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Abstract

This chapter summarizes recent literature on asymptotic inference about forecasts. Both
analytical and simulation based methods are discussed. The emphasis is on techniques
applicable when the number of competing models is small. Techniques applicable when
a large number of models is compared to a benchmark are also briefly discussed.
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1. Introduction

This chapter reviews asymptotic methods for inference about moments of functions of
predictions and prediction errors. The methods may rely on conventional asymptotics
or they may be bootstrap based. The relevant class of applications are ones in which
the investigator uses a long time series of predictions and prediction errors as a model
evaluation tool. Typically the evaluation is done retrospectively rather than in real time.
A classic example is Meese and Rogoff’s (1983) evaluation of exchange rate models.

In most applications, the investigator aims to compare two or more models. Measures
of relative model quality might include ratios or differences of mean, mean-squared or
mean-absolute prediction errors; correlation between one model’s prediction and an-
other model’s realization (also known as forecast encompassing); or comparisons of
utility or profit-based measures of predictive ability. In other applications, the investiga-
tor focuses on a single model, in which case measures of model quality might include
correlation between prediction and realization, lack of serial correlation in one step
ahead prediction errors, ability to predict direction of change, or bias in predictions.

Predictive ability has long played a role in evaluation of econometric models.
An early example of a study that retrospectively set aside a large number of obser-
vations for predictive evaluation is Wilson (1934, pp. 307–308). Wilson, who studied
monthly price data spanning more than a century, used estimates from the first half of
his data to forecast the next twenty years. He then evaluated his model by computing the
correlation between prediction and realization.1 Growth in data and computing power
has led to widespread use of similar predictive evaluation techniques, as is indicated by
the applications cited below.

To prevent misunderstanding, it may help to stress that the techniques discussed here
are probably of little relevance to studies that set aside one or two or a handful of ob-
servations for out of sample evaluation. The reader is referred to textbook expositions
about confidence intervals around a prediction, or to proposals for simulation methods
such as Fair (1980). As well, the paper does not cover density forecasts. Inference about
such forecasts is covered in the Handbook Chapter 5 by Corradi and Swanson (2006).
Finally, the paper takes for granted that one wishes to perform out of sample analysis.
My purpose is to describe techniques that can be used by researchers who have decided,
for reasons not discussed in this chapter, to use a non-trivial portion of their samples for
prediction. See recent work by Chen (2004), Clark and McCracken (2005b) and Inoue
and Kilian (2004a, 2004b) for different takes on the possible power advantages of using
out of sample tests.

Much of the paper uses tests for equal mean squared prediction error (MSPE) for
illustration. MSPE is not only simple, but it is also arguably the most commonly used
measure of predictive ability. The focus on MSPE, however, is done purely for expo-
sitional reasons. This paper is intended to be useful for practitioners interested in a

1 Which, incidentally and regrettably, turned out to be negative.

http://dx.doi.org/10.1016/S1574-0706(05)01005-0
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wide range of functions of predictions and prediction errors that have appeared in the
literature. Consequently, results that are quite general are presented. Because the tar-
get audience is practitioners, I do not give technical details. Instead, I give examples,
summarize findings and present guidelines.

Section 2 illustrates the evolution of the relevant methodology. Sections 3–8 discuss
inference when the number of models under evaluation is small. “Small” is not pre-
cisely defined, but in sample sizes typically available in economics suggests a number
in the single digits. Section 3 discusses inference in the unusual, but conceptually sim-
ple, case in which none of the models under consideration rely on estimated regression
parameters to make predictions. Sections 4 and 5 relax this assumption, but for reasons
described in those sections assume that the models under consideration are nonnested.
Section 4 describes when reliance on estimated regression parameters is irrelevant as-
ymptotically, so that Section 3 procedures may still be applied. Section 5 describes how
to account for reliance on estimated regression parameters. Sections 6 and 7 consider
nested models. Section 6 focuses on MSPE, Section 7 other loss functions. Section 8
summarizes the results of previous sections. Section 9 briefly discusses inference when
the number of models being evaluated is large, possibly larger than the sample size.
Section 10 concludes.

2. A brief history

I begin the discussion with a brief history of methodology for inference, focusing on
mean squared prediction errors (MSPE).

Let e1t and e2t denote one step ahead prediction errors from two competing models.
Let their corresponding second moments be

σ 2
1 ≡ Ee2

1t and σ 2
2 ≡ Ee2

2t .

(For reasons explained below, the assumption of stationarity – the absence of a t sub-
script on σ 2

1 and σ 2
2 – is not always innocuous. For the moment, I maintain it for

consistency with the literature about to be reviewed.) One wishes to test the null

H0: σ 2
1 − σ 2

2 = 0,

or perhaps construct a confidence interval around the point estimate of σ 2
1 − σ 2

2 .
Observe that E(e1t − e2t )(e1t + e2t ) = σ 2

1 − σ 2
2 . Thus σ 2

1 − σ 2
2 = 0 if and only if

the covariance or correlation between e1t − e2t and e1t + e2t is zero. Let us suppose
initially that (e1t , e2t ) is i.i.d. Granger and Newbold (1977) used this observation to
suggest testing H0: σ 2

1 − σ 2
2 = 0 by testing for zero correlation between e1t − e2t and

e1t +e2t . This procedure was earlier proposed by Morgan (1939) in the context of testing
for equality between variances of two normal random variables. Granger and Newbold
(1977) assumed that the forecast errors had zero mean, but Morgan (1939) indicates
that this assumption is not essential. The Granger and Newbold test was extended to
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multistep, serially correlated and possibly non-normal prediction errors by Meese and
Rogoff (1988) and Mizrach (1995).

Ashley, Granger and Schmalensee (1980) proposed a test of equal MSPE in the con-
text of nested models. For nested models, equal MSPE is theoretically equivalent to a
test of Granger non-causality. Ashley, Granger and Schmalensee (1980) proposed ex-
ecuting a standard F-test, but with out of sample prediction errors used to compute
restricted and unrestricted error variances. Ashley, Granger and Schmalensee (1980)
recommended that tests be one-sided, testing whether the unrestricted model has smaller
MSPE than the restricted (nested) model: it is not clear what it means if the restricted
model has a significantly smaller MSPE than the unrestricted model.

The literature on predictive inference that is a focus of this chapter draws on now
standard central limit theory introduced into econometrics research by Hansen (1982) –
what I will call “standard results” in the rest of the discussion. Perhaps the first explicit
use of standard results in predictive inference is Christiano (1989). Let ft = e2

1t − e2
2t .

Christiano observed that we are interested in the mean of ft , call it Eft ≡ σ 2
1 − σ 2

2 .2

And there are standard results on inference about means – indeed, if ft is i.i.d. with finite
variance, introductory econometrics texts describe how to conduct inference about Eft

given a sample of {ft }. A random variable like e2
1t −e2

2t may be non-normal and serially
correlated. But results in Hansen (1982) apply to non-i.i.d. time series data. (Details
below.)

One of Hansen’s (1982) conditions is stationarity. Christiano acknowledged that stan-
dard results might not apply to his empirical application because of a possible failure
of stationarity. Specifically, Christiano compared predictions of models estimated over
samples of increasing size: the first of his 96 predictions relied on models estimated
on quarterly data running from 1960 to 1969, the last from 1960 to 1988. Because of
increasing precision of estimates of the models, forecast error variances might decline
over time. (This is one sense in which the assumption of stationarity was described as
“not obviously innocuous” above.)

West, Edison and Cho (1993) and West and Cho (1995) independently used standard
results to compute test statistics. The objects of interest were MSPEs and a certain
utility based measure of predictive ability. Diebold and Mariano (1995) proposed using
the same standard results, also independently, but in a general context that allows one to
be interested in the mean of a general loss or utility function. As detailed below, these
papers explained either in context or as a general principle how to allow for multistep,
non-normal, and conditionally heteroskedastic prediction errors.

The papers cited in the preceding two paragraphs all proceed without proof. None di-
rectly address the possible complications from parameter estimation noted by Christiano
(1989). A possible approach to allowing for these complications in special cases is in
Hoffman and Pagan (1989) and Ghysels and Hall (1990). These papers showed how

2 Actually, Christiano looked at root mean squared prediction errors, testing whether σ1 − σ2 = 0. For
clarity and consistency with the rest of my discussion, I cast his analysis in terms of MSPE.
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standard results from Hansen (1982) can be extended to account for parameter estima-
tion in out of sample tests of instrument residual orthogonality when a fixed parameter
estimate is used to construct the test. [Christiano (1989), and most of the forecasting
literature, by contrast updates parameter estimate as forecasts progress through the sam-
ple.] A general analysis was first presented in West (1996), who showed how standard
results can be extended when a sequence of parameter estimates is used, and for the
mean of a general loss or utility function.

Further explication of developments in inference about predictive ability requires me
to start writing out some results. I therefore call a halt to the historical summary. The
next section begins the discussion of analytical results related to the papers cited here.

3. A small number of nonnested models, Part I

Analytical results are clearest in the unusual (in economics) case in which predictions
do not rely on estimated regression parameters, an assumption maintained in this section
but relaxed in future sections.

Notation is as follows. The object of interest is Eft , an (m × 1) vector of moments
of predictions or prediction errors. Examples include MSPE, mean prediction error,
mean absolute prediction error, covariance between one model’s prediction and another
model’s prediction error, mean utility or profit, and means of loss functions that weight
positive and negative errors asymmetrically as in Elliott and Timmermann (2003). If one
is comparing models, then the elements of Eft are expected differences in performance.
For MSPE comparisons, and using the notation of the previous section, for example,
Eft = Ee2

1t − Ee2
2t . As stressed by Diebold and Mariano (1995), this framework also

accommodates general loss functions or measures of performance. Let Egit be the mea-
sure of performance of model i – perhaps MSPE, perhaps mean absolute error, perhaps
expected utility. Then when there are two models, m = 1 and Eft = Eg1t − Eg2t .

We have a sample of predictions of size P . Let f̄ ∗ ≡ P −1 ∑
t ft denote the m × 1

sample mean of ft . (The reason for the “∗” superscript will become apparent below.)
If we are comparing two models with performance of model i measured by Egit , then
of course f̄ ∗ ≡ P −1 ∑

t (g1t − g2t ) ≡ ḡ1 − ḡ2 = the difference in performance of the
two models, over the sample. For simplicity and clarity, assume covariance stationarity
– neither the first nor second moments of ft depend on t . At present (predictions do
not depend on estimated regression parameters), this assumption is innocuous. It allows
simplification of formulas. The results below can be extended to allow moment drift as
long as time series averages converge to suitable constants. See Giacomini and White
(2003). Then under well-understood and seemingly weak conditions, a central limit
theorem holds:

(3.1)
√

P
(
f̄ ∗ − Eft

) ∼A N
(
0, V ∗), V ∗ ≡

∞∑
j=−∞

E(ft − Eft )(ft−j − Eft )
′.
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See, for example, White (1984) for the “well-understood” phrase of the sentence prior
to (3.1); see below for the “seemingly weak” phrase. Equation (3.1) is the “standard
result” referenced above. The m × m positive semidefinite matrix V ∗ is sometimes
called the long run variance of ft . If ft is serially uncorrelated (perhaps i.i.d.), then
V ∗ = E(ft −Eft )(ft −Eft )

′. If, further, m = 1 so that ft is a scalar, V ∗ = E(ft −Eft )
2.

Suppose that V ∗ is positive definite. Let V̂ ∗ be a consistent estimator of V ∗. Typ-
ically V̂ ∗ will be constructed with a heteroskedasticity and autocorrelation consistent
covariance matrix estimator. Then one can test the null

(3.2)H0: Eft = 0

with a Wald test:

(3.3)f̄ ∗ ′V̂ ∗−1f̄ ∗ ∼A χ2(m).

If m = 1 so that ft is a scalar, one can test the null with a t-test:

f̄ ∗/[
V̂ ∗/P

]1/2 ∼A N(0, 1),

(3.4)
V̂ ∗ →p V ∗ ≡

∞∑
j=−∞

E(ft − Eft )(ft−j − Eft ).

Confidence intervals can be constructed in obvious fashion from [V̂ ∗/P ]1/2.
As noted above, the example of the previous section maps into this notation with

m = 1, ft = e2
1t − e2

2t , Eft = σ 2
1 − σ 2

2 , and the null of equal predictive ability is
that Eft = 0, i.e., σ 2

1 = σ 2
2 . Testing for equality of MSPE in a set of m + 1 models

for m > 1 is straightforward, as described in the next section. To give an illustration
or two of other possible definitions of ft , sticking for simplicity with m = 1: If one is
interested in whether a forecast is unbiased, then ft = e1t and Eft = 0 is the hypothesis
that the model 1 forecast error is unbiased. If one is interested in mean absolute error,
ft = |e1t | − |e2t |, and Eft = 0 is the hypothesis of equal mean absolute prediction
error. Additional examples are presented in a subsequent section below.

For concreteness, let me return to MSPE, with m = 1, ft = e2
1t − e2

2t , f̄ ∗ ≡
P −1 ∑

t (e
2
1t − e2

2t ). Suppose first that (e1t , e2t ) is i.i.d. Then so, too, is e2
1t − e2

2t , and
V ∗ = E(ft − Eft )

2 = variance(e2
1t − e2

2t ). In such a case, as the number of fore-

cast errors P → ∞ one can estimate V ∗ consistently with V̂ ∗ = P −1 ∑
t (ft − f̄ ∗)2.

Suppose next that (e1t , e2t ) is a vector of τ step ahead forecast errors whose (2 × 1)

vector of Wold innovations is i.i.d. Then (e1t , e2t ) and e2
1t − e2

2t follow MA(τ − 1)

processes, and V ∗ = ∑τ−1
j=−τ+1 E(ft −Eft )(ft−j −Eft ). One possible estimator of V ∗

is the sample analogue. Let �̂j = P −1 ∑
t>|j |(ft − f̄ ∗)(ft−|j | − f̄ ∗) be an estimate

of E(ft − Eft )(ft−j − Eft ), and set V̂ ∗ = ∑τ−1
j=−τ+1 �̂j . It is well known, however,

that this estimator may not be positive definite if τ > 0. Hence one may wish to use
an estimator that is both consistent and positive semidefinite by construction [Newey
and West (1987, 1994), Andrews (1991), Andrews and Monahan (1994), den Haan and
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Levin (2000)]. Finally, under some circumstances, one will wish to use a heteroskedas-
ticity and autocorrelation consistent estimator of V ∗ even when (e1t , e2t ) is a one step
forecast error. This will be the case if the second moments follow a GARCH or related
process, in which case there will be serial correlation in ft = e2

1t − e2
2t even if there is

no serial correlation in (e1t , e2t ).
But such results are well known, for ft a scalar or vector, and for ft relevant for

MSPE or other moments of predictions and prediction errors. The “seemingly weak”
conditions referenced above Equation (3.1) allow for quite general forms of dependence
and heterogeneity in forecasts and forecast errors. I use the word “seemingly” because
of some ancillary assumptions that are not satisfied in some relevant applications. First,
the number of models m must be “small” relative to the number of predictions P . In
an extreme case in which m > P , conventional estimators will yield V̂ ∗ that is not
of full rank. As well, and more informally, one suspects that conventional asymptotics
will yield a poor approximation if m is large relative to P . Section 9 briefly discusses
alternative approaches likely to be useful in such contexts.

Second, and more generally, V ∗ must be full rank. When the number of models
m = 2, and MSPE is the object of interest, this rules out e2

1t = e2
2t with probabil-

ity 1 (obviously). It also rules out pairs of models in which
√

P(σ̂ 2
1 − σ̂ 2

2 ) →p 0. This
latter condition is violated in applications in which one or both models make predictions
based on estimated regression parameters, and the models are nested. This is discussed
in Sections 6 and 7 below.

4. A small number of nonnested models, Part II

In the vast majority of economic applications, one or more of the models under con-
sideration rely on estimated regression parameters when making predictions. To spell
out the implications for inference, it is necessary to define some additional notation.
For simplicity, assume that one step ahead prediction errors are the object of interest.
Let the total sample size be T + 1. The last P observations of this sample are used
for forecast evaluation. The first R observations are used to construct an initial set of
regression estimates that are then used for the first prediction. We have R +P = T + 1.
Schematically:

(4.1)

Division of the available data into R and P is taken as given.
In the forecasting literature, three distinct schemes figure prominently in how one

generates the sequence of regression estimates necessary to make predictions. Asymp-
totic results differ slightly for the three, so it is necessary to distinguish between them.
Let β denote the vector of regression parameters whose estimates are used to make pre-
dictions. In the recursive scheme, the size of the sample used to estimate β grows as one
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makes predictions for successive observations. One first estimates β with data from 1
to R and uses the estimate to predict observation R + 1 (recall that I am assuming one
step ahead predictions, for simplicity); one then estimates β with data from 1 to R + 1,
with the new estimate used to predict observation R + 2; . . . ; finally, one estimates β

with data from 1 to T , with the final estimate used to predict observation T + 1. In
the rolling scheme, the sequence of β’s is always generated from a sample of size R.
The first estimate of β is obtained with a sample running from 1 to R, the next with a
sample running from 2 to R + 1, . . . , the final with a sample running from T − R + 1
to T . In the fixed scheme, one estimates β just once, using data from 1 to R. In all three
schemes, the number of predictions is P and the size of the smallest regression sam-
ple is R. Examples of applications using each of these schemes include Faust, Rogers
and Wright (2004) (recursive), Cheung, Chinn and Pascual (2003) (rolling) and Ashley,
Granger and Schmalensee (1980) (fixed). The fixed scheme is relatively attractive when
it is computationally difficult to update parameter estimates. The rolling scheme is rel-
atively attractive when one wishes to guard against moment or parameter drift that is
difficult to model explicitly.

It may help to illustrate with a simple example. Suppose one model under consid-
eration is a univariate zero mean AR(1): yt = β∗yt−1 + e1t . Suppose further that the
estimator is ordinary least squares. Then the sequence of P estimates of β∗ are gener-
ated as follows for t = R, . . . , T :

recursive: β̂t =
[

t∑
s=1

(
y2
s−1

)]−1[ t∑
s=1

ys−1ys

]
;

(4.2)rolling: β̂t =
[

t∑
s=t−R+1

(
y2
s−1

)]−1[ t∑
s=t−R+1

ys−1ys

]
;

fixed: β̂t =
[

R∑
s=1

(
y2
s−1

)]−1[ R∑
s=1

ys−1ys

]
.

In each case, the one step ahead prediction error is êt+1 ≡ yt+1 −yt β̂t . Observe that for
the fixed scheme β̂t = β̂R for all t , while β̂t changes with t for the rolling and recursive
schemes.

I will illustrate with a simple MSPE example comparing two linear models. I then
introduce notation necessary to define other moments of interest, sticking with linear
models for expositional convenience. An important asymptotic result is then stated. The
next section outlines a general framework that covers all the simple examples in this
section, and allows for nonlinear models and estimators.

So suppose there are two least squares models, say yt = X′
1t β

∗
1 + e1t and yt =

X′
2t β

∗
2 + e2t . (Note the dating convention: X1t and X2t can be used to predict yt , for

example X1t = yt−1 if model 1 is an AR(1).) The population MSPEs are σ 2
1 ≡ Ee2

1t

and σ 2
2 ≡ Ee2

2t . (Absence of a subscript t on the MSPEs is for simplicity and without
substance.) Define the sample one step ahead forecast errors and sample MSPEs as
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ê1t+1 ≡ yt+1 − X′
1t+1β̂1t , ê2t+1 ≡ yt+1 − X′

2t+1β̂2t ,

(4.3)
σ̂ 2

1 = P −1
T∑

t=R

ê2
1t+1, σ̂ 2

2 = P −1
T∑

t=R

ê2
2t+1.

With MSPE the object of interest, one examines the difference between the sample
MSPEs σ̂ 2

1 and σ̂ 2
2 . Let

(4.4)f̂t ≡ ê2
1t − ê2

2t , f̄ ≡ P −1
T∑

t=R

f̂t+1 ≡ σ̂ 2
1 − σ̂ 2

2 .

Observe that f̄ defined in (4.4) differs from f̄ ∗ defined above (3.1) in that f̄ relies
on ê’s, whereas f̄ ∗ relies on e’s.

The null hypothesis is σ 2
1 −σ 2

2 = 0. One way to test the null would be to substitute ê1t

and ê2t for e1t and e2t in the formulas presented in the previous section. If (e1t , e2t )
′ is

i.i.d., for example, one would set V̂ ∗ = P −1 ∑T
t=R(f̂t+1 − f̄ )2, compute the t-statistic

(4.5)f̄
/[

V̂ ∗/P
]1/2

and use standard normal critical values. [I use the “∗” in V̂ ∗ for both P −1 ∑T
t=R(f̂t+1 −

f̄ )2 (this section) and for P −1 ∑T
t=R(ft+1 − f̄ ∗)2 (previous section) because under

the asymptotic approximations described below, both are consistent for the long run
variance of ft+1.]

Use of (4.5) is not obviously an advisable approach. Clearly, ê2
1t − ê2

2t is polluted
by error in estimation of β1 and β2. It is not obvious that sample averages of ê2

1t − ê2
2t

(i.e., f̄ ) have the same asymptotic distribution as those of e2
1t − e2

2t (i.e., f̄ ∗). Under
suitable conditions (see below), a key factor determining whether the asymptotic distri-
butions are equivalent is whether or not the two models are nested. If they are nested, the
distributions are not equivalent. Use of (4.5) with normal critical values is not advised.
This is discussed in a subsequent section.

If the models are not nested, West (1996) showed that when conducting inference
about MSPE, parameter estimation error is asymptotically irrelevant. I put the phrase in
italics because I will have frequent recourse to it in the sequel: “asymptotic irrelevance”
means that one conduct inference by applying standard results to the mean of the loss
function of interest, treating parameter estimation error as irrelevant.

To explain this result, as well as to illustrate when asymptotic irrelevance does not
apply, requires some – actually, considerable – notation. I will phase in some of this no-
tation in this section, with most of the algebra deferred to the next section. Let β∗ denote
the k × 1 population value of the parameter vector used to make predictions. Suppose
for expositional simplicity that the model(s) used to make predictions are linear,

(4.6a)yt = X′
t β

∗ + et

if there is a single model,

(4.6b)yt = X′
1t β

∗
1 + e1t , yt = X′

2t β
∗
2 + e2t , β∗ ≡ (

β∗ ′
1 , β∗ ′

2

)′
,
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if there are two competing models. Let ft (β
∗) be the random variable whose expectation

is of interest. Then leading scalar (m = 1) examples of ft (β
∗) include:

(4.7a)ft

(
β∗) = e2

1t − e2
2t = (

yt − X′
1t β

∗
1

)2 − (
yt − X′

2t β
∗
2

)2

(Eft = 0 means equal MSPE);

(4.7b)ft

(
β∗) = et = yt − X′

t β
∗

(Eft = 0 means zero mean prediction error);

(4.7c)ft

(
β∗) = e1tX

′
2t β

∗
2 = (

yt − X′
1t β

∗
1

)
X′

2t β
∗
2

[Eft = 0 means zero correlation between one model’s prediction error and another
model’s prediction, an implication of forecast encompassing proposed by Chong and
Hendry (1986)];

(4.7d)ft

(
β∗) = e1t (e1t − e2t ) = (

yt − X′
1t β

∗
1

)[(
yt − X′

1t β
∗
1

) − (
yt − X′

2t β
∗
2

)]
[Eft = 0 is an implication of forecast encompassing proposed by Harvey, Leybourne
and Newbold (1998)];

(4.7e)ft

(
β∗) = et+1et = (

yt+1 − X′
t+1β

∗)(yt − X′
t β

∗)
(Eft = 0 means zero first order serial correlation);

(4.7f)ft

(
β∗) = etX

′
t β

∗ = (
yt − X′

t β
∗)X′

t β
∗

(Eft = 0 means the prediction and prediction error are uncorrelated);

(4.7g)ft

(
β∗) = |e1t | − |e2t | = ∣∣yt − X′

1t β
∗
1

∣∣ − ∣∣yt − X′
2t β

∗
2

∣∣
(Eft = 0 means equal mean absolute error).

More generally, ft (β
∗) can be per period utility or profit, or differences across models

of per period utility or profit, as in Leitch and Tanner (1991) or West, Edison and Cho
(1993).

Let f̂t+1 ≡ ft+1(β̂t ) denote the sample counterpart of ft+1(β
∗), with f̄ ≡

P −1 ∑T
t=R f̂t+1 the sample mean evaluated at the series of estimates of β∗. Let

f̄ ∗ = P −1 ∑T
t=R ft+1(β

∗) denote the sample mean evaluated at β∗. Let F denote
the (1 × k) derivative of the expectation of ft , evaluated at β∗:

(4.8)F = ∂Eft (β
∗)

∂β
.

For example, F = −EX′
t for mean prediction error (4.7b).

Then under mild conditions,
√

P
(
f̄ − Eft

) = √
P

(
f̄ ∗ − Eft

) + F × (P/R)1/2

× [
Op(1) terms from the sequence of estimates of β∗] + op(1).

(4.9)
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Some specific formulas are in the next section. Result (4.9) holds not only when ft is a
scalar, as I have been assuming, but as well when ft is a vector. (When ft is a vector of
dimension (say) m, F has dimension m × k.)

Thus, uncertainty about the estimate of Eft can be decomposed into uncertainty that
would be present even if β∗ were known and, possibly, additional uncertainty due to
estimation of β∗. The qualifier “possibly” results from at least three sets of circum-
stances in which error in estimation of β∗ is asymptotically irrelevant: (1) F = 0;
(2) P/R → 0; (3) the variance of the terms due to estimation of β∗ is exactly offset by
the covariance between these terms and

√
P(f̄ ∗ − Eft ). For cases (1) and (2), the mid-

dle term in (4.9) is identically zero (F = 0) or vanishes asymptotically (P/R → 0),
implying that

√
P (f̄ − Eft ) − √

P(f̄ ∗ − Eft ) →p 0; for case (3) the asymptotic vari-
ances of

√
P(f̄ − Eft ) and

√
P (f̄ ∗ − Eft ) happen to be the same. In any of the three

sets of circumstances, inference can proceed as described in the previous section. This
is important because it simplifies matters if one can abstract from uncertainty about β∗
when conducting inference.

To illustrate each of the three circumstances:
1. For MSPE in our linear example F = (−2EX′

1t e1t , 2EX′
2t e2t )

′. So F = 01×k if
the predictors are uncorrelated with the prediction error.3 Similarly, F = 0 for mean ab-
solute prediction error (4.7g) (E[|e1t |− |e2t |]) when the prediction errors have a median
of zero, conditional on the predictors. (To prevent confusion, it is to be emphasized that
MSPE and mean absolute error are unusual in that asymptotic irrelevance applies even
when P/R is not small. In this sense, my focus on MSPE is a bit misleading.)

Let me illustrate the implications with an example in which ft is a vector rather than
a scalar. Suppose that we wish to test equality of MSPEs from m+1 competing models,
under the assumption that the forecast error vector (e1t , . . . , em+1,t )

′ is i.i.d. Define the
m × 1 vectors

ft ≡ (
e2

1t − e2
2t , . . . , e

2
1t − e2

m+1,t

)′
, f̂t = (

ê2
1t − ê2

2t , . . . , ê
2
1t − ê2

m+1,t

)′
,

(4.10)
f̄ = P −1

T∑
t=R

f̂t+1.

The null is that Eft = 0m×1. (Of course, it is arbitrary that the null is defined as discrep-
ancies from model 1’s squared prediction errors; test statistics are identical regardless
of the model used to define ft .) Then under the null

(4.11)f̄ ′V̂ ∗−1f̄ ∼A χ2(m), V̂ ∗ →p V ∗ ≡
∞∑

j=−∞
E(ft − Eft )(ft−j − Eft )

′,

3 Of course, one would be unlikely to forecast with a model that a priori is expected to violate this condition,
though prediction is sometimes done with realized right hand side endogenous variables [e.g., Meese and
Rogoff (1983)]. But prediction exercise do sometimes find that this condition does not hold. That is, out of
sample prediction errors display correlation with the predictors (even though in sample residuals often display
zero correlation by construction). So even for MSPE, one might want to account for parameter estimation error
when conducting inference.
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where, as indicated, V̂ ∗ is a consistent estimate of the m × m long run variance of ft . If
ft ≡ (e2

1t − e2
2t , . . . , e

2
1t − e2

m+1,t )
′ is serially uncorrelated (sufficient for which is that

(e1t , . . . , em+1,t )
′ is i.i.d.), then a possible estimator of V is simply

V̂ ∗ = P −1
T∑

t=R

(
f̂t+1 − f̄

)(
f̂t+1 − f̄

)′
.

If the squared forecast errors display persistence (GARCH and all that), a robust esti-
mator of the variance-covariance matrix should be used [Hueng (1999), West and Cho
(1995)].

2. One can see in (4.9) that asymptotic irrelevance holds quite generally when
P/R → 0. The intuition is that the relatively large sample (big R) used to estimate
β produces small uncertainty relative to uncertainty that would be present in the rel-
atively small sample (small P ) even if one knew β. The result was noted informally
by Chong and Hendry (1986). Simulation evidence in West (1996, 2001), McCracken
(2004) and Clark and McCracken (2001) suggests that P/R < 0.1 more or less justifies
using the asymptotic approximation that assumes asymptotic irrelevance.

3. This fortunate cancellation of variance and covariance terms occurs for certain
moments and loss functions, when estimates of parameters needed to make predictions
are generated by the recursive scheme (but not by the rolling or fixed schemes), and
when forecast errors are conditionally homoskedastic. These loss functions are: mean
prediction error; serial correlation of one step ahead prediction errors; zero correlation
between one model’s forecast error and another model’s forecast. This is illustrated in
the discussion of Equation (7.2) below.

To repeat: When asymptotic irrelevance applies, one can proceed as described in
Section 3. One need not account for dependence of forecasts on estimated parameter
vectors. When asymptotic irrelevance does not apply, matters are more complicated.
This is discussed in the next sections.

5. A small number of nonnested models, Part III

Asymptotic irrelevance fails in a number of important cases, at least according to the
asymptotics of West (1996). Under the rolling and fixed schemes, it fails quite gen-
erally. For example, it fails for mean prediction error, correlation between realization
and prediction, encompassing, and zero correlation in one step ahead prediction errors
[West and McCracken (1998)]. Under the recursive scheme, it similarly fails for such
moments when prediction errors are not conditionally homoskedastic. In such cases, as-
ymptotic inference requires accounting for uncertainty about parameters used to make
predictions.

The general result is as follows. One is interested in an (m×1) vector of moments Eft ,
where ft now depends on observable data through a (k × 1) unknown parameter vec-
tor β∗. If moments of predictions or prediction errors of competing sets of regressions
are to be compared, the parameter vectors from the various regressions are stacked to



112 K.D. West

form β∗. It is assumed that Eft is differentiable in a neighborhood around β∗. Let β̂t

denote an estimate of β∗ that relies on data from period t and earlier. Let τ � 1 be the
forecast horizon of interest; τ = 1 has been assumed in the discussion so far. Let the
total sample available be of size T + τ . The estimate of Eft is constructed as

(5.1)f̄ = P −1
T∑

t=R

ft+τ

(
β̂t

) ≡ P −1
T∑

t=R

f̂t+τ .

The models are assumed to be parametric. The estimator of the regression parameters
satisfies

(5.2)β̂t − β∗ = B(t)H(t),

where B(t) is k × q, H(t) is q × 1 with
(a) B(t)

a.s.→ B, B a matrix of rank k;
(b) H(t) = t−1 ∑t

s=1 hs(β
∗) (recursive), H(t) = R−1 ∑t

s=t−R+1 hs(β
∗) (rolling),

H(t) = R−1 ∑R
s=1 hs(β

∗) (fixed), for a (q × 1) orthogonality condition hs(β
∗)

orthogonality condition that satisfies
(c) Ehs(β

∗) = 0.
Here, ht is the score if the estimation method is maximum likelihood, or the GMM
orthogonality condition if GMM is the estimator. The matrix B(t) is the inverse of
the Hessian (ML) or linear combination of orthogonality conditions (GMM), with large
sample counterpart B. In exactly identified models, q = k. Allowance for overidentified
GMM models is necessary to permit prediction from the reduced form of simultaneous
equations models, for example. For the results below, various moment and mixing con-
ditions are required. See West (1996) and Giacomini and White (2003) for details.

It may help to pause to illustrate with linear least squares examples. For the least
squares model (4.6a), in which yt = X′

t β
∗ + et ,

(5.3a)ht = Xtet .

In (4.6b), in which there are two models yt = X′
1t β

∗
1 + e1t , yt = X′

2t β
∗
2 + e2t , β

∗ ≡
(β∗ ′

1 , β∗ ′
2 )′,

(5.3b)ht = (
X′

1t e1t , X
′
2t e2t

)′
,

where ht = ht (β
∗) is suppressed for simplicity. The matrix B is k × k:

(5.4)

B = (
EX1tX

′
1t

)−1
(model (4.6a)),

B = diag
[(

EX1tX
′
1t

)−1
,
(
EX2tX

′
2t

)−1]
(model (4.6b)).

If one is comparing two models with Egit and ḡi the expected and sample mean perfor-
mance measure for model i, i = 1, 2, then Eft = Eg1t − Eg2t and f̄ = ḡ1 − ḡ2.

To return to the statement of results, which require conditions such as those in West
(1996), and which are noted in the bullet points at the end of this section. Assume a
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large sample of both predictions and prediction errors,

(5.5)P → ∞, R → ∞, lim
T →∞

P

R
= π, 0 � π < ∞.

An expansion of f̄ around f̄ ∗ yields

(5.6)
√

P
(
f̄ − Eft

) = √
P

(
f̄ ∗ − Eft

) + F(P/R)1/2[BR1/2H̄
] + op(1)

which may also be written

P −1/2
T∑

t=R

[
f

(
β̂t+1

) − Eft

]

(5.6)′= P −1/2
T∑

t=R

[
ft+1

(
β∗) − Eft

] + F(P/R)1/2[BR1/2H̄
] + op(1).

The first term on the right-hand side of (5.6) and (5.6)′ – henceforth (5.6), for short –
represents uncertainty that would be present even if predictions relied on the popula-
tion value of the parameter vector β∗. The limiting distribution of this term was given
in (3.1). The second term on the right-hand side of (5.6) results from reliance of pre-
dictions on estimates of β∗. To account for the effects of this second term requires yet
more notation. Write the long run variance of (f ′

t+1, h
′
t )

′ as

(5.7)S =
[
V ∗ Sf h

S′
f h Shh

]
.

Here, V ∗ ≡ ∑∞
j=−∞ E(ft − Eft )(ft−j − Eft )

′ is m × m, Sf h = ∑∞
j=−∞ E(ft −

Eft )h
′
t−j is m × k, and Shh ≡ ∑∞

j=−∞ Ehth
′
t−j is k × k, and ft and ht are understood

to be evaluated at β∗. The asymptotic (R → ∞) variance–covariance matrix of the
estimator of β∗ is

(5.8)Vβ ≡ BShhB
′.

With π defined in (5.5), define the scalars λf h, λhh and λ ≡ (1 +λhh − 2λf h), as in the
following table:

(5.9)

Sampling scheme λf h λhh λ

Recursive 1 − π−1 ln(1 + π) 2[1 − π−1 ln(1 + π)] 1

Rolling, π � 1 π
2 π − π2

3 1 − π2

3

Rolling, π > 1 1 − 1
2π

1 − 1
3π

2
3π

Fixed 0 π 1 + π

Finally, define the m × k matrix F as in (4.8), F ≡ ∂Eft (β
∗)/∂β.
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Then P −1/2 ∑T
t=R[f (β̂t+1)−Eft ] is asymptotically normal with variance-covariance

matrix

(5.10)V = V ∗ + λf h

(
FBS′

f h + Sf hB
′F ′) + λhhFVβF ′.

V ∗ is the long run variance of P −1/2
[∑T

t=R ft+1(β
∗) − Eft

]
and is the same object as

V ∗ defined in (3.1), λhhFVβF ′ is the long run variance of F(P/R)1/2[BR1/2H̄ ], and
λf h(FBS′

f h + Sf hB
′F ′) is the covariance between the two.

This completes the statement of the general result. To illustrate the expansion (5.6)
and the asymptotic variance (5.10), I will temporarily switch from my example of com-
parison of MSPEs to one in which one is looking at mean prediction error. The variable
ft is thus redefined to equal the prediction error, ft = et , and Eft is the moment of
interest. I will further use a trivial example, in which the only predictor is the constant
term, yt = β∗ + et . Let us assume as well, as in the Hoffman and Pagan (1989) and
Ghysels and Hall (1990) analyses of predictive tests of instrument-residual orthogonal-
ity, that the fixed scheme is used and predictions are made using a single estimate of β∗.
This single estimate is the least squares estimate on the sample running from 1 to R,
β̂R ≡ R−1 ∑R

s=1 ys . Now, êt+1 = et+1 − (β̂R − β∗) = et+1 − R−1 ∑R
s=1 es . So

(5.11)P −1/2
T∑

t=R

êt+1 = P −1/2
T∑

t=R

et+1 − (P/R)1/2

(
R−1/2

R∑
s=1

es

)
.

This is in the form (4.9) or (5.6)′, with: F = −1, R−1/2 ∑R
s=1 es = [Op(1) terms

due to the sequence of estimates of β∗], B ≡ 1, H̄ = (R−1 ∑R
s=1 es) and the op(1)

term identically zero.
If et is well behaved, say i.i.d. with finite variance σ 2, the bivariate vector

(P −1/2 ∑T
t=R et+1, R

−1/2 ∑R
s=1 es)

′ is asymptotically normal with variance covariance
matrix σ 2I2. It follows that

(5.12)P −1/2
T∑

t=R

et+1 − (P/R)1/2

(
R−1/2

R∑
s=1

es

)
∼A N

(
0, (1 + π)σ 2).

The variance in the normal distribution is in the form (5.10), with λf h = 0, λhh =
π , V ∗ = FVβF ′ = σ 2. Thus, use of β̂R rather than β∗ in predictions inflates the
asymptotic variance of the estimator of mean prediction error by a factor of 1 + π .

In general, when uncertainty about β∗ matters asymptotically, the adjustment to the
standard error that would be appropriate if predictions were based on population rather
than estimated parameters is increasing in:

• The ratio of number of predictions P to number of observations in smallest regres-
sion sample R. Note that in (5.10) as π → 0, λf h → 0 and λhh → 0; in the
specific example (5.12) we see that if P/R is small, the implied value of π is small
and the adjustment to the usual asymptotic variance of σ 2 is small; otherwise the
adjustment can be big.
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• The variance–covariance matrix of the estimator of the parameters used to make
predictions.

Both conditions are intuitive. Simulations in West (1996, 2001), West and McCracken
(1998), McCracken (2000), Chao, Corradi and Swanson (2001) and Clark and Mc-
Cracken (2001, 2003) indicate that with plausible parameterizations for P/R and un-
certainty about β∗, failure to adjust the standard error can result in very substantial size
distortions. It is possible that V < V ∗ – that is, accounting for uncertainty about re-
gression parameters may lower the asymptotic variance of the estimator.4 This happens
in some leading cases of practical interest when the rolling scheme is used. See the
discussion of Equation (7.2) below for an illustration.

A consistent estimator of V results from using the obvious sample analogues. A pos-
sibility is to compute λf h and λhh from (5.10) setting π = P/R. (See Table 1 for the
implied formulas for λf h, λhh and λ.) As well, one can estimate F from the sample
average of ∂f (β̂t )/∂β, F̂ = P −1 ∑T

t=R ∂f (β̂t )/∂β;5 estimate Vβ and B from one of
the sequence of estimates of β∗. For example, for mean prediction error, for the fixed
scheme, one might set

F̂ = −P −1
T∑

t=R

X′
t+1, B̂ =

(
R−1

R∑
s=1

XsX
′
s

)−1

,

Table 1
Sample analogues for λf h, λhh and λ

Recursive Rolling, P � R Rolling, P > R Fixed

λf h 1 − R
P

ln
(
1 + P

R

) 1
2

P
R

1 − 1
2

R
P

0

λhh 2
[
1 − R

P
ln

(
1 + P

R

)]
P
R

− 1
3

P 2

R2 1 − 1
3

R
P

P
R

λ 1 1 − 1
3

P 2

R2
2R
3P

1 + P
R

Notes:
1. The recursive, rolling and fixed schemes are defined in Section 4 and illustrated for an AR(1) in Equa-
tion (4.2).
2. P is the number of predictions, R the size of the smallest regression sample. See Section 4 and Equa-
tion (4.1).
3. The parameters λf h, λhh and λ are used to adjust the asymptotic variance covariance matrix for uncertainty
about regression parameters used to make predictions. See Section 5 and Tables 2 and 3.

4 Mechanically, such a fall in asymptotic variance indicates that the variance of terms resulting from estima-
tion of β∗ is more than offset by a negative covariance between such terms and terms that would be present
even if β∗ were known.
5 See McCracken (2000) for an illustration of estimation of F for a non-differentiable function.
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V̂β ≡
(

R−1
R∑

s=1

XsX
′
s

)−1(
R−1

R∑
s=1

XsX
′
s ê

2
s

)(
R−1

R∑
s=1

XsX
′
s

)−1

.

Here, ês , 1 � s � R, is the in-sample least squares residual associated with the para-
meter vector β̂R that is used to make predictions and the formula for V̂β is the usual
heteroskedasticity consistent covariance matrix for β̂R . (Other estimators are also con-
sistent, for example sample averages running from 1 to T .) Finally, one can combine
these with an estimate of the long run variance S constructed using a heteroskedas-
ticity and autocorrelation consistent covariance matrix estimator [Newey and West
(1987, 1994), Andrews (1991), Andrews and Monahan (1994), den Haan and Levin
(2000)].

Alternatively, one can compute a smaller dimension long run variance as follows. Let
us assume for the moment that ft and hence V are scalar. Define the (2 × 1) vector ĝt

as

(5.13)ĝt =
[

f̂t

F̂ B̂ĥt

]
.

Let gt be the population counterpart of ĝt , gt ≡ (ft , FBht )
′. Let 
 be the (2 × 2)

long run variance of gt , 
 ≡ ∑∞
j=−∞ Egtg

′
t−j . Let 
̂ be an estimate of 
. Let 
̂ij be

the (i, j) element of 
̂. Then one can consistently estimate V with

(5.14)V̂ = 
̂11 + 2λf h
̂12 + λhh
̂22.

The generalization to vector ft is straightforward. Suppose ft is say m × 1 for m � 1.
Then

ĝt =
[

ft

FBht

]
.

is 2m× 1, as is ĝt ; 
 and 
̂ are 2m× 2m. One divides 
̂ into four (m×m) blocks, and
computes

(5.15)V̂ = 
̂(1, 1) + λf h

[

̂(1, 2) + 
̂(2, 1)

] + λhh
̂(2, 2).

In (5.15), 
̂(1, 1) is the m × m block in the upper left hand corner of 
̂, 
̂(1, 2) is the
m × m block in the upper right hand corner of 
̂, and so on.

Alternatively, in some common problems, and if the models are linear, regression
based tests can be used. By judicious choice of additional regressors [as suggested
for in-sample tests by Pagan and Hall (1983), Davidson and MacKinnon (1984) and
Wooldridge (1990)], one can “trick” standard regression packages into computing stan-
dard errors that properly reflect uncertainty about β∗. See West and McCracken (1998)
and Table 3 below for details, Hueng and Wong (2000), Avramov (2002) and Ferreira
(2004) for applications.

Conditions for the expansion (5.6) and the central limit result (5.10) include the fol-
lowing.
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• Parametric models and estimators of β are required. Similar results may hold with
nonparametric estimators, but, if so, these have yet to be established. Linearity is
not required. One might be basing predictions on nonlinear time series models, for
example, or restricted reduced forms of simultaneous equations models estimated
by GMM.

• At present, results with I(1) data are restricted to linear models [Corradi, Swan-
son and Olivetti (2001), Rossi (2003)]. Asymptotic irrelevance continues to apply
when F = 0 or π = 0. When those conditions fail, however, the normalized es-
timator of Eft typically is no longer asymptotically normal. (By I(1) data, I mean
I(1) data entered in levels in the regression model. Of course, if one induces sta-
tionarity by taking differences or imposing cointegrating relationships prior to
estimating β∗, the theory in the present section is applicable quite generally.)

• Condition (5.5) holds. Section 7 discusses implications of an alternative asymptotic
approximation due to Giacomini and White (2003) that holds R fixed.

• For the recursive scheme, condition (5.5) can be generalized to allow π = ∞, with
the same asymptotic approximation. (Recall that π is the limiting value of P/R.)
Since π < ∞ has been assumed in existing theoretical results for rolling and
fixed, researchers using those schemes should treat the asymptotic approximation
with extra caution if P 	 R.

• The expectation of the loss function f must be differentiable in a neighborhood
of β∗. This rules out direction of change as a loss function.

• A full rank condition on the long run variance of (f ′
t+1, (Bht )

′)′. A necessary
condition is that the long run variance of ft+1 is full rank. For MSPE, and i.i.d.
forecast errors, this means that the variance of e2

1t − e2
2t is positive (note the ab-

sence of a “ ˆ” over e2
1t and e2

2t ). This condition will fail in applications in which
the models are nested, for in that case e1t ≡ e2t . Of course, for the sample fore-
cast errors, ê1t 
= ê2t (note the “ ˆ”) because of sampling error in estimation of β∗

1
and β∗

2 . So the failure of the rank condition may not be apparent in practice. Mc-
Cracken’s (2004) analysis of nested models shows that under the conditions of the
present section apart from the rank condition,

√
P(σ̂ 2

1 − σ̂ 2
2 ) →p 0. The next two

sections discuss inference for predictions from such nested models.

6. A small number of models, nested: MSPE

Analysis of nested models per se does not invalidate the results of the previous sections.
A rule of thumb is: if the rank of the data becomes degenerate when regression para-
meters are set at their population values, then a rank condition assumed in the previous
sections likely is violated. When only two models are being compared, “degenerate”
means identically zero.

Consider, as an example, out of sample tests of Granger causality [e.g., Stock and
Watson (1999, 2002)]. In this case, model 2 might be a bivariate VAR, model 1 a univari-
ate AR that is nested in model 2 by imposing suitable zeroes in the model 2 regression



118 K.D. West

vector. If the lag length is 1, for example:

Model 1: yt = β10 + β11yt−1 + e1t ≡ X′
1t β

∗
1 + e1t , X1t ≡ (1, yt−1)

′,
(6.1a)β∗

1 ≡ (β10, β11)
′;

Model 2: yt = β20 + β21yt−1 + β22xt−1 + e2t ≡ X′
2t β

∗
2 + e2t ,

(6.1b)X2t ≡ (1, yt−1, xt−1)
′, β∗

2 ≡ (β20, β21, β22)
′.

Under the null of no Granger causality from x to y, β22 = 0 in model 2. Model 1 is then
nested in model 2. Under the null, then,

β∗ ′
2 = (

β∗ ′
1 , 0

)
, X′

1t β
∗
1 = X′

2t β
∗
2 ,

and the disturbances of model 2 and model 1 are identical: e2
2t −e2

1t ≡ 0, e1t (e1t −e2t ) =
0 and |e1t | − |e2t | = 0 for all t . So the theory of the previous sections does not apply if
MSPE, cov(e1t , e1t −e2t ) or mean absolute error is the moment of interest. On the other
hand, the random variable e1t+1xt is nondegenerate under the null, so one can use the
theory of the previous sections to examine whether Ee1t+1xt = 0. Indeed, Chao, Corradi
and Swanson (2001) show that (5.6) and (5.10) apply when testing Ee1t+1xt = 0 with
out of sample prediction errors.

The remainder of this section considers the implications of a test that does fail the
rank condition of the theory of the previous section – specifically, MSPE in nested
models. This is a common occurrence in papers on forecasting asset prices, which often
use MSPE to test a random walk null against models that use past data to try to predict
changes in asset prices. It is also a common occurrence in macro applications, which, as
in example (6.1), compare univariate to multivariate forecasts. In such applications, the
asymptotic results described in the previous section will no longer apply. In particular,
and under essentially the technical conditions of that section (apart from the rank con-
dition), when σ̂ 2

1 − σ̂ 2
2 is normalized so that its limiting distribution is non-degenerate,

that distribution is non-normal.
Formal characterization of limiting distributions has been accomplished in McCracken

(2004) and Clark and McCracken (2001, 2003, 2005a, 2005b). This characterization re-
lies on restrictions not required by the theory discussed in the previous section. These
restrictions include:

(6.2a) The objective function used to estimate regression parameters must be the
same quadratic as that used to evaluate prediction. That is:

• The estimator must be nonlinear least squares (ordinary least squares of
course a special case).

• For multistep predictions, the “direct” rather than “iterated” method must
be used.6

6 To illustrate these terms, consider the univariate example of forecasting yt+τ using yt , assuming that
mathematical expectations and linear projections coincide. The objective function used to evaluate predictions
is E[yt+τ − E(yt+τ | yt )]2. The “direct” method estimates yt+τ = yt γ + ut+τ by least squares, uses yt γ̂t
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(6.2b) A pair of models is being compared. That is, results have not been extended
to multi-model comparisons along the lines of (3.3).

McCracken (2004) shows that under such conditions,
√

P(σ̂ 2
1 − σ̂ 2

2 ) →p 0, and de-
rives the asymptotic distribution of P(σ̂ 2

1 − σ̂ 2
2 ) and certain related quantities. (Note

that the normalizing factor is the prediction sample size P rather than the usual
√

P .)
He writes test statistics as functionals of Brownian motion. He establishes limiting dis-
tributions that are asymptotically free of nuisance parameters under certain additional
conditions:

(6.2c) one step ahead predictions and conditionally homoskedastic prediction errors,
or

(6.2d) the number of additional regressors in the larger model is exactly 1 [Clark and
McCracken (2005a)].

Condition (6.2d) allows use of the results about to be cited, in conditionally het-
eroskedastic as well as conditionally homoskedastic environments, and for multiple
as well as one step ahead forecasts. Under the additional restrictions (6.2c) or (6.2d),
McCracken (2004) tabulates the quantiles of P(σ̂ 2

1 − σ̂ 2
2 )/σ̂ 2

2 . These quantiles depend
on the number of additional parameters in the larger model and on the limiting ratio
of P/R. For conciseness, I will use “(6.2)” to mean

Conditions (6.2a) and (6.2b) hold, as does either or both of conditions (6.2c)

(6.2)and (6.2d).

Simulation evidence in Clark and McCracken (2001, 2003, 2005b), McCracken
(2004), Clark and West (2005a, 2005b) and Corradi and Swanson (2005) indicates that
in MSPE comparisons in nested models the usual statistic (4.5) is non-normal not only
in a technical but in an essential practical sense: use of standard critical values usually
results in very poorly sized tests, with far too few rejections. As well, the usual statistic
has very poor power. For both size and power, the usual statistic performs worse the
larger the number of irrelevant regressors included in model 2. The evidence relies on
one-sided tests, in which the alternative to H0: Ee2

1t − Ee2
2t = 0 is

(6.3)HA: Ee2
1t − Ee2

2t > 0.

Ashley, Granger and Schmalensee (1980) argued that in nested models, the alternative
to equal MSPE is that the larger model outpredicts the smaller model: it does not make
sense for the population MSPE of the parsimonious model to be smaller than that of the
larger model.

to forecast, and computes a sample average of (yt+τ − yt γ̂t )
2. The “iterated” method estimates yt+1 =

ytβ + et+1, uses yt (β̂t )
τ to forecast, and computes a sample average of [yt+τ − yt (β̂t )

τ ]2. Of course, if
the AR(1) model for yt is correct, then γ = βτ and ut+τ = et+τ + βet+τ−1 + · · · + βτ−1et+1. But if the
AR(1) model is incorrect, the two forecasts may differ, even in a large sample. See Ing (2003) and Marcellino,
Stock and Watson (2004) for theoretical and empirical comparison of direct and iterated methods.
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To illustrate the sources of these results, consider the following simple example. The
two models are:

Model 1: yt = et ; Model 2: yt = β∗xt + et ; β∗ = 0;
(6.4)et a martingale difference sequence with respect to past y’s and x’s.

In (6.4), all variables are scalars. I use xt instead of X2t to keep notation relatively un-
cluttered. For concreteness, one can assume xt = yt−1, but that is not required. I write
the disturbance to model 2 as et rather than e2t because the null (equal MSPE) implies
β∗ = 0 and hence that the disturbance to model 2 is identically equal to et . Nonethe-
less, for clarity and emphasis I use the “2” subscript for the sample forecast error from
model 2, ê2t+1 ≡ yt+1 − xt+1β̂t . In a finite sample, the model 2 sample forecast error
differs from the model 1 forecast error, which is simply yt+1. The model 1 and model 2
MSPEs are

(6.5)σ̂ 2
1 ≡ P −1

T∑
t=R

y2
t+1, σ̂ 2

2 ≡ P −1
T∑

t=R

ê2
2t+1 ≡ P −1

T∑
t=R

(
yt+1 − xt+1β̂t

)2
.

Since

f̂t+1 ≡ y2
t+1 − (

yt+1 − xt+1β̂t

)2 = 2yt+1xt+1β̂t − (
xt+1β̂t

)2

we have

(6.6)f̄ ≡ σ̂ 2
1 − σ̂ 2

2 = 2

(
P −1

T∑
t=R

yt+1xt+1β̂t

)
−

[
P −1

T∑
t=R

(
xt+1β̂t

)2

]
.

Now,

−
[
P −1

T∑
t=R

(
xt+1β̂t

)2

]
� 0

and under the null (yt+1 = et+1 ∼ i.i.d.)

2

(
P −1

T∑
t=R

yt+1xt+1β̂t

)
≈ 0.

So under the null it will generally be the case that

(6.7)f̄ ≡ σ̂ 2
1 − σ̂ 2

2 < 0

or: the sample MSPE from the null model will tend to be less than that from the alter-
native model.

The intuition will be unsurprising to those familiar with forecasting. If the null is
true, the alternative model introduces noise into the forecasting process: the alternative
model attempts to estimate parameters that are zero in population. In finite samples, use
of the noisy estimate of the parameter will raise the estimated MSPE of the alternative
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model relative to the null model. So if the null is true, the model 1 MSPE should be
smaller by the amount of estimation noise.

To illustrate concretely, let me use the simulation results in Clark and West (2005b).
As stated in (6.3), one tailed tests were used. That is, the null of equal MSPE is rejected
at (say) the 10 percent level only if the alternative model predicts better than model 1:

f̄
/[

V̂ ∗/P
]1/2 = (

σ̂ 2
1 − σ̂ 2

2

)/[
V̂ ∗/P

]1/2
> 1.282,

V̂ ∗ = estimate of long run variance of σ̂ 2
1 − σ̂ 2

2 , say,

V̂ ∗ = P −1
T∑

t=R

(
f̂t+1 − f̄

)2 = P −1
T∑

t=R

[
f̂t+1 − (

σ̂ 2
1 − σ̂ 2

2

)]2 if et is i.i.d.

(6.8)

Since (6.8) is motivated by an asymptotic approximation in which σ̂ 2
1 − σ̂ 2

2 is cen-
tered around zero, we see from (6.7) that the test will tend to be undersized (reject too
infrequently). Across 48 sets of simulations, with DGPs calibrated to match key char-
acteristics of asset price data, Clark and West (2005b) found that the median size of a
nominal 10% test using the standard result (6.8) was less than 1%. The size was better
with bigger R and worse with bigger P . (Some alternative procedures (described below)
had median sizes of 8–13%.) The power of tests using “standard results” was poor: re-
jection of about 9%, versus 50–80% for alternatives.7 Non-normality also applies if one
normalizes differences in MSPEs by the unrestricted MSPE to produce an out of sample
F-test. See Clark and McCracken (2001, 2003), and McCracken (2004) for analytical
and simulation evidence of marked departures from normality.

Clark and West (2005a, 2005b) suggest adjusting the difference in MSPEs to account
for the noise introduced by the inclusion of irrelevant regressors in the alternative model.
If the null model has a forecast ŷ1t+1, then (6.6), which assumes ŷ1t+1 = 0, generalizes
to

(6.9)σ̂ 2
1 − σ̂ 2

2 = −2P −1
T∑

t=R

ê1t+1
(
ŷ1t+1 − ŷ2t+1

) − P −1
T∑

t=R

(
ŷ1t+1 − ŷ2t+1

)2
.

To yield a statistic better centered around zero, Clark and West (2005a, 2005b) propose
adjusting for the negative term −P −1 ∑T

t=R(ŷ1t+1−ŷ2t+1)
2. They call the result MSPE-

adjusted:

P −1
T∑

t=R

ê2
1t+1 −

[
P −1

T∑
t=R

ê2
2t+1 − P −1

T∑
t=R

(
ŷ1t+1 − ŷ2t+1

)2

]

(6.10)≡ σ̂ 2
1 − (

σ̂ 2
2 -adj

)
.

7 Note that (4.5) and the left-hand side of (6.8) are identical, but that Section 4 recommends the use of (4.5)
while the present section recommends against use of (6.8). At the risk of beating a dead horse, the reason is
that Section 4 assumed that models are non-nested, while the present section assumes that they are nested.
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σ̂ 2
2 -adj, which is smaller than σ̂ 2

2 by construction, can be thought of as the MSPE from
the larger model, adjusted downwards for estimation noise attributable to inclusion of
irrelevant parameters.

Viable approaches to testing equal MSPE in nested models include the following
(with the first two summarizing the previous paragraphs):

1. Under condition (6.2), use critical values from Clark and McCracken (2001) and
McCracken (2004), [e.g., Lettau and Ludvigson (2001)].

2. Under condition (6.2), or when the null model is a martingale difference, ad-
just the differences in MSPEs as in (6.10), and compute a standard error in the
usual way. The implied t-statistic can be obtained by regressing ê2

1t+1 − [ê2
2t+1 −

(ŷ1t+1 − ŷ2t+1)
2] on a constant and computing the t-statistic for a coefficient of

zero. Clark and West (2005a, 2005b) argue that standard normal critical values
are approximately correct, even though the statistic is non-normal according to
asymptotics of Clark and McCracken (2001).

It remains to be seen whether the approaches just listed in points 1 and 2
perform reasonably well in more general circumstances – for example, when
the larger model contains several extra parameters, and there is conditional het-
eroskedasticity. But even if so other procedures are possible.

3. If P/R → 0, Clark and McCracken (2001) and McCracken (2004) show that as-
ymptotic irrelevance applies. So for small P/R, use standard critical values [e.g.,
Clements and Galvao (2004)]. Simulations in various papers suggest that it gen-
erally does little harm to ignore effects from estimation of regression parameters
if P/R � 0.1. Of course, this cutoff is arbitrary. For some data, a larger value is
appropriate, for others a smaller value.

4. For MSPE and one step ahead forecasts, use the standard test if it rejects: if the
standard test rejects, a properly sized test most likely will as well [e.g., Shintani
(2004)].8

5. Simulate/bootstrap your own standard errors [e.g., Mark (1995), Sarno, Thornton
and Valente (2005)]. Conditions for the validity of the bootstrap are established in
Corradi and Swanson (2005).

Alternatively, one can swear off MSPE. This is discussed in the next section.

7. A small number of models, nested, Part II

Leading competitors of MSPE for the most part are encompassing tests of various
forms. Theoretical results for the first two statistics listed below require condition (6.2),

8 The restriction to one step ahead forecasts is for the following reason. For multiple step forecasts, the
difference between model 1 and model 2 MSPEs presumably has a negative expectation. And simulations
in Clark and McCracken (2003) generally find that use of standard critical values results in too few rejec-
tions. But sometimes there are too many rejections. This apparently results because of problems with HAC
estimation of the standard error of the MSPE difference (private communication from Todd Clark).



Ch. 3: Forecast Evaluation 123

and are asymptotically non-normal under those conditions. The remaining statistics are
asymptotically normal, and under conditions that do not require (6.2).

1. Of various variants of encompassing tests, Clark and McCracken (2001) find that
power is best using the Harvey, Leybourne and Newbold (1998) version of an
encompassing test, normalized by unrestricted variance. So for those who use a
non-normal test, Clark and McCracken (2001) recommend the statistic that they
call “Enc-new”:

Enc-new = f̄ = P −1 ∑T
t=R ê1t+1(ê1t+1 − ê2t+1)

σ̂ 2
2

,

(7.1)σ̂ 2
2 ≡ P −1

T∑
t=R

ê2
2t+1.

2. It is easily seen that MSPE-adjusted (6.10) is algebraically identical to 2P −1 ×∑T
t=R ê1t+1(ê1t+1 − ê2t+1). This is the sample moment for the Harvey, Leybourne

and Newbold (1998) encompassing test (4.7d). So the conditions described in
point (2) at the end of the previous section are applicable.

3. Test whether model 1’s prediction error is uncorrelated with model 2’s predictors
or the subset of model 2’s predictors not included in model 1 [Chao, Corradi and
Swanson (2001)], ft = e1tX

′
2t in our linear example or ft = e1t xt−1 in exam-

ple (6.1). When both models use estimated parameters for prediction (in contrast
to (6.4), in which model 1 does not rely on estimated parameters), the Chao, Cor-
radi and Swanson (2001) procedure requires adjusting the variance–covariance
matrix for parameter estimation error, as described in Section 5. Chao, Corradi and
Swanson (2001) relies on the less restricted environment described in the section
on nonnested models; for example, it can be applied in straightforward fashion to
joint testing of multiple models.

4. If β∗
2 
= 0, apply an encompassing test in the form (4.7c), 0 = Ee1tX

′
2t β

∗
2 . Simu-

lation evidence to date indicates that in samples of size typically available, this
statistic performs poorly with respect to both size and power [Clark and Mc-
Cracken (2001), Clark and West (2005a)]. But this statistic also neatly illustrates
some results stated in general terms for nonnested models. So to illustrate those
results: With computation and technical conditions similar to those in West and
McCracken (1998), it may be shown that when f̄ = P −1 ∑T

t=R ê1t+1X
′
2t+1β̂2t ,

β∗
2 
= 0, and the models are nested, then

√
P f̄ ∼A N(0, V ), V ≡ λV ∗, λ defined in (5.9),

(7.2)V ∗ ≡
∞∑

j=−∞
Eet et−j

(
X′

2t β
∗
2

)(
X′

2t−jβ
∗
2

)
.

Given an estimate of V ∗, one multiplies the estimate by λ to obtain an estimate of
the asymptotic variance of

√
P f̄ . Alternatively, one divides the t-statistic by

√
λ.
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Observe that λ = 1 for the recursive scheme: this is an example in which there
is the cancellation of variance and covariance terms noted in point 3 at the end of
Section 4. For the fixed scheme, λ > 1, with λ increasing in P/R. So uncertainty
about parameter estimates inflates the variance, with the inflation factor increas-
ing in the ratio of the size of the prediction to regression sample. Finally, for the
rolling scheme λ < 1. So use of (6.8) will result in smaller standard errors and
larger t-statistics than would use of a statistic that ignores the effect of uncertainty
about β∗. The magnitude of the adjustment to standard errors and t-statistics is
increasing in the ratio of the size of the prediction to regression sample.

5. If β∗
2 = 0, and if the rolling or fixed (but not the recursive) scheme is used, ap-

ply the encompassing test just discussed, setting f̄ = P −1 ∑T
t=R e1t+1X

′
2t+1β̂2t .

Note that in contrast to the discussion just completed, there is no “ ˆ” over e1t+1:
because model 1 is nested in model 2, β∗

2 = 0 means β∗
1 = 0, so e1t+1 = yt+1 and

e1t+1 is observable. One can use standard results – asymptotic irrelevance applies.
The factor of λ that appears in (7.2) resulted from estimation of β∗

1 , and is now
absent. So V = V ∗; if, for example, e1t is i.i.d., one can consistently estimate V

with V̂ = P −1 ∑T
t=R(e1t+1X

′
2t+1β̂2t )

2.9

6. If the rolling or fixed regression scheme is used, construct a conditional rather
than unconditional test [Giacomini and White (2003)]. This paper makes both
methodological and substantive contributions. The methodological contributions
are twofold. First, the paper explicitly allows data heterogeneity (e.g., slow drift
in moments). This seems to be a characteristic of much economic data. Second,
while the paper’s conditions are broadly similar to those of the work cited above,
its asymptotic approximation holds R fixed while letting P → ∞.

The substantive contribution is also twofold. First, the objects of interest are
moments of ê1t and ê2t rather than et . (Even in nested models, ê1t and ê2t are
distinct because of sampling error in estimation of regression parameters used to
make forecasts.) Second, and related, the moments of interest are conditional ones,
say E(σ̂ 2

1 − σ̂ 2
2 | lagged y’s and x’s). The Giacomini and White (2003) framework

allows general conditional loss functions, and may be used in nonnested as well
as nested frameworks.

9 The reader may wonder whether asymptotic normality violates the rule of thumb enunciated at the begin-
ning of this section, because ft = e1tX

′
2t

β∗
2 is identically zero when evaluated at population β∗

2 = 0. At the
risk of confusing rather than clarifying, let me briefly note that the rule of thumb still applies, but only with a
twist on the conditions given in the previous section. This twist, which is due to Giacomini and White (2003),
holds R fixed as the sample size grows. Thus in population the random variable of interest is ft = e1tX

′
2t

β̂2t ,

which for the fixed or rolling schemes is nondegenerate for all t . (Under the recursive scheme, β̂2t →p 0
as t → ∞, which implies that ft is degenerate for large t .) It is to be emphasized that technical conditions
(R fixed vs. R → ∞) are not arbitrary. Reasonable technical conditions should reasonably rationalize fi-
nite sample behavior. For tests of equal MSPE discussed in the previous section, a vast range of simulation
evidence suggests that the R → ∞ condition generates a reasonably accurate asymptotic approximation
(i.e., non-normality is implied by the theory and is found in the simulations). The more modest array of sim-
ulation evidence for the R fixed approximation suggests that this approximation might work tolerably for the
moment Ee1tX

′
2t

β∗
2t

, provided the rolling scheme is used.
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8. Summary on small number of models

Let me close with a summary. An expansion and application of the asymptotic analysis
of the preceding four sections is given in Tables 2 and 3A–3C. The rows of Table 2 are
organized by sources of critical values. The first row is for tests that rely on standard re-
sults. As described in Sections 3 and 4, this means that asymptotic normal critical values
are used without explicitly taking into account uncertainty about regression parameters
used to make forecasts. The second row is for tests that rely on asymptotic normality,
but only after adjusting for such uncertainty as described in Section 5 and in some of the
final points of this section. The third row is for tests for which it would be ill-advised to
use asymptotic normal critical values, as described in preceding sections.

Tables 3A–3C present recommended procedures in settings with a small number of
models. They are organized by class of application: Table 3A for a single model, Ta-
ble 3B for a pair of nonnested models, and Table 3C for a pair of nested models. Within
each table, rows are organized by the moment being studied.

Tables 2 and 3A–3C aim to make specific recommendations. While the tables are
self-explanatory, some qualifications should be noted. First, the rule of thumb that as-
ymptotic irrelevance applies when P/R < 0.1 (point A1 in Table 2, note to Table 3A)
is just a rule of thumb. Second, as noted in Section 4, asymptotic irrelevance for MSPE
or mean absolute error (point A2 in Table 2, rows 1 and 2 in Table 3B) requires that the
prediction error is uncorrelated with the predictors (MSPE) or that the disturbance is
symmetric conditional on the predictors (mean absolute error). Otherwise, one will need
to account for uncertainty about parameters used to make predictions. Third, some of the
results in A3 and A4 (Table 2) and the regression results in Table 3A, rows 1–3, and Ta-
ble 3B, row 3, have yet to be noted. They are established in West and McCracken (1998).
Fourth, the suggestion to run a regression on a constant and compute a HAC t-stat (e.g.,
Table 3B, row 1) is just one way to operationalize a recommendation to use standard re-
sults. This recommendation is given in non-regression form in Equation (4.5). Finally,
the tables are driven mainly by asymptotic results. The reader should be advised that
simulation evidence to date seems to suggest that in seemingly reasonable sample sizes
the asymptotic approximations sometimes work poorly. The approximations generally
work poorly for long horizon forecasts [e.g., Clark and McCracken (2003), Clark and
West (2005a)], and also sometimes work poorly even for one step ahead forecasts [e.g.,
rolling scheme, forecast encompassing (Table 3B, line 3, and Table 3C, line 3), West
and McCracken (1998), Clark and West (2005a)].

9. Large number of models

Sometimes an investigator will wish to compare a large number of models. There is
no precise definition of large. But for samples of size typical in economics research,
procedures in this section probably have limited appeal when the number of models is
say in the single digits, and have a great deal of appeal when the number of models is
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Table 2
Recommended sources of critical values, small number of models

Source of critical values Conditions for use

A. Use critical values associated with as-
ymptotic normality, abstracting from any
dependence of predictions on estimated
regression parameters, as illustrated for
scalar hypothesis test in (4.5) and a vec-
tor test in (4.11).

1. Prediction sample size P is small relative to regression
sample size R, say P/R < 0.1 (any sampling scheme
or moment, nested or nonnested models).

2. MSPE or mean absolute error in nonnested models.
3. Sampling scheme is recursive, moment of interest is

mean prediction error or correlation between a given
model’s prediction error and prediction.

4. Sampling scheme is recursive, one step ahead con-
ditionally homoskedastic prediction errors, moment
of interest is either: (a) first order autocorrelation or
(b) encompassing in the form (4.7c).

5. MSPE, nested models, equality of MSPE rejects (im-
plying that it will also reject with an even smaller p-
value if an asymptotically valid test is used).

B. Use critical values associated with as-
ymptotic normality, but adjust test statis-
tics to account for the effects of uncer-
tainty about regression parameters.

1. Mean prediction error, first order autocorrelation of one
step ahead prediction errors, zero correlation between
a prediction error and prediction, encompassing in the
form (4.7c) (with the exception of point C3), encom-
passing in the form (4.7d) for nonnested models.

2. Zero correlation between a prediction error and another
model’s vector of predictors (nested or nonnested)
[Chao, Corradi and Swanson (2001)].

3. A general vector of moments or a loss or utility func-
tion that satisfies a suitable rank condition.

4. MSPE, nested models, under condition (6.2), after ad-
justment as in (6.10).

C. Use non-standard critical values. 1. MSPE or encompassing in the form (4.7d), nested
models, under condition (6.2): use critical values from
McCracken (2004) or Clark and McCracken (2001).

2. MSPE, encompassing in the form (4.7d) or mean ab-
solute error, nested models, and in contexts not covered
by A5, B4 or C1: simulate/bootstrap your own critical
values.

3. Recursive scheme, β∗
1 = 0, encompassing in the

form (4.7c): simulate/bootstrap your own critical val-
ues.

Note: Rows B and C assume that P/R is sufficiently large, say P/R � 0.1, that there may be nonnegligible
effects of estimation uncertainty about parameters used to make forecasts. The results in row A, points 2–5,
apply whether or not P/R is large.
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Table 3A
Recommended procedures, small number of models.
Tests of adequacy of a single model, yt = X′

t β
∗ + et

Description Null hypothesis Recommended procedure Asymptotic
normal critical
values?

1. Mean prediction error (bias) E(yt − X′
t β

∗) = 0, or Eet = 0 Regress prediction error on a constant, divide HAC t-stat
by

√
λ.

Y

2. Correlation between prediction error
and prediction (efficiency)

E(yt − X′
t β

∗)X′
t β

∗ = 0, or
EetX

′
t β

∗ = 0
Regress êt+1 on X′

t+1β̂t , divide HAC t-stat by
√

λ, or

regress yt+1 on prediction X′
t+1β̂t , divide HAC t-stat

(for testing coefficient value of 1) by
√

λ.

Y

3. First order correlation of one step
ahead prediction errors

E(yt+1 − X′
t+1β∗)(yt − X′

t β
∗) = 0,

or Eet+1et = 0.
a. Prediction error conditionally homoskedastic:

1. Recursive scheme: regress êt+1 on êt , use OLS
t-stat.

2. Rolling or fixed schemes: regress êt+1 on êt and Xt ,
use OLS t-tstat on coefficient on êt .

b. Prediction error conditionally heteroskedastic: adjust
standard errors as described in Section 5 above.

Y

Notes:
1. The quantity λ is computed as described in Table 1. “HAC” refers to a heteroskedasticity and autocorrelation consistent covariance matrix. Throughout, it is
assumed that predictions rely on estimated regression parameters and that P/R is large enough, say P/R � 0.1, that there may be nonnegligible effects of such
estimation. If P/R is small, say P/R < 0.1, any such effects may well be negligible, and one can use standard results as described in Sections 3 and 4.
2. Throughout, the alternative hypothesis is the two-sided one that the indicated expectation is nonzero (e.g., for row 1, HA: Eet 
= 0).
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Table 3B
Recommended procedures, small number of models.

Tests comparing a pair of nonnested models, yt = X′
1t

β∗
1 + e1t vs. yt = X′

2t
β∗

2 + e2t , X′
1t

β∗
1 
= X′

2t
β∗

2 , β∗
2 
= 0

Description Null hypothesis Recommended procedure Asymptotic normal
critical values?

1. Mean squared prediction error
(MSPE)

E(yt − X′
1t

β∗
1 )2 − E(yt − X′

2t
β∗

2 )2 = 0,

or Ee2
1t

− Ee2
2t

= 0

Regress ê2
1t+1 − ê2

2t+1 on a constant, use
HAC t-stat.

Y

2. Mean absolute prediction error
(MAPE)

E|yt − X′
1t

β∗
1 | − E|yt − X′

2t
β∗

2 | = 0, or
E|e1t | − E|e2t | = 0

Regress |ê1t | − |ê2t | on a constant, use HAC
t-stat.

Y

3. Zero correlation between
model 1’s prediction error and
the prediction from model 2
(forecast encompassing)

E(yt − X′
1t

β∗
1 )X′

2t
β∗

2 = 0, or
Ee1tX

′
2t

β∗
2 = 0

a. Recursive scheme, prediction error e1t

homoskedastic conditional on both X1t

and X2t : regress ê1t+1 on X′
2t+1β̂2t , use

OLS t-stat.
b. Recursive scheme, prediction error e1t

conditionally heteroskedastic, or rolling or
fixed scheme: regress ê1t+1 on X′

2t+1β̂2t

and X1t , use HAC t-stat on coefficient
on X′

2t+1β̂2t .

Y

4. Zero correlation between
model 1’s prediction error
and the difference between
the prediction errors of the
two models (another form of
forecast encompassing)

E(yt − X′
1t β

∗
1 )

× [(yt − X′
1t β

∗
1 ) − (yt − X′

2t β
∗
2 )] = 0,

or Ee1t (e1t − e2t ) = 0

Adjust standard errors as described in
Section 5 above and illustrated in West
(2001).

Y

5. Zero correlation between
model 1’s prediction error and
the model 2 predictors

E(yt − X′
1t

β∗
1 )X2t = 0, or Ee1tX2t = 0 Adjust standard errors as described in

Section 5 above and illustrated in Chao,
Corradi and Swanson (2001).

Y

See notes to Table 3A.
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Table 3C

Recommended procedures, small number of models.
Tests of comparing a pair of nested models, yt = X′

1t
β∗

1 + e1t vs. yt = X′
2t

β∗
2 + e2t , X1t ⊂ X2t , X′

2t
= (X′

1t
, X′

22t
)′

Description Null hypothesis Recommended procedure Asympt. normal
critical values?

1. Mean squared prediction error (MSPE) E(yt − X′
1t

β∗
1 )2 − E(yt − X′

2t
β∗

2 )2 = 0,

or Ee2
1t

− Ee2
2t

= 0

a. If condition (6.2) applies: either (1) use critical
values from McCracken (2004), or

N

(2) compute MSPE-adjusted (6.10). Y

b. Equality of MSPE rejects (implying that it will
also reject with an even smaller p-value if an as-
ymptotically valid test is used).

Y

c. Simulate/bootstrap your own critical values. N

2. Mean absolute prediction error (MAPE) E|yt − X′
1t

β∗
1 | − E|yt − X′

2t
β∗

2 | = 0, or
E|e1t | − E|e2t | = 0

Simulate/bootstrap your own critical values. N

3. Zero correlation between model 1’s pre-
diction error and the prediction from
model 2 (forecast encompassing)

E(yt − X′
1t

β∗
1 )X′

2t
β∗

2 = 0, or
Ee1tX

′
2t

β∗
2 = 0

a. β∗
1 
= 0: regress ê1t+1 on X′

2t+1β̂2t , divide HAC

t-stat by
√

λ.

Y

b. β∗
1 = 0 (⇒ β∗

2 = 0): (1) Rolling or fixed scheme:

regress ê1t+1 on X′
2t+1β̂2t , use HAC t-stat.

Y

(2) β∗
1 = 0, recursive scheme: simulate/bootstrap

your own critical values.
N

4. Zero correlation between model 1’s pre-
diction error and the difference between
the prediction errors of the two models
(another form of forecast encompassing)

E(yt − X′
1t β

∗
1 )

× [(yt − X′
1t β

∗
1 ) − (yt − X′

2t β
∗
2 )] = 0

or Ee1t (e1t − e2t ) = 0

a. If condition (6.2) applies: either (1) use critical
values from Clark and McCracken (2001), or

N

(2) use standard normal critical values. Y

b. Simulate/bootstrap your own critical values. N

5. Zero correlation between model 1’s pre-
diction error and the model 2 predictors

E(yt − X′
1t

β∗
1 )X22t = 0, or

Ee1tX22t = 0
Adjust standard errors as described in Section 5
above and illustrated in Chao et al. (2001).

Y

1. See note 1 to Table 3A. 2. Under the null, the coefficients on X22t (the regressors included in model 2 but not model 1) are zero. Thus, X′
1t

β∗
1 = X′

2t
β∗

2 and

e1t = e2t . 3. Under the alternative, one or more of the coefficients on X22t are nonzero. In rows 1–4, the implied alternative is one sided: Ee2
1t

− Ee2
2t

> 0,
E|e1t | − E|e2t | > 0, Ee1tX

′
2t

β∗
2 > 0, Ee1t (e1t − e2t ) > 0. In row 5, the alternative is two sided, Ee1tX22t 
= 0.
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into double digits or above. White’s (2000) empirical example examined 3654 models
using a sample of size 1560. An obvious problem is controlling size, and, independently,
computational feasibility.

I divide the discussion into (A) applications in which there is a natural null model,
and (B) applications in which there is no natural null.

(A) Sometimes one has a natural null, or benchmark, model, which is to be compared
to an array of competitors. The leading example is a martingale difference model for
an asset price, to be compared to a long list of methods claimed in the past to help
predict returns. Let model 1 be the benchmark model. Other notation is familiar: For
model i, i = 1, . . . , m + 1, let ĝit be an observation on a prediction or prediction error
whose sample mean will measure performance. For example, for MSPE, one step ahead
predictions and linear models, ĝit = ê2

it = (yt − X′
it β̂i,t−1)

2. Measure performance so
that smaller values are preferred to larger values – a natural normalization for MSPE,
and one that can be accomplished for other measures simply by multiplying by −1 if
necessary. Let f̂it = ĝ1t − ĝi+1,t be the difference in period t between the benchmark
model and model i + 1.

One wishes to test the null that the benchmark model is expected to perform at least
as well as any other model. One aims to test

(9.1)H0: max
i=1,...,m

Egit � 0

against

(9.2)HA: max
i=1,...,m

Egit > 0.

The approach of previous sections would be as follows. Define an m × 1 vector

(9.3)f̂t = (
f̂1t , f̂2t , . . . , f̂mt

)′;
compute

f̄ ≡ P −1
∑

f̂t ≡ (
f̄1, f̄2, . . . , f̄m

)′

(9.4)≡ (ḡ1 − ḡ2, ḡ1 − ḡ3, . . . , ḡ1 − ḡm+1)
′;

construct the asymptotic variance covariance matrix of f̄ . With small m, one could
evaluate

(9.5)ν̄ ≡ max
i=1,...,m

√
P f̄i

via the distribution of the maximum of a correlated set of normals. If P � R, one could
likely even do so for nested models and with MSPE as the measure of performance (per
note 1 in Table 2A). But that is computationally difficult. And in any event, when m is
large, the asymptotic theory relied upon in previous sections is doubtful.

White’s (2000) “reality check” is a computationally convenient bootstrap method for
construction of p-values for (9.1). It assumes asymptotic irrelevance P � R though the
actual asymptotic condition requires P/R → 0 at a sufficiently rapid rate [White (2000,
p. 1105)]. The basic mechanics are as follows:
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(1) Generate prediction errors, using the scheme of choice (recursive, rolling, fixed).
(2) Generate a series of bootstrap samples as follows. For bootstrap repetitions j =

1, . . . , N :
(a) Generate a new sample by sampling with replacement from the prediction

errors. There is no need to generate bootstrap samples of parameters used for
prediction because asymptotic irrelevance is assumed to hold. The bootstrap
generally needs to account for possible dependency of the data. White (2000)
recommends the stationary bootstrap of Politis and Romano (1994).

(b) Compute the difference in performance between the benchmark model and
model i + 1, for i = 1, . . . , m. For bootstrap repetition j and model i + 1,
call the difference f̄ ∗

ij .

(c) For f̄i defined in (9.4), compute and save ν̄∗
j ≡ maxi=1,...,m

√
P (f̄ ∗

ij − f̄i ).
(3) To test whether the benchmark can be beaten, compare ν̄ defined in (9.5) to the

quantiles of the ν̄∗
j .

While White (2000) motivates the method for its ability to tractably handle situations
where the number of models is large relative to sample size, the method can be used in
applications with a small number of models as well [e.g., Hong and Lee (2003)].

White’s (2000) results have stimulated the development of similar procedures.
Corradi and Swanson (2005) indicate how to account for parameter estimation error,
when asymptotic irrelevance does not apply. Corradi, Swanson and Olivetti (2001)
present extensions to cointegrated environments. Hansen (2003) proposes studentiza-
tion, and suggests an alternative formulation that has better power when testing for
superior, rather than equal, predictive ability. Romano and Wolf (2003) also argue that
test statistics be studentized, to better exploit the benefits of bootstrapping.

(B) Sometimes there is no natural null. McCracken and Sapp (2003) propose that one
gauge the “false discovery rate” of Storey (2002). That is, one should control the fraction
of rejections that are due to type I error. Hansen, Lunde and Nason (2004) propose
constructing a set of models that contain the best forecasting model with prespecified
asymptotic probability.

10. Conclusions

This paper has summarized some recent work about inference about forecasts. The em-
phasis has been on the effects of uncertainty about regression parameters used to make
forecasts, when one is comparing a small number of models. Results applicable for a
comparison of a large number of models were also discussed. One of the highest pri-
orities for future work is development of asymptotically normal or otherwise nuisance
parameter free tests for equal MSPE or mean absolute error in a pair of nested models.
At present only special case results are available.
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