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1 Introduction

In recent years, a large body of the statistics and econometrics literature has been concerned with
the development of inferential methods to address a variety of model uncertainty problems. The
two most popular approaches are model selection and model averaging. In model selection, the
investigator first chooses a best performing model according to some criterion and then carries out
inference based on the chosen model by ignoring the uncertainty due to the initial model selection
step. This popular approach is subject to many problems, most importantly that the model selection
step is completely separated from the estimation step. As shown by Magnus (1999, 2002), Leeb
and Potscher (2003, 2006), and Berk et al. (2013), among others, the initial model selection step
may have nonnegligible effects on the statistical properties of the resulting estimators.

Model averaging, on the other hand, does not require the investigator to rely on a single ‘best’
performing model. Based on the idea that each model contributes information on the parameters
of interest, one computes a weighted average of the conditional estimates across all possible models
to combine the available pieces of information into an unconditional estimate that incorporates the
uncertainty due to both the model selection and the model estimation steps. A distinction can be
made between four types of model-averaging methods depending on whether the estimation of each
model and the choice of the associated weighting scheme are developed along frequentist or Bayesian
lines. These different methods have led to a rapidly expanding literature on model averaging,
including in particular a variety of strictly Bayesian (BMA) and strictly frequentist (FMA) model-
averaging estimators. Useful overviews of the two approaches can be found in Hoeting et al. (1999),
Clyde and George (2004), Claeskens and Hjort (2008), and Moral-Benito (2015).

Model averaging is not the only way to allow for uncertainty due to both model selection and
estimation, and shrinkage and penalized methods are also receiving increasing attention. Recent
work by Hansen (2014, 2016) shows that Stein-type shrinkage estimators can be interpreted as
model-averaging estimators in the case of two nested models. Methods that simultaneously select
variables and shrink coefficients by minimizing some penalized loss function include, among others,
the least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996), the smoothly
clipped absolute deviation (SCAD) penalty of Fan and Li (2001), and the minimax concave penalty
(MCP) of Zhang (2010). Bayesian counterparts of these frequentist approaches are also available.
For example, the Bayesian LASSO of Park and Casella (2008) is motivated by the fact that the
LASSO estimate of linear regression parameters can be interpreted as a posterior mode when the
regression parameters have independent Laplace priors. Further, as noticed by Kumar and Magnus

(2013), the LASSO, and SCAD estimators can be interpreted as discontinuous counterparts of the



Laplace, Subbotin and reflected Weibull estimators available in a Bayesian context. LASSO-type
methods have been shown to be particularly effective in high-dimensional settings where the number
of predictors exceeds the sample size (see, e.g., Fan and Lv 2010, Chernozhukov et al. 2015, and
Belloni et al. 2017), but recent work by Ando and Li (2014, 2017) suggests that model-averaging
procedures also perform well in these more complex settings.

In this paper we focus on the weighted-average least squares (WALS) approach introduced by
Magnus et al. (2010) to account for model uncertainty in the choice of the regressors in a Gaus-
sian linear model. The WALS estimator is a Bayesian combination of frequentist estimators: the
parameters of each model are estimated by least squares under a classical frequentist perspective,
while the weighting scheme is based on a Bayesian perspective using posterior model probabilities
to reflect the confidence in each model based on prior beliefs and the observed data. The result of
this ‘Bayesian-frequentist fusion’ is a model-averaging estimator that has some important advan-
tages over standard BMA and FMA estimators. First, in contrast to several BMA estimators that
adopt normal priors leading to unbounded risk, the choice of prior in WALS is based on theoretical
considerations related to admissibility, bounded risk, robustness, near-optimality in terms of mini-
max regret, and proper treatment of ignorance (see, e.g., Magnus 2002, Magnus et al. 2010, Kumar
and Magnus 2013, and Magnus and De Luca 2016). Second, unlike BMA and FMA estimators,
WALS uses a preliminary semiorthogonal transformation of the regressors that allows to obtain
exact model-averaging estimates of the parameters of interest in negligible computing time.

The aim of this paper is to extend the WALS approach to deal with uncertainty about the
specification of the linear predictor in the wider class of generalized linear models (GLMs). This
class includes a variety of nonlinear models for discrete and categorical outcomes, such as logit,
probit, and Poisson regression models. A previous attempt to extend the WALS methodology in
the same direction was undertaken by Heumann and Grenke (2010), but their paper was restricted
to the logit model and lacked a rigorous treatment of the underlying theory. Our paper provides a
more comprehensive treatment of the WALS approach to GLMs and establishes the large-sample
properties of this class of model-averaging estimators under the local misspecification framework
proposed by Hjort and Claeskens (2003).

Specifically, we show that many of the theoretical and computational advantages of the WALS
approach to Gaussian linear models continue to hold in the wider class of GLMs by a simple
linearization of the constrained maximum likelihood (ML) estimators. To establish the asymp-
totic theory for WALS, some improvements had to be made to the semiorthogonal transformation

procedure. These improvements address potential discontinuity problems in the eigenvalue decom-



position used in earlier papers on WALS. In addition to developing the asymptotic theory for the
WALS estimator of GLMs, we also investigate the finite-sample properties of our model-averaging
estimator by a Monte Carlo experiment the design of which is based on a real empirical exam-
ple, namely the analysis of attrition in the first two waves of the Survey of Health, Ageing and
Retirement in Europe (SHARE). Here, we compare the performance of WALS with that of other
popular estimation methods such as standard and penalized ML, strict BMA with conjugate priors
for GLMs (Chen and Ibrahim 2003; Chen et al. 2008), and strict FMA with four alternative types
of weighting systems (Buckland et al. 1997; Hjort and Claeskens 2003; Zhang et al. 2016).

The remainder of the paper is organized as follows. Section 2 presents the statistical frame-
work. Section 3 discusses some properties of ML estimators that are important for constructing
WALS estimators of GLMs. Section 4 discusses WALS estimation. Section 5 presents an empirical
illustration. Section 6 presents a set of Monte Carlo simulations. Section 7 concludes. Appendix A
contains the proofs and Appendix B discusses continuity issues of eigenprojections and symmetric

matrix functions.

2 Statistical framework

We consider modeling a data matrix [y : X] consisting of n observations on a scalar outcome
and k regressors. Thus, y is an n-vector with i¢th element y, and X is an n x k matrix of full
column-rank k with ith row 2. As in a standard GLM setup, we assume that the elements of y are
realizations of n independently distributed random variables with mean p,, finite nonzero variance
o2, and distribution belonging to the one-parameter linear exponential family (LEF) with density

(or probability mass function)

f(y;0;) =exp[0;y, — b(0;) +c(y;) ], (1)

where 6, is a scalar parameter called the canonical parameter, b(-) is a known, strictly convex and
twice continuously differentiable function, and ¢(-) is a known function. Different choices of b(-)
and c¢(+) result in different distributions within the LEF (e.g., normal, binomial or Poisson). In the
original formulation of Nelder and Wedderburn (1972), the density of y; also includes a dispersion
parameter which, without loss of generality, we set equal to one. By the properties of the LEF,
the mean and variance of y; are equal to p; = u(6,) and o7 = 02(0;), with u(0) = db(0)/dd and
o2(0) = d?*b(0) /db? = du(0)/dd (McCullagh and Nelder 1989). The assumptions on b(-) guarantee
that the function u(+) is invertible and the function o?(-) is strictly positive.

As in a standard GLM setup, we model the dependence of y; on z; by assuming that there exist
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a linear predictor n;(8) = ;3 and an invertible and continuously differentiable function h(-), called

the inverse link, such that
1(0;) = i = h(n;(B)) (2)

for a unique point § in a k-dimensional parameter space. When h(-) = p(-) (the ‘canonical link
case’), this assumption corresponds to a linear model ; = 2/ for the canonical parameter. More
generally, assumption (2) implies that the canonical parameter 6, is a smooth function of the linear
predictor 7;, written 6, = (n;) where 6(-) = u~1(h(-)).

We assume throughout that the density of y; and the link function h(-) are correctly specified,
but depart from a standard GLM setup by allowing for uncertainty in the specification of the linear
predictor. Specifically, we partition the k regressors in two subsets, X = [X : X,], where X, is
an n X k, matrix with ith row equal to 2}, (p = 1,2) and k; + ky = k. The k; columns of X,
contain the regressors which we want in the model on theoretical or other grounds (focus regressors
in the terminology of Danilov and Magnus 2004), while the k5 columns of X, contain the additional
regressors of which we are less certain (auxiliary regressors). Stacking the linear predictors for the n
observations on top of each other gives the n-vector n(3) = X3 = X8, + X,8,, with 8 = (8}, 83)’,
where (3, is the vector of focus parameters and [, is the vector of auxiliary parameters.

In total, there are 2%2 possible models that contain all focus regressors and arbitrary subsets
of auxiliary regressors. We represent the jth model as a GLM of the form (1)-(2) with the added
restriction R}y = 0, where R; denotes a ky x r; matrix of rank 0 < r; < k, such that R} = [, : 0]
(or a column-permutation thereof) and I, denotes the identity matrix of order r;. The matrix R;
thus specifies which auxiliary regressors are excluded from the jth model and the scalar r; denotes
the number of excluded auxiliary variables.

As usual in the model-averaging literature, we adopt an M-closed framework where the unknown
data-generation process (DGP) is included in the set of models considered by the investigator.
Following the local misspecification framework (see, e.g., Hjort and Claeskens 2003), we assume
that the true value of the focus parameters 3, is fixed while the true value of the auxiliary parameters
B4 is in a y/n-shrinking neighborhood of zero. Although there is a debate about the realism of such
assumption (see, e.g., Raftery and Zheng 2003, Ishwaran and Rao 2003, and Hjort and Claeskens
2003), this framework has been commonly used to analyze the large-sample behavior of a variety
of estimators (see, e.g., Claeskens and Hjort 2003, Claeskens et al. 2006, Hansen 2014 and 2016,
and Liu 2015). The local misspecification framework thus allows the application of asymptotic
model-averaging theory as it ensures that all ML estimators are y/n-consistent and have squared

bias and variance both of order Op(n_l). In contrast, a standard asymptotic framework with a



fixed value of 3, would always select the ML estimator of the unrestricted model because the ML

estimator of the jth model may be inconsistent if the underlying constraint is not valid.

3 ML estimation

The classical approach to the estimation of GLMs is maximum likelihood. Given independent

observations {(y;,z})'}"_;, the GLM loglikelihood is of the form
{B) =c+ Z [0; y; — b(6;)],
i=1

where ¢ does not depend on S and the canonical parameter 6, = 6(,) depends on § through the
linear predictor n,. Since x; = (z};,2},)" and 8 = (51, 55), the gradient of the loglikelihood (the

score) is the k-vector s(f) consisting of the following subvectors

8= 5 = Y u®) - (B, 0= 12),

i=1
where v; = df/dn,. We also define a k x k matrix H(/3), which is equal to minus the Hessian of the

loglikelihood and consists of the following submatrices

028
3,08,

where ¢, = v? 07 — w;(y; — p1;) and w; = d*0/dn?; and a k x k matrix I(3) (the Fisher information)

7

Hy(B) = = Z%(ﬁ)%px;q (p,g=1,2),
i=1

consisting of the submatrices
n
Ipq(ﬁ) :sz(ﬁ)za—?(ﬁ)xwx;q (p7q: 172)'
i=1

With a canonical link, these expressions simplify considerably as 6, = 7;, v, = 1 and w; = 0 for all
observations, so s,(8) = 1" [y; — 1;(8)] x;,, and Hyy(B) = IL,,(B).
The ML estimator of 8 for the jth model maximizes the loglikelihood ¢(5) subject to the

constraint R; By = 0 or, equivalently, solves the system of k; + ko + r; equations
0281(/8)7 0282(5)_Rjyj7 OZR_;/B% (3)

where v; denotes the r;-vector of Lagrange multipliers associated with the constraint R}BQ = 0.
One issue in extending the WALS approach to the wider class of GLMs is that, except when the
elements of y are normally distributed, the system of likelihood equations (3) is nonlinear and has to
be solved by some iterative scheme such as Newton-Raphson or the method of scoring. To address
this issue we now introduce a class of one-step ML estimators that admit closed-form expressions

and are asymptotically equivalent to the fully-iterated ML estimators.



3.1 One-step ML estimators

Given a starting value 3 = (Bi, Bé)’ , with properties to be discussed below, expanding the likelihood

equations (3) around 3 yields the approximation

0=15, — Hy1(8; = B1) — Hi2(By — Ba),

0 =58y — Hyy (81 = 1) — Hoo(By — o) — Rjv;, (4)

0= R}B%
where 5, = sp(B) and .F_Ipq = Hpq(ﬁ), p,q = 1,2. An estimator Ej that solves the linearized system
of constrained likelihood equations (4) is called a one-step ML estimator of 8 under the jth model,
as it corresponds to the first step of the Newton-Raphson method.

We first consider the unrestricted model where R; = 0. Define the data transformations

where @ = U2V (y — i), ¥ = ¥(B) is an n x n diagonal matrix with ith diagonal element equal
to ¥,(B8), V = V(B) is an n x n diagonal matrix with ith diagonal element equal to v;(3), and
i = p(B) is an n-vector with ith element equal to u,(3). Then, when R; = 0, the solutions Blu and

Bs,, to the linearized system of likelihood equations (4) can be written in closed form as
Bru = (X1X1) 71 X107 — (X1 X1) 7 X1 X6, By = (X5M X5) ™ XMy,

where M, = I,, — X;(X]X;)"1X] is a symmetric idempotent matrix of rank n — k;. These expres-
sions make it clear that the unrestricted one-step ML estimators Elu and §2u coincide numerically
with the least squares coefficients in the linear regression of  on X, and X,. Notice that, although
the original regressors X; and X, are fixed (nonrandom), the transformed regressors X; and X,
are in general random because they depend on /3 and y. In the canonical link case, the dependence
on y disappears, as w; = 0 for all 7, but the dependence on 3 remains.

More generally, consider the one-step ML estimator for the jth model. After defining the
symmetric and idempotent k, X k, matrix
p - <X§M1X2> Rl <X5M1X2>1 R

n

J n J n

—1 _
XML X\ V2
/ 2 1<*2

the k; x k, matrix




and the nonsingular transformation of the unrestricted one-step ML estimator BQU

~—

~  (XIMLXN? -
19:< 2 1 2> 6 (6

n 2u»

we obtain the following generalization of Proposition 3.1 in Magnus and De Luca (2016).

Proposition 1 The one-step ML estimators of 3, and By based on the jth model are

W40,

X§M1X2>1/2 .
J

Eu = glr - QWJ{i sz = (

n

where 517, = (X1 X,)"1 X!y is the fully restricted one-step ML estimator of 3, and Wj =1, - Pj.

3.2 Asymptotic properties of one-step ML estimators

In what follows, to keep track of the sample size, we index all relevant data-dependent objects by

n. Under the local misspecification framework, the auxiliary parameters are set equal to

ﬁ2n = = (7)

where ¢ is an unknown constant vector that represents the degree of model departure from the fully
restricted model. Thus, the DGP depends on the sample size, with the sequence of true parameters
B, = (B1, B5,) converging to 8, = (f],0") as n — oc.

The large-sample properties of the sequence {Bjn} of one-step ML estimators for the jth model
depend crucially on the large-sample properties of the sequence {ﬂ_n} of starting values in the
approximation (4). If 8, — 8, is O,(1/y/n), then Ejn — B, is also O,(1/y/n) and has the same
asymptotic distribution as the fully-iterated ML estimator of the jth model (see, e.g., Theorem 3.5
in Newey and McFadden 1994). In an M-closed framework, where the DGP is included in the set
of models considered by the investigator, a natural choice of starting value is the fully-iterated ML
estimator based on the unrestricted model, as in this case 3, —f3,, = O,(1/y/n) under mild regularity
conditions, irrespective of whether the local misspecification framework (7) is valid or not. These
regularity conditions, spelled out in detail in Fahrmeir and Kaufmann (1985), essentially require
the Fisher information I,,(-) to be continuous on an open neighborhood B of g, and to diverge as
the sample size grows. Under these conditions, H,(-)/n and I,,(-)/n both converge in probability
as n — oo, uniformly on B, to a nonrandom finite, symmetric, and positive definite matrix Z(-).

The following result provides a convenient asymptotic approximation to the sampling distribu-

tion of one-step ML estimators under the local misspecification framework (7).



Proposition 2 In addition to (7), assume that all reqularity conditions in Fahrmeir and Kaufmann

(1985) are satisfied. If B3, — B, = O,(1/y/n), then, as n — oo,
1/2

where T, denotes the pqth submatriz of Z(B,), Qo = (Zyg — In I ' To) 7Y, Q@ = I 71,005,
1/2

1/2 -
Pj = 2 Rj(RiQupR)) " Ry, and Wy = I, = P;.

I+ oW, @ —ow,)’

~ Q ~1/2
Vn(Bi, — B,) = N [ 1/2 ]PQ 9,
’ 7924 7 _Q;égwj Qo Qéézwjgééz

The asymptotic distributions of the one-step ML estimators for the unrestricted and the fully
restricted models are obtained as special cases by putting R; = 0 and R; = Ik27 respectively.
Proposition 2 is similar to Lemma 3.2 in Hjort and Claeskens (2003) but differs because we consider
the asymptotic distribution of the complete estimator Ejn, including its 7; components restricted
to be zero. Notice that

Vit~ 8 = Vit - 50+ § ).
so the two distributions only differ by a constant shift.

Three implications of Proposition 2 are worth noting. First, under the local misspecification
framework, all estimators are consistent for 5,. If the jth model is correctly specified, that is, the
constraint R;-(S = 0 is valid, then Bjn is asymptotically unbiased for f3,,, since 73]-92_21/ 25 = 0, though
not for 5,. However, if the constraint R;é = 0 is not valid, then Ejn is no longer asymptotically
unbiased for §,, and its asymptotic bias may actually exceed that of estimators based on more
parsimonious models.

Second, all estimators are asymptotically normal and a comparison between the asymptotic
variances of the restricted and unrestricted estimators shows that AV(3,,,) — AV(gljn) = QP;
and AV (B,,,,) — AV(EQJ-”) = Q;éZ'PjQéf, which are two nonnegative definite matrices. Hence,
irrespective of whether the constraint R;-é = 0 is valid or not, the restricted estimators El in and ngn
are always asymptotically more precise (have smaller asymptotic variance) than the unrestricted
estimators Blun and Egun. This implies that the uncertainty about the choice of the auxiliary
regressors gives rise to an asymptotic bias-precision trade-off in the estimation of j,,.

Third, it can be easily shown that \/n(d, — 9,,) = N(0, Iy, ), where 9, = Q;;/QB%. Further,
9,, and 3,,,, are asymptotically independent because their joint asymptotic distribution is normal
with zero asymptotic covariance.

As we shall see in the next section, the results of Propositions 1 and 2 provide the key ingredients

needed to extend the WALS approach to the wider class of GLMs.



4 WALS estimation

Our WALS approach to GLMs is a Bayesian combination of one-step ML estimators that exploits a
preliminary semiorthogonal transformation of the auxiliary regressors to reduce the computational

burden required by exact model-averaging estimation from the order 2*2 to the order ky.

4.1 Scale and semiorthogonal transformations

To operationalize the WALS approach to GLMs, we first transform the focus regressors in X, =
\T/l/QXl by defining
Zy = XA, 7 =A7'8, (8)

where A, is a diagonal k; x k; matrix such that all diagonal elements of Z]Z,/n are equal to
one. The only purpose of this transformation is to improve the numerical accuracy of inversion
and eigenvalue routines. For the purposes of inference, this transformation is completely harmless
because 2,7, = X106y, I, — Z2,(Z,Z,)"1Z] = M, and B, = A¥;.

Next we transform the auxiliary regressors in X, = W'/2X,. Let A, be a diagonal ky x ks,
matrix such that all diagonal elements of = = A, X)M; X,A,/n are equal to one. Notice that,
unlike the matrix A;, the matrix A, has the dual purpose of improving numerical accuracy and
making the WALS estimator equivariant to scale transformations of the auxiliary regressors (De
Luca and Magnus 2011). Since = is a symmetric and positive definite matrix, we can apply the

semiorthogonal transformation
22 = X2A2§71/27 Yon = il/2A2_162n7 (9)

which implies that Z M, Z,/n = I s Zoon = XoBon, and By, = AyE~125, .

The transformations (8) and (9) present two important differences with respect to those em-
ployed in the WALS approach to linear models. The first difference is that, with a view toward
asymptotic analysis, we have normalized all relevant matrices by n to ensure that they remain
stable when the sample size becomes arbitrarily large.

The second difference lies in the semiorthogonal transformation (9) where we now avoid possible
discontinuities in the eigenvectors and eigenprojections of the matrix = by exploiting the continuity
of the eigenvalues and the total eigenprojections. As shown in Appendix B, this ensures that =1/2,
=1, and 2-1/2 are continuous matrix functions, as long as = is continuous and positive definite.
The large-sample probability limits of the random objects in (8) and (9) then follow easily. Since

plim X X, /n = plim H,, /n = Z,,, the matrix A, converges in probability as n — oo to a diagonal
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nonrandom matrix A; with diagonal elements equal to the inverse of the square root of the diagonal

elements of Z,;, so that plimn='Z]Z, = AZ;;A, = J;;. Similarly, because of continuity of

the inverse of a nonsingular matrix, the scaling matrix A, converges in probability to a diagonal

nonrandom matrix A, with diagonal elements equal to the inverse of the square root of the diagonal

elements of 92_21, so that plim= = A2(22_21A2 = E. Moreover, the continuity of 2~1/2 now implies
-1

Jog = InJiy Jha = Ik2'

4.2 One-step ML estimation of the transformed models

Since Z,4, = X8, and Zy7y,, = X35, We can rewrite the unrestricted model as a GLM of the
form (1)—(2) with linear predictor n = Z;9; + Z,7,,. This equivalent representation is convenient
because it implies that Z4 M, Z,/n = I Ky It then follows from Proposition 1 that the one-step ML

estimators for the jth model are given by
51jn = ’VVlm - ij%una %jn = Wﬁ2una (10)
where ., = (Z12,) ' 21, Youn = Z3My§/n, D = (Z12,) "' 21 Z,, W; = Ik2 — P, and P; = RjR;"

Further, letting v,, = (7, 79,,") with v, = A7'8, and 7y, = ZV/2A5 ' 3,,,, Proposition 2 also implies

VA =) = N ([ i ] P, (1)

Ji' +DW;D —DW, ])

2 - W] D/ W]

where d = 51/2A2_15 and D = plimD = jl_lljlz. Thus, as a direct consequence of (9), the
matrix W; now reduces to a nonrandom diagonal matrix with ky —r; ones and r; zeros on its main
diagonal. More precisely, the hth diagonal element of W; is equal to zero if the hth component of
Yo, s constrained to be zero, and is equal to one otherwise. All models that include the hth column
of Z, as a regressor will therefore have the same estimator of the hth component of 7,,,, namely
the hth component of 7,,,,. The components of 7,,,, are asymptotically independent as their joint

asymptotic distribution is normal with zero asymptotic covariance.

4.3 Equivalence theorem

We next consider the model-averaging estimators of v, and ,,,

2k2

22
’/y\ln = Z A]Aryiljn’ ﬁQn = Z )‘];742]717
j=1 j=1
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where the A; are data-dependent model weights satisfying the restrictions

2k2

0<X <L, > N=1 X=X 1) (12)
j=1

Notice that the regularity condition A; = )\j(\/ﬁ%un) is equivalent to the condition on the model
weights used by Hjort and Claeskens (2003) to derive the limiting distribution of their FMA esti-
mator. For a discussion of this regularity condition we refer the reader to Sections 3.3 and 4.1 and

Remark 4.2 in Hjort and Claeskens (2003). From (10) we get

:Y\ln = ;?lrn - DW?Z’U,TL’ aQn = Wa//Qunv (13)

where W = 23221 AW is a ky X kg random diagonal matrix (because the A; are random) and the
random vector W+,,,,, is asymptotically independent of ¥;,.,,.

The following proposition extends the finite-sample results of Magnus and Durbin (1999) and
Danilov and Magnus (2004) and the large-sample results of Zou et al. (2007), which only cover
linear models, and motivates the WALS approach to GLMs.

Proposition 3 (AsyMPTOTIC EQUIVALENCE THEOREM FOR GLMS) Under the reqularity con-

ditions stated in Proposition 2 and the restrictions on the model weights in (12),
AB(1,) = =D AB(Ay,), AV(y,) = Ji1 + DAV(3,,) D',
where AB denotes asymptotic bias and AV denotes asymptotic variance. Hence,
AMSE(3,,,) = 755" + D AMSE(3,,)D,
where AMSE denotes asymptotic mean squared error.

The equivalence theorem implies that the AMSE of the WALS estimator 7;,, depends on the
AMSE of the less complicated estimator 7,,,. This means that, if we can choose the model weights
A; such that 7y, is a ‘good’ estimator of 7,,,, then the same A; will also provide a ‘good” estimator of
~1. The problem of choosing the model weights optimally is much simplified by the fact that W is a
diagonal matrix whose diagonal elements w); are linear combinations of the A;. The computational
burden of our model-averaging estimator is therefore of order k,, as we only need to determine the

set of ky WALS weights w, , not the considerably larger set of 2%2 model weights )\j.
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4.4 Bayesian weighting scheme and choice of priors

Since the WALS weights w,, lie between zero and one, the components of 7,, are shrinkage esti-
mators of the components of v2,. We also know that the components of 7,,,, are asymptotically
independent, each with an asymptotically normal distribution. Thus, if we strengthen the third
regularity condition in (12) and assume that each w, depends only on the hth component of
V/Mgun, then the shrinkage estimators in 7,, will also be asymptotically independent. This addi-
tional assumption is convenient because our k,-dimensional problem then reduces to k, (identical)
one-dimensional problems of the following type: given a shrinkage estimator m(z) = w(x)x of a
scalar parameter v, we want to determine the scalar weight w(z) such that the estimator m(z) has
minimum MSE by only using the information that x ~ A(v,1). This is the normal location prob-
lem studied and refined in a finite-sample context by Magnus (2002), Kumar and Magnus (2013),
and Magnus and De Luca (2016), and now extended to the asymptotic distribution of 7,, .

Our search for an optimal weighting scheme can be developed along frequentist or Bayesian
lines. In WALS we prefer a Bayesian weighting scheme because it leads to an admissible shrinkage
estimator of v. The issue of how to choose the prior for this Bayesian step has recently been
addressed by Magnus and De Luca (2016) who focus on the family of reflected generalized gamma
distributions. These priors have densities of the form 7(v) = 0.5 g¢ |y| (=9 e=<h* | with ¢ = 0.9377
and ¢ = 0.7995 corresponding to the optimal Subbotin prior, and ¢ = log2 and ¢ = 0.8876
corresponding to the optimal reflected Weibull prior. The Subbotin prior is preferred in terms
of robustness, while the reflected Weibull prior is preferred in terms of minimax regret (Magnus
and De Luca 2016). In both cases, the moments of the resulting posterior distribution need to be
approximated by numeric integration techniques. Closed-form expressions for the posterior mean
and the posterior variance are available only under the Laplace prior, corresponding to ¢ = log 2
and ¢ = 1 (see Theorem 1 in Magnus et al. 2010), but this choice is neither robust nor optimal
in terms of minimax regret. The prior in the WALS procedure is thus placed on the transformed
auxiliary parameters rather than on the original auxiliary parameters. Magnus and De Luca (2016,
pp. 142-143) show what this implies for the original parameters and that WALS in this respect is
conceptually close to BMA.

4.5 One-step and iterative WALS estimates

Letting m be the ky-vector of posterior means and X the ky x &k, diagonal matrix with the posterior

variances as diagonal elements, we can now define the one-step WALS estimators of v; and 7, as
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Yin = Y1rn — Dm and 7, = m. Consistent estimators of their asymptotic variances are

51 5

_ Zrz \N"L _
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The one-step WALS estimator of the original parameters 3, and f3,,, are then given by Eln = Ay,
and 3271 = 523*1/ 23,,,, and their asymptotic variances can be estimated consistently by AV (B\ln)
A, AV(Ay,) A} and AV(B,,) = A, E7Y2 AV (F,,) 212 A,

One possible drawback of the one-step WALS procedure could be its dependence on the starting

value 3. To address this issue we also consider an iterative procedure that repeatedly updates
the starting value B using the one-step WALS estimates from the previous iteration until some
convergence criterion is satisfied. The rationale behind this iterative procedure is that, as the
number of iterations increases, the sequence of recursive applications of the one-step estimator of the
jth model converges to the corresponding fully-iterated ML estimator (Robinson 1988, Theorem 2).
Thus, when 3 is a y/n-consistent estimator of j3,, there are reasons to believe that the iterative
WALS estimator provides a good approximation to a weighted average over all possible models of

the fully-iterated ML estimators.

4.6 Estimating smooth functions of the model parameters

In the context of GLMs, inference is usually sought for a smooth, but possibly nonlinear, real-valued
function g(f;x) of the model parameters 3 at some value = of the regressors. Examples include
the probability of success in a binary logit model or the marginal effect of a given regressor.

From a frequentist perspective, ML estimation of each possible model yields a set of 2%2 condi-
tional ML estimates Bj, from which we obtain the conditional ML estimates g; = g(gj; x) of g(B; x).
The key issue is how to best combine them to construct an unconditional estimate of g(f;x) that
incorporates the uncertainty due to both the model selection and the model estimation steps. The

standard FMA solution is an estimator of the form
2k2

Ima = Z A;ajﬁ (14)
=1

where the A% are model weights chosen on the basis of some optimality criterion (see, e.g., Hjort
and Claeskens 2003). BMA estimators have a similar form, that is, they are a weighted average
of the means of the conditional posterior distributions of g(3;x) under each possible model with
weights equal to the posterior model probabilities (see, e.g., Hoeting et al. 1999).

Unfortunately, in WALS we cannot construct the model-averaging estimator in (14) due to lack

of information on the §j and the A7. This is a consequence of the semiorthogonal transformation (9)
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which leads to important simplifications when estimating 3, but also implies some loss of flexibility
compared to standard FMA and BMA approaches. Here loss of flexibility means that we can only
compute a model-averaging estimator E of 3, that is B = Z?Z )\ij, on the basis of which we
then obtain a plug-in estimator g,; = g(B ;x) of g(B;x). Thus, instead of averaging over nonlinear
transformations of the ML estimators, we can only apply a nonlinear transformation of the model-
averaging estimator of 3.

These two classes of estimators are likely to differ as a consequence of both Jensen’s inequality
and different model weights. Apart from Koenker (2005, Section 5.5), little is known about the
statistical properties of one class relative to the other. Koenker discusses not precisely our question,
but the related issue of comparing weighted averages of argmins and argmins of weighted averages
in the context of quantile regressions. A key result from his analysis is that these two classes of
estimators reach the same efficiency bound, but that the associated sets of optimal weights are in
general different. This result suggests that when the model weights are determined on the basis of

a well-defined criterion neither of the two estimators is expected to dominate the other.

5 Empirical illustration

We illustrate the WALS approach to GLMs by studying attrition in the Survey of Health, Ageing
and Retirement in Europe (SHARE), a multidisciplinary and cross-national household panel sur-
vey covering about 85,000 individuals aged 504, and their possibly younger partners, in nineteen

countries of Continental Furope and Israel.

5.1 Data and model specification

Our data are taken from release 5.0 of SHARE. For detailed information on sampling design and
fieldwork procedures, we refer to Malter and Borsch-Supan (2015). Here we only discuss a few
issues that are important for the selection of the sample used in our empirical illustration. First,
although five waves of SHARE are currently available, we focus on attrition between the first two
waves (2004-05 and 2006-07) to avoid modeling differences in participation probabilities between
the baseline sample drawn in the first wave and the refreshment samples drawn in subsequent
waves. Second, since participation decisions of individuals belonging to the same household are
likely to be correlated, we confine attention to one person per household, the so-called ‘household
respondent’. Third, to reduce issues of sample representativeness for certain population groups,
we further restrict our sample to household respondents between 50 and 85 years old in 2004 and

living in private households.
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After dropping another 6% of the sample because of item nonresponse on the regressors of
interest, our working sample contains 17,051 individuals, with national samples ranging from a
minimum of 620 individuals for Switzerland to a maximum of 2,323 individuals for Belgium. The
participation rate between the first two waves of SHARE ranges from a minimum of 55% in Germany
to a maximum of 86% in Greece, and is 71% on average. For the purpose of this empirical illustration
we focus on France (1,822 individuals with a participation rate of 68%), where the problem of
uncertainty concerning the choice of regressors appears to be particularly relevant. Corresponding
analyses for the other countries are available upon request.

Our outcome of interest is a binary indicator y;, which equals 1 if a household participating in the
baseline survey also agrees to participate in the second wave of SHARE, and equals 0 otherwise.
We model the observed data y;,...,y, as independent binary random variables, each having a
Bernoulli distribution with probability of success m; = Pr(y, = 1) = [l + exp(—n,)]!, where
n; = x,5. The set of focus regressors in x; includes a constant term, a second-order polynomial
in age, a binary indicator for being a female fully interacted with the polynomial in age, and four
binary indicators for other socio-economic characteristics of the household respondent, while the
set of auxiliary regressors includes measures of physical and mental health, cognitive functioning,
and social activities of the respondent, plus demographic characteristics of the partner and of the
interviewer. In total we select eight auxiliary regressors, which results in 28 = 256 possible models.

Table 1 shows definitions and summary statistics for all the variables considered.

5.2 Estimation methods

Our empirical illustration has three purposes. First, we want to compare WALS with classical
model-selection procedures and with popular strictly Bayesian (BMA) and strictly frequentist
(FMA) model-averaging procedures. Second, we want to investigate the robustness of the vari-
ous model-averaging procedures to key features of the underlying weighting scheme, including the
choice of prior distributions for the weights used in WALS and BMA, and the choice of optimality
criteria for the weights used in FMA. Third, we want to assess the sensitivity of one-step and
iterative WALS estimates to the choice of the starting value. In the remaining of this section, we
briefly describe the various model-selection and model-averaging procedures implemented in our
empirical study. For each method, we discuss estimation of both model parameters and associated
standard errors. Routines for software implementation of all methods considered in our study are

available upon request.
Model-selection procedures. In addition to standard restricted and unrestricted ML estimators, we
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consider various penalized ML estimators and the ML estimator for the model chosen by a general-
to-specific (GtS) variable selection procedure based on Stata’s stepwise backward-selection routine.
The reported ML estimates and standard errors are conditional on the selected model as they ignore
the uncertainty due to the variable selection step.

Our penalized ML estimators minimize an objective function of the form Qx(8) = —4(8) +
222:1 Px(|By]), where £(3) is the loglikelihood for the unrestricted model and p,(-) is an L;-
penalty indexed by a tuning parameter A > 0. For the specification of the penalty we consider
LASSO (Tibshirani 1996), SCAD (Fan and Li 2001), and MCP (Zhang 2010), for which several R
packages are available. To select the value of the tuning parameter, we use 10-fold cross-validation
for the glmnet and ncvreg packages, and generalized cross-validation with 1,000 points in the
(0,1] interval for the lasso2 package, which is based on the dual constrained representation of
the LASSO penalization problem originally suggested by Osborne et al. (2000). Unlike the other
packages, lasso2 also provides standard errors of the LASSO estimates using formula (4.2) in

Osborne et al. (2000).

Model averaging procedures. As starting value for WALS we consider both the restricted and the
unrestricted ML estimates. After implementing the preliminary data transformations in (5), with
pi = mi, 02 = m(l —m), v; = 1, and w; = 0, the one-step estimates are computed through the
standard WALS algorithm for linear models by setting the error variance equal to one. Magnus
and De Luca (2016, Section 11) provide a detailed description of the Stata and MATLAB imple-
mentations of the WALS algorithm. As priors on the transformed parameter v, we consider the
Subbotin, Weibull and Laplace priors. For the Subbotin and Weibull priors, we approximate the
indefinite integrals needed for the first two moments of the posterior distribution using Gauss-
Laguerre quadrature methods with 1,000 points. To compute the iterative WALS estimates, we
repeatedly update the starting value using the estimates from the previous iteration until the rel-
ative differences in the vectors of coefficients and their standard errors are both smaller than the
tolerance value of 1076.

For the BMA approach we compute a weighted average of the conditional estimates for each
possible model with weights equal to the posterior model probabilities. Contrary to WALS, which
uses priors only on the transformed parameters v, BMA requires two types of priors: one on
the model space and one on the parameters of each model (see, e.g., Hoeting et al. 1999). Our
BMA implementation in Stata uses a uniform prior on the model space and conjugate priors for the
parameters of each model. The first choice implies that all models are equally likely a priori, so their

posterior model probabilities depend only on the marginal likelihood for the various models, not on
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the prior weight assigned to each of them. Following Chen and Ibrahim (2003), our conjugate prior
for the free parameters j3; of the jth model is proportional to exp [&(gj’@(ﬁj) - L;b(e(ﬁj)))] , where y
is an n-vector of prior parameters that specifies the prior predictions for the marginal means of the
outcome, the positive scalar a is a prior parameter that quantifies the strength of our prior belief
in g, 0(8;) = (0,(8;),---,0,(8;)) is the n-vector of canonical parameters in the jth model, and ¢,
is an n-vector of ones. As shown by Chen et al. (2008), this family of priors is attractive because
the posterior model probabilities can be estimated by a computationally convenient Markov Chain
Monte Carlo (MCMC) method that requires drawing only two MCMC samples: one from the
posterior distribution and one from the prior distribution of the parameters under the unrestricted
model. In our application, we employ two MCMC samples of 10,000 draws, after a ‘burn-in sample’
of 5,000 draws. To ensure that all parameters have a zero prior mode, we set all elements of ¥
equal to 0.5. We also asses how BMA estimates change as the prior becomes less informative by
considering three different values of a, namely 0.10, 0.05, and 0.01.

For the FMA approach we compute weighted averages of the conditional ML estimates for each
possible model using four types of weights: the smoothed Akaike information criterion (AIC), the
smoothed Bayesian information criterion (BIC), the smoothed focused information criterion (FIC),
and the weights obtained by minimizing a plug-in penalized estimate of the Kullback-Leibler loss
(PKL). The use of FMA-AIC and FMA-BIC estimators was originally proposed by Buckland et al.
(1997) and is common in the context of BMA estimation (Raftery 1996; Clyde 2000). Although
debate over the choice of an optimal information criterion is still open, AIC and BIC are known to
be two extreme strategies favoring, respectively, more and less complicated model structures. The
FMA-FIC estimator proposed by Hjort and Claeskens (2003) is a little different as it depends on
the specific parameter g(5; ) to be estimated. Since the FIC score for the jth model is an unbiased
estimator of the AMSE of the underlying ML estimator of g(8;x), this weighting scheme assigns
relatively higher weights to models with relatively lower FIC scores. Finally, we compute the PKL
weights proposed by Zhang et al. (2016) by minimizing an objective function consisting of a plug-in
estimate of the Kullback-Leibler loss and a penalty for the number of auxiliary regressors in the
various models which depends on a tuning parameter A,. The FMA-PKL estimator has been shown
to be asymptotically optimal, in the sense of achieving the lowest Kullback-Leibler loss, under an M-
open framework where all models considered are misspecified. When £, is large, its computational
burden can be heavy because we need to estimate 2¥2 models and the underlying weighting scheme
requires numerical constrained minimization of an objective function in 22 variables. Following

Zhang et al. (2016), we compute the FMA-PKL estimates for two alternative values of the tuning
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parameter, namely A, = log(n) and A\, = 2. FMA estimators with smoothed AIC, BIC, and FIC
weights are implemented in Stata, while the FMA-PKL estimator is implemented in MATLAB.

Standard errors for the FMA-AIC and FMA-BIC estimators are computed using formula (9) in
Buckland et al. (1997), but are not available for FMA-FIC and FMA-PKL estimators.

5.3 Estimation results

Table 2 presents the estimates of our logit models for the probability of survey participation in the
second wave of the French SHARE, conditional on participation in the first wave. The table com-
pares estimates and standard errors of the focus parameters for thirteen estimators: the restricted
and unrestricted ML estimators, the ML estimator for the model selected by the GtS procedure, the
LASSO estimator implemented by the lasso2 package, three FMA estimators (FMA-AIC, FMA-
BIC and FMA-PKL with )\, = log(n)), three BMA estimators, two one-step WALS estimators,
and the iterative WALS estimator. We omit the results of the FMA-FIC estimator because its
weights depend on the specific parameter g(3;z) to be estimated. Estimates of the other penalized
estimators, the FMA-PKL estimator with A\,, = 2, and the iterative WALS estimator with Laplace
and Subbotin priors are available upon request.

Except for the coefficient on the dummy variable for living with a partner, our results show
no differences in the signs of the estimated associations across estimation methods. However, the
size of the coefficients and the standard errors reveal nonnegligible differences. The importance
of model uncertainty is confirmed by the fact that alternative model-selection procedures tend to
select different models and show large variation of model weights in model-averaging procedures.
More precisely, LASSO and SCAD do not exclude any auxiliary regressor, MCP excludes only
the dummy variable for a female interviewer, and GtS excludes the dummy variable for a female
interviewer and the number of visits to a medical doctor. In model averaging, the best-performing
model depends on the weighting scheme, and the largest model weight is always lower than 0.17 for
FMA-AIC, 0.11 for FMA-BIC, and 0.14 for BMA. In contrast, PKL weights are concentrated in
few models and, depending on the value of the tuning parameter )\, the resulting FMA estimator
sets two coefficients equal to zero: the dummy variable for a female interviewer and the number
of visits to a medical doctor. This diagnostic information is not available in WALS, as we only
estimate k, = 8 linear combinations of the 2¥2 = 256 model weights.

Model-selection and model-averaging estimates are often in-between the restricted and the un-
restricted ML estimates, but generally closer to the latter. As for WALS, we find that the one-step

estimates are rather insensitive to the choice of the starting value and very close to the iterative
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estimates. The one-step WALS with starting value 8 = BT always has smaller standard errors than
the one-step WALS with starting value § = Bu, but they do not differ much from the FMA and
BMA standard errors and are always lower than unrestricted ML standard errors. For the iterative
estimates, different starting values affect only the number of iterations needed for convergence (4
with 8 = Bu and 5 with 3 = Br), but not the estimated coefficients and standard errors. Moreover,
these estimates are robust to alternative choices of prior on the transformed parameters.

Figures 1-3 plot the gender-specific age-profiles of participation probabilities estimated from the
various model-selection, FMA, and BMA approaches, along with the estimates from the iterative
WALS approach. For the FMA approach in Figure 2, we also illustrate the estimates obtained with
the smoothed FIC weights. Each point of the estimated age-profiles corresponds to the participation
probabilities of a representative male and a representative female aged a years. For model-selection
and WALS approaches we compute plug-in estimates, whereas the BMA and FMA estimates are
computed according to (14). The restricted and unrestricted ML estimates differ considerably,
whereas several model-selection and model-averaging estimates are remarkably similar and close to
the unrestricted ML estimates. Two major exceptions are the age-profiles for males estimated by
FMA-BIC and FMA-PKL, which are more similar to the restricted ML estimates. In addition to
the similarity of the estimates from unrestricted ML, GtS and LASSO, particularly striking is the
similarity of the estimates from iterative WALS, FMA-FIC and BMA with prior parameter a = 0.05.
WALS appears to be robust to different choices of the starting value and to different choices of
the prior on the transformed parameters. Although more research is required, our conclusion at
this moment is that all popular model-averaging methods (including WALS) yield similar results.
An obvious advantage of WALS is that the estimates and their standard errors can be obtained in

negligible computing time even when k, is large.

6 Monte Carlo simulations

Next we investigate the finite-sample performance of the various estimators by a set of Monte Carlo
experiments based on the study of survey participation described in Section 5.

The design of the experiment is as follows. We set the parameters of the DGP equal to the un-
restricted ML estimates Bu presented in Table 2 and consider four simulation designs corresponding
to sample sizes of 100, 400, 900 and 1,600. In the tth design (¢t = 1,...,4), we use simple random
sampling with replacement to draw subsamples of size n; from the original design matrix X. We
then simulate the outcome y;, for the ith observation of the ¢th subsample by a pseudo-random

draw from a Bernoulli distribution with probability of success m;; = [1 + exp(—x%,3,)]"*, where
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B, = (B, 8/ v/1¢)" and § is a ky-vector of coefficients which does not depend on 7, and is fixed to
vn Bgu. We focus on estimating the participation probabilities m,, and Ty of a representative male
and a representative female aged 70 years, which, under our GDP, are equal to m,, = 0.7301 and
mp = 0.7522.

Summaries of the sampling distribution of each estimator are approximated using 1,000 Monte
Carlo replications. We also use the Monte Carlo experiment to approximate the bias, SE and RMSE
of estimators of the SEs of the estimated participation probabilities. Notice that our estimators
of the SEs depend on the particular estimator of the participation probabilities (plug-in versus
model averaging) and the general approach to estimation (frequentist versus Bayesian). In WALS
and model selection, the SE of a plug-in estimate 7,,; is estimated by the delta method as s,,,, =
Tt (1 — Tt) \/x’mf/twm, where z,, is the value of the regressors for a representative male aged 70
and YA/t = @(Bt) is the estimated variance matrix of Bt. In BMA, we compute the posterior SE
of m,, using the square root of the standard formula for the posterior variance (see, e.g., Hoeting
et al. 1999, p. 383). Finally, in FMA, we apply formula (9) in Buckland et al. (1997) to the set of
conditional ML estimates of the participation probabilities and their variances across all possible
models. Since the theoretical SEs differ across estimation methods and simulation designs, we
report the relative bias, SE and RMSE of the various estimators by taking ratios with respect to
SE(T,,,;)-

Table 3 presents the bias, SE and RMSE of our estimators of the participation probabilities
under an M-closed framework where the unrestricted model coincides with the DGP. Since the
unrestricted model is correctly specified, the bias of the unrestricted ML estimator 7, is close to
zero for any n,. In small samples (n, = 100), the restricted ML estimator 7, is considerably biased
but its bias converges to zero as n, increases because the auxiliary parameters of the DGP satisfy
the local misspecification framework. A comparison of the SE suggests that 7, is always more
precise than 7, but the reduction in the variance does not always compensate for the bias. Thus,
in most simulation designs, 7, has lower RMSE than 7,. Similar considerations hold for the ML
estimator of the model selected by the GtS procedure, but not for the LASSO estimator which in
small samples has considerably lower RMSE than 7, because of its lower sampling variability.

We also find that model-averaging estimators dominate model-selection estimators in terms of
RMSE. In all designs, the FMA-FIC and FMA-PKL are more precise and have lower RMSE than
the FMA-AIC and FMA-BIC. The comparisons between FMA-FIC and FMA-PKL are less clear-
cut, but in general their differences in terms of RMSE are small. The RMSE of BMA and WALS
depends on the sample size. For BMA, the preferred prior parameter is @ = 0.10 when n, < 400,
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and either @ = 0.05 or @ = 0.01 when n, > 400. For WALS, the iterative estimator performs slightly
better than the one-step estimators when n, > 100, but in small samples the one-step estimator
with starting value 8 = Er is the most precise. The three types of model-averaging estimator always
have similar finite-sample performance, with only small differences in terms of RMSE.

Table 4 presents the results for the estimated SEs under the same M-closed framework of
Table 3. We find that the estimator 5, of the SEs from the restricted model outperforms all other
estimators. Thus, in addition to having the lowest sampling variance, the estimated precision of
the restricted ML estimator 7, is always very close to its actual precision. Recall, however, that
7, is generally not a good estimator; in fact, one of the worst in terms of bias. Apart from the
restricted estimator, our results strongly favor the WALS estimator of SEs. They also show that,
unlike the other estimators, the conditional estimator of the SEs from the model selected by the GtS
procedure performs poorly in all simulation designs because it ignores the uncertainty generated
by the model selection step.

Table 5 presents the properties of our estimators under an M-open framework that omits the
auxiliary regressor IV Age. Except for the restricted ML estimator, this type of misspecification
yields larger biases and RMSEs than the M-closed framework, especially in small samples. Notice
that the bias still converges to zero as n, increases because of the local misspecification framework.
We again find that the three types of model-averaging estimators perform better than model-
selection estimators and have only small differences in terms of RMSE.

Table 6 present the properties of our estimators under an alternative M-open framework that
omits the focus regressors Age?/10 and Fem.xAge?/10. Now the bias of the unrestricted ML
estimator no longer vanishes as n, increases, so the starting values for WALS are inconsistent.
For all estimators of m,,, RMSE is slightly lower than under the M-closed framework, due to a
negligible increase in bias, which is typically more than offset by a smaller sampling variance. Our
ranking of the estimators remains the same. The bias in the estimation of m is larger, resulting
in much higher RMSE, especially in large samples. Even in this case, our results favor WALS over

model-selection estimators.

7 Conclusions

This paper extends the WALS approach to the wider class of GLMs. Our one-step WALS estimator
for GLMs is constructed in three stages. First, we estimate the parameters of each GLM by one-
step ML, which is numerically equivalent to least squares in a regression on transformed data

for the outcome and the regressors. Second, we use a semiorthogonal transformation to reduce
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the computational burden from order 2*2 to order k,. Third, we estimate the required k, linear
combinations of the 2¥2 model weights by a Bayesian approach which allows a proper treatment
of ignorance in the choice of the prior, satisfies other theoretical properties such as admissibility
and robustness, and is optimal in terms of minimax regret. We also consider an iterative WALS
estimator based on the same principles.

Results from both an empirical illustration and a set of Monte Carlo experiments show that our
WALS estimators outperform classical and penalized ML estimators. Further, their finite-sample
performance is remarkably similar to that of the FMA estimator with smoothed FIC weights (Hjort
and Claeskens 2003) and the BMA estimator with conjugate priors for GLMs (Chen and Ibrahim
2003; Chen et al. 2008). The key advantage of WALS over these estimators is a drastic reduction
in computing time. This computational advantage is especially important in empirical applications
with many auxiliary regressors. In addition, WALS is robust to different choices of the starting
values and different choices of priors.

Our model-averaging procedure could be further extended in several directions. First, an exten-
sion to multivariate outcomes would open the way to a larger variety of models, such as seemingly
unrelated regression equations, and ordered, multinomial, and conditional logit and probit mod-
els. Second, the theory developed here could be extended to weighted averages of M-estimators
of general nonlinear models. Third, our results are based on an M-closed local misspecification
framework, where the unknown DGP is included in the model space and estimation bias shrinks
to zero with the sample size at the rate n=1/2. Despite much progress made in recent years, more

work is required to extend model-averaging techniques to the general M-open framework.
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Table 1: Definitions and summary statistics for the variables in France

Variable Description Mean SD Min Max
Part Dummy for participation in w2 0.68 0.47 0 1
Age Age of HR in 2004 64.4 10.0 50 85
Age? /10 Squared age of HR divided by 10 4243.1  1320.2 2500 7225
Fem. Dummy for female HR 0.53 0.50 0 1
Fem. x Age Interaction female-age 34.8 33.4 0 85
Fem. x Age?/10 Interaction female-age?/10 2325.4  2397.7 0 7225
Couple Dummy for living with a partner 0.59 0.49 0 1
Big City Dummy for living in a big city 0.43 0.50 0 1
High Education Dummy for high education 0.57 0.50 0 1
Employed Dummy for being employed 0.28 0.45 0 1
Good SRH Dummy for good SRH 0.68 0.47 0 1
Doctor Number of visits to medical doctor 6.85 7.19 0 98
Euro-D Euro-D depression index 2.80 2.31 0 12
Recall Score of recall tests 7.47 3.29 0 18
Social Activities Number of social activities 0.80 1.00 0 6
Couple x Age Partner Interaction couple-age of HR’s partner 36.2 31.3 0 90
IV Fem. Dummy for female interviewer 0.76 0.43 0 1
IV Age Age of interviewer in 2004 51.0 7.54 19 80

Notes: The sample consists of 1,822 individuals. ‘Part’ is our binary outcome variable. Focus and auxiliary
regressors are listed, respectively, in the second and the third panels. HR means ‘household respondent’,
INT means ‘interaction term’, SRH means ‘self-reported health’, and IV means ‘interviewer’. In estimation
we center ‘Age’; ‘Age of Partner’, and ‘IV Age’ at 50, ‘Doctor’ at 5, ‘Euro-D’ at 3, ‘Recall’ at 9, and ‘Social

Activities’ at 1.
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Figure 1: Iterative WALS and model-selection estimates of the participation probability age-profiles

for representative male and female

Male Female

RML -- UML o GiS RML —- UML o GtS
« LAS — WALS « LAS — WALS
50 55 60 65 70 75 80 85 50 55 60 65 70 75 80 85
Age Age

Notes: RML, UML and GtS denote, respectively, the plug-in ML estimates of 7, and 7, in the
restricted model, the unrestricted model, and the final model selected by the GtS procedure, LAS
denotes the plug-in LASSO estimates, while WALS denotes the plug-in iterative WALS estimates

(same as Figures 2 and 3).
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Figure 2: Iterative WALS and FMA estimates of the participation probability age-profiles for
representative male and female

Male Female

FMA-BIC -~ FMA-AIC o FMA—PKL FMA-BIC -~ FMA-AIC o FMA—PKL
« FMA-FIC — WALS « FMA-FIC — WALS
50 55 60 65 70 75 80 85 50 55 60 65 70 75 80 85
Age Age

Notes: FMA-xIC denotes the FMA estimates of mmq and 7y, based on the smooth xIC (BIC, AIC,
FIC) weighting system, FMA-PKL denotes the FMA estimates based on the PKL weighting system,
while WALS denotes the plug-in iterative WALS estimates (same as Figures 1 and 3).
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Figure 3: Iterative WALS and BMA estimates of the participation probability age-profiles for
representative male and female

Male Female

— BMA(0.01)  * BMA(0.05) — BMA(0.01)  * BMA(0.05)
—— BMA(0.10) — WALS —— BMA(0.10) — WALS
50 55 60 65 70 75 80 85 50 55 60 65 70 75 80 85
Age Age

Notes: BMA(z) denotes the BMA estimates of 7y, and Trq based on the conjugate prior for GLMs
with prior parameters § = 0.5¢,, and a = z, while WALS denotes the plug-in iterative WALS
estimates (same as Figures 1 and 2).
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Appendix A: Proofs

Proof of Proposition 1. By the data transformations in (5), we can write the linearized system

of constrained likelihood equations (4) for the jth model as
0=X1(7— X181 — Xu,),
0= X5(y — X181 — Xof3y) — R;v;,
0= R)ps. (A1)

Given v, and ignoring the remainders in these approximations, the restricted one-step ML estimator
Ej = (Eij, Eéj)’ solves the equation system

XX, X% (B \_(Xg)_[ 0 ”
X%, X%, |\ B, X/ R, |V

while the unrestricted one-step ML estimator Eu = (B{u, Egu)’ solves

[ XX, XiX, } B\ _ ( X1y )
= A
X§X1 XéXz Bau Xoy

Rearranging these two expressions we obtain

?1]‘ _ /,Bih" _ |: %11 %12 :| |: 0 :| ‘
( Baj ) - < Bau ) Ay Ay R; Vi (A2)
[ Ay Ay } _ { X%, XX }
Agy

A22 XéXl XéX2

QL

where

Premultiplying both sides of (A2) by the r; x k matrix [0 : R}] gives

o B o Bra (A, A 0
[o:Rj]<§1{>:[o:Rj]<§l )[O.Rj][Ai AgHR_]Vj.

27 2u J

Since 52]- satisfies the restriction R §2j = 0 (by construction) and the matrix R;-/IQQRJ» is nonsin-

gular, solving this system of equations for the Lagrange multiplier gives
vy = (R9A22Rj)71R9§2u‘
Thus, the restricted one-step ML estimators of 3, and /3, for the jth model can be written as
EU = Bru — AlQRj(R;'AﬂRj)ilR;'EZW Ezj = Bou — A22Rj(R9A22Rj)71R9g2uv
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where A, = — (X1 X)X Xy (XM, X,) ! and Ayy = (X5M, X,)7L, or equivalently
s s s s (XX TP
51]' = Bm QP 52]' = 52u - <212> Pjﬁ'

n

The result then follows by noting that in the fully restricted model, where R; = I, k, and Pj =1 ky?

we obtain 51,, = Elu +QU = (XX, 'X1y. O

Proof of Proposition 2. Under the regularity conditions stated in the proposition, the one-step

ML estimator for the unrestricted model has the same asymptotic distribution as the fully-iterated

ML estimator and so v/n(8,,, — 8,) = N(0,Q), where

-1
0— [ Q1 } _ [In 1y } — 71
Qg1 yy 1y Iy ’

with Q= Zyy' + I 115009 Ty I1 s Q1o = L1y Z1oag, and Qyy = (Zoo —Izlzﬂlzlz)_

tion (6) also implies that

~ _, |/ %
Vil - b,) = (02

1/2 _
) \/5(521”1 - 52n) +

with 9, = 92_21/2/8%. As n — oo, we have

G v\ 1/2 5 7 -1 N\ 1/2
Jlim (XéMlXQ) ” olim (sz - H21H111H12) _ gl
n n

and therefore

From Proposition 1 we have Elm = Elun + Qﬁn, or equivalently,
\/ﬁ(glrn - /8 ) QQ 1/25 + \/ﬁ(glun - Bl) + Q\/ﬁ({;n - 7911)
Since plim Q = 1111112924 = Q, we obtain

\/ﬁ(glrn —B1) = N (T 1156, 11).

' Equa-

(A4)

Moreover, Blm and 571 are asymptotically independent because their joint asymptotic distribution

is normal with asymptotic covariance Q12Q2_21/ >+ Q = 0. For the one-step ML estimator of the jth

model, Proposition 1 implies that
Vi(Brjn = Br) = QP %5 + |ViBy = Br) — Q6| — QWm0 — 0,)
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and

- XML XN\ VR
V(Byjn — Ban) = [(2”12> Wj9221/2 — I,

XM X\ YA
5+("’n“’) Wiv/n(d,, —1,,).

The asymptotic distribution of Ejn then follows from (A3) and (A4), the asymptotic independence
of Elm and 5n, and the probability limits

plim P; = Q;ész (R}Qij)ileQ;éQ =P

Proof of Proposition 3. It follows from (11) and (13) that

_ (VG =)\ _ (VG — 1) — DW i,
\/ﬁ(’yn_FYn)_(\/ﬁ(;y\;n—’y;n))_( IW\/?IL§2un_d 2 >7

where
\/ﬁ(ﬁlrn =) = Ny~ N(Dd7 jl_ll)v \/ﬁamm = Ny, ~ N(d7 Ikz)v
with d = \/n7,,, and W = W(N,,,) because of (12). This implies that

~ _( N,\ [ N, —DWN,,
\/’ﬁ(’yn—’yn>:>N—<N2>—< WNgu—d >

Moreover, since IV}, and NN,,, are stochastically independent, we obtain
E(Ny[Ny,) = E(Ny,) = DW Ny, = =D(WNy, — d)

and

var(Ny|Ny,) = var(Ny,) = j1_11~

The asymptotic bias and the asymptotic variance of 7,,, are equal, respectively, to the unconditional
mean and the unconditional variance of the random vector N;. The unconditional mean is given

by

AB(A1,) = E[E(N{[Ny,)] = —DE[Vn(WHsu, — 720)] = —DE[VR(Ton — V20)] = D AB(Fy,)
and the unconditional variance by
AV (Fy,,) = E[var(Ny| Ny, +var[E(N; [ Ny,)] = Ji1 ' +D var(vn(Fa, —12,))D' = i +D AV (3,,)D'.

The result for the AMSE follows. OJ
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Appendix B: Continuity of eigenprojections and symmetric matrix
functions

In matrix theory, when employing arguments that require limits such as continuity or consistency,
some care is required when dealing with eigenvectors and associated concepts. Since there appears
to be a certain amount of confusion on these issues among statisticians and econometricians, we
present below some of the main results. Most of the results in this appendix are not new, see e.g.
Kato (1976) and Horn and Johnson (1991, Chapter 6), but they are put together here in a simple

and accessible manner in order to avoid further confusion.

Preliminaries

We shall confine ourselves to a real n x n symmetric matrix, say A. If Az = Az for some z # 0 then
A is an eigenvalue of A and x is an eigenvector of A associated with A. Because of the symmetry
of A, all its eigenvalues are real and they are uniquely determined. However, eigenvectors are
not uniquely determined, not even when the eigenvalue is simple. Also, while the eigenvalues
are typically continuous functions of the elements of the matrix, this is not necessarily so for the
eigenvectors. The current appendix attempts to make these vague notions precise.

Some definitions are required. The set of all eigenvalues of A is called its spectrum and is

denoted as o(A). The eigenspace of A associated with X is
V(A) = {zx € R"| Az = A\z}.

The dimension of V(A) is equal to the multiplicity of A, say m(\). Eigenspaces associated with
distinct eigenvalues are orthogonal to each other. Because of the symmetry of A we have the

decomposition

> V() =R
A€o (A)
The eigenprojection of A associated with A of multiplicity m()), denoted P()), is given by the

symmetric idempotent matrix
m(A)
PO = 3 a0
=1

where the {z;} form any set of m orthonormal vectors in V/(A), that is, 2j2;, = 1 and zjz; = 0
for ¢ # j. While eigenvectors are not unique, the eigenprojection is unique because an idempotent
matrix is uniquely determined by its range and null space. The spectral decomposition of A is then

> AP = A

A€o (A)
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If 09 is any subset of o(A), then the total eigenprojection associated with the eigenvalues in oy is

defined as
P(ag) = Y _ P()).

AEoo
It is clear that P(c(A)) = I,,. Also, if o¢ contains only one eigenvalue, say A, then P({\}) = P(\).

Total eigenprojections are a key concept when dealing with limits, as we shall see below.

Symmetric matrix functions

Now consider a matrix function A(t), where A(t) is a real n x n symmetric matrix for every real ¢.
The matrix A(t) has n eigenvalues, say A1(t), ..., \,(t), some of which may be equal. Suppose that
A(t) is continuous at t = 0. Then the eigenvalues are also continuous at ¢t = 0. This was proved by
Rellich (1953) making essential use of the symmetry of A(t).

Now, let A\ be an eigenvalue of A = A(0) of multiplicity m. Because of the continuity of the eigen-
values we can separate the eigenvalues in two groups, say A1(t),..., Ay (t) and App1(2), ..., An(2),
where the m eigenvalues in the first group converge to A, while the n — m eigenvalues in the second
group also converge, but not to A\. Kato (1976, Theorem 5.1), based on earlier results by Rellich
(1953), proved that the total eigenprojection P({Ai(t),..., Amn(t)}) is continuous at ¢t = 0, that is,
it converges to the spectral projection P(X) of A(0).

Kato’s result does not imply that eigenvectors or eigenprojections are continuous. If all eigen-
values of A(t) are distinct at ¢ = 0 then each eigenprojection P;(t) is continuous at ¢t = 0 because
it coincides with the total eigenprojection for the eigenvalue A;(t). But if there are multiple eigen-
values at t = 0, then it may occur that the eigenprojections do not converge as t — 0, unless
we assume that the matrix A(¢) is (real) analytic. (A function is real analytic if it is infinitely
differentiable and can be expanded in a power series.) In fact, Kato (1976, Theorem 1.10) showed
that if A(t) is real analytic at ¢ = 0, then the eigenvalues and the eigenprojections are also analytic

at t = 0 (and therefore certainly continuous).

Discontinuity of eigenprojections

Hence, in general, eigenvalues are continuous, but eigenvectors and eigenprojections may not be.
This is well illustrated by the following example of Kato (1976, Example 5.3).

Consider the matrix

1y [cos(2/t)  sin(2/t) B
Alt) =€V (sin(Q/t) —cos(2/t)>’ A(0) =0.
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There is a multiple eigenvalue 0 at ¢t = 0 and simple eigenvalues A\ = e~/  and Ao = —e 1/  at

t # 0. The associated eigenvectors are

n= () e (i)

Hence the associated eigenprojections are

- cos?(1/t) sin(1/t) cos(1/t)
Pi(t) = 22y = (sin(l/t) cos(1/t) sin®(1/t) )

and
o, sin?(1/t) —sin(1/t) cos(1/t)
Py(t) = wpahy = <— sin(1/t) cos(1/t) cos?(1/t) > .

The matrix function A(t) is continuous (even infinitely differentiable) for all real ¢. This is also
true for the eigenvalues. But there is no eigenvector which is continuous in the neighborhood of
t = 0 and does not vanish at ¢ = 0. Also, the eigenprojections P;(t) and P,(t), while continuous
(even infinitely differentiable) in any interval not containing ¢ = 0, cannot be extended to t = 0 as
continuous functions.

The total eigenprojection is given by P;(t) + P»(t) = I, which is obviously continuous at t = 0,
but the underlying eigenprojections Pj(t) and Ps(t) are not. The reason lies in the fact that the
matrix A(t), while infinitely differentiable at ¢ = 0, is not analytic.

This can be seen as follows. Let

ft) = {exp(—l/tQ) for t #0 ot) = {cos(Q/t) fort #0
0 for t =0, 0 for t =0,
and define h(t) = f(t)g(t). It is well-known (and a standard example in textbooks) that the function
f(t) is infinitely differentiable for all (real) ¢, but not analytic. The function g(t) is not continuous
at ¢t = 0, although it is infinitely differentiable in any interval not containing ¢ = 0. Their product
h(t) is infinitely differentiable for all (real) ¢ (because g is bounded), but it is not analytic.

We summarize the previous discussion as follows.

Lemma B.1 Let A(t) be a family of real-valued symmetric matrices, and suppose € > 0 exists such
that A(t) is continuous for all |t| < €. Then the eigenvalues \;(t) and the total eigenprojections
P;(t) are continuous at t = 0. If, in addition, A(t) is analytic at t = 0, then the individual

etgenprojections are continuous at t = 0.
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Relation to Tyler’s lemma

Tyler (1981, Lemma 2.1) stated the following result, which is often quoted, but is essentially the

same as Kato’s result. Let A(t) be a symmetric n X n matrix function with eigenvalues
AL(t) Z Ao(t) = - Z Xi(t) = - = Aj(t) = -+ = Aa(D),
and assume that, at ¢t = 0,
Ai=1(0) > Ai(0),  A5(0) > Aj41(0).
If A(t) is continuous at ¢ = 0, then the total eigenprojection P; ;(t) associated with A;(t),..., A;(t)

is continuous at ¢t = 0.

Continuity of symmetric matrix functions

We are now in a position to state the following result, which is essentially the same as Horn and

Johnson (1991, Theorem 6.2.37) but with a somewhat simpler proof.

Lemma B.2 Let A(t) be a family of real-valued symmetric matrices, and suppose € > 0 exists such
that A(t) is continuous for all |t| < e. Let f be a real-valued function, defined and continuous on

the spectrum o(A(0)). Then f(A(t)) converges to f(A(0)) as t — 0.

Proof. Since A(t) is symmetric and continuous in ¢, we can write

be the A-group associated with A\g. Then,

m \e(t) = Ao (i <k <),

t—0

and hence, since f is continuous at Ag,

im f(Ae(t) = f(ho) (1 <k <j).

t—0
We also know, because of the continuity of the total eigenprojections, that
J
lim P(A\k(t)) = P(Xo).

t—0
k=1
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Together this implies that

lim Z F(Ae(t)P(Ak(t) = f(Ao)P(Xo),
k=1

t—0

which we see by writing

D FORM)PO(E) = f(A0)P(No)
k=i
J J
= [FOR®) = L) POR(E) = F(h0) [(P(A) = Y P(A(1)].

k=i k=i

This proves convergence for each A-group, and hence concludes the proof. [

Orthogonal transformations

Let B be an m x n matrix of full column-rank n. Then A = B’B is positive definite and symmetric,

and we can decompose

A=TAT,

where A is diagonal with strictly positive elements and T is orthogonal.
Suppose that our calculations would be much simplified if A were equal to the identity matrix.

We can achieve this by transforming B to a matrix C, as follows:
C = BTAY2¢/,
where S is an arbitrary orthogonal matrix. Then,
C'C = SA™V2T'B'BTAY28" = SATV2ANTY2S = 88" = 1,

The matrix S is completely arbitrary, as long as it is orthogonal. It is tempting to choose S = I,,.
This, however, implies that if B = B(t) is a continuous function of some variable ¢, then C' = C(t)
is not necessarily continuous, as is shown by the previous discussion. There is only one choice of S

that leads to continuity of C', namely S = T, in which case

C = BTA™Y2T" = B(B'B)~'/2.
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