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1 Introduction

In recent years, a large body of the statistics and econometrics literature has been concerned with

the development of inferential methods to address a variety of model uncertainty problems. The

two most popular approaches are model selection and model averaging. In model selection, the

investigator first chooses a best performing model according to some criterion and then carries out

inference based on the chosen model by ignoring the uncertainty due to the initial model selection

step. This popular approach is subject to many problems, most importantly that the model selection

step is completely separated from the estimation step. As shown by Magnus (1999, 2002), Leeb

and Pötscher (2003, 2006), and Berk et al. (2013), among others, the initial model selection step

may have nonnegligible effects on the statistical properties of the resulting estimators.

Model averaging, on the other hand, does not require the investigator to rely on a single ‘best’

performing model. Based on the idea that each model contributes information on the parameters

of interest, one computes a weighted average of the conditional estimates across all possible models

to combine the available pieces of information into an unconditional estimate that incorporates the

uncertainty due to both the model selection and the model estimation steps. A distinction can be

made between four types of model-averaging methods depending on whether the estimation of each

model and the choice of the associated weighting scheme are developed along frequentist or Bayesian

lines. These different methods have led to a rapidly expanding literature on model averaging,

including in particular a variety of strictly Bayesian (BMA) and strictly frequentist (FMA) model-

averaging estimators. Useful overviews of the two approaches can be found in Hoeting et al. (1999),

Clyde and George (2004), Claeskens and Hjort (2008), and Moral-Benito (2015).

Model averaging is not the only way to allow for uncertainty due to both model selection and

estimation, and shrinkage and penalized methods are also receiving increasing attention. Recent

work by Hansen (2014, 2016) shows that Stein-type shrinkage estimators can be interpreted as

model-averaging estimators in the case of two nested models. Methods that simultaneously select

variables and shrink coefficients by minimizing some penalized loss function include, among others,

the least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996), the smoothly

clipped absolute deviation (SCAD) penalty of Fan and Li (2001), and the minimax concave penalty

(MCP) of Zhang (2010). Bayesian counterparts of these frequentist approaches are also available.

For example, the Bayesian LASSO of Park and Casella (2008) is motivated by the fact that the

LASSO estimate of linear regression parameters can be interpreted as a posterior mode when the

regression parameters have independent Laplace priors. Further, as noticed by Kumar and Magnus

(2013), the LASSO, and SCAD estimators can be interpreted as discontinuous counterparts of the
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Laplace, Subbotin and reflected Weibull estimators available in a Bayesian context. LASSO-type

methods have been shown to be particularly effective in high-dimensional settings where the number

of predictors exceeds the sample size (see, e.g., Fan and Lv 2010, Chernozhukov et al. 2015, and

Belloni et al. 2017), but recent work by Ando and Li (2014, 2017) suggests that model-averaging

procedures also perform well in these more complex settings.

In this paper we focus on the weighted-average least squares (WALS) approach introduced by

Magnus et al. (2010) to account for model uncertainty in the choice of the regressors in a Gaus-

sian linear model. The WALS estimator is a Bayesian combination of frequentist estimators: the

parameters of each model are estimated by least squares under a classical frequentist perspective,

while the weighting scheme is based on a Bayesian perspective using posterior model probabilities

to reflect the confidence in each model based on prior beliefs and the observed data. The result of

this ‘Bayesian-frequentist fusion’ is a model-averaging estimator that has some important advan-

tages over standard BMA and FMA estimators. First, in contrast to several BMA estimators that

adopt normal priors leading to unbounded risk, the choice of prior in WALS is based on theoretical

considerations related to admissibility, bounded risk, robustness, near-optimality in terms of mini-

max regret, and proper treatment of ignorance (see, e.g., Magnus 2002, Magnus et al. 2010, Kumar

and Magnus 2013, and Magnus and De Luca 2016). Second, unlike BMA and FMA estimators,

WALS uses a preliminary semiorthogonal transformation of the regressors that allows to obtain

exact model-averaging estimates of the parameters of interest in negligible computing time.

The aim of this paper is to extend the WALS approach to deal with uncertainty about the

specification of the linear predictor in the wider class of generalized linear models (GLMs). This

class includes a variety of nonlinear models for discrete and categorical outcomes, such as logit,

probit, and Poisson regression models. A previous attempt to extend the WALS methodology in

the same direction was undertaken by Heumann and Grenke (2010), but their paper was restricted

to the logit model and lacked a rigorous treatment of the underlying theory. Our paper provides a

more comprehensive treatment of the WALS approach to GLMs and establishes the large-sample

properties of this class of model-averaging estimators under the local misspecification framework

proposed by Hjort and Claeskens (2003).

Specifically, we show that many of the theoretical and computational advantages of the WALS

approach to Gaussian linear models continue to hold in the wider class of GLMs by a simple

linearization of the constrained maximum likelihood (ML) estimators. To establish the asymp-

totic theory for WALS, some improvements had to be made to the semiorthogonal transformation

procedure. These improvements address potential discontinuity problems in the eigenvalue decom-
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position used in earlier papers on WALS. In addition to developing the asymptotic theory for the

WALS estimator of GLMs, we also investigate the finite-sample properties of our model-averaging

estimator by a Monte Carlo experiment the design of which is based on a real empirical exam-

ple, namely the analysis of attrition in the first two waves of the Survey of Health, Ageing and

Retirement in Europe (SHARE). Here, we compare the performance of WALS with that of other

popular estimation methods such as standard and penalized ML, strict BMA with conjugate priors

for GLMs (Chen and Ibrahim 2003; Chen et al. 2008), and strict FMA with four alternative types

of weighting systems (Buckland et al. 1997; Hjort and Claeskens 2003; Zhang et al. 2016).

The remainder of the paper is organized as follows. Section 2 presents the statistical frame-

work. Section 3 discusses some properties of ML estimators that are important for constructing

WALS estimators of GLMs. Section 4 discusses WALS estimation. Section 5 presents an empirical

illustration. Section 6 presents a set of Monte Carlo simulations. Section 7 concludes. Appendix A

contains the proofs and Appendix B discusses continuity issues of eigenprojections and symmetric

matrix functions.

2 Statistical framework

We consider modeling a data matrix [y : X] consisting of n observations on a scalar outcome

and k regressors. Thus, y is an n-vector with ith element yi and X is an n × k matrix of full

column-rank k with ith row x′i. As in a standard GLM setup, we assume that the elements of y are

realizations of n independently distributed random variables with mean µi, finite nonzero variance

σ2i , and distribution belonging to the one-parameter linear exponential family (LEF) with density

(or probability mass function)

f(yi; θi) = exp [ θi yi − b(θi) + c(yi) ] , (1)

where θi is a scalar parameter called the canonical parameter, b(·) is a known, strictly convex and

twice continuously differentiable function, and c(·) is a known function. Different choices of b(·)
and c(·) result in different distributions within the LEF (e.g., normal, binomial or Poisson). In the

original formulation of Nelder and Wedderburn (1972), the density of yi also includes a dispersion

parameter which, without loss of generality, we set equal to one. By the properties of the LEF,

the mean and variance of yi are equal to µi = µ(θi) and σ2i = σ2(θi), with µ(θ) = db(θ)/dθ and

σ2(θ) = d2b(θ)/dθ2 = dµ(θ)/dθ (McCullagh and Nelder 1989). The assumptions on b(·) guarantee

that the function µ(·) is invertible and the function σ2(·) is strictly positive.

As in a standard GLM setup, we model the dependence of yi on xi by assuming that there exist
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a linear predictor ηi(β) = x′iβ and an invertible and continuously differentiable function h(·), called

the inverse link, such that

µ(θi) = µi = h(ηi(β)) (2)

for a unique point β in a k-dimensional parameter space. When h(·) = µ(·) (the ‘canonical link

case’), this assumption corresponds to a linear model θi = x′iβ for the canonical parameter. More

generally, assumption (2) implies that the canonical parameter θi is a smooth function of the linear

predictor ηi, written θi = θ(ηi) where θ(·) = µ−1(h(·)).
We assume throughout that the density of yi and the link function h(·) are correctly specified,

but depart from a standard GLM setup by allowing for uncertainty in the specification of the linear

predictor. Specifically, we partition the k regressors in two subsets, X = [X1 : X2], where Xp is

an n × kp matrix with ith row equal to x′ip (p = 1, 2) and k1 + k2 = k. The k1 columns of X1

contain the regressors which we want in the model on theoretical or other grounds (focus regressors

in the terminology of Danilov and Magnus 2004), while the k2 columns of X2 contain the additional

regressors of which we are less certain (auxiliary regressors). Stacking the linear predictors for the n

observations on top of each other gives the n-vector η(β) = Xβ = X1β1 +X2β2, with β = (β′1, β
′
2)
′,

where β1 is the vector of focus parameters and β2 is the vector of auxiliary parameters.

In total, there are 2k2 possible models that contain all focus regressors and arbitrary subsets

of auxiliary regressors. We represent the jth model as a GLM of the form (1)–(2) with the added

restriction R′jβ2 = 0, where Rj denotes a k2× rj matrix of rank 0 ≤ rj ≤ k2 such that R′j = [Irj : 0]

(or a column-permutation thereof) and Irj denotes the identity matrix of order rj . The matrix Rj

thus specifies which auxiliary regressors are excluded from the jth model and the scalar rj denotes

the number of excluded auxiliary variables.

As usual in the model-averaging literature, we adopt anM-closed framework where the unknown

data-generation process (DGP) is included in the set of models considered by the investigator.

Following the local misspecification framework (see, e.g., Hjort and Claeskens 2003), we assume

that the true value of the focus parameters β1 is fixed while the true value of the auxiliary parameters

β2 is in a
√
n-shrinking neighborhood of zero. Although there is a debate about the realism of such

assumption (see, e.g., Raftery and Zheng 2003, Ishwaran and Rao 2003, and Hjort and Claeskens

2003), this framework has been commonly used to analyze the large-sample behavior of a variety

of estimators (see, e.g., Claeskens and Hjort 2003, Claeskens et al. 2006, Hansen 2014 and 2016,

and Liu 2015). The local misspecification framework thus allows the application of asymptotic

model-averaging theory as it ensures that all ML estimators are
√
n-consistent and have squared

bias and variance both of order Op(n
−1). In contrast, a standard asymptotic framework with a
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fixed value of β2 would always select the ML estimator of the unrestricted model because the ML

estimator of the jth model may be inconsistent if the underlying constraint is not valid.

3 ML estimation

The classical approach to the estimation of GLMs is maximum likelihood. Given independent

observations {(yi, x′i)′}ni=1, the GLM loglikelihood is of the form

`(β) = c+
n∑
i=1

[θi yi − b(θi)] ,

where c does not depend on β and the canonical parameter θi = θ(ηi) depends on β through the

linear predictor ηi. Since xi = (x′i1, x
′
i2)
′ and β = (β′1, β

′
2)
′, the gradient of the loglikelihood (the

score) is the k-vector s(β) consisting of the following subvectors

sp(β) =
∂`(β)

∂βp
=

n∑
i=1

vi(β) [yi − µi(β)]xip (p = 1, 2),

where vi = dθ/dηi. We also define a k× k matrix H(β), which is equal to minus the Hessian of the

loglikelihood and consists of the following submatrices

Hpq(β) = − ∂
2`(β)

∂βp∂β
′
q

=

n∑
i=1

ψi(β)xipx
′
iq (p, q = 1, 2),

where ψi = v2i σ
2
i −ωi(yi−µi) and ωi = d2θ/dη2i ; and a k× k matrix I(β) (the Fisher information)

consisting of the submatrices

Ipq(β) =
n∑
i=1

vi(β)2 σ2i (β)xipx
′
iq (p, q = 1, 2).

With a canonical link, these expressions simplify considerably as θi = ηi, vi = 1 and ωi = 0 for all

observations, so sp(β) =
∑n

i=1 [yi − µi(β)]xip and Hpq(β) = Ipq(β).

The ML estimator of β for the jth model maximizes the loglikelihood `(β) subject to the

constraint R′jβ2 = 0 or, equivalently, solves the system of k1 + k2 + rj equations

0 = s1(β), 0 = s2(β)−Rjνj , 0 = R′jβ2, (3)

where νj denotes the rj-vector of Lagrange multipliers associated with the constraint R′jβ2 = 0.

One issue in extending the WALS approach to the wider class of GLMs is that, except when the

elements of y are normally distributed, the system of likelihood equations (3) is nonlinear and has to

be solved by some iterative scheme such as Newton-Raphson or the method of scoring. To address

this issue we now introduce a class of one-step ML estimators that admit closed-form expressions

and are asymptotically equivalent to the fully-iterated ML estimators.
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3.1 One-step ML estimators

Given a starting value β̄ = (β̄′1, β̄
′
2)
′, with properties to be discussed below, expanding the likelihood

equations (3) around β̄ yields the approximation

0 = s̄1 − H̄11(β1 − β̄1)− H̄12(β2 − β̄2),

0 = s̄2 − H̄21(β1 − β̄1)− H̄22(β2 − β̄2)−Rjνj , (4)

0 = R′jβ2,

where s̄p = sp(β̄) and H̄pq = Hpq(β̄), p, q = 1, 2. An estimator β̃j that solves the linearized system

of constrained likelihood equations (4) is called a one-step ML estimator of β under the jth model,

as it corresponds to the first step of the Newton-Raphson method.

We first consider the unrestricted model where Rj = 0. Define the data transformations

ȳ = X̄1β̄1 + X̄2β̄2 + ū, X̄1 = Ψ̄1/2X1, X̄2 = Ψ̄1/2X2, (5)

where ū = Ψ̄−1/2V̄ (y − µ̄), Ψ̄ = Ψ(β̄) is an n× n diagonal matrix with ith diagonal element equal

to ψi(β̄), V̄ = V (β̄) is an n × n diagonal matrix with ith diagonal element equal to vi(β̄), and

µ̄ = µ(β̄) is an n-vector with ith element equal to µi(β̄). Then, when Rj = 0, the solutions β̃1u and

β̃2u to the linearized system of likelihood equations (4) can be written in closed form as

β̃1u = (X̄ ′1X̄1)
−1X̄ ′1ȳ − (X̄ ′1X̄1)

−1X̄ ′1X̄2β̃2u, β̃2u = (X̄ ′2M̄1X̄2)
−1X̄ ′2M̄1ȳ,

where M̄1 = In − X̄1(X̄
′
1X̄1)

−1X̄ ′1 is a symmetric idempotent matrix of rank n− k1. These expres-

sions make it clear that the unrestricted one-step ML estimators β̃1u and β̃2u coincide numerically

with the least squares coefficients in the linear regression of ȳ on X̄1 and X̄2. Notice that, although

the original regressors X1 and X2 are fixed (nonrandom), the transformed regressors X̄1 and X̄2

are in general random because they depend on β̄ and y. In the canonical link case, the dependence

on y disappears, as ωi = 0 for all i, but the dependence on β̄ remains.

More generally, consider the one-step ML estimator for the jth model. After defining the

symmetric and idempotent k2 × k2 matrix

P̄j =

(
X̄ ′2M̄1X̄2

n

)−1/2
Rj

[
R′j

(
X̄ ′2M̄1X̄2

n

)−1
Rj

]−1
R′j

(
X̄ ′2M̄1X̄2

n

)−1/2
,

the k1 × k2 matrix

Q̄ =

(
X̄ ′1X̄1

n

)−1
X̄ ′1X̄2

n

(
X̄ ′2M̄1X̄2

n

)−1/2
,
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and the nonsingular transformation of the unrestricted one-step ML estimator β̃2u

ϑ̃ =

(
X̄ ′2M̄1X̄2

n

)1/2

β̃2u, (6)

we obtain the following generalization of Proposition 3.1 in Magnus and De Luca (2016).

Proposition 1 The one-step ML estimators of β1 and β2 based on the jth model are

β̃1j = β̃1r − Q̄W̄jϑ̃, β̃2j =

(
X̄ ′2M̄1X̄2

n

)−1/2
W̄jϑ̃,

where β̃1r = (X̄ ′1X̄1)
−1X̄ ′1ȳ is the fully restricted one-step ML estimator of β1 and W̄j = Ik2

− P̄j.

3.2 Asymptotic properties of one-step ML estimators

In what follows, to keep track of the sample size, we index all relevant data-dependent objects by

n. Under the local misspecification framework, the auxiliary parameters are set equal to

β2n =
δ√
n
, (7)

where δ is an unknown constant vector that represents the degree of model departure from the fully

restricted model. Thus, the DGP depends on the sample size, with the sequence of true parameters

βn = (β′1, β
′
2n)′ converging to β∗ = (β′1, 0

′)′ as n→∞.

The large-sample properties of the sequence {β̃jn} of one-step ML estimators for the jth model

depend crucially on the large-sample properties of the sequence {β̄n} of starting values in the

approximation (4). If β̄n − βn is Op(1/
√
n), then β̃jn − βn is also Op(1/

√
n) and has the same

asymptotic distribution as the fully-iterated ML estimator of the jth model (see, e.g., Theorem 3.5

in Newey and McFadden 1994). In an M-closed framework, where the DGP is included in the set

of models considered by the investigator, a natural choice of starting value is the fully-iterated ML

estimator based on the unrestricted model, as in this case β̄n−βn = Op(1/
√
n) under mild regularity

conditions, irrespective of whether the local misspecification framework (7) is valid or not. These

regularity conditions, spelled out in detail in Fahrmeir and Kaufmann (1985), essentially require

the Fisher information In(·) to be continuous on an open neighborhood B of β∗ and to diverge as

the sample size grows. Under these conditions, Hn(·)/n and In(·)/n both converge in probability

as n→∞, uniformly on B, to a nonrandom finite, symmetric, and positive definite matrix I(·).
The following result provides a convenient asymptotic approximation to the sampling distribu-

tion of one-step ML estimators under the local misspecification framework (7).
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Proposition 2 In addition to (7), assume that all regularity conditions in Fahrmeir and Kaufmann

(1985) are satisfied. If β̄n − βn = Op(1/
√
n), then, as n→∞,

√
n(β̃jn − βn)⇒ N

([ Q
−Ω

1/2
22

]
PjΩ

−1/2
22 δ,

[
I−111 +QWjQ′ −QWjΩ

1/2
22

−Ω
1/2
22 WjQ′ Ω

1/2
22 WjΩ

1/2
22

])
,

where Ipq denotes the pqth submatrix of I(β∗), Ω22 = (I22 − I21I
−1
11 I12)−1, Q = I−111 I12Ω

1/2
22 ,

Pj = Ω
1/2
22 Rj(R

′
jΩ22Rj)

−1R′jΩ
1/2
22 , and Wj = Ik2 − Pj.

The asymptotic distributions of the one-step ML estimators for the unrestricted and the fully

restricted models are obtained as special cases by putting Rj = 0 and Rj = Ik2
, respectively.

Proposition 2 is similar to Lemma 3.2 in Hjort and Claeskens (2003) but differs because we consider

the asymptotic distribution of the complete estimator β̃jn, including its rj components restricted

to be zero. Notice that
√
n(β̃jn − β∗) =

√
n(β̃jn − βn) +

(
0
δ

)
,

so the two distributions only differ by a constant shift.

Three implications of Proposition 2 are worth noting. First, under the local misspecification

framework, all estimators are consistent for β∗. If the jth model is correctly specified, that is, the

constraint R′jδ = 0 is valid, then β̃jn is asymptotically unbiased for βn, since PjΩ
−1/2
22 δ = 0, though

not for β∗. However, if the constraint R′jδ = 0 is not valid, then β̃jn is no longer asymptotically

unbiased for βn and its asymptotic bias may actually exceed that of estimators based on more

parsimonious models.

Second, all estimators are asymptotically normal and a comparison between the asymptotic

variances of the restricted and unrestricted estimators shows that AV(β̃1un)− AV(β̃1jn) = QPjQ′

and AV(β̃2un) − AV(β̃2jn) = Ω
1/2
22 PjΩ

1/2
22 , which are two nonnegative definite matrices. Hence,

irrespective of whether the constraint R′jδ = 0 is valid or not, the restricted estimators β̃1jn and β̃2jn

are always asymptotically more precise (have smaller asymptotic variance) than the unrestricted

estimators β̃1un and β̃2un. This implies that the uncertainty about the choice of the auxiliary

regressors gives rise to an asymptotic bias-precision trade-off in the estimation of βn.

Third, it can be easily shown that
√
n(ϑ̃n − ϑn) ⇒ N (0, Ik2

), where ϑn = Ω
−1/2
22 β2n. Further,

ϑ̃n and β̃1rn are asymptotically independent because their joint asymptotic distribution is normal

with zero asymptotic covariance.

As we shall see in the next section, the results of Propositions 1 and 2 provide the key ingredients

needed to extend the WALS approach to the wider class of GLMs.
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4 WALS estimation

Our WALS approach to GLMs is a Bayesian combination of one-step ML estimators that exploits a

preliminary semiorthogonal transformation of the auxiliary regressors to reduce the computational

burden required by exact model-averaging estimation from the order 2k2 to the order k2.

4.1 Scale and semiorthogonal transformations

To operationalize the WALS approach to GLMs, we first transform the focus regressors in X̄1 =

Ψ̄1/2X1 by defining

Z̄1 = X̄1∆̄1, γ̄1 = ∆̄−11 β1, (8)

where ∆̄1 is a diagonal k1 × k1 matrix such that all diagonal elements of Z̄ ′1Z̄1/n are equal to

one. The only purpose of this transformation is to improve the numerical accuracy of inversion

and eigenvalue routines. For the purposes of inference, this transformation is completely harmless

because Z̄1γ̄1 = X̄1β1, In − Z̄1(Z̄
′
1Z̄1)

−1Z̄ ′1 = M̄1, and β1 = ∆̄1γ̄1.

Next we transform the auxiliary regressors in X̄2 = Ψ̄1/2X2. Let ∆̄2 be a diagonal k2 × k2

matrix such that all diagonal elements of Ξ̄ = ∆̄2X̄
′
2M̄1X̄2∆̄2/n are equal to one. Notice that,

unlike the matrix ∆̄1, the matrix ∆̄2 has the dual purpose of improving numerical accuracy and

making the WALS estimator equivariant to scale transformations of the auxiliary regressors (De

Luca and Magnus 2011). Since Ξ̄ is a symmetric and positive definite matrix, we can apply the

semiorthogonal transformation

Z̄2 = X̄2∆̄2Ξ̄
−1/2, γ̄2n = Ξ̄1/2∆̄−12 β2n, (9)

which implies that Z̄ ′2M̄1Z̄2/n = Ik2
, Z̄2γ̄2n = X̄2β2n, and β2n = ∆̄2Ξ̄

−1/2γ̄2n.

The transformations (8) and (9) present two important differences with respect to those em-

ployed in the WALS approach to linear models. The first difference is that, with a view toward

asymptotic analysis, we have normalized all relevant matrices by n to ensure that they remain

stable when the sample size becomes arbitrarily large.

The second difference lies in the semiorthogonal transformation (9) where we now avoid possible

discontinuities in the eigenvectors and eigenprojections of the matrix Ξ̄ by exploiting the continuity

of the eigenvalues and the total eigenprojections. As shown in Appendix B, this ensures that Ξ̄1/2,

Ξ̄−1, and Ξ̄−1/2 are continuous matrix functions, as long as Ξ̄ is continuous and positive definite.

The large-sample probability limits of the random objects in (8) and (9) then follow easily. Since

plim X̄ ′1X̄1/n = plim H̄11/n = I11, the matrix ∆̄1 converges in probability as n→∞ to a diagonal
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nonrandom matrix ∆1 with diagonal elements equal to the inverse of the square root of the diagonal

elements of I11, so that plimn−1Z̄ ′1Z̄1 = ∆1I11∆1 = J11. Similarly, because of continuity of

the inverse of a nonsingular matrix, the scaling matrix ∆̄2 converges in probability to a diagonal

nonrandom matrix ∆2 with diagonal elements equal to the inverse of the square root of the diagonal

elements of Ω−122 , so that plim Ξ̄ = ∆2Ω
−1
22 ∆2 = Ξ. Moreover, the continuity of Ξ̄−1/2 now implies

that plimn−1Z̄ ′1Z̄2 = ∆1I12∆2Ξ
−1/2 = J12 and plimn−1Z̄ ′2Z̄2 = Ξ−1/2∆2I22∆2Ξ

−1/2 = J22, so

J22 − J21J
−1
11 J12 = Ik2

.

4.2 One-step ML estimation of the transformed models

Since Z̄1γ̄1 = X̄1β1 and Z̄2γ̄2n = X̄2β2n, we can rewrite the unrestricted model as a GLM of the

form (1)–(2) with linear predictor η = Z̄1γ̄1 + Z̄2γ̄2n. This equivalent representation is convenient

because it implies that Z̄ ′2M̄1Z̄2/n = Ik2
. It then follows from Proposition 1 that the one-step ML

estimators for the jth model are given by

γ̃1jn = γ̃1rn − D̄Wj γ̃2un, γ̃2jn = Wj γ̃2un, (10)

where γ̃1rn = (Z̄ ′1Z̄1)
−1Z̄ ′1ȳ, γ̃2un = Z̄ ′2M̄1ȳ/n, D̄ = (Z̄ ′1Z̄1)

−1Z̄ ′1Z̄2, Wj = Ik2
−Pj , and Pj = RjR

′
j .

Further, letting γn = (γ1
′, γ2n

′)′ with γ1 = ∆−11 β1 and γ2n = Ξ1/2∆−12 β2n, Proposition 2 also implies

√
n(γ̃jn − γn)⇒ N

([ D
−Ik2

]
Pjd,

[
J −111 +DWjD′ −DWj

−WjD′ Wj

])
, (11)

where d = Ξ1/2∆−12 δ and D = plim D̄ = J −111 J12. Thus, as a direct consequence of (9), the

matrix Wj now reduces to a nonrandom diagonal matrix with k2− rj ones and rj zeros on its main

diagonal. More precisely, the hth diagonal element of Wj is equal to zero if the hth component of

γ2n is constrained to be zero, and is equal to one otherwise. All models that include the hth column

of Z̄2 as a regressor will therefore have the same estimator of the hth component of γ2n, namely

the hth component of γ̃2un. The components of γ̃2un are asymptotically independent as their joint

asymptotic distribution is normal with zero asymptotic covariance.

4.3 Equivalence theorem

We next consider the model-averaging estimators of γ1 and γ2n

γ̂1n =

2k2∑
j=1

λj γ̃1jn, γ̂2n =

2k2∑
j=1

λj γ̃2jn,

11



where the λj are data-dependent model weights satisfying the restrictions

0 ≤ λj ≤ 1,

2k2∑
j=1

λj = 1, λj = λj(
√
nγ̂2un). (12)

Notice that the regularity condition λj = λj(
√
nγ̂2un) is equivalent to the condition on the model

weights used by Hjort and Claeskens (2003) to derive the limiting distribution of their FMA esti-

mator. For a discussion of this regularity condition we refer the reader to Sections 3.3 and 4.1 and

Remark 4.2 in Hjort and Claeskens (2003). From (10) we get

γ̂1n = γ̃1rn − D̄Wγ̃2un, γ̂2n = Wγ̃2un, (13)

where W =
∑2k2

j=1 λjWj is a k2 × k2 random diagonal matrix (because the λj are random) and the

random vector Wγ̃2un is asymptotically independent of γ̃1rn.

The following proposition extends the finite-sample results of Magnus and Durbin (1999) and

Danilov and Magnus (2004) and the large-sample results of Zou et al. (2007), which only cover

linear models, and motivates the WALS approach to GLMs.

Proposition 3 (Asymptotic Equivalence Theorem for GLMs) Under the regularity con-

ditions stated in Proposition 2 and the restrictions on the model weights in (12),

AB(γ̂1n) = −DAB(γ̂2n), AV(γ̂1n) = J −111 +DAV(γ̂2n)D′.

where AB denotes asymptotic bias and AV denotes asymptotic variance. Hence,

AMSE(γ̂1n) = J −111 +DAMSE(γ̂2n)D′,

where AMSE denotes asymptotic mean squared error.

The equivalence theorem implies that the AMSE of the WALS estimator γ̂1n depends on the

AMSE of the less complicated estimator γ̂2n. This means that, if we can choose the model weights

λj such that γ̂2n is a ‘good’ estimator of γ2n, then the same λj will also provide a ‘good’ estimator of

γ1. The problem of choosing the model weights optimally is much simplified by the fact that W is a

diagonal matrix whose diagonal elements wh are linear combinations of the λj . The computational

burden of our model-averaging estimator is therefore of order k2, as we only need to determine the

set of k2 WALS weights wh, not the considerably larger set of 2k2 model weights λj .
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4.4 Bayesian weighting scheme and choice of priors

Since the WALS weights wh lie between zero and one, the components of γ̂2n are shrinkage esti-

mators of the components of γ2n. We also know that the components of γ̃2un are asymptotically

independent, each with an asymptotically normal distribution. Thus, if we strengthen the third

regularity condition in (12) and assume that each wh depends only on the hth component of
√
nγ̂2un, then the shrinkage estimators in γ̂2n will also be asymptotically independent. This addi-

tional assumption is convenient because our k2-dimensional problem then reduces to k2 (identical)

one-dimensional problems of the following type: given a shrinkage estimator m(x) = w(x)x of a

scalar parameter γ, we want to determine the scalar weight w(x) such that the estimator m(x) has

minimum MSE by only using the information that x ∼ N (γ, 1). This is the normal location prob-

lem studied and refined in a finite-sample context by Magnus (2002), Kumar and Magnus (2013),

and Magnus and De Luca (2016), and now extended to the asymptotic distribution of γ̂2n.

Our search for an optimal weighting scheme can be developed along frequentist or Bayesian

lines. In WALS we prefer a Bayesian weighting scheme because it leads to an admissible shrinkage

estimator of γ. The issue of how to choose the prior for this Bayesian step has recently been

addressed by Magnus and De Luca (2016) who focus on the family of reflected generalized gamma

distributions. These priors have densities of the form π(γ) = 0.5 qc |γ|−(1−q) e−c|γ|q , with c = 0.9377

and q = 0.7995 corresponding to the optimal Subbotin prior, and c = log 2 and q = 0.8876

corresponding to the optimal reflected Weibull prior. The Subbotin prior is preferred in terms

of robustness, while the reflected Weibull prior is preferred in terms of minimax regret (Magnus

and De Luca 2016). In both cases, the moments of the resulting posterior distribution need to be

approximated by numeric integration techniques. Closed-form expressions for the posterior mean

and the posterior variance are available only under the Laplace prior, corresponding to c = log 2

and q = 1 (see Theorem 1 in Magnus et al. 2010), but this choice is neither robust nor optimal

in terms of minimax regret. The prior in the WALS procedure is thus placed on the transformed

auxiliary parameters rather than on the original auxiliary parameters. Magnus and De Luca (2016,

pp. 142–143) show what this implies for the original parameters and that WALS in this respect is

conceptually close to BMA.

4.5 One-step and iterative WALS estimates

Letting m be the k2-vector of posterior means and Σ the k2×k2 diagonal matrix with the posterior

variances as diagonal elements, we can now define the one-step WALS estimators of γ1 and γ2n as
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γ̂1n = γ̃1rn − D̄m and γ̂2n = m. Consistent estimators of their asymptotic variances are

ÂV(γ̂1n) =

(
Z̄ ′1Z̄1

n

)−1
+ D̄ΣD̄′, ÂV(γ̂2n) = Σ.

The one-step WALS estimator of the original parameters β1 and β2n are then given by β̂1n = ∆̄1γ̂1n

and β̂2n = ∆̄2Ξ̄
−1/2γ̂2n, and their asymptotic variances can be estimated consistently by ÂV(β̂1n) =

∆̄1 ÂV(γ̂1n) ∆̄′1 and ÂV(β̂2n) = ∆̄2 Ξ̄−1/2 ÂV(γ̂2n) Ξ̄−1/2 ∆̄′2.

One possible drawback of the one-step WALS procedure could be its dependence on the starting

value β̄. To address this issue we also consider an iterative procedure that repeatedly updates

the starting value β̄ using the one-step WALS estimates from the previous iteration until some

convergence criterion is satisfied. The rationale behind this iterative procedure is that, as the

number of iterations increases, the sequence of recursive applications of the one-step estimator of the

jth model converges to the corresponding fully-iterated ML estimator (Robinson 1988, Theorem 2).

Thus, when β̄ is a
√
n-consistent estimator of β∗, there are reasons to believe that the iterative

WALS estimator provides a good approximation to a weighted average over all possible models of

the fully-iterated ML estimators.

4.6 Estimating smooth functions of the model parameters

In the context of GLMs, inference is usually sought for a smooth, but possibly nonlinear, real-valued

function g(β;x) of the model parameters β at some value x of the regressors. Examples include

the probability of success in a binary logit model or the marginal effect of a given regressor.

From a frequentist perspective, ML estimation of each possible model yields a set of 2k2 condi-

tional ML estimates β̂j , from which we obtain the conditional ML estimates ĝj = g(β̂j ;x) of g(β;x).

The key issue is how to best combine them to construct an unconditional estimate of g(β;x) that

incorporates the uncertainty due to both the model selection and the model estimation steps. The

standard FMA solution is an estimator of the form

ĝma =

2k2∑
j=1

λ∗j ĝj , (14)

where the λ∗j are model weights chosen on the basis of some optimality criterion (see, e.g., Hjort

and Claeskens 2003). BMA estimators have a similar form, that is, they are a weighted average

of the means of the conditional posterior distributions of g(β;x) under each possible model with

weights equal to the posterior model probabilities (see, e.g., Hoeting et al. 1999).

Unfortunately, in WALS we cannot construct the model-averaging estimator in (14) due to lack

of information on the ĝj and the λ∗j . This is a consequence of the semiorthogonal transformation (9)
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which leads to important simplifications when estimating β, but also implies some loss of flexibility

compared to standard FMA and BMA approaches. Here loss of flexibility means that we can only

compute a model-averaging estimator β̂ of β, that is β̂ =
∑2k2

j=1 λj β̂j , on the basis of which we

then obtain a plug-in estimator ĝpi = g(β̂;x) of g(β;x). Thus, instead of averaging over nonlinear

transformations of the ML estimators, we can only apply a nonlinear transformation of the model-

averaging estimator of β.

These two classes of estimators are likely to differ as a consequence of both Jensen’s inequality

and different model weights. Apart from Koenker (2005, Section 5.5), little is known about the

statistical properties of one class relative to the other. Koenker discusses not precisely our question,

but the related issue of comparing weighted averages of argmins and argmins of weighted averages

in the context of quantile regressions. A key result from his analysis is that these two classes of

estimators reach the same efficiency bound, but that the associated sets of optimal weights are in

general different. This result suggests that when the model weights are determined on the basis of

a well-defined criterion neither of the two estimators is expected to dominate the other.

5 Empirical illustration

We illustrate the WALS approach to GLMs by studying attrition in the Survey of Health, Ageing

and Retirement in Europe (SHARE), a multidisciplinary and cross-national household panel sur-

vey covering about 85,000 individuals aged 50+, and their possibly younger partners, in nineteen

countries of Continental Europe and Israel.

5.1 Data and model specification

Our data are taken from release 5.0 of SHARE. For detailed information on sampling design and

fieldwork procedures, we refer to Malter and Börsch-Supan (2015). Here we only discuss a few

issues that are important for the selection of the sample used in our empirical illustration. First,

although five waves of SHARE are currently available, we focus on attrition between the first two

waves (2004–05 and 2006–07) to avoid modeling differences in participation probabilities between

the baseline sample drawn in the first wave and the refreshment samples drawn in subsequent

waves. Second, since participation decisions of individuals belonging to the same household are

likely to be correlated, we confine attention to one person per household, the so-called ‘household

respondent’. Third, to reduce issues of sample representativeness for certain population groups,

we further restrict our sample to household respondents between 50 and 85 years old in 2004 and

living in private households.
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After dropping another 6% of the sample because of item nonresponse on the regressors of

interest, our working sample contains 17,051 individuals, with national samples ranging from a

minimum of 620 individuals for Switzerland to a maximum of 2,323 individuals for Belgium. The

participation rate between the first two waves of SHARE ranges from a minimum of 55% in Germany

to a maximum of 86% in Greece, and is 71% on average. For the purpose of this empirical illustration

we focus on France (1,822 individuals with a participation rate of 68%), where the problem of

uncertainty concerning the choice of regressors appears to be particularly relevant. Corresponding

analyses for the other countries are available upon request.

Our outcome of interest is a binary indicator yi, which equals 1 if a household participating in the

baseline survey also agrees to participate in the second wave of SHARE, and equals 0 otherwise.

We model the observed data y1, . . . , yn as independent binary random variables, each having a

Bernoulli distribution with probability of success πi = Pr(yi = 1) = [1 + exp(−ηi)]−1, where

ηi = x′iβ. The set of focus regressors in xi includes a constant term, a second-order polynomial

in age, a binary indicator for being a female fully interacted with the polynomial in age, and four

binary indicators for other socio-economic characteristics of the household respondent, while the

set of auxiliary regressors includes measures of physical and mental health, cognitive functioning,

and social activities of the respondent, plus demographic characteristics of the partner and of the

interviewer. In total we select eight auxiliary regressors, which results in 28 = 256 possible models.

Table 1 shows definitions and summary statistics for all the variables considered.

5.2 Estimation methods

Our empirical illustration has three purposes. First, we want to compare WALS with classical

model-selection procedures and with popular strictly Bayesian (BMA) and strictly frequentist

(FMA) model-averaging procedures. Second, we want to investigate the robustness of the vari-

ous model-averaging procedures to key features of the underlying weighting scheme, including the

choice of prior distributions for the weights used in WALS and BMA, and the choice of optimality

criteria for the weights used in FMA. Third, we want to assess the sensitivity of one-step and

iterative WALS estimates to the choice of the starting value. In the remaining of this section, we

briefly describe the various model-selection and model-averaging procedures implemented in our

empirical study. For each method, we discuss estimation of both model parameters and associated

standard errors. Routines for software implementation of all methods considered in our study are

available upon request.

Model-selection procedures. In addition to standard restricted and unrestricted ML estimators, we
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consider various penalized ML estimators and the ML estimator for the model chosen by a general-

to-specific (GtS) variable selection procedure based on Stata’s stepwise backward-selection routine.

The reported ML estimates and standard errors are conditional on the selected model as they ignore

the uncertainty due to the variable selection step.

Our penalized ML estimators minimize an objective function of the form Qλ(β) = −`(β) +∑k2
h=1 ρλ(|β2h|), where `(β) is the loglikelihood for the unrestricted model and ρλ(·) is an L1-

penalty indexed by a tuning parameter λ > 0. For the specification of the penalty we consider

LASSO (Tibshirani 1996), SCAD (Fan and Li 2001), and MCP (Zhang 2010), for which several R

packages are available. To select the value of the tuning parameter, we use 10-fold cross-validation

for the glmnet and ncvreg packages, and generalized cross-validation with 1, 000 points in the

(0, 1] interval for the lasso2 package, which is based on the dual constrained representation of

the LASSO penalization problem originally suggested by Osborne et al. (2000). Unlike the other

packages, lasso2 also provides standard errors of the LASSO estimates using formula (4.2) in

Osborne et al. (2000).

Model averaging procedures. As starting value for WALS we consider both the restricted and the

unrestricted ML estimates. After implementing the preliminary data transformations in (5), with

µi = πi, σ
2
i = πi(1 − πi), vi = 1, and ωi = 0, the one-step estimates are computed through the

standard WALS algorithm for linear models by setting the error variance equal to one. Magnus

and De Luca (2016, Section 11) provide a detailed description of the Stata and MATLAB imple-

mentations of the WALS algorithm. As priors on the transformed parameter γ, we consider the

Subbotin, Weibull and Laplace priors. For the Subbotin and Weibull priors, we approximate the

indefinite integrals needed for the first two moments of the posterior distribution using Gauss-

Laguerre quadrature methods with 1, 000 points. To compute the iterative WALS estimates, we

repeatedly update the starting value using the estimates from the previous iteration until the rel-

ative differences in the vectors of coefficients and their standard errors are both smaller than the

tolerance value of 10−6.

For the BMA approach we compute a weighted average of the conditional estimates for each

possible model with weights equal to the posterior model probabilities. Contrary to WALS, which

uses priors only on the transformed parameters γ, BMA requires two types of priors: one on

the model space and one on the parameters of each model (see, e.g., Hoeting et al. 1999). Our

BMA implementation in Stata uses a uniform prior on the model space and conjugate priors for the

parameters of each model. The first choice implies that all models are equally likely a priori, so their

posterior model probabilities depend only on the marginal likelihood for the various models, not on
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the prior weight assigned to each of them. Following Chen and Ibrahim (2003), our conjugate prior

for the free parameters βj of the jth model is proportional to exp
[
ā(ȳ′θ(βj)− ι′nb(θ(βj)))

]
, where ȳ

is an n-vector of prior parameters that specifies the prior predictions for the marginal means of the

outcome, the positive scalar ā is a prior parameter that quantifies the strength of our prior belief

in ȳ, θ(βj) = (θ1(βj), . . . , θn(βj)) is the n-vector of canonical parameters in the jth model, and ιn

is an n-vector of ones. As shown by Chen et al. (2008), this family of priors is attractive because

the posterior model probabilities can be estimated by a computationally convenient Markov Chain

Monte Carlo (MCMC) method that requires drawing only two MCMC samples: one from the

posterior distribution and one from the prior distribution of the parameters under the unrestricted

model. In our application, we employ two MCMC samples of 10, 000 draws, after a ‘burn-in sample’

of 5, 000 draws. To ensure that all parameters have a zero prior mode, we set all elements of ȳ

equal to 0.5. We also asses how BMA estimates change as the prior becomes less informative by

considering three different values of ā, namely 0.10, 0.05, and 0.01.

For the FMA approach we compute weighted averages of the conditional ML estimates for each

possible model using four types of weights: the smoothed Akaike information criterion (AIC), the

smoothed Bayesian information criterion (BIC), the smoothed focused information criterion (FIC),

and the weights obtained by minimizing a plug-in penalized estimate of the Kullback-Leibler loss

(PKL). The use of FMA-AIC and FMA-BIC estimators was originally proposed by Buckland et al.

(1997) and is common in the context of BMA estimation (Raftery 1996; Clyde 2000). Although

debate over the choice of an optimal information criterion is still open, AIC and BIC are known to

be two extreme strategies favoring, respectively, more and less complicated model structures. The

FMA-FIC estimator proposed by Hjort and Claeskens (2003) is a little different as it depends on

the specific parameter g(β;x) to be estimated. Since the FIC score for the jth model is an unbiased

estimator of the AMSE of the underlying ML estimator of g(β;x), this weighting scheme assigns

relatively higher weights to models with relatively lower FIC scores. Finally, we compute the PKL

weights proposed by Zhang et al. (2016) by minimizing an objective function consisting of a plug-in

estimate of the Kullback-Leibler loss and a penalty for the number of auxiliary regressors in the

various models which depends on a tuning parameter λn. The FMA-PKL estimator has been shown

to be asymptotically optimal, in the sense of achieving the lowest Kullback-Leibler loss, under anM-

open framework where all models considered are misspecified. When k2 is large, its computational

burden can be heavy because we need to estimate 2k2 models and the underlying weighting scheme

requires numerical constrained minimization of an objective function in 2k2 variables. Following

Zhang et al. (2016), we compute the FMA-PKL estimates for two alternative values of the tuning
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parameter, namely λn = log(n) and λn = 2. FMA estimators with smoothed AIC, BIC, and FIC

weights are implemented in Stata, while the FMA-PKL estimator is implemented in MATLAB.

Standard errors for the FMA-AIC and FMA-BIC estimators are computed using formula (9) in

Buckland et al. (1997), but are not available for FMA-FIC and FMA-PKL estimators.

5.3 Estimation results

Table 2 presents the estimates of our logit models for the probability of survey participation in the

second wave of the French SHARE, conditional on participation in the first wave. The table com-

pares estimates and standard errors of the focus parameters for thirteen estimators: the restricted

and unrestricted ML estimators, the ML estimator for the model selected by the GtS procedure, the

LASSO estimator implemented by the lasso2 package, three FMA estimators (FMA-AIC, FMA-

BIC and FMA-PKL with λn = log(n)), three BMA estimators, two one-step WALS estimators,

and the iterative WALS estimator. We omit the results of the FMA-FIC estimator because its

weights depend on the specific parameter g(β;x) to be estimated. Estimates of the other penalized

estimators, the FMA-PKL estimator with λn = 2, and the iterative WALS estimator with Laplace

and Subbotin priors are available upon request.

Except for the coefficient on the dummy variable for living with a partner, our results show

no differences in the signs of the estimated associations across estimation methods. However, the

size of the coefficients and the standard errors reveal nonnegligible differences. The importance

of model uncertainty is confirmed by the fact that alternative model-selection procedures tend to

select different models and show large variation of model weights in model-averaging procedures.

More precisely, LASSO and SCAD do not exclude any auxiliary regressor, MCP excludes only

the dummy variable for a female interviewer, and GtS excludes the dummy variable for a female

interviewer and the number of visits to a medical doctor. In model averaging, the best-performing

model depends on the weighting scheme, and the largest model weight is always lower than 0.17 for

FMA-AIC, 0.11 for FMA-BIC, and 0.14 for BMA. In contrast, PKL weights are concentrated in

few models and, depending on the value of the tuning parameter λn, the resulting FMA estimator

sets two coefficients equal to zero: the dummy variable for a female interviewer and the number

of visits to a medical doctor. This diagnostic information is not available in WALS, as we only

estimate k2 = 8 linear combinations of the 2k2 = 256 model weights.

Model-selection and model-averaging estimates are often in-between the restricted and the un-

restricted ML estimates, but generally closer to the latter. As for WALS, we find that the one-step

estimates are rather insensitive to the choice of the starting value and very close to the iterative
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estimates. The one-step WALS with starting value β̄ = β̂r always has smaller standard errors than

the one-step WALS with starting value β̄ = β̂u, but they do not differ much from the FMA and

BMA standard errors and are always lower than unrestricted ML standard errors. For the iterative

estimates, different starting values affect only the number of iterations needed for convergence (4

with β̄ = β̂u and 5 with β̄ = β̂r), but not the estimated coefficients and standard errors. Moreover,

these estimates are robust to alternative choices of prior on the transformed parameters.

Figures 1–3 plot the gender-specific age-profiles of participation probabilities estimated from the

various model-selection, FMA, and BMA approaches, along with the estimates from the iterative

WALS approach. For the FMA approach in Figure 2, we also illustrate the estimates obtained with

the smoothed FIC weights. Each point of the estimated age-profiles corresponds to the participation

probabilities of a representative male and a representative female aged a years. For model-selection

and WALS approaches we compute plug-in estimates, whereas the BMA and FMA estimates are

computed according to (14). The restricted and unrestricted ML estimates differ considerably,

whereas several model-selection and model-averaging estimates are remarkably similar and close to

the unrestricted ML estimates. Two major exceptions are the age-profiles for males estimated by

FMA-BIC and FMA-PKL, which are more similar to the restricted ML estimates. In addition to

the similarity of the estimates from unrestricted ML, GtS and LASSO, particularly striking is the

similarity of the estimates from iterative WALS, FMA-FIC and BMA with prior parameter ā = 0.05.

WALS appears to be robust to different choices of the starting value and to different choices of

the prior on the transformed parameters. Although more research is required, our conclusion at

this moment is that all popular model-averaging methods (including WALS) yield similar results.

An obvious advantage of WALS is that the estimates and their standard errors can be obtained in

negligible computing time even when k2 is large.

6 Monte Carlo simulations

Next we investigate the finite-sample performance of the various estimators by a set of Monte Carlo

experiments based on the study of survey participation described in Section 5.

The design of the experiment is as follows. We set the parameters of the DGP equal to the un-

restricted ML estimates β̂u presented in Table 2 and consider four simulation designs corresponding

to sample sizes of 100, 400, 900 and 1, 600. In the tth design (t = 1, . . . , 4), we use simple random

sampling with replacement to draw subsamples of size nt from the original design matrix X. We

then simulate the outcome yit for the ith observation of the tth subsample by a pseudo-random

draw from a Bernoulli distribution with probability of success πit = [1 + exp(−x′itβt)]−1, where
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βt = (β̂′1u, δ
′/
√
nt)
′ and δ is a k2-vector of coefficients which does not depend on nt and is fixed to

√
n β̂2u. We focus on estimating the participation probabilities πm and πf of a representative male

and a representative female aged 70 years, which, under our GDP, are equal to πm = 0.7301 and

πf = 0.7522.

Summaries of the sampling distribution of each estimator are approximated using 1, 000 Monte

Carlo replications. We also use the Monte Carlo experiment to approximate the bias, SE and RMSE

of estimators of the SEs of the estimated participation probabilities. Notice that our estimators

of the SEs depend on the particular estimator of the participation probabilities (plug-in versus

model averaging) and the general approach to estimation (frequentist versus Bayesian). In WALS

and model selection, the SE of a plug-in estimate π̂mt is estimated by the delta method as ŝmt =

π̂mt (1− π̂mt)
√
x′mV̂txm, where xm is the value of the regressors for a representative male aged 70

and V̂t = v̂ar(β̂t) is the estimated variance matrix of β̂t. In BMA, we compute the posterior SE

of πm using the square root of the standard formula for the posterior variance (see, e.g., Hoeting

et al. 1999, p. 383). Finally, in FMA, we apply formula (9) in Buckland et al. (1997) to the set of

conditional ML estimates of the participation probabilities and their variances across all possible

models. Since the theoretical SEs differ across estimation methods and simulation designs, we

report the relative bias, SE and RMSE of the various estimators by taking ratios with respect to

SE(π̂mt).

Table 3 presents the bias, SE and RMSE of our estimators of the participation probabilities

under an M-closed framework where the unrestricted model coincides with the DGP. Since the

unrestricted model is correctly specified, the bias of the unrestricted ML estimator π̂u is close to

zero for any nt. In small samples (nt = 100), the restricted ML estimator π̂r is considerably biased

but its bias converges to zero as nt increases because the auxiliary parameters of the DGP satisfy

the local misspecification framework. A comparison of the SE suggests that π̂r is always more

precise than π̂u, but the reduction in the variance does not always compensate for the bias. Thus,

in most simulation designs, π̂u has lower RMSE than π̂r. Similar considerations hold for the ML

estimator of the model selected by the GtS procedure, but not for the LASSO estimator which in

small samples has considerably lower RMSE than π̂u because of its lower sampling variability.

We also find that model-averaging estimators dominate model-selection estimators in terms of

RMSE. In all designs, the FMA-FIC and FMA-PKL are more precise and have lower RMSE than

the FMA-AIC and FMA-BIC. The comparisons between FMA-FIC and FMA-PKL are less clear-

cut, but in general their differences in terms of RMSE are small. The RMSE of BMA and WALS

depends on the sample size. For BMA, the preferred prior parameter is ā = 0.10 when nt ≤ 400,
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and either ā = 0.05 or ā = 0.01 when nt > 400. For WALS, the iterative estimator performs slightly

better than the one-step estimators when nt > 100, but in small samples the one-step estimator

with starting value β̄ = β̂r is the most precise. The three types of model-averaging estimator always

have similar finite-sample performance, with only small differences in terms of RMSE.

Table 4 presents the results for the estimated SEs under the same M-closed framework of

Table 3. We find that the estimator ŝr of the SEs from the restricted model outperforms all other

estimators. Thus, in addition to having the lowest sampling variance, the estimated precision of

the restricted ML estimator π̂r is always very close to its actual precision. Recall, however, that

π̂r is generally not a good estimator; in fact, one of the worst in terms of bias. Apart from the

restricted estimator, our results strongly favor the WALS estimator of SEs. They also show that,

unlike the other estimators, the conditional estimator of the SEs from the model selected by the GtS

procedure performs poorly in all simulation designs because it ignores the uncertainty generated

by the model selection step.

Table 5 presents the properties of our estimators under an M-open framework that omits the

auxiliary regressor IV Age. Except for the restricted ML estimator, this type of misspecification

yields larger biases and RMSEs than theM-closed framework, especially in small samples. Notice

that the bias still converges to zero as nt increases because of the local misspecification framework.

We again find that the three types of model-averaging estimators perform better than model-

selection estimators and have only small differences in terms of RMSE.

Table 6 present the properties of our estimators under an alternative M-open framework that

omits the focus regressors Age2/10 and Fem.×Age2/10. Now the bias of the unrestricted ML

estimator no longer vanishes as nt increases, so the starting values for WALS are inconsistent.

For all estimators of πm, RMSE is slightly lower than under the M-closed framework, due to a

negligible increase in bias, which is typically more than offset by a smaller sampling variance. Our

ranking of the estimators remains the same. The bias in the estimation of πf is larger, resulting

in much higher RMSE, especially in large samples. Even in this case, our results favor WALS over

model-selection estimators.

7 Conclusions

This paper extends the WALS approach to the wider class of GLMs. Our one-step WALS estimator

for GLMs is constructed in three stages. First, we estimate the parameters of each GLM by one-

step ML, which is numerically equivalent to least squares in a regression on transformed data

for the outcome and the regressors. Second, we use a semiorthogonal transformation to reduce
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the computational burden from order 2k2 to order k2. Third, we estimate the required k2 linear

combinations of the 2k2 model weights by a Bayesian approach which allows a proper treatment

of ignorance in the choice of the prior, satisfies other theoretical properties such as admissibility

and robustness, and is optimal in terms of minimax regret. We also consider an iterative WALS

estimator based on the same principles.

Results from both an empirical illustration and a set of Monte Carlo experiments show that our

WALS estimators outperform classical and penalized ML estimators. Further, their finite-sample

performance is remarkably similar to that of the FMA estimator with smoothed FIC weights (Hjort

and Claeskens 2003) and the BMA estimator with conjugate priors for GLMs (Chen and Ibrahim

2003; Chen et al. 2008). The key advantage of WALS over these estimators is a drastic reduction

in computing time. This computational advantage is especially important in empirical applications

with many auxiliary regressors. In addition, WALS is robust to different choices of the starting

values and different choices of priors.

Our model-averaging procedure could be further extended in several directions. First, an exten-

sion to multivariate outcomes would open the way to a larger variety of models, such as seemingly

unrelated regression equations, and ordered, multinomial, and conditional logit and probit mod-

els. Second, the theory developed here could be extended to weighted averages of M-estimators

of general nonlinear models. Third, our results are based on an M-closed local misspecification

framework, where the unknown DGP is included in the model space and estimation bias shrinks

to zero with the sample size at the rate n−1/2. Despite much progress made in recent years, more

work is required to extend model-averaging techniques to the general M-open framework.
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Table 1: Definitions and summary statistics for the variables in France

Variable Description Mean SD Min Max

Part Dummy for participation in w2 0.68 0.47 0 1

Age Age of HR in 2004 64.4 10.0 50 85
Age2/10 Squared age of HR divided by 10 4243.1 1320.2 2500 7225
Fem. Dummy for female HR 0.53 0.50 0 1
Fem. × Age Interaction female-age 34.8 33.4 0 85
Fem. × Age2/10 Interaction female-age2/10 2325.4 2397.7 0 7225
Couple Dummy for living with a partner 0.59 0.49 0 1
Big City Dummy for living in a big city 0.43 0.50 0 1
High Education Dummy for high education 0.57 0.50 0 1
Employed Dummy for being employed 0.28 0.45 0 1

Good SRH Dummy for good SRH 0.68 0.47 0 1
Doctor Number of visits to medical doctor 6.85 7.19 0 98
Euro-D Euro-D depression index 2.80 2.31 0 12
Recall Score of recall tests 7.47 3.29 0 18
Social Activities Number of social activities 0.80 1.00 0 6
Couple × Age Partner Interaction couple-age of HR’s partner 36.2 31.3 0 90
IV Fem. Dummy for female interviewer 0.76 0.43 0 1
IV Age Age of interviewer in 2004 51.0 7.54 19 80

Notes: The sample consists of 1,822 individuals. ‘Part’ is our binary outcome variable. Focus and auxiliary
regressors are listed, respectively, in the second and the third panels. HR means ‘household respondent’,
INT means ‘interaction term’, SRH means ‘self-reported health’, and IV means ‘interviewer’. In estimation
we center ‘Age’, ‘Age of Partner’, and ‘IV Age’ at 50, ‘Doctor’ at 5, ‘Euro-D’ at 3, ‘Recall’ at 9, and ‘Social
Activities’ at 1.
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ā
2

ā
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ā
3

β̄
=
β̂
r

β̄
=
β̂
r

It
er

.

S
E

(π̂
m

t
)

R
B

IA
S

1
0
0

.1
0
8
0

.1
8
9
5

..
3
6
6
9

.0
6
0
0

.1
5
9
7

.1
6
1
5

.1
7
1
7

.0
8
3
3

.0
1
0
0

..
0
8
1
5

.0
0
3
8

.0
9
6
2

4
0
0

.0
1
2
1

.0
1
7
4

.2
4
7
7

.0
7
8
9

.0
7
5
1

.0
3
7
7

.0
6
3
8

.0
0
6
3

.0
4
2
1

.0
7
7
0

.0
5
5
0

.0
2
5
4

9
0
0

.0
1
4
1

.0
0
4
5

.2
0
8
1

.0
5
9
5

.0
6
0
2

.0
1
4
1

.0
3
7
5

.0
1
7
2

.0
5
7
4

.0
6
3
8

.0
5
6
8

.0
4
2
9

1
6
0
0

.0
0
9
4

.0
1
2
6

.1
9
4
9

.0
7
2
2

.0
7
7
4

.0
2
7
8

.0
4
3
7

.0
0
4
1

.0
4
4
2

.0
3
1
0

.0
2
7
2

.0
1
9
3

R
S
E

1
0
0

.1
7
1
7

.4
6
0
1

.3
4
2
9

.3
6
6
5

.3
6
8
1

.4
0
7
4

.3
3
0
9

.3
4
0
8

.3
1
7
7

.2
9
1
9

.4
1
5
3

.3
7
4
3

4
0
0

.0
9
4
1

.2
0
3
3

.1
7
3
9

.1
9
5
7

.1
9
3
2

.2
0
5
4

.1
9
3
4

.1
8
9
7

.1
7
8
5

.1
6
7
8

.1
8
3
0

.1
8
1
2

9
0
0

.0
7
1
7

.1
3
0
3

.1
2
6
0

.1
2
5
3

.1
4
0
0

.1
4
2
4

.1
4
4
3

.1
3
7
5

.1
2
8
6

.1
2
0
1

.1
2
2
7

.1
2
2
7

1
6
0
0

.0
5
8
0

.0
9
7
5

.1
0
4
2

.0
9
5
1

.1
2
2
5

.1
1
2
1

.1
2
2
9

.1
1
2
5

.1
0
5
5

.0
9
5
2

.0
9
4
3

.0
9
4
6

R
R

M
S
E

1
0
0

.2
0
2
9

.4
9
7
5

.5
0
2
2

.3
7
1
3

.4
0
1
2

.4
3
8
2

.3
7
2
8

.3
5
0
8

.3
1
7
8

.3
0
3
0

.4
1
5
3

.3
8
6
5

4
0
0

.0
9
4
8

.2
0
4
0

.3
0
2
6

.2
1
1
0

.2
0
7
3

.2
0
8
8

.2
0
3
7

.1
8
9
8

.1
8
3
3

.1
8
4
6

.1
9
1
0

.1
8
3
0

9
0
0

.0
7
3
1

.1
3
0
4

.2
4
3
3

.1
3
8
7

.1
5
2
4

.1
4
3
1

.1
4
9
1

.1
3
8
6

.1
4
0
8

.1
3
6
0

.1
3
5
2

.1
3
0
0

1
6
0
0

.0
5
8
8

.0
9
8
3

.2
2
1
0

.1
1
9
4

.1
4
4
9

.1
1
5
5

.1
3
0
4

.1
1
2
6

.1
1
4
4

.1
0
0
1

.0
9
8
2

.0
9
6
5

S
E

(π̂
f
t
)

R
B

IA
S

1
0
0

.0
1
6
8

.1
8
4
4

..
4
2
0
9

.0
3
9
5

.1
1
6
3

.1
3
7
5

.1
3
9
5

.0
3
7
9

.0
4
7
4

..
1
6
3
0

.0
4
6
2

.0
5
1
4

4
0
0

.0
0
1
9

.0
1
0
2

.2
8
6
0

.0
6
1
5

.0
8
7
2

.0
3
2
0

.0
7
0
6

.0
0
0
0

.0
5
0
7

.0
9
2
7

.0
7
3
0

.0
4
4
5

9
0
0

.0
3
1
9

.0
1
4
5

.2
7
9
0

.0
6
6
3

.0
9
6
9

.0
3
6
3

.0
6
7
4

.0
0
5
7

.0
3
8
7

.0
5
7
8

.0
4
8
2

.0
3
5
5

1
6
0
0

.0
1
4
3

.0
3
2
5

.2
7
4
3

.0
7
8
8

.0
9
1
1

.0
4
6
5

.0
5
5
3

.0
0
8
8

.0
3
1
5

.0
2
9
2

.0
2
5
8

.0
1
8
8

R
S
E

1
0
0

.1
4
9
3

.4
4
3
9

.2
9
5
6

.3
8
6
0

.3
6
0
9

.3
9
2
7

.3
2
6
9

.3
3
7
0

.3
1
5
6

.2
8
2
9

.3
9
8
8

.3
6
3
8

4
0
0

.0
8
9
8

.2
0
3
2

.1
8
1
2

.2
0
1
1

.2
1
0
9

.2
1
6
6

.2
1
3
9

.2
0
6
4

.1
9
4
1

.1
7
4
0

.1
8
6
8

.1
8
5
5

9
0
0

.0
6
4
9

.1
2
9
2

.1
3
3
1

.1
2
9
0

.1
5
6
3

.1
5
4
5

.1
6
3
3

.1
5
4
4

.1
4
4
8

.1
2
5
7

.1
2
5
2

.1
2
5
7

1
6
0
0

.0
5
0
9

.0
9
6
6

.1
1
6
0

.0
9
6
7

.1
4
3
0

.1
2
7
4

.1
4
6
5

.1
3
3
3

.1
2
5
3

.1
0
1
2

.0
9
7
8

.0
9
8
5

R
R

M
S
E

1
0
0

.1
5
0
2

.4
8
0
7

.5
1
4
3

.3
8
8
0

.3
7
9
2

.4
1
6
1

.3
5
5
4

.3
3
9
2

.3
1
9
1

.3
2
6
5

.4
0
1
5

.3
6
7
4

4
0
0

.0
8
9
8

.2
0
3
5

.3
3
8
6

.2
1
0
3

.2
2
8
2

.2
1
8
9

.2
2
5
3

.2
0
6
4

.2
0
0
6

.1
9
7
1

.2
0
0
6

.1
9
0
7

9
0
0

.0
7
2
3

.1
3
0
0

.3
0
9
1

.1
4
5
0

.1
8
3
9

.1
5
8
7

.1
7
6
6

.1
5
4
5

.1
4
9
9

.1
3
8
3

.1
3
4
2

.1
3
0
6

1
6
0
0

.0
5
2
8

.1
0
1
9

.2
9
7
8

.1
2
4
8

.1
6
9
5

.1
3
5
6

.1
5
6
6

.1
3
3
6

.1
2
9
2

.1
0
5
3

.1
0
1
2

.1
0
0
3

N
o
te
s:

T
h
eo

re
ti

ca
l

st
a
n
d
a
rd

er
ro

r
o
f

th
e

va
ri

o
u
s

es
ti

m
a
to

rs
in

ea
ch

si
m

u
la

ti
o
n

d
es

ig
n

a
re

a
p
p
ro

x
im

a
te

d
b
y

th
ei

r
si

m
u
la

te
d

st
a
n
d
a
rd

er
ro

rs
p
re

se
n
te

d
in

T
a
b
le

3
.

T
o

a
cc

o
u
n
t

fo
r

th
e

d
iff

er
en

ce
s

in
th

e
st

a
n
d
a
rd

er
ro

rs
o
f

th
e

va
ri

o
u
s

m
et

h
o
d
s,

w
e

re
p

o
rt

th
e

re
la

ti
v
e

b
ia

s
(R

B
IA

S
),

th
e

re
la

ti
v
e

st
a
n
d
a
rd

er
ro

rs
(R

S
E

)
a
n
d

th
e

re
la

ti
v
e

ro
o
t

m
ea

n
sq

u
a
re

d
er

ro
r

(R
R

M
S
E

)
o
f

th
e

es
ti

m
a
to

rs
o
f

th
e

st
a
n
d
a
rd

er
ro

rs
fo

r
th

e
p
re

d
ic

te
d

p
ro

b
a
b
il
it

ie
s.
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Figure 1: Iterative WALS and model-selection estimates of the participation probability age-profiles
for representative male and female
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Notes: RML, UML and GtS denote, respectively, the plug-in ML estimates of πma and πfa in the
restricted model, the unrestricted model, and the final model selected by the GtS procedure, LAS
denotes the plug-in LASSO estimates, while WALS denotes the plug-in iterative WALS estimates
(same as Figures 2 and 3).
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Figure 2: Iterative WALS and FMA estimates of the participation probability age-profiles for
representative male and female
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Notes: FMA-xIC denotes the FMA estimates of πma and πfa based on the smooth xIC (BIC, AIC,
FIC) weighting system, FMA-PKL denotes the FMA estimates based on the PKL weighting system,
while WALS denotes the plug-in iterative WALS estimates (same as Figures 1 and 3).
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Figure 3: Iterative WALS and BMA estimates of the participation probability age-profiles for
representative male and female
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Notes: BMA(x) denotes the BMA estimates of πma and πfa based on the conjugate prior for GLMs
with prior parameters ȳ = 0.5ιn and ā = x, while WALS denotes the plug-in iterative WALS
estimates (same as Figures 1 and 2).
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Appendix A: Proofs

Proof of Proposition 1. By the data transformations in (5), we can write the linearized system

of constrained likelihood equations (4) for the jth model as

0 = X̄ ′1(ȳ − X̄1β1 − X̄2β2),

0 = X̄ ′2(ȳ − X̄1β1 − X̄2β2)−Rjνj ,

0 = R′jβ2. (A1)

Given νj and ignoring the remainders in these approximations, the restricted one-step ML estimator

β̃j = (β̃′1j , β̃
′
2j)
′ solves the equation system[

X̄ ′1X̄1 X̄ ′1X̄2

X̄ ′2X̄1 X̄ ′2X̄2

](
β̃1j
β̃2j

)
=

(
X̄ ′1ȳ
X̄ ′2ȳ

)
−
[

0
Rj

]
νj ,

while the unrestricted one-step ML estimator β̃u = (β̃′1u, β̃
′
2u)′ solves[

X̄ ′1X̄1 X̄ ′1X̄2

X̄ ′2X̄1 X̄ ′2X̄2

](
β̃1u
β̃2u

)
=

(
X̄ ′1ȳ
X̄ ′2ȳ

)
.

Rearranging these two expressions we obtain(
β̃1j
β̃2j

)
=

(
β̃1u
β̃2u

)
−
[
Ā11 Ā12

Ā21 Ā22

] [
0
Rj

]
νj , (A2)

where [
Ā11 Ā12

Ā21 Ā22

]
=

[
X̄ ′1X̄1 X̄ ′1X̄2

X̄ ′2X̄1 X̄ ′2X̄2

]−1
.

Premultiplying both sides of (A2) by the rj × k matrix [0 : R′j ] gives

[0 : R′j ]

(
β̃1j
β̃2j

)
= [0 : R′j ]

(
β̃1u
β̃2u

)
− [0 : R′j ]

[
Ā11 Ā12

Ā21 Ā22

] [
0
Rj

]
νj .

Since β̃2j satisfies the restriction R′j β̃2j = 0 (by construction) and the matrix R′jĀ22Rj is nonsin-

gular, solving this system of equations for the Lagrange multiplier gives

ν̃j = (R′jĀ22Rj)
−1R′j β̃2u.

Thus, the restricted one-step ML estimators of β1 and β2 for the jth model can be written as

β̃1j = β̃1u − Ā12Rj(R
′
jĀ22Rj)

−1R′j β̃2u, β̃2j = β̃2u − Ā22Rj(R
′
jĀ22Rj)

−1R′j β̃2u,

33



where Ā12 = −(X̄ ′1X̄1)
−1X̄ ′1X̄2(X̄

′
2M̄1X̄2)

−1 and Ā22 = (X̄ ′2M̄1X̄2)
−1, or equivalently

β̃1j = β̃1u + Q̄P̄jϑ̃, β̃2j = β̃2u −
(
X̄ ′2M̄1X̄2

n

)−1/2
P̄jϑ̃.

The result then follows by noting that in the fully restricted model, where Rj = Ik2
and P̄j = Ik2

,

we obtain β̃1r = β̃1u + Q̄ϑ̃ = (X̄ ′1X̄1)
−1X̄ ′1ȳ. �

Proof of Proposition 2. Under the regularity conditions stated in the proposition, the one-step

ML estimator for the unrestricted model has the same asymptotic distribution as the fully-iterated

ML estimator and so
√
n(β̃un − βn)⇒ N (0,Ω), where

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
=

[
I11 I12
I21 I22

]−1
= I−1,

with Ω11 = I−111 + I−111 I12Ω22I21I
−1
11 , Ω12 = −I−111 I12Ω22, and Ω22 =

(
I22 − I21I

−1
11 I12

)−1
. Equa-

tion (6) also implies that

√
n(ϑ̃n − ϑn) =

(
X̄ ′2M̄1X̄2

n

)1/2√
n(β̃2un − β2n) +

[(
X̄ ′2M̄1X̄2

n

)1/2

− Ω
−1/2
22

]
δ,

with ϑn = Ω
−1/2
22 β2n. As n→∞, we have

plim

(
X̄ ′2M̄1X̄2

n

)1/2

= plim

(
H̄22 − H̄21H̄

−1
11 H̄12

n

)1/2

= Ω
−1/2
22

and therefore
√
n(ϑ̃n − ϑn)⇒ N (0, Ik2). (A3)

From Proposition 1 we have β̃1rn = β̃1un + Q̄ϑ̃n, or equivalently,

√
n(β̃1rn − β1) = Q̄Ω

−1/2
22 δ +

√
n(β̃1un − β1) + Q̄

√
n(ϑ̃n − ϑn).

Since plim Q̄ = I−111 I12Ω
1/2
22 = Q, we obtain

√
n(β̃1rn − β1)⇒ N (I−111 I12 δ, I

−1
11 ). (A4)

Moreover, β̃1rn and ϑ̃n are asymptotically independent because their joint asymptotic distribution

is normal with asymptotic covariance Ω12Ω
−1/2
22 +Q = 0. For the one-step ML estimator of the jth

model, Proposition 1 implies that

√
n(β̃1jn − β1) = Q̄P̄jΩ

−1/2
22 δ +

[√
n(β̃1rn − β1)− Q̄Ω

−1/2
22 δ

]
− Q̄W̄j

√
n(ϑ̃n − ϑn)
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and

√
n(β̃2jn − β2n) =

[(
X̄ ′2M̄1X̄2

n

)−1/2
W̄jΩ

−1/2
22 − Ik2

]
δ +

(
X̄ ′2M̄1X̄2

n

)−1/2
W̄j

√
n(ϑ̃n − ϑn).

The asymptotic distribution of β̃jn then follows from (A3) and (A4), the asymptotic independence

of β̃1rn and ϑ̃n, and the probability limits

plim P̄j = Ω
1/2
22 Rj(R

′
jΩ22Rj)

−1R′jΩ
1/2
22 = Pj , plim W̄j = Ik2 − Pj =Wj .�

Proof of Proposition 3. It follows from (11) and (13) that

√
n(γ̂n − γn) =

( √
n(γ̂1n − γ1)√
n(γ̂2n − γ2n)

)
=

( √
n(γ̃1rn − γ1)− D̄W

√
nγ̃2un

W
√
nγ̃2un − d

)
,

where
√
n(γ̃1rn − γ1)⇒ N1r ∼ N (D d,J −111 ),

√
nγ̃2un ⇒ N2u ∼ N (d, Ik2),

with d =
√
nγ2n and W = W (N2u) because of (12). This implies that

√
n(γ̂n − γn)⇒ N =

(
N1

N2

)
=

(
N1r −DWN2u

WN2u − d

)
.

Moreover, since N1r and N2u are stochastically independent, we obtain

E(N1|N2u) = E(N1r)−DWN2u = −D(WN2u − d)

and

var(N1|N2u) = var(N1r) = J −111 .

The asymptotic bias and the asymptotic variance of γ̂1n are equal, respectively, to the unconditional

mean and the unconditional variance of the random vector N1. The unconditional mean is given

by

AB(γ̂1n) = E[E(N1|N2u)] = −DE[
√
n(Wγ̃2un − γ2n)] = −DE[

√
n(γ̂2n − γ2n)] = −DAB(γ̂2n)

and the unconditional variance by

AV(γ̂1n) = E[var(N1|N2u)]+var[E(N1|N2u)] = J −111 +D var(
√
n(γ̂2n−γ2n))D′ = J −111 +DAV(γ̂2n)D′.

The result for the AMSE follows. �
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Appendix B: Continuity of eigenprojections and symmetric matrix
functions

In matrix theory, when employing arguments that require limits such as continuity or consistency,

some care is required when dealing with eigenvectors and associated concepts. Since there appears

to be a certain amount of confusion on these issues among statisticians and econometricians, we

present below some of the main results. Most of the results in this appendix are not new, see e.g.

Kato (1976) and Horn and Johnson (1991, Chapter 6), but they are put together here in a simple

and accessible manner in order to avoid further confusion.

Preliminaries

We shall confine ourselves to a real n×n symmetric matrix, say A. If Ax = λx for some x 6= 0 then

λ is an eigenvalue of A and x is an eigenvector of A associated with λ. Because of the symmetry

of A, all its eigenvalues are real and they are uniquely determined. However, eigenvectors are

not uniquely determined, not even when the eigenvalue is simple. Also, while the eigenvalues

are typically continuous functions of the elements of the matrix, this is not necessarily so for the

eigenvectors. The current appendix attempts to make these vague notions precise.

Some definitions are required. The set of all eigenvalues of A is called its spectrum and is

denoted as σ(A). The eigenspace of A associated with λ is

V (λ) = {x ∈ Rn|Ax = λx}.

The dimension of V (λ) is equal to the multiplicity of λ, say m(λ). Eigenspaces associated with

distinct eigenvalues are orthogonal to each other. Because of the symmetry of A we have the

decomposition ∑
λ∈σ(A)

V (λ) = Rn.

The eigenprojection of A associated with λ of multiplicity m(λ), denoted P (λ), is given by the

symmetric idempotent matrix

P (λ) =

m(λ)∑
j=1

xjx
′
j ,

where the {xj} form any set of m orthonormal vectors in V (λ), that is, x′jxj = 1 and x′ixj = 0

for i 6= j. While eigenvectors are not unique, the eigenprojection is unique because an idempotent

matrix is uniquely determined by its range and null space. The spectral decomposition of A is then∑
λ∈σ(A)

λP (λ) = A.
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If σ0 is any subset of σ(A), then the total eigenprojection associated with the eigenvalues in σ0 is

defined as

P (σ0) =
∑
λ∈σ0

P (λ).

It is clear that P (σ(A)) = In. Also, if σ0 contains only one eigenvalue, say λ, then P ({λ}) = P (λ).

Total eigenprojections are a key concept when dealing with limits, as we shall see below.

Symmetric matrix functions

Now consider a matrix function A(t), where A(t) is a real n× n symmetric matrix for every real t.

The matrix A(t) has n eigenvalues, say λ1(t), . . . , λn(t), some of which may be equal. Suppose that

A(t) is continuous at t = 0. Then the eigenvalues are also continuous at t = 0. This was proved by

Rellich (1953) making essential use of the symmetry of A(t).

Now, let λ be an eigenvalue of A = A(0) of multiplicity m. Because of the continuity of the eigen-

values we can separate the eigenvalues in two groups, say λ1(t), . . . , λm(t) and λm+1(t), . . . , λn(t),

where the m eigenvalues in the first group converge to λ, while the n−m eigenvalues in the second

group also converge, but not to λ. Kato (1976, Theorem 5.1), based on earlier results by Rellich

(1953), proved that the total eigenprojection P ({λ1(t), . . . , λm(t)}) is continuous at t = 0, that is,

it converges to the spectral projection P (λ) of A(0).

Kato’s result does not imply that eigenvectors or eigenprojections are continuous. If all eigen-

values of A(t) are distinct at t = 0 then each eigenprojection Pj(t) is continuous at t = 0 because

it coincides with the total eigenprojection for the eigenvalue λj(t). But if there are multiple eigen-

values at t = 0, then it may occur that the eigenprojections do not converge as t → 0, unless

we assume that the matrix A(t) is (real) analytic. (A function is real analytic if it is infinitely

differentiable and can be expanded in a power series.) In fact, Kato (1976, Theorem 1.10) showed

that if A(t) is real analytic at t = 0, then the eigenvalues and the eigenprojections are also analytic

at t = 0 (and therefore certainly continuous).

Discontinuity of eigenprojections

Hence, in general, eigenvalues are continuous, but eigenvectors and eigenprojections may not be.

This is well illustrated by the following example of Kato (1976, Example 5.3).

Consider the matrix

A(t) = e−1/t
2

(
cos(2/t) sin(2/t)
sin(2/t) − cos(2/t)

)
, A(0) = 0.
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There is a multiple eigenvalue 0 at t = 0 and simple eigenvalues λ1 = e−1/t
2

and λ2 = −e−1/t2 at

t 6= 0. The associated eigenvectors are

x1 =

(
cos(1/t)
sin(1/t)

)
, x2 =

(
sin(1/t)
− cos(1/t)

)
.

Hence the associated eigenprojections are

P1(t) = x1x
′
1 =

(
cos2(1/t) sin(1/t) cos(1/t)

sin(1/t) cos(1/t) sin2(1/t)

)
and

P2(t) = x2x
′
2 =

(
sin2(1/t) − sin(1/t) cos(1/t)

− sin(1/t) cos(1/t) cos2(1/t)

)
.

The matrix function A(t) is continuous (even infinitely differentiable) for all real t. This is also

true for the eigenvalues. But there is no eigenvector which is continuous in the neighborhood of

t = 0 and does not vanish at t = 0. Also, the eigenprojections P1(t) and P2(t), while continuous

(even infinitely differentiable) in any interval not containing t = 0, cannot be extended to t = 0 as

continuous functions.

The total eigenprojection is given by P1(t) +P2(t) = I2, which is obviously continuous at t = 0,

but the underlying eigenprojections P1(t) and P2(t) are not. The reason lies in the fact that the

matrix A(t), while infinitely differentiable at t = 0, is not analytic.

This can be seen as follows. Let

f(t) =

{
exp(−1/t2) for t 6= 0

0 for t = 0,
g(t) =

{
cos(2/t) for t 6= 0

0 for t = 0,

and define h(t) = f(t)g(t). It is well-known (and a standard example in textbooks) that the function

f(t) is infinitely differentiable for all (real) t, but not analytic. The function g(t) is not continuous

at t = 0, although it is infinitely differentiable in any interval not containing t = 0. Their product

h(t) is infinitely differentiable for all (real) t (because g is bounded), but it is not analytic.

We summarize the previous discussion as follows.

Lemma B.1 Let A(t) be a family of real-valued symmetric matrices, and suppose ε > 0 exists such

that A(t) is continuous for all |t| < ε. Then the eigenvalues λj(t) and the total eigenprojections

Pj(t) are continuous at t = 0. If, in addition, A(t) is analytic at t = 0, then the individual

eigenprojections are continuous at t = 0.
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Relation to Tyler’s lemma

Tyler (1981, Lemma 2.1) stated the following result, which is often quoted, but is essentially the

same as Kato’s result. Let A(t) be a symmetric n× n matrix function with eigenvalues

λ1(t) ≥ λ2(t) ≥ · · · ≥ λi(t) ≥ · · · ≥ λj(t) ≥ · · · ≥ λn(t),

and assume that, at t = 0,

λi−1(0) > λi(0), λj(0) > λj+1(0).

If A(t) is continuous at t = 0, then the total eigenprojection Pi,j(t) associated with λi(t), . . . , λj(t)

is continuous at t = 0.

Continuity of symmetric matrix functions

We are now in a position to state the following result, which is essentially the same as Horn and

Johnson (1991, Theorem 6.2.37) but with a somewhat simpler proof.

Lemma B.2 Let A(t) be a family of real-valued symmetric matrices, and suppose ε > 0 exists such

that A(t) is continuous for all |t| < ε. Let f be a real-valued function, defined and continuous on

the spectrum σ(A(0)). Then f(A(t)) converges to f(A(0)) as t→ 0.

Proof. Since A(t) is symmetric and continuous in t, we can write

A(t) =
∑

λ(t)∈σ(A(t))

λ(t)P (λ(t)).

Let λ0 be an eigenvalue of A(0), and let

λi(t) ≥ · · · ≥ λj(t) (0 < |t| < ε)

be the λ-group associated with λ0. Then,

lim
t→0

λk(t) = λ0 (i ≤ k ≤ j),

and hence, since f is continuous at λ0,

lim
t→0

f(λk(t)) = f(λ0) (i ≤ k ≤ j).

We also know, because of the continuity of the total eigenprojections, that

lim
t→0

j∑
k=i

P (λk(t)) = P (λ0).
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Together this implies that

lim
t→0

j∑
k=i

f(λk(t))P (λk(t)) = f(λ0)P (λ0),

which we see by writing

j∑
k=i

f(λk(t))P (λk(t))− f(λ0)P (λ0)

=

j∑
k=i

[
f(λk(t))− f(λ0)

]
P (λk(t))− f(λ0)

[
(P (λ0)−

j∑
k=i

P (λk(t))
]
.

This proves convergence for each λ-group, and hence concludes the proof. �

Orthogonal transformations

Let B be an m×n matrix of full column-rank n. Then A = B′B is positive definite and symmetric,

and we can decompose

A = TΛT ′,

where Λ is diagonal with strictly positive elements and T is orthogonal.

Suppose that our calculations would be much simplified if A were equal to the identity matrix.

We can achieve this by transforming B to a matrix C, as follows:

C = BTΛ−1/2S′,

where S is an arbitrary orthogonal matrix. Then,

C ′C = SΛ−1/2T ′B′BTΛ−1/2S′ = SΛ−1/2ΛΛ−1/2S′ = SS′ = In.

The matrix S is completely arbitrary, as long as it is orthogonal. It is tempting to choose S = In.

This, however, implies that if B = B(t) is a continuous function of some variable t, then C = C(t)

is not necessarily continuous, as is shown by the previous discussion. There is only one choice of S

that leads to continuity of C, namely S = T , in which case

C = BTΛ−1/2T ′ = B(B′B)−1/2.
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