
1 Censoring, Sample Selection and At-
trition

� The general structure of the models consid-
ered here is represented by the following sys-
tem of simultaneous equations:

y�it = m1(xit; zit; yi;t�1; �1) + uit; (1)

z�it = m2(xit; x1it; zi;t�1; �2) + vit; (2)

zit = h(z
�
it; �3); (3)

yit = y
�
it if gt(zi1; ::::; ziT ) = 1; (4)

= 0 (or unobserved) otherwise,

where i indexes individuals (i = 1; :::; N) and t

indexes time (t = 1; :::; T ); y�it and z�it are latent
endogenous variables with observed counter-
parts yit and zit; xit and x1it are vectors of ex-
ogenous variables; m1 and m2 denote general
functions characterized by the unknown pa-
rameters in �1 and �2; respectively.
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�While wewill generally focus on the case where
we impose index restrictions on the condi-
tional means, we write the model in the more
general form by employing the unknown func-
tions m1 and m2 to capture possible non-linearities.

� The mapping from the latent variable to its
observed counterpart occurs through the cen-
soring functions h and gt noting that the for-
mer may depend on the unknown parameter
vector �3:

�We will generally focus on the case where h(:)

is an indicator function producing the value
1 if z�it > 0; in which case there are no unknown
parameters in the censoring process.
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�When we consider the available two-step es-
timators we will also consider some popular
alternative selection rules and these may in-
volve the estimation of additional parameters.

� The function gt indicates that y�it may only be
observed for certain values of zi1; :::; ziT : This in-
cludes sample selection where yit is only ob-
served if, for example, zit = 1 or, alternatively in
the balanced subsample case, if zi1 = ::: = ziT = 1.
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� Alternatively, we will consider a special case
of interest in which we replace the censoring
mechanism in (4) with

yit = y
�
it � I(y�it > 0); (5)

where I(:) is an indicator function operator which
produces the value 1 if event (.) occurs and
zero otherwise.

� The model which incorporates (4) as the cen-
soring or selection rule corresponds with the
sample selection model. The model with (5)
as the censoring mechanism corresponds to
the censored regression model.
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� The above model nests many models of in-
terest. For example, it encompasses the sta-
tic sample selection and censored regression
models in which we only observe the depen-
dent variable of primary interest for some sub-
set of the data depending on the operation of
a speci�c selection rule.

� The model also incorporates a potential role
for dynamics in both the y equation and the
censoring process.

� That is, while panel data are frequently seen
as a mechanism for eliminating unobservables
which create di¢ culties in estimation, an im-
portant feature and major attraction of panel
data is that it provides the ability to esti-
mate the dynamics of various economic rela-
tionships based on individual behavior.
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� An important feature of these models is re-
lated to identi�cation. In many of the mod-
els that we consider it is possible to obtain
identi�cation of the parameters of interest by
simply relying on non-linearities which arise
from the distributional assumptions.

� In general, this is not an attractive, nor fre-
quently accepted, means of identi�cation. As
these issues are frequently quite complicated
we avoid such a discussion by assuming that
the elements in the vector x1it appear as ex-
planatory variables in the selection equation
(2) but are validly excluded from the primary
equation (1).

� In this way the models are generally identi-
�ed.

6



� A key aspect of any panel data model is the
speci�cation and treatment of its disturbances.
We write the respective equations�errors as

uit = �i + "it (6)

vit = �i + �it (7)

which indicates that they comprise individual
e¤ects, �i and �i; and individual speci�c time
e¤ects, "it and �it; which are assumed to be in-
dependent across individuals.

� This corresponds to the typical one-way error
components model.
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� Moreover, we allow the errors of the same di-
mension to be correlated across equations. In
some instances we will assume that both the
individual e¤ects and the idiosyncratic distur-
bances can be treated as random variables,
distributed independently of the explanatory
variables.

� In such cases, we will often assume that the
error components are drawn from known dis-
tributions.
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� Formany empirical applications, however, these
assumption are not appropriate. For example,
one may expect that some subset of the ex-
planatory variables are potentially correlated
with the one or both of the di¤erent forms of
disturbances.

� Accordingly, it is common to treat the indi-
vidual e¤ects as �xed e¤ects, which are po-
tentially correlatedwith the independent vari-
able, and we will consider the available proce-
dures for estimating under such conditions.

� Second, while distributional assumptions are
frequently useful from the sake of implemen-
tation, for many applications they may not be
appropriate.
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� As many of the procedures we examine are
likelihood based any misspeci�cation of the
parametric component may lead to the result-
ing estimators being inconsistent.

� Thus, while we begin the analysis of each sub-
model by making distributional assumptions
regarding the disturbances we will also exam-
ine some semi-parametric estimators which do
not rely on distributional assumptions.

� Finally, note that for the majority of models
the parameters of primary interest are those
contained in the vector �1; the variance �2" and,
when appropriate, �2�: In some instances, how-
ever, there may be interest in the �2 vector:
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2 Sample selection bias and robustness
of standard estimators

� One can easily illustrate the problems gener-
ated by the presence of attrition or selection
bias by examining the properties of standard
estimators for the primary equation where we
estimate only over the sample of uncensored
observations.

� Consider the simplest case of (1) where the
dependent variable is written as a linear func-
tion of only the exogenous explanatory vari-
ables:

yit = x
0
it� + �i + "it; (8)

where we consider that each of the selection
rules captured in (4) and (5) can be written
as zit = 1.
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� To illustrate the problems with such pooled
estimation of (8) we can take expectations of
(8) conditional upon yit being observed, which
gives
E(yitjxit; zit = 1) = x0it� + E(�ijxit; zit = 1) + E("itjxit; zit = 1); (9)

noting that the last two terms will in general
have non-zero values, which are potentially
correlated with the x0s; due to the dependence
between �i and �i; and "it and �it:

� These terms will, in general, be non-zero when-
ever Prfzit = 1jyit; xitg is not independent of yit. Ac-
cordingly, least squares estimation of (8) will
lead to biased estimates of � due to this mis-
speci�cation of the mean.
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� This above result is well known in the cross-
sectional case and is a restatement of the re-
sults of Heckman (1979).

� However, given that in the panel data set-
ting we have repeated observations on the in-
dividual one might think that the availability
of panel data estimators which exploit the na-
ture of the error structure might provide some
scope to eliminate this bias without the use of
such a variable.

� Accordingly, it is useful to discuss the proper-
ties of the standard �xed e¤ects and random
e¤ects estimators in the linear model when
the selection mechanism is endogenous. Thus
we �rst consider estimation of (8) by the stan-
dard linear �xed e¤ects or random e¤ects pro-
cedures.
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� To consider these estimators we �rst intro-
duce some additional notation.

� Observations on yit are treated as available if
zit = 1 and missing if zit = 0:

�We de�ne ci =
QT
t=1 zit; so that ci = 1 if and only if

yit is observed for all t:
� The �rst estimator for � that we consider are
the standard random e¤ects estimators.
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� De�ning
�i = 1�

s
�2"

�2" + Ti�
2
�

where Ti =
PT

t=1 zit denotes the number of time
periods yit is observed, the random e¤ects es-
timator based on the unbalanced panel (using
all available cases) can be written as

�̂
U

RE =

 
NX
i=1

TX
t=1

zit(xit � �i�xi)(xit � �i�xi)0
!�1

(10)

�
 

NX
i=1

TX
t=1

zit(xit � �i�xi)(yit � �i�yi)
!

where �xi = T�1i
PT

t=1 zixit and �yi = T�1i
PT

t=1 ziyit denote
averages over the available observations.
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� In some cases attention may be restricted to
the balanced sub-panel comprising only those
individuals that have completely observed records.

� The resulting randome¤ects estimator is given
by

�̂
B

RE =

 
NX
i=1

TX
t=1

ci(xit � �i�xi)(xit � �i�xi)0
!�1

(11)

�
 

NX
i=1

TX
t=1

ci(xit � �i�xi)(yit � �i�yi)
!
:

� Note that all units for which ci = 1 will have
the same value for �i:
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� Under appropriate regularity conditions, these
two estimators are consistent for N !1 if

E(�i + "itjzi) = 0; (12)

where zi = (zi1; :::; ziT )
0:

� This condition states that the two compo-
nents of the error term in the model are mean
independent of the sample selection indicators
in zi (conditional upon the exogenous vari-
ables).

� This appears to be a very strong condition
and essentially implies that the selection process
is independent of both of the unobservables in
the model.

� One would suspect that for a large range of
empirical cases this is unlikely to be true and
this does not appear to be an attractive as-
sumption to impose.
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� Given that the random e¤ects estimator does
not appear to be useful in the presence of se-
lection bias it is worth focussing on the suit-
ability of the �xed e¤ects estimators of �:

� For the unbalanced panel the estimator can
be written as

�̂
U

FE =

 
NX
i=1

TX
t=1

zit(xit � �xi)(xit � �xi)0
!�1

(13)

�
 

NX
i=1

TX
t=1

zit(xit � �xi)(yit � �yi)
!
;
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� The corresponding estimator for the balanced
sub-panel is given by

�̂
B

FE =

 
NX
i=1

TX
t=1

ci(xit � �xi)(xit � �xi)0
!�1

(14)

�
 

NX
i=1

TX
t=1

ci(xit � �xi)(yit � �yi)
!
:
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� Under appropriate regularity conditions, con-
sistency of these two estimators requires that

E("it � �"ijzi) = 0; (15)

where �"i = T�1i
PT

t=1 zit"it:

� This indicates that the estimation over the
subsample for which zit = 1 will produce consis-
tent estimates if the random component de-
termining whether zit = 1 is eliminated in the
�xed e¤ects transformation.

� That is, the unobservable component deter-
mining selection for each individual is time-
invariant.

�While this may be true in certain instances it
is likely that in many empirical examples such
an assumption would not be reasonable as it
imposes that the selection process is indepen-
dent of the idiosyncratic errors.

20



� This discussion illustrates that the conven-
tional linear panel data estimators are inap-
propriate for the linear model with selection.

� The random e¤ects estimator essentially re-
quires that selection is determined outside the
model while the �xed e¤ects estimator im-
poses that, conditional on the individual ef-
fects, the selection process is determined out-
side the model.

�While the �xed e¤ects estimator is more ro-
bust, it still is unsatisfactory for most empiri-
cal examples of panel data models with selec-
tivity.

� Accordingly, we now begin to examine a range
of estimators which handle the situation for
which (12) and (15) are not satis�ed.
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3 Tobit and Censored Regression Mod-
els

� The �rst model considered can be fully de-
scribed by a subset of the equations capturing
the general model outlined above.

� The model has the form
y�it = m1(xit; yi;t�1; �1) + uit; (16)

yit = y
�
it if y

�
it > 0; (17)

= 0 (or unobserved) otherwise.
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� This considers a latent variable y�it, decom-
posed into a conditional mean depending upon
xit and possibly a lagged observed outcome
yi;t�1; and an unobserved mean zero error term
uit:

� The observed outcome equals the latent value
if the latter is positive and zero otherwise.

� This model is the panel data extension of the
tobit type I (under certain distributional as-
sumptions) or censored regressionmodel which
is commonly considered in cross-sectional analy-
ses.
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�We now consider estimation of this standard
censored regression model in (16)-(17) under
di¤erent sets of assumptions.

� The simplest case arises when the lagged de-
pendent variable is excluded from (16), and
when "it is assumed to be drawn from a normal
distribution, independent of the explanatory
variables.

�We then consider the model where we allow
for a lagged dependent variable.

� As we will see the estimation is somewhat
more di¢ cult because one has to incorporate
the additional complications arising from the
initial conditions.

� We then proceed to a consideration of the
model where we relax the distributional as-
sumptions that we impose on the error terms.
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3.1 Random E¤ects Tobit
� First, we consider the static tobit model, given
by

�
y�it = m1(xit; �1) + uit;

where the censoring rule is stated in (5)
yit = y

�
it if y

�
it > 0; (18)

yit = 0 if otherwise.

�We also assume that uit has mean zero and
constant variance, independent of (xi1; :::; xiT ):

� In order to estimate �1 bymaximum likelihood
we add an additional assumption regarding
the joint distribution of ui1; :::; uiT :
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� The likelihood contribution of individual i is
the (joint) probability/density of observing the
T outcomes yi1; :::; yiT , which is determined from
the joint distribution of the latent variables
y�i1; :::; y

�
iT by integrating over the appropriate in-

tervals.
� In general, this will imply T integrals, which in
estimation are typically to be computed nu-
merically.

�When T = 4 or more, this makes maximum like-
lihood estimation infeasible.
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� If the uit are assumed to be independent, we
have that

f(yi1; :::; yiT jxi1; :::; xiT ;#1) =
Y
t

f(yitjxit;#1);

where #1 contains all relevant parameters (in-
cluding �1); which involves T one-dimensional
integrals only (as in the cross-sectional case).

� This, however is highly restrictive.
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� If, instead, we impose the error components
assumption that uit = �i + "it; where "it is i.i.d.
over individuals and time, we can write the
joint probability/density as

f(yi1; :::; yiT jxi1; :::; xiT ;#1) =
1Z

�1

f(yi1; :::; yiT jxi1; :::; xiT ; �i;#1)f(�i)d�i

=

1Z
�1

"Y
t

f(yitjxit; �i;#1)
#
f(�i)d�i; (19)

where f is generic notation for a density or
probability mass function.
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� This is a feasible speci�cation that allows the
error terms to be correlated across di¤erent
periods, albeit in a restrictive way. The cru-
cial step in (19) is that conditional upon �i the
errors from di¤erent periods are independent.

� In principle arbitrary assumptions can bemade
about the distributions of �i and "it: For exam-
ple, one could assume that "it is i.i.d. normal
while �i has a Student t-distribution.

� However, this may lead to distributions for �i+
"it that are nonstandard and this is unattrac-
tive.

� Accordingly, it is more common to start from
the joint distribution of ui1; :::; uiT :
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�Weassume that the joint distribution of ui1; :::; uiT
is normal with zeromeans and variances equal
to �2� + �

2
" and covfuit; uisg = �2�; s 6= t:

� This is the same as assuming that �i is NID(0; �2�)
and "it is NID(0; �2"):

� The likelihood function can then be written
as in (19), where

f(�i) =
1p
2���

exp

(
�1
2

�
�i
��

�2)
: (20)
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� and

f(yitjxit; �i;#1) =
1p
2��"

exp

(
�1
2

�
yit �m1(xit; �1)� �i

�"

�2)
if yit > 0

= 1� �
�
m1(xit; �1) + �i

�"

�
if yit = 0; (21)

where � denotes the standard normal cumu-
lative density function.

� The latter two expressions are similar to the
likelihood contributions in the cross-sectional
case, with the exception of the inclusion of �i
in the conditional mean.
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� The estimation of this model is identical to
estimation of the tobit model in the cross-
sectional setting except that we now have to
account for the inclusion of the individual spe-
ci�c e¤ect.

� As this individual e¤ect is treated as a ran-
domvariable, and the disturbances in themodel
are normally distributed, the above procedure
is known as random e¤ects tobit.

� Note that while we do not do so here, it would
be possible to estimate many of the models
considered in the survey of cross-sectional to-
bit models by Amemiya (1978) by allowing
for an individual random e¤ect.
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3.2 Random E¤ects Tobit with Endoge-
nous Explanatory Variables

� The discussion of the randome¤ects tobit model
in the previous section assumed that the dis-
turbances are independent of the explanatory
variables

� One useful extension of the model would be
instances where some of the explanatory vari-
ables were treated as endogenous.

� This is similar to the cross-sectional model
of Smith and Blundell (1986) who present a
conditional ML estimator to account for the
endogeneity of the explanatory variables.
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� The estimator simply requires estimating the
residuals from the model for the endogenous
explanatory and including them as an addi-
tional explanatory variable in the cross-sectional
tobit likelihood function.

� Vella and Verbeek (1999) extend this to the
panel case by exploiting the error components
structure of the model. We now present this
case where we assume the endogenous explana-
tory variable is fully observed.
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� The model has the following form:
y�it = m1(xit; zit; �1) + �i + "it (22)

zit = m2(xit; x1it; zi;t�1; �2) + �i + �it (23)

yit = y
�
it � (y�it > 0) (24)

The model�s disturbances are assumed to be
generated by the following distribution:
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� �
�i�+ "i
�i�+ �i

�
jXi
� NID

��
0
0

�
;

�
�2���

0 + �2"I �����
0 + �"�I

�2���
0 + �2�I

��
(25)

where � is a T-vector of ones.
� Exploiting this joint normality assumption al-
lows us to write

E(uitjXi; vi) = �1vit + �2�vi; (26)

where �1 = �"�=�
2
"; �2 = T (��� � �"��2�=�2")=(�2� + T�2�) and

�vi = T
�1PT

t=1 vit.
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� As the endogenous explanatory variable is un-
censored the conditional distribution of the
error terms in (22) given zi remains normal
with an error components structure.

� Thus one can estimate the model in (22) and
(24) conditional on the estimated parameters
from (23) using the random e¤ects likelihood
function, aftermaking appropriate adjustments
for the mean and noting that the variances
now re�ect the conditional variances.
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�Write the joint density of yi = (yi1; :::; yiT )
0 and zi

given Xi as:1

f(yijzi; Xi;#1; #2)f(zijXi;#2); (27)

where #1 denotes (�1; �2�; �2"; ���; �"�) and #2 denotes
(�2; �

2
� ; �

2
�):

�We �rst estimate #2 by maximizing the mar-
ginal likelihood function of the zi�s.

� Subsequently, the conditional likelihood func-
tion Y

i

f(yijzi; Xi;#1; #̂2) (28)

is maximized with respect to #1 where #̂2 de-
notes a consistent estimate of #2:

1When (23) is dynamic with an exogenous initial value zio; (27) is valid if zio is included
in Xi: When the initial value is endogenous, we need to include zi0 in zi:
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� The conditional distribution of yi given zi is
multivariate normal with an error components
structure.

� The conditional expectation can be derived
directly from (26), substituting vit = zit�m2(xit; x1it; zi;t�1; �2);

while the covariance structure corresponds to
that of �1i+ �2;it, where �1i and �2;it are zero mean
normal variables with zero covariance and vari-
ances
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�21 = V f�1ig = �2" � �2"���2� ; (29)

�22 = V f�2;itg = �2� �
T�2���

2
� + 2����"��

2
� � �2"��2�

�2�(�
2
� + T�

2
�)

: (30)
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� These follow from straightforward matrix ma-
nipulations and show that the error compo-
nents structure is preserved and the condi-
tional likelihood function of (22) and (24) has
the same formas themarginal likelihood func-
tionwithout endogenous explanatory variables.2

� The conditional maximum likelihood estima-
tor can be extended to account for multiple
endogenous variables as the appropriate con-
ditional expectation is easily obtained as all
endogenous regressors are continuously observed.

� Even if the reduced form errors of the endoge-
nous regressors are correlated, provided they
are characterized by an error components struc-
ture it can be shown that the conditional dis-
tribution of �i+"it also has an error components
structure.

2The algebraic manipulations are simpli�ed if �21 and �
2
2 replace the unconditional variances

�2" and �
2
� in #1. In this case, estimates for the latter two variances are easily obtained in a

third step from the estimates from the �rst stage for �2� and �
2
� , and the estimated covariances

from the mean function, using the equalities in (29) and (30).
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� In general the conditional maximum likelihood
estimator cannot be employed when zit 6= z�it:

� Thus the family of sample selection models
considered below cannot be estimated by con-
ditional maximum likelihood. One interest-
ing exception, however, is when the primary
equation is estimated over the subsample of
individuals that have zis = z

�
is; for all s = 1; :::; T:
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3.3 Dynamic Random E¤ects Tobit
� The ability to estimate dynamic relationships
from individual level data is an important at-
traction of panel data.

� Accordingly, an extension to the above model
which involves the inclusion of a lagged de-
pendent variable is of economic interest.

� Let us now reconsider the random e¤ects to-
bit model, and generalize the latent variable
speci�cation to

y�it = m1(xit; yi;t�1; �1) + �i + "it; (31)

with yit = y
�
it if y�it > 0 and 0 otherwise.
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� Now consider maximum likelihood estimation
of this dynamic random e¤ects tobit model,
making the same distributional assumptions
as above.

� In general terms, the likelihood contribution
of individual i is given by (compare (19))

f(yi1; :::; yiT jxi1; :::; xiT ;#1) =
1Z

�1

f(yi1; :::; yiT jxi1; :::; xiT ; �i;#1)f(�i)d�i

(32)

=

1Z
�1

"
TY
t=2

f(yitjyi;t�1; xit; �i;#1)
#
f(yi1jxi1; �i;#1)f(�i)d�i;
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� where
f(yitjyi;t�1; xit; �i;#1)

=
1p
2��"

exp

(
�1
2

�
yit �m1(xit; yi;t�1; �1)� �i

��

�2)
if yit > 0;

= 1� �
�
m1(xit; yi;t�1; �1) + �i

�"

�
if yit = 0:

� This is analogous to the static case and yi;t�1 is
simply included as an additional explanatory
variable.

� However, the term f(yi1jxi1; �i; �1) in the likelihood
function may cause problems. It gives the dis-
tribution of yi1 without knowing its previous
value but conditional upon the unobserved
heterogeneity term �i:
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� If the initial value is exogenous in the sense
that its distribution does not depend upon �i;

we can place the term f(yi1jxi1; �i;#1) = f(yi1jxi1;#1)
outside the integral.

� In this case, we can simply consider the likeli-
hood function conditional upon yi1 and ignore
the term f(yi1jxi1;#1) in estimation.

� The only consequence may be a loss of e¢ -
ciency if f(yi1jxi1;#1) provides information about
#1:

� This approach would be appropriate if the
starting value is necessarily the same for all
individuals or if it is randomly assigned to in-
dividuals.

46



� However, it may be hard to argue in many
applications that the initial value yi1 is exoge-
nous and does not depend upon a person�s
unobserved heterogeneity.

� In that case we would need an expression for
f(yi1jxi1; �i;#1) and this is problematic. If the process
that we are estimating has been going on for a
number of periods before the current sample
period, f(yi1jxi1; �i;#1) is a complicated function
that depends upon person i�s unobserved his-
tory.

� This means that it is typically impossible to
derive an expression for the marginal prob-
ability f(yi1jxi1; �i;#1) that is consistent with the
rest of the model.
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� Heckman (1981) suggests an approximate so-
lution to this initial conditions problem that
seems to work reasonably well in practice.

� It requires an approximation for the marginal
distribution of the initial value by a tobit func-
tion using as much pre-sample information as
available, without imposing restrictions be-
tween its coe¢ cients and the structural pa-
rameters in �1.
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3.4 Fixed E¤ects Tobit Estimation
� The fully parametric estimation of the tobit
model assumes that both error components
have a normal distribution, independent of
the explanatory variables.

� Clearly, this is restrictive and a �rst relax-
ation arises if we treat the individual-speci�c
e¤ects �i as parameters to be estimated, as is
done in the linear �xed e¤ects model.

� However, such an approach is generally not
feasible in non-linear models.
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� The loglikelihood function for the �xed e¤ects
tobit model has the general form

logL =
NX
i=1

"
TX
t=1

log f(yitjxit; �i;#1)
#
; (33)

where
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�

f(yitjxit; �i;#1) =
1p
2��"

exp

(
�1
2

�
yit �m1(xit; �1)� �i

�"

�2)
if yit > 0

= 1� �
�
m1(xit; �1) + �i

�"

�
if yit = 0:
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� Maximization of (33) can proceed through the
inclusion of N dummy variables to capture the
�xed e¤ects or using an alternative strategy,
described in Greene (2004), which bypasses
the large computation demands of including
so many additional variables.
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� This �xed e¤ects tobit estimators is subject
to the incidental parameter problem (Neyman
and Scott, 1948, Lancaster, 2000), and results
in inconsistent estimators of the parameters of
interest if the number of individuals goes to
in�nity while the number of time periods is
�xed.

� It was generally believed that the bias result-
ing from �xed e¤ects tobit was large although
more recent evidence provided by Greene sug-
gests this may not be the case.

� On the basis of Monte Carlo evidence, Greene
(2004) concludes that there is essentially no
bias in the estimates of �1: However, the esti-
mate of �" is biased and this generates bias in
the estimates of the marginal e¤ects.

� Greene also concludes that the bias is small if
T is 5 or greater.
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� Hahn andNewey (2004) suggest two approaches
to bias reduction in �xed e¤ects estimation of
non-linear models such as the �xed e¤ects to-
bit model.

� The �rst procedure is based on the use of jack-
knife methods and exploits the variation in
the �xed e¤ects estimator when each of the
observations are, in turn, separately deleted.

� By doing so one is able to forma bias-corrected
estimator using theQuenouille (1956) andTukey
(1958) jackknife formula.
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� For simplicity, let m1(xit; �1) = x0it� and let b�(t) de-
note the �xed e¤ects estimator based on the
subsample excluding the observations for the
tth wave.

� The jackknife estimator (b�JK) is de�ned to be
b�JK = T b� � (T � 1) TX

t=1

b�(t)=T;
where b� is the �xed e¤ects estimator based on
the entire panel.

� Hahn andNewey note that the panel jackknife
is not particularly complicated. While it does
require (T + 1) �xed e¤ects estimations of the
model one can employ the algorithmproposed
byGreene, discussed above, and the estimates
of b� and b�i can be used as starting values.
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� The second procedure is an analytic bias cor-
rection using the bias formula obtained from
an asymptotic expansion as the number of pe-
riods grows.

� This is based on an approach suggested by
Waterman et al. (2000) and is also related to
the approach adopted by Woutersen (2002).

� Note that while none of these authors exam-
ine the �xed e¤ect tobit model, preferring to
focus mainly on discrete choice models, the
approaches are applicable.

� Hahn and Newey (2004) provide some sim-
ulation evidence supporting the use of their
procedures in the �xed e¤ects probit model.
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3.5 Semi-Parametric Estimation
� As shown in Honoré (1992) is also possible to
estimate the parameters of panel data tobit
models like (16)�(17) with no assumptions on
the distribution of the individual speci�c ef-
fects and with much weaker assumptions on
the transitory errors.

� To �x ideas, consider a model with a linear
index restriction, that is
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�
y�it = x

0
it� + �i + "it;

and
yit = y

�
it if y

�
it > 0;

yit = 0 otherwise.
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� Themethod proposed inHonoré (1992) is based
on a comparison of any two time periods, t and
s.

� The key insight behind the estimation strat-
egy is that if "it and "isare identically distrib-
uted conditional on (xit; xis) then
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�

vist (�) = maxfyis; (xis � xit)0 �g �maxf0; (xis � xit)0 �g
= maxf�i + "is;�x0is�;�x0it�g �maxf�x0is�;�x0it�g

and
vits (�) = maxfyit; (xit � xis)0 �g �maxf0; (xit � xis)0 �g

= maxf�i + "it;�x0it�;�x0is�g �maxf�x0it�;�x0is�g

are also identically distributed conditional on
(xit; xis).
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� This can be used to construct numerous mo-
ment conditions of the form

E [(g (vist (�))� g (vits (�)))h (xit; xis)] = 0 (34)

� If g is increasing and h (xit; xis) = xis � xit , these mo-
ment conditions can be turned into a mini-
mization problem which identi�es � subject to
weak regularity conditions.

� For example, with g (d) = d, (34) corresponds to
the �rst-order conditions of the minimization
problem
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minimize
b

E
��
maxfyis; (xis � xit)0 bg

�maxfyit;� (xis � xit)0 bg � (xis � xit)0 b
�2

+ 2 � 1fyis < (xis � xit)0 bg((xis � xit)0 b� yis)yit
+ 2 � 1fyit < � (xis � xit)0 bg(� (xis � xit)0 b� yit)yis

�
which suggests estimating � by minimizing
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nX
i=1

X
s<t

�
maxfyis; (xis � xit)0 bg (35)

�maxfyit;� (xis � xit)0 bg � (xis � xit)0 b
�2

+ 2 � 1fyis < (xis � xit)0 bg((xis � xit)0 b� yis)yit
+ 2 � 1fyit < � (xis � xit)0 bg(� (xis � xit)0 b� yit)yis
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� The objective function in (35) is convex in
b, as are other objective functions based on
(34).

� Honoré andKyriazidou (2000) discuss estima-
tors de�ned by a general g (d) as well as esti-
mators based on moment conditions that are
derived under the stronger assumption that
the distribution of ("it; "is) is exchangeable con-
ditional on (xit; xis).
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3.6 Semi-Parametric Estimation in the Pres-
ence of Lagged Dependent Variables.

� Honoré (1993), Hu (2002) and Honoré and Hu
(2004) show how one can modify the moment
conditions in (34) in such a way that one can
allow for lagged dependent variables as ex-
planatory variables.

� The speci�cs for this di¤ers depending onwhether
the lagged latent or the lagged censored vari-
able is used, and the main di¢ culty in this
literature is that it is not easy to show that
the moment conditions are uniquely satis�ed
at the true parameter values.
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4 Models of Sample Selection and Attri-
tion

� As discussed above the tobit model has the
somewhat unattractive feature that the index
that explains the censoring also is required to
explain the variation in the dependent vari-
able of primary interest.

�We now turn our attention to the estimation
of the model where the selection process is
driven by a di¤erent index to that generating
the dependent variable of primary interest.
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�We introduce the following form of the model
y�it = x

0
it� + �i + "it; (36)

z�it = x
0
it�21 + x

0
1it�22 + �i + vit; (37)

zit = I(z
�
it > 0); (38)

yit = y
�
it � zit

where we again highlight that the vector x1it is
nonempty (and not collinear with xit):
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4.1 Maximum likelihood estimators
� Given that we canmake distributional assump-
tions regarding the error components it is nat-
ural to construct a maximum likelihood esti-
mator for all the parameters in (36)-(38).

� Consider the case where the individual e¤ect
is treated as a random e¤ect and the distur-
bances are all normally distributed.

� To derive the likelihood function of the vec-
tors zi and yi; we �rst write
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log f(zi; yi) = log f(zijyi) + log f(yi) (39)

� where f(zijyi) is the likelihood function of a con-
ditional T-variate probit model and f(yi) is the
likelihood function of a Ti-dimensional error
components regression model, where Ti =

P
t zit:
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� The second term can be written as
log f(yi) =

�Ti
2
log 2� � Ti � 1

2
log �2" �

1

2
(�2" + Ti�

2
�) (40)

� 1

2�2"

TX
t=1

zit(yit � x0it�)2 �
Ti

2(�2" + Ti�
2
�)
(�yi � �x0i�)2:
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� The �rst term in (39) requires the derivation
of the conditional distribution of the error
term in the probit model.

� From the assumption of joint normality and
de�ning �it = zit(�i + "it), the conditional expecta-
tion of vit = �i + �it is given by

E(�i + �itj�i1; :::; �iT ) = zit
�"�
�2"

�
�it �

�2�
�2" + Ti�

2
�

TP
t=1
�it

�
(41)

+
���

�2" + Ti�
2
�

TP
t=1
�it
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� Using our distributional assumptions the con-
ditional distribution of �i+ �it given �i1; :::; �iT cor-
responds to the unconditional distribution of
the sum of three normal variables eit + !1i + zit!2i
whose distribution is characterized by
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E(!1i) = E(!2i) = 0; E(eit) = cit

V (eit) = �
2
� � zit�2"�=�2" = s2t

V (!1i) = �
2
� � Ti�2��(�2" + Ti�2�)�1 = k1

V (!2i) = �
2
"��

2
��

�2
" (�2" + Ti�

2
�)
�1 = k2

cov(!1i; !2i) = �����"�(�2" + Ti�2�)�1 = k12;

� where the other covariances are all zero and
note that we do not explicitly add an index i

to the variances s2t ; k1 and k2:
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� Similar to the unconditional error components
probit model the likelihood contribution can
be written as

f(zijyi) =
Z Z TY

t=1

�

�
dit
x0it�21 + x

0
1it�22 + cit + !1i + zit!2i

st

�
� f(!1i; !2i)d!1id!2i

where dit = 2zit � 1 and f(:; :) is the density of !1i
and !2i:

74



� Using these various expressions it is now pos-
sible to construct the complete likelihood func-
tion.

� Computation of the maximum likelihood esti-
mator requires numerical integration over two
dimensions for all individuals which are not
observed in each period.

� Thus the computational demands are reason-
ably high and as a result this approach has
not been proven to be popular in empirical
work.

75



4.2 Two-step estimators
� To present the two-step estimators in the panel
setting we follow the approach of Vella and
Verbeek (1999).

�We again start with the model presented in
(36), (37) and (38).

� Note that althoughwe focus on estimating the
above model we retain some degree of gener-
ality.

� This allows us to more easily talk about ex-
tensions of the abovemodel to alternative forms
of censoring.

� The approach that we adopt is a generaliza-
tion of the Heckman (1979) cross-sectional es-
timator to the panel data model.
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� To motivate a two-step estimator in this set-
ting we begin by conditioning (36) on the vec-
tor zi (and the matrix of exogenous variables
Xi) to get

E(yitjXi; zi0; zi) = x0it� + E(uitjXi; zi0; zi): (42)

� If the mean function of (37) does not depend
upon zi;t�1 and sample selection only depends
on the current value of zit; it is possible to con-
dition only on zit and not zi = (zi1::::ziT ) and base
estimators on the corresponding conditional
moments (see Wooldridge, 1995).
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� In this case zi0 drops from the conditioning
set.

�We assume, as before, that the error terms
in the selection equation vit = �i + �it exhibit the
usual one-way error components structure, with
normally distributed components.

� That is
vijXi � NID(�2�u0 + �2�I):

78



� Note that while we do make explicit distribu-
tional assumptions about the disturbances in
the main equation we assume

E(uitjXi; vi) = �1vit + �2vi: (43)

� Equation (43) implies that the conditional ex-
pectation E("itjXi; zi0; zi) is a linear function of the
conditional expectation of vit and its individ-
ual speci�c mean noting that the � 0s are para-
meters to be estimated.
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� To derive the conditional expectation of the
terms on the right hand side of (43) we use

E(uitjXi; zi0; zi) =
Z
[�i + E(�itjXi; zi0; zi; �i)] f (�ijXi; zi0; zi) d�i; (44)

where f (�ijXi; zi0; zi) is the conditional density of
�i:

� The conditional expectation E(�itjXi; zi0; zi; �i) is the
usual cross-sectional generalized residual (see
Gourieroux et al., 1987, Vella, 1993) from (37)
and (38), since, conditional on �i; the errors
from this equation are independent across ob-
servations.
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� The conditional distribution of �i can be de-
rived using the result

f (�ijXi; zi0; zi) =
f(zi; zi0jXi; �i)f(�i)

f(zi; zi0jXi)
; (45)

where we have used that �i is independent of
Xi and

f(zi; zi0jXi) =
Z
f(zi; zi0jXi; �i)f(�i)d�i (46)

is the likelihood contribution of individual i in
(37) and (38).
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� Finally

f(zi; zi0jXi; �i) =
"
TY
t=1

f(zitjXi; zi;t�1; �i)
#
f(zi0jXi; �i); (47)

where f(zitjXi; zi;t�1; �i) has the form of the likeli-
hood function in the cross-sectional case.

� If we assume that f(zi0jXi; �i) does not depend on
�i; or any of the other error components, then
zi0 is exogenous and f(zi0jXi; �i) = f(zi0jXi):
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� Thus we can condition on zi0 in (46) and (47)
and obtain valid inferences neglecting its dis-
tribution. In general, however, we require an
expression for the distribution of the initial
value conditional on the exogenous variables
and the �i.

� The typical manner in which this is done is to
follow Heckman (1981) in which the reduced
form for zi0 is approximated using all presam-
ple information on the exogenous variables.
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� Thus the two-step procedure takes the follow-
ing form.

� The unknown parameters in (37) and (38) are
estimated by maximum likelihood while ex-
ploiting the random e¤ects structure.

� Equation (44) is then evaluated at these ML
estimates by employing the expression for the
likelihood function in an i.i.d. context, the
corresponding generalized residual, and the
numerical evaluation of two one dimensional
integrals.

� This estimate, and its average over time for
each individual provide two additional terms
to be included in the primary equation.
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� As we noted above, the correction terms have
been written to allow greater �exibility with
respect to the censoring process.

�We address this issue in the following section.
However, as themodel in (36), (37) and (38) is
perhaps the most commonly encountered for
panel data models with selectivity it is useful
to see the form of the correction terms.
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� The �rst step is to estimate the model by ran-
dom e¤ects probit to obtain estimates of the
�02s and the variances �2� and �2�:

�We then compute (44) and its individual spe-
ci�c average after inserting the following terms

E(�itjXi; zi0; zi; �i) = dit��
�
�
x0it�21+x

0
1it�22+�i
��

�
�
�
dit

x0it�21+x
0
1it�22+�i
��

� ; (48)

where � denotes the standard normal density
function, and
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f (�ijXi; zi0; zi) =

QT
t=1 �

�
dit

x0it�21+x
0
1it�22+�i
��

�
1
��
�
�
�i
��

�
R1
�1

QT
t=1 �

�
dit

x0it�21+x
0
1it�22+�i
��

�
1
��
�
�
�i
��

�
d�
; (49)

where dit = 2zit � 1:
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� The model can be estimated by maximum
likelihood if we make some additional distri-
butional assumptions regarding the primary
equation errors.

� If all error components are assumed to be ho-
moskedastic and jointly normal, excluding au-
tocorrelation in the time-varying components,
it follows that (43) holds with �1 = �"�=�

2
" and

�2 = T (��� � �"��2�=�2")=(�2� + T�2�).

� This shows that �2 is nonzero even when the
individual e¤ects �i and �i are uncorrelated. In
contrast, the two-step approach readily allows
for heteroskedasticity and autocorrelation in
the primary equation.
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� Moreover, the assumption in (43) can easily
be relaxed to, for example:

�
E(uitjXi; vi) = �1tvi1 + �2tvi2 + :::+ �TtviT : (50)

By altering equation (43) this approach can
be extended tomultiple sample selection rules.
With two selection rules, z1;it and z2;it; say, with
reduced form errors v1;it and v2;it; respectively,
(43) is replaced by
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E(uitjXi; v1;i; v2;i) = �11v1;it + �12�v1;i + �21v2;it + �22�v2;i: (51)

� Computation of the generalized residuals, how-
ever, now requires the evaluation of Efvj;itjXi; z1;i; z2;ig
for j = 1; 2:

� Unless z1;i and z2;i are independent, conditional
upon Xi, the required expressions are di¤erent
from those obtained from (44) and (45) and
generally involve multi-dimensional numerical
integration
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� Alternative Selection Rules
� The �rst is the extension to panel data of the
Tobit type 3 model given by

y�it = x
0
it�1 + �2zit + uit;

z�it = x
0
it�21 + x

0
1it�22 + vit;

zit = z
�
it � I(z�it > 0);

yit = y
�
it � I(z�it > 0):

91



� In this case one sees that the primary equa-
tion may or may not have the censoring vari-
able as an endogenous explanatory variable
and the censoring equation is censored at zero
but observed for positive values.

� In our wage example discussed above, the ex-
tension implies that we observe not onlywhether
the individual works but also the number of
hours.

�We also allow the number of hours to a¤ect
the wage rate.

� For this model we would �rst estimate the
censoring equation by random e¤ects tobit.
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�Wewould then use these estimates, alongwith
the appropriate likelihood contribution and
tobit generalized residual, to compute (44)
which are to be included in the main equa-
tion.

� Note that due to the structure of the model
the inclusion of the correction terms accounts
for the endogeneity of zit in the main equation.
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� A second model of interest is where the zit is
observed as an ordinal variable, taking values
j for j = 1; :::; J; and where the values of yit are
only observed for certain values of j:

� In this case, where the dummies denoting the
value of zit do not appear in the model, we
would conduct estimation in the followingway.

� Estimate the censoring equation by random
e¤ects ordered probit and then compute the
corrections based on (44) accordingly.

� Then estimate the main equation over the
subsample for zit corresponding to a speci�c
value and including the correction terms.

�When one wishes to include the dummies de-
noting the value of zit as additional explana-
tory variable it is necessary to pool the sample
for the di¤erent values of zit and include the
appropriate corrections.
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4.3 Two-Step Estimators with Fixed Ef-
fects

� A feature of the two-step estimator discussed
above is their reliance on the assumption that
the individual e¤ect is random variable and
independent of the explanatory variables.

�While the approach proposed by Vella and
Verbeek (1999) is somewhat able to relax the
latter assumption it is generally di¢ cult to
overcome.

� For this reason, as we noted above in the dis-
cussion of the censored regression model, it
is generally more appealing to treat the indi-
vidual �xed component of the error term as a
�xed e¤ect which may be correlated with the
explanatory variables.

�We noted above that the results of Hahn and
Newey (2004) would allow one to estimate a
�xed e¤ects tobit model and then perform the
appropriate bias correction.
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� Accordingly, it would be useful to adopt the
same approach in the sample selection model
and this has been studied by Fernandez-Val
and Vella (2005).

� The basic model they study has the form
y�it = x

0
it� + �i + "it; (52)

z�it = x
0
it�21 + x

0
1it�22 + �i + �it; (53)

zit = I(z
�
it > 0); (54)

yit = y
�
it � zit; (55)
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� where the �i and �i are individual speci�c �xed
e¤ects, potentially correlated with each other
and the explanatory variables, and the "it and
�it are random disturbances which are jointly
normally distributed and independent of the
explanatory variables.

�While Fernandez-Val and Vella (2005) con-
sider various forms of the censoring function,
such as described in the previous section, we
focus here on the standard case where the se-
lection rule is a binary censoring rule.

� The estimators proposed byFernandez-Val and
Vella (2005) are based on the following ap-
proach.
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� One �rst estimates the reduced form censor-
ing rule by the appropriate �xed e¤ects pro-
cedure.

� Once these estimates are obtained one uses
the bias correction approaches outlined inHahn
and Newey (2004) to adjust the estimates.
With these bias corrected estimates one then
computes the appropriate correction terms which
generally correspond to the cross-sectional gen-
eralized residuals. One then estimates the
main equation, (52), by a linear �xed e¤ects
procedure and bias correct the estimates.

� Fernandez-Val andVella (2005) study the per-
formance of this procedure to a range of mod-
els for alternative forms of censoring. These
include the static and dynamic binary selec-
tion rule, and the static and dynamic tobit
selection rule.
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4.4 Semi-Parametric Sample SelectionMod-
els

� Kyriazidou (1997) also studied the model in
(52)�(55).

� Her approach is semi-parametric in the sense
that no assumptions are placed on the indi-
vidual speci�c e¤ects �i and �i and the distri-
butional assumptions on the transitory errors
"it and �itare weak.
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� It is clear that (�21; �22) can be estimated by
one of the methods for estimation of discrete
choice models with individual speci�c e¤ects,
such as Rasch�s (1960, 1961) conditional max-
imum likelihood estimator, Manski�s (1987)
maximum score estimator or the smoothed
versions of the conditional maximum score es-
timator.

� Kyriazidou�s insight into estimation of � com-
bines insights from the literature on the es-
timation of semi-parametric sample selection
models (see Powell, 1987) with the idea of
eliminating the individual speci�c e¤ects by
di¤erencing the data.

� Speci�cally, to di¤erence out the individual
speci�c e¤ects �i, one must restrict attention
to time periods sand t for which y is observed.
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�With this �sample selection�, the mean of the
error term in period t is
�it = E("itj �it > �x0it�21 � x01it�22 � �i; �is > �x0is�21 � x01is�22 � �i; �i)

where �i = (xis; x1is; xit; x1it; �i; �i).
� The key observation in Kyriazidou (1997) is
that if ("it; �it) and ("is; �is) are independent and
identically distributed (conditional on (xis; x1is; xit; x1it; �i; �i)),
then for an individual i; who has x0it�21 + x01it�22 =
x0is�21 + x

0
1is�22,
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�it = E("itj �it > �x0it�21 � x01it�22 � �i; �i) (56)

= E("isj �is > �x0is�21 � x01is�22 � �i; �i)
= �is:

� This implies that for individuals with x0it�21 +

x01it�22 = x0is�21 + x
0
1is�22, the same di¤erencing that

will eliminate the �xed e¤ect will also elimi-
nate the e¤ect of sample selection.
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� This suggests a two�step estimation proce-
dure similar to Heckman�s (1976, 1979) two�
step estimator of sample selectionmodels: �rst
estimate (�21; �22) by one of the methods men-
tioned earlier, and then estimate � by apply-
ing OLS to the �rst di¤erences, but giving
more weight to observations for which (xit � xis)0 b�21+
(x1it � x1is)b�22 is close to zero:
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�̂2 ="
nX
i=1

X
s<t

(xit � xis)0 (xit � xis)K
 
(xit � xis)0 b�21 + (x1it � x1is)b�22

hn

!
yityis

#�1

�
"

nX
i=1

X
s<t

(xit � xis)0 (xit � xis)K
 
(xit � xis)0 b�21 + (x1it � x1is)b�22

hn

!
yityis

#

where K is a kernel and hn is a bandwidth
which shrinks to zero as the sample size in-
creases.

104



� Kyriazidou (1997) showed that the resulting
estimator is pn�consistent and asymptotically
normal. Kyriazidou (2001) shows how the
same approach can be used to estimate mod-
els when lagged dependent variables are in-
cluded as explanatory variables in (52) or (53).

� As pointed out inHonoré andKyriazidou (2000),
the estimators proposed in Honoré (1992) and
Kyriazidou (1997) can be modi�ed fairly triv-
ially to cover static panel data versions of the
other tobit�typemodels discussed inAmemiya
(1985).
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4.5 Semi-parametric Estimation of a Type-
3 Tobit Model

� One paper which explores the semi-parametric
estimation of panel data models with a tobit
type censoring rule is Lee and Vella (2005).
To present this idea �rst consider the cross-
sectional estimator they propose.
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� They consider the following model:
yi = x

0
i� + ui; (57)

z�i = x
0
it�21 + x

0
1it�22 + vi (58)

zi = max(0; z
�
i ); si = I(zi > 0); (59)

(x0i; zi; siyi)
0 is observed, i.i.d. across i: (60)

and impose the following mean independence
assumption E(uijvi; xi; si) = E(uijvi; si):
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� The approach to obtain consistent estimates
of � is to purge the (57) equation of the com-
ponent related to the selection equation (58)
error.

� To do this they suggest a Robinson (1988)
type procedure inwhich they regress yi�E(yijvi; si =
1) on xi �E(xijvi; si = 1) noting the inclusion of vi in
the conditioning set eliminates the source of
the selection problem.

� Themodel is semi-parametric in that one does
notmake distributional assumptions about the
disturbances.

� Rather, one estimates the selectionmodel (58)-
(59) parameters by some appropriate semi-
parametric estimator and the estimates bvi as
zi�x1ib�21�x02ib�22 (if si = 1); where the b�21 and b�22 denote
the �rst step semi-parametric estimates:
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� The expectations E(yijvi; si = 1) and E(xijvi; si = 1) can
be estimated non-parametrically.

� Lee and Vella (2005) argue that this approach
can be extended to additional forms of en-
dogeneity and selectivity by simply including
the appropriate reduced form residual(s) in
the conditioning set.

� This type of estimator is useful in the two
wave panel context and Lee andVella consider
two models which adopt alternative strategies
for dealing with dynamics in the model.

� The �rst is where the lagged dependent vari-
able appears in the conditional mean and the
model has the following form:
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yit = yi;t�1�y + x
0
it� + uit;

z�it = x
0
it�21 + x

0
1it�22 + vit

zit = max(0; z
�
it); sit = I(zit > 0); t = 1; 2; (61)

(x0i1; x
0
i2; zi1; zi2; si1yi1; si2yi2)

0 is observed, i.i.d. across i:

� The outcome equation can only be estimated
over the subpopulation si1 = si2 = 1, which poses
a double selection problem.
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� Thus one estimates over this subsample after
subtracting o¤the component of the outcome
equation related to the two selection residu-
als.

� The mean independence condition assump-
tion required is E(ui2jvi1; vi2; xi2; yi1; si) = E(ui2jvi1; vi2; si)
and one estimates
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yi2�E(yi2jvi1; vi2) = [yi1�E(yi1jvi1; vi2)]�y +[xi2�E(xi2jvi1; vi2)]0�+ �

over the subsample corresponding to si1 = si2 =
1.

� Lee and Vella also consider the treatment of
dynamics through the inclusion of a time in-
variant individual �xed e¤ect �i. The main
equation is static and is of the form:

yit = x
0
it� + �i + "it:
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� The double selection problemarises if the �rst-
di¤erenced outcome equation is estimated to
eliminate a time-constant error which is po-
tentially related to xit�s:
�yi = �x

0
i� +�"i; �yi � yi2 � yi1; �xi � xi2 � xi1; �"i � "i2 � "i1:

The mean independence assumption required
is is E(�"ijvi1; vi2;�xi; si) = E(�"ijvi1; vi2; si) and one esti-
mates

�
�yi � E(�yijvi1; vi2) = [�xi � E(�xijvi1; vi2)]0� + �

� over the subsample corresponding to si1 = si2 = 1.
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