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Abstract

This paper investigates the relationship between short-term and
long-term in�ation expectations using daily data on in�ation compen-
sation. We use a �exible econometric model which allows us to uncover
this relationship in a data-based manner. We relate our �ndings to
the issue of whether in�ation expectations are anchored, unmoored
or contained. Our empirical results indicate no support for either
unmoored or �rmly anchored in�ation expectations. Most evidence
indicates that in�ation expectations are contained.
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1 Introduction

Many decisions of central bankers and models of economists depend on an
understanding of how agents form expectations about in�ation. In this pa-
per, we shed light on this issue using data on in�ation compensation derived
from real and nominal U.S. Treasury securities. With some quali�cations,
one can interpret in�ation compensation as a measure of expected in�ation.
Of particular interest is in�ation pass through: how changes in short-term in-
�ation expectations in�uence long-term expectations. We show how di¤erent
models of in�ation expectations, which we refer to as anchored, unmoored
and contained, imply di¤erent forms for in�ation pass through. We then
investigate whether there is empirical support for any of these models.
Our empirical work uses a �exible parametric econometric framework de-

veloped in Koop and Potter (2007). This framework combines some of the
bene�ts of a nonparametric approach (i.e. it lets the data speak rather than
enforcing a parametric, often linear, functional form) with the bene�ts of
a parametric model rooted in the considerations of economic theory. That
is, di¤erent theoretical models of in�ation expectations imply the in�ation
pass through coe¢ cient should have various forms. We discuss how, if in�a-
tion expectations are anchored, the in�ation pass through coe¢ cient should
be constant and small (and certainly less than one). Unmoored in�ation
expectations imply that the pass through coe¢ cient should be near one.
However, if in�ation expectations are contained, then the magnitude of the
pass through coe¢ cient should vary with the level of short-term in�ation
expectations in a particular way. Such theoretical considerations can be in-
corporated in our �exible parametric framework and allow the data to tell
us which (if any) speci�cation is preferred.
Our empirical results, using daily data, indicate support for contained

in�ation expectations. We provide strong evidence that the in�ation pass
through coe¢ cient is not constant, but does tend to be quite small. These
�ndings are not consistent with either unmoored or anchored in�ation ex-
pectations, but are consistent with the idea that in�ation expectations are
contained in some way. The particular theoretical model of contained ex-
pectations discussed in this paper suggests that the in�ation pass through
coe¢ cient should depend on the absolute deviation of short term in�ation
expectations from a central value. Furthermore, it should have a certain func-
tional form. We �nd empirical evidence in support of both these features of
this theoretical model.
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The paper is organized as follows. In the next section we de�ne basic con-
cepts and discuss the implications of various models of in�ation expectations
for the in�ation pass through coe¢ cient. In the third section, we describe
and motivate our econometric methods (with technical details available in an
appendix). The fourth section presents empirical results and the �fth section
concludes.

2 Modeling In�ation Pass Through

In this paper we investigate the relationship between long-term expected
in�ation (yt) and short-term expected in�ation (xt) using daily time series
data (t = 1; ::; T ). We use in�ation compensation as a measure of these
expectations. We begin by de�ning these concepts and motivating why this
relationship is of importance. In�ation compensation is calculated using
interest rates on nominal and in�ation-indexed bonds. Let r(h)t is the real
interest rate on an h-period bond (i.e. the real return that an investor requires
to lend money at time t in return for a payment h years in the future) and i(h)t
be the nominal interest rate on an h-period bond. These variables re�ect the
total return between the present and m periods in the future. Using these
returns, we can calculate in�ation compensation between h1 and h2 periods
in the future as:

ei(h1;h2) =
h2
�
i(h2) � r(h2)

�
� h1

�
i(h1) � r(h1)

�
h2 � h1

In�ation compensation is commonly used as a measure of expected in�ation
and we will refer to every one of the variables used in our empirical work
as expected in�ation for particular values of h1 and h2. The issues under
study involve the relationship between long-term and short-term expected
in�ation. Our empirical section de�nes long-term expected in�ation as 9 to
10 years and short-term expected in�ation as 2 to 5 years. Thus, we will use
y = ei(9;10) and x = ei(2;5).
As a terminological digression, in this paper we informally use the terms

expected in�ation and in�ation compensation (also known as breakeven in-
�ation) interchangeably. In�ation compensation is the compensation that in-
vestors require for holding nominal rather than real in�ation-indexed bonds.
This compensation largely re�ects expected in�ation (and empirical studies
such as ours typically interpret it as such). However, in�ation compensation

3



also re�ects compensation that investors are demanding for risks associated
with the uncertainty about future in�ation. But, following most of the liter-
ature (e.g. Gurkaynak, Levin and Swanson, 2006), we argue that the in�a-
tion expectation component will dominate (especially when using di¤erenced
data) and simply use the terminology �expected in�ation�in this paper.
Important issues of policy hinge on in�ation pass through (i.e. how

changes in short term in�ation expectations a¤ect long term expectations1).
As a starting point, a simple regression model, of the sort which has been
used in the literature (see, e.g., Potter and Rosenberg, 2007), can be used to
investigate these issues:

�yt = ��xt + "t; (1)

where � is referred to as the pass through coe¢ cient. There are strong the-
oretical and empirical reasons for thinking that the pass through coe¢ cient
might not simply be a constant but might depend on the level of expected
in�ation or might be varying over time. These reasons motivate the �exible
parametric treatment used in this paper which allows for the pass through
coe¢ cient to potentially have such properties. Before we describe our statis-
tical model, it is useful to brie�y describe some theoretical models of expected
in�ation (largely taken from Potter and Rosenberg, 2007) and discuss what
their implications are for the pass through coe¢ cients. This will allow us to
formally de�ne the concepts of anchored, contained and unmoored in�ation
expectations and help us later when it comes to interpreting our empirical
results.
We begin with a standard decomposition of observed in�ation (�t) into

permanent (��t ) and transitory (ct) components:

�t = �
�
t + ct:

It is common to interpret ��t as underlying in�ation and de�ne it through
the properties:

1Note that, theoretically, short term in�ation expectations should be very close to
actual in�ation. Given a lack of daily data on in�ation, short term in�ation expectations
can be considered as a proxy for in�ation. Thus, the in�ation pass through coe¢ cient can
also be considered as an approximate measure of the e¤ect of changes in current in�ation
on long term expectations of in�ation.
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Et (�t+h) ! Et
�
��t+h

�
Et (ct+h) ! 0 as h!1.

The properties of the pass through coe¢ cient depend on underlying in�a-
tion. Potter and Rosenberg (2007) distinguish between anchored, contained
and unmoored in�ation expectations (and other papers adopt similar termi-
nologies) and work out the implications for the pass through coe¢ cient of
several simple theoretical models of the in�ation process. In the remainder
of this section, we brie�y summarize some of their results. In this theoreti-
cal discussion, we will let �h1;h2 be the pass through of changes in in�ation
expectations at horizon h1 to changes in in�ation expectations at horizon h2
(where h1 and h2 are appropriately chosen to be short-term and long-term,
respectively). We emphasize that, unlike a constant parameter model such as
(1), we are not assuming �h1;h2 to necessarily be a single constant parameter.
Its magnitude could vary with expected in�ation or be time varying.
Anchored in�ation expectations can arise when there is a credible in�a-

tion target (b�). Faust and Henderson (2004) consider a stationary model of
underlying in�ation:

��t = b� (1� �) + ���t�1 + ut;
where ut is a stationary residual and j�j < 1. It can be immediately seen
that long run in�ation expectations in this model will be b� and, thus, in�a-
tion expectations are anchored about this target. As shown in Potter and
Rosenberg (2007), in this model the pass through coe¢ cient is constant, does
not depend on the level of expected in�ation and is less than one in absolute
value. To be precise, it is:

�h1;h2 = �
h2�h1 :

This illustrates how a constant pass through coe¢ cient which is less than
one in absolute value is consistent with anchored expectations. Furthermore,
if h1 is small (as with short-term in�ation expectations) and h2 is large (as
will long term in�ation expectations). then the pass through coe¢ cient will
tend to be small.
Unmoored in�ation expectations arise through unobserved components

models where underlying in�ation is a random walk:
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��t = �
�
t�1 + ut:

This model, extended to allow for stochastic volatility, is used in Stock and
Watson (2007). Potter and Rosenberg (2007) show that the model used in
Stock and Watson (2007) implies:

�h1;h2 ! 1 as h2 !1 with h1 �xed.

For �nite h2 the formula for �h1;h2 depends on the variances and persistences
of the permanent (��t ) and transitory (ct) components of in�ation. However,
a key �nding is that, if h2 is large enough so that the transitory shock has
dissipated, then we have �h1;h2 = 1. Hence, we can take such models of un-
moored in�ation expectations as implying constant pass through coe¢ cients
of one (or close to one for �nite h2).
Potter (2007) proposes a third class of models which imply contained

in�ation expectations. This model has properties which lie between those
of the anchored expectations and unmoored expectations models. In�ation
expectations are not fully anchored, but are contained within bounds. In this
model, underlying in�ation expectations look like the unmoored expectations
model:

��t = �
�
t�1 + ut;

but ut is constrained so that underlying in�ation lies in a bounded interval,
[a; b]. In particular,

ut � TN
�
a� ��t�1; b� ��t�1; 0; �2u

�
;

where TN
�
a� ��t�1; b� ��t�1; 0; �2u

�
is the truncated Normal distribution (i.e.

theN (0; �2u) distribution truncated to the interval
�
a� ��t�1; b� ��t�1

�
). Pot-

ter and Rosenberg (2007) show how this model implies that the pass through
coe¢ cient depends on short-term in�ation expectations. Near either a or b,
we have �h1;h2 being near zero . But, unlike models of anchored expectations,
�h1;h2 becomes larger near the middle of the interval [a; b]. Empirically, we
will take this theoretical model as implying that �h1;h2 is potentially large
(i.e. it could even be near one) when short term in�ation expectations are
near a central value, � (e.g. the average value of in�ation), but as short
term in�ation expectations deviate from �, �h1;h2 goes to becomes smaller.
Intuitively, agents believe that if short term in�ation expectations are near
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� the Fed will not act and underlying in�ation could potentially just wander
according to a random walk (and, thus, we obtain the �h1;h2 ! 1 result of
the unmoored in�ation expectations model). However, if short term in�ation
expectations deviate too far from � then the Fed will act and reversion will
kick in (and we obtain a result closer to that obtained from the anchored ex-
pectations model where the pass through coe¢ cient is small). If this model of
contained in�ation expectations is correct, then empirically we should have
the magnitude of the pass through coe¢ cient varying with the absolute de-
viation of short term in�ation expectations from �. In particular, the pass
through coe¢ cient could be large when

���ei(2;5)t � �
��� is near zero, but should

be small when it is large.
In our empirical work, we use the theory discussed in this section to guide

our econometric speci�cation. We adopt a statistical approach which lets the
data speak, telling us what the form of the pass through coe¢ cient is. We in-
directly use this theory to motivate the idea the pass through coe¢ cient could
potentially depend on the level of short term in�ation expectations. Further-
more, we use this theory to guide us in the interpretation of our results.
That is, if the pass through coe¢ cient is constant and small, that is con-
sistent with anchored in�ation expectations. If the pass through coe¢ cient
is always near one, that is consistent with unmoored in�ation expectations.
If the pass through coe¢ cient is large at (approximately) average levels of
short-term in�ation expectations, but becomes small as short-term expec-
tations deviate from average, then our �ndings are consistent with Potter
(2007)�s model of contained in�ation expectations. Our statistical methods,
described in the next section, allow us to uncover which of these models of in-
�ation expectations is most consistent with the data (as opposed to working
with a model which imposes one particular view of in�ation expectations).
They can also tell us if the data is inconsistent with any of these models of
in�ation expectations.

3 Flexible Parametric Modeling

In previous work (see Koop and Potter, 2007), we developed a simple mod-
eling framework that is extremely �exible, exactly or approximately nesting
a wide variety of nonlinear time series and structural break models. We use
this framework here. For present purposes, the key things to note are that
it allows for the in�ation pass through coe¢ cient to be constant or change
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over time (either in a gradual fashion or in a more abrupt fashion). It can
also allow for the magnitude of the pass through coe¢ cient to depend on
another explanatory variable (which is referred to as an index variable). The
arguments in the previous section suggest a logical choice for the index vari-
able: short term in�ation expectations (although we experiment with other
choices as well). And the functional form describing the relationship between
the index variable and the pass through coe¢ cient can take on a wide range of
shapes, depending on whether in�ation expectations are anchored, unmoored
or contained (or something else). Our �exible parametric approach seems ide-
ally designed for the present problem. It allows the data to determine the
relationship between long term and short term in�ation expectations in an
extremely �exible fashion. Loosely speaking, our approach can be though of
as �nonparametric in spirit�, but ideas drawn from economic theory (primar-
ily through choice of index variables) are used to suggest empirically-useful
directions for the model to look. In this section, we brie�y describe our model.
Bayesian methods for carrying out econometric inference in this model are
described in the appendix. For complete details (and additional motivation
for this �exible parametric approach), see Koop and Potter (2007).
As a �rst step, consider extending (1) to be a time varying parame-

ter (TVP) regression model, written in state space form with measurement
equation given by:

�yt = �t�xt + �""t; (2)

and state equation given by:

�t = �t�1 + ��vt (3)

where "t and vt are i.i.d. N (0; 1) (and independent of one another). This
model is of interest in and of itself (e.g. it allows for the pass through coe¢ -
cient to gradually evolve over time, which might be of empirical relevance),
nests some interesting models (e.g. �v = 0 is the linear model) and textbook
methods for statistical inference are available.
What the �exible parametric approach of Koop and Potter (2007) does

is add two extensions to this familiar framework. These extensions are both
simple (and textbook methods of statistical inference require only very mi-
nor adaptations), but hugely increase the �exibility of the model. These
extensions involve data re-ordering and distance between observations.
To understand what we mean by �data re-ordering�, note that the pre-

ceding state equation was written in natural time ordering (t = 1; ::; T ). But
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we can also write a state equation with the observations ordered in a di¤erent
manner:

�s = �s�1 + �vd (zs; zs�1) vs; (4)

where s indexes a re-ordering (in ascending order) of time according to an
index variable zt. For instance, in our case zt could be short term in�ation
expectations in which case, we re-order the data as zs = 1; ::; T with z1 hav-
ing the lowest in�ation expectations, z2 the second lowest, etc. To aid in
interpretation of the distance function, note that zs and zs�1 will be adjacent
observations (e.g. if the index is short term expected in�ation, then zs�1 will
have the next lowest value of short term expected in�ation to zs). d (zs; zs�1)
is a (non-negative) distance function measuring the distance between adja-
cent observations, zs and zs�1.
These two apparently minor extensions add hugely to the �exibility of

the model. To see the bene�t of data re-ordering, consider a simple struc-
tural break model where the pass through coe¢ cient changes at time � (so
that it is �(1) for t = 1; ::; � and is �(2) for t = � + 1; ::; T ). Next con-
sider the case where the pass through coe¢ cient takes on the value �(1) if
short term in�ation expectations are less than � and is otherwise �(2). Our
methods draw on the fact that these two cases are statistically exactly the
same model, except that one uses the data in natural time ordering and the
other would have all the variables ordered according to short term in�ation
expectations. This is an example of a general result that has long been recog-
nized (see, e.g., Tsay, 1989): many common regime-switching and threshold
regression models are equivalent to regression models with structural breaks
if the data is suitably re-ordered. In words, the state equation for a con-
ventional TVP regression model says �pass through coe¢ cients at similar
points in time are likely to be similar to one another�. Our state equation,
(4), says �pass through coe¢ cients for observations with similar short term
in�ation expectations are likely to be similar to one another�(when we use
short-term in�ation expectations as the index variable). In general, it implies
�pass through coe¢ cients for observations with similar values for the index
variable are likely to be similar to one another�. Nonparametric regression
models estimate the relationship y = f (x) using the idea that observations
with similar values for x imply similar values for f (x) (e.g. kernel algorithms
smooth over neighboring observations). In this sense, our �exible parametric
methods are doing something similar and are nonparametric in spirit (except
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that, unlike many nonparametric approaches, we do not choose a single index
variable to de�ne what we mean by �neighboring observations�).
Thus, simply by allowing for various re-orderings of the data, we can

obtain speci�cations such as those in Potter and Rosenberg (2007). For
instance, their model where in�ation expectations are contained, implies the
pass through coe¢ cient depends on expected in�ation (being highest when
expected in�ation is near a central value, but declining as it moves away
from target). Such a pattern can easily be obtained using our model. But
our model is much more �exible, allowing for di¤erent functional forms than
the inverted-U of Figure 2 of Potter and Rosenberg (2007). Koop and Potter
(2007) explore just how �exible this approach is. But, it is worth noting in
passing that the relationship between state space models and nonparametric
kernel smoothing algorithms is well-developed in the state space literature
(e.g. Harvey, 1989 and Harvey and Koopman, 2000).
An important feature of our approach is that it does not involve selecting

just one index variable. Instead, it allows for a variety of index variables
to be selected. One can treat it as either a model selection device (i.e. the
researcher can select the index variable which receives most support and use
that model) or as a model averaging device (i.e. the researcher can obtain re-
sults using each index variable and then average over them with data-based
weights2). From a purely statistical perspective, there is no reason not to
consider large numbers of di¤erent index variables. Indeed, if we considered
every possible way of re-ordering the data, this class of models would be so
�exible as to be virtually equivalent to a nonparametric model. However,
from an economic perspective, there are strong reasons to limit the set of
index variables. Empirical considerations suggest that time variation in pass
through is worth investigating.3 The theoretical discussion of the preced-
ing section suggests that it is worth investigating whether the magnitude of
the pass through coe¢ cient is related to short term in�ation expectations.
Accordingly, we use the following choices for z:

1. zt = t is natural time ordering

2. zt = ei
(2;5)
t

2In standard Bayesian fashion, these data based weights are proportional to marginal
likelihoods.

3Alternatively, it might be the current or lagged level of in�ation which should be the
index variable. Given the lack of daily data on in�ation, this can be proxied by short term
in�ation expectations.
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3. zt =
���ei(2;5)t � �

���, where � = 2:25%
4. zt = ei

(2;5)
t�1

5. zt =
���ei(2;5)t�1 � �

���.
The second extension of the standard TVP model is to allow for a dis-

tance function, d (zs; zs�1), in (4). This allows for even greater �exibility.
In particular, note that standard TVP state equations such as (3) (or our
state equation, 4, with d (zs; zs�1) = 1 for all s) allow for continual gradual
evolution of the pass through coe¢ cient. By adding the distance function
we relax the �continuous gradual�aspect. Our model does allow for continu-
ous gradual change, but we can also have either irregular change in the pass
through coe¢ cient (e.g. if it is constant over long spells of time) or change
can be more abrupt. To illustrate the latter point, suppose the index variable
is a measure of short-term in�ation expectations and we have d (zs; zs�1) = 1
if zs�1 < � and zs � � , and d (zs; zs�1) = 0 otherwise. Then we have a model
where the pass through coe¢ cient changes abruptly once short-term in�ation
expectations hit a threshold, � .
As argued in Koop and Potter (2007), a �exible distance function is:

d(zs; zs�1) = �(zs)� �(zs�1);

where � (z) is the c.d.f. of the N (�d; �
2
d) evaluated at the point z. Note that

the Normal is quite �exible when used in this context. The Normal can (by
choosing a very large variance) approximate closely the d

�
z�s ; z

�
s�1
�
= zs�zs�1

distance function which is simply the distance between adjacent observations
of the index variable. But it also can (by setting �d to � and choosing a very
small value for �2d) approximate closely a structural break at time � (or an
abrupt change in the pass through coe¢ cient when in�ation expectations hit
a threshold, �). Intermediate values of the variance of the Normal would
allow for a smooth change in the pass through coe¢ cient around a threshold
determined by �d. The advantage of our approach is that we treat �d; �

2
d as

unknown parameters and, thus, the precise shape of the distance function is
estimated from the data.
The interested reader is referred to Koop and Potter (2007) for a great

deal of additional justi�cation for this �exible parametric model. Su¢ ce
it to note here that it can uncover any plausible relationship between the
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pass through coe¢ cient and short term in�ation expectations or any time
variation in the coe¢ cient. But it does so in a way where the data decides
what the relationship is rather than imposing a particular relationship (as is
done in standard regression-based approaches).
The previous material sketches out the basic concepts involved in our

modeling strategy. To complete our empirical speci�cation, we must discuss
our treatment of the conditional variance. So far we have said nothing about
stochastic volatility even though this is potentially important in studies of
in�ation dynamics (see, e.g., Stock and Watson, 2007). We give the condi-
tional variance the same �exible parametric treatment that we give to the
conditional mean. This will nest a standard stochastic volatility model, but
be much more �exible. We also add an intercept to our model. Thus, our
complete model is given by:

�ys = (1;�xs) �s + "s; (5)

where �s is now a 2� 1 vector containing an intercept and the pass though
coe¢ cient. Furthermore,

�s = �s�1 + vs (6)

and vs � N
h
0;
p
d1 (zs; zs�1)Q

i
. The error in the measurement equation,

(5). has the form,

"r = �r exp

�
1

2
�r

�
(7)

where �r � N (0; 1),

�r = �r�1 + �r (8)

and �r � N
h
0;
p
d2 (zr; zr�1)�

2
�

i
. The errors, �t; vt and �t, are independent

at all leads and lags and are independent of one another. Note that the pre-
vious equations involve both s and r subscripts. These denote two di¤erent
re-orderings in time according to two potentially di¤erent index variables.
So, for instance, it is possible that the pass through coe¢ cient varies with
the level of expected in�ation, but the conditional variance varies with time
(i.e. has a standard stochastic volatility speci�cation). The set of index
variables is listed above. Finally, note that we allow for di¤erent distance
functions for the conditional mean and variance.
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Further details of our econometric methods are given in the Technical
Appendix.

4 Empirical Results

This section presents empirical results using daily US data from January 2,
2003 through June 9, 2008. The short term (2-5 year) and long term (9-10
year) in�ation expectations variables were calculated from the US real and
nominal Treasury security yields (from the TIPS market) as described in
Section 2. Potter and Rosenberg (2007) provide more detail of the calcula-
tions and a discussion of the TIPS market. The choices of starting date and
2-5 (9-10) as our de�nitions of short term (long term) are motivated by our
desire to use data from highly liquid markets.
Our econometric models are as described in the previous section. Re-

member that we consider �ve di¤erent orderings (i.e. �ve di¤erent choices
for the index variable) and di¤erent orderings can apply to the parameters
characterizing the conditional mean and conditional variance. Accordingly,
we have 25 di¤erent variants of our model. We note in passing that we exper-
imented with restricted versions of our model where the conditional variance
is constant (but nonlinearities can occur in the conditional mean) and the
standard homoskedastic linear model but these were strongly rejected by the
data and, hence, we do not present results for them here.
Note also that our approach allows for model selection (i.e. choosing the

single model most supported by the data) or model averaging (i.e. averaging
across all models with weights proportional to the marginal likelihoods). We
present results using both approaches.
We present results for a subjectively-elicited but relatively noninformative

prior. Furthermore, in the Empirical Appendix we present results for two
training sample priors. One uses the �rst 200 observations to calibrate the
prior while the other uses the last 200 observations. Full details on our priors
are provided in the Technical Appendix.
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4.1 Model Comparison

We begin in Table 1 with evidence on which models are supported by the
data.4 With regards to the error variance (i.e. �t) a strong story is obtained.
Models which allow for stochastic volatility of a conventional sort (i.e. with
data in natural time ordering) clearly receive much more support than any
other models (i.e. models with other nonlinear patterns in their conditional
variance). But there is some uncertainty over which nonlinear pattern in the
conditional mean �ts the data better. The model with the highest marginal
likelihood has zt =

���ei(2;5)t�1 � �
���. Hence, if we select a single model we would

choose the lagged absolute deviation from � as our index variable. But there
is nearly as much support for some of the other index variables. Indeed, when
doing Bayesian model averaging all of the index de�nitions for ordering �t
will receive non-negligible weight (but for �t, the natural time ordering will
receive virtually 100% of the weight).

4For the non-Bayesian reader, note the logs of marginal likelihoods can be interpreted
in a similar fashion to information criteria. Indeed, the Schwarz criterion is an asymptotic
approximation to the log marginal likelihood.
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Table 1: Marginal Likelihoods for Di¤erent Orderings
Index Variable
for �t

Index Variable
for �t

Log of Marginal
Likelihood

t t 2445.7
t ei

(2;5)
t 2448.7

t
���ei(2;5)t � �

��� 2446.6

t ei
(2;5)
t�1 2449.5

t
���ei(2;5)t�1 � �

��� 2449.7

ei
(2;5)
t t 2413.9

ei
(2;5)
t ei

(2;5)
t 2407.0

ei
(2;5)
t

���ei(2;5)t � �
��� 2418.0

ei
(2;5)
t ei

(2;5)
t�1 2401.0

ei
(2;5)
t

���ei(2;5)t�1 � �
��� 2411.4���ei(2;5)t � �

��� t 2421.5���ei(2;5)t � �
��� ei

(2;5)
t 2409.1���ei(2;5)t � �

��� ���ei(2;5)t � �
��� 2418.3���ei(2;5)t � �

��� ei
(2;5)
t�1 2405.5���ei(2;5)t � �

��� ���ei(2;5)t�1 � �
��� 2418.2

ei
(2;5)
t�1 t 2426.1

ei
(2;5)
t�1 ei

(2;5)
t 2419.7

ei
(2;5)
t�1

���ei(2;5)t � �
��� 2414.4

ei
(2;5)
t�1 ei

(2;5)
t�1 2424.2

ei
(2;5)
t�1

���ei(2;5)t�1 � �
��� 2422.4���ei(2;5)t�1 � �

��� t 2420.5���ei(2;5)t�1 � �
��� ei

(2;5)
t 2421.4���ei(2;5)t�1 � �

��� ���ei(2;5)t � �
��� 2425.8���ei(2;5)t�1 � �

��� ei
(2;5)
t�1 2419.0���ei(2;5)t�1 � �

��� ���ei(2;5)t�1 � �
��� 2426.7
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4.2 Features of Interest

In this section, we present posterior properties of some features of interest.
Given that the main macroeconomic issues hinge on the pass-through coe¢ -
cient, �t, most of the empirical results in this section relate to them.
Figure 1 summarizes the posteriors of the pass through coe¢ cients for a

benchmark case (the standard TVP model) along with the two models using
the index variables which yielded the highest log marginal likelihoods. These
are the cases where zt = ei

(2;5)
t�1 and zt =

���ei(2;5)t�1 � �
���. For the conditional

variance, we always have zt = t (i.e. conventional stochastic volatility) since
this receives overwhelming support from the data. Note that the three panels
of Figure 1 plot the in�ation pass through coe¢ cient against the appropriate
index variable so that each panel has a di¤erent X-axis. The panels contain a
point estimate (the posterior mean) along with credible interval (the interval
between the 16th and 84th percentiles of the posterior).
Note that the in�ation pass through coe¢ cient is small everywhere. For

no value of any index variable does its point estimate go above 0.3 and the
credible intervals are fairly tight around the point estimate. Thus, there
is strong evidence against the unmoored in�ation expectations hypothesis.
However, the in�ation pass through coe¢ cient is also not constant and near
zero as would be suggested by �rmly anchored in�ation expectations.
Our results are most consistent with contained in�ation expectations.

Remember that this hypothesis involved the existence of an interval, inside
which investors expected the Fed to keep in�ation. It implied that the in�a-
tion pass through coe¢ cient should decrease near the bounds of the interval.
However, near the middle of the interval, the coe¢ cient would be quite large
(potentially even being near one). The results for our most probable model

(i.e. the one where
���ei(2;5)t�1 � �

��� is the index variable) are consistent with this
pattern (see the bottom panel of Figure 1). When short term in�ation expec-
tations are near � there is a fair degree of persistence (i.e. the in�ation pass
through coe¢ cient is around 0.2), but if they deviate more than one per-
cent from � then the persistence vanishes (i.e. the pass through coe¢ cient
is virtually zero). This pattern is also consistent with a less rigid form of the
contained in�ation expectations hypothesis where investors believe that the
Fed will not act strongly to correct small deviations from � (e.g. less than
1% deviations), but will increasingly tend to act as deviations become larger.
In summary, if we select a single model with the highest marginal likelihood,
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we are not �nding evidence for either unmoored nor �rmly anchored in�ation
expectations, but rather something in between where in�ation expectations
are contained.
Figure 2 present point estimates of the in�ation pass through coe¢ cients,

but averaged over all models (and plotted with the X-axis ordered in three
di¤erent ways).5 Note that, unlike Figure 1, the three panels in Figure 2
do not correspond to di¤erent models, but instead are presenting the same
information but ordered in di¤erent ways. In the bottom panel of Figure 2
we see again the pattern consistent with contained in�ation expectations.
Figures 1 and 2 highlight two quali�cations of this story. First, results

using zt = ei
(2;5)
t�1 as the index variable indicate that the pass through coe¢ -

cient is near zero when short term in�ation expectations are low (i.e. below
�), but is higher when they are high (above �). We stress that this index

variable yields a lower marginal likelihood than using
���ei(2;5)t�1 � �

���, so we place
less weight on this model. Nevertheless, it suggests that the evidence of con-
tained in�ation expectations is mostly coming from periods where ei(2;5)t�1 < �.
Looking at the raw data, � is approximately the mean of ei(2;5)t , the distrib-
ution of ei(2;5)t about this mean is asymmetric with more extreme deviations
occurring below than above the mean. It is these larger deviations below the
mean (which often occur near the beginning of our sample) which are playing
a large role in our �nding of contained in�ation expectations.
Second, the results using zt = t (a model which, of the three plotted in

Figure 1, has much the lowest marginal likelihood) indicate that the in�ation
pass through coe¢ cient was lower at the beginning of our sample period. This
is consistent with the �nal statement in the preceding paragraph.
These results are obtained using a subjectively-elicited, but relatively

noninformative prior. In order to investigate possible prior sensitivity, we
have also produced results using two training sample priors. These are in
the Empirical Appendix and the interested reader can look at them in detail.
Here we note that the basic story outlined above is robust. That is, we are
�nding no evidence for either unmoored or �rmly anchored in�ation expec-
tations. In�ation expectations do seem to be better characterized as being
contained. However, observations at the beginning of the sample do play a

5The rather irregular patterns of the posterior means in some places are due to our
averaging over models which order the data in very di¤erent ways. To keep the graphs
uncluttered we do not include credible intervals (their approximate width is similar to
those in Figure 1).
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disproportionate role in this �nding.

Figure 1: Posterior Means of Pass-through Coe¢ cient for Models with
Di¤erent Index Variables (with 16th-84th percentile bands)
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Figure 2: Posterior Means of Pass-through Coe¢ cient. Averaged Over All
Models. Plotted Against Di¤erent Index Variables

The main stories in our paper relate to the in�ation pass through coef-
�cient. However, our empirical results are clearly indicating that the error
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variance is not constant over time. In fact, Table 1 shows that there is strong
evidence of stochastic volatility of a conventional sort in this data set. Ac-
cordingly, we present Figure 3 which plots posterior results relating to the
conditional variance in a similar format to Figure 1. That is, the three panels
of Figure 3 correspond to the same three models as in Figure 1 (although all
of these use the same index for the conditional variance and accordingly all
have time as the X-axis). Remember that Table 1 indicates strong support
for conventional stochastic volatility (so e.g. there is no support for the idea
that the error variance depends on the level of short term in�ation expecta-
tions). All three panels of Figure 3 look very similar and indicate that the
error variance has been �uctuating substantially over time.
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Figure 3: Posterior Means of Conditional Variances for Models with
Di¤erent Index Variables (with 16th-84th percentile bands)
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5 Conclusions

In this paper, we have investigated the relationship between short-term and
long-term in�ation compensation. We focus on the in�ation pass-through
coe¢ cient which measures how changes in short-term expectations impact
on long term expectations. We use a �exible parametric approach which
allows this pass through coe¢ cient to vary over time or vary with the level of
short term in�ation expectations or vary with absolute deviations of in�ation
expectations from a central value. Furthermore, the relationship between the
pass through coe¢ cient and any of these index variables can have virtually
any functional form.
Our empirical results indicate that, although there is a fair degree of

model uncertainty, that most support goes to a model where the in�ation pass
through coe¢ cient depends on the absolute deviation of short term in�ation
expectations from a central value and that the shape of this relationship is
consistent with a theoretical model of contained in�ation expectations.
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Technical Appendix
The Markov chain Monte Carlo (MCMC) algorithm for the �exible para-

metric model is fully described in Koop and Potter (2007) and the reader is
referred there for complete details. Here we just sketch out the basic ideas.
The advantage of our approach is that we can draw upon standard state space
algorithms. We begin by describing how to do MCMC for a given choice of
two index variables (one controlling variation in the conditional mean, the
other in the conditional variance).
The model is given in (5), (6), (7) and (8). To draw �t for t = 1; ::; T

(or when we re-order the data, �s for s = 1; ::; T ), we use the algorithm of
Durbin and Koopman (2002). We use the algorithm of Kim, Shephard and
Chib (1998) (when necessary using suitably re-ordered data) to draw �r for
t = 1; ::; T (or �r for r = 1; ::; T when we re-order the data).
For Q and ��2� we use inverted-Wishart and Gamma priors, respectively.

Note that, conditional on the states, the state equations reduce to simpli�ed
variants of linear regression models. Thus, for our priors and conditional
on draws of the states, the posterior for Q takes the usual inverted-Wishart
form (see, e.g., Koop, 2003, pages 140-141) and the posterior of ��2� takes
the usual Gamma form (see, e.g., Koop, 2003, pages 61-62).
For any given ordering, we need to draw the parameters of the distance

functions. The number of parameters in these is only four. That is, we
have a �d and a �

2
d for the distance function in (6) as well as (8). Random

Walk Chain Metropolis-Hastings algorithms (see, e.g., Chib and Greenberg,
1995) work well in low-dimensional models such as this and we use such an
algorithm. Koop and Potter (2007) gives the formulae for the acceptance
probabilities.
The preceding material described our MCMC algorithm, given a partic-

ular choice of index variables. To average over index variables (or select a
particular choice), we must calculate the marginal likelihood for each choice.
We use the approach of Gelfand and Dey (1994) to do so.
With regards to the prior, we use a subjective (but relatively noninfor-

mative) prior as well as two training sample priors. The subjective prior is
similar to that motivated in Koop and Potter (2007) and the reader is re-
ferred to that paper for a detailed justi�cation. Note that all of our models
have the same dimension, so some problems with the use of relatively non-
informative priors (e.g. Bartlett�s paradox) do not arise. The key priors are
those for the initial conditions, the error variances in the state equations and
those for the parameters of the distance functions. For these, we use the
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same priors for every choice of index variables.
In particular, we assume priors of the form:6

Q � iW
�
Q; q

�
;

��2� � G
�
a�; b�

�
;

�1 � N (�; V �) ;

�1 � N
�
�; V �

�
;

�d � N
�
�; V �

�
and

��2d � G (ad; bd)
The subjective prior is obtained setting � = �5, V � = 10, � = 0

and V � = 10 � I2. Furthermore, a� = 400, b� = 2, q = 50 and Q =�
0:001 0:000
0:000 0:005

�
.

For the training sample priors, we use either the �rst or the last 200
observations. Based on OLS results using either training sample we specify
the prior parameters for the initial conditions as � = log(�̂2OLS), V � = 10,

� = b�OLS and V � = 10 � var �b�OLS�. We then set a� = 400, b� = 2, q = 50
and Q = 0:01 (50� 3) var

�b�OLS�.
The hyperparameters of both distance function priors are the same for

the training sample priors and the subjective prior and set at � = 0, V � = 1,
ad = 1:0 and bd = 1:0.

6The Gamma is parameterized so that G (a; b) has mean
a

b
and variance

a

b2
. The

inverted Wishart is parameterized so that iW (A; a) has expected value
A

a� p� 1 where
p is the dimension.
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Empirical Appendix
In this appendix, we present posterior results for our two training sample

priors. Figures A.1 and A.2 are in the same format as Figures 1 and use the
last 200 observations and the �rst 200 observations, respectively, to calibrate
the prior. Table A.1 is comparable to Table 1 and contains log marginal
likelihoods for di¤erent index variables.
Consider �rst the training sample using the last 200 observations. Table

A.1 indicates that the most preferred model has the index variable being the
absolute deviation from �. Figure A.1 looks very similar to Figure 1. This
strongly supports the idea that our results are robust to prior choice.
Results using the �rst 200 observations, though, exhibit less robustness.

The models with highest marginal likelihoods are not those where the index
is the absolute deviation from �, but rather simply the level of short term
in�ation expectations (or its lag). This is consistent with the idea discussed
in the body of the paper: That the �rst observations (which are set aside for
this training sample, but are included with the other priors) are important
in providing support for the model where the index is the absolute deviation
from �. Nevertheless, most aspects of our basic story (i.e. that in�ation
expectations seem not to be unmoored nor anchored, but rather are contained
in some way) are left unchanged.
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Figure A.1: Posterior of Pass-through Coe¢ cient for Models with Di¤erent
Index Variables (Training sample last 200 observations)
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Figure A.2: Posterior of Pass-through Coe¢ cient for Models with Di¤erent
Index Variables (Training sample �rst 200 observations)
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Table A.1: Marginal Likelihoods for Di¤erent Orderings
Training sample: Last 200 obs. First 200 obs.

Index Variable
for �s

Index Variable
for �s

Log of Marginal
Likelihood

Log of Marginal
Likelihood

t t 2122.3 2164.3
t ei

(2;5)
t 2133.9 2173.6

t
���ei(2;5)t � �

��� 2138.4 2166.2

t ei
(2;5)
t�1 2136.0 2175.7

t
���ei(2;5)t�1 � �

��� 2136.2 2169.6

ei
(2;5)
t t 2108.3 2150.3

ei
(2;5)
t ei

(2;5)
t 2107.2 2142.3

ei
(2;5)
t

���ei(2;5)t � �
��� 2107.7 2144.5

ei
(2;5)
t ei

(2;5)
t�1 2107.4 2147.8

ei
(2;5)
t

���ei(2;5)t�1 � �
��� 2109.9 2145.9���ei(2;5)t � �

��� t 2098.5 2146.6���ei(2;5)t � �
��� ei

(2;5)
t 2099.5 2154.0���ei(2;5)t � �

��� ���ei(2;5)t � �
��� 2091.7 2143.3���ei(2;5)t � �

��� ei
(2;5)
t�1 2092.6 2151.8���ei(2;5)t � �

��� ���ei(2;5)t�1 � �
��� 2100.9 2150.2

ei
(2;5)
t�1 t 2118.1 2150.8

ei
(2;5)
t�1 ei

(2;5)
t 2114.6 2146.1

ei
(2;5)
t�1

���ei(2;5)t � �
��� 2114.4 2142.8

ei
(2;5)
t�1 ei

(2;5)
t�1 2117.2 2147.4

ei
(2;5)
t�1

���ei(2;5)t�1 � �
��� 2113.1 2148.7���ei(2;5)t�1 � �

��� t 2101.5 2147.0���ei(2;5)t�1 � �
��� ei

(2;5)
t 2097.3 2158.7���ei(2;5)t�1 � �

��� ���ei(2;5)t � �
��� 2100.9 2151.8���ei(2;5)t�1 � �

��� ei
(2;5)
t�1 2091.6 2147.8���ei(2;5)t�1 � �

��� ���ei(2;5)t�1 � �
��� 2098.8 2145.7
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