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Abstract

Although time consistency problems play an important role in public policy, game
theoretical models in macroeconomics seem to indicate the opposite. Due to the com-
plexity of this kind of models, it is commonly assumed that information is complete
and perfect. In turn, this assumption becomes the key element that allows agents to
coordinate perfectly to punish the government if it does not do what private agents
want. As a result, a wide range of feasible payoffs can be sustained as equilibrium,
including the best payoff under commitment. Since this approach is widely used for
normative purposes a natural question emerges: are the above results robust to small
variations in information? This paper analyzes an investment taxation problem in an
economy with incomplete information. Specifically, we study an environment with the
following main characteristics: 1) the aggregate productivity (fundamental) is stochas-
tic, 2) only the government observes it and; 3) every agent privately receives a noisy
signal about the fundamental. The first characteristic implies that the best policy (tax
on investment) with commitment is state contingent. The second and third character-
istics make the information incomplete. In particular, agents have different information
sets, and therefore different beliefs, about the true state of the economy. As a result,
independently of the accuracy of the signal, incomplete information reduces the set of
equilibrium payoffs. First, we show that any policy that depends solely on the funda-
mental cannot be an equilibrium. Second, the best equilibrium policy is independent
of the fundamental. Finally, for any discount factor strictly smaller than one and for
any size of the noise, the best equilibrium is inefficient.
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1 Introduction

Since the seminal work of Kydland and Prescott (1977), a great deal of research has been

devoted to the study of time inconsistency problems. In short, an optimal policy under

commitment is time inconsistent if its continuation plan is not optimal. In another words,

governments or policy makers have the incentive to break their promises when re-optimizing

ex post, giving rise to inefficient outcomes. These types of problems have been studied in

a wide variety of policy settings but the most common ones are related to capital taxation,

optimal monetary policy and default decisions. In their original work, Kydland and Prescott

(1977) propose that the way to avoid these problems is to tie the hands of policy makers after

the fact by forcing them to use rules (set ex ante with commitment) rather than allowing

them discretion (set ex post, without commitment). The difficulty with this approach is that

it undermines the capability of the government to react optimally when there are changes in

the fundamentals.

Following up on this idea, Chari and Kehoe (1990) and (1993) showed that if the policy

maker is patient enough, the optimal policy under commitment is sustainable even when

the government is endowed with full discretion. Their argument relies on reputational con-

siderations borrowed from game theory. A key factor in the result is the assumption that

information is complete and perfect. As a consequence of this assumption, if after some

history the government is found to have deviated from the optimal policy, every agent would

observe it and all of them would, in the best equilibrium, coordinate to punish the govern-

ment. Notice that to achieve this kind of equilibrium it is important not only that all agents

know that the government has deviated but also that all agents know that everyone knows,

that everyone knows and so on–the usual recursion due to common knowledge. Therefore,

coordination is not only possible but also perfect. Because of their simplicity and tractabil-

ity these kinds of models have become the dominant tool to analyze environments without

commitment in macroeconomics. Thus, although time inconsistency problems play an im-

portant role in public policy, reputational considerations can be used as a way of solving the

problem without the need of institutional reforms designed to mimic commitment.
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This paper analyzes time inconsistency problems in economies with incomplete informa-

tion. Specifically, we study an environment similar to Chari and Kehoe (1990) in which an

investment decision must be made by private agents before the government sets a capital in-

come tax. In that setting, if there is no commitment and a finite horizon, governments (even

benevolent ones) will set capital tax rates too high. They show however, that in an infinitely

repeated setting, trigger strategies can enforce the commitment outcome when agents are

sufficiently patient. We deviate from the Chari and Kehoe example in two important ways.

First, we assume that aggregate productivity in the economy (the fundamental) is stochastic.

This by itself does not change the Chari and Kehoe result - if agents are patient enough, the

full commitment outcome can be supported. Second, we assume that agents do not share

the same information. Specifically, we assume that the government sees the true aggregate

state, but that this is not observed by private agents. Rather, each agent privately receives

a different signal (payoff relevant) about the aggregate state of the economy. The signals

can be made arbitrarily close to the aggregate state.

Here, agents have different information sets, and therefore different beliefs, about the

fundamentals. In this environment the optimal policy under commitment depends solely

on the state of the fundamental. However, if the government deviates agents cannot be

certain if what happened is actually a deviation or is the optimal reaction to a change in the

fundamentals. In addition, agents do not know other agents’ beliefs. As a result, independent

of the accuracy of the signal, incomplete information reduces the set of equilibrium payoffs.

First, we show that strategy profiles for the government that depend solely on the fun-

damentals along the equilibrium path cannot be equilibrium profiles. In particular, there

is no strategy profile in the repeated game that delivers the best allocation under commit-

ment, regardless the punishment prescription off the equilibrium path. Second, we show that

when government’s private shock takes on two values and agents are patient enough the best

equilibrium can be achieved with strategy profiles that depend only on public histories. In

another words, the best equilibrium is a policy independent of the fundamentals. Finally,

for any discount factor strictly smaller than one the best equilibrium is inefficient.
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The first result is in line with the literature about repeated games with private imperfect

monitoring and a finite number of players (e.g. Mailath and Samuelson (2006)). However,

the reasoning behind the argument is slightly different. In games with private imperfect

monitoring problems arise when players do not know exactly in which state they are (on or

off the equilibrium path) and therefore they are not able to coordinate to punish each other

off the equilibrium path. In our environment, the government always knows with certainty

everything that has happened while the agents have different beliefs about past histories of

the fundamental. If the agents trusted the government when using a strategy that depends

only on its private information the government would defect and no agent would be able

detect the deviation. Thus, any equilibrium strategy has to depend on some object that is

fully observed by the agents. Since in our environment the only variable that is perfectly

observed by every player is the tax on investment (the action space for the government)

any equilibrium strategy has to depend on past taxes. Moreover, if the strategy for the

government depends only on the history of taxes then the results about environments with

perfect and complete information carry over entirely. The fact that the government’s strategy

depends on a history that is perfectly observed by every player allows the full coordination

of the agents to punish the government if it deviates. Although the size of the set of public

equilibria depends on the size of the discount factor, in the economy analyzed here this kind

of strategy generates payoffs that are uniformly bounded away from the best one (the best

payoff under commitment).

Would equilibrium strategies that depend on both public and private information increase

the payoff? The answer is no. Given that agents have no way to foresee the fundamental, the

game becomes one of repeated adverse selection. Thus, when an equilibrium strategy depends

on private information punishments happen with positive probability on the equilibrium

path. The punishment takes the form of a smaller continuation payoff after those actions

that are especially tempting. Nonetheless, the ”punishment cost” could be compensated

with a larger present payoff fitting the present action to the realization of the fundamental.

Unlike the usual environments in game theory, here the agent and the principal have the same
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payoff functions. Therefore, optimal punishments along the Pareto frontier arbitrarily close

to the optimal average welfare are not available. In the language of contract theory, every

punishment for the agent (the government) would hurt the principal as well (the agents

in this economy). Since the punishment cost is always at least as large as the gain from

discretion, the best equilibrium implies a policy that is independent of the fundamental.

Regarding the literature about this topic, to the best of our knowledge there are three

closely related papers: Sleet (2001), Athey, Atkeson, and Kehoe (2005) and Sleet and Yel-

tekin (2006). The first paper considers the problem of a monetary authority that receives

a private signal about the true state of the economy and both households and firms have

the same information set. They show that under some conditions the optimal policy with

commitment is an equilibrium, while in other cases the monetary authority chooses not to

use the private signal. The second paper, again in an optimal monetary policy context,

considers an environment where agents have the same information sets and only the policy

maker observes the (random) true state of the economy. They find that if the time inconsis-

tency problem is “severe” the optimal policy is independent of the true state of the economy;

otherwise some dependency is allowed. Sleet and Yeltekin (2006) also analyze an economy

with government debt in which private agents have the same information sets, but the gov-

ernment privately observes a taste shock related to the public good consumption. They find

that the interaction between informational frictions and the possibility of debt repudiation

yields more persistence in both taxes and debt (in the best sustainable allocation) when

compared to the benchmark economy (with full commitment and complete information).

This paper differs from the above in the following ways.First, agents have different infor-

mation sets. Second, in the above papers the information privately known by the government

does not directly affect either the payoff or the feasibility set of the agents. Consequently,

agents cannot extract from their information sets any useful information about the signals

received by the government. In this paper, agents can foresee in an arbitrarily precise way

the signal received by the government. Therefore, their results can be viewed as the limit

case of the economy studied here. Finally, all the papers mentioned before analyze Public
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Perfect Equilibria. That is, the strategy space of the government is constrained to include

only the last realization of its private information. This paper extends the result to the

unconstrained strategy space.

The paper proceeds as follows: Section 2 describes the environment. Section 3 defines

and characterizes the equilibria. In Sections 4 and 5 we characterize the best equilibrium

under commitment. Section 6 shows the inefficiency result. Section 7 describes an alternative

environment for which the results go through. The last section concludes.

2 The Economy

2.1 Uncertainty

We consider a repeated game with a benevolent government and a continuum of households

indexed by i ∈ I = [0, 1]. Time is discrete and indexed by t = 0, 1, 2, .... At the the beginning

of every period t, the outcome Rt ∈ Υ of a random variable R̂t is realized. The set Υ has

cardinality equal to N . Let R̄ ≡ maxR̂∈Υ{R}. The outcome Rt is observed only by the

government. Each R̂t is distributed i.i.d. over time with probability distribution P . The

process {R̂t}∞t=0 is independent of any choices made by the government or households.

In each period, conditional on the realization of R̂t, each individual privately observes a

draw yit ∈ [1, y] of a random variable Y from the probability density function f(y|Rt) and

distribution function F (y|Rt). The value y may be infinite. Conditional on the realization

of the aggregate state, the individual shocks are i.i.d. across agents. We assume a version of

the Law of Large Numbers with a continuum of random variables relying on the construction

of Sun (2006). We also shall impose the following.

Assumption 1. Stochastic processes.

1. For all R,R′ ∈ Υ, F (y|R) > F (y|R′) if R′ > R. (First order stochastically dominance)

2. f(y|R) > 0 for all R ∈ Υ and almost all y ∈ [1, y]. (Full support)
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3. For all R ∈ Υ,
∫ y

1
yf(y|R)dy = R

The first condition assures that given individual actions, aggregate output and aggregate

investment are strictly increasing in the realizations of the aggregate state. The second

condition is a technical assumption, standard in the literature, that prevents dealing with

zero probability events. The full support assumption makes sure that everything can happen

in every period, independently of the realization of R̂. Finally, the third assumption is just

for simplicity and to save on notation.

2.2 Stage Game: Actions and Payoffs

There are three goods in the economy in each point in time: two private goods, consump-

tion and investment, and a public good. In each period every agent receives a physical

endowment of ω > 0 units of the private good. After observing the individual shock

yi, each household chooses investment xit(y
i) ∈ [0, ω]. Returns on investment in period t

are agent-specific, and given by the draw yit. Given individual investment decisions, the

realized aggregate output, Y (Rt) =
∫ 1

0

∫ y
1
yitx

i
t(y

i
t)f(yit|Rt)dy

i
tdi and aggregate investment

X(Rt) =
∫ 1

0

∫ y
1
xit(y

i
t)f(yit|Rt)dy

i
tdi are only observed by the government. Next, the gov-

ernment chooses a tax on investment τ t ∈ [0, 1]. Agents are risk neutral in the private

good. If household i invests xit and the government sets taxes equal to τ , then its individual

consumption is given by ci = (1− τ)yixi + (ω − xi).

There is a technology that automatically transforms aggregate output into a public good

g. If the aggregate state is Rt and the government sets tax on investment τ t then the amount

of public good provided, as a function of the aggregate state, is given by:

gt(Rt) = τ tYt(Rt) (1)

We assume that agents do not observe the provided amount of the public good. This

is a strong assumption that greatly simplifies the analysis and the exposition of the main
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results. As we explain in Section 7 there is an alternative environment where at the end of

each period agents do observe gt but with a noise that is uncorrelated with yi. The following

results are still true when this noise approaches zero. We interpret this assumption as a

situation in which even when agents can observe the final action of the government, they

disagree in the amount of resources needed to achieve that result.

Preferences are separable between the private and the public good. If household i gets a

draw yi, invest xi, the tax on investment is τ and aggregate output is Y, its payoff is given

by:

u(yi, τ , Y, xi) = [(1− τ)yixi + (ω − xi) + v(τY )] (2)

where v : R+ 7→ R is twice continuously differentiable and strictly concave function.

Given the realization of Rt, the profile of individual investment functions and tax τ t,

government’s payoff is given by:

W (Rt, τ t;x
i
i∈I) =

∫ 1

0

∫ y

1

u(yit, τ t, Yt, x
i
t)f(yit|Rt)dy

i
tdi

We abuse notation writing the above function as in (3) below. We can do this because

given any profile of individual investment functions the payoff for the government depends

only on the aggregate values for investment and output. In addition, as we show later since

agents are ex-ante identical, the decision function for all agents are equal.

W (Rt, τ t, Xt, Yt) =

∫ y

1

u(yit, τ t, Yt, x
i
t)f(yit|Rt)dy

i
t (3)

The following sequence of events summarizes the information structure of the stage game:

1. R is realized;

2. yi is drawn for each i;

3. Each individual chooses xi;
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4. Government privately observes Rt and sets τ ;

5. The public good is produced according to (1);

6. Consumption is realized.

In order to simplify the future analysis, we shall assume that the marginal value of pro-

vision of the public good is higher than the marginal value of individual consumption in any

possible state.

Assumption 2 (Optimality of full taxation). v′(R̄) > 1.

To understand this condition, take any period t after which all the agents have chosen xit,

and therefore both Rt and yit have been realized. Let Xt be the aggregate investment at time

t. Then, using the government budget constraint, the one period utility for the government

is given by:

W (Rt, τ t, Xt, Yt) = (1− β)[(1− τ t)Yt + (ω −Xt) + v(τ tYt)]

If the government increases taxes slightly, say by dτ t, the benefit of increasing the public

good is given by Yt(Rt)v
′(τ tYt(Rt))dτ t, while the loss in private consumption is given by

Yt(Rt)dτ t. Combining these two effects, the government has incentives to increase the current

tax as long as Yt(Rt)[v
′(τ tYt(Rt)) − 1] > 0, which is guaranteed by Assumption 2. This

assumption implies that in every state the optimal deviation for the government is to set the

tax in 100%.

3 Perfect Bayesian Equilibrium

In the repeated game, a public history is a collection of variables that have been observed

by all the players. At the beginning of period t, a public history is hP,t ≡ {τ 0, ..., τ t−1}. Let
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the set of all public histories hP,t at time t be given by HP,t. In contrast, a history for the

government at time t consists only of the observed outcomes by the government. In terms

of outcome paths, because households are competitive there is no loss of generality if we

define private histories for the government which do not include the aggregates 1. In this

way, let hg,t ≡ {hg0, ..., h
g
t} ∈ Hg,t with hgs = {τ s−1, Rs−1} if t > 1 and Hg,0 = Ø. A history

for individual i is given by hi,t ≡ {hi0, ..., hit} ∈ H i,t with his = {τ s−1, y
i
s−1} if s > 1 and

H i,0 = Ø.

The information sets for an individual player i at t correspond to all histories of the game

ht ≡ {h0, ..., ht} ∈ H t with hs = {τ s−1, Rs−1,
{
yis−1

}
i∈I} that are consistent with her own

history at time t.

We restrict the analysis to pure strategies for the government. A pure strategy for the

government is a sequence {σG,t}∞t=0 with σG,t = Hg,t × Υ → [0, 1]. A strategy for an agent

i ∈ I is given by {σi,t}∞t=0 with σi,t : H i,t × [1, ȳ]→ [0, ω]. Both σG,t and σi,t are assumed to

be measurable functions.

In order to consider any kind of perfection, given the informational restrictions, individual

agents have to form beliefs over their information sets. We have opted to analyze Perfect

Bayesian equilibria. Let µ(·|h̃i,t, yi) be the probability distribution over histories ĥg,t ∈ Hg,t

consistent with individual history h̃i,t. Let ΣG be the set of possible strategy profiles for the

government and Σ be the set of possible strategy profiles σ = (σG, {σi}i∈I). A strategy profile

σ ∈ Σ induces, after any history ht ∈ H t, a continuation profile (σG|hg,t , {σi|hi,t}i∈I) ∈ Σ.

Given the risk neutrality assumption and the fact that agents are both anonymous and

atomistic, optimality for the individuals can be reduced to a simple rule. Given σG ∈

ΣG, let EσG
(τ |hi,t, yi) be the conditional expectation that a household with history hi,t and

idiosyncratic return yi has about the random variable σG,t . This function, for each individual

i, is measurable with respect to the sigma-algebra generated by his individual histories. A

household with history hi,t and idiosyncratic return yi will invest a positive amount only if

the expected marginal return on investment is positive:

1For a detailed explanation of this reasoning, see Chari and Kehoe (1990)
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x∗(hi,t, yi) =


ω if yiEσg(1− τ |hi,t, yi)− 1 > 0

[0, ω] if yiEσg(1− τ |hi,t, yi)− 1 = 0

0 otherwise

(4)

Given a profile σ ∈ Σ and a sequence of belief profiles µ ≡ {(µ(·|hi,t, yi))i∈I}
∞
t=0, expected

payoffs for the players are naturally defined from the stochastic outcomes that the strategies

induce. The payoff for the government at time zero in the repeated game is given by:

V (σ) = (1− β)E

[
∞∑
t=0

βtW (Rt, Xt, τ t, Yt)

]

Notice that, since the government observes all the aggregates in the game, it does not

need to form beliefs about individuals’ actions. It only needs to take into consideration that

its own actions affect individuals’ beliefs.

Definition 1. A pair (σ, µ) consisting of strategy profiles and belief profiles is a Perfect

Bayesian Equilibrium if:

(i) Given {µi}i∈I , σi,t(hi,t, yi) = x∗(hi,t, y) ∀i ∈ I, hi,t ∈ H i,t,∀yi ∈ [1, ȳ];

(ii) V (σG|hg,t , {σi}i∈I) ≥ V (σ̃, {σi}i) ∀σ̃ ∈ ΣG, h
g,t ∈ Hg,t, ∀R ;

(iii) Beliefs are given by Bayes’ rule whenever possible.

Conditions (i) and (ii), respectively, require that, given beliefs, the government’s and

the individual’s continuation strategies be best responses to each other after any history.

Households’ deviations cannot be detected and therefore at each period they maximize,

given their beliefs, utility from private consumption. Regarding individuals’ decisions about

investment, we shall assume the following:
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Assumption 3 (Monotone Likelihood Ratio). For all RH , RL ∈ Υ and for all ŷ, y ∈

[1, ȳ] we have that f(ŷ|RL)
f(y|RL)

≤ f(ŷ|RH)
f(y|RH)

if ŷ ≥ y and RH > RL.

Assumption 4 (Analytical pdf). For each R ∈ Υ, f(.|R) : [1, ȳ]→ R is analytic.

A function defined on the real line is analytic if it is equal to its Taylor expansion. The

role of Assumption 4 is to guarantee that for any σ ∈ Σ, the set of individuals indifferent

between investing or not has Lesbegue measure zero. This assumption is not crucial for

the main result of this paper but simplifies the characterization of the individual decisions.

Without it, is not even clear that aggregate investment, and therefore government’s revenues,

are decreasing in individual taxes. Analytical functions are fairly common among continuous

and differentiable distributions.2

Lemma 1. Under Assumption 4, for any σ ∈ Σ and any ht ∈ H t, the set of individuals for

which yiEσg(1− τ |hi,t, yi)− 1 = 0 in (4) has Lesbegue measure zero.

Proof : In the appendix.

4 Ramsey Equilibrium

Before proceeding with the characterization of Perfect Bayesian equilibria, we first consider

the benchmark case in which the government has a commitment technology that it is used to

bind itself to a tax policy σG : Υ→ [0, 1] in each period. When such technology is available,

the static nature of the government’s problem allows us to restrict the analysis to an one-

period game. Following the literature, we call it the Ramsey game. The introduction of a

commitment technology can be formalized by changing the timing of the one shot Bayesian

game. The Ramsey game that we analyze evolves as follows:

2Fox example, Normal, Uniform, Exponential, Gamma, Beta and Pareto are analytic. Among the distri-
butions satisfying the monotone likelihood ratio are the Normal, Exponential, Uniform and Beta.
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0. The government sets a tax policy σG : ΥR → [0, 1];

1. R is realized;

2. yi is drawn for each i;

3. Each individual chooses xi;

4. Government observes both R and aggregate output Y and it sets τ according to σG(·);

5. Public good is produced according to equation (1);

6. Consumption of both goods is realized.

There are two differences with the stage game in Section 2. First, the government sets

a tax policy σG(·) before observing R. Second, only after aggregate output is realized

government learns about the realization of R and sets the investment tax according to σG(·).

This specific choice about the sequence of events implies the existence of a strategy profile

in the Bayesian game that attains, despite incentive questions, the outcome in the Ramsey

game. At the same time it prevents any discussion about communication issues.

Given a a tax policy σG, let EσG
(τ |yi) be the conditional expectation that a household

with draw yi has about the random variable σG .

Definition 2. The Ramsey equilibrium is a function σG : ΥR → [0, 1] and, for each i ∈ [0, 1],

a function σi : [1, y]→ [0, ω] such that:

a) σG maximizes
∫

Υ
W (R, τ , Y )dP (R) given σi|i∈I .

b) σ∗i (y) =


ω if y · EσG

(1− τ |y)− 1 > 0

[0, ω] if y · EσG
(1− τ |y)− 1 = 0

0 otherwise
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It turns out to be difficult to characterize in a precise way the Ramsey policy with a

general function v(.). All what we can say is that g(R) < g(R′) if R < R′, that is, the

government spending is higher in more productive states.3 Since aggregate output, Y (R), is

increasing in R as well, the magnitude of the taxes is unclear. The properties and relative size

of taxes would be very different depending on the shape of v(.), even when it is assumed that

this function is strictly concave and twice differentiable. For that reason in the next Lemma

we assume that v(.) is linear. That is, v(x) ≡ b · x. Of course, because of Assumption 2,

b > 1. When that is the case the characterization is intuitive and straightforward. Moreover,

it highlights the main complications related to the individual investment decisions. The next

lemma characterizes the equilibrium of the Ramsey game.

Lemma 2. Under Assumptions 2-4 if v(.) linear, then the Ramsey equilibrium is given by:

1. (1− σ∗G(R̄))σ∗G(R) = 0 for all R ∈ Υ, R 6= R̄

2. σ∗i (y
i) is given by item b) in the definition of the Ramsey equilibrium.

Proof : In the appendix.

Lemma 2 states that the solution to the Ramsey game with linear utility is in a corner.

By Assumption 2, taxes being either zero or one in all states cannot be a solution. Moreover,

the government taxes a positive amount in the highest aggregate state. This happens because

taxing in the highest state is always less costly than taxing in a lower state. For any given

average tax, it is always possible to increase the payoff by increasing the tax in the highest

state and reducing the tax in a lower state in such a way that the average tax remains

the same. The proof of the lemma exploits this idea. It is worth to comment the role of

Assumptions 3-4 in the lemma. If the function H(y; τ) = y · EσG
(1 − τ |y) − 1 had the

single crossing property4, then the characterization of the individual decisions would be very

3Here the difficulty is similar as in the Mirrleesian literature, where is not known in general whether or
not workers with higher productivity work more than low productivity workers.

4By single crossing we mean the following: there exists y∗ ≥ 1 such that σi(y) = ω if y ≥ y∗ and σi(y) = 0
otherwise.
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simple. This is not always the case for any possible tax function τ : Υ→ [0, 1]. In the proof

of Lemma 2 we exploit those assumptions in order to handle the more general case in which

there are multiple agents indifferent between investing or not.

For future reference, we define the Ramsey strategy profile (σ∗G, σ
∗
i ) ∈ Σ as the repetition

of the Ramsey equilibrium. Formally, for all hg,t ∈ Hg,t and R̂ ∈ Υ, let σ∗G,t(h
g,t, R̂) = σ∗G(R̂).

Regarding household’s strategies, for all hi,t ∈ H i,t and yi ∈ [1, y], let σi,t(h
i,t, yi) = σ∗i (y

i) in

Lemma 2. Beliefs are given by µ(R̂|ŷi) = f(ŷi|R̂)P (R̂)∑
R∈Υ f(ŷi|R)P (R)

.

5 Unattainability of the Ramsey Outcome

In this section we show that there is no strategy profile (σG, σi) ∈ Σ, together with some

belief system, that yields the outcome path of the Ramsey equilibrium. If the Ramsey

outcome were an equilibrium, it should be the case that on the equilibrium path the

government was playing actions that depend only on the current shock Rt. But then, the

government would have profitable deviations. For instance, every time that the government

is supposed to play the lowest tax prescribed by the equilibrium strategy it could choose the

highest tax consistent with equilibrium behavior. Because agents cannot be certain about

the real value of R this deviation would be undetectable. This result remains true regardless

the punishment prescription off the equilibrium path. In order to state proposition 1, given

a pair of strategies σ = (σg, (σi)i∈I) ∈ Σ and a belief profile µ, the outcome path is denoted

by a sequence of stochastic functions Z = {(xit(σ), cit(σ))i∈I , gt(σ), τ t(σ)}∞t=0. As usual, the

outcome path is defined as the induced outcome starting from the initial history Hg,0.

In what follows, let Z∗ = {{xit(σ∗), cit(σ∗)}i∈I , gt(σ∗), τ t(σ∗)} denote the outcome path of

the Ramsey allocation, where σ∗ was defined at the end of the last section.

Proposition 1. Under assumptions 2 and 4 there is no belief system µ and σ ∈ Σ that

generates Z∗ on the equilibrium path.
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Proof: Suppose not, that is, there is a pair of strategy profiles σ̂ ∈ Σ and a belief system µ

such that Z∗ is an equilibrium outcome.

Let S =

{
τ ∈ [0, 1] : τ = σ∗(Rt), Rt ∈ Υ

}
and define:

H∗,i = {hi,t ∈ H i : τ s ∈ S,∀s ≤ t− 1}

Notice that H∗,i is the set of possible histories on the equilibrium path for household

i. In addition, because of the full support assumption, all individual histories in H∗,i have

non-zero measure.

Given σ̂ ∈ Σ, let µ(·|hi,t, yit) be the induced probability distribution over Hg,t × Υ given

the history (hi,t, yit). In the appendix we show that, for all hi,t ∈ H∗,i, the belief system

should follow the following updating:

µ(hg,t, Rt|h̃i,t, yit) = P (Rt|yit)
µ(hg,t−1|h̃i,t−1)∑

ĥg,t−1 µ(ĥg,t−1|h̃i,t−1)

By recursive calculations the above expression can be reduced to

µ(hg,t, Rt|h̃i,t, yit) = f(yit|Rt)
t−1∏
s=0

f(yis|Rs)∑
R̂s
f(yis|R̂s)

(5)

That is, belief are unaffected by government actions. In addition, µ(σ̂(hg,t, Rt)|hi,t, yit) =

µ(σ̂(hg,t, Rt)|h̃i,t, yit) for all hi,t, h̃i,t ∈ H∗,i and all yit ∈ [1, y]. Therefore, equation (4) implies

that x̂i(hi,t, yit) = xi(h̃i,t, yit) for all hi,t, h̃i,t ∈ H∗,i and all yit ∈ [1, y]. Take some period t and

R′ ∈ Υ such that σ̂(hg,t, R′) < maxτ∈S τ . Then consider the following one shot deviation by

part of the government:

σ̃G(hg,s, R) =

 τD ≡ maxτ∈S τ if s = t and R=R’

σ̂(hg,s, R) otherwise

Following history (hg,t, R′), the equilibrium strategy generates a government’s payoff of:

(1−β)W (Rt, σ̂(hg,t, R′), X(hg,t), Y (hg,t))+βV (σ̂|{hg,t,R′,σ̂(hg,t,R′)}, (σ̂i|{hi,t,yi
t,σ̂(hg,t,R′)})i∈I) (6)
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where X(hg,t) and Y (hg,t) are the aggregates following the outcome path after history hg,t.5

The one shot deviation strategy generates a payoff of:

(1− β)W (Rt, τ
D, X(hg,t), Y (hg,t)) + βV (σ̂|{hg,t,R′,τD}, (σ̂i|{hi,t,yi

t,τ
D})i∈I) (7)

Since τD ∈ S it follows that {hi,t, τD, yit} ∈ H∗,i and therefore σ̂i|{hi,t,σ̂(hg,t,R′),yi
t} =

σ̂i|{hi,t,τD,yi
t} for all i ∈ I. In addition, σ̂|{hg,t,R′,σ̂(hg,t,R′)} = σ̃|{hg,t,R′,τD} by construction. Thus,

the continuation payoffs are equal in both (6) and (7). By assumption 2, σ̂(hg,t, R′) < τD

implies that W (Rt, τ
D, X(hg,t), Y (hg,t)) > W (Rt, σ̂(hg,t, R′), X(hg,t), Y (hg,t)). Hence the de-

viation is profitable, a contradiction

Assumption 4 plays a role in proposition 1 only to the extent that it guarantees that a

measure zero of agents is indifferent between investing or not. A crucial feature that pre-

vents any strategy achieving the Ramsey outcome is the fact that, otherwise, the individual

strategies do not depend on history on the equilibrium path. The government then takes

advantage of this situation, defecting whenever possible.

Although the Ramsey payoff cannot be attained, one may wonder if it can be approached

arbitrarily close for high enough discounting. The answer to this question is negative under

some circumstances, and we will elaborate it in the next section. Notice that if indeed there

is a strategy profile than can approach the (repeated) payoff of the Ramsey equilibrium,

such profile requires some coordination among agents. In another words, a positive measure

of agents should have strategies depending on public histories. If only a measure zero of

agents could coordinate any punishment that they could used would have no effect on the

government’s payoff.

Proposition 1 can actually be made stronger. As its proof makes clear, there is nothing

special to the Ramsey outcome other than on the equilibrium path taxes are independent

of history 6 and stochastic.

5Since individual decisions are measurable with respect to their information sets, the aggregates cannot
depend on the actual realization of Rt after history hg,t.

6Or in another words, the outcome is just the repetition of the static Ramsey equilibrium.

17



In order to formalize the above statement, consider the following class of strategies;

Definition 3. Let Rt = (R0,...,Rt) ∈ Υt be a history of the aggregate state. A strategy profile

σG ∈ ΣG is purely private if for all t, hg,t, ĥg,t ∈ Hg,t σG,t(h
g,t, Rt) = σG,t(ĥ

g,t, R̂t) if

Rt = R̂t.

Definition 4. A strategy profile σG ∈ ΣG is non-trivially purely private if

1. It is purely private;

2. There exist t and Rt, R̂t ∈ Υt such that Rt 6= R̂t with σG,t(h
g,t, Rt) 6= σG,t(ĥ

g,t, R̂t).

As in Proposition 1 we can define the outcome path of a purely private strategy profile

for the government in the usual way. Then, we have the following proposition;

Proposition 2. Under Assumptions 2-4, there is no belief system µ such that the outcome

of non-trivially purely private strategy profile for the government is a Perfect Bayesian

Equilibrium.

Proof : In the appendix.

The main steps of the proof are similar to those in Proposition 1. If on the equilibrium

path the government were following a purely private strategy, there would be more than

one tax consistent with equilibrium behavior in at least one period. Then, when is time

to choose the low tax, the government could deviate choosing the highest tax prescribe

by the strategy. By the same arguments as in Proposition 1 these kinds of deviations are

not detectable. The main implication of Proposition 2 is that the problem becomes one of

repeated hidden information as if the households had not information whatsoever about the

true state of the economy. This fact allow us to use the usual tools for repeated agency

problems where the households are the principal and the government is the agent.
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6 Best Equilibrium and Inefficiency Result

Proposition 2 implies that in any equilibrium in which the government uses pure strategies, its

strategy profile has to condition actions on public information somehow. If the government

condition its actions only on public histories (of previous taxes), a wide range of payoffs

can be sustained. In this case the private agents can fully coordinate to punish deviations

made by the government, switching to the worst equilibrium. In the worst equilibrium,

the government indeed uses a strategy profile that only depends on public information.

Regardless the history, the government always taxes investment fully. Anticipating this

behavior, agents do not save. As a consequence, government’s action after any history is

also a best response to individual agents’ strategies.

Proposition 3 (Worst Equilibrium). The pair of strategies σworst
G,t (hg,t, Rt) = 1 for all hg,t

∈ Hg,t and all Rt ∈ Υ together with σworst
i,t (hi,t, yit) = 0 for all hi,t ∈ H i,t, all yit ∈ [1, y]

and all i ∈ I is a Perfect Bayesian Equilibrium. It yields the lowest payoff amongst Perfect

Bayesian equilibria.

Proof : In the appendix.

Denote by V worst the payoff generated by σworst.

Given the results in Propositions 1 and 2, in this section we analyze a class of government

strategies that depends on both public and private histories. We restrict attention to govern-

ment strategies that condition behavior on public histories and the most recent realization of

the private shock, but not on the entire history of private shocks.7 However, in appendix 9.7

we show that this result is indeed true when strategies are allowed to depend on the whole

history of private information. Since the proof and the arguments used are similar we chose

to leave the general case for the appendix.

Let Σ̊ be the set of strategy profiles that conform with the restriction explained above.

A strategy σ ∈ Σ̊ induces a stochastic outcome path. Given σ ∈ Σ̊, let τ t−1(Rt−1) be the

7In doing so we follow the same approach of both Sleet and Yeltekin (2006) and Athey, Atkeson, and
Kehoe (2005).
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t-period public history induced by σG and the sequence of shocks Rt−1.

Definition 5. A sequence of functions A ≡ {τ t, Xt, Yt}∞t=0 is the stochastic aggregate out-

come induced by a strategy profile σ ∈ Σ̊ if:

(i) τ 0(R0) = σG,0(R0), and τ t(R
t) = σG,t(τ

t−1(Rt−1), Rt);

(ii) Xt(R
t) =

∫ y
1
xit(R

t, yit)f(yit|Rt)dy
i
t and Yt(R

t) =
∫ y

1
yitx

i
t(R

t, yit)f(yit|Rt)dy
i
t, where xit(R

t, yit)

is given by:

xit(R
t, yit) =


ω if yitE(1− τ t(Rt)|yit)− 1 > 0

[0, ω] if yitE(1− τ t(Rt)|yit)− 1 = 0

0 otherwise

(8)

Notice that in Definition 5 the tax functions are potentially non-stochastic. Moreover,

there is no restriction that constrains the tax functions to be time-stationary.

Proposition 4 gives a full characterization of aggregate allocations induced by profiles

σ ∈ Σ̊. In order to state the proposition, given an stochastic aggregate outcome A of

a profile σ ∈ Σ̊, let V (A) ≡ V (σ) denote the time zero expected payoff for the govern-

ment. Similarly, denote by V (A|τ t(Rt)) the continuation payoff from A after the pub-

lic history τ t(Rt). We also define, for a function τ t ⊆ A, the set τ t(τ
t−1(Rt−1),Υ) ≡

{τ̂ |τ̂ = τ t(τ
t−1(Rt−1), R) for some R ∈ Υ} consisting of all values for taxes that can be as-

signed in period t through the mapping τ t(·). Finally, let W d(Rt, X(Rt), Y (Rt)) the best

deviation that the government can achieve after both the shock Rt and investment decisions

X(Rt) (together with aggregate output Y (Rt)) is realized. By Assumption 2, such deviation

sets taxes to be equal 100%. Then we have the following:

Proposition 4. A ≡ {τ t, Xt, Yt}∞t=0 is the stochastic aggregate outcome of a Perfect Bayesian

Equilibrium σ ∈ Σ̊ if and only if the following conditions are satisfied:

(1) ∀t, Xt(R
t) =

∫ y
1
xit(R

t, yit)f(yit|Rt)dy
i
t and Yt(R

t) =
∫ y

1
yitx

i
t(R

t, yit)f(yit|Rt)dy
i
t, where

xit(R
t, yit) is given by (8);
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(2) ∀t, τ t(Rt), V (A|τ t(Rt)) ≥ (1− β)W d(Rt, X(Rt), Y (Rt)) + βV worst;

(3) ∀t, τ t−1(Rt−1), Rt, τ̂ ∈ τ t(τ t−1(Rt−1),Υ) :

(1− β)W (Rt, τ t(τ t−1(Rt−1), Rt), X(Rt), Y (Rt)) + βV (A|τ t−1(Rt−1), τ t(τ t−1(Rt−1), Rt)) ≥

(1− β)W (Rt, τ̂ , X(Rt), Y (Rt)) + βV (A|τ t−1(Rt−1), τ̂)

Proof : In the appendix.

Condition (2) in the previous proposition comes from the standard reversion to the worst

equilibrium in the case that the government deviates from a prescribed action along the path

of play. Condition (3) is an incentive compatibility constraint that prevents the government

to make profitable deviations along the path by misrepresenting its private information.

Let Λ be the set of aggregate allocations A that satisfies the conditions in proposition

4. For a given value of the discount factor β, let Ψβ be the set of equilibrium payoffs of the

repeated game that can be supported by some aggregate allocation A:

Ψβ = {v∗ : ∃A ∈ Λ and v∗ = V (A)}

The next lemma is a standard recursive result implied by the restriction of equilibria

within the set Σ̊.

Lemma 3. A payoff v∗ is supported by the aggregate outcome A if and only if there exists

functions {τ ,X, Y, v′} with τ : Υ → R+, X : Υ → R+, Y : Υ → R+ and v′ : Υ → R+ such

that:

1. v =
∑

R∈Υ P (R)[(1− β)W (R,X(R), τ(R), Y (R)) + βv′(R)]

2. ∀R ∈ Υ, (1− β)W (R,X(R), τ(R), Y (R)) + βv′(R) ≥ (1− β)W d(R,X(R), Y (R)) + βV worst

3. ∀R, R̂ ∈ Υ, (1− β)W (R,X(R), τ(R), Y (R)) + βv′(R) ≥

(1− β)W (R,X(R), τ(R̂), Y (R)) + βv′(R̂)
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4. ∀R ∈ Υ, v′(R) ∈ Ψβ

5. X(R) =
∫ y

1 x
i(yi)f(yi|R)dyi and Y (R) =

∫ y
1 y

ixi(yi)f(yi|R)dyi, where xi(yi) is given by:

xi(yi) =


ω if yiE(1− τ(R)|yi)− 1 > 0

[0, ω] if yiE(1− τ(R)|yi)− 1 = 0

0 otherwise

For a given list of functions {τ ,X, Y, v′} satisfying the conditions in lemma 3, letOP(τ , R)

be the aggregate allocations (X(R), Y (R)) generated by the optimal individual decisions

according to condition (5) above. In order to save notation, we define W (τ(R), Z(τ , R)) ≡

W (R,X(R), τ(R), Y (R)).

Next we restrict attention to the case in which the government’s private shock can take

only two possible values. From now on, τ and V will be vectors with each entry being a tax

(or continuation value) contingent on R. Given both proposition 4 and lemma 3, the best

equilibrium solves the following problem:

T = max
{τ ,V }

∑
s=L,H

P (Rs)[(1− β)W (τ(Rs), Z(τ , Rs)) + βV (τ(Rs))] (PR)

subject to:

for all s = L,H,

(IC-On) (1− β)W (τ(Rs), Z(τ , Rs)) + βV (τ(Rs)) ≥ (1− β)W (τ(R−s), Z(τ , Rs)) + βV (τ(R−s))

(IC-Off) (1− β)W (τ(Rs), Z(τ , Rs)) + βV (τ(Rs)) ≥ (1− β)W (1, Z(τ , Rs)) + βV worst

(E) V (τ(Rs)) ∈ Ψβ

(OP) Z(τ , Rs) ∈ OP(τ , Rs)

The constraint (IC-On) is the incentive compatibility constraint on the equilibrium path.

That is, if the equilibrium strategy implies that on the equilibrium path two different taxes
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are used, and since R is virtually not observable, it has to be on the government’s best

interest to do it so. Constraint (IC-Off), or sustainability constraint, makes sure that the

governments does not want to use a tax that is not contemplated on the equilibrium path.

This is only possible if the payoff for any equilibrium tax is larger than the best deviation

(τ = 1 for any level of investment) plus the worst possible continuation value. The third

constraint requires that every continuation value can be implemented as an equilibrium for

some strategy pair and belief system. Finally, the last constraint imposes the optimality of

households’ decision rules.

Next we show that the above problem can be reduced to a more simple static maximiza-

tion problem. Let V̄ ≡ sup{Ψβ} and consider the following static problem,

T̂ = max
{τ ,V }

∑
s=L,H

PRs [(1− β)W (τ(Rs), Z(τ , Rs)) + βV (τ(Rs))] (PS)

subject to;

(IC-ON-S) (1− β)W (τ(Rs), Z(τ , Rs)) + βVs ≥ (1− β)W (τ(R−s), Z(τ , Rs)) + βV−s; ∀s = L,H,

(OP-S) Z(τ , Rs) ∈ OP(τ , Rs) for all τ ∈ [0, 1]2 and all s = L,H

(E-S) Vs ∈ [V worst, V̄ ] for all s = L,H

The next result states a key relation between problems PS and PR. In what follows, let

T̂ (τ ∗, V ∗) be the value of the problem PS when its solution is given by (τ ∗, V ∗). T (·, ·) is

defined in a similar fashion.

Proposition 5. Let (τ ∗, V ∗) be a solution to problem PS and (τ ∗∗, V ∗∗) be the solution to

PR. Then, there exists β∗ ∈ (0, 1) such that for all β ≥ β∗,

i) T̂ (τ ∗, V ∗) ≥ T (τ , V ) for all τ and V .

ii) If V ∗ ∈ Ψβ then T̂ (τ ∗, V ∗) = T (τ ∗∗, V ∗∗).
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Proof : First notice there are two differences between PS and PR. First, the constraint (IC-

Off), present in PR, is not included in PS. Second, the constraint (E) in PR requires that

the chosen continuation values belong to the equilibrium value set, while PS only requires

that the continuation values Vi belong to a convex and compact set. Notice that if β is large

enough the constraint (IC-Off) would not be binding and we can disregard it. Thus, from

this point of view, both problems are equivalent. But, by construction Ψβ ⊆ [V worst, V̄ ],

therefore since the objective function is the same in both problems, and the feasible set

in PR is smaller than in PS, part i) of the proposition follows. In addition, part ii) is

immediate. If the solution to PS is feasible in PR then it must be the case that this value is

the maximum

We say that an strategy profile σ ∈ Σ is public if for all t, τ t−1 ∈ [0, 1], hg,t ∈ Hg,t

and R, R̂ ∈ Υ we have that σG,t(h
g,t−1, τ t−1,R) = σG,t(h

g,t−1, τ t−1,R̂). The main result of this

section shows that, when agents discount the future high enough, the best Perfect Bayesian

Equilibrium (within the class of strategies that we consider) is achieved through the use of

public strategies by the government. As a byproduct, the best equilibria is inefficient.

Proposition 6. If β ≥ β∗ then, the solution to PS implies τL = τH = τB and VL = VH = V̄ .

Moreover,

1) τB = argmax{τ ,Z(τ ,Rs)∈OP(τ ,Rs)}

{
ER
[
W (τ , Z(τ , Rs))

]}
2) V̄ = ERs

[
W (τB, Z(τB, Rs))

]
3) V̄ ∈ Ψβ.

Proof : The lagrangian for this problem is

L =
∑
s=L,H

Ps[W (τ s, Z(τ ,Rs)) + βVs] +
∑
s=L,H

λs[W (τ s, Z(τ ,Rs)) + β(Vs − V−s)−W (τ−s, Z(τ ,Rs))]

+
∑
s=L,H

γsβ[V̄ − Vs]
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First notice that we are not considering the constraint that Vs ≥ V worst. This is guaran-

teed for a β large enough. Second, we do not need to consider the case in which both γs > 0.

Because W (.) is strictly increasing in τ , given interior aggregate allocations, the (IC-ON-S)

would imply τL = τH . In the same way, if λs > 0 in both states, then both (IC-ON-S) would

be binding, and therefore τL = τH . Thus, we only need to consider cases in which only one

λs and only one γs can be strictly positive.

The first order conditions with respect to Vs are,

PL + λL − λH − γL = 0

PH + λH − λL − γH = 0

If γL = γH = 0 the equations above imply PL = −PH which is not possible. That is, in

a best equilibrium, in at least one state, the continuation value has to be a best equilibrium.

Thus, we need to consider two cases.

Case 1: Suppose γH > 0 (hence VH = V̄ and VL ≤ V̄ ), then the above equations imply

λH = PL + λL or λH > λL, since at least one multiplier has to be zero, it follows that

λH > 0. One can see by using (IC-ON-S) that in this case τL ≥ τH (the best equilibrium

requires smaller continuation values for larger taxes).

Case 2: γL > 0 (VL = V̄ , VH ≤ V̄ ) and λL > 0. Using a similar argument it follows that

τL ≤ τH in this case.

Consider case 1. Replacing the binding constraints in the objective function the problem

becomes:

T̂ = max
{τL,τH ,VL}

PLW (τL, Z(τ , RL)) + PHW (τL, Z(τ , RH)) + βVL
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subject to;

W (τH , Z(τ , RH)) + βV̄ ≥ W (τL, Z(τ , RH)) + βVL

Z(τ , Rs) ∈ OP(τ , Rs) for all s

VL ∈ [V worst, V̄ ]

But then again, either VL = V̄ or the (IC-ON-S) is binding, in both cases the solution

implies τL = τH . A similar argument can be used to show that the second candidate solution

implies the same result. Therefore, in any case Vs = V̄ . Then, maximizing the return

function (imposing the additional constraint that taxes are equal) gives the first part of the

proposition. The second part of the proposition follows from the fact that the maximum

value is the summation of the period by period payoff, then if β is large enough this would

be an equilibrium.

Proposition 6 shows that any best equilibrium, within the constrained class of strategies

that we analyze here, can be implemented with public strategies when agents discount the

future high enough. Denote the best public equilibrium σBP ∈ Σ. Taxes then are a deter-

ministic function of its own past history. Agents are able to predict perfectly the tax that

they would have to pay after investing:

σBPi,t (hi,t, yi) =


ω if y(1− τ t(τ t−1))− 1 > 0

[0, ω] if y(1− τ t(τ t−1))− 1 = 0

0 otherwise

The best equilibrium payoff under pure-public strategies for government is given by:

V BP = V (σBP ) = max
τ t(τ t−1)

∞∑
t=0

βtE[W (τ t, Rt|
{
σBPi,t

}
i∈I)]

The best payoff under commitment, or the payoff of the Ramsey equilibrium, is given by:
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V (σ∗) =
∞∑
t=0

βtE[W (σ∗(Rt), Rt|
{
σ∗i,t
}
i∈I)]

Proposition 7. There exists β̂ < 1 such that for all β ∈ [β̂, 1),V BP < V (σ∗).

Proof : In the appendix.

The proposition follows because the Ramsey equilibrium exhibits taxes that are state

dependent. Furthermore, the difference between the best one-period payoff under public

equilibria and the Ramsey does not depend on the size of the discount factor.

7 About the Observability of Government Spending

The fact that the government spending is not observable by the agents can be rationalized

in the following way. Suppose that the end of each period every agent observes a different

realization of the government spending gi with gi ∼ ξ(gi|g). Assume further that gi ∈ [0, Ḡ]

and ξ(gi|g) > 0 for all g and all gi ∈ [0, Ḡ]. In order to keep the structure simple we maintain

the assumption that individuals cannot observe either the aggregate output or the aggregate

investment. However, to deal with this assumption we can assume, as we are doing now,

that individuals observe both of them with a noise in the same way as follows.

The new timing would be,

1. R is realized;

2. yi is drawn for each i;

3. Each individual chooses xi;

4. Government observes R and sets τ ;

5. g is produced by the government;
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6. gi is observed by each agent i and consumption takes place.

Until now we have assumed that agents do not observe the government spending. As

explained in Section 2 this assumption was made to avoid the full (and common) observability

of R. That is, since agents perfectly observe the tax rate and since on the equilibrium path

there is a one to one correspondence between R and Y , the perfect and common observability

of g would reintroduced common knowledge in the game. This creates an inconsistency

because agents value something that they cannot observe. In the alternative environment we

allowed individuals to observe the public spending but in a noisy way. Of course, now agents

can extract additional information about R at the end of each period but the signal extraction

is not common among agents. That is, for a given tax rate the distribution of individually

observed public spending would change with R. In our environment this assumption could

be interpreted as different individual perceptions about the cost of providing the public

good. In monetary policy environments like Athey et. al. (2005) or Canzoneri (1985) the

assumption could be interpreted as the fact that agents ”suffer” in different ways different

levels of inflation.

The definition of a Ramsey equilibrium in this new environment is equivalent to that

in Section 4, but now the welfare function has to be modified to consider the fact that the

aggregate utility of the government spending is different than the utility of the aggregate

spending. Let σg be a parameter of the density function ξ(gi|g) with the property that∫ g+ε
g−ε ξ(g

i|g)dgi → 1 as σg → 0 for all ε > 0. It is easy to see that this new Ramsey policy

and the new Ramsey payoff would converge to those in Section 4 as σg goes to zero. In

addition, the individual beliefs will still follow a law of motion as (11) with P (Rt−1|yit−1)

replaced by P (Rt−1|yit−1, g
i
t−1) 8. Therefore, Propositions 1 and 2 remain unchanged. As

before, for the equilibrium strategy to improve upon the payoff it must be a function of at

least one publicly observed object. As long as R is i.i.d. over time and gi is uncorrelated

with ri, past realizations of gi carry no information about the future behavior of R. Thus,

8However, some measurability issues could arise due to the fact that belief depend on the government’s
strategy, see Bergin and Bernhardt (1992)-(1995).

28



conditioning on the past realizations of gi do not increase the equilibrium payoff set. That

is, it is possible to show that Proposition 6 holds for every σg. However, if R were not i.i.d.

over time or gi were correlated with ri it could be the case that the optimal policy without

commitment is not invariant over time.

8 Conclusion

In this paper we show how small changes in the informational assumptions can have drastic

consequences for both the set of equilibrium strategies and the set of equilibrium payoffs

in a macro game without commitment. First we show that every equilibrium strategy has

to depend on some information that is publicly known for every agent in the economy,

otherwise no coordination is possible. In addition, when we analyze equilibria that depend

on both public and private histories we found that in the best equilibrium the government

does not use its private information. As a result, for any discount factor strictly smaller

than one, the payoff of the best equilibrium without commitment is always strictly smaller

than the payoff with commitment. Moreover, this distance does not approach zero as the

discount factor approaches one. In this sense, the welfare in a economy without commitment

is uniformly bounded away from the efficient one.

The results of this paper support the arguments for strong institutions that tie the hands

of policy makers. To endowed governments with full discretion and to impose the right

incentives to avoid deviations from optimal policies could be impossible or too costly. In this

sense, the original recommendation of Kydland and Prescott (1977) is still valid.

The implication of this paper apparently contradicts the fact that most policies react to

the state of the economy. However, according to the interpretation of Section 7 this will not

constitute a contradiction. It could be optimal for the government to react to past (and

publicly known) states of the economy as long as it provides information about future states.

What the policy maker looses is the possibility of fine tuning using not perfectly precise

signals. On the other hand, it is fairly common to find examples of policy makers that have

29



been institutionally banned from the use of discretion, e.g, the implementation of a currency

board system. This usually happens when the policy maker has a “bad reputation”, like

Argentina in the 90’s. We think that future research on time inconsistency problems should

include the possibility for the policy maker of building reputation. This line of research, if

successful, will provide a more precise answer to this kind of problems.
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9 Appendix

9.1 Proof of Lemma 1

The proof basically works out in two steps. First, we show that we can write beliefs recur-

sively. Second, we use a property about the zeros of analytical functions.

9.1.1 Step 1: Beliefs Updating

Given a pure strategy profile σG ∈ ΣG and hg,t = (R0, τ 0, ..., Rt−1, τ t−1), let µ(·) be the

induced probability distribution over histories for the government. Also let µ(|hi,t, yit) be the

respective conditional probability given history hi,t, that is, the probability measure used by

agent i in (4) to calculate the expected marginal return of investment. With some abuse of

notation, for hi,t consistent with ĥg,t, let f(hi,t|ĥg,t) ≡
∏t−1

s=0 f(yis|R̂s).

In addition, for ĥg,t consistent with h̃i,t, with some abuse of notation we can use Bayes’

theorem to write:

µ(hg,t|h̃i,t) =
f(h̃i,t|ĥg,t)µ(hg,t)∑
ĥg,t f(h̃i,t|ĥg,t)µ(ĥg,t)

(9)

The next lemma shows that µ(hg,t|h̃i,t) can be written recursively.

Remark: The lemma considers the more general case of mixed strategies σG,t : Hg,t →

∆(Υ).

Lemma 4. Consider σG ∈ ΣG. For ĥg,t consistent with h̃i,t we have that:

µ(hg,t|h̃i,t) = P (Rt−1|yit−1)
σG,t−1(τ t−1|hg,t−1)µ(hg,t−1|h̃i,t−1)∑

τ t−1,ĥg,t−1 σG,t−1(τ t−1|ĥg,t−1)µ(ĥg,t−1|h̃i,t−1)
(10)

Proof : First, we have the following:

µ(hg,t) = P (Rt−1)σG,t−1(τ t−1|hg,t−1)µ(hg,t−1)
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and

f(h̃i,t|hg,t) = f(yit−1|Rt−1)f(h̃i,t−1|hg,t−1)

Using the last two expressions in (9) we get:

µ(hg,t|h̃i,t) =
f(yit−1|Rt−1)f(h̃i,t−1|hg,t−1)P (Rt−1)σG,t−1(τ t−1|hg,t−1)µ(hg,t−1)∑
ĥg,t f(yit−1|Rt−1)f(h̃i,t−1|ĥg,t−1)P (Rt−1)σG,t−1(τ t−1|ĥg,t−1)µ(ĥg,t−1)

which yields

µ(hg,t|h̃i,t) =
f(yit−1|Rt−1)P (Rt−1)σG,t−1(τ t−1|hg,t−1)f(h̃i,t−1|hg,t−1)µ(hg,t−1)∑

R̂t−1
f(yit−1|R̂t)P (R̂t−1)

∑
τ t−1,ĥg,t−1 σG,t−1(τ t−1|ĥg,t−1)f(h̃i,t−1|ĥg,t−1)µ(ĥg,t−1)

and

µ(hg,t|h̃i,t) = P (Rt−1|yit−1)
σG,t−1(τ t−1|hg,t−1)µ(hg,t−1|h̃i,t−1)∑

τ t−1,ĥg,t−1 σG,t−1(τ t−1|ĥg,t−1)µ(ĥg,t−1|h̃i,t−1)
(11)

9.1.2 Step 2: Analytical Functions

Lemma 5. Suppose that K(y,R) is analytic in y for all R ∈ Υ.

Define

m(y) =

∫
Υ

K(y,R)dP (R)

and let

C = {y ∈ [1, ȳ] : m(y) = 0}

Then, C has Lebesgue measure zero on [1, ȳ].

Proof: We start with a result about analytic functions. Since analytic functions have power-

series expansions about all points in their domain, the set of roots is at most countable. The

proof is an adaptation of Theorem 10.18 in Rudin (1987) about holomorphic functions.
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Claim 1: Suppose f : [1, y]→ R is analytic. Let Z(f) = {x ∈ int([1, y]) : f(x) = 0}. Then

either Z(f) = (1, y) or Z(f) has no limit points in [1, y]. In the latter case Z(f) is at most

countable.

Proof of Claim 1: Let M be the set of limit points of Z(f). Take x0 ∈ Z(f). We will argue

that either x0 ∈ int(M) or x0 is an isolated point of Z(f). To see this, notice that:

f(x) =
∞∑
n=0

an(x− x0)n

for x ∈ Br(x0) ⊆ [1, y], where Br(x0) is an open ball or radius r around x0.

Then it follows that either all an = 0, in which case Br(x0) ⊆ M and therefore x0 ∈

int(M), or there exists n̂ > 0 (since f(x0) = 0) such that an̂ 6= 0. In the latter case, define:

g(x) =

 (x− x0)−n̂f(x) for x ∈ [1, y] \ {x0}

an̂ for x = x0

Because g(x0) 6= 0 and g(·) is continuous, there exists a neighborhood Br̃(x0) of x0 in

which g(·) has no zero, and therefore f(·) has no zero in Br̃(x0). Then it follows that x0 is

an isolated point of Z(f). This finish the claim that either x0 ∈ int(M) or x0 is an isolated

point of Z(f).

Next take x ∈M . Because f(·) is continuous, it follows that x ∈M ⊆ Z(f). Then either

x ∈ int(M) or x is a limit point of M. By the reasoning above, x cannot be a limit point of

M, because x ∈ Z(f) and therefore x ∈ int(M) or x is an isolated point of Z(f). It then

follows that M is open. If B = [1, y] −M , then B is open since M is the set of limit points

of Z(f). Since [1, y] is connected, it cannot be the union of the disjoint open sets M and B.

Then either M = (1, y), in which case Z(f) = (1, y), or M = ∅. In the latter case Z(f) has

at most finitely many points in each compact subset of [1, y]. But since [1, y] is a countable

union of compact sets, Z(f) is at most countable
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In order to finish the proof, recall that m(y) =
∫

Υ
K(y,R)dP (R). Since K(y,R) is

analytic, let K(y,R) =
∑∞

n=0 cn(R)(y−y0)n for some y0. Notice that the constants {cn(R)}n
depend on R. Then we have:

m(y) =

∫
Υ

[K(y,R)] dP (R)

=

∫
Υ

[
∞∑
n=0

cn(R)(y − y0)n

]
dP (R)

=
∑
R∈Υ

[
∞∑
n=0

cn(R)(y − y0)n

]
P (R)

=
∞∑
n=0

[∫
Υ

cn(R)dP (R)

]
(y − y0)n

which it is analytic. Then an application of claim 1 implies that set C = {y ∈ [1, R̄] : m(y) =

0} is at most countable, and therefore has Lebesgue measure zero

Given that the composition of analytic functions is itself analytic, a straightforward

application of Lemma 5 using (10) in (4) implies that there is a measure zero of agents

indifferent between investing or not.

9.2 Proof of Lemma 2

Before we present the proof, consider the following notation. Let τ(R̂) ≡ σ∗G(R̂) and τ ≡

{τ(R)} |R ∈Υ. Given the vector τ , from the individual agent’s decision, consider the following

function:

H(yi, τ) = yi(1− [E(τ(R)|yi)])− 1 (12)

Given assumption 4, the set of agents i ∈ I such that H(yi, τ) = 0 is at most countable
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(see the proof of Lemma 1). Moreover, the set of points yi such that H(yi, τ) = 0 is indeed

finite as long as there is a state R ∈ Υ with tax bounded away from the unity. To see this,

notice that, for ŷi high enough, we have H(ŷi, τ) > 0 whenever E(τ(R)|ŷi) < 1.

Given the previous reasoning, suppose there are N cutoff points {y∗i }Ni=1 satisfyingH(y∗i , τ) =

0. We order them in an ascending order, i.e., y∗i ≤ y∗i+1, and let y∗N+1 = ȳ. It is important

to keep in mind that since H(1, τ) ≤ 0,
∂H(y∗i ,τ)

∂y∗i
> 0 when i is odd and

∂H(y∗i ,τ)

∂y∗i
< 0 when i

is even.

Notice that, using the implicit function theorem, we have:

∂y∗i
∂τ(R)

=

[(
1− E(τ(R)|y∗i )− y∗i

∂E(τ(R)|y∗i )
∂y∗i

)
(1− E(τ(R)|y∗i ))

]−1

P (R|y∗i ) (13)

=

(
∂H

∂y∗i
(1− E(τ(R)|y∗i ))

)−1

P (R|y∗i )

= J(y∗i )P (R|y∗i )

where J(y∗i ) ≡
(
∂H
∂y∗i

(1− E(τ(R)|y∗i ))
)−1

.

By the definition of {y∗i }Ni=1, the aggregate investment is given byX(τ(R), R) =
∑N

i=1

∫ y∗i+1

y∗i
f(y|R)dy.

In a similar fashion aggregate output is Y (τ(R), R) =
∑N

i=1

∫ y∗i+1

y∗i
yf(y|R)dy.

Notice that ∂X(τ(R),R)
∂τ

=
∑N

i=1(−1)if(y∗i |R)
∂y∗i
∂τ

< 0 because
∂y∗i
∂τ

> 0 when i is odd and

∂y∗i
∂τ

< 0 when i is even.

In the same way ∂Y (τ(R),R)
∂τ

=
∑N

i=1(−1)iy∗i f(y∗i |R)
∂y∗i
∂τ

< 0 and ∂Y (.)
∂τ
− ∂X(.)

∂τ
< 0 because

y∗i ≥ 1 for all i.

We can write the static payoff for the government as:

∑
R ∈Υ

P (R)W (R, τ(R), τ(R), Y (τ(R), R))
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where

W (R,X(τ(R), R), τ(R), Y (τ(R), R)) ≡ (1−τ(R))Y (τ(R), R)+(ω − τ(R))+bτ(R) Y (τ(R), R)

Towards a contradiction, suppose that the solution has τ R̄ < 1 and τR > 0 for some

R ∈ Υ. Then consider the following perturbation: increase τ R̄ by dτ R̄ > 0 and decreases

τR by dτR < 0 such that it keeps y∗N fixed.

Then, at the solution, the change ∆ in payoff should be zero:

∆ = (b− 1)[P (R̄)Y (R̄)dτ R̄ + P (R)Y (R)dτR] +
N∑
i=1

(−1)i
[∑
R̂∈Υ

P (R̂)
(

[(1 + τ(R̂)(b− 1))y∗i − 1]f(y∗i |R)
)]( ∂y∗i

∂τR
dτR +

∂y∗i
∂τ R̄

dτ R̄

)
= ∆1 + ∆2

where

∆1 = (b− 1)[P (R̄)Y (R̄)dτ R̄ + P (R)Y (R)dτR]

and

∆2 =
N∑
i=1

(−1)i
[∑
R̂∈Υ

P (R̂)
(

[(1 + τ(R̂)(b− 1))y∗i − 1]f(y∗i |R)
)]( ∂y∗i

∂τR
dτR +

∂y∗i
∂τ R̄

dτ R̄

)

Let the perturbation described above satisfies:
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∂y∗N
∂τR

dτR +
∂y∗N
∂τ R̄

dτ R̄ = 0

Using (13) we get that:

dτR = − P (R̄)f(y∗N |R̄)

P (R)(f(y∗N |R)
dτ R̄

For each other y∗i we have:

∂y∗i
∂τR

dτR +
∂y∗i
∂τ R̄

dτ R̄ =
J(y∗i )P (R̄)∑
R̂ P (R̂)f(y∗i |R̂)

[
−f(y∗N |R̄)

f(y∗N |R)
f(y∗i |R) + f(y∗i |R̄)

]
dτ R̄

Assumption 3 implies that −f(y∗N |R̄)

f(y∗N |R)
f(y∗i |R) + f(y∗i |R̄) < 0 since y∗N ≥ y∗i for all i. Thus,

because dτ R̄ > 0,
∂y∗i
∂τR

dτR +
∂y∗i
∂τ R̄

dτ R̄ is negative when i is odd and positive when i is even,

and therefore (−1)i
(
∂y∗i
∂τR

dτR +
∂y∗i
∂τ R̄

dτ R̄

)
≥ 0 for all i.

Therefore ∆2 > 0. It remains to show that ∆1 > 0.

∆1 = (b− 1)[P (R̄)Y (R̄)dτ R̄ + P (R)Y (R)dτR]

= (b− 1)dτ R̄

[
P (R̄)Y (R̄)− P (R)YL

P (R̄)f(y∗N |R̄)

P (R)f(y∗N |R)

]
= P (R̄)(b− 1)dτ R̄

[
Y (R̄)− Y (R)

f(y∗N |R̄)

f(y∗N |R)

]

Because dτ R̄ > 0, it is sufficient to show that Y (R̄)

f(y∗N |R̄)
> Y (R)

f(y∗N |R)
.Notice that Y (R̄)

f(y∗N |R̄)
=

ω
∑N

i=1

∫ y∗i+1

y∗i
y f(y|R̄)

f(y∗N |R̄)
dy. and Y (R)

f(y∗N |R)
= ω

∑N
i=1

∫ y∗i+1

y∗i
y f(y|R)
f(y∗N |R)

dy. Each of this variables repre-

sents an integral using a normalized probability distribution function h(y|R′) = f(y|R′)
f(y∗|R′) with

h(y∗|R′) = 1 ∀R′ ∈ Υ.
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Hence Y (R̄)

f(y∗N |R̄)
> Y (R)

f(y∗N |R)
and ∆ > 0, a contradiction

9.3 Proof of Proposition 2

Towards a contradiction, fix σ ∈ Ξ with σG ∈ ΞG being non-trivially essentially private.

Define S =

{
τ ∈ [0, 1] : τ = σG,t(h

g,t, Rt), for some Rt ∈ Υt, Rt−1 ⊆ hg,t
}

. The fact that σG

is non-trivially essentially private makes sure that S is not a singleton. Also define

H∗,i = {hi,t ∈ ∪∞t=0H
i,t : τ s ∈ S,∀s ≤ t− 1}

Because of the full support condition in assumption 1, all histories in H∗,i have non-zero

measure.

Since we are considering pure strategies only, using (10), for all hi,t ∈ H∗,i the belief

system is given by:

µ(hg,t, Rt|h̃i,t, yit) = P (Rt|yit)
µ(hg,t−1|h̃i,t−1)∑

ĥg,t−1 µ(ĥg,t−1|h̃i,t−1)

By recursive calculations the above expression can be reduced to:

µ(hg,t, Rt|h̃i,t, yit) = f(yit|Rt)
t−1∏
s=0

f(yis|Rs)∑
R̂s
f(yis|R̂s)

(14)

In this way, when σG is non-trivially essentially private, beliefs do not depend on the strat-

egy followed by the government. Thus, given the features of σG, µ(σG(hg,t, Rt)|hi,t, yit) =

µ(σG(hg,t, Rt)|h̃i,t, yit) for all hi,t, h̃i,t ∈ H∗,i and hg,t consistent with histories in H∗,i.

Now, consider the following one shot deviation strategy σ̃G ∈ ΣG. Take any period

t > 0 with history hg,t such that σG(hg,t, Rt) < τ̄S ≡ maxτ{S} and consider the following
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alternative strategy.

σ̃G(hg,s, Rs) =

 σG(hg,s, Rs) if s 6= t

τ̄S if s = t

Let Xt and Yt be, respectively, the aggregate output and investment generated by {σi|hi,t}i∈I
in time t after Rt is realized. Then (σ|hg,t , {σi|hi,t}) ∈ Σ generates the following payoff:

V (σG|hg,t , {σi|hi,t}i∈I) = (1− β)W (Rt, Xt, σG,t(h
g,t, Rt), Yt)+

βV (σG|{hg,t,Rt,σG(hg,t,Rt) }, σi|{hi,t,σG(hg,t,Rt)})

The alternative strategy yields:

V (σ̃G|hg,t , {σi|hi,t}i∈I) = (1− β)W (Rt, Xt, τ̄
S, Yt) + βV (σ̃|{hg,t,Rt,τ̄S}, σ̂

i|{hi,t,τ̄S})

Since τ̄S ∈ S, it follows that {hi,t, τ̄S, yit} ∈ H∗,i and therefore σ̂i|{hi,t,σG(hg,s,τs,Rs)} = σ̂i|{hi,t,τ̄S}

for all i ∈ I.

In addition, from the one shot deviation construction, σ̂|{hg,t,Rt,σG(hg,s,Rs)} = σ̃|{hg,t,Rt,τ̄S}.

Hence, V (σG|{hg,t,Rt,σG(hg,s,Rs) }, σi|{hi,t,σG(hg,s,Rs)}) = V (σ̃|{hg,t,Rt,τ̄S}, σ̂
i|{hi,t,τ̄S}). But since τ̄S >

σG(hg,t, Rt), from assumption 2 we have that V (σ̃G|hg,t , {σi|hi,t}i∈I) > V (σG|hg,t , {σi|hi,t}i∈I)

9.4 Proof of Proposition 3

First, take an arbitrarily agent and history hi,t. Suppose that every agent is playing according

to σworst. In this situation the government cannot increase the provision of the public good

regardless the tax it chooses. Therefore it is weakly optimal for the government to fully tax

investment. In this way, condition (i) in definition 1 is met for all histories. Next, suppose

the government is playing according to σworst
G . Then regardless the individual signals, all

the agents assign probability one to full taxation and the optimal action is to choose zero
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investment. This follows straight from (4). Therefore condition (ii) in definition 1 holds and

the proposed strategy it is an equilibrium.

The fact that σworst yields the the worst equilibrium follows from the observation that

the level of provision of the public good is at its minimum value under σworst. Therefore

assumption (2) yields the result

9.5 Proof of Proposition 4

Fix A an aggregate outcome of σ ∈ Σ̊. Condition (1) comes from the definition of aggre-

gating investment decisions over individuals, where such decisions are given by (8) along

the stochastic outcome path. Condition (2) comes from both proposition 3 and the defini-

tion of the best deviation W d(Rt, X(Rt), Y (Rt)), while (3) follows from condition (ii) in the

definition of a perfect Bayesian equilibrium along the equilibrium path.

Conversely, take A ≡ {τ t, Xt, Yt}∞t=0 satisfying the conditions above. Then we con-

struct σ ∈ Σ̊ such that A is the induced aggregate outcome. We construct σG as fol-

lows. Along the equilibrium path, set σG,t(τ
t−1(Rt−1), Rt) = τ t(R

t). For all other gov-

ernment’s history ĥg,t ∈ HG,t off-path, set σG,t(ĥ
g,t) = σworst

G,t (ĥg,t). Regarding the individ-

ual decisions, for taxes on the path, set decisions as (8), and for all other off-path histo-

ries ĥi,t ∈ H i,t , set σi,t(ĥ
i,t)=σworst

i,t (ĥi,t). Beliefs on path are set according to E(τ t|y∗) =∑
R∈Υ

(
P (R)f(y∗|R)τ t(Rt)∑

R∈Υ P (R)f(y∗|R)

)
, while beliefs off-path assign full measure to taxes being equal to

one.

Next, we check that this strategy profile is indeed an equilibrium. First, by condition

(1), households are optimizing giving on the path of play. By construction, on off-path

histories optimality also holds. Regarding government optimality, condition (3) prevents the

government to obtain a profitable deviation along the path of play when it considers a switch

to τ̂ ∈ τ t(τ t−1(Rt−1),Υ). For all other taxes τ̂ /∈ τ t(τ t−1(Rt−1),Υ), switches from the path

are prevented by condition (2). All the equilibrium conditions hold off-path because σworst

is also an equilibrium.
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9.6 Proof of Proposition 7

Notice that the best payoff that can be achieved with deterministic tax functions is

V BP ≤
∞∑
t=0

βt max
τ t

E[W (τ t, Rt|
{
σBPi,t

}
i∈I)]

Define,

τ ∗ = argmaxτ tE[W (τ t, Rt|
{
σBPi,t

}
i∈I)]

And notice that

E[W (τ ∗, Rt|
{
σBPi,t

}
i∈I)] < E[W (σ∗G(Rt), Rt|

{
σ∗i,t
}
i∈I)] (15)

otherwise it would contradict the Ramsey solution.

Then, from (15), we obtain:

V BP ≤
∞∑
t=0

βtE[W (τ ∗, Rt|x∗i∀i∈I)] <
∞∑
t=0

βtE[W (σ∗(Rt), Rt|
{
σ∗i,t
}
i∈I)] = V (σ∗)

Since (15) holds regardless the magnitude of β, the result holds for β ∈ [β̂, 1), the sufficient

condition under which the best equilibrium can be achieved using public strategies

9.7 History dependency

We now show that even when we allow for history dependency the best equilibrium has the

property that the tax is independent of the fundamental. The proof is by induction showing

that in any period t after any public history hP,t the best equilibrium solves a problem like PS.

Let τB(hg,tB ) be an equilibrium strategy that generates the best equilibrium payoff, where hg,tB

is constructed recursively as hg,tB = {hg,t−1
B , Rt, τ

B(hg,t−1
B )} with hg,0B ∈ Υ. In the same way,

hi,tB = {hi,t−1
B , yit, τ

B(hg,t−1
B )} and hi,0B ∈ Υ and the public history is hP,t = {hP,t−1

B , τB(hg,t−1
B )}
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with hP,tB = ∅. Finally let V (hP,t−1
B ) = E[V (hg,tB )|Rt−1] be the ex-ante value of the equilibrium

strategy conditional on the realization of Rt−1. At period zero the payoff for this strategy is

given by:

V (∅) = ER1

[
W (τB(R1), Z(τB, R1)) + βV (τB(R1))

]
(16)

Lemma 6. A pair {τ(R1), V (τ(R1))} can be implemented as an equilibrium at time 1 if and

only if, for all m = L,H and all τ̂ ∈ [0, 1],

(EQ) W (τ(R1,m), Z(τ , R1,m)) + βV (τ(R1,m)) ≥ W (τ(R1,−m), Z(τ , R1,m)) + βV (τ(R1,−m))

W (τ(R1,m), Z(τ , R1,m)) + βV (τ(R1,m)) ≥ W (1, Z(τ , R1,m)) + βV worst

V (τ̂) ∈ Ψβ for all τ̂ ∈ [0, 1]

Z(τ , R1,m) ∈ OP(τ , R1,m) for all τ ∈ [0, 1]2

Proof : First, it is straightforward to show that if {τ(R1), V (τ(R1))} can be implemented as

an equilibrium it has to satisfies the above set of inequalities. Then, suppose {τ(R1), V (τ(R1))}

satisfies (EQ). Since, V (τ(R1)) ∈ Ψβ ∀R1, there exist τ̃R1(hg,t, Rt) and σ̃iR1
(hi,t, yit) for each

R1 ∈ Υ that together with the belief system µ̃R1
are an equilibrium for all t ≥ 2 and

V (τ(R1)) = V (σ̃G, σ̃
i). Let H̃g,t

R1
be the (on the equilibrium path) possible histories gener-

ated by τ̃R1(hg,t, Rt) after each R1, H̃ t,i be the set of possible individual histories generated

by generated by {τ(R1), τ̃R1(hg,t, Rt)} and consider the following pair of strategies and belief

system,

σG,t(h
g,t, Rt) =


τ(R1) if t = 1, ∀R1

τ̃R1(hg,t, Rt) if t > 1 and σG,1(R1) = τ(R1) and hg,t ∈ H̃g,t
R1

, ∀R1

1 otherwise
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σit(h
i,t, yit) =

 xi,∗(hi,t, yit) if hi,t ∈ H̃ t,i, ∀t ≥ 1

0 otherwise

µ(hg,t|hi,t) =



f(yi
1|R)∑

R̂ f(yi
1|R̂)

if t = 1, ∀yi1
µ̃R1

(hg,t|hi,t) ∀hg,t ∈ H̃g,t
R1

; if t > 1 and τ 1 = τ(R1), ∀hi,t ∀R1

1 ∀hg,t /∈ H̃g,t
R1

; if t > 1 and τ 1 /∈ τ(R1), ∀hi,t

0 otherwise

The constructed strategies are the usual in repeated games. For the government states:

play the function τ(R) that satisfies (EQ) at period 1, then depending on the realization of

R1 (and therefore of τ 1) pick the appropriated continuation strategy, if you ever deviated

from the equilibrium path play τ t = 1 for ever. The strategy for households states: invest

optimally (using the constructed belief system) if the history is consistent with equilibrium

behavior by the government, otherwise never invest again. The belief system simply states

that at period 1 belief are calculated according to Baye’s rule, and then beliefs are the

same as in the continuation strategy if the government follows the tax function τ(R) and

put probability one on off of the equilibrium behavior if the government does not set a

tax consistent with τ(R). Notice that this is a well defined probability measure since the

complement of H̃g,t
R1

happens with probability zero on the equilibrium. By construction these

strategies and belief system are an equilibrium for t > 1. In addition, it is easy to see that

given the belief system the behavior of the agents is optimal even at period 1. It remains

to show that given the belief system the proposed strategy for the government is indeed

optimal at period 1. But that follows from the fact that the function τ(R1) satisfies the first

two inequalities of (EQ).

Assumption 5. sup{Ψβ} ∈ Ψβ.

The above assumption simply states that the maximum is well defined.
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Proposition 8. The best equilibrium is: for all t ≥ 0,

1) ∀hg,tB , ∀Rt; τ
B
t (hg,tB , Rt) = τB; if τBs = τB for all s < t and τBt (hg,tB , Rt) = 1 otherwise

2) ∀hi,tB , ∀yit; xi(h
i,t
B , y

i
t) = ω; if yit ≥ 1

1−τB and τBs = τB for all s < t; and xi(hi,tB , y
i
t) = 0

otherwise.

3) ∀hP,tB , V (hP,tB ) = V̄

where τB and V̄ are defined in Proposition 6

Proof : The proof is by induction. Notice that at period zero, after the empty history, the

best equilibrium payoff can be written as in (16). Then by Lemma 6 the best equilibrium

strategy maximizes (16) subject to (EQ). Since sup{Ψβ} ∈ Ψβ, by Proposition 6 the solution

is τL = τH = τB and continuation values VL = VH . Because of this, after period one there

is only one continuation value and only one on path public history. After this public history

and for every realization of R at t = 1, the payoff is

V (τB1 ) = ER2

[
W (τB2 (τB1 , R1, R2), Z(τB2 (τB1 , R1), R2)) + βV (τB2 (τB1 , R1, R2), τB1 )|R1

]
(17)

This equation is similar to (16) and it is a best equilibrium payoff as well. In fact, it is easy

to see that we can use the same argument as in period one appealing to Lemma 6 changing

only the time index. Thus, after any realization of R1 if τB2 (τB1 , R1, R2) was not a solution

to that problem there would be another tax function τ̂ and continuation values V̂ that solve

it and can be implemented as an equilibrium, generating a value ER2

[
E[W (τ̂ , Z(τ̂ , R2))] +

βV̂
]
> V (τB1 ). But this would contradict V (τB1 ) being a best equilibrium.

Therefore, at period 2 it must be the case that τL = τH = τB and VL = VH . In order to

conclude the induction, suppose that the statement is true at any period t > 2, then it must

be the case that

46



V (hP,t) = ERt

[
W (τB(hg,tB , Rt), Z(τB(hg,tB ), Rt)) + βV (τB(hg,tB , Rt), h

P,t)|Rt−1
]

Then, the argument is the same as for period 2. The strategy τB(hg,tB ) has to solve P0

otherwise there would be a combination of tax function τ̂ and continuation values V̂ such

that E[W (τ̂ , Z(τ̂ , Rt))] + βV̂
]
> V (ht). Given that by construction the new strategies are

incentive-feasible after period t and that for periods before t the continuation values are

independent of the state this policy won’t violated any equilibrium requirement. Thus, at

period t we obtain τL = τH = τB. But if this is true the best tax independent of the state

is given by τB as defined in Proposition 6, the same as the continuation value. Regarding

optimal individual investments, the result is obvious. After any individual history agents

know exactly what the tax will be, therefore, given yi, if the after tax return in investment

is positive they invest everything and if the return is negative they do not invest anything

(since the set of indifferent agents has measure zero the rule assigned to them is irrelevant).
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