
Lecture 1:
� The course is going to be about the estimation
of censored and sample selection model under
a variety of situations

� First I am going to very quickly review para-
metric estimation of the binary choice model
for three reasons:

� i) remind everyone of MLE estimation

� ii) computation of the generalized residual

� iii) introduction of testing procedures of dis-
crete models.
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� Remember that the binary discrete choicemodel
has the following latent representation

�

y�i = �0xi + ui i = 1:::n (1)

yi = 1 if y�i > 0 (2)

yi = 0 otherwise (3)

where the asterisks denotes a latent variable;
xi is a k vector of exogenous variables;� is a k
vector of unknown parameters and E[ui] = 0:

� The objective is to estimate the unknown pa-
rameter vector � and we employ maximum
likelihood assuming that the errors are nor-
mal.
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� Using the structure of the latent model out-
lined above we can write

P (yi = 1) = P (ui > ��0xi)
= 1� F (��0xi)

where F is the cumulative distribution func-
tion for ui: The associated likelihood function
has the form

L =
Y
yi=0

(F (��0xi)
Y
yi=1

[1� F (��0xi)]:

The estimates for � are then obtained by ap-
propriately choosing a form for F and then
maximizing the likelihood function. Themost
commonly chosen forms for F are the normal
and logistic distributions and these produce
the logit and probit estimators.
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0.1 Probit
� Let us �rst consider the probit estimator which
is based on the use of the normal distribution
where ui is distributed IN(0; �2). That is

F (��0xi) =
Z ��0xi=�

�1

1

(2�)1=2
exp(� t

2

2
)dt:

� The log likelihood function then becomes

log L =
nX
i=1

yi log �(�
0xi) +

nX
i=1

(1� yi) log �[1� (�0xi)] (4)

where �(:) is the standard normal cdf. To max-
imize the likelihood function we di¤erentiate
4 with respect to �: The �rst order condition,
or score function, for the probit model has the
form
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S(�) =
nX
i=1

[yi � �(�0xi)]
�(�0xi)[1� �(�0xi)]

�(�0xi)xi: (5)

� The estimates or � are chosen such that S(�) = 0:
Note that 5 has an important role in some of
the other topics that we will cover. Note that
if we evaluate the 5 for the constant contained
in xi this score function is equal to the gener-
alized residual for the probit model.

� Note that is also equal to the Inverse Mills
ratio. In order to do inference we need to
compute the covariance matrix for �: This is
equal to

I(�) =

nX
i=1

[�(�0xi)]
2

�(�0xi)[1� �(�0xi)]
xix

0
i
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� The score for the intercept, or the generalized
residual is very important because it has the
interpretation of the residual.

� The residual is important as it also suits the
purpose of a control function in models with
endogeneity.

� For example, consider 2sls. There are multi-
ple ways to account for the endogeneity but
one of the ways is to include the residual from
the reduced form as an additional regressor in
the primary equation.
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� The second important use of the generalized
residuals is the role in the testing procedure
for binary choice models and other models es-
timated by MLE.

� This is due to an approach of Newey (1985)
and surveyed in Pagan and Vella (1989)

� Explain conditional moment tests and how
they are implemented
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�We now turn our attention to models where
the dependent variable is partially censored.
This model arises frequently in micro data
sets as variables are frequently not recorded
for all observations or zero values correspond
to something which is below some threshold.

� This type of model was originally considered
by Tobin in a model of household consump-
tion. The general approach which is adopted
is to assume that there is a latent variable y�i

which is mapped into the observed data in the
following way

y�i = x0i� + u

yi = y�i if y
�
i > 0

= 0 otherwise

where x is a vector of exogenous variables; � is
a vector of unknown parameters; and u � N(0; �2):
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� In this original formulation we assume that
the threshold is zero although this is arbitrar-
ily chosen. Before proceeding to estimation
one can see that this type of model arises fre-
quently in economics. Aside from the con-
sumption example there is also the popularly
implemented example of hours of work, not-
ing that many observations report zero hours.

� Also note that an important feature of this
model, in contrast to amodel that wewill con-
sider below, is that although the dependent
variable is reported as zero when the latent
variable is below some threshold the x vector
is observed for all observations. This model is
known as the censored regression model.
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� The obvious way to estimate the above model
is to ignore the unusual structure of the de-
pendent variable and simply do OLS.

� In doing OLS there are two ways to proceed.
First, we can ignore the existence of the cen-
sored observations and estimate over the un-
censored observations.

� Alternatively, we can ignore the fact the ob-
servations are zero and estimate over the whole
sample with the zeros included. First, con-
sider the regression using only positive obser-
vations of yi: From some simple rewriting of
the model we get:

E(yijy�i > 0) = x0i� + E[uijy�i > 0]
= x0i� + E[uijui > �x0i�]:

The issue of consistent estimation now focuses
on the value of E[uijui > �x0i�]:
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� For OLS to be consistent we need that E[uijui >
�x0i�] is uncorrelated with the x0s:

� Otherwise the exclusion of this variable will
lead to biased estimates. If we assume nor-
mality it is straightforward to show that

E[uijui > �x0i�] = �
�(x0i�=�)

�(x0i�=�)

where � and � denote the normal pdf and cdf
respectively.

� Note, from our discussion of the estimation of
the probit model the term in brackets is the
Inverse Mills ratio. As we discussed earlier
the Inverse Mill ratio is an important concept
in this literature so it useful to consider it
the expected value of the error which is the
generalized value when we evaluate it at the
parameter estimates.

� However, it is very unlikely that this termwill
be uncorrelated with the regressors and thus
the OLS estimates will be biased if the later
term is not accounted for. Later on we will
discuss two-step procedures which account for
this latter term.
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� It is also immediately clear from a diagram-
matic representation that estimation over the
whole sample will lead to biased estimates.

� Given the distributional assumptions one can
also estimate this model by MLE.

� Before turning to a discussion of the tobit like-
lihood function it is clear that one could es-
timate this model by probit by just treating
the uncensored observations as being equal to
1 and the censored observations as 0�s.

� However, one suspects that the estimates would
be more e¢ cient if we incorporate the varia-
tion in the values of the uncensored obser-
vations in the likelihood function. Also, as
we saw in probit estimation we are only able
to estimate �

� and it is likely that using the
actual values for the uncensored observations
will help us identify these two parameters sep-
arately.
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� The likelihood function will thus have the fol-
lowing components. First, like the probit like-
lihood function the �rst part will comprise the
censored observations while the second part
will explain the variation in the uncensored
observations conditional on the observations
being uncensored. The log likelihood function
thus has the following form:

L = �
n1X
i=1

ln[
1

(2��2)1=2
]� 1

2�2

n1X
i=1

(yi � x0i�)2 �

n0X
i=1

ln[1� �(x
0
i�

�
)]

where Pn1
i=1 and

Pn0
i=1 denote summation over the

uncensored and uncensored observations re-
spectively.
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� To estimate this model we simply set the �rst
order conditions equal to zero. Note that in
this instance there are �rst order conditions
for the slope parameters and a �rst order con-
dition for the variance.

� It is useful to look at the these �rst order
conditions as they are useful for the estima-
tion of sample selection models, which we will
consider next, and also for diagnostic testing
which we also consider soon.

@L

@�
= �

n0X
i=1

�(x
0�
� )

1� �(x
0
i�

� )
+
1

�2

n1X
i=1

(yi � x0i�)xi = 0

@L

@�2
=

1

2�2

n0X
i=1

(x0i�)�(
x0�
� )

1� �(x
0
i�

� )
� n1
2�2

+

1

2�4

n1X
i=1

(yi � x0i�)2 = 0:

� Note that for computational sake these deriv-
atives are simple to calculate. It is also valu-
able to note that the derivative for the con-
stant continues to have the interpretation of
the generalized residual. Its also interesting to
note that the residual has the probit residual
for the censored observations and the usual
OLS residual for the uncensored observations.
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� Testing of the tobit model.

15


