static
and dynamic methods have been applied to simulated data. A
very short summary of our results is that (i) when the data are
generated by infinite-dimensional models which are simple gen-
eralizations of (1.5), the estimation of impulse–response functions
and predictions via the dynamic method is by far better than those
obtained via the static one; (ii) even when the data are generated
by (1.4), the dynamicmethod still performs slightly better. Though
not conclusive, our Monte Carlo results strongly suggest that the
FHLZ method may be uniformly competitive. A pseudo out-of-
sample forecasting exercise with US quarterly macroeconomic
series provides further evidence in favor of the dynamic method,
see Section 5.

Lastly, the rate (1.7) should be compared to max(
√
n−1,

√
T−1),

which is standard in the literature assuming the existence of a
static representation, see e.g. Bai and Ng (2002) and Forni et al.
(2009), the diverging factor BT log BT being the price we pay to
non-parametric estimation of the spectral density of the xs. How-
ever, both the Monte Carlo and the empirical results, presented in
Sections 4 and 5 respectively, suggest that the slower rate of our
estimators has no consequence on their precision for the typical
size of macroeconomic datasets.

The paper is organized as follows. In Section 2, we present and
comment the main assumptions to be made throughout. Section 3
provides the main asymptotic results. Sections 4 and 5 contain a
detailed description and analysis of the Monte Carlo experiments
and the empirical exercise respectively. Section 6 concludes. Proofs
are concentrated in Appendix A–E. Online Appendices F and G
provide the tables of results for the numerical studies of Sections 4
and 5.



76 M. Forni et al. / Journal of Econometrics 199 (2017) 74–92

2. Main assumptions and some preliminary results

The assumptions in this section reproduce those in FHLZ with
some important additional specifications. Assumption 1 decom-
poses the xs into common and idiosyncratic components. The
common components are driven by the q-dimensional i.i.d. vector
of common shocks ut via rational filters. The idiosyncratic com-
ponents, unlike in FHLZ, are modeled here as moving averages of
an infinite-dimensional i.i.d. vector ηt = (η1t η2t · · · )′. Assuming
that ut is i.i.d. instead of second-order white noise (as in FHLZ),
as well as modeling the idiosyncratic components, is necessary
for the assumptions and results on estimation. Assumption 2 im-
poses standard conditions on the rational functions in the com-
mon components. Assumption 3 is the standard condition on the
eigenvalues of the spectral density of the common components as
n, the number of series, tends to infinity, see FHLZ, enhanced with
their separation, which is necessary in the consistency proof, see in
particular Lemma 3, Appendix B. Assumption 4 imposes that serial
and cross-sectional dependence of the idiosyncratic components
both decline geometrically. As a consequence, the first eigenvalue
of the spectral density of the idiosyncratic components is bounded
as n tends to infinity, which is the definition of idiosyncratic com-
ponents in FHLZ.

Assumption 5 is borrowed, together with its motivation, from
FHLZ. Its consequence is the existence of a transformation of the
dynamicmodel into a static one. Assumption 6 imposes divergence
and separation of the eigenvalues of the common components in
the static form, Assumption 7 is used to obtain boundedness of the
eigenvalues of the idiosyncratic components.

Assumption 8 imposes a bound on the pth moments of uft , f =

1, 2, . . . , q, and those of ηjt , j ∈ N, uniform with respect to f and j,
with p > 4. Together with Assumption 9, it implies Proposition 6,
which is crucial, stating that the estimated cross-spectral density
of xit and xjt converges uniformly with respect to the frequency θ ,
i and j.

For a comparison of our assumptionswith those in the literature
assuming the existence of a static representation we consider
here Forni et al. (2009), whose setting is closest to the present
paper. Assumptions 1 through 4 in the present paper, ensuring per-
vasiveness and non-pervasiveness of common and idiosyncratic
components respectively, closely correspond to Assumptions 1
through 5 in Forni et al. (2009). However, (1) here we model the
idiosyncratic components as linear combinations of idiosyncratic
shocks, (2) we assume independence, not mere orthogonality, of
common and idiosyncratic components, and (3) i.i.d.–ness, not
mere whiteness, of the shocks driving common and idiosyncratic
components. Assumption 5 of the present paper is borrowed from
FHLZ and has no counterpart in Forni et al. (2009). Assumptions 6
and 7 entail pervasiveness and non-pervasiveness for the static
model derived from Assumption 5, and slightly enhance Assump-
tions 1 through 4. Lastly, Forni et al. (2009) in their Assumption 8
require that

E
[
(γ̂ x

ij − γ x
ij )

2] < ρT−1, (2.1)

for all i, j, T ,where γ x
ij and γ̂

x
ij denote the covariance and estimated

covariance between xit and xjt . The corresponding statement here
is inequality (3.4), which is obtained as a consequence of ‘‘deep’’
assumptions for the moments of ut and ηt and a standard assump-
tion on the kernel of the lag-window estimator of the spectrum
(Assumptions 8 and 9 of the present paper). Note that obtaining
Assumption 8 in Forni et al. (2009) as a consequence of deeper
assumptions would require imposing conditions either on the
moments of the xs or on those of the common and idiosyncratic
components, see the observation in their footnote 2, p. 1341. As-
sumption 10 is purely technical.

2.1. Common and idiosyncratic components

The Dynamic Factor Model studied in the present paper is a
decomposition, of the form

xit = χit + ξit , i ∈ N, t ∈ Z

of an observed random variable xit into a nonobserved common
component χit and a nonobserved idiosyncratic component ξit .
Throughout, we are assuming that the family of random variables

{xit , χit , ξit , i ∈ N, t ∈ Z}

satisfies the assumptions listed below as Assumptions 1 through
10.

Assumption 1. There exist a natural number q > 0 and

(1) a q-dimensional stochastic zero-mean process ut = (u1tu2t
· · · uqt )

′, t ∈ Z, and an infinite-dimensional stochastic process
ηt = (η1tη2t · · · )′, t ∈ Z;

(2) square-summable filters bif (L), i ∈ N, f = 1, . . . , q;
(3) coefficients βij,k, i, j ∈ N, k = 0, 1, . . . ,∞, where∑

∞

j=1
∑

∞

k=0β
2
ij,k < ∞ for all i ∈ N;

such that

(i) the vector St = (u′
t η′

t )
′, t ∈ Z, is i.i.d. and orthonormal;

in particular, var(uft ) = var(ηjt ) = 1, cov(uft , ηj,t−k) = 0,
f = 1, . . . , q, j ∈ N, k ∈ Z;

(ii)

χit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt = bi(L)ut

ξit =

∞∑
j=1

∞∑
k=0

βij,kηj,t−k.
(2.2)

Clearly, neither ut nor the polynomials bif (L) are identified.
Indeed, for any orthogonal matrix Q, the common component χit
has the alternative representation

χit =
[
bi(L)Q−1] [Qut ] = b∗

i (L)u
∗

t .

Note that (i) and (2.2) imply cov(uft , ξi,t−k) = 0 for all f , i, k.

Assumption 2. Conditions on the filters bif (L).
(i) The filters bif (L) are rational. More precisely, for all i ∈ N and

f = 1, . . . , q, there exist natural numbers s1 = si1 and s2 = si2 such
that bif (L) = cif (L)/dif (L), where

cif (L) = cif ,0 + cif ,1L + · · · + cif ,s1L
s1 and

dif (L) = 1 + dif ,1L + · · · + dif ,s2L
s2 . (2.3)

(ii) There exists φ > 1 such that none of the roots of dif (L) is less than
φ in modulus, for i ∈ N, f = 1, . . . , q.

(iii) There exists Bχ , 0 < Bχ < ∞, such that |cif ,j| ≤ Bχ , i ∈ N,
f = 1, . . . , q, j = 0, . . . , s1.

Under Assumption 2, the vector χnt = (χ1t χ2t · · · χnt )′ has
a rational spectral density matrix Σ

χ
n (θ ); denote by λχnj(θ ) its jth

eigenvalue (in decreasing order).

Assumption 3. Common component spectral density eigenvalues:
divergence and separation.

There exist continuous functions

θ ↦→ α
χ

f (θ ), f = 1, . . . , q and

θ ↦→ β
χ

f (θ ), f = 0, . . . , q − 1, θ ∈ [−π, π],

and a positive integer nχ such that, for n > nχ and all θ ∈ [−π, π],

β
χ

0 (θ ) ≥
λ
χ

n1(θ )
n

≥ α
χ

1 (θ ) > β
χ

1 (θ ) ≥
λ
χ

n2(θ )
n

≥ · · · ≥ α
χ

q−1(θ )

> β
χ

q−1(θ ) ≥
λ
χ
nq(θ )
n

≥ αχq (θ ) > 0.
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Assumption4. Serial and cross-sectional dependence of idiosyncratic
components.

There exist finite positive numbers B, Bis, i ∈ N, s ∈ N, and ρ,
0 ≤ ρ < 1, such that

∞∑
s=1

Bis ≤ B for all i ∈ N (2.4)

∞∑
i=1

Bis ≤ B for all s ∈ N (2.5)

|βis,k| ≤ Bisρ
k for all i, s ∈ N and k = 0, 1, . . . (2.6)

An immediate consequence of (2.4) and (2.5) is that
∞∑
i=1

∞∑
s=1

BisBjs ≤ B2 for all j ∈ N. (2.7)

Conditions (2.4) and (2.5) are obviously satisfied in the ‘‘purely
idiosyncratic’’ case ξit = ηit , and for finite ‘‘cross-sectional moving
averages’’ such as ξit = ηit + ηi+1,t . It follows from (2.6) that
the time dependence of the variables ξit declines geometrically, at
common rate ρ.

Under Assumption 4, setting βis(L) =
∑

∞

k=0βis,kLk and ξit =∑
∞

s=1βis(L)ηst , and denoting by ı the imaginary unit,

|βis(e−ıθ )| =

⏐⏐⏐⏐⏐
∞∑
k=0

βis,ke−ıkθ

⏐⏐⏐⏐⏐ ≤

∞∑
k=0

|βis,k| ≤

∞∑
k=0

Bisρ
k
≤ Bis

1
1 − ρ

.

Therefore, letting σ ξij (θ ) denote the cross-spectral density of ξit and
ξjt , by (2.7),
∞∑
i=1

|σ
ξ

ij (θ )| ≤
1
2π

∞∑
i=1

∞∑
s=1

|βis(e−ıθ )βjs(e−ıθ )|

≤
1

2π (1−ρ)2
∑

∞

i=1
∑

∞

s=1 BisBjs

≤ B2 1
2π (1 − ρ)2

.

(2.8)

Assumption 4 thus implies that the cross-spectra σ
ξ

ij (θ ) are
bounded, in θ , uniformly in i and j. On the other hand, Assump-
tion 2(ii) and (iii) imply that σ χij (θ ) is bounded, in θ , uniformly in i
and j. Therefore, σ x

ij (θ ) = σ
χ

ij (θ )+σ
ξ

ij (θ ) is bounded, in θ , uniformly
in i and j.

The spectral density matrices of the ξs and the xs, and their
eigenvalues, ordered in decreasing order, are denoted by Σ

ξ
n (θ ),

Σ x
n(θ ), λ

ξ

nj(θ ) and λxnj(θ ), respectively; under the above assump-
tions, they satisfy the following properties.

Proposition 1. Under Assumptions 1 through 4,
(i) there exists Bξ > 0 such that λξn1(θ ) ≤ Bξ for all n ∈ N and

θ ∈ [−π, π ] (thus, the ξ ’s are idiosyncratic, see FHLZ, Section 2.2);
(ii) there exists nx

∈ N such that, for n > nx and all θ ∈ [−π, π],
and with αχj (θ ) as in Assumption 3,

λxn1(θ )
n

> α
χ

1 (θ ) >
λxn2(θ )

n
> · · · > α

χ

q−1(θ ) >
λxnq(θ )

n
> αχq (θ );

(iii) there exists Bx > 0 such that λxn,q+1(θ ) ≤ Bx for all n ∈ N and
θ ∈ [−π, π ].

Proof. The column and rownorms ofΣ ξ
n (θ ) are equal, and, by (2.8),

satisfy

max
j=1,2,...,n

n∑
i=1

|σ
ξ

ij (θ )| ≤ max
j=1,2,...,n

∞∑
i=1

|σ
ξ

ij (θ )| ≤ B2 1
2π (1 − ρ)2

.

On the other hand, the product of the row and the column norms,
the square of the column norm in our case, is greater than or

equal to the square of the spectral norm, see Lancaster and Tis-
menetsky (1985), p. 366, Exercise 11. As a consequence, setting
Bξ = B21/2π (1 − ρ)2,we have λξn1(θ ) ≤ Bξ for all n and θ .

Regarding (ii), Σ x
n(θ ) = Σ

χ
n (θ ) + Σ

ξ
n (θ ) implies that

λxnf (θ ) ≥ λ
χ

nf (θ ) + λξnn(θ ) and λxnf (θ ) ≤ λ
χ

nf (θ ) + λ
ξ

n1(θ )

(these are two of theWeyl inequalities, see Franklin (2000), p. 157,
Theorem 1; see also Appendix B). By Assumption 3,

λxnf (θ )

n
≥
λ
χ

nf (θ ) + λ
ξ
nn(θ )

n
> α

χ

f (θ ),

for f = 1, . . . , q, and, for f = 2, . . . , q,

λxnf (θ )

n
≤
λ
χ

nf (θ ) + λ
ξ

n1(θ )

n
≤
λ
χ

nf (θ )

n
+

Bξ

n

≤ β
χ

f−1(θ ) +
Bξ

n
< α

χ

f−1(θ ),

for n > nχ , nχ being such that Bξ/nχ < minf=1,2,...,q[minθ∈[−π, π ]

(αχf (θ ) − β
χ

f (θ ))].
As for (iii), λxn,q+1 ≤ λ

χ

n,q+1(θ ) + λ
ξ

n1(θ ). On the other hand,
λ
χ

n,q+1(θ ) = 0 for all θ . The result then follows from (i). □

Proposition 2. Under Assumptions 1 through 4, the cross-spectral
densities σ x

ij (θ ) possess derivatives of any order and are of bounded
variation uniformly in i, j ∈ N; namely, there exists Ax > 0 such that
ν∑

h=1

|σ x
ij (θh) − σ x

ij (θh−1)| ≤ Ax

for all i, j, ν ∈ N and all partitions −π = θ0 < θ1 < · · · < θν−1 <
θν = π of [−π, π ].

Proof. Denoting by γ ξij,h, h ≥ 0, the covariance between ξit and
ξj,t−h,

|γ
ξ

ij,h| =

⏐⏐⏐⏐⏐
∞∑
k=0

∞∑
s=1

βis,kβjs,k+h

⏐⏐⏐⏐⏐ ≤

∞∑
k=0

∞∑
s=1

BisBjsρ
kρk+h

≤ ρh
∞∑
k=0

ρ2k
∞∑
s=1

BisBjs ≤ ρh B2

1 − ρ2 , (2.9)

by (2.7). For h < 0, γ ξij,h = γ
ξ

ji,−h, so that |γ
ξ

ij,h| ≤ ρ|h|B2/(1 − ρ2).
This implies that

σ
ξ

ij (θ ) =
1
2π

∞∑
h=−∞

γ
ξ

ij,he
−ıhθ

has derivatives of all orders. Moreover,⏐⏐⏐⏐ ddθ σ ξij (θ )
⏐⏐⏐⏐ =

1
2π

⏐⏐⏐⏐⏐
∞∑

h=−∞

(−ıh)γ ξij,he
−ıhθ

⏐⏐⏐⏐⏐ ≤
B2

π (1 − ρ2)

∞∑
h=1

hρh

=
B2ρ

π (1 − ρ2)(1 − ρ)2
,

which entails bounded variation of σ ξij (θ ) uniformly in i and j.
Bounded variation of σ χij (θ ), uniformly in i and j, is an obvious
consequence of Assumption 2. The conclusion follows from the fact
that σ x

ij (θ ) = σ
χ

ij (θ ) + σ
ξ

ij (θ ). □

2.2. Transforming the dynamic model into a static one

In FHLZ we prove that, for generic values of the parameters cif ,k
and dif ,k in (2.3), the space spannedbyuf ,t−k, f = 1, 2, . . . , q, k ≥ 0,
is equal to the space spanned by any (q+1)-dimensional subvector
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of χt and its lags, and that the (q + 1)-dimensional subvectors
of χt admit a finite and unique autoregressive representation (see,
in particular, Section 4.1, Lemma 3). Following FHLZ, we use these
genericity results as a motivation for the next assumption.

Let χk
t =

(
χ(k−1)(q+1)+1,t · · · χk(q+1),t

)
, k ∈ N.

Assumption 5. Each vector χk
t , k ∈ N, admits an autoregressive

representation

Ak(L)χk
t = Rkut , (2.10)

where

(i) Ak(L) is (q+1)×(q+1) of degree not greater than S = qs1+q2s2,
Ak(0) = Iq+1, and the roots of detAk(L) are greater than one in
modulus;

(ii) Rk is (q + 1) × q and has rank q;
(iii) Representation (2.10) is unique. Precisely, if Ãk(L)χk

t = R̃kũt ,
where (a) the degree of Ãk(L) does not exceed S, (b) Ã(0) = Iq+1,
(c) ũt is q-dimensional white noise, and (d) R̃k is (q + 1) × q,
then Ãk(L) = Ak(L), R̃k

= RkQ′, ũt = Qut , where Q is a q × q
orthogonal matrix independent of k.

Assumption 5 is a weaker version of Assumption A.3 in FHLZ,
the difference being that FHLZ assume that all (q+1)-dimensional
subvectors (χi1t χi2t · · ·χiq+1t ) and their lags span the same space
spanned by ut and its lags, and have an autoregressive representa-
tion as in (2.10).

WritingA(L) for the (infinite) block-diagonalmatrixwith diago-
nal blocks A1(L),A2(L), . . ., and letting R = (R1′

,R2′
, . . .)′, we thus

have

A(L)χt = Rut . (2.11)

We assume throughout the paper that n = m(q+1)withm ∈ Z.
This is convenient and does not imply any loss of generality for our
asymptotic analysis. Of course it may not hold in real datasets, see
Section 4.2 for a discussion.

The upper n×n submatrix ofA(L) and the upper n×q submatrix
of R are denoted by An(L) and Rn, respectively. If n = m(q + 1), so
that the firstm blocks of size q + 1 are included,

An(L)χnt = Rnut . (2.12)

Inverting A(L) in (2.11) yields χt = A(L)−1Rut . Because ut is
orthonormal white noise, we obtain the following result.

Proposition 3. (i) The ith row of A(L)−1R is bi(L) = (bi1(L) bi2(L)
· · · biq(L)).

(ii) In particular, the ith row of R is (ci1,0 ci2,0 · · · ciq,0).

Letting Zt = A(L)xt , we have

Zt = Ψt + Φt , with Ψt = Rut and Φt = A(L)ξt . (2.13)

This is a static form, linking Zt to the common shocks ut . However,
using the standard principal components of Zt to estimate R and ut
requires further assumptions. Denote by ΓΦn and Γ

ψ
n the variance–

covariance matrices of Φnt and Ψnt , with eigenvalues µφnj and µ
ψ

nj ,
respectively.

Assumption 6. (Eigenvalues of the covariance matrix of Ψt : diver-
gence and separation) There exist real numbers αψf , f = 1, . . . , q, βψf ,
f = 0, . . . , q − 1, and a positive integer nψ such that, for n > nψ ,

β
ψ

0 ≥
µ
ψ

n1

n
≥ α

ψ

1 > β
ψ

1 ≥
µ
ψ

n2

n
≥ α

ψ

2 > β
ψ

2

≥ · · · ≥ α
ψ

q−1 > β
ψ

q−1 ≥
µ
ψ
nq

n
≥ αψq > 0.

The eigenvalues µψnf depend on the ‘‘deep parameters’’ cif ,0, see
Proposition 3(ii), and are invariant if R and ut are replaced by RQ′

and Qut respectively. Assumption 6 ensures that the static model
(2.13) has exactly q common shocks. Note that Assumption 6 is
not a consequence of Assumption 3, even enhanced with Assump-
tion 5(ii). For, it is easy to construct an example in which (1) q = 2,
(2) Assumptions 3 and 5 hold, but the two 3-dimensional columns
of Rk asymptotically approach the same vector fast enough to
prevent µφn2 from diverging.

In order to introduce the next assumption, wemust go over the
procedure leading from the spectral density of the χs to the matri-
ces Ak(L) appearing in (2.10). This procedure, with the population
quantities replaced by their estimates, produces our estimator, see
Section 3. It proceeds in two steps:

(i) Denoting byΣ
χ

jk (θ ) the (q+1)×(q+1) cross-spectral density
between χ

j
t and χk

t , and by Γ
χ

jk,s the covariance between χ
j
t

and χk
t−s, we have

Γ
χ

jk,s = E
(
χ
j
tχ

k
t−s

′
)

=

∫ π

−π

eısθΣχ

jk (θ )dθ. (2.14)

(ii) The minimum-lag matrix polynomial Ak(L) and the
variance–covariance function of the unobservable vectors

Ψ1
t = A1(L)χ1

t , Ψ2
t = A2(L)χ2

t , . . . (2.15)

follow from (2.14). Indeed, defining

Ak(L) = Iq+1 − Ak
1L − · · · − Ak

SL
S,

A[k]
=
(
Ak
1 Ak

2 · · · Ak
S

)
, Bχk =

(
Γ
χ

kk,1 Γ
χ

kk,2 · · · Γ
χ

kk,S

)
(2.16)

and

Cχjk =

⎛⎜⎜⎜⎝
Γ
χ

jk,0 Γ
χ

jk,1 · · · Γ
χ

jk,S−1
Γ
χ

jk,−1 Γ
χ

jk,0 · · · Γ
χ

jk,S−2
...

...
...

Γ
χ

jk,−S+1 Γ
χ

jk,−S+2 · · · Γ
χ

jk,0

⎞⎟⎟⎟⎠ , (2.17)

we have

A[k]
= Bχk

(
Cχkk
)−1

= Bχk
(
Cχkk
)
ad det

(
Cχkk
)−1
, (2.18)

where
(
Cχkk
)
ad stands for the adjoint of the squarematrix Cχkk.

Note that the procedure above, the definition of Cχkk in partic-
ular, requires that S > 0. For S = 0, that is when the common
components are white noise, Ak(L) = Iq+1 and we define Cχkk =

IS(q+1).
Non-singularity of Cχkk is necessary for the uniqueness of the

A[k]s, and is implied by Assumption 5. However, we require a
slightly stronger condition to ensure that the A[k]s are (uniformly)
bounded, in norm, as n tends to infinity.

Assumption 7. There exists a real d > 0 such that
⏐⏐det Cχkk⏐⏐ > d for

all k ∈ N.

For any fixed n and, in particular, for n = n0 (supposed to be
a multiple of q + 1), the existence of a constant dn > 0 such
that

⏐⏐det Cχkk⏐⏐ > dn for 1 ≤ k ≤ n/(q + 1) is a consequence
of Assumption 5. Assumption 7, however, is more demanding,
as it imposes

⏐⏐det Cχkk⏐⏐ > d for all k ∈ N and a value of d
that does not depend on n. This is reasonable if we require the
(fictitious) ‘‘cross-sectional future’’ of the panel to resemble what
has been observed, i.e. the n0-dimensional panel (1.1)—a form of
cross-sectional stationarity.
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Proposition 4. Under Assumptions 1 through 7, there exists BΦ > 0
such that µΦn1 ≤ BΦ for all n ∈ N.

Proof. Let λΦnj(θ ) be the jth eigenvalue of the spectral density
matrix of Φnt . Let us show that there exists a constant CΦ such
that λΦn1(θ ) ≤ CΦ for all n and θ . Because λΦn1(θ ), for all θ , is non-
decreasingwith n (see (Forni and Lippi, 2001), our assumption that
n = m(q + 1) does not cause any loss of generality. The spectral
density of Φnt is

An(e−ıθ )Σ ξ
n (θ )A

′

n(e
ıθ ),

where An(L) (see Eq. (2.12)) is block-diagonal with diagonal
blocks Ak(L). If a(θ ) is an n-dimensional complex column vector
such that a(θ )′a(θ ) = 1 for all θ , we have

a(θ )′An(e−ıθ )Σ ξ
n (θ )A

′

n(e
ıθ )a(θ ) ≤ λ

ξ

n1(θ )
(
a′(θ )An(e−ıθ )A′

n(e
ıθ )a(θ )

)
≤ λ

ξ

n1(θ )λ
An
1 (θ ),

where λAn1 (θ ) is the first eigenvalue of An(e−ıθ )A′
n(e

ıθ ), which is
Hermitian, non-negative definite. By Proposition 1, supnλ

ξ

n1(θ ) ≤

Bξ . Moreover, given the diagonal structure of An(L), λ
An
1 (θ ) =

maxk=1,2,...,mλ
Ak
1 (θ ) ≤ supk∈Nλ

Ak
1 (θ ), where λA

k

1 (θ ) is the first
eigenvalue of Ak(e−ıθ )Ak′(eıθ ). Assumptions 2 and 7 imply that
supk∈Nλ

Ak
1 (θ ) ≤ DΦ for some DΦ > 0 and all θ . On the other hand,

λΦn1(θ ) = sup a(θ )′An(e−ıθ )Σ ξ
n (θ )A

′

n(e
ıθ )a(θ ) ≤ BξDΦ ,

the sup being over all the vectors a(θ ) such that a(θ )′a(θ ) = 1.
Lastly,

µΦn1 = sup b′ΓΦn b =

∫ π

−π

(
b′ΣΦ

n (θ )b
)
dθ

≤

∫ π

−π

λΦn1(θ )dθ ≤ 2πBξDΦ ,

the sup being over all the n-dimensional column vectors b such
that b′b = 1. □

Proposition 4 ensures that Ψt is a genuine idiosyncratic com-
ponent. Because Φt and Ψs are independent for all t and s in Z, a
consequence of Assumption 1(i), themodel (2.13) is a factor model
with a static representation—a special case of (1.4), with r = q
and N(L) = Iq.

3. Estimation: asymptotics

Our estimation procedure follows the same steps as the pop-
ulation construction in Section 2.2, with the population spectral
density of the xs replaced with an estimator Σ̂ x

n(θ ) fulfilling As-
sumption 9. Based on Forni et al. (2000), we obtain the esti-
mator Σ̂

χ
n (θ ) by means of the first q frequency-domain principal

components of the xs (using the first q eigenvectors of Σ̂ x
n(θ )).

Then the matrices Γ̂
χ

jk , B̂
χ

jk, Ĉ
χ

jk and Ân(L) are computed as natural
counterparts of their population versions in Section 2.2. Finally,
estimators for Rn and ut are obtained via a standard principal
component analysis of Ẑnt = Â(L)xnt . Consistency results with
exact rates of convergence ζnT , as defined in Eq. (1.7), are provided
in Propositions 7 through 11 for all those estimators.

Explicit dependence on the index n has been necessary in Sec-
tion 2. From now on, it will be convenient to introduce a minor
change in notation, dropping n whenever possible. In particular,

(i) Σ x(θ ) =
(
σ x
ij (θ )

)
i,j=1,...,n and λxf (θ ) replace Σ x

n(θ ) and λ
x
nf (θ ),

respectively;
(ii) Λx(θ ) denotes the q × q diagonal matrix with diagonal

elements λxf (θ );

(iii) Px(θ ) denotes the n × q matrix the q columns of which are
the unit-modulus eigenvectors corresponding toΣ x(θ )s first
q eigenvalues; the columns and entries of Px(θ ) are denoted
by Px

f (θ ) and pxif (θ ), f = 1, . . . , q, i = 1, . . . , n, respectively;
(iv) Σχ (θ ) =

(
σ
χ

ij (θ )
)
i,j=1,...,n,λ

χ

f (θ ),Λ
χ (θ ),Pχ (θ ),Σ ξ (θ ), etc. are

defined as in (i);
(v) all the above matrices and scalars depend on n; the corre-

sponding estimators,

Σ̂ x(θ ), λ̂xf (θ ), Λ̂x(θ ), P̂x(θ ) and Σ̂χ (θ ), λ̂χf (θ ),

Λ̂χ (θ ), P̂χ (θ )

(precise definitions are provided below) depend both on n
and the observed values xit , i = 1, . . . , n, t = 1, . . . , T . For
simplicity, we say that they depend on n and T ;

(vi) the same notational change applies toΓ
ψ
n and related eigen-

values and eigenvectors;
(vii) A(L) and R, denoting the upper left n×n and n×q submatri-

ces of A(L) and R, respectively, are used instead of An(L) and
Rn; Â(L) and R̂ stand for their estimated counterparts;

(viii) to avoid confusion, however, we keep explicit reference to n
in xnt , χnt , Znt , etc., with estimated counterparts of the form
χ̂nt , Ẑnt , etc.; thus, we write, for instance,

Znt = A(L)xnt = Rut + Φnt;

(ix) lastly, if F is amatrix, we denote by F̃ its conjugate transpose,
and by ∥F∥ its spectral norm (see Appendix B).

3.1. Estimation of Σ x(θ )

The following definition, coined by Wu (2005), generalizes the
usual measures of time dependence for stochastic processes.

Definition 1. Physical dependence. Let ϵt be an i.i.d. stochas-
tic vector process, possibly infinite-dimensional, and let zt =

F (ϵt , ϵt−1, . . .), where F : [R × R × · · · ] → R is a measurable
function; assume that zt has finite pth moment for p > 0. Let ϵ∗

be a stochastic vector with the same dimension and distribution as
the ϵts, such that ϵ∗ and ϵt are independent for all t . For k ≥ 0 the
physical dependence δ[zt ]

kp is defined as

δ
[zt ]
kp =

(
E
(
|F (ϵk, . . . , ϵ0, ϵ−1, . . .) − F (ϵk, . . . , ϵ∗, ϵ−1, . . .)|

p))1/p
.

Assumption 8. There exist p and A, with p > 4 and 0 < A < ∞,
such that

E
(
|uft |

p)
≤ A, E

(
|ηit |

p)
≤ A, (3.1)

for all i ∈ N and f = 1, . . . , q.

The main result of the section, that the estimate of the cross-
spectral density between xit and xjt converges uniformly with re-
spect to the frequency and to i and j, see Proposition 6, requires the
following results on the pthmoments and the physical dependence
of the xs.

Proposition 5. Under Assumptions 1 through 8, there exist ρ1 ∈

(0, 1) and A1 ∈ (0,∞) such that, for all i ∈ N,

E
(
|xit |p

)
≤ A1 and δ

[xit ]
kp ≤ A1ρ

k
1. (3.2)

Proof. By the Minkowski inequality,(
E
(
|xit |p

)) 1
p =

(
E
(
|χit + ξit |

p)) 1
p ≤

(
E
(
|χit |

p)) 1
p +

(
E
(
|ξit |

p)) 1
p .

Using theMinkowski inequality again, condition (2.4) andAssump-
tion 8, we obtain
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(
E
(
|ξit |

p)) 1
p =

(
E

(⏐⏐⏐⏐⏐
∞∑
s=1

∞∑
k=0

βis,kηs,t−k

⏐⏐⏐⏐⏐
p)) 1

p

≤

∞∑
s=1

∞∑
k=0

(
E
(
|βis,kηs,t−k|

)p) 1
p

≤

∞∑
s=1

∞∑
k=0

|βis,k|E
(
|ηs,t−k|

p) 1
p

≤ A
1
p

∞∑
s=1

∞∑
k=0

Bisρ
k
≤ A

1
p B

1
1 − ρ

.

An analogous inequality can be obtained for the common compo-
nents, using Assumption 2 and the first inequality in (3.1). The first
inequality in (3.2) follows.

Turning to the second inequality, for k ≥ 0,

ξik − ξ ∗

ik =

∞∑
s=1

βis,k(ηsk − η∗

s ),

where ξ ∗

ik has the same definition as ξik, with ηs0 replaced by η∗
s . The

Minkowski inequality, condition (2.4) and Assumption 8 imply

δ
[ξit ]
k,p =

(
E

(⏐⏐⏐⏐⏐
∞∑
s=1

βis,k(ηsk − η∗

s )

⏐⏐⏐⏐⏐
p)) 1

p

≤

∞∑
s=1

(
E
(
|βis,k(ηsk − η∗

s )|
p)) 1

p

≤ ρk
∞∑
s=1

Bis
(
E(|ηsk − η∗

s |)
p) 1

p ≤ ρk2BA
1
p .

A similar inequality can be obtained for the common components,
using Assumption 2 and the first of inequalities (3.1), with ρ
replaced by φ−1, φ being defined in Assumption 2. Then,

δ
[xit ]
kp = (E|xit − x∗

it |
p)

1
p =

(
E
(
|(χit − χ∗

it ) + (ξit − ξ ∗

it )|
p) 1

p

)
≤

(
E
(
|χit − χ∗

it |
)p) 1

p
+

(
E
(
|ξit − ξ ∗

it |
)p) 1

p
= δ

[χit ]
kp + δ

[ξit ]
kp .

The conclusion follows. □

Consider now the lag-window estimator

Σ̂ x(θ ) =
1
2π

T−1∑
k=−T+1

K
(

k
BT

)
e−ıkθ Γ̂ x

k , (3.3)

of the spectral density Σ x(θ ), where Γ̂ x
k =

1
T

∑T
t=|k|+1xtxt−|k|.

Assumption 9. Lag-window estimation of Σ x(θ ).

(i) The kernel function K is even, bounded, with support [−1, 1];
moreover,

(1) for some κ > 0, |K (u) − 1| = O(|u|κ ) as u → 0,
(2)

∫
∞

−∞
K 2(u)du < ∞,

(3)
∑

j∈Zsup|s−j|≤1 |K (jw) − K (sw)| = O(1) as w → 0;

(ii) for some c1, c2 > 0, δ and δ such that 0 < δ < δ < 1 <
δ(2κ + 1),

c1T δ ≤ BT ≤ c2T δ

Proposition 6. Under Assumptions 1 through 9, there exists C > 0
such that

E
(
max
|h|≤BT

⏐⏐σ̂ x
ij (θ

∗

h ) − σ x
ij (θ

∗

h )
⏐⏐2) ≤ C

(
T−1BT log BT

)
, (3.4)

where θ∗

h = πh/BT , for all T , i and j in N.

See Appendix A for the proof.

3.2. Estimation of σ χij (θ ) and γ
χ

ij,k

Our estimator of the spectral density matrix of the common
components χnt is the Forni et al. (2000) estimator

Σ̂χ (θ ) = P̂x(θ )Λ̂x(θ ) ˜̂Px(θh). (3.5)

Proposition 7. Under Assumptions 1 through 7,

max
|h|≤BT

|σ̂
χ

ij (θ
∗

h ) − σ
χ

ij (θ
∗

h )| = OP (ζnT ) ,

where θ∗

h = πh/BT , as T → ∞ and n → ∞, uniformly in i and j.
Precisely, for any ϵ > 0, there exists η(ϵ), independent of i and j, such
that, for all n and T ,

P
(
maxh≤BT |σ̂

χ

ii (θ
∗

h ) − σ
χ

ii (θ
∗

h )|
ζnT

≥ η(ϵ)
)
< ϵ.

See Appendix B for the proof.
Our estimator of the covariance γ χij,ℓ of χit and χj,t−ℓ is, as

in Forni et al. (2005),

γ̂
χ

ij,ℓ =
π

BT

∑
|h|≤BT

eıℓθ
∗
h σ̂

χ

ij (θ
∗

h ), (3.6)

where θ∗

h = πh/BT . Recalling that γ χij,ℓ =
∫ π

−π
eıℓθσ χij (θ )dθ, we

have

|γ̂
χ

ij,ℓ − γ
χ

ij,ℓ| ≤
π

BT

∑
|h|≤BT

|eıℓθ
∗
h σ̂

χ

ij (θ
∗

h ) − eıℓθ
∗
h σ

χ

ij (θ
∗

h )|

+

⏐⏐⏐⏐⏐⏐ πBT

∑
|h|≤BT

eıℓθ
∗
h σ

χ

ij (θ
∗

h ) −

∫ π

−π

eıℓθσ χij (θ )dθ

⏐⏐⏐⏐⏐⏐
≤
π

BT

∑
|h|≤BT

|σ̂
χ

ij (θ
∗

h ) − σ
χ

ij (θ
∗

h )|

+
π

BT

∑
|h|≤BT

max
θ∗
h−1≤θ≤θ∗

h

|eıℓθ
∗
h σ

χ

ij (θ
∗

h ) − eıℓθσ χij (θ )|

≤ π max
|h|≤BT

|σ̂
χ

ij (θ
∗

h ) − σ
χ

ij (θ
∗

h )|

+
πB
BT

∑
|h|≤BT

max
θ∗
h−1≤θ≤θ∗

h

|eıℓθ
∗
h − eıℓθ |

+
π

BT

∑
|h|≤BT

max
θ∗
h−1≤θ≤θ∗

h

|σ
χ

ij (θ
∗

h ) − σ
χ

ij (θ )|

≤ π max
|h|≤BT

|σ̂
χ

ij (θ
∗

h ) − σ
χ

ij (θ
∗

h )|

+
πB
BT

∑
|h|≤BT

(
|eıℓθ

∗
h−1 − eıℓθ̃

∗
h−1 | + |eıℓθ̃

∗
h−1 − eıℓθ

∗
h−1 |

)
+
π

BT

∑
|h|≤BT

(
|σ
χ

ij (θ
∗

h−1) − σ
χ

ij (θ̌
∗

h−1)|

+ |σ
χ

ij (θ̌
∗

h−1) − σ
χ

ij (θ
∗

h )|
)
, (3.7)

where B is the bound in Proposition 1(i), and θ̃∗

h−1 and θ̌∗

h−1 are
points in the interval [θh−1, θh]where the functions of θ , |eiℓθ

∗
s −eiℓθ |

and |σij(θ∗
s )−σij(θ )|, respectively, attain amaximum. Of course, the

function eıℓθ is of bounded variation, while the functions σ χij (θ ) are
of bounded variation by Assumption 2, so that the second and third
terms are O(1/BT ).

Using Proposition 7, we obtain that |γ̂
χ

ij,ℓ − γ
χ

ij,ℓ| is OP (ζnT ) +

O(1/BT ). Since ζnT = max(1/
√
n, 1/

√
T/BT log T ), the latter term

is absorbed in the former under Assumption 10. Proposition 8
follows.

Assumption 10. The lower bound δ in Assumption 9 satisfies δ >
1/3.
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Proposition 8. Under Assumption 1 through 10, for each ℓ ≥ 0,

|γ̂
χ

ij,ℓ − γ
χ

ij,ℓ| = OP (ζnT ) as T → ∞ and n → ∞. (3.8)

3.3. Estimation of Ak(L)

Under our assumptions, the common component admits the
block-diagonal finite-order vector autoregressive representation
(2.11). If the χts were observed, estimation by OLS would be ap-
propriate. However, although we do not observe the χts, we do
have (consistent) estimates of their autocovariance function. This
naturally leads to Yule–Walker estimators of the autoregressive
coefficients and the innovation covariance matrix. The definition
of Â[k] then is straightforward from (2.16), (2.17) and (2.18).

Proposition 9. Under Assumption 1 through 10, ∥Â[k]
− A[k]

∥ =

OP (ζnT ) as T → ∞ and n → ∞.

See Appendix C for the proof.

3.4. Estimation of R and ut

We start with Znt = Ψnt + Φnt = Rut + Φnt . The covariance
matrix of Ψnt is

RR′
= PψΛψPψ ′

= Pψ (Λψ )1/2(Λψ )1/2Pψ ′,

whereΛψ is q×qwith the non-zero eigenvalues ofRR′ on themain
diagonal, while Pψ is n×qwith the corresponding eigenvectors on
the columns. Thus, we have the representation

Znt = Pψ (Λψ )1/2vt + Φnt = Rvt + Φnt ,

say, where vt = Hut , with H orthogonal. Note that, for given i and
f , the (i, f ) entry ofR depends on n, so that the matricesR are not
nested; nor is vt independent of n. However, the product of each
row of R by vt yields the corresponding coordinate of Ψnt , which
does not depend on n.

Our estimator of R = Pψ (Λψ )1/2 is R̂ = P̂z(Λ̂z)1/2, where P̂z

and Λ̂z are the eigenvectors and eigenvalues, respectively, of the
empirical variance–covariance matrix of Ẑnt = Â(L)xnt , that is, xnt
filtered with the estimated matrices Â(L). This is the reason for the
complications we have to deal with in Appendix D.

Proposition 10. Under Assumptions 1 through 10, ∥R̂i − RiŴq∥ =

OP (ζnT ), as T → ∞ and n → ∞, where Ri is the ith row of R, and
Ŵq is a q× q diagonal matrix, depending on n and T , whose diagonal
entries are either 1 or −1.

See Appendix D for the proof.
Let us point out again that the ith row of R depends on n.

Therefore, Proposition 10 only states that the differences between
the entries of R̂ and those ofR converge to zero (upon sign correc-
tion), not that the estimated entries converge. Now, suppose that
the common shocks can be identified by means of economically
meaningful statements. For example, suppose that we have good
reasons to claim that the upper q × q matrix of the ‘‘structural’’
representation is lower triangular with positive diagonal entries
(an iterative scheme for the first q common components). As is
well known, such conditions determine a unique representation,
denote it by Zt = R∗u∗

t + Φt or Znt = R∗u∗
t + Φt , where the n × q

matricesR∗ are nested. In particular, startingwith Znt = Rvt +Φnt ,
there exists exactly one orthogonal matrix G(R) (actually G(R)
only depends on the q × q upper submatrix of R) such that R∗

=

RG(R). Thus, while the entries of R depend on n, those of RG(R)
do not.

Applying the same rule to R̂, we obtain the matrices R̂∗
=

R̂G(R̂). It is easily seen that each entry of R̂∗ (depending on n and

T ) converges to the corresponding entry of R∗ (independent of n
and T ) at rate ζnT .

Lastly, define the population impulse–response functions as the
entries of the n × q matrix B∗(L) = A(L)−1R∗, and their estimators
as those of B̂∗(L) = Â(L)−1R̂∗. Denoting by b∗

if (L) = b∗

if ,0 + b∗

if ,1L +

· · · and b̂∗

if (L) = b̂∗

if ,0 + b̂∗

if ,1L + · · · , respectively, such entries,
Propositions 9 and 10 imply that |b̂∗

if ,k − b∗

if ,k| = OP (ζnT ) for all
i, f and k.

An iterative identification scheme will be used in Section 4 to
compare different estimates of the impulse–response functions.3

Our estimator of vt is simply the projection of ẑt on P̂z(Λ̂z)−1/2,
namely,

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt .

For that estimator v̂t , we have the following consistency result.

Proposition 11. Under Assumption 1 through 10, ∥v̂t − Ŵqvt∥ =

OP (ζnT ), as T → ∞ and n → ∞, where Ŵq is a q×q diagonalmatrix,
depending on n and T , whose diagonal entries equal either 1 or −1.

See Appendix E for the proof.

3.5. Estimation and cross-sectional ordering

Let us now focus on the observed (n0 × T0)-dimensional panel
(1.1), where as usual it is convenient to assume n0 = m0(q + 1).
Because the cross-sectional ordering of the n0 variables is arbitrary,
sensible concepts and sensible inferencemethods, as a rule, should
be invariant (equivariant) under cross-sectional permutations.

Let p = (i1 i2 · · · in0 ) denote a permutation of {1, . . . , n0}.
The cross-spectral densities σ x

ij (θ ) and their estimators σ̂ x
ij (θ ), of

course, are equivariant under p, that is, for any k, ℓ ∈ {1, . . . , n0},
σ x
ik iℓ

(θ ) = σ x
kℓ(θ ), etc.: except for their indexation, they do not

depend on the cross-sectional ordering of the panel. Similarly, the
eigenvalues of Σ x(θ ) and Σ̂ x(θ ) are permutation-invariant, while
the corresponding eigenvectors are equivariant, so that σ̂ χij (θ )
and γ̂ χij,ℓ are permutation-equivariant as well.

On the other hand, the matrices Ak(L) and their estimators
strongly depend on the ordering of the cross-section. However,
we are not interested in such matrices per se but only insofar
as they enter the impulse–response functions A(L)−1R∗ and their
estimators.We argue below that although the population impulse–
response functions are permutation-equivariant, their estimators
are not.

Given p = (i1 i2 · · · in0 ), let χ
[p]

n0t = (χi1t χi2t · · · χin0 t
)′ =

Πpχn0t , where Πp stands for the permutation matrix associated
with p. The permuted vector χ

[p]

n0t has a block-diagonal VAR rep-
resentation (of the form (2.12))

A[p](L)χ[p]

n0t = R∗[p]ut

(the index n0 has been dropped in A[p], see the beginning of Sec-
tion 3). That representation rewrites as

A(p)(L)χn0t = R∗(p)ut

with A(p)(L) = Π−1
p A[p](L)Πp and R∗(p)

= Π−1
p R∗[p]. The matrix

A(p)(L) has q+ 1 non-zero entries in each row and column but, un-
like An(L) in (2.12), is not block-diagonal. The following statement
is a direct consequence of the assumption that ut is orthonormal
white noise.

3 All just-identifying rules considered in the SVAR literature can be dealt with
along the same lines, see Forni et al. (2009).
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Proposition 12. Suppose that Assumption 5 holds for all (q + 1)-
dimensional subvectors (χj1t χj2t · · ·χjq+1t ), with js ≤ n0. Then, for
all permutations p,

(i) A(p)(L)−1R∗(p)
= A(L)−1R∗, and (ii) R∗(p)

= R∗.

It follows that the population impulse–response functions
A(p)(L)−1R∗(p) do not depend on the arbitrary ordering of the panel.

Unfortunately such independence does not hold anymore for
Â(p)(L)−1R̂∗(p). In particular,

(I) owing to finiteness of n and T , the estimation error of b̂∗(p)
i (L)

partly depends on ξit and the other idiosyncratic components
involved in the block of xit under p; the correlation between such
permutation-specific sources of error, those arising with, say, p1
and p2, depends on the overlapping between the blocks containing
xit under p1 and p2, and is therefore fairly weak on average;

(II) the expected size of the permutation-specific source of error
of b̂∗(p)

i (L) obviously depends on the variance of the idiosyncratic
components involved in the block of xit , and also on the ‘‘amount

of collinearity’’ of the block, as measured by det
(
Ĉχkk
)−1

.
That dependence on the arbitrary ordering of the cross-section

is, of course, highly undesirable. As a remedy, we propose to aver-
age the estimated impulse–response functions (or forecasts) over
the n∗

0 = n0!/m0![(q+1)!]m0 possible partitions into (q+1)-tuples
of the n0 cross-sectional items. Averaging over those n∗

0 orderings
is equivalent to averaging over the n0! possible cross-sectional per-
mutations, as two permutations leading to the same partition yield
the same estimators, and thus restores permutational invariance
(more precisely, permutational equivariance).

Averaging, be it over the n∗

0 partitions or over the n0! permu-
tations, also improves statistical performance. For, let us assume
that the ordering of the panel is the result of a random draw under
which all n0! possible permutations are equally likely, each with
probability 1/n0! (hence also all n∗

0 partitions, each with probabil-
ity 1/n∗

0)—equivalently, start by randomly labeling the n0 cross-
sectional items in the panel. The value of the likelihood for that
random permutation, whatever its form, is invariant under further
permutation. It follows that the un-ordered panel – equivalently,
any arbitrarily chosen ordering of the same – is a sufficient statistic.
To fix the ideas, the panel {X(i)t , i = 1, . . . , n, t = 1, . . . , T }, where
(i) is such that X(1)1 ≤ X(2)1 ≤ · · · ≤ X(n)1, is sufficient, verymuch in
the sameway as the order statistic4 is sufficient in an i.i.d. sample—
therefore, let us call it the panel order statistic.

Conditional on this sufficient statistic, the randomly ordered
panel our estimators were computed from is uniformly distributed
over the n0! permutations of the panel order statistic, and averag-
ing the estimators computed from those n0! permutations (equiv-
alently, averaging the estimators computed from the n∗

0 possible
partitions into (q+1)-tuples) yields the conditional expectation of
any of them conditional on the (sufficient) panel order statistic.

The Rao–Blackwell Theorem (see e.g. Lehmann and Casella
(1998), p. 47) then tells us that, provided that our estimators have
finite expectation and quadratic risk, the quadratic risk of their
averaged version is uniformly less than or equal to the original one.

This is a sound theoretical justification for the averaging
method. However, computing the estimators for n0! distinct per-
mutations (for n∗

0 distinct partitions) is, even for moderately large
values of n0, numerically infeasible. Fortunately, simulations pro-
vide convincing evidence that, selecting a small number of permu-
tations at random and averaging the corresponding estimators of
the impulse–response functions b∗

i (L) leads to

(i) rapidly stabilizing results: the infeasible computation of all
n∗

0 possible estimators thus is not required for achieving the
desired Rao–Blackwellization;

4 Actually, X(1)1, X(2)1, . . . ≤, X(n)1 is the order statistic of X1 =

(X11, X21, . . . , Xn1).

(ii) a substantial reduction of the expected Mean Square Esti-
mation Error (MSE), which is consistent with observation
(I) above, that different permutations produce estimators
of b∗

i (L) that are affected by weakly correlated sets of id-
iosyncratic components; see Section 4.3 for details on the
simulation and results.

Lastly, if we consider n∗

0 infinite sequences of the form

xi1,t , xi2,t , . . . , xin0 ,t , xn0+1,t , xn0+2,t , . . .

that is, the original infinite sequence with reordering of its first
n0 items, enhancing Assumption 5 within the panel (1.1), see
Proposition 12, all the consistency results hold for each of the
corresponding n∗

0 estimators, and therefore for the average of any
subset of them.

4. Simulation experiments

In this section, we use simulated data to compare the estima-
tor proposed in the present paper with estimators based on the
existence of a static representation. We focus on (i) estimation of
impulse–response functions, (ii) estimation of structural shocks
and (iii) one-step-ahead forecasts. Regarding (i) and (ii), we com-
pare FHLZwith themethodproposed in Forni et al. (2009), referred
to as FGLR. As regards (iii), the results of FHLZ are compared to the
method in Stock and Watson (2002a), referred to as SW. Let us
recall that both FGLR and SW assume the existence of the static
factor representation (1.4), and are based on ordinary principal
components. We generate artificial data according to two simple
models: (I) a dynamic factor model with no static factor model
representation (so that neither FGLR nor SW are consistent) and
(II) a model admitting a static factor model representation (under
which all methods are consistent).

In our exercises we generate panels with increasing numbers
of variables and observations. As the panels are independent (and
therefore non-nested), they must be considered as unrelated ex-
amples of the observed panel (1.1). However, we use here the
notation (n, T ) instead of the heavy (n0, T0) of Section 3.5.

4.1. Data-generating processes

We consider the following data-generating processes.
Model I (no static factor model representation)

xit = ai1(1 − αi1L)−1u1t + ai2(1 − αi2L)−1u2t + ξit . (4.9)

We generate ujt , j = 1, 2 and ξit , i = 1, . . . , n, t = 1, . . . , T
as i.i.d. standard Gaussian variables; aij as independent variables,
uniformly distributed on the interval [−1, 1]; αij as independent
variables, uniformly distributed on the interval [−0.8, 0.8].

Estimation of the shocks and the impulse–response functions
requires an identification rule. Our exercise is based on a Cholesky
identification scheme on the first q variables. Precisely, denote by
Bq(0) the matrix with bif (0), i = 1, 2, . . . , q, f = 1, 2, . . . , q,
in the (i, f ) entry, and let H be the lower triangular matrix with
positive diagonal entries such that HH′

= Bq(0)Bq(0)′. Then,
the ‘‘structural’’ shocks, denoted by u∗

t , and the impulse–response
functions, denoted by b∗

i (L), are b∗

i (L) = bi(L)Bq(0)−1H and u∗
t =

H′Bq(0)′ut , respectively.
Model II (with static factor representation)

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit
Ft = DFt−1 + Kut .

(4.10)

Here Ft = (F1t . . . Frt )′ and ut = (u1t . . . uqt )′, D is r × r and
K is r × q. Again, ujt , j = 1, . . . , q and ξit , i = 1, . . . , n, t =

1, . . . , T are i.i.d. standard Gaussian and mutually independent
white noises. Moreover, λhi, h = 1, . . . , r , i = 1, . . . , n and
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the entries of K are independently, uniformly distributed on the
interval [−1, 1]. Finally, the entries of D are generated as follows:
first we generated entries independently, uniformly distributed
on the interval [−1, 1]; second, we divided the resulting matrix
by its spectral norm to obtain unit norm; third, we multiplied
the resulting matrix by a random variable uniformly distributed
on the interval [0.4, 0.9], to ensure stationarity while preserving
sizable dynamic responses. Precisely, bi(L) = λi(I − DL)−1K, λn
being the 1 × r matrix having λih as its (i, h) entry. To identify the
‘‘structural’’ shocks u∗

t and the corresponding impulse–response
functions b∗

i (L), we impose a Cholesky identification scheme on the
first q variables as in Model I.

4.2. Estimation details and accuracy evaluation

Let b∗

if (L) =
∑

∞

k=0b
∗

if ,kL
k be the f th entry of b∗

i (L). Our target is
the estimation of b∗

if ,k, i = 1, . . . , n, f = 1, . . . , q, k = 0, . . . , K
and u∗

ft , f = 1, . . . , q, t = 1, . . . , T , as well as the forecast of xi,T+1,
i = 1, . . . , n.

The structural impulse–response functions and the structural
shocks are estimated by FHLZ and FGLR. Both methods require the
calibration of some parameters. As regards FHLZ, we must specify
three things.

(i) The lag-window size in the estimation of the spectral density
Σ x(θ ). We use a Bartlett lag window of size BT =

√
T . Then the

spectral density Σχ (θ ) and the covariances γ χij,ℓ are estimated as
described in Section 3.2.

(ii) The number q of structural shocks. This number is assumed
to be known when estimating the structural shocks and impulse–
response functions. Identification is obtained by imposing the
same Cholesky scheme as above.

(iii) The order of each (q + 1)-dimensional VAR matrix Ak(L).
These orders are determined via the BIC criterion.

As regards FGLR, we estimate a VAR for the principal compo-
nents of the data. The number of principal components is either
assumed known or determined by Bai and Ng’s ICp2 criterion, the
number of lags is determined by the BIC criterion.

FHLZ forecasts are computed by filtering the estimated shocks
with the estimated impulse–response functions

x̂i,T+1 =

q∑
f=1

(
b̂∗

if ,1û
∗

fT + b̂∗

if ,2û
∗

f ,T−1 + · · ·

)
.

The number of structural shocks is no longer assumed to be known.
Rather, it is estimated by the Hallin and Liška (2007)method.5 SW
forecasts are obtained by regressing xi,T+1 onto either the ordinary
principal components at T and xiT , or the principal components at
T alone. The former method corresponds to the original Stock and
Watson (2002a) method; the latter is motivated by the fact that, in
both models (4.9) and (4.10) above, the idiosyncratic components
are serially uncorrelated. The number of principal components is
determined with Bai and Ng’s ICp2 criterion.

The estimation error for the impulse–response functions is
defined as the normalized sum of the squared deviations of the
estimated from the ‘‘structural’’ impulse–response coefficients.
Precisely, let b̂∗

if ,k be the estimated impulse–response coefficient of
variable i for shock f at lag k: the estimation error on the impulse–
response functions is measured by∑n

i=1
∑q

f=1
∑K

k=0

(
b̂∗

if ,h − b∗

if ,h

)2
∑n

i=1
∑q

f=1
∑K

k=0(b
∗

if ,k)2
. (4.11)

5 We used the log criterion ICT
2;n with penalty function p1 and lag window equal

to
√
T . The ‘‘second stability interval’’ was evaluated over the grid nj = ⌊(3n/4 +

jn/40)⌋, Tj = T , j = 1, . . . , 10.

The truncation lag K is set to 60. Similarly, denoting by û∗

ft the
estimate of u∗

ft , the estimation error on the ‘‘structural’’ shocks is
measured by∑q

f=1
∑T

t=1

(
û∗

ft − u∗

ft

)2∑q
f=1

∑T
t=1(u

∗

ft )2
.

Finally, the accuracy of the forecast is measured by the sum of
the squared deviations of the forecasts from the unfeasible target
obtained by filtering the true structural shocks with the true struc-
tural impulse–response functions, i.e. xPi,T+1 =

∑q
f=1
∑T

k=1b
∗

if ,k
u∗

f ,T+1−k. Again, we normalize by dividing by the sum of squared
target values:∑n

i=1

(
x̂i,T+1 − xPi,T+1

)2∑n
i=1(x

P
i,T+1)2

.

Model I is evaluated for different sample size combinations,
with n = 30, 60, 120, 240 and T = 60, 120, 240, 480. Model II
is evaluated for a fixed sample size of n = 120 and T = 240, but
different configurations of q and r , i.e. r = 4, 6, 8, 12 and q = 2,
4, 6, with r > q.6 For each couple (n, T ) in Model I, and each (r, q)
in Model II, the MSE’s corresponding to different estimators are
averaged over 500 replications.

Regarding FHLZ, note that in Model I we chose the values of
n such that n = m(q + 1). However, the same does not hold for
Model II when n = 6, nor of course in empirical applications, the
one in Section 5 in particular. In general, when n = m(q + 1) + ñ,
with ñ ̸= 0, each permutation, and subsequent estimation, is
obtained by selecting randomly n−ñ series from thewhole n-sized
dataset. Then the estimates of impulse–response functions or fore-
casts relative to variable i are averaged according to the number of
times the variable i has been selected.

4.3. Cross-sectional permutations

As argued in Section 3.5, the estimators obtained by the FHLZ
method should be averaged over different permutations of cross-
sectional items. In order to study the influence of such permuta-
tions, for various values of n and T , we simulated 500 datasets from
Model I, denoted by dk, k = 1, . . . , 500. For each of the resulting
panels, we computed (with the Cholesky identification rule de-
scribed in Section 4.1) the estimated impulse–response functions
averaged over µ = 1, . . . ,M randomly chosen permutations:

MSEn,T ,µ,dk =
1
µ

µ∑
j=1

MSE
pj
n,T ,dk

,

where MSE
pj
n,T ,dk

is the ratio (4.11) relative to the panel dk and
permutation pj. The expectation of MSEn,T ,µ,dk , given n, T and µ,
is estimated by the average of MSEn,T ,µ,dk over the 500 panels dk
and denoted by MSEn,T ,µ. The graphs of MSEn,T ,µ as a function of
µ, for some values of n and T , are plotted in Fig. 1. We see that

(i) as expected, estimates corresponding to different random
permutations do differ;

(ii) averaging those estimates yields a clear improvement of the
expected MSE;

(iii) the rate of that improvement declines steadily as the num-
ber µ of permutations increases, and rapidly stabilizes until
additional permutations produce a negligible effect;

(iv) as n and T increase, the improvement decreases, both in
absolute and relative terms, and the number of permuta-
tions required for ‘‘stabilization’’ decreases: 10 for (n = 60
and T = 120), only 5 for (n = 240 and T = 480).

6 We impose r > q since for the case r = q, in the FHLZ method, the regressors
of the (q + 1)-dimensional VARs are asymptotically collinear.
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Fig. 1. Model I, MSE for impulse–response functions, averaged firstly over µ permutations of the n variables, and secondly over 500 simulated datasets, as a function of
µ = 1, 2, . . . , 30, four combinations of n and T .

Summing up, in our model the estimator obtained by averag-
ing over random permutations stabilizes quite rapidly and pro-
vides a substantial reduction of the expected MSE. Using the US
monthly macroeconomic dataset known as the Stock and Watson
dataset, Forni et al. (2016) also obtain stabilization of the average
estimators with a small number of permutations.

4.4. Results

We now turn to a performance comparison between the FHLZ
method and its competitors. Table 1 in online Appendix F, reports
the results for the estimation of impulse–response functions and
structural shocks, Model I. The upper panel reports results for the
FHLZ method without averaging; the central panel for the FHLZ
with averaging over 30 reorderings; the lower panel for the FGLR
method. The estimates obtained with FGLR, although theoretically
inconsistent, do approach the target as n and T get larger. This is
because thenumber of estimated static factors increaseswithn and
T , so that the static model achieves a fairly good approximation
of the underlying ‘‘infinite-factor’’ model.7 Despite of this, FHLZ
clearly outperforms FGLR. Regarding impulse–response functions,
FHLZ, with and without averaging, dominates the static method
for all (n, T ) configurations. The error is up to 50%–60% smaller
than the corresponding one for FGLR. As for the shocks, the perfor-
mance of FHLZ with averaging is similar to that of FGLR for large
T , but dominates FGLR for small T . Forecast results are reported
in Table 2. Not surprisingly, the SW method (central and lower
panels) performs better when lagged xs are not included among
the regressors, owing to the fact that the idiosyncratic components
are serially uncorrelated. Indeed, we are comparing forecasts of
the common components of the xs, i.e. the χs, rather than the xs

7 The average r̂ is 2.01 for n = 30, T = 60 and 4.00 for n = 240, T = 480.

themselves. FHLZ forecasts (with averaging) outperform SW for
all (n, T ) configurations, with an improvement ranging from 20 to
40%.8 Observe that here we no longer impose the correct q, but
estimate it via the Hallin and Liška (2007) criterion, so that both
forecasts in the upper and central panels are feasible.

Table 3 reports results for Model II, estimation of impulse–
response functions and structural shocks. Here both FHLZ and FGLR
are consistent. Somewhat surprisingly, FHLZ (with averaging, up-
per panel) outperforms FGLR for all (r , q) configurations. With this
model, Bai and Ng’s criterion tends to underestimate the number
of factors.9 Hence, we computed the (unfeasible) FGLR estimation
obtained by imposing the correct r (lower panel), to see whether
the above result can be blamed on the underestimation of r . In
general, FGLR performs better when imposing the correct number
of factors; nonetheless, FHLZ still exhibits the best performance in
most cases.

Forecast errors, reported in Table 4, confirm the result that FHLZ
performs better than SW for most (r , q) configurations.

5. Empirical application

In this section, we present a pseudo real-time forecast evalua-
tion exercise with US quarterly data. We take as target variables
real GDP, real private fixed investment, real consumption expen-
ditures, the number of unemployed and the consumer price index.
We compare results obtained with FHLZ, SW and a simple uni-
variate autoregressive model. The forecasts are computed within a
rollingwindow scheme. An extensive pseudo real-time forecasting
analysis based on US monthly data is found in Forni et al. (2016).

8 FHLZ without averaging, not reported here, performs better than SW but not as
well as FHLZ with averaging, in line with the results in Table 1.
9 On average, r̂ is smaller than r for all n and T configurations.
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5.1. Data and methods

Weuse the same dataset as in Forni and Gambetti (2014), com-
plemented with the inclusion of twelve additional series, taken
from the Survey of Professional Forecasters, thus obtaining n =

73. The time span is 1968:Q4–2010:Q4.10 The data set includes
NIPA series, industrial production, employment and unemploy-
ment data, prices, interest rates, money, credit and financial data,
as well as leading indicators and survey series. To get stationarity,
we take first differences of logs for real variables and second
differences of logs for price indexes and money aggregates. The
complete list of the series, along with data treatment details, is
reported in online Appendix G.

After transformation, our series range from1969:Q1 to 2010:Q4,
thus T = 168. We choose t = 1985:Q4 as the starting date for
forecasting, so that 68 observations are used for the first estima-
tion. We then proceed with a rolling window of length 68 quarters
(17 years). At each t , t = 1985:Q4, . . . ,2009:Q4, we compute
h-quarter ahead forecasts for horizons h = 1, 2, 3, 4, thus 101 − h
forecasts for each h.

If xit denotes the transformed variable, our target is xi,t+h −

xit ; hence, we predict the growth rate of GDP, investment and
consumption, the percentage change of thenumber of unemployed
and the inflation rate variation, between t and t + h.

We compare the forecasts obtained by the dynamic method
(FHLZ), the static method (SW), and a univariate AR model. Fol-
lowing Stock and Watson (2012), we use an AR(4) model for all
variables.

As regards the calibration of the parameters in FHLZ (see Sec-
tion 4.2),

(i) We use, as in the simulation exercise, the rule of thumb
BT =

√
T , which gives BT = 8. However, we also report some

results obtained with BT = 12.11
(ii) The number of factors is kept fixed across all t . The Hallin

and Liška log criterion applied in the first sub-sample 1969:Q1–
1985:Q4 gives q = 4.12 The results with 2, 3, 4 and 5 factors
are similar, those with q = 2 being slightly worse. In Tables 5
and 6 we report results for three factor-window combinations:
(q = 3, BT = 8), (q = 4, BT = 8) and (q = 3, BT = 12).

(iii) As in the previous section, we use the BIC criterion to set
the number of lags in the (q + 1)-dimensional VARs.

FHLZ forecasts are computed by averaging across 30 random
permutations of the original ordering, as in the previous Section.13

Static factor forecasts are computed by regressing the target
variable onto the constant, the first r ordinary principal com-
ponents of the standardized data, and p lags of the dependent
variable.

(I) We keep the number of static factors r fixed for all t . The
Bai and Ng ICp2 criterion finds 6 factors for the first sub-sample
1969:Q1–1985:Q4. However, when using the refinement proposed
by Alessi et al. (2010), we are left with just 2 factors. The same
result of 2 factors is foundwith the Ahn and Horenstein Eigenvalue
Ratio and Growth Ratio criteria. We tried 2, 4 and 6 factors.

(II) As for p, we tried a fixed p = 0, 1, 4 and a floating p deter-
mined by the BIC criterion. We found that generally the inclusion
of the dependent variable does not improve results.14

10 The starting date of the sample is that of the series reported in the Survey.
11 We found very similar results for BT = 12 and BT = 16, whereas results are
considerably worse for BT = 4.
12 Weused the log criterion ICT

2;n with penalty function p1 andBT = 8. The ‘‘second
stability interval’’ was evaluated over the grid nj = n−15+j, Tj = 68, j = 1, . . . , 15.
We kept fixed Tj since the number of time observations is relatively small.
13 We first standardize the variables and estimate the model. Then we filter the
estimated shocks with the estimated impulse–response functions (truncation lag
= 60) and compute the simple average of the forecasts obtained with different
permutations. Finally we restore the original mean and standard deviation.
14 A similar result is found in D’Agostino and Giannone (2012).

In Tables 5 and 6, we report results for four (r, p) specifications:
(r = 2, p = 0), (r = 4, p = 0), (r = 6, p = 0), and (r = 4, p = 1).

The forecasting performance is evaluated by the mean square
forecast error, normalized by the mean square error of the autore-
gressive forecasts. We refer to this measure as the Relative Mean
Square Forecast Error (RMSFE). For example, a RMSFE equal to 0.8
means that themean square error is 20% smaller than that of AR(4)
forecasts.

5.2. Results

The results are reported in online Appendix F. Inspection of
Table 5 reveals the following main facts.

(I) Factormodels outperform the autoregressivemodel, accord-
ing to the RMSFE, with the noticeable exception of consumption.

(II) FHLZ generally outperforms the static method. For GDP and
inflation, FHLZ has the best RMSFE at all horizons, whereas for
investment and unemployment results are mixed.

(III) The improvement of FHLZ with respect to the benchmark
AR(4) model is substantial, particularly at longer horizons, reach-
ing about 30% for investment and inflation and 15%–20% for GDP
and unemployment. In several cases, the improvement is signifi-
cant according to the Diebold–Mariano test, particularly for GDP
and unemployment.

In Table 6, we report results for government spending, imports,
exports, labor productivity, total factor productivity, the federal
funds rate and stock prices, along with the average RMSFE for the
NIPA series included in the data set. Results are broadly in line
with the above findings. The performance of the dynamic method
is very good for all variables, as compared to the AR(4) benchmark,
with the exception of government spending and the industrial
production index, h = 1. Moreover FHLZ outperforms the static
method for most variables, particularly for h > 1.

We conclude that FHLZ, in this real-life dataset, outperforms
standard techniques in the prediction of most macroeconomic
variables, including GDP and inflation.

6. Conclusions

An estimate of the common-component spectral densitymatrix
Σ̂χ is obtained using the frequency-domain principal components
of the observations xit . The central idea of the present paper is that,
because Σ̂χ has large dimension but small rank q, a factorization
of Σ̂χ can be obtained piecewise. Precisely, the factorization of Σ̂χ

only requires the factorization of (q + 1)-dimensional subvectors
of χt . Under our assumption of a rational spectral density for the
common components, this implies that the number of parameters
to be estimated grows as n, not n2.

The rational spectral density assumption also has the important
consequences that χt has a finite autoregressive representation
and that the dynamic factor model can be transformed into the
static one zt = Rvt + φt , where zt = A(L)xt . We construct esti-
mators for A(L), R and vt starting with a standard non-parametric
estimator of the spectral density of the xs. This implies a slower
rate of convergence as compared to the usual T−1/2. However, in
Section 3, we prove that our estimators for A(L), R and vt do not
undergo any further reduction in their speed of convergence.

The main difference of the present paper with respect to the
previous literature on GDFM’s is that although we make use of a
parametric structure for the common components,we donotmake
the standard, but quite restrictive assumption that our dynamic
factormodel has a static representation of the form (1.4). Sections 4
and 5 provide important empirical support to the richer dynamic
structure of unrestricted GDFM’s.
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Appendix A. Proof of Proposition 6

Adding and subtracting E(σ̂ x
ij (θ

∗

h )) within the absolute value in

E
(
max|h|≤BT

⏐⏐σ̂ x
ij (θ

∗

h ) − σ x
ij (θ

∗

h )
⏐⏐2) and re-arranging yields

E
(
max
|h|≤BT

⏐⏐σ̂ x
ij (θ

∗

h ) − σ x
ij (θ

∗

h )
⏐⏐2) ≤ 2

[
E
(
max
|h|≤BT

⏐⏐σ̂ x
ij (θ

∗

h ) − Eσ̂ x
ij (θ

∗

h )
⏐⏐2)

+ E
(
max
|h|≤BT

⏐⏐Eσ̂ x
ij (θ

∗

h ) − σ x
ij (θ

∗

h )
⏐⏐2)]

(Cr -inequality for r = 2). The first term (variance) on the right-
hand side of the above inequality satisfies

E
(
max
|h|≤BT

⏐⏐σ̂ x
ij (θ

∗

h ) − Eσ̂ x
ij (θ

∗

h )
⏐⏐2) ≤ C∗(BT log BT/T ),

where C∗ depends only on p (see Assumption 8), ρ1 (see Proposi-
tion 5), δ (see Assumption 9). This is proved by letting ν = 2 in
Lemma 10 of Wu and Zaffaroni (2017).

As for the second term (the squared bias), simple calculations
give

Sij(θ ) = 2π
(
Eσ̂ x

ij (θ ) − σ x
ij (θ )

)
=
∑T−1

l=−T+1

(
1 −

|l|
T

)
K
(

l
BT

)
γ x
ij,l e

−ılθ
−
∑

∞

l=−∞
γ x
ij,l e

−ılθ

≤

⏐⏐⏐∑T−1
l=−T+1

(
K
(

l
BT

)
− 1

)
γ x
ij,l e

−ılθ
⏐⏐⏐

+

⏐⏐⏐∑T−1
l=−T+1 K

(
l
BT

)
|l|
T γ

x
ij,l e

−ılθ
⏐⏐⏐+ ⏐⏐∑

|l|≥T γ
x
ij,l e

−ılθ
⏐⏐

= AT
ij (θ ) + BT

ij (θ ) + CT
ij (θ ).

Assumptions 2 and 4 imply that, for some φ ∈ (0, 1) and some D,
|γ x

ij,l| ≤ |γ
χ

ij,l| + |γ
ξ

ij,l| ≤ Dφ|l|, for all i and j (see Eq. (2.9))). This
inequality and Assumption 9(i) ensure that, for some F and all i,
j and θ , AT

ij (θ ) ≤ FD
∑

∞

l=−∞
φ|l|(|l|/BT )κ ≤ [2DFφ/(1 − φ)2]T−δκ

= HT−δκ . Moreover, BT
ij (θ ) ≤ DT−1∑∞

l=−∞
φ|l|

|l| = [2Dφ/(1 −

φ)2]T−1
= KT−1, for all i, j, and θ . Finally, CT

ij (θ ) ≤ D
∑

|l|≥Tφ
|l|

|l|κ/T κ, since |l|κ/T κ ≥ 1 for |l| ≥ T . Hence, it follows that CT
ij (θ ) ≤

MT−κ
≤ MT−δκ for all i, j and θ . Thus,

Sij(θ )/2π ≤ KT−1
+ (H + M)T−δκ

≤ PT−µ,

where µ = min(δκ, 1), for all i, j and θ . Now, 2δκ > 1 − δ >

1− δ, by Assumption 9(ii). Hence, max|h|≤BT

⏐⏐Eσ̂ x
ij (θ

∗

h ) − σ x
ij (θ

∗

h )
⏐⏐2 ≤

P2T−2µ
≤ C∗∗(BT log BT/T ) for all i and j. □

Appendix B. Proof of Proposition 7

The proof below closely follows Forni et al. (2009). Denote by
µj(A), j = 1, 2, . . . , s, the (real) eigenvalues, in decreasing order, of

an s × s Hermitian matrix A, and by ∥B∥ =

√
µ1(B̃B) the spectral

norm of an s1 × s2 matrix B. The norm ∥B∥ coincides with the
Euclidean norm of B when B is a column matrix and is equal to
|µ1(B)| when B is square and Hermitian. Recall that, if B1 is s1 × s2
and B2 is s2 × s3, then

∥B1B2∥ ≤ ∥B1∥∥B2∥. (B.1)

We will use the fact that, for any two s × s Hermitian matrices A1
and A2,

|µj(A1 + A2) − µj(A1)| ≤ ∥A2∥, j = 1, . . . , s. (B.2)

This fact is an obvious consequence of Weyl’s inequality µj(A1 +

A2) ≤ µj(A1) + µ1(A2) (Franklin, 2000, p. 157, Theorem 1).
The proof of Proposition 7 is divided into several intermediate
propositions. Denote by Si the n × 1 matrix with 1 in entries
(i, 1) and 0 elsewhere, so that S ′

1A is the ith row of A, and define
ρT = T/BT log BT .

As most of the arguments below depend on equalities and in-
equalities that hold for all θ ∈ [−π, π ], the notation has been sim-
plified by dropping θ . Also, properties holding for max|h|≤BT F (θh),
where F is some function of θ , are often phrased as holding for
F uniformly in θ . The meaning of uniformity in i, or i and j, has been
clarified in the statement of Proposition 7.

All lemmas in this Appendix hold and are proved under As-
sumption 1 through 10.

Lemma 1. As T → ∞ and n → ∞,
(i) max|h|≤BT n

−1
∥Σ̂ x

− Σ x
∥ = OP (ρ

−1/2
T );

(ii) max|h|≤BT n
−1/2

∥S ′

i (Σ̂
x
− Σ x)∥ = OP (ρ

−1/2
T ) uniformly in i;

(iii) max|h|≤BT n
−1

∥Σ̂ x
− Σχ

∥ = OP (max(n−1, ρ
−1/2
T ));

(iv) max|h|≤BT n
−1/2

∥S ′

i (Σ̂
x
− Σχ )∥ = OP (max(n−1/2, ρ

−1/2
T )) =

OP (ζnT ) uniformly in i.

Proof. We have

µ1((Σ̂ x
− Σ x)( ˜̂Σ x

− Σ̃ x)) ≤ trace((Σ̂ x
− Σ x)( ˜̂Σ

x
− Σ̃ x))

=

n∑
i=1

n∑
j=1

|σ̂ x
ij − σ x

ij |
2
.

Using (3.4) and the Markov inequality,

n−2 max
|h|≤BT

n∑
i=1

n∑
j=1

|σ̂ x
ij − σ x

ij |
2

≤ n−2
n∑

i=1

n∑
j=1

max
|h|≤BT

|σ̂ x
ij − σ x

ij |
2

≤ Cρ−1
T .

Statement (i) follows. In the same way,

n−1S ′

i (Σ̂
x
− Σ x)( ˜̂Σ

x
− Σ̃ x)Si = n−1

n∑
j=1

|σ̂ x
ij − σ x

ij |
2

≤ Cρ−1
T ,

where C is independent of i. Statement (ii) follows. As regards (iii),
Σ x

= Σχ
+Σ ξ implies that Σ̂ x

−Σχ
= Σ̂ x

−Σ x
+Σ ξ , so that, by

the triangle inequality for matrix norm,

∥Σ̂ x
− Σχ

∥ ≤ ∥Σ̂ x
− Σ x

∥ + ∥Σ ξ
∥.

The statement follows from (i) and the fact that ∥Σ ξ
∥ = λ

ξ

1 is
bounded. Statement (iv) is obtained in a similar way, using (ii)
instead of (i). □

Lemma 2. As T → ∞ and n → ∞,
(i) max|h|≤BT n

−1
⏐⏐⏐λ̂xf − λ

χ

f

⏐⏐⏐ = OP (max(n−1, ρ
−1/2
T )) for f = 1, 2,

. . . , q;
(ii) letting

Gχ =

{
Iq if λχq = 0,

n(Λχ )−1 otherwise,
and

Ĝx
=

{
Iq if λ̂xq = 0,

n(Λ̂x)−1 otherwise,

max|h|≤BT n
−1

∥Λχ∥ andmax|h|≤BT ∥G
χ
∥ are O(1),max|h|≤BT n

−1
∥Λ̂x

∥

and max|h|≤BT ∥Ĝ
x
∥ are OP (1).

Proof. SettingA1 = Σχ andA2 = Σ̂ x
−Σχ , (B.2) yields |λ̂xf −λ

χ

f | ≤

∥Σ̂ x
−Σχ

∥; hence, statement (i) follows from Lemma1(iii). Bound-
edness of n−1

∥Λχ∥ and ∥Gχ∥, uniformly in θ , is a consequence of
Assumption 3. Boundedness in probability of n−1

∥Λ̂x
∥ and ∥Ĝx

∥,
uniformly in θ , follows from statement (i). □
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Lemma 3. As T → ∞ and n → ∞,
(i) max|h|≤BT n

−1
∥P̃χ P̂xΛ̂x

− Λχ P̃χ P̂x
∥ = OP (max(n−1, ρ

−1/2
T ));

(ii) max|h|≤BT ∥
˜̂PxPχ P̃χ P̂x

− Iq∥ = OP (max(n−1, ρ
−1/2
T ));

(iii) there exist diagonal complex orthogonal matrices Ŵq = diag
(ŵ1 ŵ2 · · · ŵq), |ŵj|

2
= 1, j = 1, . . . , q depending on n and T , such

that max|h|≤BT ∥
˜̂PxPχ − Ŵq∥ = OP (max(n−1, ρ

−1/2
T )).

Proof. Using inequality (B.1) and the fact that ∥P̃χ∥ = ∥P̂x
∥ = 1,

we have

∥P̃χ P̂xΛ̂x
− Λχ P̃χ P̂x

∥ = ∥P̃χ (Σ̂ x
− Σχ )P̂x

∥ ≤ ∥Σ̂ x
− Σχ

∥.

Statement (i) thus follows from Lemma 1(iii). Turning to (ii), set

a =
˜̂PxPχ P̃χ P̂x,

b =

[
˜̂PxPχ P̃χ P̂x

]
n−1Λ̂xĜx

=
˜̂PxPχ

[
P̃χ P̂xn−1Λ̂x

]
Ĝx,

c =
˜̂PxPχ

[
n−1Λχ P̃χ P̂x

]
Ĝx

=

[
n−1 ˜̂PxΣχ P̂x

]
Ĝx,

d =

[
n−1 ˜̂PxΣ̂ xP̂x

]
Ĝx

= n−1Λ̂xĜx,

and f = Iq: we have ˜̂P
x
Pχ P̃χ P̂x

− Iq
 ≤ ∥a − b∥ + ∥b − c∥ + ∥c − d∥ + ∥d − f∥.

(B.3)

Using Lemma 2, statement (i), and the boundedness in probabil-
ity, uniformly in θ , of ∥

˜̂PxPχ∥, ∥Ĝx
∥ and ∥

˜̂PxPχ P̃χ P̂x
∥, all terms

on the right-hand side of inequality (B.3) can be shown to be
OP (max(n−1, ρ

−1/2
T )), uniformly in θ .

Turning to (iii), note that, from statement (i), n−1 ˜̂Px
hP
χ

k (λ
χ

k −

λ̂xh) = OP (max(n−1, ρT
−1/2)).Assumption 3 (asymptotic separation

of the eigenvalues λχf (θ )) implies that, for h ̸= k, ˜̂Px
hP
χ

k = OP

(max(n−1, ρT
−1/2)). Moreover,

∑q
f=1|

˜̂Px
hP
χ

f |

2
− 1 = OP (max(n−1,

ρT
−1/2)) from statement (ii). Therefore,

|
˜̂Px
hP
χ

h |

2
− 1 = (| ˜̂Px

hP
χ

h | − 1)(|P̃χh P̂
x
h| + 1) = OP (max(n−1, ρT

−1/2)).

The conclusion follows. □

Note that Lemma 3 clearly also holds for n−1
∥
˜̂PxPχΛχ − Λ̂x ˜̂Px

Pχ∥, ∥P̃χ P̂x ˜̂PxPχ − Iq∥ and ∥
˜̂Pχ P̂x

−
˜̂Wq∥.

Lemma 4. As T → ∞ and n → ∞,

max
|h|≤BT

∥S ′

i

(
Pχ (Λχ )1/2Ŵq − P̂x(Λ̂x)1/2

)
∥ = OP (ζnT ), (B.4)

uniformly in i.

Proof. We have

∥S ′

i (P
χ (Λχ )1/2Ŵq − P̂x(Λ̂x)1/2)∥

≤ ∥S ′

i (n
1/2PχŴq − n1/2P̂x)(n−1Λχ )1/2∥

+ ∥S ′

i P̂
x(n−1/2(Λχ )1/2 − n−1/2(Λ̂x)1/2)∥.

By Lemma 2(i), thus, we only need to prove that

∥n1/2S ′

iP
χŴq − n1/2S ′

i P̂
x
∥ = OP (max(n−1/2, ρT

−1/2)).

Firstly, we show that

∥n1/2S ′

iP
χ
∥ ≤ A, (B.5)

for some A and all θ and i. Assumption 2 implies that σ χii =∑q
f=1λ

χ

f |pχif |
2

≤ B, for some B and all θ and i. As all the terms in

the sum are positive, λχf |pχif |
2

= (λχf /n)n|p
χ

if |
2

≤ B, for all θ and i.
By Assumption 3, λχf /n ≥ C > 0 for all θ and f , so that n|pχif |

2
≤ D

for all θ and i. Hence, n S ′

iP
χ P̃χSi is bounded uniformly in θ and i;

(B.5) follows. Next, define

g = n1/2S ′

iP
χ
[
Ŵq

]
,

h = n1/2S ′

iP
χ
[
P̃χ P̂x

]
= n1/2S ′

iP
χ
[P̃χ P̂xΛ̂x/n](Λ̂x/n)−1,

i = n1/2S ′

iP
χ
[(Λχ/n)P̃χ P̂x

](Λ̂x/n)−1
= [n−1/2S ′

iΣ
χ
]P̂x(Λ̂x/n)−1,

and

j = [n−1/2S ′

i Σ̂
x
]P̂x(Λ̂x/n)−1

= n1/2S ′

i P̂
x.

Lemma 3(iii) and inequality (B.5) imply that ∥g − h∥ is OP (max
(n−1, ρT

−1/2)) uniformly in θ and i. Inequality (B.5), Lemma 3(i) and
Lemma 2(ii) imply that ∥h − i∥ is OP (max(n−1, ρT

−1/2)) uniformly
in θ and i. Moreover, ∥P̂x(Λ̂x/n)−1

∥ = OP (1), uniformly in θ , by
Lemma 2(ii) and the fact that ∥P̂x

∥ = 1. Thus, using Lemma 1(iv), it
is seen that, uniformly in θ and i, ∥i − j∥ is OP (max(n−1/2, ρT

−1/2)).
The result follows. □

Proposition 7 now follows from

Σ̂χ
=

[
P̂x(Λ̂x)1/2] [(Λ̂x)1/2 ˜̂P

x]
= P̂χ Λ̂χ ˆ̃P

χ

and

Σχ
=

[
Px(Λx)1/2Ŵq

] [
ˆ̃Wq
(
Λx)1/2P̃x

]
= PχΛχ P̃χ . □

Note that the eigenvectors Pχ are defined up to post-
multiplication by a complex diagonal matrix with unit modulus
diagonal entries. In particular, using the eigenvectorsΠ χ

= PχŴq,
(B.4) would hold forΠ χ (Λχ )1/2−P̂x(Λ̂x)1/2 . For the sake of simplic-
ity, we avoid introducing a new symbol and henceforth refer to the
result of Lemma 4 as

max
|h|≤BT

∥S ′

1(P
χ (Λχ )1/2 − P̂x(Λ̂x)1/2 )∥ = OP (max(n−1/2, ρT

−1/2)) (B.6)

and the result of Lemma 3(iii) as

∥
˜̂PxPχ − Iq∥ = OP (max(n−1, ρT

−1/2)).

In the same way, we drop Ŵq in Lemmas 6–8, though not in the
conclusion of Appendix D, nor in Appendix E.

Appendix C. Proof of Proposition 9

To start with, note that, as the extreme right-hand side in (3.7)
contains the term
πB
BT

∑
|h|≤BT

(
|eıℓθ

∗
h−1 − eıℓθ̃

∗
h−1 | + |eıℓθ̃

∗
h−1 − eıℓθ

∗
h−1 |

)
,

convergence in (3.8) is not uniform with respect to ℓ. However,
estimation of thematrices Bχk and Cχjk only requires the covariances
γ̂
χ

ij,ℓ with ℓ ≤ S, where S is finite. Therefore, Proposition 8 implies
that ∥B̂χk − Bχk ∥ and ∥Ĉχjk − Cχjk∥ are OP (max(n−1/2, ρ

−1/2
T )). From

(2.18), applying (B.1),

∥Â[k]
− A[k]

∥ ≤ ∥B̂χk ∥∥(Ĉχkk)
−1

−
(
Cχkk
)−1

∥ + ∥B̂χk − Bχk ∥∥
(
Cχkk
)−1

∥.

By Assumption 2, ∥Bχk ∥ ≤ W for some constant W > 0, so that

∥B̂χk ∥ is bounded in probability. By Assumptions 2 and 7, ∥
(
Cχkk
)−1

∥

≤ W1 for some W1 > 0. Observing that the entries of
(
Cχkk
)−1 are

rational functions of the entries of Cχkk, and that det
(
Cχkk
)
> 0 by

Assumption 7, Proposition 8 implies that ∥(Ĉχkk)
−1

−
(
Cχkk
)−1

∥ is
OP (max(n−1/2, ρ

−1/2
T )).

The conclusion follows. □
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Appendix D. Proof of Proposition 10

Consider the staticmodel Znt = Rvt+Φnt . If Znt = A(L)xnt were
observed, i.e. if thematrices A(L) were known, then Proposition 10,
with an estimator of R based on the empirical covariance Γ z of
the Znt , would be straightforward. However, we only have access
to Ẑnt = Â(L)xt and its empirical covariance matrix Γ̂ z , which
makes the estimation of R significantly more difficult. The consis-
tency properties of our estimator follow from the convergence re-
sult (D.4) in Lemma 11, which establishes the asymptotic behavior
of the difference Γ z

− Γ̂ z; Lemmas 5–10 are but a preparation for
that key result. All lemmas in this Appendix hold, and are proved
under Assumptions 1–10.

Lemma 5. For f = 1, . . . , q, as T → ∞ and n → ∞,

(i) |pχif |= O(n−1/2) and |p̂xif |= OP (n−1/2), uniformly in θ and i;
(ii) for any positive integer d, n−1∑n

i=1|p
χ

if |
d and n−1∑n

i=1|p̂
x
if |

d are
O(n−d/2) and OP (n−d/2), respectively, uniformly in θ .

Proof. The first part of (i) follows from (B.5). As regards the second
part, let us first prove that σ̂ x

ii isOP (1) uniformly in θ and i. We have

max
h
σ̂ x
ii (θh) ≤ max

h
σ x
ii (θh) + max

h
|σ̂ x

ii (θh) − σ x
ii (θh)|.

By Assumptions 2 and 4, the first term on the right-hand side is
bounded uniformly in i. By the Markov inequality and (3.4),

P(max
h

|σ̂ x
ii (θh) − σ x

ii (θh)| ≥ η) ≤ η−2E
(
max
|h|≤BT

⏐⏐σ̂ x
ii (θ

∗

h ) − σ x
ii (θ

∗

h )
⏐⏐2)

≤ η−2C(T−1BT log BT ).

Thus, for any ϵ > 0, we can set

η(ϵ) ≥

[
maxT C(T−1BT log BT )

ϵ

]1/2
,

irrespective of θh and i. Because σ̂ χii ≤ σ̂ x
ii , we have that σ̂ χii =∑q

f=1λ̂
x
f |p̂

x
if |

2
= OP (1) uniformly in θ and i. As all the terms in the

sumare positive, λ̂xf |p̂
x
if |

2
= (λ̂xf /n)n|p̂

x
if |

2 isOP (1) aswell, uniformly
in θ and i. Lemma 2(i) and Assumption 3 imply that λ̂xf /n is OP (1)
and bounded away from zero in probability uniformly in θ . The
conclusion follows.

Statement (ii) is proved by induction. Consider Pχf . It follows
from statement (i) that n−1∑n

i=1|p
χ

if | is O
(
n−1/2

)
, uniformly in θ .

Assume now that the result holds for d − 1, with d ≥ 2. Using the
first part of (i), uniformity in i in particular, we have

n−1
n∑

i=1

|pχif |
d

= n−1
n∑

i=1

|pχif |
d−1

|pχif |

≤
(
max
i≤n

|pχif |
)
n−1

n∑
i=1

| pχif |
d−1

= O(n−1/2 n−(d−1)/2)

= O
(
n−d/2) .

The same argument applies to P̂x
f . □

Lemma 6. As T → ∞ and n → ∞,

max
|h|≤BT

Pχ(Λχ)1/2 − P̂x(Λ̂x)1/2 = OP (n1/2 max(n−1, ρ
−1/2
T )). (D.1)

Proof. The left-hand side of (D.1) equals the left-hand side of (B.4)
when Si is replaced by In. The proof goes along the same lines as
that of Lemma 4. Firstly, ∥n1/2Pχ∥ is O(n1/2). Both ∥g − h∥ and
∥h − i∥ are OP (n1/2 max(n−1, ρ

−1/2
T )). As for ∥i − j∥, the conclusion

follows from Lemma 1(iii). □

Lemma 7. For f = 1, . . . , q, as T → ∞ and n → ∞, |pχif − p̂xif | =

OP (n−1/2 max(n−1/2, ρ
−1/2
T )), uniformly in θ and i.

Proof. By (B.6), pχif (λ
χ

f )
1/2

− p̂xif (λ̂
x
f )

1/2
= OP (max(n−1/2, ρ

−1/2
T )),

uniformly in θ and i. Now,

pχif (λ
χ

f )
1/2

− p̂x(λ̂xf )
1/2

= pχif
(
(λχf )

1/2
− (λ̂xf )

1/2
)

+ (λ̂xf )
1/2 (pχif − p̂xif

)
. (D.2)

The former term on the right-hand side can be written as

n1/2pχif
(λχf − λ̂xf )/n(

(λχf )1/2 + (λ̂xf )1/2
)
/n1/2

,

which is OP (max(n−1, ρ
−1/2
T )), uniformly in θ and i, since the nu-

merator isOP (max(n−1, ρ
−1/2
T )), uniformly in θ , by Lemma 2(i); the

denominator is bounded away from zero, uniformly in θ , by As-

sumption 3 and n1/2pχif is O(1), uniformly in θ and i, by Lemma 5(i).
It follows that the latter term in (D.2), (λ̂xf )

1/2
(
pχif − p̂xif

)
, is

OP (max(n−1/2, ρ
1/2
T )), uniformly in θ and i. By Lemma 2(ii),

n−1/2(λ̂xf )
1/2 is bounded away from zero in probability, uniformly

in θ . The result follows. □

Lemma 8. For any integer d ∈ N, for f = 1, . . . , q, as T → ∞ and

n → ∞,

n−1
n∑

i=1

|pχif − p̂xif |
d

= OP ((n−1 max(n−1, ρ−1
T ))d/2), (D.3)

uniformly in θ .

Proof. Lemma 7 implies that
(
maxi≤n|p

χ

if − p̂xif |
)
, and therefore

n−1∑n
i=1|p̂

x
if − pχif |, are OP ((n−1 max(n−1, ρ−1

T ))1/2), uniformly in θ .

By induction, assume now that the result holds for d − 1, d ≥ 2.

We have

n−1
n∑

i=1

| pχif − p̂xif |
d

= n−1
n∑

i=1

| pχif − p̂xif |
d−1

| pχif − p̂xif |

≤
(
max
i≤n

| pχif −p̂xif |
)
n−1

n∑
i=1

| pχif − p̂xif |
d−1

= OP ((n−1 max(n−1, ρ−1
T ))1/2)

× OP
(
(n−1 max(n−1, ρ−1

T ))(d−1)/2),
uniformly in θ , as was to be shown. □

Lemma 9. For n → ∞ and T → ∞, uniformly in θ ,

(i) n−2∑n
i=1
∑n

j=1|σ̂
χ

ij (θ ) − σ
χ

ij (θ )|
d

= OP ((max(n−1, ρ−1
T ))d/2);

(ii) n−1∑n
i=1 | σ̂

χ

ij (θ )−σ
χ

ij (θ )|
d

= OP ((max(n−1, ρ−1
T ))d/2) for any

1 ≤ j ≤ n;

(iii) n−1∑n
i=1 | σ̂

χ

ii (θ ) − σ
χ

ii (θ )|
d

= OP ((max(n−1, ρ−1
T ))d/2).
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Proof. We have

σ̂
χ

ij − σ
χ

ij = (λ̂x1 − λ
χ

1 )p̂
x
i1

¯̂pxj1 + · · · + (λ̂xq − λχq )p̂
x
iq
¯̂p
x
jq

+ λ
χ

1 p̂
x
i1( ¯̂p

x
j1 − p̄χj1)

+ λ
χ

1 p̄
χ

j1(p̂
x
i1 − pχi1) + · · · + λχq p̂

x
iq( ¯̂p

x
jq − p̄χjq)

+ λχq p̄
χ

jq(p̂
x
iq − pχiq).

Using the triangular and Cr inequalities, by Lemmas 2, 5 and 8,

n−2
n∑

i=1

n∑
j=1

| σ̂
χ

ij − σ
χ

ij |
d

≤ (3q)d−1

(
| λ

χ

1 − λ̂x1|
d
(
n−1

n∑
i=1

| p̂xi1|
d
)2

+ · · · + | λχq − λ̂xq|
d
(
n−1

n∑
i=1

| p̂xiq|
d
)2)

+ (3q)d−1(λχ1 )
d

(
n−2

n∑
i=1

| p̂xi1|
d

n∑
j=1

| pχj1 − p̂xj1|
d

+ n−2
n∑

j=1

| pχj1|
d

n∑
i=1

| pχi1 − p̂xi1|
d

)
+ · · ·

+ (3q)d−1(λχq )
d

(
n−2

n∑
i=1

| p̂xiq|
d

n∑
j=1

| pχjq − p̂xjq|
d

+ n−2
n∑

j=1

| pχjq|
d

n∑
i=1

| pχiq − p̂xiq|
d

)
= OP ((max(n−1, ρ

−1/2
T ))d) + OP ((max(n−1, ρ−1

T ))d/2)
= OP ((max(n−1, ρ−1

T ))d/2).

Statement (i) follows. For statement (ii),

n−1
n∑

i=1

| σ̂
χ

ij − σ
χ

ij |
d

≤ (3q)d−1
(

| λ
χ

1 − λ̂x1|
d
|p̂xj1|

d n−1
n∑

i=1

|p̂xi1|
d

+ · · ·+ | λχq − λ̂xq|
d
|p̂xjq|

d n−1
n∑

i=1

| p̂xiq|
d
)

+ (3q)d−1(λχ1 )
d
(⏐⏐pχj1 − p̂xj1

⏐⏐d n−1
n∑

i=1

⏐⏐p̂xi1⏐⏐d
+
⏐⏐pχj1⏐⏐d n−1

n∑
i=1

| pχi1 − p̂xi1|
d
)

+ · · ·

+ (3q)d−1(λχq )
d
(⏐⏐pχjq − p̂xjq

⏐⏐d n−1
n∑

i=1

⏐⏐p̂xiq⏐⏐d
+
⏐⏐pχjq⏐⏐d n−1

n∑
i=1

| pχiq − p̂xiq|
d
)

= OP ((max(n−1, ρ
−1/2
T ))d) + OP ((max(n−1, ρ−1

T ))d/2)
= OP ((max(n−1, ρ−1

T ))d/2).

Statement (iii) follows along the same lines, by setting j = i. □

Lemma 10. For n → ∞ and T → ∞, n−2∑S
ℓ=0
∑n

i=1
∑n

j=1 | γ̂
χ

ij,ℓ −

γ
χ

ij,ℓ|
d and, for any given j in {1, . . . , n}, n−1∑S

ℓ=0
∑n

i=1 | γ̂
χ

ij,ℓ−γ
χ

ij,ℓ|
d,

are OP
(
(max(n−1, ρ−1

T ))d/2
)
.

Proof. We have |γ̂
χ

ij,ℓ−γ
χ

ij,ℓ| ≤ Uij +Vℓ+Wij,where Uij, Vℓ andWij
are the terms in the extreme right-hand side of (3.7). Using the Cr

inequality, we get

n−2
n∑

i=1

n∑
j=1

|γ̂
χ

ij,0 − γ
χ

ij,0|
d

≤ n−23d−1
n∑

i=1

n∑
j=1

Ud
ij

+ n−23d−1
n∑

i=1

n∑
j=1

Vd
ℓ + n−23d−1

n∑
i=1

n∑
j=1

Wd
ij .

The first term on the right-hand side is bounded in view of
Lemma 9. Since ℓ takes only a finite number of values, the sec-
ond term is O(B−d

T ) (see the proof of Proposition 9). Because the
functions σ x

ij are of bounded variation uniformly in i and j, see
Proposition 2, the third term is O(B−d

T ). The same argument used
to obtain Proposition 8 applies. The second statement is proved in
the same way. □

We are now able to state and prove the main lemma of this
section. We keep assuming that n = m(q + 1), so that the dataset
increases by blocks of size q + 1.

Lemma 11. Denoting by Ẑ the T × n matrix with Ẑit in entry (t, i),
let Γ̂ z

= Ẑ′Ẑ/T . Then, as n → ∞ and T → ∞,

n−1
∥Γ̂ z

− Γ z
∥ = OP (ζnT ) and

n−1/2
∥S ′

i (Γ̂
z
− Γ z)∥ = OP (ζnT ), (D.4)

where Γz is the population covariance matrix of Znt .

Proof. Denote by Γ̌z
= Z′Z/T the empirical covariance matrix we

would compute from the Znts if thematrices A(L) were known.We
have

∥Γ̂ z
− Γ z

∥ ≤ ∥Γ̂ z
− Γ̌ z

∥ + ∥Γ̌ z
− Γ z

∥, (D.5)

so that the lemma can be proved by showing that (D.4) holds with
∥Γ̂ z

−Γ z
∥ replaced by any of the two terms on the right-hand side

of (D.5).
First consider ∥Γ̌ z

− Γ z
∥. Since A(L) = In − A1L − · · · − ASLS,

where

As =

⎛⎜⎜⎜⎝
A1
s 0 · · · 0
0 A2

s · · · 0
...

. . .

0 0 · · · Am
s

⎞⎟⎟⎟⎠ , s = 1, . . . , S

and A0 = In, we obtain

∥Γ̌ z
− Γ z

∥
2

≤

S∑
s=0

S∑
r=0

∥AsΓ̂
x
s−rA

′

r − AsΓ
x
s−rA

′

r∥
2

=

S∑
s=0

S∑
r=0

∥As
(
Γ̂ x
s−r − Γ x

s−r

)
A′

r∥
2, (D.6)

which is a sum of (S + 1)2 terms, where we set Γ̂ x
s−r = T−1∑T

t=1xt−rx′
t−s. Inspection of the right-hand side of (D.6) shows

that (D.4) holds, with ∥Γ̂ z
− Γ z

∥ replaced with ∥Γ̌ z
− Γ z

∥, under
Assumptions 2 and 7, and in view of Propositions 2 and 6.

Turning to ∥Γ̂ z
− Γ̌ z

∥, since

∥Γ̂ z
− Γ̌ z

∥
2

≤

S∑
s=0

S∑
r=0

∥ÂsΓ̂
x
s−r Â

′

r − AsΓ̂
x
s−rA

′

r∥
2,

it is sufficient to prove that (D.4) still holdswith ∥Γ̂ z
−Γ z

∥ replaced
with any of the ∥ÂsΓ̂

x
s−r Â′

r − AsΓ̂
x
s−rA′

r∥s. Denoting by ajsα , 1 ≤ α ≤



90 M. Forni et al. / Journal of Econometrics 199 (2017) 74–92

q + 1, the αth column of Aj
s
′

, we have

∥ÂsΓ̂ x
s−r Â

r′
− AsΓ̂ x

s−rA
r ′
∥
2

≤

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
âj′sαΓ̂

x
jk,s−r â

k
rβ − aj′sαΓ̂

x
jk,s−ra

k
rβ

)2
≤ 2

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − aj′sα)Γ̂

x
jk,s−r â

k
rβ

)2
+ 2

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
aj′sαΓ̂

x
jk,s−r (â

k
rβ − akrβ )

)2
,

(D.7)

where Γ̂ x
jk,s−r is the (j, k)-block of Γ̂ x

s−r , and the second inequality
follows from applying the Cr inequality to each term of the form

(âj′sαΓ̂
x
jk,s−r â

k
rβ − aj′sαΓ̂

x
jk,s−ra

k
rβ )

2

= ((âjsα − ajsα)
′Γ̂ x

jk,s−r â
k
rβ − aj′sαΓ̂

x
jk,s−r (â

k
rβ − akrβ ))

2.

The two terms on the right-hand side of (D.7) can be dealt with in
the same way. Let us focus on the first of them. Using twice the
Cauchy–Schwarz inequality, then subsequently the Cr and Jensen
inequalities, we obtain

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)
′Γ̂ x

jk,s−r â
k
rβ )

2

≤

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)
′(âjsα − ajsα

)
âk′rβ Γ̂

x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

=

m∑
k=1

q+1∑
β=1

m∑
j=1

q+1∑
α=1

(âjsα − ajsα)
′(âjsα − ajsα)â

k′
rβ Γ̂

x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

≤

m∑
k=1

q+1∑
β=1

[ m∑
j=1

[ q+1∑
α=1

(âjsα − ajsα)
′(âjsα − ajsα)

]2]1/2
×

[ m∑
j=1

(
âk

′

rβ Γ̂
x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

)2]1/2
= m

[ m∑
j=1

[ q+1∑
α=1

(âjsα − aj′sα)(â
j
sα − ajsα)

]2]1/2
×

1
m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβ Γ̂

x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

)2]1/2
≤ AB, say,

where

A = m(q + 1)1/2
[ m∑

j=1

q+1∑
α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

and

B =
1
m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβ Γ̂

x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

)2]1/2
≤

[
(q + 1)/m

m∑
k=1

q+1∑
β=1

m∑
j=1

(
âk′rβ Γ̂

x′
jk,s−r Γ̂

x
jk,s−r â

k
rβ

)2]1/2
= C, say.

First consider A. Letting aj′sα = (ajsα,1 ajsα,2 · · · ajsα,q+1), note that
ajsα,δ = e′

αA[j]gsδ , where eα and gsδ stand for the αth and (s−1)(q+

1) + δth unit vectors in the (q + 1)- and (q + 1)S-dimensional
canonical bases, respectively. Writing, for the sake of simplicity, Bj
and Cj instead of Bχj and Cχjj , as defined in (2.16) and (2.17), we

obtain, from (B.1), and applying subsequently the Cr , the triangular,
the Cr again and then twice the Cauchy–Schwarz inequalities,[

m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

≤ (q + 1)1/2
( m∑

j=1

q+1∑
α=1

q+1∑
δ=1

(âjsα,δ − ajsα,δ)
4
)1/2

= (q + 1)1/2
( m∑

j=1

q+1∑
α=1

q+1∑
δ=1

[
eα
(
(B̂j − Bj)Ĉ−1

j + BjĈ−1
j (Ĉj − Cj)C−1

j

)
gsδ

]4)1/2

≤ 23/2(q + 1)3/2
( m∑

j=1

∥(B̂j − Bj)Ĉ−1
j ∥

4
+ ∥BjĈ−1

j (Ĉj − Cj)C−1
j ∥

4
)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

∥B̂j − Bj∥
8
]1/2[ m∑

j=1

∥Ĉ−1
j ∥

8
]1/2

+

[ m∑
j=1

∥Ĉj − Cj∥
8
]1/2[ m∑

j=1

∥B̂jĈ−1
j ∥

8
∥C−1

j ∥
8
]1/2)

1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

∥B̂j − Bj∥
8
]1/2[ m∑

j=1

∥Ĉ−1
j ∥

8
]1/2

+

[ m∑
j=1

∥Ĉj − Cj∥
8
]1/2[ m∑

j=1

∥B̂j∥
16
] 1

4
[ m∑

j=1

∥Ĉ−1
j ∥

16
∥C−1

j ∥
16
] 1

4
)

1/2.

Denoting by bjiδ the entries of Bj, i = 1, . . . , q+1, δ = 1, . . . , S(q+

1), the Cr inequality and Lemma 10 entail

m∑
j=1

∥B̂j − Bj∥
8

≤

m∑
j=1

( q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − bjiδ)
2
)4

≤ (q + 1)6S3
m∑
j=1

q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − bjiδ)
8

= OP (m(max(n−1, ρ−1
T ))4).

In a similar way, one can prove that
∑m

j=1∥Ĉj − Cj∥
8 is OP (m

(max(n−1, ρ−1
T ))4). Moreover, Assumptions 2 and 7 together with

Lemma 10 imply that
∑m

j=1∥B̂j∥
16 and

∑m
j=1∥C

−1
j ∥

16, as well as∑m
j=1∥Ĉ

−1
j ∥

8 and
∑m

j=1∥Ĉ
−1
j ∥

16, are OP (m).
Collecting terms yields

A = m(q + 1)1/2
[ m∑

j=1

q+1∑
α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

≤ 23/2(q + 1)2m
( m∑

i=1

∥Âi
s − Ai

s∥
4
)1/2

= OP
(
m3/2 max(n−1, ρ−1

T )
)
. (D.8)

Turning to C, we obtain, by means of similar methods,

C ≤ ((q + 1)/m)1/2
{[ m∑

k=1

( q+1∑
β=1

(âk′rβ â
k
rβ )

2
)2]1/2

×

[ m∑
j=1

( m∑
k=1

(
trace[Γ̂ x′

jk,s−r Γ̂
x
jk,s−r ]

)4)1/2]}1/2

≤ ((q + 1)/m)1/2
{[

(q + 1)
m∑

k=1

q+1∑
β=1

(âk′rβ â
k
rβ )

4
]1/2

×

[ m∑
j=1

( m∑
k=1

(
trace[Γ̂ x′

jk,s−r Γ̂
x
jk,s−r ]

)4)1/2]}1/2
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≤ (q + 1)1/2
[
(q + 1)4

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ )
8
]1/4

×

[
m−1

m∑
j=1

m∑
k=1

(
trace[Γ̂ x′

jk,s−r Γ̂
x
jk,s−r ]

)4]1/4

≤ (q + 1)3/2
[ m∑

k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ )
8
]1/4

×

[
((q + 1)6/m)

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(γ̂ x
jk,αβ (s − r))8

] 1
4

= OP (m1/2),

where γ̂ x
jk,αβ (s − r) stands for the (α, β) entry of Γ̂ x

jk,s−r . Collecting
terms again, we get

m−1
∥ÂsΓ̂

x
s−r Â

′

r − AsΓ̂
x
s−rA

′

r∥ ≤

(
1
m2AC

)1/2

= OP (ζnT ) , r, s = 0, . . . , S.

Now consider the second statement in (D.4). Again, it is suf-
ficient to prove that it holds with ∥Γ̂ z

− Γ z
∥ replaced with any

of the ∥ÂsΓ̂
x
s−r Â′

r − AsΓ̂
x
s−rA′

r∥s. The two terms on the right-hand
side of (D.7) must be dealt with separately. In the first of those
two terms, dropping one of the summations for k = 1, . . . ,m and
setting k = i,

m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − ajsα)

′Γ̂ x
ji,s−r â

i
rβ

)2
= OP

(
m(max(n−1, ρ−1

T ))
)
.

Indeed, the left-hand side is bounded by a product DE , say, where

D = m1/2(q + 1)1/2
[ m∑

j=1

q+1∑
α=1

(
(âjsα − ajsα)

′(âjsα − ajsα)
)2]1/2

and

E =

q+1∑
β=1

( 1
m

m∑
j=1

(
âi′rβ Γ̂

x′
ji,s−r Γ̂

x
jk,s−r â

i
rβ

)2)1/2
can be bounded along the same lines asA and B in the proof of the
first statement.

As for the second termof (D.7), using arguments similar to those
used in the first part of the proof, we obtain

m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âisα − aisα)

′Γ̂ x′
jk,s−ra

j
rβ

)2
≤ m

[[ q+1∑
α=1

(âisα − aisα)
′(âisα − aisα)

]2]1/2
×

[
1
m

m∑
j=1

q+1∑
β=1

(aj′rβ Γ̂
x
ji,s−r Γ̂

x′
ji,s−ra

j
rβ )

= FG, say.

It easily follows from Proposition 9 that F = OP (m ζ 2nT ), while
G = OP (1) can be obtained from the arguments used to bound C
in the proof of the first statement. Collecting terms, we obtain, as
desired,

m−1/2
∥S ′

i (ÂsΓ̂
x
s−r Â

′

r − AsΓ̂
x
s−rA

′

r )∥ = Op (ζnT ) , r, s = 0, . . . , S. □

Starting with Lemma 11, which plays here the same role as
Proposition 6 does for the proof of Proposition 7, we can easily
prove statements that replicate in this context Lemmas 1–4, using
the same arguments as in Appendix B, with x, χ and ξ replaced by
Z , Ψ andΦ , respectively. More precisely,

(I) In the results corresponding to Lemma 1 we obtain the rate
ζnT for (i), (ii), (iii) and (iv). Note that no reduction from
1/n to 1/

√
n occurs between (iii) and (iv), as in Lemma 1.

For, (iii) has OP (ζnT ) + O(1/n) = OP (ζnT ), while (iv) has
OP (ζnT ) + O(1/

√
n), which is OP (ζnT ).

(II) The same rate ζnT is obtained for the results of Lemma 2.
(III) The same holds for Lemma 3. The orthogonalmatrix in point

(iii), call it again Ŵq, has either 1 or−1 on the diagonal; thus
˜̂Wq = Ŵq.

(IV) Lastly, Lemma 4 becomesS ′

i

(
P̂z(Λ̂z)1/2

− Pψ
(
Λψ
)1/2Ŵq

)  =

R̂i − RiŴq


= OP (ζnT ) . (D.9)

Going over the proof of Lemma 4, we see that ∥i− j∥ has the
worst rate, whereas here ∥g−h∥, ∥h− i∥ and ∥i− j∥ all have
rate OP (ζnT ). This completes the proof of Proposition 10. □

Finally, in the same way as the proof of Lemma 4 can be repli-
cated to obtain (D.9), the proof of Lemma 6 can be replicated to
obtain

∥P̂z(Λ̂z)1/2 − Pψ (Λψ )1/2Ŵq∥ = OP
(
n1/2ζnT

)
. (D.10)

Appendix E. Proof of Proposition 11

We have

v̂t =
(
(Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2

)−1(Λ̂z)1/2P̂z′Ẑt = (Λ̂z)−1/2P̂z′Ẑt

= (Λ̂z)−1/2P̂z′(Â(L) − A(L)
)
xt

+
(
(Λ̂z)−1/2P̂z′

− Ŵq(Λψ )−1/2Pψ ′
)
A(L)xt

+ Ŵq(Λψ )−1/2Pψ ′A(L)ξt + Ŵq(Λψ )−1/2Pψ ′Pψ (Λψ )1/2vt .
(E.11)

Considering the first term on the right-hand side of (E.11),

∥(Λ̂z)−1/2P̂z′(Â(L) − A(L)
)
xt∥

= ∥(Λ̂z/n)−1/2P̂z′n−1/2(Â(L) − A(L)
)
xt∥

≤ ∥(Λ̂z/n)−1/2
∥∥P̂z′

∥∥n−1/2(Â(L) − A(L)
)
xt∥.

Since ∥(Λ̂z/n)−1/2
∥ = OP (1) and ∥P̂z

∥ = 1, by (D.8), we get

∥n−1/2(Â(L) − A(L)
)
xt∥

≤ n−1/2
p∑

r=0

( m∑
i=1

xi′t−r (Â
i
r − Ai

r )
′(Âi

r − Ai
r )x

i
t−r

)1/2
≤

p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r )

2
)1/4

×

(
n−1

m∑
i=1

( q+1∑
j=1

q+1∑
h=1

(âir,jh − air,jh)
2
)2)1/4

≤

p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r )

2
)1/4(

(q + 1)3n−1
m∑
i=1

∥Âi
r − Ai

r∥
4
)1/4

= OP (ζnT )

where xt = (x1′t ...xi′t ...xm′
t )′ stands for sub-vectors xit of size (q +

1) × 1.
Next, considering the second term on the right-hand side of

(E.11),((Λ̂z )−1/2P̂z′
− Ŵq(Λψ )−1/2Pψ ′

)
A(L)xt


=

(Λ̂z/n)−1
(
(Λ̂z )1/2P̂z′

− ŴqΛ̂
z (Λψ )−1/2Pψ ′

)
A(L)xt/n
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=

(Λ̂z/n)−1
(
(Λ̂z )1/2P̂z′

− Ŵq[Λ̂
z
− Λψ

+ Λψ
](Λψ )−1/2Pψ ′

)
A(L)xt/n


≤ ∥(Λ̂z/n)−1

∥

((Λ̂z )1/2P̂z′
− Ŵq(Λψ )1/2Pψ ′

) ∥A(L)xt/n∥

+ ∥(Λ̂z/n)−1
∥∥Ŵq(Λ̂z

− Λψ )(Λψ )−1/2Pψ ′
∥∥A(L)xt/n∥ = OP (ζnT ) ,

since, by (D.10), ∥(P̂z(Λ̂z)1/2 − Pψ (Λψ )1/2Ŵq)∥ = OP
(
n1/2ζnT

)
,

and

∥Â(L)xt/n∥ = n−1/2
(
x′

t Â
′(L)Â(L)xt/n

)1/2
≤ n−1/2

p∑
r=0

(
x′

t−r Â
′

r Ârxt−r/n
)1/2

≤ n−1/2
p∑

r=0

(x′

t−rxt−r/n)1/2(λ1(Â′

r Âr ))1/2 = OP (n−1/2),

boundedness of λ1(Â′
r Âr ) being a consequence of Assumptions 2

and 7. As for the third term on the right-hand side of (E.11),
(Λψ )−1/2Pψ ′A(L)ξt is OP (n−1/2). To conclude, note that the last
term Ŵq(Λψ )−1/2Pψ ′Pψ (Λψ )1/2vt is equal to Ŵqvt . The conclusion
follows. □

Appendix F and G. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2017.04.002.

References

Ahn, S.C., Horenstein, A.R., 2013. Eigenvalue ratio test for the number of factors.
Econometrica 81, 1203–1227.

Alessi, L., Barigozzi, M., Capasso, M., 2010. Improved penalization for determining
the number of factors in approximate factor models. Statist. Probab. Lett. 80,
1806–1813.

Amengual, D., Watson, M., 2007. Consistent estimation of the number of dynamic
factors in a large N and T panel. J. Bus. Econom. Statist. 25, 91–96.

Anderson, B., Deistler, M., (2008a). Generalized linear dynamic factor models—A
structure theory, 2008 IEEE Conference on Decision and Control.

Anderson, B., Deistler, M., 2008b. Properties of zero-free transfer function matrices.
SICE J. Control Meas. Syst. Integr. 1, 1–9.

Bai, J., Ng, S., 2002. Determining the number of factors in approximate factormodels.
Econometrica 70, 191–221.

Bai, J., Ng, S., 2007. Determining the number of primitive shocks in factor models. J.
Bus. Econom. Statist. 25, 52–60.

Brillinger, D.R., 1981. Time Series: Data Analysis and Theory. Holden-Day, San
Francisco.

D’Agostino, A., Giannone, D., 2012. Comparing alternative predictors based on large
panel factor models. Oxford Bull. Econ. Stat. 74, 306–326.

Forni, M., Gambetti, L., 2014. Sufficient information in structural VARs. J. Monetary
Econ. 66, 124–136.

Forni, M., Giannone, D., Lippi, M., Reichlin, L., 2009. Opening the black box: struc-
tural factor models with large cross-sections. Econometric Theory 25, 1319–
1347.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2000. The generalized dynamic factor
model: identification and estimation. Rev. Econ. Stat. 82, 540–554.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2004. The generalized dynamic factor
model: consistency and rates. J. Econometrics 119, 231–255.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2005. The generalized factor model: one-
sided estimation and forecasting. J. Amer. Statist. Assoc. 100, 830–840.

Forni, M., Hallin, M., Lippi, M., Zaffaroni, P., 2015. Dynamic factor models with
infinite-dimensional factor space: one-sided representations. J. Econometrics
185, 359–371.

Forni, M., Giovannelli, A., Lippi, M., Soccorsi, S., 2016. Dynamic factor model with
infinite-dimensional factor space: forecasting, CEPR DP 11161.

Forni, M., Lippi, M., 2001. The generalized dynamic factor model: representation
theory. Econometric Theory 17, 1113–1341.

Franklin, J.N., 2000. Matrix Theory. Dover Publications, New York.
Hallin, M., Lippi, M., 2013. Factor models in high-dimensional time series: a time-

domain approach. Stochastic Process. Appl. 123, 2678–2695.
Hallin,M., Liška, R., 2007. Determining the number of factors in the general dynamic

factor model. J. Amer. Statist. Assoc. 102, 603–617.
Lancaster, P., Tismenetsky, M., 1985. The Theory of Matrices, second edition.

Academic Press, New York.
Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, second edition.

Springer, New York.
Liu, W.D., Wu, W.B., 2010. Asymptotics of spectral density estimates. Econometric

Theory 26, 1218–1245.
Onatski, A., 2009. Testing hypotheses about the number of factors in large factor

models. Econometrica 77, 1447–1479.
Onatski, A., 2010. Determining the number of factors from empirical distribution of

eigenvalues. Rev. Econ. Stat. 92, 1004–1016.
Shao,W.,Wu,W.B., 2007. Asymptotic spectral theory for nonlinear time series. Ann.

Statist. 35, 1773–1801.
Stock, J.H, Watson, M.W., 2002a. Forecasting using principal components from a

large number of predictors. J. Amer. Statist. Assoc. 97, 1167–1179.
Stock, J.H., Watson, M.W., 2002b. Macroeconomic forecasting using diffusion in-

dexes. J. Bus. Econ. Statist. 20, 147–162.
Stock, J.H, Watson, M.W., 2012. Generalized shrinkage methods for forecasting

using many predictors. J. Bus. Econ. Statist. 30, 481–493.
Wu, W.B., 2005. Nonlinear system theory: Another look at dependence. Proc. Natl.

Acad. Sci. USA 102, 14150–14154.
Wu, W.B., Zaffaroni, P., 2017. Asymptotic theory for spectral density estimates of

general multivariate time series. Econometric Theory 1–22.

http://dx.doi.org/10.1016/j.jeconom.2017.04.002
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb1
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb2
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb3
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb4
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb6
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb7
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb8
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb9
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb10
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb11
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb12
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb13
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb14
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb15
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb17
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb18
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb19
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb20
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb22
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb23
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb24
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb25
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb26
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb27
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb29
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb28
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb30
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb31
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32
http://refhub.elsevier.com/S0304-4076(17)30047-7/sb32

	Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis
	Introduction
	Main assumptions and some preliminary results
	Common and idiosyncratic components
	Transforming the dynamic model into a static one

	Estimation: asymptotics
	Estimation of Σx(θ)
	Estimation of σijχ(θ) and γij,kχ
	Estimation of Ak(L)
	Estimation of R and ut
	Estimation and cross-sectional ordering 

	Simulation experiments
	Data-generating processes
	Estimation details and accuracy evaluation
	Cross-sectional permutations
	Results

	Empirical application
	Data and methods
	Results

	Conclusions
	Acknowledgments
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11
	Supplementary data
	References


