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Abstract

A Ramsey planner knows that a representative agent distrusts a probability model
for exogenous sequences of government expenditures. The representative agent ex-
presses ambiguity aversion by using multiplier preferences of Maccheroni et al. (2006a,b)
to order consumption, leisure plans. Because equilibrium prices embed the represen-
tative agent’s worst case model, the planner has an incentive to manipulate them. We
provide a recursive representation of the planner’s problem and show how the repre-
sentative agent’s ambiguity aversion puts history dependence into taxes, allocations,
and government debt. We use expansions in a single robustness parameter to illustrate
the impacts of ambiguity aversion on the Ramsey plan.

Key words: Ramsey plan, misspecification, robustness, optimal expectations, taxes, debt,
martingale.

1 Introduction

This paper withdraws complete confidence in the probability model describing histories of
government expenditures from the representative household of Lucas and Stokey (1983). A
Ramsey planner still trusts that probability model. The household has a set of probability
measures and ranks consumption plans according to a max-min expected utility criterion
as in Gilboa and Schmeidler (1989). That change in Lucas and Stokey’s model alters the
behavior of Ramsey allocations, taxes, and debt in promising ways for applications.
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The representative household’s max-min expected utility behavior builds its worst-case
beliefs about probabilities into equilibrium Arrow-Debreu prices. The Ramsey planner affects
taxes and prices partly by manipulating the worst-case beliefs of the household. The Ramsey
planner becomes a Stackelberg leader who plays against two followers, the maximizing part
of the representative household and the household’s malevolent alter ego who chooses its
worst case probability measure. Relative to the planner in Lucas and Stokey (1983), the
Ramsey planner faces additional implementability constraints that summarize the activities
of the household’s malevolent partner.

The absence of history dependence in allocations, tax rates, and government debt is a
salient feature of the Ramsey plan of Lucas and Stokey (1983). For example, with Markov
government expenditures, the value of government debt at date t depends only on the date
t value of the Markov state driving government expenditures. Lucas and Stokey failed
to rationalize the permanent-income like predictions of Barro (1979) that put extensive
history dependence into tax rates and government debt. The impression that observed
time series of government debt and taxes have actually exhibited history dependence –
observed series on government debt are much smoother series than the Lucas-Stokey model
and more like those in Barro’s model – prompted Aiyagari et al. (2002) and Battaglini and
Coate (2007) to put history dependence into a Ramsey plan, in the model of Aiyagari et al.
(2002), or a political-economic bargaining equilibrium, in the model of Battaglini and Coate
(2007), by dropping Lucas and Stokey’s assumption of complete markets. In this paper, we
retain the assumption of complete markets, but find that the government manipulates the
representative household’s beliefs in ways that induce history dependence in allocations, tax
rates, and government debt.

The assumption of rational expectations attributes a unique and fully trusted model to
all agents. That assumption precludes carrying out a coherent analysis that attributes fears
of misspecification to some or all agents. There remain many open questions about fruitful
ways to formulate problems where some agents doubt the common model attributed to them
under rational expectations. In this paper, we adopt a particular formulation of the problem
that is designed to isolate the influence of the household’s beliefs on equilibrium prices and,
since prices and allocation reveal them, on the Ramsey planner’s incentives to manipulate
those beliefs.

Other contributions that share our aim of attributing misspecification fears to at least
some agents include Kocherlakota and Phelan (2006), who study a mechanism design prob-
lem using a max-min expected utility criterion and Hansen and Sargent (2007, ch. 16), who
formulate a linear-quadratic model in which a Stackelberg leader distrusts an approximating
model while assuming that a competitive fringe of followers completely trusts it.1 Hansen
and Sargent’s assumptions about the leader’s and followers’ concerns about misspecification
in effect reverse the ones made here. In several ways, Woodford (2005) is the most interesting
previous paper for us because he also uses a general equilibrium model and because of the
subtle way that Woodford chose to set up the timing of events to conceal the private sector’s
beliefs from the government, which plays the role of Stackelberg leader in his model. In

1Our work is also linked in a general sense to that of Brunnermeier et al. (2007), who study a setting in
which households choose their beliefs.
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Woodford’s model, while both the government and the private sectors fully trust their own
models, the government distrusts its knowledge of the private sector’s beliefs about prices.
Arranging things so that this is possible is subtle because with enough markets, equilibrium
prices and allocations reveal private sector beliefs. In contrast to Woodford, we set things up
with complete markets with market prices that fully reveal private sector beliefs, a feature
that the Ramsey planner recognizes and exploits.

Any analysis of agents’ fear of model misspecification requires a way to express those fears
by representing a set of alternative models that agents think might govern the data. Along
with Woodford (2005), this paper uses an approach of Hansen and Sargent (2005, 2006)
and Hansen et al. (2006) that uses martingales with respect to an approximating model to
define likelihood ratios that represent model misspecifications that can be difficult to detect
statistically. These martingale perturbations look like multiplicative preferences shocks. In
the present context, the Ramsey planner has the ability and the motives to manipulate those
‘shocks’.

It would be natural to attribute specification fears to the Ramsey planner as well as to the
household. We refrain from doing so in this paper in order to highlight some economic forces
while keeping the analysis as simple as possible. Formulating the problem in its present
form has taught us how to formulate models that also attribute specification concerns to the
planner, but we postpone presenting that work to another paper.2

In section 2, we modify the model of Lucas and Stokey (1983) by having a representa-
tive household that entertains its fear of misspecification using the multiplier preferences of
Hansen and Sargent (2005, 2006). In section 3, we characterize the Ramsey problem, show-
ing how fear of misspecification induces history dependence in the optimal allocation, taxes,
and government debt. In section 4, we identify the appropriate state variables and formulate
the Ramsey problem recursively by applying the techniques of Marcet and Marimon (1998).
Section 5 provides a simple example with a random fiscal shock at an arbitrary period in
an otherwise deterministic environment. In section 6, we employ an expansion around the
no-robustness case and exhibit the effects of concerns about misspecification on the Ramsey
plan for quasi-linear utility and for the utility function of Aiyagari et al. (2002). Section 7
concludes.

2 The economy

We adopt the same physical specification of the economy made by Lucas and Stokey (1983)
and Aiyagari et al. (2002). Time t ≥ 0 is discrete and the horizon infinite. Labor is
the only input into a linear technology that produces one perishable good that can be
allocated to private consumption ct or government consumption gt. Markets are complete
and competitive. The only source of uncertainty is an exogenous sequence of government
expenditures gt that potentially takes on a finite or countable number of values. Let gt =
(g0, ..., gt) denote the history of government expenditures. Equilibrium plans for work and
consumption have date t components that are measurable functions of gt. A representative

2A line of attack using martingale perturbations is set forth in Sargent (2005).
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agent is endowed with one unit of leisure, works ht(g
t), and consumes ct(g

t) at history gt for
each t ≥ 0. One unit of labor can be transformed into one unit of good. Feasible allocations
satisfy

ct(g
t) + gt = ht(g

t). (1)

Competition makes the real wage wt(g
t) = 1 for all t ≥ 0 and any history gt. The government

finances its time t expenditures either by using a linear tax τt(g
t) on labor income or, in effect,

by issuing a vector of state-contingent debt bt+1(gt+1, g
t) that is sold at price pt(gt+1, g

t) at
history gt and promises to pay one unit of the consumption good if government expenditures
are gt+1 next period and zero otherwise. The one-period government budget constraint at t
is

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1|gt)bt+1(gt+1, g
t). (2)

But we shall typically work with an Arrow-Debreu formulation in which all trades occur
at date 0 at Arrow-Debreu history- and date-contingent prices qt(g

t). In this setting, the
government faces the single intertemporal budget constraint

b0 +
∞∑

t=0

∑

gt

qt(g
t)gt ≤

∞∑
t=0

∑

gt

qt(g
t)τt(g

t))ht(g
t).

2.1 Fear of model misspecification

The representative agent and the government share an approximating model in the form of
a sequence of joint densities πt(g

t) over sequences of histories gt ∀t ≤ ∞. The representa-
tive agent, but not the government, fears that the approximating model is misspecified in
the sense that the history of government expenditures will actually be drawn from a joint
density that, while different from the approximating model, is absolutely continuous with
respect to the approximating model over finite time intervals. Following Hansen and Sargent
(2005), we use perturbations that are martingales with respect to the approximating model
to characterize model misspecifications. Thus, by the Radon-Nikodym theorem, there exists
a non-negative random variable Mt with E(Mt) = 1 that is a measurable function of the
history gt and that has the interpretation of a change of measure. The random variable

Mt, which we take as a likelihood ratio Mt(g
t) = π̃t(gt)

πt(gt)
of a distorted to the approximating

density, is a martingale, i.e., EtMt+1 = Mt where E denotes expectation with respect to the
approximating model. Here the tilde refers to a distorted model. Evidently, we can compute
the mathematical expectation of a random variable Xt(g

t) under a distorted measure as

Ẽ(Xt) = E(MtXt).

To attain a convenient decomposition of Mt, define

mt+1 ≡ Mt+1

Mt

for Mt > 0
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and let mt+1 ≡ 1 when Mt = 0, (i.e., when the distorted model assigns zero probability to a
particular history). Then

Mt+1 = mt+1Mt (3)

= M0

t+1∏
j=1

mj.

The non-negative random variable mt+1 distorts the conditional probability of history gt+1

given history gt, so that it is a conditional likelihood ratio mt+1 = π̃t(gt+1|gt)
πt(gt+1|gt)

. It has to satisfy
the restriction that Etmt+1 = 1 in order to be an appropriate distortion to the conditional
measure. The conditional entropy of the distortion is

E(mt+1 log mt+1|gt).

Following Hansen and Sargent (2006), we shall in effect constrain the set of perturbations
by the following constraint on a measure of discounted entropy 3

βE
[ ∞∑

t=0

βtMtE(mt+1 log mt+1|gt)
∣∣∣g0

]
≤ η (4)

where η measures the size of an entropy ball of models surrounding the approximating model.

2.2 Preferences

To represent fear of model misspecification, we use the multiplier preferences of Hansen and
Sargent (2001) and Hansen et al. (2006) to describe how the representative consumer ranks
consumption, leisure plans whose time t components are measurable functions of gt:

min
{mt+1,Mt}∞t=0≥0

∞∑
t=0

βt
∑

gt

πt(g
t)Mt(g

t)U(ct(g
t), 1− ht(g

t)) + βθ
∞∑

t=0

∑

gt

βtMt(g
t)εt(mt+1) (5)

where U(ct, 1− ht) is the same period utility function assumed by Lucas and Stokey (1983),
the multiplier θ > 0 is a penalty parameter that measures fear of model misspecification, and
εt(mt+1) ≡ Etmt+1 ln mt+1 is relative entropy between one-step conditional distributions.4

Along with Lucas and Stokey, we assume that U(c, 1 − h) is strictly increasing, strictly
concave, and thrice continuously differentiable.5

3This constraint would be used to formulate the constraint preferences of Hansen and Sargent (2001).
They discuss the relation between constraint preferences and the multiplier preferences featured in this paper
and show how to construct η ex post as a function of the multiplier θ in (5) and other parameters.

4These preferences have been axiomatized and linked to ambiguity aversion by Maccheroni et al. (2006a,b).
5Strict concavity is not be satisfied for the quasi-linear example to be studied in subsection 6.2.
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2.3 The representative household’s problem

For any sequence of random variables {at}, let a ≡ {at(g
t)}t,gt . The problem of the consumer

is6

max
c,h

min
M≥0,m≥0

∞∑
t=0

βt
∑

gt

πt(g
t)Mt(g

t)
[
U(ct(g

t), 1− ht(g
t))

+θβ
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) ln mt+1(g

t+1)
]

subject to

∞∑
t=0

∑

gt

qt(g
t)ct(g

t) ≤
∞∑

t=0

∑

gt

qt(g
t)(1− τt(g

t))ht(g
t) + b0 (6)

ct(g
t) ≥ 0,∀t, gt (7)

Mt+1(g
t+1) = mt+1(g

t+1)Mt(g
t),M0 = 1∀t, gt (8)∑

gt+1

πt+1(gt+1|gt)mt+1(g
t) = 1,∀t, gt (9)

The first constraint is the intertemporal budget constraint of the household which is unique
since the markets are assumed to be complete with prices at time zero qt(g

t) of Arrow-Debreu
securities. The right side is the discounted present value of after tax labor income plus an
initial asset position b0 that can assume positive (denoting a government debt) or negative
(denoting government assets) values.

2.4 The inner problem: choosing beliefs

The inner problem chooses (M,m) to minimize the utility of the representative household
subject to the law of motion of the martingale and the restriction that the conditional
distortion m integrates to unity. The optimal distortion takes the form (for the derivation
see appendix A.1):

m∗
t+1(g

t+1) =
exp

(
−Vt+1(gt+1)

θ

)

∑
gt+1

πt+1(gt+1|gt) exp
(
−Vt+1(gt+1)

θ

) , all t ≥ 0, gt (10)

where the asterisks denote optimal values and Vt is the utility of the household under the
distorted measure, which follows the recursion

Vt = U(ct, 1− ht) + β[Etm
∗
t+1Vt+1 + θEtm

∗
t+1 ln m∗

t+1]. (11)

6We assume that uncertainty at t = 0 has been realized, so π0(g0) = 1. Thus, the distortion of the
probability of the initial period is normalized to be unity, so that M0 ≡ 1.
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Equations (10) and (11) are the first-order conditions for the minimization problem with
respect to mt+1 and Mt. Substituting (10) into (11) gives

Vt = U(ct, 1− ht) +
β

σ
ln Et(exp(σVt+1)) (12)

where σ ≡ −1/θ. Thus, the martingale distortion evolves according to

M∗
t+1 =

exp (σVt+1(g
t+1))∑

gt+1
πt+1(gt+1|gt) exp (σVt+1(gt+1))

M∗
t ,M0 ≡ 1 (13)

Equation (13) asserts that the martingale distortion attaches higher probabilities to histories
with low utility and lower probabilities to histories with high value. Such exponential tilting
of probabilities summarizes how the representative household’s distrust of the approximating
model gives rise to conservative probability valuations that give rise to an indirect utility
function that solves the recursion (12), which is an example of the discounted risk-sensitive
preferences of Hansen and Sargent (1995).

2.5 Outer problem: choosing {ct, ht} plan

An interior solution to the maximization problem of the household gives rise to the intratem-
poral labor supply condition

Ul(g
t)

Uc(gt)
= 1− τt(g

t) (14)

that equates the MRS between consumption and leisure to the after tax wage rate and the
intertemporal Euler equation

qt(g
t) = βtπt(g

t)M∗
t (gt)

Uc(g
t)

Uc(g0)
. (15)

Here we have normalized the price of an Arrow-Debreu security at t = 0 to unity q0(g0) ≡ 1.
The implied price of one-period state-contingent debt (an Arrow security) is

pt(gt+1, g
t) = βπt+1(gt+1|gt)m∗

t+1(g
t+1)

Uc(g
t+1)

Uc(gt)
(16)

Remark 2.1. The worst-case beliefs M∗
t influence the asset prices via (15). Their presence

creates an avenue by which a Ramsey planner influences an allocation that is not present in
Lucas and Stokey (1983).

Definition 2.2. A competitive equilibrium is a consumption-labor allocation (c, h), distor-
tions to beliefs (m,M), a price system q, and a government policy (g, τ) such that (a) given
(q, τ), (c, h) and (m,M) solve the household’s problem, and (b) markets clear ct(g

t) + gt =
ht(g

t)∀t, gt.
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3 Ramsey Problem

A Ramsey planner chooses distortionary taxes on labor income and state-contingent debt
at every history. In this paper, we assume that while the representative household distrusts
the approximating model π, the Ramsey planner completely trusts it. The Ramsey planner
chooses a competitive equilibrium allocation that maximizes the expected utility of the rep-
resentative household under the approximating model . This assumption imposes a degree of
paternalism because the planner imposes its full confidence in the model when evaluating
the household’s expected utility. In Karantounias et al. (2007), we study alternative sets of
assumptions that allow the Ramsey planner to doubt the approximating model and also pos-
sibly instruct the planner to evaluate expected utilities using the representative household’s
beliefs.

We use the same primal approach employed by Lucas and Stokey (1983). The Ramsey
planner chooses allocations subject to the resource constraint (1) and some implementability
constraints imposed by competitive equilibrium.

Proposition 3.1. The Ramsey planner faces the following implementability constraints

∞∑
t=0

βt
∑

gt

πt(g
t)M∗

t (gt)Uc(g
t)ct(g

t) =
∞∑

t=0

βt
∑

gt

πt(g
t)M∗

t (gt)Ul(g
t)ht(g

t)) + Uc(g0)b0, (17)

the law of motion for the martingale that represents distortions to beliefs ( 13), and the
recursion for the representative household’s value function (12).

Proof. Besides the resource constraint, the CE is characterized fully by the household’s
two Euler equations, the intertemporal budget constraint (6) that holds with equality at
an optimum, and equations (13) and (12), which describe the evolution of the endogenous
beliefs of the agent. Use (14) and (15) to substitute for prices and after tax wages in the
intertemporal budget constraint to obtain (17).

Definition 3.2. The Ramsey problem is

max
(c,h,M∗,V )

∞∑
t=0

βt
∑

gt

πt(g
t)U(ct(g

t), 1− ht(g
t))

subject to

∞∑
t=0

βt
∑

gt

πt(g
t)M∗

t (gt)[Uc(g
t)ct(g

t)− Ul(g
t)ht(g

t)] = Uc(g0)b0 (18)

ct(g
t) + gt = ht(g

t),∀t, gt (19)

M∗
t+1(g

t+1) =
exp (σVt+1(g

t+1))∑
gt+1

πt+1(gt+1|gt) exp (σVt+1(gt+1))
M∗

t (gt),M0(g0) = 1, ∀t, gt (20)

Vt(g
t) = U(ct(g

t), 1− ht(g
t)) +

β

σ
ln

∑
gt+1

πt+1(gt+1|gt) exp
(
σVt+1(g

t+1)
)

, ∀t, gt, t ≥ 1 (21)
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Remark 3.3. The presence of the distorted beliefs in (17) changes this from the Ramsey
problem studied by Lucas and Stokey (1983). The endogeneity of the representative house-
hold’s worst-case beliefs about probabilities contributes two additional implementability con-
straints that describe their evolution. The Ramsey planner takes into account how the alloca-
tion (c, h) that he chooses affects the utility of the agent Vt(g

t) and therefore the endogenous
likelihood ratio M∗

t (gt) and thereby the representative households’ agent’s worst-case beliefs.
In effect, the Ramsey problem is now a Stackelberg game with one leader and two followers,
namely, the representative household and the representative household’s malevolent alter ego
who, by choosing a worst-case probability distortion, inspires the household to value robust
decision rules.

3.0.1 First best

By first-best, we mean the allocation that maximizes the expected utility of the household
under π subject to the resource constraint (1). Note that for any kind of beliefs of the planner,

the first-best is characterized by the condition Ul(g
t)

Uc(gt)
= 1 and the resource constraint (1). So

the efficient allocation (ĉ, ĥ) is independent of probabilities π. The distorted beliefs of the
private sector affect asset prices through (15), but not the allocation. The planner’s and
the household’s beliefs both affect allocations in our second-best world without lump-sum
taxation.

3.1 Lagrangian formulation of commitment problem

Attach the multipliers Φ, βtπt(g
t)λt(g

t), βt+1πt+1(g
t+1)µt+1(g

t+1), and βtπt(g
t)ξt(g

t) to con-
straints (17), (1), (13), and (12), respectively, and form the Lagrangian

L =
∞∑

t=0

βt
∑

gt

πt(g
t)

{
U

(
ct(g

t), 1− ht(g
t)

)− λt(g
t)

(
ct(g

t) + gt − ht(g
t)

)

−
∑
gt+1

βπt+1(gt+1|gt)µt+1(g
t+1)

[
M∗

t+1(g
t+1)− exp(σVt+1(g

t+1))∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(gt+1))
M∗

t (gt)
]

−ξt(g
t)

[
Vt(g

t)− U
(
ct(g

t), 1− ht(g
t)

)− β

σ
ln

∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(g
t+1))

]}

+Φ
[ ∞∑

t=0

βt
∑

gt

πt(g
t)M∗

t (gt)Ω(ct(g
t), ht(g

t))− Uc(g0)b0

]

where
Ω(ct(g

t), ht(g
t)) ≡ Uc(g

t)ct(g
t)− Ul(g

t)ht(g
t). (22)

First-order necessary conditions are

• ct(g
t), t ≥ 1 :

(1 + ξt(g
t))Uc(g

t) + ΦM∗
t (gt)Ωc(g

t) = λt(g
t) (23)
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• ht(g
t), t ≥ 1 :

−(1 + ξt(g
t))Ul(g

t) + ΦM∗
t (gt)Ωh(g

t) = −λt(g
t) (24)

• M∗
t (gt), t ≥ 1 :

µt(g
t) = ΦΩ(gt) + β

∑
gt+1

πt+1(gt+1|gt)m∗
t+1(g

t+1)µt+1(g
t+1) (25)

• Vt(g
t) :

ξt(g
t) = σm∗

t (g
t)M∗

t−1(g
t−1)

[
µt(g

t)−
∑
gt

πt(gt|gt−1)m∗
t (g

t)µt(g
t)

]
+ m∗

t (g
t)ξt−1(g

t−1)

(26)

• c0(g0) :

(1 + ξ0)Uc(g0) + ΦM0Ωc(g0) = λ0(g0) + ΦUcc(g0)b0 (27)

• h0(g0) :
−(1 + ξ0)Ul(g0) + ΦM0Ωh(g0) = −λ0(g0)− ΦUcl(g0)b0 (28)

We detail the derivation of the first-order condition with respect to Vt(g
t) in appendix A.2.

In (25) and (26), we used m∗
t+1(g

t+1) = exp(σVt+1(g
t+1))/

∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(g
t+1))

to save notation.

Remark 3.4. Note that in formulating the Ramsey problem, the last constraint (12) applies
only from period one on since the value of the agent at t = 0 V0 is not relevant to the
problem due to the normalization M0 ≡ 1. However, it is more convenient in constructing
the Lagrangian to include it. We can set ξ0 = 0 to accommodate this. Equivalently, we could
maximize with respect to V0 to get an additional first-order condition ξ0 = 0.

Remark 3.5. Since ξ0 = 0,M0 = 1, the first-order conditions (27, 28) for (c0, h0) are
equivalent with those for the Lucas and Stokey (1983) case where the representative consumer
fears no misspecification.

The first-order conditions (23), (24), (25), (26), (27), (28) together with equations (18),
(19), (20), and (21) determine the solution to the Ramsey problem.
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3.2 Characterizing the Ramsey plan

In the first-order condition (23)

Uc(g
t) + ξt(g

t)Uc(g
t) + ΦM∗

t (gt)Ωc(g
t) = λt(g

t)

the first term on the left represents the marginal utility the Ramsey planner gets by increasing
consumption by one unit. The second term on the left takes into account how increasing
consumption affects the representative household’s value function, and consequently it worst-
case model perturbation M∗

t+1. As we shall see later, the multiplier ξt serves as a state variable
in a recursive statement of the Ramsey problem. Note that if the Ramsey planner were not to
take into account that the worst-case beliefs of the representative household are endogenous,
this term would be zero. The third term on the left represents the typical constraints that a
competitive equilibrium allocation imposes on the Ramsey planner, but with a twist coming
from the fact that the prices reflect the representative household’s worst-case beliefs. The
right side represents the shadow value of output. Analogous interpretations apply to the
first-order condition (24) for ht.

Derivatives of Ω with respect to c and g are

Ωc(g
t) = Ucc(g

t)ct(g
t)− Ulc(g

t)ht(g
t) + Uc(g

t) (29)

Ωh(g
t) = Ull(g

t)ht(g
t)− Ulc(g

t)ct(g
t)− Ul(g

t) (30)

Substituting these into (23) and (24) and combining them to eliminate the shadow value of
output λt results in
(
1 + ξt(g

t) + ΦM∗
t (gt)

)
(Ul(g

t)− Uc(g
t)) = ΦM∗

t (gt)
[
Ucc(g

t)ct(g
t)− Ucl(g

t)(ct(g
t) + ht(g

t))
+ Ull(g

t)ht(g
t)

]
. (31)

This condition influences the optimal allocation by describing the optimal wedge between
marginal utility of consumption and leisure (Ul − Uc).

Performing analogous steps for t = 0 and eliminating λ0, we get

(1 + Φ)(Ul(g0)− Uc(g0)) = Φ
[
Ucc(g0)(c0 − b0)− Ucl(g0)(c0 − b0 + h0) + Ull(g0)h0

]
. (32)

Note that if the initial debt b0 = 0, condition (32) would be the same as (31) since (M0, ξ0) =
(1, 0). Equation (32) shows that the consumption at time zero (and consequently labor and
the tax rate) is a function of (g0,b0) and Φ, c0 = c(g0, b0; Φ), since M0 = 1 and ξ0 = 0. The
difference in the first period is due to the presence of the initial debt b0 and the realization
of uncertainty g0.

Proposition 3.6. The Ramsey allocation and taxes from period one onward are history
dependent.

Proof. Use the resource constraint (1) to substitute for ht in (31) and solve for optimal
consumption terms in terms of (gt,M

∗
t , ξt) and the multiplier Φ to get ct = c(gt,M

∗
t , ξt; Φ).

Analogously, we get ht = h(gt,M
∗
t , ξt; Φ) and consequently from (14) the optimal tax rate

τt = τ(gt,M
∗
t , ξt; Φ). Therefore, the realization of the government expenditure at time t is

not sufficient to describe the optimal allocation and taxes. Instead, it depends on the history
of shocks through M∗

t and ξt.
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Relative to the outcome in Lucas and Stokey (1983), the representative household’s fear of
misspecification makes the Ramsey allocation depend on two additional variables, namely,
the likelihood ratio M∗

t and the multiplier ξt on the forward-looking constraint (12) that
describes the evolution of the household’s value function Vt. The multiplier ξt measures the
shadow value to the planner of the representative household’s value. It shows up in the
first-order conditions (31) because increasing ct, ht affects Vt and therefore the household’s
worst-case distorted measure. The likelihood ratio M∗

t shows up in the first-order condition
through its influence on equilibrium prices that become incorporated in the implementability
constraint (17). These two variables are absent from Lucas and Stokey (1983), since for σ = 0
and from (10),(13) and (26), we see that ξt(g

t) = 0,M∗
t (gt) = 1,∀t, gt. In this case, only the

current realization of the government shock gt determines the optimal allocation and taxes.
The only intertemporal link would occur implicitly through the value of the multiplier Φ on
the implementability constraint, and this by itself would impart no history dependence.

We can express the optimal tax in terms of the allocation and (M∗, ξ) as follows. Dividing
(31) by −Uc(g

t) and using τt = 1− Ul

Uc
, we get for t ≥ 1

τt(g
t) =

ΦM∗
t (gt)

1 + ξt(gt) + ΦM∗
t (gt)

[
γRA(gt) +

Ucl(g
t)

Uc(gt)
(ct(g

t) + ht(g
t))− Ull(g

t)

Uc(gt)
ht(g

t)

]
(33)

where γRA(gt) ≡ −Uccc/Uc, the coefficient of relative risk aversion.

Remark 3.7. Formula (33) shows that the planner chooses smaller tax wedges at histories
that representative household thinks are less probable than does the Ramsey planner, i.e.,
when M∗

t (gt) is is small.

3.2.1 Interpretation of µt

Fear of misspecification alters the fundamentally static nature of the Lucas and Stokey prob-
lem through the presence of (M∗

t , ξt). In order to understand better the dynamic tradeoffs
involved we have to interpret the first-order conditions with respect to (M∗

t , Vt). Consider
µt, the multiplier on the evolution equation for the likelihood ratio (13), which consequently
represents the value to the planner of distorting the probability of history gt. Replacing the
definition (22) of Ω(gt) in equation (25) gives

µt(g
t) = Φ[Uc(g

t)ct(g
t)− Ul(g

t)ht(g
t)] + β

∑
gt+1

πt+1(gt+1|gt)m∗
t+1(g

t+1)µt+1(g
t+1)

where m∗
t+1(g

t+1) = exp(σVt+1(g
t+1))/Et exp(σVt+1(g

t+1)). Increasing M∗
t (gt), thereby mak-

ing history gt) more probable, has two effects: first, it affects prices at history gt and, second,
it alters the probability of next period’s history. The effect on current prices for history gt

is measured by the first term on the right, which is the difference between consumption and
after-tax labor income in utility terms, or, using the resource constraint (1) and τt = 1− Ul

Uc
,

the marginal utility of a government surplus, multiplied by the shadow value of distortionary
taxation Φ. But a higher distorted probability today will lead to a higher distorted prob-
ability tomorrow, which is the second effect (see (13)). Under the distorted measure, the
expected discounted marginal value of this effect is the second term on the right.

12



Solving forward (25) gives

µt(g
t) = Φ

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)

i∏
j=1

m∗
t+j(g

t+j)[Uc(g
t+i)ct+i(g

t+i)− Ul(g
t+i)ht+i(g

t+i)]

(34)
Multiplying and dividing by Uc(g

t) and rewriting in terms of the after tax labor income, we
get

µt(g
t) = ΦUc(g

t)
∞∑
i=0

∑

gt+i|gt

qt
t+i(g

t+i)[ct+i(g
t+i)− (1− τt+i(g

t+i))ht+i(g
t+i)]

where

qt
t+i(g

t+i) ≡ qt+i(g
t+i)

qt(gt)
= βiπt+i(g

t+i|gt)
i∏

j=1

m∗
t+j(g

t+j)
Uc(g

t+i)

Uc(gt)

is the price of an Arrow-Debreu security in terms of consumption at history gt. But from
the intertemporal budget constraint at time t the above sum equals the outstanding debt of
the government bt(g

t). Therefore,

µt(g
t) = ΦUc(g

t)bt(g
t). (35)

Thus, if the government has outstanding debt obligations (bt(g
t) > 0), then the multiplier

µt has a positive value whenever Φ > 0.

3.2.2 Dynamics of ξt

Consider now the first-order condition with respect to Vt(g
t) which can be expressed in

expectation notation as

ξt = σm∗
t M

∗
t−1[µt − Et−1m

∗
t µt] + m∗

t ξt−1, t ≥ 1, ξ0 = 0 (36)

where E denotes mathematical expectation under the approximating model. The dynamic
tradeoffs that the planner faces are intricate. By increasing Vt(g

t) he affects the household’s
expectations at t − 1 for the current period t. However the planner does not choose freely
any value of Vt(g

t) but he is constrained by the value that he has promised to the household.
The shadow value to the planner of the promised utility to the household is reflected by the
multiplier ξt−1, and the total effect is represented by the second term in the right-hand side
of (36). The planner’s commitment to the promised value to the household, and therefore via
equation (20) to the promised worst-case beliefs of the household, is the vehicle of steering
the household’s expectations for future histories and stems from his first-move advantage.

Furthermore, increasing Vt(g
t) affects the household beliefs for current period, by de-

creasing the probability of this history and all future histories onward, an effect measured
by the multiplier µt in the first term of the right-hand side. But decreasing the probability
of this particular node of the event tree implies increasing the probability of the rest of the
nodes with opposite effects. The total effect is measured by µt − Et−1m

∗
t µt, i.e. the innova-

tion in µt under the distorted measure π̃, which by (35) translates to the innovation of the

13



outstanding government obligations in utility terms. This is the first term of the right-hand
side. Optimality requires that the sum of the two effects have to equal to the shadow value
of the promised utility of next period ξt, the left-hand side of equation (36). Note that ξt can
take both positive and negative values because constraint (12) can bind in both directions.
Besides that, ξt has the following property:

Lemma 3.8. The multiplier ξt is a martingale under the approximating model.

Proof. Take conditional expectation with respect to the approximating model π given history
gt−1 in the law of motion (36) for ξ and remembering that the variables dated at t are
measurable variables of the history gt, we get

Et−1ξt = σM∗
t−1Et−1m

∗
t [µt − Et−1m

∗
t µt] + ξt−1Et−1m

∗
t

= σM∗
t−1[Et−1m

∗
t µt − Et−1m

∗
t · Et−1m

∗
t µt] + ξt−1Et−1m

∗
t

= ξt−1,

since Et−1m
∗
t = 1.

In other words, optimality requires that the best forecast at t − 1 under the planner’s
beliefs π of next period’s shadow value of the worst-case beliefs of the household is the
shadow value at t− 1, ξt−1. An immediate corollary of lemma 3.8 is that the mean value of
the ξt is zero since E(ξt) = E(E0ξt) = E(ξ0) = 0. Define the one step ahead forecast error
ηt under the distorted measure of the multiplier µt as

ηt ≡ µt − Et−1m
∗
t µt (37)

with Et−1m
∗
t ηt = 0. So we can rewrite (36)

ξt = σM∗
t ηt + m∗

t ξt−1, t ≥ 1, ξ0 = 0

and by iterating backward, we can express ξt as

ξt = σM∗
t (ηt + ... + η1)

= σM∗
t Ht, (38)

where

Ht ≡
t∑

i=1

ηi, H0 ≡ 0

is the cumulative forecast error. Therefore, if the cumulative forecast error is positive,
then the shadow value of the representative household’s utility is negative, since σ < 0.
Furthermore, since µt is directly associated with the outstanding debt of the government
through (35), the forecast error becomes

ηt = Φ[Uc(g
t)bt(g

t)− Et−1m
∗
t Uc(g

t)bt(g
t)]. (39)
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We can rewrite ηt as

ηt = Φ
Uc(g

t−1)

β
[β

Uc(g
t)

Uc(gt−1)
bt(g

t)− Et−1βm∗
t

Uc(g
t)

Uc(gt−1)
bt(g

t)]

= Φ
Uc(g

t−1)

β
[β

Uc(g
t)

Uc(gt−1)
bt(g

t)−
∑
gt

pt−1(gt, g
t−1)bt(g

t)]

where the second line follows from the equilibrium price of state-contingent debt (16). Using
the government budget constraint (2), we can substitute for the value of the portfolio of
government debt to get

ηt = Φ
Uc(g

t−1)

β

[
β

Uc(g
t)

Uc(gt−1)
bt(g

t)− [gt−1 − τt−1(g
t−1)ht−1(g

t−1) + bt−1(g
t−1)]

]
(40)

which shows how current debt, last period’s debt, and last period’s government deficit affect
ηt.

4 Recursive Formulation

In this section, we restrict attention to Markov processes for the government expenditures
in order to achieve a recursive formulation of the Ramsey problem along the lines of Marcet
and Marimon (1998).

Assumption 4.1. Government expenditures gt follow a time-homogenous Markov Process
πg|g− ≡ Prob(gt = g|gt−1 = g−) with transition matrix Π.

This problem under commitment has history dependence that adds state variables to the
natural state variable gt. Proposition (3.6) hints that the endogenous variables M∗

t and ξt

are candidates for state variables. In this section, we show that these variables can serve as
state variables in a recursive representation of the robust Ramsey plan.

To express the Ramsey problem recursively, in addition to gt we have to include in
the state the backward-looking likelihood ratio M∗

t with law of motion (13). Furthermore,
the Marcet and Marimon procedure transforms the Lagrangian saddle point formulation of
the commitment problem with forward-looking constraints into a saddle point functional
equation by appropriately augmenting the state and defining a new period return function
that takes into account restrictions to which the planner has to commit every period. A
crucial element in this procedure is the multiplier ξt (the co-state variable) on the forward-
looking constraint (21) that can serve as a state variable. The multiplier reflects the shadow
value of the utility promises of the planner to the household that determine his worst-case
model every period. Therefore, we use as the state the vector Xt ≡ (gt,M

∗
t , ξt).

We will form the problem recursively from period one onward, due to the presence of
initial debt and the realization of uncertainty at period zero. Our object of interest is the
ex-ante value of the Lagrangian at period one. Let W (X−; Φ) denote the corresponding
value function in a recursive representation of the Lagrangian from period one, where the
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underscore “ ” stands for previous period, i.e. z− ≡ zt−1 for any random variable z, and
Φ > 0 is a fixed value of the multiplier on the implementability constraint (18).

Proposition 4.2. W (·; Φ) satisfies the Bellman equation

W (g−,M∗
−, ξ−; Φ) = min

ξg

max
cg ,m∗

g ,Vg

∑
g

πg|g−
{

U(cg, 1− cg − g) + Φm∗
gM

∗
−Ωg

−ξg(Vg − U(cg, 1− cg − g)) + ξ−(m∗
gVg + θm∗

g ln m∗
g) + βW (g, m∗

gM
∗
−, ξg; Φ)

}

where
Ωg ≡ [Uc(cg, 1− cg − g)− Ul(cg, 1− cg − g)]cg − Ul(cg, 1− cg − g)g

and

m∗
g =

exp
(
−Vg

θ

)

∑
g πg|g− exp

(
−Vg

θ

) ,∀g

Proof. We construct the Bellman equation in detail in appendix B.

We make several observations about the Bellman equation. The min operator reflects
the minimization with respect to the multipliers ξg of the Lagrangian, saddle-point formula-
tion. Note also that we adopt an ex ante formulation to describe the commitment problem
appropriately with control variables for the planner ξg, cg,m

∗
g, Vg that are state-contingent.

The reason is that by increasing, say, consumption cg at state g, the planner increases the
utility of the household at this particular state, which decreases the state’s probability. How-
ever, this decrease of probability increases the probabilities of the other states. Forming the
Lagrangian recursively from period one onward before the realization of uncertainty takes
these effects into account.

Furthermore, note that besides the period utility Ug the return function includes the
term ΦM∗

g Ωg that is associated with the implementability constraint (18) and describes the
restrictions coming from equilibrium prices and the household’s budget constraint, as well as
two further terms involving the value of the state ξ− and the current value of the multiplier ξg

at the realization of the state g. These two terms describe in a precise sense how the planner
has to commit to the shadow value ξ− of the promised - under the distorted measure- utility∑

g πg|g−{m∗
gVg + θm∗

g ln m∗
g} to the household and how he has to consider how his actions

will affect the future state ξg. This commitment is essential in his effort to manipulate the
worst-case beliefs of the household.

The initial value of the state is X0 = (g0, 1, 0). Thus, the value of the Lagrangian from
period one onward is W (g0, 1, 0; Φ) for the appropriate value of Φ. That ξ0 = 0 reflects
the fact that the planner at period one is not constrained to commit to the shadow value
of his promises to the household. The value function W , as we hope the notation makes
clear, is contingent on a value of the multiplier Φ. This value has to be adjusted so that
the intertemporal budget constraint of the household is satisfied after solving the Bellman
equation and deriving policy functions from period one onward and solving also for the
period zero allocation.
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4.1 Time zero.

The initial period t = 0 is special due to the presence of initial debt b0 and the realization
of uncertainty π0 = M0 = 1. The planner’s problem at time zero takes the form

W0(g0, b0; Φ) = max
c0
{U(c0, 1− c0− g0) + ΦΩ0(c0)−ΦUc(c0, 1− c0− g0)b0 + βW (g0, 1, 0; Φ)},

which is practically the static problem

max
c0

U(c0, 1− c0 − g0) + ΦΩ0(c0)− ΦUc(c0, 1− c0 − g0)b0.

From the above problem, we get the policy function for c0(g0, b0; Φ).

4.2 Policy functions and debt

As the Bellman equation (4.2) makes clear, we attain a time invariant representation of the
policy functions.

Corollary 4.3. The policy functions from period one onward are time-invariant functions
of the state X−

cg = cg(g−,M∗
−, ξ−; Φ)

Vg = Vg(g−,M∗
−, ξ−; Φ)

m∗
g = m∗

g(g−,M∗
−, ξ−; Φ)

ξg = ξg(g−,M∗
−, ξ−; Φ)

We will briefly consider some of the optimality conditions of the recursive problem (details
are in appendix B, where we match the first-order conditions of the recursive problem with
the ones coming from the Lagrangian). The first-order condition with respect to cg delivers
the same expression as (31), which by proposition (3.6) shows the dependence on the variables
(M∗

t , ξt). This leads us to conclude that the vector of state variables (g−,M∗
−, ξ−) affects the

optimal policy for consumption at g (and therefore labor and the tax rate), by determining
the value of the state (g,M∗

g , ξg). Thus cg = cg(g−,M∗
−, ξ−; Φ) = c(g,M∗

g , ξg; Φ).
The envelope conditions are

Wξ(g−,M∗
−, ξ−; Φ) =

∑
g

πg|g− [m∗
gVg + θm∗

g ln m∗
g] (41)

WM∗(g−,M∗
−, ξ−; Φ) =

∑
g

πg|g− [Φm∗
gΩg + βWM∗(g, M∗, ξ; Φ)]. (42)

The first condition (41) exposes the connection between the shadow value of manipulating
the worst-case model ξ and the promised utility to the household. In addition, solving (42)
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forward and converting to sequence notation allows us to conclude that

WM∗(gt−1,M
∗
t−1, ξt−1; Φ) = ΦEt−1

∞∑
i=0

βi M
∗
t+i

M∗
t−1

Ωt+i

= ΦEt−1m
∗
t [Et

∞∑
i=0

βi M
∗
t+i

M∗
t

Ωt+i]

= ΦEt−1m
∗
t Uctbt

= Φ
Uc,t−1

β
Bt−1, (43)

where Bt ≡
∑

gt+1
pt(gt+1, g

t)bt+1(g
t+1), the value of the portfolio of government securities.

The above expression suggests a way to calculate the optimal debt from the derivative of
the value function since

bt =
Ωt

Uct

+ Bt =
Ωt

Uct

+
β

ΦUct

WM∗(gt,M
∗
t , ξt; Φ). (44)

The right side of (44) is a function of the vector (gt,M
∗
t , ξt), which shows clearly how

the household’s fear of misspecification induces history dependence to optimal debt bt =
b(gt,M

∗
t , ξt). This is in contrast to the no-robustness case studied by Lucas and Stokey

(1983), where it would depend only on the realization of gt. Expression (44) also makes the
calculation of the value of Φ remarkably easy. Having solved for the value function W and
for the consumption allocation at time zero c0 for a given Φ, we can calculate the expression
I ≡ Ω0

Uc0
+ β

ΦUc0
WM∗(g0, 1, 0; Φ)− b0 and increase (decrease) Φ if I is less than (greater than)

zero.

5 A simple example

Let b0 = 0 and assume a government expenditure process

gt = 0, t 6= T

gT = g > 0 with probability π

gT = 0 with probability 1− π

This one-time shock structure simplifies the dynamics and allows us to highlight features
coming from the representative household’s fear of model misspecification. Let xg

t denote
the value of variable x at history gt = (0, ..., gT = g, gT+1 = 0, ..., gt = 0) and respectively x0

t

be the random variable x at history gt = (0, ..., gT = 0, gT+1 = 0, ..., gt = 0). Apparently, we
only need to differentiate in notation for period T and afterwards.

Assumption 5.1. Ucl ≥ 0

This assumption assures that the tax rate is positive in the Lucas and Stokey case that
the household fears no misspecification.
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5.1 Optimal policy with no fear of misspecification

We first calculate the optimal plan for σ = 0. Remember that Lucas and Stokey found that
consumption is function only of the realization of government expenditures at the current
period ct = c(gt). Thus ct = ht ≡ cLS∀t 6= T , c0

T = cLS and cg
T ≡ cLS(g) with corresponding

tax rates τLS > 0 and τLS(g) > 0. To finance this allocation the planner accumulates

surplus bt = −τLShLS

1−β
1−βt

βt < 0, t = 1, ..., T − 1. At t = T , when gT = 0, the planner borrows

an amount equal to b0
T = τLShLS

1−β
. Thereafter, this debt is rolled over. Note from the dynamic

budget constraint at t = T − 1 that

bT−1 = τLShLS + β(π
Uc(c

LS(g), 1− cLS(g)− g)

Uc(cLS, 1− cLS)
bg
T + (1− π)b0

T ).

Since bT−1 < 0 and b0
T > 0, it follows that bg

T < 0. Thus, the government lends to the
household, insuring against the contingency gT = g. At t = T, gT = g the budget constraint
is

bg
T + g = τLS(g)hLS(g) + β

Uc(c
LS, 1− cLS)

Uc(cLS(g), 1− hLS(g))
bg
T+1

and bg
T+1 = τLShLS

1−β
> 0, which implies a deficit τLS(g)hLS(g) − g < 0. Therefore, the

government at t = T − 1 uses the accumulated surplus bT−1, the tax revenues τLShLS, and
the loan from the household b0

T to acquire assets bg
T < 0 in order to insure against the

contingency gT = g. If the realization of the shock at T is zero, then the government rolls
over its debt forever. If the realization is positive, then the government runs a budget deficit,
which it finances partly with its assets bg

T and partly by issuing new debt bg
T+1 that it rolls

over forever. Observe how state-contingent debt allows the government to implement an
optimal allocation that is dependent only on the level of the government expenditures g,
independent of the period t.

5.2 Optimal policy with fear of misspecification.

As we showed in the proposition in the second section, the optimal consumption allocation
is history dependent ct = c(gt,M

∗
t , ξt). In order to analyze the optimal plan we need to

determine the dynamics of the two state variables (M∗
t , ξt). The absence of uncertainty

∀t 6= T makes it easy to see from (10),(13), and (26), that

m∗
t = 1,∀t 6= T

M∗
t = 1,∀t < T and M∗

T+j = m∗
T ,∀j ≥ 0

and
ξt = 0, t < Tand ξT+j = ξT ,∀j ≥ 0
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Therefore, the optimal consumption allocation is

ct = ht = c(0, 1, 0) ≡ c̄, t = 1, .., T − 1 (45)

c0
T+j = c0

T = c(0,m∗0
T , ξ0

T ) ≡ c0∀j ≥ 0

cg
T = c(g, m∗g

T , ξg
T ) ≡ cg

cg
T+j = cg

T+1 = c(0,m∗g
T , ξg

T ) ≡ c̄g∀j ≥ 1

with respective tax rates (τ̄ , τ 0, τ g, τ̄ g).

Remark 5.2. Note that because the variables (M∗
t , ξt) do not revert to their value before the

shock, the shock has a permanent effect on the allocation and tax rate.

The optimal distortions at the two histories are

m∗g
T =

exp(σV g
T )

π exp(σV g
T ) + (1− π) exp(σV 0

T )

m∗0
T =

exp(σV 0
T )

π exp(σV g
T ) + (1− π) exp(σV 0

T )
.

The continuation values have the forms

V 0
T =

U(c0, 1− c0)

1− β
(46)

V g
T = U(cg, 1− cg − g) +

β

1− β
U(c̄g, 1− c̄g). (47)

The values of the multiplier ξT at the two histories are

ξg
T = σm∗g

T ηg
T = σm∗g

T [µg
T − ET−1m

∗
T µT ]

ξ0
T = σm∗0

T η0
T = σm∗0

T

[
µ0

T − ET−1m
∗
T µT

]

It remains to find the sign of ηt, so we need to compute the innovation in the marginal
utility of the government asset position. Knowing the sign of the forecast error will determine
the sign of ξt and, therefore, through (33), the sign of the tax rate. The following lemma is
very useful

Lemma 5.3. The Ramsey outcome prescribes (a) ET−1m
∗
T µT < 0 (b) µg

T < µ0
T . Therefore,

ηg
T < 0, η0

T > 0 and consequently ξg
T > 0, ξ0

T < 0.

Proof. (a) The dynamic budget constraint of the government at t = T − 1 is

bT−1 = τ̄ h̄ + β
[
πm∗g

T

Uc(c
g, 1− g − cg)

Uc(c̄, 1− c̄)
bg
T + (1− π)m∗0

T

Uc(c
0, 1− c0)

Uc(c̄, 1− c̄)
b0
T

]

where we have already substituted for the equilibrium price of state contingent debt from
(16). But since µt = ΦUctbt, we can rewrite the budget constraint as bT−1−τ̄ h̄ = β

ΦUc(c̄,1−c̄)
ET−1m

∗
T µT .
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The government has accumulated a surplus until t = T − 1 that has the size bT−1 =
−τ̄ h̄
1−β

1−βT−1

βT−1 < 0 since τ̄ > 0 and Φ > 0. This gives the desired result.

(b) Suppose the contrary, namely, µg
T ≥ µ0

T . Obviously, since min{µ0
T , µg

T} = µ0
T ≤

ET−1m
∗
T µT ≤ max{µ0

T , µg
T} = µg

T , we have η0
T ≤ 0 and ηg

T ≥ 0 and, therefore, ξ0
T ≥ 0 and

ξg
T ≤ 0. But from the equation for the optimal tax rate (33) we note that ξ0

T ≥ 0 necessarily
implies a positive tax rate τ 0 > 0. But since the consumption after the realization gT = 0
remains constant we can infer that the government assets are b0

t = b0
T = τ0h0

1−β
> 0, ∀t ≥ T since

τ 0 > 0. But µ0
T ≤ ET−1m

∗
T µT < 0 by part (a) of the Lemma and since µ0

T = ΦUc(c
0, 1−c0)b0

T ,
it follows that b0

T < 0, which is a contradiction.

Note from the above result that we can conclude that µg
T < 0 and therefore bg

T < 0, i.e., the
government lends to the household in anticipation of the contingency gT = g. Furthermore,
since ξg

T > 0, the tax rates at the realization gT = g and afterwards are positive τ g, τ̄ g > 0.

Therefore, bg
T+j = bg

T+1 = τ̄gh̄g

1−β
> 0,∀j ≥ 1 and from the dynamic budget constraint when

gT = g we have

τ ghg − g = bg
T − β

Uc(c̄
g, 1− c̄g)

Uc(cg, 1− cg − g)
bg
T+1 < 0

Thus, the government always runs a deficit at the contingency gT = g. It remains to describe
the policy for the contingency of gT = 0 and afterwards. Since ξ0

T < 0, there is the theoretical
possibility of having a subsidy τ 0 < 0 instead of a tax. Thus, we have two cases:

• µg
T < ET−1m

∗
T µT < 0 < µ0

T

In this case, since µ0
T = ΦUc(c

0, 1− c0)b0
T > 0 we conclude that b0

T = τ0h0

1−β
> 0 ⇒ τ 0 > 0.

Thus, even if the multiplier ξ0
T < 0, it is not negative enough to reverse the tax rate and make

it a subsidy. The government borrows from the household in anticipation of the contingency
gT = 0 and afterward repays the interest by imposing constant taxes.

• µg
T < ET−1m

∗
T µT < µ0

T < 0

In contrast to the previous case, we now have the possibility that b0
T < 0 since µ0

T =
ΦUc(c

0, 1− c0)b0
T < 0. But that implies that τ 0 < 0, i.e., we have a subsidy. Inspecting the

formula for the optimal tax rate τ 0 (33), we see that this can happen if

1 + ξ0
T + Φm∗0

T < 0 ⇒ η0
T > (−1/σ)[1/m∗0

T + Φ]

It is clear from the right side of the above condition that this case can’t happen when σ = 0.
So the debt and tax policy of the government when gT = 0 are opposite from those in the
first case. Here the government lends to the household against the contingency gT = 0 and
afterwards uses the interest on the loan in order to give a subsidy to the household, keeping
the surplus constant at b0

t = τ 0h0/(1− β), t ≥ T .
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5.2.1 A particular utility function.

Assume the utility function

U(c, 1− h) =
c1−γ

1− γ
− ah

h1+φn

1 + φn

with derivatives Uc = c−γ, Ucc = −γc−γ−1, Ul = ahh
φn , Ull = −ahφhh

φn−1. Note that 1/φn

is the Frisch Elasticity and that ah controls the amount of time spent working. The labor
supply condition is

ah
hφn

c−γ
= 1− τ

This utility function leads to uniform taxation in the Lucas and Stokey (1983) case, the tax
being independent of the realization of government expenditures and equal to

τLS =
ΦLS(γ + φn)

1 + ΦLS(1 + φn)

This will just make stronger the contrast between the case with robustness.
When we activate the household’s fear of misspecification by setting σ < 0, the formula

for the tax is

τt =
ΦM∗

t (γ + φn)

1 + ξt + ΦM∗
t (1 + φn)

where Φ again measures the cost of distortionary taxation with σ < 0. Therefore, we have

τt = τ̄ =
Φ(γ + φn)

1 + Φ(1 + φn)
, t = 0, 1, ..., T − 1

τT+j(g) = τ g = τ̄ g =
Φm∗g

T (γ + φn)

1 + ξg
T + Φm∗g

T (1 + φn)
, j ≥ 0

τ 0
T+j = τ 0 =

Φm∗0
T (γ + φn)

1 + ξ0
T + Φm∗0

T (1 + φn)
, j ≥ 0.

We use the following parameters to compute our numerical examples.

Prob(gT = g) = π 0.6
β 1/1.01
T 4
g 0.7
γ 2
φn 1
ah 3φn+γ = 27

The value of ah induces the household to work 1/3 of its time when there are no taxes and
no government expenditures. The following table includes outcomes for various θ:
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θ = ∞ θ = 100 θ = 10 θ = 5 θ = 1
Φ 0.0109 0.0113 0.0124 0.0117 0.0111
V 0

T -454.5529 -454.5500 -454.5132 -454.5015 -454.5000
V g

T -465.9876 -465.9974 -466.0658 -466.0838 -466.0867
m∗0

T 1 0.9322 0.4339 0.1542 1.5482e-005
m∗g

T 1 1.0452 1.3774 1.5638 1.6667
τ̄ τLS =0.0319 0.0332 0.0364 0.0342 0.0325

τ g = τ̄ g τLS =0.0319 0.0346 0.0496 0.0528 0.0533
τ 0 τLS =0.0319 0.0310 0.0161 0.0054 5.1307e-007
c̄ cLS =0.3298 0.3296 0.3292 0.3295 0.3297
cg cLS(g) =0.1996 0.1994 0.1980 0.1977 0.1976
c̄g cLS =0.3298 0.3294 0.3277 0.3274 0.3273
c0 cLS =0.3298 0.3298 0.3315 0.3327 0.3333

τ g
T hg

T − g -0.6713 -0.6688 -0.6554 -0.6526 -0.6521
b0
T 1.0621 1.0337 0.5382 0.1810 1.7273e-005

bg
T -0.2859 -0.2508 -0.0618 -0.0219 -0.0158

The table reveals the interesting outcome that the cost of distortionary taxation is not
monotonic in θ. While increasing fear of misspecification by lowering θ below +∞ initially
increases the cost Φ, after a while Φ starts decreasing and eventually reaches a level still
higher than the θ = +∞ case without robustness (last column). The reason is that with
increasing doubts, the household distorts probabilities towards the event of positive govern-
ment expenditures gT = g by increasing m∗g

T and decreasing m∗0
T . But the Ramsey plan

prescribes lower taxes for situations with low probability and high taxes for situations with
high probability. Eventually, the tax at the contingency gT = 0 and onward τ 0 becomes zero
(see last column of the table), which leads to practically no distortion from taxation at this
history (note that consumption c0 approaches the first best value of 1/3), which increases
welfare of the planner. However, the tax τ g is increasing, which reduces welfare. These two
opposing forces lead to the non-monotonicity of Φ in θ.

6 Expansion around the no robustness case σ = 0

The representative household’s fear of misspecification introduces two new state variables
(M∗

t , ξt) in the Ramsey problem that where absent in Lucas and Stokey (1983). That there
are complete markets but no capital in Lucas and Stokey’s economy facilitates computing
the equilibrium very easily. This allows us to expand in σ around the entire stochastic path
associated with the Ramsey plan at σ = 0. Every endogenous random variable in the model
is a function of the parameter σ. So the first order approximation at history gt for every
variable zt around σ = 0 takes the form

zt(g
t, σ) ' zt(g

t, 0) + σzσ(gt, 0) (48)
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where zt(g
t, 0) is the Ramsey plan of Lucas and Stokey (1983). So the expansion tells us

how introducing a small fear of misspecification perturbs the Lucas and Stokey Ramsey
plan. In the next subsection, we calculate the various partial derivatives zσ and evaluate
them at σ = 0. For ease of notation, we use the following convention zt(σ) ≡ zt(g

t, σ) and
z′t(σ) ≡ zσ(gt, σ). In calculating z′t(0), substantial simplification comes from the fact that
m∗

t (0) = M∗
t (0) = 1 and ξt(0) = 0. Details of the general case derivations are relegated to

appendix C.1 and the explicit calculations of the formulas for Markovian shocks to appendix
C.2.

6.1 General case

The dynamics of the approximated solution are driven by the partials (M∗′
t (0), ξ′t(0)) of the

state variables. Observe that the martingale property of M∗
t (σ) and ξt(σ) is bequeathed to

(M∗′, ξ′)
Et−1M

∗′
t (σ) = M∗′

t−1(σ) and Et−1ξ
′
t(σ) = ξ′t−1(σ)∀σ ≤ 0

The law of motion for M∗′ for σ = 0 is

M∗′
t (0) = m∗′

t (0) + M∗′
t−1(0),M∗′

0 ≡ 0 (49)

where
m∗′

t (0) = Vt(0)− Et−1Vt(0). (50)

Therefore, we can approximate the conditional distortion to first order as

m∗
t (σ) ' m∗

t (0) + σm∗′
t (0)

= 1 + σ(Vt(0)− Et−1Vt(0))

A negative innovation to the utility of the household prompts it to assign higher probabil-
ity to this event. Knowing the Ramsey allocation of the Lucas-Stokey economy allows us
immediately to calculate the approximation to the optimal distortion.

The law of motion for ξt is

ξ′t(0) = ηt(0) + ξ′t−1(0), ξ′0 ≡ 0 (51)

with
ηt(0) = Φ(0)

[
Uct(0)bt(0)− Et−1Uct(0)bt(0)

]
. (52)

Thus, the crucial component in the evolution of the derivative of the multiplier ξ′ is the
innovation in the marginal utility of the bond holdings of the LS economy, weighted by the
cost of distortionary taxation.

It remains for us to find c′t(0) (which is equal to h′t(0) by the resource constraint (1)) and
Φ′(0). The solution for c′t(0) ∀t ≥ 0 takes the form

c′t(0) = h′t(0) =
Ult(0)− Uct(0)

Kt(0)

[
(ξ′t(0)−M∗′

t (0))− Φ′(0)

Φ(0)

]
(53)
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where Kt(0) is a function of the allocation at σ = 0, defined in the appendix. Initial
conditions are M∗′

0 = ξ′0 = 0. Kt(0) is an expression that is directly related to second
derivative of the Lagrangian of the Lucas and Stokey problem. In particular, we are going
to assume for the rest of the paper that Kt(0) < 0, which ensures that the second-order
conditions of the Lucas and Stokey problem hold.

Lemma 6.1. Assume that Kt(0) < 0, ∀t ≥ 0. Then the second-order sufficient conditions
of the optimal fiscal policy problem without fear of misspecification are satisfied.

Proof. See appendix C.1.

We can observe from the above expression that the dynamics of c′t(0), and therefore
(through (48)) the dynamics of ct, are driven by the difference (ξ′ −M∗′) for small fears of
model misspecification. Finding c′t(0) allows us also to derive τ ′t(0) and b′t(0) and consequently
have an expression for the approximate tax and debt policy.

τ ′t(0) = αt(0)
[
ξ′t(0)−M∗′

t (0)− Φ′(0)

Φ(0)

]
(54)

b′t(0) = α1(g
t)(ξ′t(0)−M∗′

t (0)) + α2(g
t) + α3(g

t), (55)

where coefficients α and αi, i = 1, 2, 3 are defined in the appendix. Note that τ ′t(0) and b′t(0)
depend also on (ξ′ −M∗′) due to the fact that they are functions of c′t(0). The coefficient
αt(0) depends only on the Lucas and Stokey allocation, so it is a function only of gt. On the
other hand, coefficients αi, i = 1, 2, 3 depend on the whole history of shocks gt. If we assume
Markovian shocks though, then they are solely a function of gt.

Finally, the expression for the derivative Φ′(0) is

Φ′(0) =
(Φ(0))2

∑
t,gt βtπt(g

t)M∗′
t (0)Ωt(0) + Φ(0)

∑
t,gt βtπt(g

t) (Uct(0)−Ult(0))2

Kt(0)
(ξ′t(0)−M∗′

t (0))

∑
t,gt βtπt(gt)

(
Uct(0)−Ult(0)

)2

Kt(0)

(56)
The multiplier Φ encapsulates the cost of distortionary taxation. Expression (56) mea-

sures the change in the multiplier if we impute fear of misspecification to the representative
household. Note that the denominator is negative due to Kt(0) < 0, whereas the sign of
the nominator depends on the specifics of the problem. If Φ′(0) is negative, then robustness
increases the cost of distortionary taxation (remember that σ < 0).

6.2 Quasi-linear utility

We proceed with a quasi-linear example. Linearity in consumption eliminates the effects
of marginal utility on labor supply and on equilibrium prices. Let the period utility of the
agent take the form

U(c, l) = c + v(1− l)

Quasi-linear utility leads to Arrow-Debreu prices qt = βtπtM
∗
t . Thus, with this preference

specification, the planner cannot manipulate the marginal utility to allocate distortions over
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histories. But he can still use the endogenous beliefs of the agent. For the rest assume that
v(1 − l) = v(h) = −1

2
h2. Then Ul = h, Ull = −1 and from (31) we find that the Ramsey

labor allocation ans tax rate are

ht =
1 + ξt + ΦM∗

t

1 + ξt + 2ΦM∗
t

and τt = 1− ht =
ΦM∗

t

1 + ξt + 2ΦM∗
t

.

Equations (18-21), together with (25) and (26) determine the dynamics of (ξt,M
∗
t ) and the

size of Φ.

6.2.1 No fear of misspecification case (σ = 0)

The optimal plan prescribes constant taxes and labor for any history gt. The lack of de-
pendence of taxes and labor on the realization of gt is a special result that will make more
transparent the effects of the representative household’s fear of misspecification. In particu-
lar,

ht(0) ≡ h =
1 + Φ(0)

1 + 2Φ(0)

τ = 1− h

ct(0) = h− gt

where Φ(0) represents the value of the multiplier for the Lucas and Stokey economy, where
agents fully trust their model. Observe that tax revenues are constant over time and across
states. Furthermore, since Φ(0) > 0, hLS ∈ (1/2, 1]. We can pin down labor and therefore
Φ(0) from the intertemporal budget constraint. This leads to finding the root of the quadratic
equation Q(h) ≡ h2 − h + G, where G ≡ (1 − β)[b0 + E0

∑∞
t=0 βtgt]. We assume that G

is smaller than 1/4 in order for a solution to exist and larger than 0 in order to assume
away an initial surplus that can finance the present value of government expenditures. We
can discard the smaller root because it is less than 1/2. Therefore h = 1+

√
1−4G
2

. Having
obtained the Ramsey plan for σ = 0, we can proceed to the expansion.

6.2.2 Ramsey allocation for small robustness

For the quasi-linear case the formulas of the expansion of the previous section simplify con-
siderably, as shown in appendix C.3. In particular, we have the following partial derivatives

m∗′
t (0) = Vt(0)− Et−1Vt(0) = −(Et − Et−1)[

∞∑
i=0

βigt+i] (57)

ηt(0) = Φ(0)[bt(0)− Et−1bt(0)] = −Φ(0)(Et − Et−1)[
∞∑
i=0

βigt+i] (58)

c′t(0) = h′t(0) =
Φ(0)

(1 + 2Φ(0))2
(ξ′t(0)−M∗′

t (0))− Φ′(0)

(1 + 2Φ(0))2
(59)

Φ′(0) = (1− β)(1 + 2Φ(0))3E0

∞∑
t=0

βtM∗′
t (0)gt (60)
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Equations (57) and (58) show that the innovation in the present value of government expen-
ditures determines the dynamics of the solution.7

To attain more concrete results, assume a Wold moving average representation for the
government expenditures

gt = µg + γ(L)εt (61)

where εt ∼ iid(0, σ2
ε) and where we assume that γ(β) > 0.8 Then the innovation in the

present value of government expenditures is

(Et − Et−1)[
∞∑
i=0

βigt+i] = γ(β)εt (62)

where γ(β) is the present value of the coefficients in the infinite order moving average rep-
resentation. Thus, the distortion to the conditional distribution is approximately

m∗
t = 1− σγ(β)εt

= 1 +
1

θ
γ(β)εt.

This allows us to get approximate formulas for the conditional distribution of εt:

Result 6.2. The conditional mean and variance of εt under the distorted measure are ap-
proximately equal to

Ẽtεt+1 ≡ Etm
∗
t+1εt+1 =

1

θ
γ(β)σ2

ε

Ṽ art(εt+1) ≡ Etm
∗
t+1(εt+1 − Ẽtεt+1)

2 = σ2
ε +

γ(β)

θ
Etε

3
t+1

The household’s worst-case probability measure has an increased conditional mean of
government expenditure. Furthermore, if we assume that Etε

3
t+1 = 0, as would be the case

for a normal distribution, we have

Ṽ art(εt+1) = σ2
ε

so that the conditional variance stays constant.
Using expression (62) for the innovation in the present value of government expenditures,

we can infer the law of motion for ξ′ and M∗′. In particular,

M∗′
t (0) = M∗′

t−1(0)− γ(β)εt

and
ξ′t(0) = ξ′t−1(0)− Φ(0)γ(β)εt

So the law of motion for the difference ξ′ −M∗′ is

ξ′t(0)−M∗′
t (0) = ξ′t−1(0)−M∗′

t−1(0) + (1− Φ(0))γ(β)εt (63)

7The innovation to the present value of the income of a representative consumer who fears misspecification
plays an important role in determining market prices of risk. For example, see Barillas et al. (2007).

8Note that here we have dropped the restriction that g lives on a countable space.
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Remark 6.3. The dynamics are driven by a random walk (63) with respect to the approx-
imating measure π, with an increment that is directly associated with the innovation in the
present value of government expenditures.

Let Tt ≡ τtht denote tax revenues. Using (48), the formulas (59),(63), and the fact that
τ ′t(0) = −h′t(0), we get the following result

Result 6.4. (Random walk components) With small household fears of model misspecifi-
cation, the labor allocation, tax rate, and tax revenues follow random walks with respect to
π:

ht − ht−1 = −1

θ

Φ(0)(1− Φ(0))

(1 + 2Φ(0))2
γ(β)εt

τt − τt−1 =
1

θ

Φ(0)(1− Φ(0))

(1 + 2Φ(0))2
γ(β)εt

Tt − Tt−1 =
1

θ

Φ(0)(1− Φ(0))

(1 + 2Φ(0))3
γ(β)εt

with initial conditions (h0, τ0, T0) = (h + 1
θ

Φ′(0)
(1+2Φ(0))2

, τ − 1
θ

Φ′(0)
(1+2Φ(0))2

, τh − 1
θ

Φ′(0)
(1+2Φ(0))3

). The
solution for consumption is given by ct = ht − gt.

The household’s fear of misspecification introduces non-stationarity into the Ramsey
plan. Even a small fear of misspecification leads to a Ramsey plan that differs substantially
from the Lucas and Stokey (1983) plan in the sense that the optimal allocation no longer
simply inherits the stochastic properties of government expenditures. Note that even in
the case where the government expenditures are i.i.d. (γ0 = 1,γi = 0, i ≥ 1), the labor
allocation remains a random walk. Also note how the reaction of the tax rate and labor
to a shock depends on the size of Φ(0). Note that Φ(0) ≷ 1 (depending on the present
value of government expenditures and on initial debt b0). If Φ(0) < 1, then an innovation to
government expenditures leads to a permanent increase in the tax rate and to a permanent
decrease in labor. The decrease in labor is smaller than the increase in taxes, so altogether
there is a permanent increase in tax revenues. All these quantities would be constant in the
corresponding economy of Lucas and Stokey (1983).

It is worthwhile to analyze more carefully the effects of an innovation in the present
value of government expenditures on the optimal allocation and tax rate for small fear of
misspecification. Consider for example the optimal tax rate

τt(σ) = τ + σ
Φ(0)

(1 + 2Φ(0))2

[
M∗′

t (0)− ξ′t(0) +
Φ′(0)

Φ(0)

]
,

or, using M∗′
t (0) = (M∗

t (σ)− 1)/σ and ξ′t(0) = ξt(σ)/σ

τt(σ) = τ +
Φ(0)

(1 + 2Φ(0))2
[(M∗

t (σ)− 1)− ξt(σ)] + σ
Φ′(0)

(1 + 2Φ(0))2
. (64)
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A positive innovation in the present value of government expenditures has two effects on
the optimal tax rate. First, it leads to a negative innovation in utility by (57) and therefore
to a positive innovation in the likelihood ratio M∗

t . This, as seen from (64) increases the
tax rate, as noted also in remark (3.7). Second, by the logic of the intertemporal budget
constraint, a positive innovation in the present value of government expenditures leads to a
negative innovation in government debt bt in order to finance all future government deficits.
This means the shadow value of the worst-case model of the household ξt increases and
consequently the optimal tax rate decreases by (64). The first effect comes from the het-
erogeneity of beliefs between the planner and the household, whereas the second from the
planner’s desire to manipulate the household’s worst-case endogenous beliefs. The law of
motion (63) for the difference between ξ′ and M∗′ tells us that the two effects exactly cancel
for Φ(0) = 1, which would correspond to a labor allocation in the Lucas and Stokey (1983)
economy of h = 2/3. In this borderline case, the dynamics are muted and the optimal labor
allocation and tax rate remain constant, but at a different level than in the case without
fear of misspecification. From (6.4), we see that the tax rate becomes τ(σ) = τ − 1

θ
Φ′(0)

9
and

the labor allocation h(σ) = 1− τ(σ).

The particular moving average representation (61) allows us to calculate explicitly the
derivative of the multiplier Φ

Φ′(0) = −(1− β)(1 + 2Φ(0))3γ(β)σ2
ε

∞∑
t=0

βt

t−1∑
i=0

γi. (65)

If we assume that
∑t−1

i=0 γi > 0 (γi > 0 would be sufficient for this to hold) then we have
the result that Φ′(0) < 0, thus the household’s fear of misspecification increases the cost
of distortionary taxation. For example, if we assume an AR(1) process with persistence

ρ ∈ [0, 1) for gt, then γi = ρi, i = 0, 1, .. and Φ′(0) = −β (1+2Φ(0))3

(1−βρ)2
σ2

ε .

It helps to develop a deeper understanding of the effects of model misspecification to
consider the optimal debt policy implied by the above allocation. Note that when the
representative household completely trusts the stochastic model, optimal debt is

bt(0) =
τh

1− β
− Et

∞∑
i=0

βigt+i

Assume for example that government expenditures are i.i.d. Then

bt(0) =
τh− µg

1− β
− εt

This expression makes it clear how the government uses state-contingent debt in order to
smooth the distortions among histories and also how the optimal state-contingent debt in-
herits the i.i.d. nature of fiscal shocks. In particular, in the case of a positive (bad) shock εt,
the government issues less debt, i.e. it increases its claims against the private sector, which
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will be used to finance expenditures in that contingency. On the other hand, a negative
shock leads to higher indebtedness to the private sector. So the government insures against
a bad shock by buying claims against the private sector against this contingency and selling
claims against the low expenditure contingency. Complete markets enable the government
to do that and as long as there is full confidence in the model from both parties. Considering
now the case where σ < 0, we find that for a small household concern about misspecification,
the debt is approximately equal to

bt(σ) =
τh

1− β
− Et

∞∑
i=0

βigt+i +
1

θ

(1− β)−1Φ(0)

(1 + 2Φ(0))3
(ξ′t(0)−M∗′

t (0))

which in the i.i.d. case reduces to

bt(σ) =
τh− µg

1− β
− εt +

1

θ

(1− β)−1Φ(0)

(1 + 2Φ(0))3
(ξ′t(0)−M∗′

t (0)).

Despite the fact that government expenditures are i.i.d., fear of misspecification adds a unit-
root component to optimal debt, an outcome that emerges from the fact that beliefs are
endogenous (ξt) and heterogenous (M∗

t ) The persistence in debt resembles the outcome in
the incomplete markets-rational expectations economy of Aiyagari et al. (2002), but here all
markets are open. As expected, in the case of Φ(0) = 1 the two opposite effects canceling,
implying - for small fear of misspecification - the same optimal debt as in the Lucas and
Stokey economy, since ξ′t(0)−M∗′

t (0) = 0,∀t ≥ 0.

6.3 Aiyagari et al. (2002) utility function

In this section, we analyze the effects of small fear of misspecification by using the utility
function and shock process of Aiyagari et al. (2002):

U(c, l) =
c1−γ − 1

1− γ
+ al

l1−ψ − 1

1− ψ

Note that the parameter −1/ψ is the elasticity of leisure with respect to after-tax wage.
We follow the calibration of Aiyagari et al. and set (β, γ, ψ, al) = (0.95, 0.5, 2, 1). Further-
more, we scale up the amount of leisure available to the household to l̄ = 100 and set the
initial debt equal to zero b0 = 0. Aiyagari et al. use an iid N(30, 2.52) process for the
government expenditures, which we approximate with gaussian quadrature with 11 nodes.
We set the initial shock equal to the mean of government expenditures g0 = ḡ = 30.

6.3.1 Properties of the no-robustness plan

It is useful to analyze the qualitative properties of the optimal allocation, tax and debt in
the case of rational expectations, since our approximation depends on a crucial way on them.
Consider for example a class of utility functions that are separable in consumption and leisure
and have convex marginal utility of consumption and leisure. The Aiyagari et al. utility
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Figure 1: Impulse response functions of the two martingales to a positive fiscal shock

function which is our main object of interest is obviously member of this class. Furthermore,
remember that we are working under the assumption that Kt(0) < 0, which ensures that
the second-order conditions are satisfied. This assumption takes the form K = T1 − T2 < 0
where T1 ≡ (1 + 2Φ)Ucc + ΦUcccc and T2 ≡ −(1 + 2Φ)Ull + ΦUlllh > 0. We simplified the
notation of K, since it is clear that we are working the optimal solution of the no-robustness
case. The following auxiliary lemma instructs us about the nature of the Lucas and Stokey
plan.

Lemma 6.5. Assume that Ucl = 0, Uccc > 0, Ulll > 0. Then the Lucas and Stokey solution
has the following properties:

1. Consumption c and period utility U are decreasing in g. If also g is iid, then expected
discounted utility V is also decreasing in g.

2. If also T1 < 0, then labor h is increasing in g.

3. If also UcUllT1 + UlUccT2 < 0, then the tax rate τ is increasing in g.

4. If also (Ullh − Ul)T1 + (Uccc + Uc)T2 > 0, then the government surplus in marginal
utility terms Ω is decreasing in g. If also g is iid, then y = Ucb and the government
debt b are decreasing in g.

Proof. See appendix C.4
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Figure 2: Impulse response functions to a positive fiscal shock for the case of full confidence
in the model and for the case of fear of misspecification with θ = 90.

We can also derive the following corollary.

Corollary 6.6. The Aiyagari et al. utility function satisfies T1 < 0 and UcUllT1 +UlUccT2 <
0. If γ < 1, then it is ensured that (Ullh− Ul)T1 + T2(Uccc + Uc) > 0.

Proof. See appendix C.4.

So our calculated example satisfies all the conditions of the above lemma, which allows
us to understand in a deeper way the changes induced by the household’s fear of misspecifi-
cation.

6.3.2 Impulse response functions

At first we are going to analyze the impulse response functions to a fiscal shock at t = 1
for consumption, labor, the tax rate and debt under fear of misspecification. We consider
the level of each variable at history gt = (ḡ, ḡ, ..., ḡ) and at history ĝt = (ḡ, g′, ḡ, ..., ḡ), and
calculate the respective rate of change. We consider a positive shock and set g′ = 32.32,
which corresponds to the 7th node in our approximation scheme. Our approximate solution
for small fear of misspecification is driven by the martingale derivatives M∗′

t and ξ′t which are
also martingales, as noted before. Therefore, a fiscal shock at t = 1 has permanent effects
as figure 1 demonstrates. A positive shock in g decreases the utility of the household and
consequently increases the likelihood ratio M∗

t . Besides that, it induces a negative innovation
in the marginal utility of bond holdings, which results into an increase in ξt.
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θ ∞ 120 100 90 70 50

Φ 0.0080073 0.0080095 0.0080099 0.0080102 0.008011 0.0080125
E(τ) 0.3111 0.31117 0.31118 0.31118 0.3112 0.31124
std(τ) 0.0018 0.0022 0.0023 0.0024 0.0026 0.0029
ρ 0 0.2639 0.3167 0.3519 0.4524 0.6334

Table 1: Approximate moments of tax rate and cost of distortionary taxation.

θ ∞ 120 100 90 70 50

E(b) 0.0029 -0.0127 -0.0159 -0.0180 -0.0239 -0.0346
std(b) 2.3203 1.4276 1.2491 1.1301 0.7900 0.1779
ρ 0 -0.3849 -0.4619 -0.5132 -0.6598 -0.9238

Table 2: Approximate moments of government debt.

Furthermore, in figure 2 we can see the impulse response functions for the Lucas and
Stokey economy and for the case when the household doubts it model with θ = 90. At first
note that in the Lucas and Stokey case all variables return to zero after the shock at t = 1.
This highlights the absence of history-dependence with full confidence in the model. On
the other hand, for the case of misspecification, the variables of interest do not return to
zero after period t = 1, indicating the history-dependence of the optimal plan. This is not
discernible for consumption, because the impulse response functions differ to a very small
extent and barely discernible for labor. However, the effects of fear of misspecification are
clearer for the tax rate and government debt. For each variable in the figure, the two state
variables (M∗

t , ξt) that reflect the heterogeneity of the beliefs between the planner and the
household and the endogeneity of the household’s worst-case beliefs, have opposite effects.
This stems from the fact that the approximate solution is driven by the difference between the
two martingale derivatives, which respond in the same way to a fiscal shock. Considering for
example the tax rate, an increase in the likelihood ratio is increasing τ , whereas an increase
in ξt decreases it. It turns out that the heterogeneity effect dominates in our example, which
leads to a total increase in the tax rate.

6.3.3 Approximate moments of tax rate and debt

A natural question that arises is about the effect of the household’s fear of misspecification
on the moments of the tax rate and government debt. In order to answer this question,
we are going to treat the moments of these two variables as any other non-linear function
of σ and approximate them around σ = 0. The approximate autocorrelations of the tax
rate and debt for small fear of misspecification are of particular interest in the case of iid
fiscal shocks, since they are going to shed light on the amount of history dependence that
is introduced to the optimal policy. In the iid case full confidence in the model implies that
the autocorrelation of the tax rate and debt is zero.
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Proposition 6.7. Assume that g is iid. Then the autocorrelations of the tax rate and debt
for small fear of misspefication are approximately equal to

ρτ (σ) = σ
Cov(τ ′t(0), τt−1(0))

V ar(τt(0))

ρb(σ) = σ
Cov(b′t(0), bt−1(0))

V ar(bt(0))

and therefore the signs of the autocorrelations are as follows:

1. If Ucl ≥ 0, then (54) implies that

sign ρτ (σ) = sign Cov(ηt(0)−m∗′
t (0), τt(0))

2. If Eα1 < 0, then (55) implies that

sign ρb(σ) = sign Cov(ηt(0)−m∗′
t (0), bt(0))

Proof. See appendix C.4 for the calculation of the approximate autocorrelations, along with
the approximate standard deviations and means.

Remark 6.8. Note that the sign of the approximate autocorrelations depends on the co-
variance of the tax rate or debt with the increments to the martingale derivatives ξ′t(0) and
M∗′

t (0). These covariances reflect the covariance of the Lucas and Stokey plan with the two
separate effects that determine the optimal plan under fear of misspecification: the effect of
heterogeneity of beliefs and the effect of the manipulation by the planner of the endogenous
beliefs of the household.

Note that since m∗′
t (0) = Vt(0)−EVt(0) and ηt(0) = Φ(0)(yt(0)−Eyt(0)) where yt ≡ Uctbt,

we are interested in finding the covariance of V and y with the tax rate and debt in the Lucas
and Stokey plan. Lemma 6.5 instructs as about the sign of this covariances, which will con-
sequently determine the sign of the approximate autocorrelations. Consider at first the tax
rate. According to proposition 6.7, the sign of the tax autocorrelation depends on the differ-
ence of Cov(ηt(0), τt(0)) = Φ(0)Cov(yt(0), τt(0)) and Cov(m∗′

t (0), τt(0)) = Cov(Vt(0), τt(0)).
When g is increasing then lemma 6.5 instructs that y and V are decreasing whereas τ is
increasing. Therefore we expect both autocovariances to be negative, which let us conclude
that the sign is ambiguous. If |Cov(m∗′

t (0), τt(0))| > |Cov(ηt(0), τt(0))|, i.e. if the covariance
of the effect stemming from the heterogeneity of beliefs with the tax rate is stronger in ab-
solute value than the respective covariance coming from the endogeneity of beliefs, then the
sign becomes positive, whereas in the opposite case negative. Similarly in the case of gov-
ernment debt, if Eα1 < 0 -which holds in our calculated example- then the sign depends on
Cov(ηt(0), bt(0)) = Φ(0)Cov(yt(0), bt(0)) and Cov(m∗′

t (0), bt(0)) = Cov(Vt(0), bt(0)). When
g is increasing, then according to the lemma y, b, V are decreasing. So both covariances of
the increments with the government debt are positive. In this case, if the covariance of the
heterogeneity of beliefs Cov(m∗′

t (0), bt(0)) with government debt is larger than the covariance

34



of the effect of endogeneity with debt Cov(ηt(0), bt(0)), the autocorrelation of government
debt becomes negative, and positive otherwise.

We turn now to the specifics of our calculated example. Consider at first table 1 that
presents the moments of the tax rate and the cost of of distortionary taxation for various
degrees of misspecification. Note at first that the cost of distortionary taxation Φ is increasing
when the representative household doubts its model but in very small amounts. Furthermore,
the mean tax rate and the standard deviation are increasing as well. The most noticeable
effect of the introduction of fear of misspecification is on the autocorrelation of the tax rate.
The autocorrelation from zero for the no-robustness case can become even 0.6344 when
θ = 50. In this example, we see that the covariance coming from the heterogeneity of beliefs
is larger than the respective one that originates from the desire of the planner to manipulate
the household’s endogenous beliefs, which leads to a positive autocorrelation. Turning now
to table 2, we notice that again we have larger influence of the heterogeneity of beliefs,
which results now into a negative autocorrelation of government debt. Furthermore, the
mean debt along with the standard deviation are decreasing, i.e. the government on average
accumulates more assets. The effect of lack of full confidence in the model is pretty large
concerning the autocorrelation of debt. So the optimal government debt becomes a smooth
and very persistent process when the household has concerns about misspecification.

6.3.4 Household’s worst-case beliefs

Having computed the approximate distortion m∗
t allows us to calculate the worst-case model

of the household. In figure 3 we report the conditional likelihood ratios m∗ for θ = 50 9. With
full confidence in the model they would be just unity. With concerns about misspecification
they become larger than unity for high levels of government expenditures an lower for low
levels of g. So the household assigns higher probability mass on events that bring him low
utility, i.e. events with high realizations of fiscal shocks. In figure 4 we see the actual
worst-case beliefs of the household. For very high and very low g we cannot discern really
the household’s beliefs because the probabilities of the reference model π are practically
zero. What is worth noting is that for θ = 50, i.e fear of misspecification that produces
high autocorrelation as shown in the previous tables, the worst-case model seems barely
discernible from the reference model π.

7 Concluding remarks

We conclude by indicating some problems that can we can attack using the methods exhibited
in this paper. In Karantounias et al. (2007) we study a Ramsey problem in which the planner
also doubts his approximating model and so forms worst-case beliefs as part of his decision
process. The planner could either have the same multiplier preferences as the household, and

9Note that m∗
t (g

t) = Vt(0)−Et−1Vt(0) depends in the expansion only on the realization gt due to the iid
assumption about g and the history-independence of the Lucas and Stokey plan.
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Figure 3: Conditional likelihood ratios m∗ for θ = 50 (σ = −0.02).
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thus be purely benevolent in the sense that he does not impose his own evaluation of utility, or
more generally he could have multiplier preferences that differ from the household’s. In either
case, the machinery developed in this paper can be used to solve the Ramsey problem. We
can represent the problem recursively by using as state variables the ratio of beliefs between
the planner and the household as well as the corresponding multiplier ξt on the recursion of
utility of the household. The discrepancy in the fear of misspecification between the planner
and the agent will have implications for the optimal tax and debt policy.

An alternative approach to the Lagrangian formulation of the Ramsey problem with
fear of misspecification can be constructed by building on the approach of Kydland and
Prescott (1980). The state variables according to this method would be the multipliers of the
household’s optimization problem, with laws of motion the corresponding Euler equations.
In our setup this would mean to use the household’s ex ante utility under the distorted
measure, since this is the multiplier of the malevolent alter-ego of the household on the
law of motion of the likelihood ratio. This approach is dual to the Marcet and Marimon
(1998) approach that we followed here, where we used the shadow value of the utility of
the household ξt. The Kydland and Prescott method allows complimentary insights into the
structure of the problem and the interpretation of optimal plan.

We mention two other avenues for future research. First, it would be useful to attack
the LQ Stackelberg monopolist/competitive fringe problem of Hansen and Sargent (2007,
ch. 16) by using the martingale approach to misspecified beliefs and applying the method-
ology developed in this paper. This is a natural first step before proceeding to analyze the
effects of fear of misspecification on optimal monetary policy in standard New-Keynesian
models. Furthermore, it is interesting to explore also the effect of fear of misspecification on
optimal fiscal policy over the business cycle in a setup like the complete-markets economy of
Chari et al. (1994), where the choice between capital and labor income taxation is crucial.
The Ramsey policies will be altered in non-trivial ways. For example, Chari et al. show
that for a special class of utility functions (power utility of consumption and separability
between consumption and labor) the Ramsey plan without fear of misspecification prescribes
a zero tax on capital income after period zero. That will not be true with concerns about
misspecification.
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A Inner problem and first-order condition

A.1 Inner problem

In this appendix we will solve the inner part of the household’s problem. Assign multipli-
ers βt+1πt+1(g

t+1)ρt+1(g
t+1) and βtπt(g

t)νt(g
t) on constraints (8) and (9) respectively and

remember that M0 ≡ 1 and π0(g0) = 1. Form the Lagrangian

L =
∞∑

t=0

∑

gt

βtπt(g
t){Mt(g

t)[Ut(g
t) + θβ

∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) ln mt+1(g

t+1)]

−
∑
gt+1

βπt+1(gt+1|gt)ρt+1(g
t+1)[Mt+1(g

t+1)−mt+1(g
t+1)Mt(g

t)]

−νt(g
t)[

∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1)− 1]}

First-order necessary conditions for an interior solution are

• mt+1(g
t+1):

νt(g
t) = βθMt(g

t)[1 + ln mt+1(g
t+1)] + βρt+1(g

t+1)Mt(g
t) (66)

• Mt(g
t), t ≥ 1:

ρt(g
t) = Ut(g

t) + β
[∑

gt+1

πt+1(gt+1|gt)mt+1(g
t+1)ρt+1(g

t+1)

+θ
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) ln mt+1(g

t+1)
]

(67)

Conditions (66) and (67) together with the transversality condition

lim
k→∞

βkEtMt+kρt+k = 0 (68)

and the constraints (8) and (9) describe the solution to the inner problem. The above
conditions can be simplified as follows. Rearrange (66) to get

lnt+1(g
t+1) = −ρt+1(g

t+1)

θ
+

( νt(g
t)

βθMt(gt)
− 1

)

or

mt+1(g
t+1) = exp

(
−ρt+1(g

t+1)

θ

)
exp

( νt(g
t)

βθMt(gt)
− 1

)

Using the constraint that the conditional expectation of mt+1 has to integrate to unity (9)
we can eliminate νt(g

t) and get

m∗
t+1(g

t+1) =
exp

(
−ρ∗t+1(g

t+1)

θ

)

∑
gt+1

πt+1(gt+1|gt) exp
(
−ρ∗t+1(g

t+1)

θ

) , (69)
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where the asterisks denote optimal values. Furthermore, solving forward (67) and imposing
(68) we get

ρ∗t (g
t) =

∞∑
i=0

∑

gt+i|gt

βiπt+i(g
t+i|gt)

M∗
t+i(g

t+i)

M∗
t (gt)

[
U(gt+i) +

βθ
∑

gt+i+1|gt+i

πt+i+1(gt+i+1|gt+i)m∗
t+i+1(g

t+i+1) ln m∗
t+i+1(g

t+i+1)
]
, t ≥ 1

From the above condition we realize that ρ∗t (g
t) = Vt(g

t), i.e. the utility at history gt. This
fact together with (67) and (69) give the conditions in the text.

A.2 Derivation of first-order condition (26)

The first-order condition with respect to Vt(g
t) takes the form

βtπt(g
t)ξt(g

t) = βt−1πt−1(g
t−1)

[
ξt−1(g

t−1)
β

σ

∂

∂Vt(gt)
ln

∑
gt

πt(gt|gt−1) exp(σVt(g
t))

+M∗
t−1(g

t−1)
∂

∂Vt(gt)

∑
gt

βπt(gt|gt−1)µt(g
t)

exp(σVt(g
t))∑

gt
πt(gt|gt−1) exp(σVt(gt))

]

Note that

∂

∂Vt(gt)
ln

∑
gt

πt(gt|gt−1) exp(σVt(g
t)) =

σπt(gt|gt−1) exp(σVt(g
t))∑

gt
πt(gt|gt−1) exp(σVt(gt))

= σπt(gt|gt−1)m∗
t (g

t)

and

∂

∂Vt(gt)

∑
gt

βπt(gt|gt−1)µt(g
t)

exp(σVt(g
t))∑

gt
πt(gt|gt−1) exp(σVt(gt))

=

βσπt(gt|gt−1)
[
µt(g

t)
exp(σVt(g

t))∑
gt

πt(gt|gt−1) exp(σVt(gt))

− exp(σVt(g
t))∑

gt
πt(gt|gt−1) exp(σVt(gt))

∑
gt

πt(gt|gt−1)µt(g
t)

exp(σVt(g
t))∑

gt
πt(gt|gt−1) exp(σVt(gt))

]

= βσπt(gt|gt−1)m∗
t (g

t)
[
µt(g

t)−
∑
gt

πt(gt|gt−1)m∗
t (g

t)µt(g
t)

]

Using these two expressions and simplifying gives equation (26).

B Recursive formulation

The saddle-point problem has the form

min
ξ

max
(c,m∗,M∗,V )

L̃0
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s.t.

M∗
t+1(g

t+1) = m∗
t+1(g

t+1)M∗
t (gt),M0 ≡ 1

m∗
t+1(g

t+1) =
exp(−Vt+1(gt+1)

θ
)

∑
gt+1

π(gt+1|gt) exp(−Vt+1(gt+1)
θ

)
, t ≥ 0

where

L̃0 ≡
∞∑

t=0

βt
∑

gt

π(gt){Ut(g
t) + ΦM∗

t Ωt(g
t)

−ξt(g
t)[Vt(g

t)− Ut(g
t)− β

∑
gt+1

π(gt+1|gt)m
∗
t+1(g

t+1)(Vt+1(g
t+1) + θ ln m∗

t+1(g
t+1))]}

−ΦUc(g0)b0

The resource constraint (19) is already substituted in the Lagrangian. Note that we are
not substituting for the optimal value of the conditional distortion m∗

t+1 from (10). This
makes the Lagrangian linear in the probability vector π and allows us to apply the Law of
Iterated Expectations to get

L̃0 = E0

∞∑
t=0

βt[(1 + ξt)Ut + ΦM∗
t Ωt − ξtVt + ξt−1(m

∗
t Vt + θm∗

t ln m∗
t )]− ΦUc(g0)b0 (70)

Furthermore, we decompose the Lagrangian between the period utility at time zero and
the ex-ante utility of the Lagrangian at period t = 1, due to the initial debt b0 and the
realization of uncertainty at t = 0.

L̃0 = U(g0) + ΦΩ0(g0)− ΦUc(g0)b0 + βL̃

where

L̃ ≡ E0

∞∑
t=1

βt−1[r(ct, Vt,m
∗
t ,M

∗
t−1, ξt−1, ξt; Φ)] (71)

with

r(ct, Vt,m
∗
t ,M

∗
t−1, ξt−1, ξt; Φ)(gt) ≡ (72)

(1 + ξt(g
t))Ut(g

t) + Φm∗
t (g

t)M∗
t−1(g

t−1)Ωt(g
t)− ξt(g

t)Vt(g
t)

+ξt−1(g
t−1)[m∗

t (g
t)Vt(g

t) + θm∗
t (g

t) ln m∗
t (g

t)]

The augmented return function rt doesn’t depend on expectations of future variables. It
depends on the controls ct,m

∗
t , Vt, ξt and the lagged values (M∗

t−1, ξt−1) which will serve as
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a recursive state. Marcet and Marimon show how L̃ satisfies the functional equation in (4.2).

Furthermore, we are going to derive the first-order conditions of the functional equa-
tion, in order to verify that they match with the first-order conditions of the Lagrangian
formulation. Assign the scaled multiplier πg|g−µ̃g on the optimal distortion m∗

g. Form the
Lagrangian

L =
∑

g

πg|g−
{

U(cg, 1− cg − g) + Φm∗
gM

∗
−Ωg

−ξg(Vg − U(cg, 1− cg − g)) + ξ−(m∗
gVg + θm∗

g ln m∗
g)

−µ̃g[m
∗
g −

exp(σVg)∑
g πg|g− exp(σVg)

+ βW (g,m∗
gM

∗
−, ξg; Φ)

}

First-order conditions with respect to cg, Vg,m
∗
g, ξg

(
1 + ξg + Φm∗

gM
∗
−
)
(Ul,g − Uc,g) = Φm∗

gM
∗
−
[
(Ucc − 2Ucl,g + Ull,g)cg

+(Ull,g − Ucl,g)g
]

(73)

ξg = σm∗
g[µ̃g −

∑
g

πg|g−m∗
gµ̃g] + m∗

gξ− (74)

µ̃g = ΦM∗
−Ωg + ξ−[Vg + θ(1 + ln m∗

g)]

+βWM∗(g,M∗
g , ξg; Φ)M∗

− (75)

Vg = Ug + βWξ(g,M∗
g , ξg; Φ) (76)

Observe that (73) is the same equation as (31), with hg = cg + g. Furthermore, using
the envelope condition with respect to ξ (41), and updating one period we get the recur-
sion of the utility of the private sector (21). It remains to show that (74) describes the
appropriate law of motion. For that consider at first (75)and use the fact that ln m∗

g =

−Vg

θ
− ln

∑
g πg|g− exp

(
−Vg

θ

)
to get

µ̃g = ΦM∗
−Ωg + ξ−θ

[
1− ln

∑
g

πg|g− exp(−Vg

θ
)

]
+ βWM∗(g,M∗

g , ξg; Φ)M∗
−

Therefore

µ̃g−
∑

g

πg|g−m∗
gµ̃g = M∗

−[{ΦΩg+βWM∗(g, M∗
g , ξg; Φ)}−

∑
g

πg|g−m∗
g{ΦΩg+βWM∗(g,M∗

g , ξg; Φ)}]

since the term involving the utility under the distorted measure cancels out. Note that by
(43) we have ΦΩg+βWM∗(g, M∗

g , ξg; Φ) = Φ(Ωg+UcgBg) = ΦUcgbg. Therefore, the increment
to the martingale ξt is the familiar forecast error ηt = Φ(Uctbt−Et−1m

∗
t Uctbt) and (74) gives

the law of motion of the martingale.

41



C Expansion

In evaluating the following expansions at σ = 0, bear in mind that m∗
t (0) = M∗

t (0) = 1 and
ξt(0) = 0.

C.1 General case

Definitions and facts: For the rest bear in mind the following helpful definitions:

Kt(0) ≡ (1 + 2Φ(0))∆t(ct(0)) + Φ(0)(∆′
t(ct(0))ct(0) + Γ′t(ct(0))gt), t ≥ 1 (77)

K0(0) ≡ (1 + 2Φ(0))∆0(c0(0)) + Φ(0)[∆′
0(c0(0))c0(0) + Γ′0(c0(0))g0 − E ′

0(c0(0))b0](78)

where
∆t(ct) ≡ Ucct − 2Uclt + Ullt < 0,Γt(ct) ≡ Ullt − Ulct and Et(ct) ≡ Ucct − Uclt. The

interpretation of notation is ∆′
t(ct(0)) ≡ ∂∆t

∂ct
(ct(g

t, 0)). Also rearranging the first-order
condition of the Lucas and Stokey case, which is (31) and (32) evaluated at σ = 0 (and
consequently (M∗

t (0), ξt(0)) = (1, 0)), gives

∆t(ct(0))ct(0) + Γt(ct(0))gt =
1 + Φ(0)

Φ(0)
(Ult(0)− Uct(0)) (79)

∆0(c0(0))c0(0) + Γ0(c0(0))g0 − E0(c0(0))b0 =
1 + Φ(0)

Φ(0)
(Ul0(0)− Uc0(0)), (80)

two facts that will become handy later.

1. Law of motion for M∗′. The law of motion ∀σ ≤ 0 is M∗
t (σ) = m∗

t (σ)M∗
t−1(σ) with

M0 ≡ 1. Differentiating wrt σ we get

M∗′
t (σ) = m∗′

t (σ)M∗
t−1(σ) + m∗

t (σ)M∗′
t−1(σ)

and evaluating at σ = 0

M∗′
t (0) = m∗′

t (0) + M∗′
t−1(0), M∗′

0 ≡ 0

Remember that the increment to the martingale is m∗
t (σ) = exp(σVt(σ))

Et−1 exp(σVt(σ))
. Differenti-

ating with respect to σ we get

m∗′
t (σ) = m∗

t (σ)[Vt(σ) + σV ′
t (σ)− Et−1m

∗
t (σ)(Vt(σ) + σV ′

t (σ))

which evaluated at σ = 0 simplifies to m∗′
t (0) = Vt(0)−Et−1Vt(0). Using the expression

for the increment in the law of motion for M∗′ gives the expression at the text.

2. Law of motion for ξ′. Remember that ξt(σ) = σM∗
t (σ)ηt(σ) + m∗

t (σ)ξt−1(σ), where
ηt(σ) = µt(σ)− Et−1m

∗
t (σ)µt(σ). Differentiating now the law of motion of ξt

ξ′t(σ) = M∗
t (σ)ηt(σ) + σM∗′

t (σ)ηt(σ) + σM∗
t (σ)η′t(σ) + m∗′

t (σ)ξt−1(σ) + m∗
t (σ)ξ′t−1(σ)
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which at σ = 0 becomes

ξ′t(0) = ηt(0) + ξ′t−1(0)

= Φ(0) [Uct(0)bt(0)− Et−1Uct(0)bt(0)] + ξ′t−1(0)

with initial condition ξ′0 ≡ 0.

3. Expression for c′t(0). We proceed now to the calculation of c′t(0) which is equal to
h′t(0) as is clear from the resource constraint. To do we will work with (31) and (32),
which determine the optimal wedge for t ≥ 1 and t = 0 respectively.

• t ≥ 1: Substituting for ht = ct + gt, and using the above definitions of ∆t(ct) and
Γt(ct) (31) takes the form

(1+ξt(σ)+Φ(σ)M∗
t (σ))[Ult(σ)−Uct(σ)] = Φ(σ)M∗

t (σ)[∆t(ct(σ))ct(σ)+Γt(ct(σ))gt]

Differentiating the left-hand side with respect to σ and evaluating at σ = 0 gives

LHS ′(0) = [ξ′t(0) + Φ′(0) + Φ(0)M∗′
t (0))][Ult(0)− Uct(0)]

−(1 + Φ(0))∆t(ct(0))c′t(0)

Similarly, differentiate the right-hand side and set σ = 0 to get

RHS ′(0) = [Φ′(0) + Φ(0)M∗′
t (0)][∆t(ct(0))ct(0) + Γt(ct(0))gt]

+Φ(0)[∆′
t(ct(0))ct(0) + ∆t(ct(0)) + Γ′t(ct(0))gt]c

′
t(0)

Combining the two sides and rearranging terms returns

Kt(0)c′t(0) = ξ′t(0)(Ult(0)− Uct(0))

+(Φ′(0) + Φ(0)M∗′
t (0))

{
Ult(0)− Uct(0)− [∆t(ct(0))ct(0) + Γt(ct(0))gt]

}

The term multiplying [Φ′(0)+Φ(0)M∗′
t (0)] can be further simplified by using fact

(79), to finally get c′t(0) = Ult(0)−Uct(0)
Kt(0)

[
ξ′t(0) − M∗′

t (0) − Φ′(0)
Φ(0)

]
, t ≥ 1 which is

expression (53) in the text.

• t = 0: The difference in period zero arises from the presence of initial debt b0.
Repeating (32) here for convenience

(1 + Φ(σ))[Ul0(σ)− Uc0(σ)] = Φ(σ)[∆0(c0(σ))c0(σ) + Γ0(c0(σ))g0 − E0(c0(σ))b0]

Differentiating over σ, evaluating at σ = 0 and using fact (80) and the definition

of K0(0) allows us to derive c′0(0) = Ul0(0)−Uc0(0)
K0(0)

[−Φ′(0)
Φ(0)

], which is the same as the

expression in the text since ξ′0 = M∗′
0 = 0.
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4. Expression for τ ′t(0)

The tax rate is given by τt(σ) = 1− Ul(ct(σ), 1− ct(σ)− gt)/Uc(ct(σ), 1− ct(σ)− gt).
Differentiating with respect to σ and evaluating at σ = 0 gives

τ ′t(0) = − [Ulct(0)− Ullt(0)]Uct(0)− Ult(0)[Ucct(0)− Uclt(0)]

U2
ct(0)

c′t(0)

Using expression (53) gives

τ ′t(0) = αt(0) [ξ′t(0)−M∗′
t (0)− Φ′(0)/Φ(0)]

where

αt(0) ≡ − [Ulct(0)− Ullt(0)]Uct(0)− Ult(0)[Ucct(0)− Uclt(0)]

U2
ct(0)

Ult(0)− Uct(0)

Kt(0)

5. Expression for b′t(0)

The government debt at time t as a function of σ is

bt(σ) =
∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)(M∗

t+i(σ)/M∗
t (σ))

(
Ωt+i(σ)/Uct(σ)

)
.

Differentiating with respect to σ and setting σ = 0 returns

b′t(0) =
∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)

(
M∗

t+i(σ)

M∗
t (σ)

)′

σ=0

Ωt+i(0)

Uct(0)

+
∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)

(
Ωt+i(σ)

Uct(σ)

)′

σ=0

Note that (
M∗

t+i(σ)

M∗
t (σ)

)′

σ=0

= M∗′
t+i(0)−M∗′

t (0)

(
Ωt+i(σ)

Uct(σ)

)′

σ=0

= (Ω′
t+i(0)Uct(0)− Ωt+i(0)U ′

ct(0))/Uct(0)2,

with Ω′
t(0) = [∆t(ct(0))ct(0)+Γt(ct(0))gt+Uct(0)−Ult(0)]c′t(0). Using (79) Ω′ simplifies

to Ω′
t(0) = (Ult(0) − Uct(0))c′t(0)/Φ(0). Furthermore, U ′

ct(0) = (Ucct(0) − Uclt(0))c′t(0).
So the derivative of debt becomes

b′t(0) =
1

Uct(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)(M∗′

t+i(0)−M∗′
t (0))Ωt+i(0)

+
1

Φ(0)Uct(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)(Ult+i(0)− Uct+i(0))c′t+i(0)

−(Ucct(0)− Uclt(0))

Uct(0)2
c′t(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)Ωt+i(0)
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Use now formula (53) for c′t(0), rewrite ξ′t+i(0)−M∗′
t+i(0) as (ξ′t+i(0)−ξ′t(0))−(M∗′

t+i(0)−
M∗′

t (0)) + (ξ′t(0)−M∗′
t (0)), define zt ≡ (Uct − Ult)

2/Kt and collect terms to get

b′t(0) = α1(g
t)(ξ′t(0)−M∗′

t (0)) + α2(g
t) + α3(g

t)

where

α1(g
t) ≡ 1

Φ(0)Uct(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)zt+i(0)

−(Ucct(0)− Uclt(0))(Ult(0)− Uct(0))

Uct(0)2Kt(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)Ωt+i(0)

α2(g
t) ≡ Φ′(0)

Φ(0)Uct(0)

[(Ucct(0)− Uclt(0))(Ult(0)− Uct(0))

Uct(0)Kt(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)Ωt+i(0)

− 1

Φ(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)zt+i(0)

]

α3(g
t) ≡ 1

Uct(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)(M∗′

t+i(0)−M∗′
t (0))Ωt+i(0)

+
1

Φ(0)Uct(0)

∞∑
i=0

βi
∑

gt+i|gt

πt+i(g
t+i|gt)zt+i(0)[(ξ′t+i(0)− ξ′t(0))− (M∗′

t+i(0)−M∗′
t (0))]

The three coefficients αi depend on the whole history of shocks through the probability
measure πt. In case of Markovian shocks, they are only state-dependent since zt+i and
Ωt+i depend on the Lucas and Stokey allocation and thus are functions only of gt+i, and
furthermore, ξ′t+i(0)−ξ′t(0) and M∗′

t+i(0)−M∗′
t (0) depend on the sum of the increments

which also inherit the Markovian property.

6. Cost of distortionary taxation. The above expressions express c′t(0) as a func-
tion of Φ′(0). We are going to use now the differentiated intertemporal budget con-
straint evaluated at σ = 0, and substitute for c′t(0) in order to derive an expres-
sion for Φ′(0) and complete the expansion. The budget constraint (IC) has the form∑∞

t=0

∑
gt βtπt(g

t)M∗
t (σ)Ωt(σ) = Uc0(σ)b0. Differentiating and evaluating at σ = 0

gives

∞∑
t=0

∑

gt

βtπt(g
t)M∗′

t (0)Ωt(0) +
∞∑

t=0

∑

gt

βtπt(g
t)Ω′

t(0) = E0(c0(0))b0c
′
0(0) (81)

By using facts (79) and (80), we find that Ω′
t(0) = (Ult(0) − Uct(0))c′t(0)/Φ(0), t ≥ 1

and Ω′
0(0) = [(Ul0(0)− Uc0(0))/Φ(0) + E0(c0(0))b0]c

′
0(0) respectively. Using that, (81)
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becomes

∞∑
t=0

∑

gt

βtπt(g
t)

Uct(0)− Ult(0)

Φ(0)
c′t(0) =

∞∑
t=0

∑

gt

βtπt(g
t)M∗′

t (0)Ωt(0)

Substituting expression (53) and rearranging allows us to get (56) in the text.

Proof of lemma 6.1.
Let l(c, Φ) ≡ U(c, 1− c− g)+Φ

[
Uc(c, 1− c− g)−U − l(c, 1− c− g))c−Ul(c, 1− c− g)g

]
denote the period return in the lagrangian for the Lucas and Stokey economy for t ≥ 1 and
let l0(c, Φ, b0) ≡ U(c, 1 − c − g) + Φ

[
Uc(c, 1 − c − g) − U − l(c, 1 − c − g))c − Ul(c, 1 − c −

g)g − Uc(c, 1 − c − g)b0

]
denote the respective lagrangian for t = 0. Note that we have

already substituted for labor from the resource constraint. It is easy to see that lcc = K and
l0cc = K0 where K and K0 the expressions in (77) and (78). We drop the 0 notation since
it is clear that we work for the no-robustness case. The second-order sufficient conditions
require the Hessian of the Lagrangian with respect to ct(g

t) to be negative definite on the

tangent plane of the constraint space defined by A ≡ {
x :

∑∞
t=0

∑
gt

∂F ({c})
∂ct(gt)

xt(g
t) = 0

}
,

where F ({c}) ≡ ∑∞
t=0

∑
gt πt(g

t)[(Uc(g
t) − Ul(g

t))ct(g
t) − Ul(g

t)gt] − Uc0b0. All expressions
are calculated at {c} that satisfies the first-order conditions. The time separability of the
utility function makes the Hessian diagonal, so the second order conditions take the form∑∞

t=0 βt
∑

gt Kt(g
t)x2

t (g
t) < 0 for all x 6= 0, x ∈ A. It is apparent that they are satisfied if

Kt < 0, ∀t ≥ 0.

C.2 Markov case

In this section we show how to calculate the formulas for the expansion when g follows a
time-invariant Markov chain with transition matrix Π (and consequently we cover also the
iid case). We present formulas for the case of zero initial debt, which can be very easily
modified to incorporate the more general case. In our calculations it will be crucial the main
property of the Lucas and Stokey allocation: the history-independence.

At first we have to calculate the increments to martingale derivatives M∗′
t and ξ′t. For

that we need to calculate the household’s expected discounted utility V for the case of no-
robustness and the bonds in marginal utility terms y ≡ Ucb. We are dropping the σ = 0
notation whenever we use vectors, but remember that we always referring to the Lucas and
Stokey solution. The state-dependence of V and y, combined with the Markov assumption
gives in vector notation

V = (I − βΠ)−1U

y = (I − βΠ)−1Ω

We can derive the government debt by dividing each element of y with the corresponding
marginal utility Uc. Let m∗′ denote the matrix of the increments to the martingale M∗′ with
corresponding element m∗′

ij = m∗′(j|i) = Vj −E(V |i) and let η denote the matrix with the
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increments to ξ′ with element ηij = η(j|i) = Φ(0)(yj −E(y|i)). So the increments, given the
solution for V and y can be summarized as follows

m∗′ = 1V ′ − ΠV 1′

η = Φ(0)(1y′ − Πy1′)

Note that the increments to the martingale derivatives inherit the Markov property. Also let
◦ denote element-by-element multiplication between two matrices with the same dimensions.
Note that (Π ◦m∗′)1 = 0 and (Π ◦ η)1 = 0, since the conditional mean of the increments is
zero.

We want now to calculate Φ′(0) and the coefficients αi of b′t(0). These expressions involve
expected discounted sums of products of the history-dependent martingale derivatives (M∗′

t

or ξ′t) with functions of the Lucas and Stokey allocation like Ωt(0) or zt(0), that are only
state-dependent. Consider for example in the expression for Φ′(0) (56) the term in the
nominator

∑∞
t=0 βt

∑
gt π(gt)M∗′

t (0)Ωt(0). Expanding this term gives

∞∑
t=0

βt
∑

gt

π(gt)M∗′
t (0)Ωt(0) = 0 + β

∑
g1

π(g1|g0)m
∗′(g1|g0)Ω(g1)

+β2

∑
g1

π(g1|g0)
∑
g2

π(g2|g1)(m
∗′(g1|g0) + m∗′(g2|g1))Ω(g2)

+β3
∑
g1

π(g1|g0)
∑
g2

π(g2|g1)
∑
g3

π(g3|g2)(m
∗′(g1|g0) + m∗′(g2|g1) + m∗′(g3|g2))Ω(g3) + ...

Let egt denote a selector column vector with zeros everywhere and one at position i when
gt = gi. Then

∑
g1

π(g1|g0)m
∗′(g1|g0)Ω(g1) = e′g0

(Π ◦m∗′)Ω

∑
g1

π(g1|g0)
∑
g2

π(g2|g1)(m
∗′(g1|g0) + m∗′(g2|g1))Ω(g2) = e′g0

(Π ◦m∗′)ΠΩ + e′g0
Π(Π ◦m∗′)Ω

∑
g1

π(g1|g0)
∑
g2

π(g2|g1)
∑
g3

π(g3|g2)(m
∗′(g1|g0) + m∗′(g2|g1) + m∗′(g3|g2))Ω(g3)

= e′g0
(Π ◦m∗′)Π2Ω + e′g0

Π(Π ◦m∗′)ΠΩ + e′g0
Π2(Π ◦m∗′)Ω
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So by induction we get

∞∑
t=0

βt
∑

gt

π(gt)M∗′
t (0)Ωt(0) = βe′g0

(Π ◦m∗′)Ω + β2[(Π ◦m∗′)ΠΩ + e′g0
Π(Π ◦m∗′)Ω]

+β3[e′g0
(Π ◦m∗′)Π2Ω + e′g0

Π(Π ◦m∗′)ΠΩ + e′g0
Π2(Π ◦m∗′)Ω] + ...

= βe′g0
(Π ◦m∗′)[I + βΠ + β2Π2 + ...]Ω + β2e′g0

Π(Π ◦m∗′)[I + βΠ + β2Π2 + ...]Ω

+β3e′g0
Π2(Π ◦m∗′)[I + βΠ + β2Π2 + ...]Ω + ...

= βe′g0
[I + βΠ + β2Π2 + ...](Π ◦m∗′)(I − βΠ)−1Ω

= βe′g0
(I − βΠ)−1(Π ◦m∗′)(I − βΠ)−1Ω

A similar calculation applies when instead of M∗′
t we have ξ′t. Therefore, the expression for

Φ′(0) is

Φ′(0) =
Φ(0)βe′g0

(I − βΠ)−1
[
Φ(0)(Π ◦m∗′)(I − βΠ)−1Ω + [(Π ◦ η)− (Π ◦m∗′)](I − βΠ)−1z

]

e′g0
(I − βΠ)−1z

.

Finally, the coefficients αi for debt take the form

α1(gt) = e′gt
(I − βΠ)−1

[ 1

Φ(0)Uct(0)
z − (Ucct(0)− Uclt(0))(Ult(0)− Uct(0))

Uct(0)2Kt(0)
Ω

]

α2(gt) =
Φ′(0)

Φ(0)Uct(0)
e′gt

(I − βΠ)−1
[(Ucct(0)− Uclt(0))(Ult(0)− Uct(0))

Uct(0)Kt(0)
Ω− 1

Φ(0)
z
]

α3(gt) =
βe′gt

(I − βΠ)−1

Uct(0)

[
(Π ◦m∗′)(I − βΠ)−1Ω +

1

Φ(0)
[(Π ◦ η)− (Π ◦m∗′)](I − βΠ)−1z

]

C.3 Quasi-linear example.

The quasi-linearity in the utility function simplifies all expressions greatly. At first note
thatVt(0) = h − gt − 1

2
h2 + βEtVt+1(0) and bt(0) = τh − gt + βEtbt+1(0). Calculating the

innovation in Vt(0) and bt(0) gives expression (57) and (58) respectively. Furthermore, by

using Kt(0) = −(1+2Φ(0)),∀t and Ult−Uct = h−1 = − Φ(0)
1+2Φ(0)

we derive (59) and (60). The

expressions in the result about random walks are derived by just applying (48) and taking
first differences. In finding the tax revenues we use the derivative T ′

t(0) = τ ′t(0)h + τh′t(0) =
(1 − 2h)h′t(0) = − 1

1+2Φ(0)
h′t(0) since τ ′t(0) = −h′t(0) and τ = 1 − h. Furthermore, in deriv-

ing (65) from (60) we use the calculation E0M
∗′
t (0)gt = −γ(β)σ2

ε

∑t−1
i=0 γi. The worst-case

conditional mean is computed from the formula Etm
∗
t+1εt+1 = Et(1 + γ(β)εt+1/θ). We

treat the worst-case variance as any other non-linear function of σ and approximate around

σ = 0. Thus Ṽ art(εt+1) ' σ2
ε + σ dṼ art(εt+1)

dσ
|σ=0. We have dṼ art(εt+1)

dσ
|σ=0 = Etm

∗′
t+1(0)ε2

t+1 =
−γ(β)Etε

3
t+1, which delivers the expression in the result. Furthermore, the coefficients

for b′t(0) in C.1 simplify as follows in the quasi-linear case: α1 = −Φ(0)(1−β)−1

(1+2Φ(0))3
, α2 =

Φ′(0)(1−β)−1(1+2Φ(0))−3 = E0

∑∞
t=0 βtM∗′

t (0)gt and α3 = −Et

∑∞
i=0(M

∗′
t+i(0)−M∗′

t (0))gt+i.
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Note that α2 = −α3 = −γ(β)σ2
ε

∑t−1
i=0 γi. Thus these two terms cancel out and we get the

expression in the text.

C.4 AMSS utility function

In calculating the approximate solution for the Aiyagari et al. utility function, we use the
formulas of appendix C.2, where in this case the transition matrix Π has identical rows due
to the iid assumption.

Proof of lemma 6.5. We want to derive the properties of the solution, given an optimal
plan. So we will apply the implicit function theorem holding Φ constant. All expressions
below are evaluated at the optimal solution.

1. The combined first-order condition of the Lucas and Stokey problem, is equation (31)
evaluated at ξt = 0 and M∗

t = 1. Differentiating with respect to g and rearranging
gives us c′(g) = T2

K
< 0, since T2 > 0 and K = T1 − T2 < 0. Futhermore, U ′(g) =

(Uc − Ul)c
′(g) − Ul < 0, since Ucl = 0 forces the Ramsey planner to tax with no fear

of misspecification and therefore Uc − Ul > 0. Furthermore, the expected discounted
utility of the Lucas and Stokey solution is state-contingent under Markovian shocks g
with transition matrix Π and takes the form V = (I − βΠ)−1U , where V and U are
vectors with i component the respective expected utility Vi and period utility Ui for
gt = gi. When g is iid, then this expression simplifies to V = (I + β

1−β
Π)U or turning

back to scalar notation Vi = Ui + β
1−β

EU for each i, which allows us to conclude that
Vi is decreasing in i, since Ui is decreasing.

2. Differentiating the resource constraint (19) with respect to g gives h′(g) = c′(g) + 1 =
T1

T1−T2
> 0, since T1 < 0 by assumption.

3. The tax rate is τ(g) = 1− Ul(g)
Uc(g)

, with derivative τ ′(g) = [(UcUll+UlUcc)c
′(g)+UcUll]/U

2
c .

Using the solution for c′(g) = T2/(T1−T2) gives τ ′(g) = (UcUllT1+UlUccT2)/(KU2
c ) > 0,

since the nominator is negative by assumption.

4. Calculating the derivative of Ω with respect to g and using fact (79) gives Ω′(g) =
(Ul − Uc)c

′(g)/Φ + Ullh − Ul. Using the expression for c′(g) and collecting the terms
for T1 and T2 gives Ω′(g) = (Φ(Ullh − Ul)T1 + T2[(Ul − Φ(Ullh − Ul)) − Uc])/ΦK. By
the first-order conditions of the Lucas and Stokey plan with respect to c and h we
have Uc + Φ(Uccc + Uc) = λ = Ul − Φ(Ullh− Ul). Therefore, Ω′(g) = [(Ullh− Ul)T1 +
(Uccc+Uc)T2]/K < 0, since the nominator is positive by assumption. Furthermore, the
government debt vector in marginal utility terms y is given by y = (I−βΠ)−1Ω, which
in the iid case becomes (in scalar notation) yi = Ωi +

β
1−β

EΩ, which is decreasing in g,

due to the decreasing Ωi. Finally, b = y/Uc is decreasing in g, since the nominator is
decreasing in g, whereas the denominator is increasing in g due to the indirect effect
of decreasing consumption and therefore increasing marginal utility (the direct effect
of g is absent since it affects the denominator only through Ucl which is zero).
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Proof of corollary 6.6. At first note that showing that T1 < 0, guarantees automat-
ically the second-order conditions of the problem since K = T1 − T2 < 0, since T2 > 0.
Calculating T1 gives us T1 = −c−γ−1γ(1 + Φ(1− γ)). So the sign depends on the expression
1 + Φ(1 − γ). The tax rate for this utility function is given by the expression τ = Φ(γl +
ψh)/((1+Φ)l+Φψh) and therefore 1−τ = l(1+Φ(1−γ))/((1+Φ)l+Φψh) = Ul/Uc > 0. From
this we conclude that 1 + Φ(1− γ) > 0, and T1 < 0. Consider now UcUllT1 + UlUccT2. This
takes the form c−2γ−1l−ψ−1γψal[1+Φ(1−γ)−all

−ψ/c−γ(1+2Φ+Φ(ψ+1)h/l)]. By substitut-
ing for all

−ψ/c−γ the expression for 1−τ we get UcUllT1 +UlUccT2 = −Φc−2γ−1l−ψ−1γψal(1+
Φ(1 − γ))l̄/((1 + Φ)l + Φψh) < 0, since 1 + Φ(1 − γ) > 0. Finally, considering expression
(Ullh − Ul)T1 + (Uccc + Uc)T2 which, if positive, ensures the negativity of Ω′(g) , we note
that the first term is positive since T1 < 0, whereas the second term may take either sign,
depending on Uccc+Uc = c−γ(1−γ). If we assume that γ < 1, then we get the desired result.

Proof of Proposition 6.7. The autocorrelation of the tax rate is

ρτ (σ) =
Cov(τt(σ), τt−1(σ))√

V ar(τt(σ))V ar(τt−1(σ))

with derivative at σ = 0

ρ′τ (0) =
(dCov(τt(σ), τt−1(σ))/dσ)σ=0

V ar(τt(0))
,

where we used the fact that Cov(τt(0), τt−1(0)) = 0, since the tax rate in the Lucas and Stokey
economy is state-dependent, and g is iid, and also the fact that V ar(τt(0)) = V ar(τt−1(0)).
Proceeding with the calculation

dCov(τt(σ), τt−1(σ))

dσ
|σ=0 = E(τ ′t(0)− Eτ ′t(0))(τt−1(0)− Eτt−1(0))

+E(τt(0)− Eτt(0))(τ ′t−1(0)− Eτ ′t−1(0))

= E(τ ′t(0)− Eτ ′t(0))(τt−1(0)− Eτt−1(0)),

since τt(0) depends on gt, whereas τ ′t−1(0) depends on gt−1, and g is iid. Thus, ρτ (σ) '
ρτ (0) + σρ′τ (0) = σρ′τ (0), which is the desired expression. Using now expression (54) and
the facts that αt(0) and the increments to the martingale derivatives ηt(0) and m∗′

t−1(0) de-
pend only on the iid gt we finally find that dCov(τt(σ), τt−1(σ))/dσ|σ=0 = EαCov(ηt−1(0)−
m∗′

t−1(0), τt−1(0)), where we just can change the subscript to t, since the variables are sta-
tionary. Inspecting the formula for the coefficient α in subsection C.1, we realize that α < 0,
when Ucl ≥ 0. Therefore, since σ < 0, the sign of the approximate autocorrelation depends
on the sign of Cov(ηt(0)−m∗′

t (0), τt(0)).
Repeating similar steps for the approximate autocorrelation of debt we derive the formula

stated in the proposition, which using (55) becomes

ρb(σ) ' σ
Cov(ηt(0)−m∗′

t (0), bt(0))Eα1

V ar(bt(0))
.
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The sign of Eα1 is ambiguous. Assuming Eα1 < 0 gives the stated claim about the sign of
the approximate autocorrelation of government debt.

For completeness, we include also the formulas for the rest of the approximate moments.
The approximate standard deviation of the tax rate and debt are

stdτ (σ) ' stdτ (0) + σ
Cov(τ ′t(0), τt(0))

stdτ (0)

stdb(σ) ' stdb(0) + σ
Cov(b′t(0), bt(0))

stdb(0)

with

Cov(τ ′t(0), τt(0)) = Eαt(0)
(
ηt(0)−m∗′

t (0)− Φ′(0)/Φ(0)
)
(τt(0)− Eτt(0))

Cov(b′t(0), bt(0)) = E[α1(gt)(ηt(0)−m∗′
t (0)) + α2(gt) + α3(gt)](bt(0)− Ebt(0))

and the approximate means

Eτt(σ) ' Eτt(0) + σEαt(0)
(
ηt(0)−m∗′

t (0)− Φ′(0)/Φ(0)
)

Ebt(σ) ' Ebt(0) + σE
[
α1(gt)(ηt(0)−m∗′

t (0)) + α2(gt) + α3(gt).
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