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Abstract

We consider a general class of nonlinear optimal policy problems with forward-looking constraints, and
show how to derive a problem with linear constraints and a quadratic objective that approximates the exact
problem. The solution to the LQ approximate problem represents a local linear approximation to optimal
policy from the “timeless perspective” proposed in Benigno and Woodford (2004, 2005) [6,7], in the case
of small enough stochastic disturbances. We also derive the second-order conditions for the LQ problem to
have a solution, and show how to correctly rank alternative simple policy rules, again in the case of small
enough shocks.
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Linear-quadratic (LQ) optimal-control problems have been the subject of an extensive liter-
ature.1 General characterizations of their solutions and useful numerical algorithms to compute
them are now available, allowing models with fairly large state spaces, complicated dynamic
linkages, and a range of alternative informational assumptions to be handled. And the extension
of the classic results of the engineering control literature to the case of forward-looking sys-
tems of the kind that naturally arise in economic policy problems when one allows for rational
expectations on the part of the private sector has proven to be fairly straightforward.2

An important question, however, is whether optimal policy problems of economic interest
should take this convenient form. It is easy enough to apply LQ methodology if one specifies an
ad hoc quadratic loss function on the basis of informal consideration of the kinds of instability
in the economy that one would like to reduce, and posits linear structural relations that capture
certain features of economic time series without requiring these relations to have explicit choice-
theoretic foundations, as in early applications to problems of monetary policy. But it is highly
unlikely that the analysis of optimal policy in a DSGE model will involve either an exactly
quadratic utility function or exactly linear constraints.

We shall nonetheless argue that LQ problems can usefully be employed as approximations to
exact optimal policy problems in a fairly broad range of cases. Since an LQ problem necessarily
leads to an optimal decision rule that is linear, the most that one could hope to obtain with any
generality would be for the solution to the LQ problem to represent a local linear approximation
to the actual optimal policy — that is, a first-order Taylor approximation to the true, nonlinear
optimal policy rule. In this paper we present conditions under which this will be the case, and
show how to derive an LQ approximate problem corresponding to any member of a general class
of optimal policy problems.

The conditions under which the solution to an LQ approximate problem will yield a correct
local linear approximation to optimal policy are in fact more restrictive than might be expected,
as noted for example by Judd [28, pp. 536–539], [29, pp. 507–508]. In particular, it does not
suffice that the objective and constraints of the exact problem be continuously differentiable a
sufficient number of times, that the solution to the LQ approximate problem imply a stationary
evolution of the endogenous variables, and that the exogenous disturbances be small enough
(though each of these conditions is obviously necessary, except in highly special cases). An
approach that simply computes a second-order Taylor-series approximation to the utility function
and a first-order Taylor-series approximation to the model structural relations in order to define
an approximate LQ problem — the approach criticized by Judd [28,29] that we have elsewhere
(Benigno and Woodford [9]) called “naive LQ approximation” — may yield a linear policy rule
with coefficients very different from those of a correct linear approximation to the optimal policy
in the case of small enough disturbances.3

The discussion by Judd [28, pp. 536–553] might seem to imply that LQ approximation is an
inherently mistaken idea — that it cannot be expected, other than in cases so special as to rep-
resent an essentially fortuitous result, to yield a correct approximation to optimal policy at all.
Nonetheless, it is quite generally possible to construct an alternative quadratic objective function
that will result in a correct local LQ approximation, in the sense that the linear solution to the
LQ problem is a correct linear approximation to the solution to the exact problem. The correct

1 See Kendrick [32] for an overview of the use of LQ methods in economics.
2 See, e.g., Backus and Driffill [2] for a useful review.
3 For an example illustrating this possibility, see Benigno and Woodford [9]. The same problem can also result in

incorrect welfare rankings of alternative simple policies, as discussed by Kim and Kim [34,35].
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method was illustrated in the important paper of Magill [40], that applied results of Fleming
[23] from the optimal-control literature to derive a local LQ approximation to a continuous-time
multi-sector optimal growth model. Here we show how the method of Magill can be used in
the context of discrete-time dynamic optimization problems where some of the structural rela-
tions are forward-looking, as is almost inevitably the case in optimal monetary or fiscal policy
problems.4

Of course the problems that can arise as a result of “naive” LQ optimization can also be
avoided through the use of alternative perturbation techniques, as explained by Judd. Approaches
that are widely used in the recent literature on policy analysis in DSGE models include either (i)
deriving the first-order conditions that characterize optimal (Ramsey) policy using the exact (non-
linear) objective and constraints, and then log-linearizing these conditions in order to obtain an
approximate solution to them, rather than separately approximating the objective and constraints
before deriving the first-order conditions5; or (ii) obtaining a higher-order (at least second-order)
perturbation solution for the equilibrium implied by a given policy by solving a higher-order
approximation to the constraints, and then evaluating welfare under the policy using this approx-
imate solution.6 These methods can also be used to correctly calculate a linear approximation
to the optimal policy rule, and when applied to the problem considered here, provide alternative
approaches to calculating the same solution.7

Despite the existence of these alternative perturbation approaches to the analysis of optimal
policy, we believe that it remains useful to show how a correct form of LQ analysis is possible in
the case of a fairly general class of problems. One reason is that the ability to translate a policy
problem into this form allows one to use the extensive body of theoretical analysis and numerical
techniques that have been developed for LQ problems. Another is that casting optimal policy
analysis in DSGE models in this form can allow comparisons between welfare-based policy
analysis and analyses of optimal policy based on ad hoc stabilization objectives (which have
often been expressed as LQ problems). We also show that the LQ formulation of the approximate
policy problem makes it possible to rank suboptimal policy rules by a criterion that is consistent
with the characterization given of optimal policy. And finally, the LQ approximation makes it
straightforward to analyze whether a solution to the first-order conditions for optimal policy also
satisfies the relevant second-order conditions for optimality; one need simply check the algebraic
conditions required for concavity of the quadratic objective in the approximating LQ problem,
discussed in Section 3 of Benigno and Woodford [10]. Essentially, the calculations required in
order to derive the LQ approximation are ones that would be required in any event to check

4 Levine et al. [39] also discuss the application of the method of Magill to discrete-time problems. Their formal results,
however, apply only to deterministic problems with purely backward-looking constraints. They argue (correctly) that their
results can also be applied to problems with forward-looking constraints, under an assumption that the policymaker can
credibly commit itself in advance, but they do not develop in the detail that we do here the technicalities involved in such
applications. They also present only the Lagrangian approach that we describe in Section 1.3; in Section 1.2 we present
an alternative approach to the derivation of a correct LQ approximation, which may provide additional insights, and we
establish the equivalence of these two approaches. Finally, Levine et al. do not discuss the use of an LQ approximation
to rank non-optimal policy rules; we treat this issue below in Section 3.

5 See, e.g., King and Wolman [38], Khan et al. [33], or Schmitt-Grohé and Uribe [46].
6 For methods for executing computations of this kind, see Jin and Judd [27], Schmitt-Grohé and Uribe [45], and Kim

et al. [36]. For an application to the analysis of optimal policy, see, e.g., Schmitt-Grohé and Uribe [47].
7 As shown in Section 1.3 below, our method computes the same coefficients for a linear policy rule as are obtained by

linearization of the first-order conditions for the exact policy problem. The general intuition for this result is discussed in
Section 1 of Benigno and Woodford [10].
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whether a solution to the (exact, nonlinear) first-order conditions for optimal represents at least a
local welfare maximum; these calculations only appear to be unnecessary under other numerical
approaches because it is so common for authors to neglect the issue of second-order conditions.

In Section 1, we present a general class of dynamic optimization problems with forward-
looking constraints, and derive an LQ approximate problem associated with any problem in this
class. Section 2 discusses the general algebraic form of the first- and second-order conditions
for optimality in the LQ approximate problem. Section 3 shows how the quadratic objective
for stabilization policy derived in Section 1 can also be used to compute welfare comparisons
between alternative sub-optimal policies, in the case that the stochastic disturbances are small
enough. Finally, Section 4 discusses applications of the method described here and concludes.

1. LQ approximation of a problem with forward-looking constraints

We wish to consider an abstract discrete-time dynamic optimal policy problem of the follow-
ing sort. Suppose that the policy authority wishes to determine the evolution of an (endogenous)
state vector {yt } for t � t0 to maximize an objective of the form

Vt0 ≡ Et0

∞∑
t=t0

βt−t0π(yt , ξt ), (1)

where 0 < β < 1 is a discount factor, the period objective π(y, ξ) is a concave function of y, and
ξt is a vector of exogenous disturbances. The evolution of the endogenous states must satisfy a
system of backward-looking structural relations

F(yt , ξt ;yt−1) = 0 (2)

and a system of forward-looking structural relations

Etg(yt , ξt ;yt+1) = 0, (3)

that both must hold for each t � t0, given the vector of initial conditions yt0−1.
Conditions of the form (2) allow current endogenous variables to depend on lagged states;

for example, these relations could include a technological relation between the capital stock
carried into the next period, current investment expenditure, and the capital stock carried into the
current period. Conditions of the form (3) instead allow current endogenous variables to depend
on current expectations regarding future states; for example, these relations could include an
Euler equation for the optimal timing of consumer expenditure, relating current consumption
to expected consumption in the next period and the expected rate of return on saving. While the
most general notation would allow both leads and lags in all of the structural equations, supposing
that there are equations of these two types will make clearer the different types of complications
arising from the two distinct types of intertemporal linkages. We shall suppose that the number
nF of constraints of the first type each period plus the number ng of constraints of the second
type is less than the number ny of endogenous state variables each period, so that there is at
least one dimension along which policy can continuously vary the outcome yt each period, given
the past and expected future evolution of the endogenous variables. A t0-optimal commitment
(the standard Ramsey policy problem) is then the state-contingent evolution {yt } consistent with
Eqs. (2)–(3) for all t � t0 that maximizes (1).
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1.1. Optimal policy from a “Timeless perspective”

As is well known, the presence of the forward-looking constraints (3) implies that a t0-optimal
commitment is not generally time-consistent. If, however, we suppose that a policy to apply from
period t0 onward must be chosen subject to an additional set of constraints on the acceptable
values of yt0 , it is possible for the resulting policy problem to have a recursive structure.8 While
this is not necessary for the method of LQ approximation to be applicable, it is necessary in
order for both our approximate quadratic objective and approximate linear constraints to involve
coefficients that are time-invariant, and correspondingly for our derived linear approximation
to optimal policy to involve time-invariant coefficients, as is discussed further in Section 2.2
below.

As discussed in Benigno and Woodford [6,7], in order to obtain a problem with a recursive
structure (the solution to which can be described by a time-invariant policy rule), we must choose
initial pre-commitments regarding yt0 that are self-consistent, in the sense that the policy that is
chosen subject to these constraints would also satisfy constraints of exactly the same form in all
later periods as well. The required initial pre-commitments are of the form

g(yt0−1, ξt0−1;yt0) = ḡt0, (4)

where ḡt0 may depend on the exogenous state at date t0. Note that we assume the existence of a
pre-commitment only about those aspects of yt0 the anticipation of which back in period t0 − 1
should have been relevant to equilibrium determination then; there is no need for any stronger
form of commitment in order to render optimal policy time-consistent.

We are thus interested in characterizing the state-contingent policy {yt } for t � t0 that maxi-
mizes (1) subject to constraints (2)–(4). Such a policy is optimal from a timeless perspective if ḡt0

is chosen, as a function of predetermined or exogenous states at t0, according to a self-consistent
rule.9 This means that the initial pre-commitment is determined by past conditions through a
function

ḡt0 = ḡ(ξt0,yt0−1), (5)

where yt is an extended state vector10; this function has the property that under optimal policy,
given this initial pre-commitment, the state-contingent evolution of the economy will satisfy

g(yt−1, ξt−1;yt ) = ḡ(ξt ,yt−1) (6)

in each possible state of the world at each date t > t0 as well. Thus the initial constraint is of a
form that one would optimally commit oneself to satisfy at all subsequent dates.

8 Marcet and Marimon [41] propose an alternative approach that modifies the policy objective by adding additional
multiplier terms; the additional terms in the objective of the modified problem of Marcet and Marimon lead to the same
additional terms in the Lagrangian for the policy problem as the additional constraints that we introduce here. We prefer
to introduce initial pre-commitments because of the more transparent connection of the modified problem to the original
policy problem under the present exposition. The first-order conditions for optimal policy in the recursive policy problem
that we propose are the same as those derived by Marcet and Marimon, except in the initial period.

9 See Benigno and Woodford [7], Giannoni and Woodford [24], or Woodford [52] for further discussion.
10 The extended state vector may include both endogenous and exogenous variables, the values of which are realized
in period t or earlier. More specific assumptions about the nature of the extended state vector are made below; see the
discussion of Eq. (8).
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Let V (ḡt0;yt0−1, ξt0, ξt0−1) be the maximum achievable value of the objective (1) in this prob-
lem.11 Then the infinite-horizon problem just defined is equivalent to a sequence of one-period
decision problems in which, in each period t � t0, a value of yt is chosen and state-contingent
one-period-ahead pre-commitments ḡt+1(ξt+1) (for each of the possible states ξt+1 in the fol-
lowing period) are chosen so as to maximize

π(yt , ξt ) + βEtV (ḡt+1;yt , ξt+1, ξt ), (7)

subject to the constraints

F(yt , ξt ;yt−1) = 0,

g(yt−1, ξt−1;yt ) = ḡt ,

Et ḡt+1 = 0,

given the values of ḡt , yt−1, ξt−1, and ξt , all of which are predetermined and/or exogenous in
period t . It is this recursive policy problem that we wish to study; note that it is only when
we consider this problem (as opposed to the unconstrained Ramsey problem) that it is possible,
in general, to obtain a deterministic steady state as an optimum in the case of suitable initial
conditions, and hence only in this case that we can hope to approximate the optimal policy
problem around such a steady state.

The solution to the recursive policy problem just defined involves values for the endogenous
variables yt given by a policy function of the form

yt = y∗(ḡt , yt−1, ξt , ξt−1),

and a choice of the following period’s pre-commitment ḡt+1 of the form

ḡt+1 = g∗(ξt+1; ḡt , yt−1, ξt , ξt−1),

where y∗ and g∗ are time-invariant functions. Let us suppose furthermore that the evolution of
the extended state vector depends only on the evolution of the two vectors {yt , ξt }, through a
recursion of the form

yt = ψ(ξt , yt ,yt−1); (8)

this system of identities defines the extended state vector, the elements of which consist essen-
tially of linear combinations of current and lagged elements of the vectors yt and ξt . (To simplify
notation, we shall suppose that the current values yt and ξt are among the elements of yt .) The
initial pre-commitment (5) is then self-consistent if

g∗(ξt+1; ḡ(ξt ,yt−1), yt−1, ξt , ξt−1
) = ḡ

(
ξt+1,ψ

(
ξt , y

∗(ḡt , yt−1, ξt , ξt−1),yt−1
))

(9)

for all possible values of ξt+1, ξt , and yt−1. Note that this implies that Eq. (6) is satisfied at all
times.

11 We assume, to economize on notation, that the exogenous state vector ξt evolves in accordance with a Markov pro-
cess. Hence ξt summarizes not only all of the disturbances that affect the structural relations at date t , but all information
at date t about the subsequent evolution of the exogenous disturbances. This is important in order for a time-invariant
value function to exist with the arguments indicated.
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1.2. A correct LQ local approximation

We now derive a corresponding LQ problem using local approximations to both the objective
and the constraints of the above problem. In order for these local approximations to involve co-
efficients that remain the same over time, we compute them near the special case of an optimal
policy that involves values of the state variables that are constant over time. This special case
involves both zero disturbances and suitably chosen initial conditions; we then seek to approxi-
mately characterize optimal policy for nearby problems in which the disturbances are small and
the initial conditions are close to satisfying the assumed special conditions. To be precise, we
assume both an initial state yt0−1 and initial pre-commitments ḡt0 such that the optimal policy
in the case of zero disturbances is a steady state, i.e., such that yt = ȳ for all t , for some vector
ȳ. (Our subsequent calculations then assume that both yt0−1 and ḡt0−1 are close enough to being
consistent with this steady state.) In order to define the steady state, we must consider the nature
of optimal policy in the exact problem just defined.

The first-order conditions for the exact policy problem can obtained by differentiating a La-
grangian of the form

Lt0 = Vt0 + Et0

∞∑
t=t0

βt−t0
[
λ′

tF (yt , ξt ;yt−1) + β−1ϕ′
t−1g(yt−1, ξt−1;yt )

]
, (10)

where λt and ϕt are Lagrange multipliers associated with constraints (2) and (3) respectively,
for any date t � t0, and we use the notation β−1ϕt0−1 for the Lagrange multiplier associated
with the additional constraint (4). This last notational choice allows the first-order conditions to
be expressed in the same way for all periods. Optimality requires that the joint evolution of the
processes {yt , ξt , λt , ϕt } satisfy

Dyπ(yt , ξt ) + λ′
tDyF (yt , ξt ;yt−1) + βEtλ

′
t+1Dy̌F(yt+1, ξt+1;yt )

+ Etϕ
′
tDyg(yt , ξt ;yt+1) + β−1ϕ′

t−1Dŷg(yt−1, ξt−1;yt ) = 0 (11)

at each date t � t0, where Dy denotes the vector of partial derivatives of any of the functions with
respect to the elements of yt , while Dŷ means the vector of partial derivatives with respect to the
elements of yt+1 and Dy̌ means the vector of partial derivatives with respect to the elements of
yt−1.

An optimal steady state is then described by a collection of vectors (ȳ, λ̄, ϕ̄) satisfying

Dyπ(ȳ,0) + λ̄′DyF(ȳ,0; ȳ) + βλ̄′Dy̌F(ȳ,0; ȳ) + ϕ̄′Dyg(ȳ,0; ȳ)

+ β−1ϕ̄′Dŷg(ȳ,0; ȳ) = 0, (12)

F(ȳ,0; ȳ) = 0, (13)

g(ȳ,0; ȳ) = 0. (14)

We shall suppose that such a steady state exists, and assume (in the policy problem with random
disturbances) an initial state yt0−1 near ȳ, and an initial pre-commitment ḡt0 near zero.12 Once
the optimal steady state has been computed, we make no further use of conditions (11); our
proposed method does not require that we directly seek to solve these equations.

12 Note that the steady-state value of ḡ is equal to g(ȳ,0; ȳ) = 0.
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Instead, we now consider local approximations to the objective and constraints near an optimal
steady state. These local approximations are of the following kind. We shall suppose that the
vector of exogenous disturbances {ξt } can be written as

ξt = εut (15)

for all t , where {ut } is a bounded vector stochastic process, and we consider the one-parameter
family of specifications corresponding to different values of the real number ε, holding fixed the
stochastic process {ut }. We are interested in computing approximations that become arbitrarily
accurate in the case of any small enough value of ε, and we shall classify the order of any
given approximation according to the rate at which the approximation error becomes small as ε

approaches zero.
In the one-parameter family of problems indexed by ε, we shall also suppose that the initial

conditions yt0 and ḡt0 vary with ε; specifically, we shall suppose that yt0 and ḡt0 are each equal
to ε times some constant vector. Thus as ε approaches zero, the problem becomes one for which
the optimal steady state is the solution. We wish to derive an approximate characterization of the
solution near the optimal steady state in the case of any small enough value of ε.

We begin by considering local approximations to the objective and constraints near an op-
timal steady state. Suppose that under some policy of interest, the equilibrium evolution of the
endogenous variables {yt (ε)} in the case of the economy indexed by (any small enough value of)
ε satisfies

yt (ε) = ȳ + O(ε) (16)

at all times. An expression such as (16) means that the residual becomes small (in the sup norm13)
as ε is made smaller, and approaches zero at (at least) the same rate as ε. Note that if we consider
a policy rule consistent with the optimal steady state when ε = 0, and the regularity condition
is satisfied that allows the implicit function theorem to be used to solve the system of equations
consisting of the structural equations plus the policy rule for the implied equilibrium evolution
{yt (ε)} for any small enough value of ε, then the solution will necessarily satisfy (16). Moreover,
if the system of equations consisting of (11) together with the structural equations has a deter-
minate solution, so that the implicit function theorem can be used to characterize optimal policy
for small enough values of ε, (16) will also be satisfied. In what follows, we restrict our analysis
to policies that satisfy (16); note that this allows us to consider any policy that is close enough to
the optimal policy.

A second-order Taylor series expansion of the objective function π yields

π(y; ξ) = π̄ + Dyπ · ỹ + Dξπ · ξ + 1

2
ỹ′D2

yyπ · ỹ + 1

2
ξ ′D2

ξξπ · ξ + ỹ′D2
yξπ · ξ + O

(
ε3)

= Dyπ · ỹ + 1

2
ỹ′D2

yyπ · ỹ + ỹ′D2
yξπ · ξ + t.i.p. + O

(
ε3), (17)

where ỹt ≡ yt − ȳ and the various matrices of partial derivatives are each evaluated at (ȳ;0).
(Here we use the fact that (15) and (16) imply that ξt and ỹt are each of order O(ε).) The
expression “t.i.p.” refers to terms that are independent of the policy chosen (such as the constant

13 Under this norm for the linear space of bounded stochastic processes, the norm of the residual stochastic process is
the least upper bound such that the norm of the residual vector (under the usual Euclidean norm for finite-dimensional
vectors) is within that bound almost surely at all dates.
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term and terms that depend only on the exogenous disturbances); the form of these terms is
irrelevant in obtaining a correct ranking of alternative policies.

Substituting (17) into (1), we obtain the approximate objective

Vt0 = Et0

∞∑
t=t0

βt−t0

[
Dyπ · ỹt + 1

2
ỹ′
tD

2
yyπ · ỹt + ỹ′

tD
2
yξπ · ξt

]
+ t.i.p. + O

(
ε3). (18)

This would be used as the quadratic objective in what we have called the “naive” LQ approx-
imation. However, (18) is not the only valid quadratic approximation to (1). Taylor’s theorem
implies that it is the only quadratic function that correctly approximates (1) in the case of arbi-
trary (small enough) variations in the state variables, but there are others that will also correctly
approximate (1) in the case of variations that are consistent with the structural relations. We can
obtain an infinite number of alternative quadratic welfare measures by adding to (18) arbitrary
multiples of quadratic (Taylor series) approximations to functions that must equal zero in order
for the structural relations to be satisfied. Among these, we are able to find a welfare measure that
is purely quadratic, i.e., that contains no non-zero linear terms, as in Benigno and Woodford [6],
so that a linear approximation to the equilibrium evolution of the endogenous variables under
a given policy rule suffices to allow the welfare measure to be evaluated to second order. The
key to this is using a second-order approximation to the structural relations to substitute purely
quadratic terms for the linear terms Dyπ · ỹt in the sum (18), as in Sutherland [48].

A similar second-order Taylor series approximation can be written for each of the functions
Fk . It follows that

∞∑
t=t0

βt−t0 λ̄′F(yt , ξt ;yt−1) =
∞∑

t=t0

βt−t0

{
λ̄′[DyF + βDy̌F ] · ỹt

+ 1

2
λ̄k

[
ỹ′
tD

2
yyF

k · ỹt + 2ỹ′
tD

2
yξF

k · ξt + 2βỹ′
tD

2
y̌ξ

F k · ξt+1

+ βỹ′
tD

2
y̌y̌

F k · ỹt + 2ỹ′
tD

2
yy̌

F k · ỹt−1
]}

+ t.i.p. + O
(
ε3). (19)

Using a similar Taylor series approximation of each of the functions gi , we correspondingly
obtain

∞∑
t=t0

βt−t0−1ϕ̄′g(yt−1, ξt−1;yt ) =
∞∑

t=t0

βt−t0

{
ϕ̄′[Dyg + β−1Dŷg

] · ỹt

+ 1

2
ϕ̄i

[
ỹ′
tD

2
yyg

i · ỹt + 2ỹ′
tD

2
yξ g

i · ξt

+ 2β−1ỹ′
tD

2
ŷξ

gi · ξt−1 + β−1ỹ′
tD

2
ŷŷ

gi · ỹt

+ 2β−1ỹ′
tD

2
ŷy

gi · ỹt−1
]}

+ t.i.p. + O
(
ε3). (20)
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It then follows from constraints (2)–(4) that in the case of any admissible policy,14

β−1ϕ̄′ḡt0 = Et0

∞∑
t=t0

βt−t0

{
Φ · ỹt + 1

2

[
ỹ′
tH · ỹt + 2ỹ′

tRỹt−1 + 2ỹ′
tZ(L)ξt+1

]}

+ t.i.p. + O
(
ε3), (21)

where

Φ ≡ λ̄′[DyF + βDy̌F ] + ϕ̄′[Dyg + β−1Dŷg
]
,

H ≡ λ̄k

[
D2

yyF
k + βD2

y̌y̌
F k

] + ϕ̄i

[
D2

yyg
i + β−1D2

ŷŷ
gi

]
,

R ≡ λ̄kD
2
yy̌

F k + ϕ̄iβ
−1D2

ŷy
gi,

Z(L) ≡ βλ̄kD
2
y̌ξ

F k + (
λ̄kD

2
yξF

k + ϕ̄iD
2
yξ g

i
) · L + β−1ϕ̄iD

2
ŷξ

gi · L2.

Using (12), we furthermore observe that15

Φ = −Dyπ.

With this substitution in (21), we obtain an expression that can be solved for

Et0

∞∑
t=t0

βt−t0Dyπ · ỹt ,

which can in turn be used to substitute for the linear terms in (18). We thus obtain an alternative
quadratic approximation to (1),16

Vt0 = 1

2
Et0

∞∑
t=t0

βt−t0
[
ỹ′
tQ · ỹt + 2ỹ′

tRỹt−1 + 2ỹ′
tB(L)ξt+1

] + t.i.p. + O
(
ε3), (22)

where now

Q ≡ D2
yyπ + H,

B(L) ≡ Z(L) + D2
yξπ · L. (23)

Since (22) involves no linear terms, it can be evaluated (up to a residual of order O(ε3)) using
only a linear approximation to the evolution of ỹt under a given policy rule.

It follows that a correct LQ approximation to the original problem is given by the problem of
choosing a state-contingent evolution {ỹt } for t � t0 to maximize the objective

V
Q
t0

(ỹ; ξ) ≡ 1

2
Et0

∞∑
t=t0

βt−t0
[
ỹ′
tA(L)ỹt + 2ỹ′

tB(L)ξt+1
]

(24)

14 Note that we here include (4) among the constraints that a policy must satisfy. We shall call any evolution that
satisfies (2)–(3) a “feasible” policy. Under this weaker assumption, the left-hand side of (21) must instead be replaced by
β−1ϕ̄′g(yt0−1, ξt0−1;yt0 ).
15 This is the point at which our calculations rely on the assumption that the steady state around which we compute our
local approximations is optimal.
16 Here we include ḡt0 among the “terms independent of policy.” If we consider also policies that are not nec-
essarily consistent with the initial pre-commitment, the left-hand side of (22) should instead be written as Vt0 +
β−1ϕ̄′g(yt −1, ξt −1;yt ). This generalization of (22) is used in the derivation of Eq. (67) below.
0 0 0
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subject to the constraints that

C(L)ỹt = ft , (25)

EtD(L)ỹt+1 = ht (26)

for all t � t0, and the additional initial constraint that

D(L)ỹt0 = h̃t0, (27)

where now

A(L) ≡ Q + 2R · L, (28)

C(L) ≡ DyF + Dy̌F · L, (29)

ft ≡ −DξF · ξt ,

D(L) ≡ Dŷg + Dyg · L, (30)

ht ≡ −Dξg · ξt , (31)

h̃t0 ≡ ht0−1 + ḡt0 .

1.3. Equivalence to linearization of the exact FOCs

In the case that the objective (24) is concave,17 the first-order conditions associated with the
LQ problem just defined characterize the solution to that problem. We can show that these linear
equations also correspond to a local linear approximation to the first-order conditions associated
with the exact problem, i.e., the modified Ramsey policy problem defined in Section 1.1.

Let the system of first-order conditions (11) be linearized around the optimal steady state,
yielding a system of linear expectational difference equations of the form

Et

[
J (L)ỹt+1

] + Et

[
K(L)ξt+1

] + Et

[
M(L)λ̃t+1

] + N(L)ϕ̃t = 0 (32)

for each t � t0, where

λ̃t ≡ λt − λ̄, ϕ̃t ≡ ϕt − ϕ̄,

and where J (L) and K(L) are each matrix lag polynomials of second order, and M(L) and
N(L) are matrix lag polynomials of first order. A local linear characterization of the solution to
the exact problem18 can then be obtained by solving the system of linear equations consisting of
(32) together with (25)–(27). These form a linear system to be solved for the joint evolution of the
processes {ỹt , λ̃t , ϕ̃t } given the exogenous disturbance processes {ξt } and the initial conditions
ỹt0−1 and the initial pre-commitment ḡt0 (or ĥt0 ).

The following result establishes the connection between this method of local approximation
and the LQ approach proposed above.

17 The algebraic conditions under which this is so are discussed in the next section.
18 Here we assume that a solution of the system consisting of the exact FOCs and the structural equations corresponds
to the optimum; of course, if this is not true, local methods of the kind used in this paper cannot be used to provide even
an approximate characterization of optimal policy.
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Proposition 1. In Eq. (32), the matrix polynomials are given by

J (L) ≡ 1

2

[
A(L) + A′(βL−1)]L, K(L) ≡ B(L),

M(L) ≡ C′(βL−1)L, N(L) ≡ β−1D′(βL−1)L.

It follows that the linear system (32) is exactly the set of FOCs for the LQ problem of maximizing
(24) subject to constraints (25)–(27).

The proof of this result is given in Appendix A. As discussed there, the reason for this identity
between the two systems of linear equations is that a local quadratic approximation to the La-
grangian for the exact policy problem is precisely the Lagrangian for the LQ problem19; indeed,
an alternative derivation of the correct quadratic objective for the LQ problem would proceed
precisely from a second-order Taylor expansion of the Lagrangian for the exact problem.20 It
follows from this result that the solution to the LQ problem represents a local linear approxima-
tion to optimal policy from a timeless perspective.

1.4. Qualifications

While the conditions under which a valid LQ approximation is possible are fairly general,
several qualifications to our results are in order. First of all, the LQ approximation, when valid, is
purely local in character; it can only provide an approximate characterization of optimal policy
to the extent that disturbances are sufficiently small. Whether the disturbances are small enough
for this to be a useful approximation will depend upon the application; and a judgment about
how accurate the approximation is likely to be is not possible on the basis of the coefficients of
the LQ approximate problem alone. And like all perturbation approaches, it depends on suffi-
cient differentiability of the problem21; it cannot be applied, for example, to problems in which
there are inequality constraints that sometimes bind but at other times do not. Moreover, the LQ
approximation provides at best a linear approximation to optimal policy. More general pertur-
bation methods can instead be used to compute approximations of any desired order, assuming
sufficient differentiability of the objective and constraints, as stressed by Judd [28].

Second, a correct LQ approximation yields a correct linear approximation to the optimal pol-
icy in the case that linearization of the exact first-order conditions yields a system of linear
equations that can be solved to obtain a linear approximation to optimal policy. If the regular-
ity condition required for the linearized system to have a determinate solution fails, the implicit
function theorem cannot be applied to obtain a linear approximation in this way, and the LQ
approach similarly fails to provide a correct linear approximation to optimal policy. This is a
problem that can certainly arise in cases of economic interest, such as the portfolio problem

19 It is worth noting that this equivalence of the two quadratic Lagrangians holds in the case of all feasible policies,
whether or not the policy is consistent with the initial pre-commitment (4). This is important for our discussion of the
welfare evaluation of suboptimal policies using the Lagrangian for the LQ problem in Section 3.
20 This is the approach to the derivation of an approximate LQ problem used by Levine et al. [39]. It is essentially a
discrete-time version of the approach used by Magill [40] in the context of a continuous-time stochastic growth model
with purely backward-looking constraints.
21 Of course, this may depend on a choice of variables. Kim et al. [37] provide an example in which the first-order
conditions are not differentiable, if one of the state variables is the square root of a measure of price dispersion. If instead
the state variable is taken to be the measure of price dispersion, the conditions are differentiable and the LQ method is
applicable, as shown in Woodford [52].
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treated by Judd and Guu [30], and singular perturbation methods can still be employed in such
cases, as Judd and Guu show. But it is a problem the existence of which can be diagnosed within
the LQ analysis itself: for when the regularity fails, the first-order conditions of the LQ problem
fail to determine a unique solution. And an identical caveat applies to the method of linearization
of the exact first-order conditions.

Third, a correct LQ approximation yields a correct linear approximation to the optimal policy
only in the case that the perturbed (local) solution to the exact first-order conditions characterized
by the implicit function theorem is in fact an optimum. It cannot be taken as obvious that the first-
order conditions suffice for optimality, since in applications of interest, the structural relations
(2)–(3) often define a non-convex set. The question of convexity can be addressed at least locally
by evaluating the relevant second-order conditions, as discussed further in the next section. But
of course, verification of the second-order conditions for optimality still only guarantees that
the solution to the LQ problem approximates a local welfare optimum. The question of global
optimality of the solution cannot be treated using purely local methods, and is often quite difficult
in dynamic stochastic models.

1.5. Comparison with Ramsey policy

Our focus on the problem of optimal policy from a “timeless perspective” deserves further
comment. It might seem more natural to be interested in the unconstrained (Ramsey) problem,
or what we have above called t0-optimal policy. It is worth noting that the unconstrained Ramsey
policy problem can be given a sequential formulation (as for example in Benigno and Woodford,
[6,7]), in which the continuation problem, in any period after the initial period t0, is a problem
with initial pre-commitments of the form (4). Thus in any case in which Ramsey policy implies
asymptotic convergence to a deterministic steady state, in the absence of exogenous disturbances,
and to bounded fluctuations around such a steady state in the case of small enough disturbances,
Ramsey policy will eventually coincide with optimal policy from a timeless perspective, and can
be locally approximated using the method expounded above. Hence even if one’s interest is in
the Ramsey policy problem, the LQ analysis presented here can be useful as a description of the
asymptotic character of optimal policy, after an initial transition period.

In principle, one might compute a local approximation to Ramsey policy during the transition
period as well. But the t0-optimal policy generally does not imply constant values of the endoge-
nous variables, even when there are no random disturbances and the functions π , F and g are
all time-invariant, as assumed above; hence a correct local approximation to Ramsey policy in
the case of small disturbances would involve derivatives evaluated along this non-constant path,
so that the coefficients of the linear approximation would generally be time-varying.22 It is true
that in the literature on Ramsey policy, one sometimes sees approximate characterizations of op-
timal policy computed by log-linearizing around a steady state that Ramsey policy approaches
asymptotically in the absence of random disturbances. But in such cases, there is no guarantee
that the approximate characterization will be accurate even in the case of arbitrarily small dis-

22 In the special case in which the Lagrange multipliers ϕ̄ are small — the case of “small steady-state distortions”
discussed in Woodford [51, Chapter 6], [52] — the Ramsey policy will also be near the optimal steady state during the
transition period, and a linear approximation with constant coefficients is possible. In this case, an LQ analysis can also be
used to characterize unconstrained Ramsey policy; see, for example, the discussion of Figs. 7.1 and 7.2 in Woodford [51].
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turbances, as the transition dynamics need not be sufficiently near the steady state for the local
approximation to be accurate.23

Nor is it obvious that unconstrained Ramsey policy should be the monetary policy design
problem of greatest interest. No policy authority should ever choose a policy commitment at
some date t0 with the expectation that it will simply be enforced forever after.

Policy rules, even if adopted, will surely be reconsidered from time to time, if only because
of changes in the structure of the economy and in economists’ understanding of that structure; so
a practical theory of policy design should explain how a rule should be chosen on the occasion
of each such reconsideration. Choice of the tj -optimal policy at each date tj at which the policy
rule is reconsidered is the not the best approach to such a problem, for the same reason that
discretionary policy is not the best approach to the conduct of policy in general. Choice of a
policy that is optimal from a timeless perspective each time that policy is reconsidered instead
has the appealing feature that, even if policy were to be continually reconsidered without any
change in one’s model of the economy, the criterion would allow one to choose to continue one’s
previously chosen policy commitment.24

2. Characterizing optimal policy

We now study necessary and sufficient conditions for a policy to solve the LQ problem of
maximizing (24) subject to constraints (25)–(27). Let H be the Hilbert space of (real-valued)
stochastic processes {ỹt } such that

Et0

∞∑
t=t0

βt−t0 ỹ′
t ỹt < ∞. (33)

We are interested in solutions to the LQ problem that satisfy the bound (33) because it guarantees
that the objective V Q is well defined (and is generically required for it to be so). Of course, our
LQ approximation to the original problem is only guaranteed to be accurate in the case that ỹt is
always sufficiently small; hence a solution to the LQ problem in which ỹt grows without bound,
but at a slow enough rate for (33) to be satisfied, need not correspond (even approximately) to
any optimum (or local optimum) of the exact problem. In this section, however, we take the LQ
problem at face value, and discuss the conditions under which it has a solution, despite the fact
that we should in general only be interested in bounded solutions.

2.1. A Lagrangian approach

The Lagrangian for the LQ problem is given by

LQ
t0

= 1

2

{
Et0

∞∑
t=t0

βt−t0
[
ỹ′
tA(L)ỹt + 2ỹ′

tB(L)ξt+1 + 2λ̃′
tC(L)ỹt

23 Levine et al. [39] assert that the local LQ approximation method that is possible in the case of backward-looking
constraints applies equally in the case of forward-looking constraints, as the differences in the latter case “only affect
the boundary conditions and not the steady state of the optimum, which is all we require for LQ approximation” [39,
p. 3318]. This ignores the fact that the initial conditions associated with unconstrained Ramsey policy are necessarily not
near the steady state, in the case of a steady state with “large distortions” in the sense of Benigno and Woodford [7].
24 See Giannoni and Woodford [24] or Woodford [52] for further discussion.
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+ 2β−1ϕ̃′
t−1D(L)ỹt

]}
. (34)

Differentiation of the Lagrangian yields a system of linear first-order conditions, of the form
(32) with the matrices of coefficients stated in Proposition 1. These conditions, together with
(25)–(27), form a linear system to be solved for the joint evolution of the processes {ỹt , λ̃t , ϕ̃t }
given the exogenous disturbance processes {ξt } and the initial conditions ỹt0−1 and the initial
pre-commitment ḡt0 (or ĥt0 ).

These FOCs are easily shown to be necessary for optimality, but they are not generally suffi-
cient for optimality as well; one must also verify that second-order conditions for optimality are
satisfied. We now consider these additional conditions.

Let us consider the subspace H1 ⊂ H of processes ŷ ∈ H that satisfy the additional constraints

C(L)ŷt = 0, (35)

EtD(L)ŷt+1 = 0 (36)

for each date t � t0, along with the initial commitments

D(L)ŷt0 = 0, (37)

where we define ŷt0−1 ≡ 0 in writing (35) for period t = t0 and in writing (37). This subspace is
of interest because if a process ỹ ∈ H satisfies constraints (25)–(27), another process y ∈ H with
yt0−1 = ỹt0−1 satisfies those constraints as well if and only if y − ỹ ∈ H1. We may now state our
next main result.

Proposition 2. For {ỹt } ∈ H to maximize the quadratic form (24), subject to the constraints
(25)–(27) given initial conditions ỹt0−1 and ḡt0 , it is necessary and sufficient that (i) there exist
Lagrange multiplier processes25 ϕ̃, λ̃ ∈ H such that the processes {ỹt , ϕ̃t , λ̃t } satisfy the FOCs
(32) for each t � t0; and (ii)

V Q(ŷ) ≡ V
Q
t0

(ŷ;0) = 1

2
Et0

∞∑
t=t0

βt−t0
[
ŷ′
tA(L)ŷt

]
� 0 (38)

for all processes ŷ ∈ H1, where in evaluating (38) we define ŷt0−1 ≡ 0. A process {ỹt } with these
properties is furthermore uniquely optimal if and only if

V Q(ŷ) < 0 (39)

for all processes ŷ ∈ H1 that are non-zero almost surely.

The proof is given in Appendix A. The case in which the stronger condition (39) holds —
i.e., the quadratic form V Q(ŷ) is negative definite on the subspace H1 — is the one of primary
interest to us, since it is in this case that we know that the process {ỹt } represents at least a local
welfare maximum in the exact problem. In this case we can also show that pure randomization
of policy reduces the welfare objective (24), and hence is locally welfare-reducing in the exact
problem as well, as is discussed further in Benigno and Woodford [7].

25 Note that ϕ̃t is also assumed to be defined for t = t0 − 1.
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2.2. A dynamic programming approach

We can furthermore establish a useful characterization of the algebraic conditions under which
the second-order conditions (39) are satisfied. These are most easily developed by considering the
recursive formulation of our optimal policy problem presented in Section 1.1.26 Let us suppose
that the exogenous state vector ξt evolves according to a linear law of motion

ξt+1 = Γ ξt + εt+1, (40)

where Γ is a matrix, all of the eigenvalues of which have modulus less than β−1/2, and {εt } is
an i.i.d. vector-valued random sequence, drawn each period from a distribution with mean zero
and a variance-covariance matrix Σ .27 In this case, our LQ approximate policy problem has a
recursive formulation, in which the continuation problem from any period t forward depends on
the extended state vector

zt ≡

⎡
⎢⎢⎣

ỹt−1

h̃t

ξt

ξt−1

⎤
⎥⎥⎦ . (41)

Let V̄ Q(zt ) denote the maximum attainable value of the continuation objective V
Q
t , if the

process {ỹτ } from date t onward is chosen to satisfy constraints (25)–(26) for all τ � t , an initial
pre-commitment of the form

D(L)ỹt = h̃t , (42)

and the bound (33). As usual in an LQ problem of this form, it can be shown that the value
function is a quadratic function of the extended state vector,

V̄ Q(zt ) = 1

2
z′
tP zt , (43)

where P is a symmetric matrix to be determined. In characterizing the solution to the problem, it
is useful to introduce notation for partitions of the matrix P . Let Pij (for i, j = 1,2,3,4) be the
16 blocks obtained when P is partitioned in both directions conformably with the partition of zt

in (41), and let

Pi ≡ [Pi1 Pi2 Pi3 Pi4]
(for i = 1,2,3,4) be the four blocks obtained when P is partitioned only vertically.

In the recursive formulation of the approximate LQ problem, in each period t , ỹt is chosen,
and a pre-commitment h̃t+1(ξt+1) is chosen for each possible state in the period t + 1 continua-
tion, so as to maximize

1

2
ỹ′
tA(L)ỹt + Et

[
ỹ′
tB(L)ξt+1

] + βEt V̄
Q(zt+1), (44)

26 This section has been improved by the suggestions of Paul Levine and Joe Pearlman.
27 These assumptions ensure that the process {ξt } satisfies a bound of the form (33). If we further wish to ensure that the
disturbances are bounded, so that our local approximations can be expected to be accurate in the event of small enough
disturbances, we may assume further that all eigenvalues of Γ have a modulus less than 1, and that εt+1 is drawn from
a distribution with bounded support.
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subject to the constraints that ỹt satisfy (25) and (42), and that the choices of {h̃t+1(ξt+1)} satisfy

Et h̃t+1 = ht . (45)

To simplify the discussion, we further assume that

rank

[
C0
D0

]
= nF + ng, (46)

where here and below we write lag polynomials in the form X(L) = ∑
j XjL

j . This condi-
tion implies that the constraints (25) and (42) include neither any redundant constraints nor any
constraints that are inconsistent in the case of a generic state zt .

It is then possible to show that the matrix P is given by the solution to a system of Riccati-
type equations. In particular, we show in Appendix A that the block P11 can be determined as
the solution to the system of equations28

P11 = −G′
1M(P11)

−1G1, (47)

where for any matrix P11, the matrix M is defined as

M ≡
⎡
⎣ A0 + βP11 C′

0 D′
0

C0 0 0
D0 0 0

⎤
⎦ , y

†
t ≡

⎡
⎣ ỹt

λ̃t

ψ̃t

⎤
⎦ . (48)

The block P22 is correspondingly given by

P22 = −G′
2M

−1G2. (49)

In these equations we use the notation

G1 ≡
⎡
⎣ (1/2)A1

C1
D1

⎤
⎦ , G2 ≡

⎡
⎣ 0

0
−I

⎤
⎦ . (50)

Given the solution for P , it is straightforward to derive FOCs for the optimization problem
(44). As shown in Appendix A, these imply dynamics for the state vector of the form

zt+1 = Φzt + Ψ εt+1, (51)

for certain matrices Φ and Ψ . Here we note that if we partition Φ in the same way as P , the
block Φ11 is given by

Φ11 ≡ [−I 0 0]M−1G1. (52)

Because the single-period problem (44) is finite-dimensional, it is also straightforward to char-
acterize the second-order conditions for an optimum. In fact, the second-order conditions for the
single-period problem are necessary and sufficient for strict concavity of the infinite-horizon
optimal policy problem, as established by the following result.

28 This is a system of n2
y equations to solve for the n2

y elements of P11. Actually, because P11 is symmetric, and the
system (47) has the same symmetry, we need only solve a system of n(n + 1)/2 equations for n(n + 1)/2 independent
quantities.
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Proposition 3. Suppose that the exogenous disturbances have a law of motion of the form (40),
where Γ is a matrix the eigenvalues of which all have modulus less than β−1/2, and that the
constraints satisfy the rank condition (46), where nF +ng < ny . Then the LQ policy problem has
a determinate solution, given by (51), if and only if (i) there exists a solution P11 to Eq. (47) such
that for each of the minors of the matrix M defined in (48), detMr has the same sign as (−1)r ,
for each nF + ng + 1 � r � ny ; (ii) the eigenvalues of the matrix Φ11 defined in (52) all have
modulus less than β−1/2; and (iii) the matrix P22 defined in (49) is negative definite, i.e., is such
that its r th principle minor has the same sign as (−1)r , for each 1 � r � ng .

The proof of this proposition is also given in Appendix A. Note that the conditions stated in
the proposition are necessary and sufficient both for the existence of a determinate solution to the
first-order conditions, and for the quadratic form V Q(ψ) to satisfy the strict concavity condition
(39). In the case that either condition (i) or (iii) is violated, there may exist a determinate solution
to the first-order conditions, but it will not represent an optimum, owing to violation of the
second-order conditions.

The fact that condition (iii) is needed in addition to conditions (i)–(ii) in order to ensure that
we have a concave problem indicates an important respect in which the theory of LQ optimiza-
tion with forward-looking constraints is not a trivial generalization of the standard theory for
backward-looking problems, since conditions (i)–(ii) are sufficient in a backward-looking prob-
lem of the kind treated by Magill [40].29 It also shows that the second-order conditions for a
stochastic problem are more complex than they would be in the case of a deterministic policy
problem (again, unlike what is true of purely backward-looking LQ problems). For in a deter-
ministic version of our problem with forward-looking constraints, conditions (i)–(ii) would also
be sufficient for concavity, and thus for the solution to the first-order conditions to represent an
optimum.

In a deterministic version of the problem — where we not only assume that ξt = 0 each
period, but we restrict our attention to policies under which the evolution of the variables {ỹt }
is purely deterministic — the constraints on possible equilibria are the purely backward-looking
constraints (25) and

D(L)ỹt = h̃t (53)

for each t � t0, where we specify h̃t = ht−1 = 0 for all t � t0 + 1. This is a purely backward-
looking problem, so that the standard second-order conditions apply. And it should be obvious
that, as there is no longer a choice of h̃t+1(ξt+1) to be made each period, our argument above for
the necessity of condition (iii) would not apply.

But conditions (i)–(ii) are not generally a sufficient condition to guarantee that (39) is satis-
fied, in the presence of forward-looking constraints (26), if policy randomization is allowed.30

29 See Levine et al. [39] for a derivation of the second-order conditions for a backward-looking, deterministic LQ
problem, using what is essentially a discrete-time version of the approach of Magill. In some cases, conditions (i)–(ii)
are both necessary and sufficient for concavity, even in the presence of forward-looking constraints. The problem treated
in Benigno and Woodford [7] is an example of this kind.
30 Our remarks here apply even in the case that the “fundamental” disturbances {ξt } are purely deterministic; what
matters is whether policy may be contingent upon random events. As is discussed further in Benigno and Woodford [7],
when the second-order conditions fail to hold, policy randomization can be welfare-improving, even when the random
variations in policy are unrelated to any variation in fundamentals.



P. Benigno, M. Woodford / Journal of Economic Theory 147 (2012) 1–42 19
Because constraints (26) need hold only in expected value, random policy may be able to vary
the paths of the endogenous variables (in some states of the world) in directions that would
not be possible in the corresponding deterministic problem, and this makes the algebraic con-
ditions required for (39) to hold more stringent. Specifically, the value function for the con-
tinuation problem must be a strictly concave function of the state-contingent pre-commitment
h̃t+1 made for the following period, or it is possible to randomize h̃t+1 (requiring a corre-
sponding randomization of subsequent policy) without changing the fact that constraint (26)
is satisfied in period t . Hence condition (iii) is necessary in the stochastic case.31 It can also
easily be shown (see Appendix A) that condition (iii) is not implied in general by conditions
(i)–(ii).

3. Welfare evaluation of alternative policy rules

Our approach can be used not only to derive a linear approximation to a fully optimal policy
commitment, but also to compute approximate welfare comparisons between suboptimal rules,
that will correctly rank these rules in the case that random disturbances are small enough. Be-
cause empirically realistic models are inevitably fairly complex, a fully optimal policy rule is
likely to be too complex to represent a realistic policy proposal; hence comparisons among al-
ternative simple rules are of considerable practical interest. Here we discuss how this can be
done.

We do not propose to simply evaluate (a local approximation to) expected discounted utility
Vt0 under a candidate policy rule, because the optimal policy locally characterized above (i.e.,
optimal policy “from a timeless perspective”) does not maximize this objective; hence ranking
rules according to this criterion would lead to the embarrassing conclusion that there exist poli-
cies better than the optimal policy. Thus we wish to use a criterion that ranks rules according to
how close they come to solving the recursive policy problem defined in Section 1.1, rather than
how close they come to maximizing Vt0 .

Of course, if we restrict our attention to policies that necessarily satisfy the initial pre-
commitment (4), there is no problem; our optimal rule will be the one that maximizes Vt0 , or
(in the case of small enough shocks) the one that maximizes V

Q
t0

. But simple policy rules are
unlikely to precisely satisfy (4); thus in order to be able to select the best rule from some simple
class, we need an alternative criterion, one that is defined for all policies that are close enough to
being optimal, in a sense that is to be defined. At the same time, we wish it to be a criterion the
maximization of which implies that one has solved the constrained optimization problem defined
in Section 1.1.

31 Levine et al. (2008) provide a different argument for a condition similar to our condition (iii) as a necessary condition
for optimality in a model with a forward-looking constraint, which does not require a consideration of stochastic policy.
They consider Ramsey-optimal policy rather than optimality from a timeless perspective; that is, they assume no initial
pre-commitment (27). In this case, the deterministic optimal policy problem is like the one considered above, except that
(53) need hold only in periods t � t0 + 1; the optimal policy is then the same as in the backward-looking problem just
discussed, except that instead of taking h̃t0 as given, one is free to choose h̃t0 so as to maximize (24). This latter problem

has a solution only if the value function V̄
Q
t0

is bounded above, for a given vector ỹt0−1, and this is true in general only

if it is a strictly concave function of h̃t0 . The validity of this argument, however, depends on considering an exact LQ
problem, rather than an LQ local approximation to a problem that may have different global behavior.
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3.1. A Lagrangian approach

Our Lagrangian characterization of optimal policy suggests such a criterion. The timelessly
optimal policy from date t0 onward — that is, the policy that maximizes Vt0 subject to the initial
constraint (4) in addition to the feasibility constraints (2)–(3) — is also the policy that maximizes
the Lagrangian

V mod
t0

≡ Vt0 + β−1ϕ′
t0−1g(yt0−1, ξt0−1;yt0), (54)

where ϕt0−1 is the vector of Lagrange multipliers associated with the initial constraint (4). This is
a function that coincides (up to a constant) with the objective Vt0 in the case of policies satisfying
the constraint (4), but that is defined more generally, and that is maximized over the broader
class of feasible policies by the timelessly optimal policy. Hence an appropriate criterion to
use in ranking alternative policies is the value of V mod

t0
associated with each one. This criterion

penalizes policies that fail to satisfy the initial pre-commitment (4), by exactly the amount by
which a previously anticipated deviation of that kind would have reduced the expected utility of
the representative household.

In the case of any policy that satisfies the feasibility constraints (2)–(3) for all t � t0, we
observe that

V mod
t0

= L̄t0 + β−1ϕ̃′
t0−1g(yt0−1, ξt0−1;yt0)

= V
Q
t0

+ β−1ϕ̃′
t0−1Dŷg · ỹt0 + t.i.p. + O

(
ε3).

This suggests that in the case of small enough shocks, the ranking of alternative policies in terms
of V mod

t0
will correspond to the ranking in terms of the welfare measure

Wt0 ≡ V
Q
t0

+ β−1ϕ̃′
t0−1Dŷg · ỹt0 . (55)

Note that in this derivation we have assumed that ỹt = O(ε). We shall restrict attention to policy
rules of this kind. Note that while this is an important restriction, it does not preclude consider-
ation of extremely simple rules; and it is a property of the simple rules of greatest interest, i.e.,
those that come closest to being optimal among rules of that degree of complexity.

In expression (54), and hence in (55), ϕt0−1 is the Lagrange multiplier associated with con-
straint (4) under the optimal policy. However, in order to evaluate Wt0 to second-order accuracy,
it suffices to have a first-order approximation to this multiplier. Such an approximation is given
by the multiplier ϕ̃t0−1 associated with the constraint (27) of the LQ problem. Thus we need only
solve the LQ problem, as discussed in the previous section — obtaining a value for ϕ̃t0−1 along
with our solution for the optimal evolution {yt } — in order to determine the value of Wt0 .

Moreover, we observe that in the characterization given in the previous section of the so-
lution to the LQ problem, ϕ̃t0−1 = O(ε).32 Thus a solution for the equilibrium evolution {ỹt }
under a given policy that is accurate to first order suffices to evaluate the second term in (55)
to second-order accuracy. Hence Wt0 inherits this property of V

Q
t0

, and it suffices to compute a
linear approximation to the equilibrium dynamics {ỹt } under each candidate policy rule in order
to evaluate Wt0 to second-order accuracy. We can therefore obtain an approximation solution for
{ỹt } under a given policy by solving the linearized structural equations (25)–(26), together with

32 This follows from the solution given in Appendix A for the Lagrange multiplier associated with the initial pre-
commitment.
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the policy rule, and use this solution in evaluating Wt0 . In this way welfare comparisons among
alternative policies are possible, to second-order accuracy, using linear approximations to the
model structural relations and a quadratic welfare objective.

Moreover, we can evaluate Wt0 to second-order accuracy using only a linear approximation to
the policy rule. This has important computational advantages. For example, if we wish to find the
optimal policy rule from among the family of simple rules of the form it = φ(yt ), where it is a
policy instrument, and we are content to evaluate V mod

t0
to second-order accuracy, then it suffices

to search over the family of linear policy rules33

ı̃t = f ′ỹt ,

parameterized by the vector of coefficients f . There are no possible second-order (or larger)
welfare gains resulting from nonlinearities in the policy rule.

In expression (55), the value of the multiplier ϕ̃t0−1 depends on the economy’s initial state
and on the value of the initial pre-commitment ḡt0 . However, we wish to be able to rank alterna-
tive rules for an economy in which no such commitment may exist prior to the adoption of the
policy rule. We can avoid having to make reference to any historically given pre-commitment by
assuming a self-consistent constraint of the form (5). We show in Appendix A34 that

h̃t0 = ĥ(ξt0, ξt0−1)

≡ ht0−1 − P −1
22 P23(ξt0 − Γ ξt0−1) (56)

is such a self-consistent specification, where the matrix P23 (another block of the matrix P in-
troduced in (43)) is defined there.

If we assume this initial pre-commitment, we can then define the optimal dynamics from a
timeless perspective as functions solely of the initial conditions (ỹt0−1, ξt0−1) and the evolution
of the exogenous states {ξt } from period t0 onward. We thus obtain a law of motion of the form

ȳt+1 = Φ̄ȳt + Ψ̄ εt+1 (57)

for the extended state vector

ȳt ≡
[

ỹt

ξt

]
. (58)

This can be simulated to obtain the optimal dynamics from a timeless perspective, given initial
conditions ȳt0−1.35

In Appendix A, we also establish the following property of the optimal dynamics subject to
the pre-commitment (56).

33 Here we restrict attention to rules that are consistent with the optimal steady state, so that the intercept term is zero
when the rule is expressed in terms of deviations from steady-state values. Note that a rule without this property will
result in lower welfare, in the case of any small enough disturbances.
34 See the proof of Lemma 4.
35 Note that it is possible to solve for the initial pre-commitment using only the values of ξt0 , ỹt0−1 and ξt0−1 (or
equivalently, for the initial Lagrange multipliers ϕt0−1 using only the values of ỹt0−1 and ξt0−1, as shown below.) Thus
it is not necessary to simulate the optimal equilibrium dynamics over a lengthy “estimation period” prior to the date t0 in
order to compute the optimal dynamics from a timeless perspective, as proposed by Juillard and Pelgrin [31].
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Lemma 4. The Lagrange multiplier associated with the initial pre-commitment (56) is equal to

β−1ϕ̃t0−1 = ϕ∗(yt0−1) ≡ ψ̃(ỹt0−1, ξt0−1), (59)

where ψ̃(ỹt−1, ξt−1) is a function defined in Appendix A.

Then we can write36

Wt0 = W(ỹ; ξt0,yt0−1) ≡ V
Q
t0

+ ϕ∗(yt0−1)
′Dŷg · ỹt0 . (60)

This gives us an expression for our welfare measure purely in terms of the history and subsequent
evolution of the extended state vector.

3.2. A time-invariant criterion for ranking alternative rules

Let us suppose that we are interested in evaluating a policy rule r that implies an equilibrium
evolution of the endogenous variables of the form37

yt = φr(ξt ,yt−1).

This (together with the law of motion for the exogenous disturbances) then implies a law of
motion for the complete extended state vector

yt = ψr(ξt ,yt−1). (61)

Using this law of motion, we can evaluate (60), obtaining

Wt0 = Wr(ξt0 ,yt0−1).

We can do this for any rule r of the assumed type, and hence we can define an optimization
problem

max
r∈R

Wr(ξt0 ,yt0−1) (62)

in order to determine the optimal rule from among the members of some family of rules R.
However, the solution to problem (62) may well depend on the initial conditions yt0−1 and ξt0

for which Wt0 is evaluated. This implies an unappealing degree of arbitrariness of the choice that
would be recommended from within some family of simple rules, as well as time inconsistency
of the policy recommendation. The criterion that we find most appealing is to integrate over a
distribution of possible initial conditions, rather than evaluating Wr at the economy’s actual state
at the time of the choice, or at any other single state (such as the optimal steady state).38

Suppose that in the case of the optimal policy rule r∗, the law of motion (61) implies that the
evolution of the extended state vector {yt} is stationary. In this case, there exists a well-defined
invariant (or unconditional) probability distribution μ for the possible values of yt under the

36 In writing the function W(·), and others that follow, we suppress the argument ξ , as the evolution of the exogenous
disturbances is the same in the case of each of the alternative policies under consideration.
37 This assumption that yt depends only on the state variables indicated is without loss of generality, as we can extend
the vector yt if necessary in order for this to be so.
38 For example, the decision to evaluate Wr assuming initial conditions consistent with the steady state — when in fact
the state of the economy will fluctuate on both sides of the steady-state position — favors rules r for which Wr is a less
concave function of the initial condition.
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optimal policy.39 Then we can define the optimal policy rule within some class of simple rules
R as the one that solves the problem

max
r∈R

Eμ

[
W̄r (yt)

]
, (63)

where40

W̄r (yt) ≡ EtWr(ξt+1,yt). (64)

Because of the linearity of our approximate characterization of optimal policy, the calculations
required in order to evaluate Eμ[Wr ] to second-order accuracy are straightforward; these are
illustrated in Benigno and Woodford [7, Sec. 5].

The most important case in which the method just described cannot be applied is when some
of the elements of {yt} possess unit roots, though all elements are at least difference-stationary
(and some of the non-stationary elements may be cointegrated). Note that it is possible for even
the equilibrium under optimal policy to have this property, consistent with our assumption of the
bound (33).41 There is a question in such a case whether our local approximation to the problem
should remain an accurate approximation, but this is not a problem in the case that random
disturbances occur in only a finite number of periods, so LQ problems of this kind may be of
practical interest.

Let us suppose that those elements which possess unit roots are pure random walks (i.e., with
zero drift).42 We can in such a case decompose the extended state vector as

yt = ytr
t + ycyc

t ,

where

ytr
t ≡ lim

T →∞EtyT

is the Beveridge–Nelson [11] “trend” component, and the “cyclical” component ycyc
t will still

be a stationary process. Moreover, the evolution of the cyclical component as a function of the
exogenous disturbances under the optimal policy will be independent of the assumed initial value
of the trend component (though not of the initial value of the cyclical component). It follows that
we can define an invariant distribution μ for the possible values of ycyc

t under the optimal policy,
that is independent of the assumed value for the trend component. Then for any assumed initial
value for the trend component ytr

t0−1, we can define the optimal policy rule within the class R as
the one that solves the problem

39 We discuss the computation of the relevant properties of this invariant measure in Appendix A.
40 Recall that we assume that the exogenous disturbance process {ξt } is Markovian, and that ξt is included among
the elements of yt . Hence yt contains all relevant elements of the period t information set for the calculation of this
conditional expectation.
41 Benigno and Woodford [6] provide an example of an optimal stabilization policy problem in which the LQ approxi-
mate problem has this property. In this example, the unit root is associated with the dynamics of the level of real public
debt, which display a unit root under optimal policy for the same reason as in the classic analysis of optimal tax smoothing
by Barro [3] and Sargent [44, Chapter XV].
42 We may suppose that any deterministic trend under optimal policy has been eliminated by local expansion around
a deterministic solution with constant trend growth, so that there is zero trend in the state variables {ỹt } expressed as
deviations from that deterministic solution.
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max
r∈R

Ωr

(
ytr

t0−1

) ≡ Eμ

[
W̄r (yt0−1)

]
, (65)

a generalization of (63).43

It might seem in this case that our criterion is again dependent on initial conditions, just as
with the criterion (62) proposed first. The following result shows that this is not the case.

Lemma 5. Suppose that under optimal policy, the extended state vector yt consists entirely of
components that are either (i) stationary, or (ii) pure random walks. Suppose also that the class
of policy rules R is such that each rule in the class implies convergence to the same long-run
values of the state variables as under optimal policy, in the absence of stochastic disturbances,
so that the initial value of the trend component ytr

t0−1 is the same regardless of the rule r that is
considered. Then for any rule r ∈ R, the objective Ωr(ytr

t0−1) defined in (65) can be decomposed
into two parts,

Ωr

(
ytr

t0−1

) = Ω1(ytr
t0−1

) + Ω2
r , (66)

where the first component is the same for all rules in this class, while the second component is
independent of the initial condition ytr

t0−1.

Hence the criterion (65) establishes the same ranking of alternative rules, regardless of the
initial condition. The proof of this result is given in Appendix A.

3.3. Comparison with alternative criteria

The criterion for ranking alternative simple policy rules proposed above differs from others
sometimes used. Many authors prefer to evaluate alternative simple policy rules by computing
the expected value of Vt0 (rather than V mod

t0
) associated with each rule (e.g., Schmitt-Grohé and

Uribe [47]). As noted above, this alternative criterion is one under which the optimal rule from
a timeless perspective can be dominated by other rules, a point stressed by Blake [13], Jensen
and McCallum [26], and Dennis [17], among others. A consequence is that the use of such a
criterion as the basis for a reconsideration of policy will not lead to continuation of an optimal
policy commitment, even if there has been no change in the policymaker’s objective or model
of the economy, and even if the class of policies considered is flexible enough to include the
continuation of the prior optimal plan.

Choice of a rule to maximize Vt0 will not even lead to a stable policy choice — renewal of
one’s commitment to the same rule, each time the issue is reconsidered, if one’s model remains
the same — if Vt0 is evaluated conditional on the economy’s actual state at date t0. Schmitt-
Grohé and Uribe [47] avoid this by proposing that one should choose the rule that would be
judged best in the case of initial conditions consistent with the optimal steady state, whether the
economy’s actual initial state is that one or not. But this choice is an arbitrary one, and in general
a different simple rule would be favored if one were to arbitrarily a choose a different fictitious
initial condition.

The alternative criterion is also one that cannot be evaluated to second-order accuracy using
only a first-order solution for the equilibrium evolution under a given policy. For a general fea-

43 In the case that all elements of yt are stationary, ytr
t is simply a constant, and all variations in yt correspond to

variations in ycyc . In this case, (65) is equivalent to the previous criterion (63).
t
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sible policy — consistent with the optimal steady state, but not necessarily consistent with the
initial pre-commitment (4) — we can show that44

Vt0 = V
Q
t0

− β−1ϕ̄′Dŷg · ỹt0 + t.i.p. + O
(
ε3). (67)

The first term on the right-hand side of this expression is purely quadratic (has zero linear terms),
but this is not true of the second term, if the initial pre-commitment is binding under the optimal
policy. Evaluation of the second term to second-order accuracy requires a second-order approxi-
mation to the evolution {yt } under the policy of interest; there is thus no alternative to the use of
higher-order perturbation solution methods as illustrated by Schmitt-Grohé and Uribe [47], and
nonlinear terms in the policy rule generally matter for welfare.

We therefore cannot agree with Levine et al. [39], who state, in the context of a discussion of
the general possibility of LQ approximation, that “if . . . one adopts a conditional welfare loss
measure, starting at the zero-inflation steady state, then the timeless perspective is not relevant”
[39, p. 3319]. This is incorrect, unless “starting at the [optimal] steady state” means starting with
initial pre-commitments that are consistent with that steady state,45 and not simply evaluation
conditional on a fictitious initial state. For even assuming initial values of the predetermined
state variables consistent with the optimal steady state, the policy that maximizes the conditional
welfare measure Vt0 will not in general be a continuation of the optimal steady state, nor need
it even be near the steady state (at least initially). While a local quadratic approximation to the
criterion Vt0 is possible, it would have to be computed around the unconstrained Ramsey policy
(which would not correspond to the optimal steady state, even under the hypothesized initial
conditions), and so would involve time-varying coefficients.

Authors such as Blake [13] and Jensen and McCallum [26] instead avoid time-inconsistency
without adopting the timeless perspective, by proposing to rank alternative rules according to the
unconditional expected value of Vt0 , that is, the expected value of Vt0 under a probability distribu-
tion for initial conditions corresponding to the ergodic distribution for the endogenous variables
associated with the particular time-invariant policy that is to be evaluated.46 Damjanovic et al.
[16] show that one can use an LQ approximation (slightly different from the one derived here) to
evaluate time-invariant policy rules under this criterion. Note, however, that unlike the approach
proposed here, the probability distribution for initial conditions that is used is not independent
of the policy rule that is considered. This criterion has the unappealing feature of giving a rule
that leads to different long-run average values of an endogenous variable (e.g., the capital stock)
“credit” for a higher initial average value of the variable as well. It also cannot be applied to eval-
uate non-stationary policies, or even time-invariant policies that imply non-stationary dynamics
of endogenous variables, such as the optimal policy in Benigno and Woodford [6].

Finally, some authors who seek to evaluate alternative simple rules from the timeless perspec-
tive have proposed alternative methods for computing the initial lagged Lagrange multipliers
ϕt0−1 than the one described above. Juillard and Pelgrin [31] propose an approach in which one
simulates the optimal equilibrium dynamics over a lengthy “estimation period” prior to the date

44 Here we use the more general form of (22) mentioned in footnote 25.
45 Because Levine et al. treat problems with forward-looking constraints as equivalent to problems with only backward-
looking constraints, their understanding of initial conditions consistent with the optimal steady state may tacitly include
such commitments. But if this is so, the proper criterion on which to rank alternative policies is V mod

t0
rather than Vt0 ,

which is precisely the criterion required by the timeless perspective.
46 This approach had previously been used by Rotemberg and Woodford [43] to rank alternative time-invariant policy
rules, prior to the proposal of the timeless perspective by Woodford [49].
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t0 in order to compute the proper initial multipliers. This should in principle lead to results con-
sistent with ours, but is an unnecessarily cumbersome approach, and introduces sampling error
in the case of a simulation of only finite length. Dennis [17] proposes a recursive approach sim-
ilar to ours, but which yields a non-unique solution for the initial Lagrange multipliers, since it
involves the generalized inverse of a matrix for which the generalized inverse is not unique, and
allows the initial Lagrange multipliers to be functions of redundant information.

4. Applications

The approach expounded here has already proven fruitful in a number of applications to prob-
lems of optimal monetary and fiscal policy. Benigno and Woodford [7] use this method to derive
an LQ approximation to the problem of optimal monetary stabilization policy in a DSGE model
with monopolistic competition, Calvo-style staggered price-setting, and a variety of exogenous
disturbances to preferences, technology, and fiscal policy.47 Unlike the simpler LQ method used
by Rotemberg and Woodford [43] and Woodford [50], the present method is applicable even
in the case of (possibly substantial) distortions even in the absence of shocks, owing to market
power or distorting taxes. As in the simpler case considered in Woodford [50], the quadratic
stabilization objective obtained is a sum of two terms per period, corresponding to an inflation
stabilization and an output-gap stabilization objective respectively; but both the definition of the
output gap and the relative weight on output-gap stabilization are now more complex.

Benigno and Woodford [8] extend the analysis to the case in which both wages and prices
are sticky, obtaining a generalization of the utility-based loss function in which a third quadratic
term appears, proportional to squared deviations of nominal wage inflation from zero. This shows
that the analysis by Erceg et al. [20] of the tradeoff between stabilization of wage inflation and
price inflation applies also to economies with distorted steady states. Montoro [42] extends the
analysis to allow for real disturbances to the relative supply price of oil.

Benigno and Benigno [4] analyze policy coordination between two national monetary author-
ities which each seek to maximize the welfare of their own country’s representative household,
and show that it is possible to locally characterize each authority’s aims by a quadratic stabiliza-
tion objective. Engel [21] extends the analysis to a two-country model with local-currency pricing
rather than the producer-currency pricing assumed by Benigno and Benigno [4]. De Paoli [18]
similarly shows how the analysis of Benigno and Woodford [7] can be extended to a small open
economy, requiring the addition of a terms-of-trade (or real-exchange-rate) stabilization objec-
tive to the quadratic loss function; De Paoli [19] extends the analysis to the case of a small open
economy with incomplete international risk sharing.

Because the present method applies to economies with a distorted steady state, it allows the
theory of tax smoothing to be integrated with the theory of monetary stabilization policy. Be-
nigno and Woodford [6] extend the analysis of Benigno and Woodford [7] to the case of an
economy with only distorting taxes, and show that the problem of choosing jointly optimal mon-
etary and fiscal policies can also be treated within an LQ framework that nests standard analyses
of tax smoothing (with flexible prices, so that real effects of monetary policy are ignored) and of
monetary policy (with lump-sum taxes, so that fiscal effects of monetary policy can be ignored)
as special cases. Berriel and Sinigaglia [12] extend the analysis to the case of an economy with

47 See Giannoni and Woodford [24] for a demonstration that this policy problem can be cast in the general form assumed
in this paper. Woodford [52, Sec. 2] provides a further exposition of the LQ analysis of this problem, and a comparison
of the results of the LQ analysis to those obtained by linearization of the exact first-order conditions for optimal policy.
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multiple sectors that differ in the degree of stickiness of prices, and Horvath [25] extends it to a
model in which wages as well as prices are sticky. Benigno and De Paoli [5] use similar methods
to analyze optimal fiscal policy in a small open economy, while Ferrero [22] analyzes optimal
monetary and fiscal policy in a monetary union with separate national fiscal authorities.

All of the analyses just mentioned involve fairly simple DSGE models, in which it is possible
to derive the coefficients of the LQ approximate policy problem by hand. In the case of larger (and
more realistic) models, such calculations are likely to be tedious. Nonetheless, it is an advantage
of our method that it is straightforward to apply it even to fairly complex models and fairly
general specifications of disturbances. Altissimo et al. [1], Cúrdia [15], Levine et al. [39], and
Coenen et al. [14] all provide examples of numerical analyses of optimal policy in more complex
models using the LQ approximation method. We believe that it should similarly be practical to
apply these methods to a wide variety of other models of interest to policy institutions.

Appendix A. Proofs and derivations

A.1. Proposition 1

Proposition 1. In Eq. (32), the matrix polynomials are given by

J (L) ≡ 1

2

[
A(L) + A′(βL−1)]L, K(L) ≡ B(L),

M(L) ≡ C′(βL−1)L, N(L) ≡ β−1D′(βL−1)L.

It follows that the linear system (32) is exactly the set of FOCs for the LQ problem of maximizing
(24) subject to constraints (25)–(27).

Proof. The identity of the matrix polynomials follows directly from differentiation of the nonlin-
ear functions in the exact FOCs (11). These can then be observed to be the same coefficients that
appear in the FOCs for the LQ problem. Differentiation of the Lagrangian (34) yields a system
of linear first-order conditions

1

2
Et

{[
A(L) + A′(βL−1)]ỹt

} + Et

[
B(L)ξt+1

]
+ Et

[
C′(βL−1)λ̃t

] + β−1D′(βL−1)ϕ̃t−1 = 0 (A.1)

that must hold for each t � t0 under the optimal policy. This is a system of the form (32), with
the matrices of coefficients stated in the proposition.

An intuition for this result can be provided as follows. The FOCs (11) for the exact policy
problem are obtained by differentiating the Lagrangian Lt0 defined in (10). The linearization
(32) of the FOCs around the optimal steady state is in turn the set of linear equations that would
be obtained by differentiating a quadratic approximation to Lt0 around that same steady state.
Hence we are interested in computing such a local approximation, for the case in which yt − ȳ,
λt − λ̄, and ϕt − ϕ̄ are each of order O(ε) for all t .

We may furthermore write the Lagrangian in the form

Lt0 = L̄t0 + L̃t0,

where
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L̄t0 = Vt0 + Et0

∞∑
t=t0

βt−t0
[
λ̄′F(yt , ξt ;yt−1) + β−1ϕ̄′g(yt−1, ξt−1;yt )

]
,

L̃t0 = Et0

∞∑
t=t0

βt−t0
[
λ̃′

tF (yt , ξt ;yt−1) + β−1ϕ̃′
t−1g(yt−1, ξt−1;yt )

]
.

We can then use Eqs. (18) and (21) to show that the local quadratic approximation to L̄t0 is given
by

L̄t0 = V
Q
t0

+ t.i.p. + O
(
ε3).

In addition, the fact that λ̃t , ϕ̃t are both of order O(ε) means that a local quadratic approximation
to the other term is given by

L̃t0 = Et0

∞∑
t=t0

βt−t0
[
λ̃′

t F̃ (yt , ξt ;yt−1) + β−1ϕ̃′
t−1g̃(yt−1, ξt−1;yt )

] + O
(
ε3),

where F̃ and g̃ are local linear approximations to the functions F and g respectively.
Hence the local quadratic approximation to the complete Lagrangian is given by

Lt0 = V
Q
t0

+ Et0

∞∑
t=t0

βt−t0
[
λ̃′

t F̃ (yt , ξt ;yt−1) + β−1ϕ̃′
t−1g̃(yt−1, ξt−1;yt )

]
+ t.i.p. + O

(
ε3). (A.2)

But this is identical (up to terms independent of policy) to the Lagrangian (34) for the LQ problem
of maximizing V

Q
t0

subject to the linearized constraints. Hence the first-order conditions obtained
from this approximate Lagrangian (which coincide with the local linear approximation to the
first-order conditions for the exact problem) are identical to the first-order conditions for the LQ
problem, and their solutions are identical as well. �
A.2. Proposition 2

Recall that H is the Hilbert space of (real-valued) stochastic processes {ỹt } such that

Et0

∞∑
t=t0

βt−t0 ỹ′
t ỹt < ∞, (A.3)

and H1 ⊂ H is the subspace of sequences ŷ ∈ H that satisfy the additional constraints

C(L)ŷt = 0, (A.4)

EtD(L)ŷt+1 = 0 (A.5)

for each date t � t0, along with the initial commitments

D(L)ŷt0 = 0, (A.6)

where we define ŷt −1 ≡ 0 in writing (A.4) for period t = t0 and in writing (A.6).
0
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Proposition 2. For {ỹt } ∈ H to maximize the quadratic form (24), subject to the constraints
(25)–(27) given initial conditions ỹt0−1 and ḡt0 , it is necessary and sufficient that (i) there exist
Lagrange multiplier processes48 ϕ̃, λ̃ ∈ H such that the processes {ỹt , ϕ̃t , λ̃t } satisfy (A.1) for
each t � t0; and (ii)

V Q(ŷ) ≡ V
Q
t0

(ŷ;0) = 1

2
Et0

∞∑
t=t0

βt−t0
[
ŷ′
tA(L)ŷt

]
� 0 (A.7)

for all processes ŷ ∈ H1, where in evaluating (A.7) we define ŷt0−1 ≡ 0. A process {ỹt } with
these properties is furthermore uniquely optimal if and only if

V Q(ŷ) < 0 (A.8)

for all processes ŷ ∈ H1 that are non-zero almost surely.

Proof. We have already remarked on the necessity of the first-order conditions (i). To prove
the necessity of the second-order condition (ii) as well, let {ỹt } ∈ H, and consider the perturbed
process

yt = ỹt + ŷt (A.9)

for all t � t0 −1, where {ŷt } belongs to H1 and we define ŷt0−1 ≡ 0. This construction guarantees
that if the process {ỹt } satisfies the constraints (25)–(27), so does the process {yt }.

We note that

V
Q
t0

(y; ξ) = V
Q
t0

(ỹ; ξ) + 1

2
Et0

∞∑
t=t0

βt−t0
[
ŷ′
tA(L)ỹt + ỹ′

tA(L)ŷt + 2ŷ′
tB(L)ξt+1

]

+ 1

2
Et0

∞∑
t=t0

βt−t0
[
ŷ′
tA(L)ŷt

]
.

The second term on the right-hand side is furthermore equal to

1

2
Et0

∞∑
t=t0

βt−t0 ŷ′
t · {[A(L) + A′(βL−1)]ỹt + 2B(L)ξt+1

}

= −Et0

∞∑
t=t0

βt−t0 ŷ′
t · {C′(βL−1)λ̃t + β−1D′(βL−1)ϕ̃t−1

}

= −Et0

∞∑
t=t0

βt−t0
{
λ̃′

tC(L)ŷt + β−1ϕ̃′
t−1D(L)ŷt

}
,

where we use the first-order conditions (A.1) to establish the first equality, and conditions (35)–
(37) to establish the final equality.

Thus for any feasible process ỹ and any perturbation (A.9) defined by a process ŷ belonging
to H1,

V
Q
t0

(y; ξ) = V
Q
t0

(ỹ; ξ) + V Q(ŷ). (A.10)

48 Note that ϕ̃t is also assumed to be defined for t = t0 − 1.
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It follows that if there were to exist any ŷ ∈ H1 for which V Q(ŷ) > 0, the plan ỹ could not be
optimal. But as this is true regardless of what plan ỹ may be, (A.7) is necessary for optimality.
Furthermore, if there were to exist a non-zero ŷ for which V Q(ŷ) = 0, it would be possible to
construct a perturbation y (not equal to ỹ almost surely at all dates) that would achieve an equally
high level of welfare. Hence the stronger version of the second-order conditions (A.8) must hold
for all ŷ not equal to zero almost surely, in order for {ỹt } to be a unique optimum.

One easily sees from the same calculation that these conditions are also sufficient for an
optimum. Let {ỹt } be a process consistent with the constraints of the LQ problem. Then any
alternative process {yt } that is also consistent with those constraints can be written in the form
(A.9), where ŷ is some element of H1. If the first-order conditions (A.1) are satisfied by the
process {ỹt }, we can again establish (A.10). Condition (A.7) then implies that no alternative
process is preferable to {ỹt }, while (A.8) would imply that {ỹt } is superior to any alternative that
is not equal to ỹ almost surely. �
A.3. Dynamic programming formulation of the LQ problem

In the recursive formulation of the approximate LQ problem, in each period t , ỹt is chosen,
and a pre-commitment h̃t+1(ξt+1) is chosen for each possible state in the period t + 1 continua-
tion, so as to maximize (44) subject to the constraints that ỹt satisfy (25) and (42), and that the
choices of {h̃t+1(ξt+1)} satisfy (45).

The first-order conditions for the optimal choice of ỹt in this single-period problem are of the
form [

A0 + (1/2)A1L
]
ỹt + Et

[
B(L)ξt+1

] + βP1Etzt+1 + C′
0λ̃t + D′

0ψ̃t = 0, (A.11)

where λ̃t , ψ̃t are the Lagrange multipliers associated with constraints (25) and (42) respectively.
Condition (A.11) together with the constraints (25) and (42) constitute a system of n = ny +
nF +ng linear equations to solve for ỹt , λ̃t , and ψ̃t as functions of zt . This system can be written

in the matrix form My
†
t = −Gzt , where the matrix M is defined by (48), and the first two column

blocks of the matrix G are the matrices G1,G2 defined in (50).
This has a determinate solution if and only if M is non-singular. This is evidently a necessary

condition for strict concavity of the policy problem, and we shall assume that it holds in the
remainder of this discussion.49 Given this assumption, the unique solution is

y
†
t = −M−1Gzt . (A.12)

The first-order conditions for the optimal choice of the pre-commitments {h̃t+1(ξt+1)} are that

βP2zt+1 = −ϕ̃t (A.13)

in each possible state ξt+1 that can succeed the given state in period t , where ϕ̃t is the Lagrange
multiplier associated with constraint (45); note that the value of ϕ̃t depends only on the state in
period t . The fact that the left-hand side of (A.13) must be the same in each state ξt+1 implies
that

49 We are actually only interested in whether there exists a unique solution for ỹt . However, condition (46) implies that

there can be no vector y† 	= 0 such that My† = 0, unless it involves ỹ 	= 0. Thus if M is singular, there are necessary
multiple solutions for ỹt if there are any solutions at all, and not just multiple solutions for the Lagrange multipliers.
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P22[h̃t+1 − ht ] + P23εt+1 = 0

in each state. This allows a determinate solution for h̃t+1 if and only if P22 is non-singular; this
too is evidently a necessary condition for concavity, and is assumed from here on.50 Under this
assumption, (A.13) together with (42) implies that

h̃t+1 = ht − P −1
22 P23εt+1. (A.14)

We can also solve uniquely for the Lagrange multiplier,

ϕ̃t = −βP2Etzt+1

= −βP21ỹt − βP22ht − β[P23Γ + P24]ξt . (A.15)

Eqs. (A.12) and (A.14) completely describe the optimal dynamics of the variables {ỹt , h̃t },
starting from some initial conditions (ỹt0−1, h̃t0), given the evolution of the exogenous states
{ξt }. The system consisting of these solutions for ỹt and h̃t+1(ξt+1), together with the law of
motion (40), can be written in the form (51), for certain matrices Φ and Ψ . If we partition Φ in
the same way as P , it follows from the form of the solutions obtained above that Φij = 0 for all
i � 2, j � 2. From this (together with our assumption about the eigenvalues of Γ ) it follows that
all eigenvalues of Φ have modulus less than β−1/2 if and only if all eigenvalues of the block Φ11,
defined by (52), have this property. Hence there exists a determinate solution to the first-order
conditions for optimal policy, i.e., a unique solution satisfying the bound (33), if and only if M

and P22 are non-singular matrices, and all eigenvalues of Φ11 have modulus less than β−1/2.
Note that the solution (51) involves elements of the matrix P . We can solve for those elements

of P in the following way. It follows from the assumed representation (43) for the value function
that the vector of partial derivatives with respect to ỹt−1 will equal

V̄
Q
1 = P1zt .

On the other hand, application of the envelope theorem to the problem (44) implies that

V̄
Q
1 = G′

1y
†
t = −G′

1M
−1Gzt . (A.16)

Equating the corresponding coefficients in these two representations, we observe that

P1j = −G′
1M

−1Gj

for j = 1,2,3,4. A similar argument implies that

P2j = −G′
2M

−1Gj (A.17)

for j = 1,2,3,4.
These expressions involve the matrix M , which depends on P11; but the subsystem (47) of

these equations represents a set of n2
y equations to solve for the n2

y elements of P11. Once we have
solved for P11, we know the matrix M , and can solve for the other elements of P . In particular,
we can solve for P22 using (49), and check whether it is non-singular, as required in (A.14). The
other elements of P can be solved for using the same method.51

50 If P22 is singular, it is obvious that there are multiple solutions for h̃t+1(ξt+1) consistent with the first-order condi-
tions, but one might wonder if these correspond to multiple state-contingent evolutions {ỹt }. In fact they do, for a single
state-contingent evolution {ỹt } is consistent with only one process {h̃t }, which can be determined from (42).
51 Details of the algebra are provided in a note on computational issues available from the authors.
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Thus far, we have discussed only the implications of the FOCs for the single-period opti-
mization problem. Again, the question arises whether a solution to the first-order conditions
corresponds to a maximum of (44). The second-order conditions for a finite-dimensional opti-
mization problem are well known. First, the objective is strictly concave in ỹt if and only if the
matrix A0 + βP11 is such that

ỹ′[A0 + βP11]ỹ < 0

for all ỹ 	= 0 such that

C0ỹ = 0, D0ỹ = 0.

Using a result of Debreu (1952),52 we can state algebraic conditions on these matrices that are
easily checked. For each r such that nF + ng + 1 � r � ny , let Mr be the lower-right square
block of M of size nF + ng + r .53 Then the concavity condition stated above holds if and only
if detMr has the same sign as (−1)r , for each nF + ng + 1 � r � ny . Note that in the case that
policy is unidimensional — meaning that there is a single instrument to set each period, which
suffices to determine the evolution of the endogenous variables, so that nF +ng = ny −1 — then
this requirement reduces to the single condition that the determinant of M have the same sign as
(−1)ny .

Second, in each possible state ξt+1 in the following period, the continuation objective
V̄ Q(zt+1) is a concave function of h̃t+1(ξt+1) if and only if the submatrix P22 is negative defi-
nite, i.e., such that h̃′P22h̃ < 0 for all h̃ 	= 0. This condition is also straightforward to check using
the Debreu theorem: the principal minors of P22 must have alternating signs.

These two conditions are obviously necessary for strict concavity of the single-period prob-
lem, and hence for strict concavity of the infinite-horizon optimal policy problem. In fact, they
are also sufficient, as established by Proposition 3.

A.4. Proposition 3

Proposition 3. Suppose that the exogenous disturbances have a law of motion of the form (40),
where Γ is a matrix the eigenvalues of which all have modulus less than β−1/2, and that the
constraints satisfy the rank condition (46), where nF +ng < ny . Then the LQ policy problem has
a determinate solution, given by (51), if and only if (i) there exists a solution P11 to Eq. (47) such
that for each of the minors of the matrix M defined in (48), detMr has the same sign as (−1)r ,
for each nF + ng + 1 � r � ny ; (ii) the eigenvalues of the matrix Φ11 defined in (52) all have
modulus less than β−1/2; and (iii) the matrix P22 defined in (49) is negative definite, i.e., is such
that its r th principle minor has the same sign as (−1)r , for each 1 � r � ng .

Proof. (1) The discussion in the text has already established the necessity of each of conditions
(i)–(iii), so it remains only to show that they are also sufficient for the solution (51) to represent a
solution to the original infinite-horizon optimal policy problem. We shall do this by establishing
that conditions (i)–(iii) imply that the sufficient conditions of Proposition 2 are satisfied by this
solution.

52 See also Theorem 1.E.17 of Takayama (1985).
53 Given (46), we can order the elements of ỹt so that the left (nF + ng) × (nF + ng) block of the matrix in (46) is
non-singular, and we assume that this has been done when forming these submatrices.
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We begin by establishing that the processes {ỹt , λ̃t , ϕ̃t } associated with the solution (51) sat-
isfy the first-order conditions (A.1) for the infinite-horizon problem. We have already shown in
the text that under conditions (i)–(iii), there exists a determinate solution (51) for the dynamics of
{zt }, that it satisfies the bound (33) along with the constraints (25)–(27), and that associated with
it are a unique system of Lagrange multipliers {λ̃t , ψ̃t , ϕ̃t }, the solution for which has also been
explained in the text. We wish to show that these processes must satisfy (A.1) for each t � t0.

By construction, the processes {y†
t } satisfy the first-order conditions (A.11) for each t � t0.

Moreover, it follows from (A.16) that

P1Etzt+1 = G′
1Ety

†
t+1.

Substituting this into (A.11), we obtain

1

2
Et

{[
A(L) + A′(βL−1)]ỹt

} + Et

[
B(L)ξt+1

]
+ Et

[
C′(βL−1)λ̃t

] + Et

[
D′(βL−1)ψ̃t

] = 0 (A.18)

for each t � t0.
Differentiating V̄ Q(zt ) with respect to h̃t , and using the envelope theorem as in the derivation

of (A.16), we obtain V̄
Q
2 = −ψ̃t , from which we conclude that

P2zt = −ψ̃t

for each t � t0. Comparison with first-order condition (A.13) for the optimal choice of h̃t+1 in
the recursive policy problem indicates that

ψ̃t = β−1ϕ̃t−1 (A.19)

for each t � t0 + 1. We may assume (as a definition of ϕ̃t0−1
54) that (A.19) holds when t = t0

as well. Then use of (A.19) to substitute for the process {ψ̃t } in (A.18) yields (A.1), which
accordingly must hold for each t � t0. Hence the processes constructed to satisfy the first-order
conditions of the recursive policy problem must satisfy the first-order conditions for the infinite-
horizon policy problem characterized in Section 3.1 as well.

(2) It remains to show that conditions (i)–(iii) also imply that the strict concavity condition
(A.8) is satisfied. Let us consider an arbitrary process ỹ ∈ H1, and associated with it define the
process h̃ by

h̃t = D(L)ỹt (A.20)

for each t � t0 + 1, and by the stipulation that h̃t0 = 0. We thus obtain a pair of processes satis-
fying

C(L)ỹt = 0, (A.21)

D(L)ỹt = h̃t , (A.22)

Et h̃t+1 = 0 (A.23)

for all t � t0. These are furthermore an example of a process {zt } consistent with the constraints
of the recursive policy problem, in the case that ξt = 0 at all times and the initial pre-commitment
is given by h̃t0 = 0.

54 Note that ϕ̃t −1 has no other meaning in the analysis of the recursive policy problem presented in Section 3.2.
0
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We note that the analysis given in the text of the single-period problem of maximizing (44),
applied to the special case in which ξt = 0 at all times,55 implies that for any values of ỹt−1 and
h̃t , the maximum possible attainable value of the objective

1

2
ỹ′
tA(L)ỹt + β

2
Et

[
z′
t+1P zt+1

]
consistent with constraints (A.21)–(A.23) is equal to

1

2
z′
tP zt ;

and this value is attained only if

zt+1 = Φzt

with certainty, which is to say, only if

ỹt = Φ11ỹt−1 + Φ12h̃t (A.24)

and

h̃t+1 = 0 (A.25)

in each possible state in period t + 1.
Thus the fact that the processes {ỹt , h̃t } satisfy (A.21)–(A.23) for all t � t0 implies that

1

2
ỹ′
tA(L)ỹt + β

2
Et

[
z′
t+1P zt+1

]
� 1

2
z′
tP zt

for all t � t0, and that the inequality is strict unless (A.24)–(A.25) hold. Now if conditions
(A.24)–(A.25) hold for all t � t0, ỹt = 0 at all times. Thus in the case that ỹt is not equal to
zero almost surely for all t , there must be at least one date t1 such that at least one of these con-
ditions is violated with positive probability when t = t1. In that case, there must be some k > 0
such that

Et0

{
1

2
ỹ′
t1
A(L)ỹt1 + β

2
z′
t1+1P zt1+1

}
1

2
� Et0z′

t1
P zt1 − k.

It then follows, by summing these inequalities (appropriately discounted) for successive periods,
that

Et0

T∑
t=t0

βt−t0
1

2
ỹ′
tA(L)ỹt + βT +1−t0

2
Et0z′

T +1P zT +1 � 1

2
z′
t0
P zt0 − k = −k, (A.26)

for all T � t1.
As we have stipulated that the process ỹ is an element of H1, and thus satisfies the bound

(33), we necessarily have

lim
T →∞βT +1Et0z′

T +1P zT +1 = 0.

55 It follows from the usual principle of certainty equivalence for LQ problems that the matrices characterizing the
solution to this problem do not depend on the value of the variance-covariance matrix Σ for the disturbances. In fact, it
is easily observed that the derivations given in the text would apply equally to a problem in which ξt = 0 at all times.
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(Note that it follows from (A.20) that the elements of h̃ cannot grow asymptotically at a faster
rate than do the elements of ỹ.) It then follows from (A.26) that

lim sup
T →∞

Et0

T∑
t=t0

βt−t0
1

2
ỹ′
tA(L)ỹt � −k. (A.27)

But since it follows from the assumption that ỹ satisfies (33) that the series in (A.27) has a limit,
this limit must be no greater than −k. Hence ỹ satisfies (A.8), and all of the sufficient conditions
of Proposition 2 have been verified. This establishes the proposition. �
Example. Suppose that yt has two elements, that the objective of policy is to maximize

V
Q
t0

(ỹ) ≡ 1

2
Et0

∞∑
t=t0

βt−t0 ỹ′
tAỹt , (A.28)

where A is a symmetric 2 × 2 matrix, and that the only constraint on what policy can achieve is
a single, forward-looking constraint

Et [δỹ1,t − ỹ1,t+1] = 0 (A.29)

for all t � t0, where |δ| < β−1/2. There are no exogenous disturbances, but the expectations ap-
pear because we wish to consider the possibility of (arbitrarily) randomized policies. We assume
an initial pre-commitment of the form

ỹ1,t0 = δỹ1,t0−1 + h̃t0, (A.30)

for some quantity h̃t0 .
In the case that policy is restricted to be deterministic, the constraint completely determines

the path of {ỹ1t }; the only (perfect foresight) sequence consistent with the initial pre-commitment
and the forward-looking constraint is the one in which

ỹ1,t = [δỹ1,t0−1 + h̃t0 ]δt−t0

for all t � t0. The problem then reduces to the choice of a sequence {ỹ2,t }, constrained only by
the bound (33), so as to maximize the objective. This is obviously a concave problem if and only
if ỹ′Aỹ is a concave function of ỹ2 for a given value of ỹ1. This in turn is true if and only if
A22 < 0; the other elements of A are irrelevant.

If instead we allow random policies, the condition just derived is no longer sufficient for
concavity (though still necessary). One can show that the problem is concave if and only if A

is a negative definite matrix. This is obviously a sufficient condition (as it implies that (A.28) is
concave for arbitrary sequences). To show that it is also necessary, suppose instead that it is not
true. Then there exists a vector v 	= 0 such that v′Av � 0. Now let {ȳt } be any process satisfying
the constraints (33), (A.29), and (A.30), and consider the alternative process {ỹt } generated by
the law of motion

ỹt = ȳt + δ(ỹt−1 − ȳt−1) + vεt

for each t � t0 + 1, starting from the initial condition (A.30), where {εt } is a (scalar-valued)
martingale-difference sequence satisfying the bound (33). One can easily show that the process
{ỹt } satisfies (33), (A.29), and (A.30) as well; moreover, the value of the objective in the case of
this process satisfies
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V
Q
t0

(ỹ) = V
Q
t0

(ȳ) + (
1 − βδ2)−1

v′AvEt0

∞∑
t=t0+1

βtε2
t

� V
Q
t0

(ȳ).

Since we can construct an alternative policy that is at least as good in the case of any policy,
there is no uniquely optimal policy in such a case; and in addition, we have shown that arbitrary
randomization of policy is possible without welfare loss.

Let us examine how these results compare with the conditions stated in Proposition 3. In this
example, condition (47) states that

P11 = α

[
1 0
0 0

]
,

where

α = −δ2[M−1]
33.

This form for P11 implies in turn that M is invertible as long as A22 	= 0, and that in that case,

[
M−1]

33 = −αβ − |A|
A22

.

Hence we obtain a unique solution,

α = δ2

1 − βδ2

|A|
A22

.

Since nF = 0, ng = 1, ny = 2, condition (i) of the proposition holds if and only if detM2 =
detM > 0, and under the above solution for P11, detM = −A22; hence condition (i) reduces to
the requirement that A22 < 0.

This solution for P11, and hence for M , also implies that

Φ11 =
[

δ 0
−δA21/A22 0

]
.

Hence the eigenvalues of Φ11 are 0 and δ. Thus under our assumption about δ, condition (ii) is
necessarily satisfied, as long as A22 	= 0 (so that Φ11 exists).

We observe that both conditions (i) and (ii) hold if and only if A22 < 0, which is just the
concavity condition derived above for the deterministic policy problem.

The solution for P11 similarly implies that

P22 = −G′
2M

−1G2 = −[
M−1]

33 = 1

1 − βδ2

|A|
A22

.

Since the numerator in this last expression is positive, condition (iii) holds (in addition to the
other two conditions) if and only if we also have detA > 0. Since A is negative definite if and
only if A22 < 0 and detA > 0, we can alternatively state that condition (iii) holds (in addition to
the other two) if and only if A is also negative definite. This is the additional condition derived
above for concavity in the case of stochastic policies.
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A.5. Lemma 4

We begin by explaining the proposed form (56) for the initial pre-commitment. Let us define
a new extended state vector

ẑt ≡

⎡
⎢⎢⎣

ỹt−1

ĥ(ξt , ξt−1)

ξt

ξt−1

⎤
⎥⎥⎦ ,

where56

ĥ(ξt , ξt−1) ≡ ht−1 − P −1
22 P23(ξt − Γ ξt−1),

then it follows from (A.14) that under the solution to the recursive policy problem, zt = ẑt for
each t � t0 + 1. (However, ẑt , unlike zt , is a function solely of ỹt−1 and the history of the
exogenous disturbances.) Hence

h̃t0 = ĥ(ξt0, ξt0−1) (A.31)

is a self-consistent constraint of the form (5). This is just the initial pre-commitment (56) pro-
posed in the text.

Lemma 4. The Lagrange multiplier associated with the initial pre-commitment (A.31) is equal
to

β−1ϕ̃t0−1 = ϕ∗(yt0−1) ≡ ψ̃(ỹt0−1, ξt0−1), (A.32)

where

ψ̃(ỹt−1, ξt−1) ≡ [0 0 −I ]M−1G

⎡
⎢⎢⎣

ỹt−1
ht−1

Γ ξt−1
ξt−1

⎤
⎥⎥⎦ . (A.33)

Proof. If we assume the initial pre-commitment, we can then define the optimal dynamics from
a timeless perspective as functions solely of the initial conditions (ỹt0−1, ξt0−1) and the evolution
of the exogenous states {ξt } from period t0 onward. Substituting (A.14) for the pre-commitment
h̃t+1 in the solution (A.12) for the optimal choice of ỹt+1, we observe that under the solution to
the recursive policy problem (and hence under the solution to the original problem as well), ỹt+1
is a linear function of ỹt , ξt+1, and ξt , for each t � t0. This solution together with the process
(40) for the exogenous disturbances imply a law of motion of the form (57) for the extended state
vector ȳt defined in the text.

If we assume an initial pre-commitment (A.31), it also follows from (A.12) that

ψ̃t = [0 0 −I ]M−1Gẑt (A.34)

is the Lagrange multiplier associated with the pre-commitment each period in the recursive prob-
lem. Moreover, because the only constraint on the way in which h̃t+1(ξt+1) can be chosen for

56 Here it should be recalled that ht−1 is a linear function of ξt−1, defined in (31).
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the following period is given by the expected-value constraint (45), the first-order conditions for
optimal policy imply that ψ̃t = Et−1ψ̃t for each t � t0 + 1,57 and hence that

ψ̃t = [0 0 −I ]M−1GEt−1ẑt

= ψ̃(ỹt−1, ξt−1)

where the function ψ̃(ỹt−1, ξt−1) is defined as in (A.33).
Consistency of this result with (A.34) implies that the right-hand side of (A.34) must be

equivalent to ψ̃(ỹt−1, ξt−1); that is, that the coefficients multiplying ỹt−1, ξt , and ξt−1 must be
the same in both expressions. But since (A.34) must hold at t = t0 as well, in the case of an initial
pre-commitment (A.31), and not only for t � t0 +1, it follows that under such a pre-commitment,

ψ̃t = ψ̃(ỹt−1, ξt−1)

for all t � t0.
In the case that t = t0, the multiplier ψ̃t0 associated with the initial pre-commitment is the one

that is denoted β−1ϕ̃t0−1 in (A.2) and in (55). From this, (A.32) is immediately established. �
A.6. Lemma 5

Lemma 5. Suppose that under optimal policy, the extended state vector yt consists entirely of
components that are either (i) stationary, or (ii) pure random walks. Suppose also that the class
of policy rules R is such that each rule in the class implies convergence to the same long-run
values of the state variables as under optimal policy, in the absence of stochastic disturbances,
so that the initial value of the trend component ytr

t0−1 is the same regardless of the rule r that is
considered. Then for any rule r ∈ R, the objective

Ωr

(
ytr

t0−1

) ≡ Eμ

[
W̄r (yt0−1)

]
, (A.35)

can be decomposed into two parts,

Ωr

(
ytr

t0−1

) = Ω1(ytr
t0−1

) + Ω2
r , (A.36)

where the first component is the same for all rules in this class, while the second component is
independent of the initial condition ytr

t0−1.

Proof. We restrict attention to a class of rules R with the property that each rule in the class
implies convergence to the same long-run values of the state variables as under optimal policy,
in the absence of stochastic disturbances. Because we analyze the dynamics under a given policy
using a linearized version of the structural relations, certainty-equivalence obtains, and it follows
that the limiting behavior (as T → ∞) of the long-run forecast Et0[yT] must also be the same
under any rule r ∈ R, given the initial conditions yt0−1. Thus given these initial conditions, the
decomposition of the initial extended state vector into components ytr

t0−1 and ycyc
t0−1 is the same

under any rule r ∈ R.
Let us consider the decomposition

ỹt = ȳt + ŷt ,

57 In fact, one can show that ψ̃t = β−1ϕ̃t−1 for each t � t0 + 1. This follows from differentiation of the value function

V Q(zt+1) with respect to h̃t+1 using the envelope theorem, and comparison of the result with (A.13).



P. Benigno, M. Woodford / Journal of Economic Theory 147 (2012) 1–42 39
where {ȳt } is the deterministic sequence

ȳt ≡ Et0−1ỹt

and ŷt is the component of ỹt that is unforecastable as of date t0 − 1. Then if we evaluate

W̄ (ỹ;yt0−1) ≡ Et0−1W(ỹ; ξt0,yt0−1),

where W is the quadratic form defined in (60), under the evolution implied by any rule r , we find
that

W̄ (ỹ;yt0−1) = W̄ (ȳ;yt0−1) + W̄ (ŷ;yt0−1). (A.37)

Here all the cross terms in the quadratic form have conditional expectation zero because ȳ is
deterministic while ŷ is unforecastable.

Moreover, under any rule r , the value of ŷt is a linear function of the sequence of unexpected
shocks between periods t0 and t , that is independent of the initial state. (This independence
follows from the linearity of the law of motion (61), under the linear approximation that we use
to solve for the equilibrium dynamics under a given policy rule.) Hence the second term on the
right-hand side of (A.37),58

W̄ (ŷ;yt0−1) = Et0−1V
Q
t0

(ŷ),

is independent of the initial state yt0−1 as well. Let W̄ 2
r denote the value of this expression

associated with a given rule r .
Instead, the value of ȳt will be a linear function of yt0−1, again as a result of the linearity of

(61). And in our LQ problem with a self-consistent initial pre-commitment, the function (59) is
linear as well. It follows that the first term on the right-hand side of (A.37) is a quadratic function
of yt0−1,

W̄ (ȳ;yt0−1) = y′
t0−1Ξryt0−1,

where the subscript r indicates that the matrix of coefficients Ξr can depend on the policy rule
that is chosen. Then substituting ytr

t0−1 + ycyc
t0−1 for yt0−1 in the above expression, and integrat-

ing over possible initial values of the cyclical component, for a given initial value of the trend
component, we observe that

Eμ

[
W̄ (ȳ;yt0−1)

] = ytr ′
t0−1Ξrytr

t0−1 + Eμ

[
ycyc ′Ξrycyc], (A.38)

using the fact that Eμ[ycyc] = 0.
Finally, we observe that under any rule r , the linearity of the law of motion (61) implies that

conditional forecasts of the evolution of the endogenous variables take the form

Et0−1yT = ytr
t0−1 + BT +1−t0 ycyc

t0−1,

where the sequence of matrices {Bj } may depend on the rule r , but the first term on the right-hand
side is the same for all rules in the class R. Using this solution for the sequence ȳ to evaluate
W̄ (ȳ;yt0−1), we find that the first term in (A.38) must be a quadratic function of ytr

t0−1 that is

the same for all rules r , that can be denoted ytr ′
t0−1Ξ̄ytr

t0−1. Thus if we integrate (A.37) over the
invariant distribution μ, we obtain

58 Here the expected value of the second term on the right-hand side of (60) vanishes because of the unforecastability
of ŷt .
0
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Eμ

[
W̄r(yt0−1)

] = ytr ′
t0−1Ξ̄ytr

t0−1 + Eμ

[
ycyc ′Ξrycyc] + W̄ 2

r ,

which is precisely a decomposition of the asserted form (A.36). This proves that the criterion
(A.35) establishes the same ranking of alternative rules, regardless of the initial condition. �
A.7. Computing the invariant measure μ

We need to know the invariant distribution μ over possible initial conditions under optimal
policy, in order to compute the proposed welfare criterion (65). Because W̄r(·) is a quadratic
function, we only need to compute the unconditional mean and variance-covariance matrix of
ycyc

t under optimal policy.
Let us recall from (57)–(58) that the optimal dynamics imply a law of motion

yt+1 = Φ̄yt + Ψ̄ εt+1 (A.39)

for the extended state vector

yt ≡
[

ỹt

ξt

]
.

Under the law of motion (A.39) implied by a pre-commitment of the form (A.14), the trend
component of the extended state vector ȳt is given by ȳtr

t = Π ȳt , where Π is the matrix59

Π ≡ lim
j→∞ Φ̄j ,

and the cyclical component is correspondingly given by ȳcyc
t = [I − Π ]ȳt . It then follows that

the law of motion for the cyclical component is

ȳcyc
t+1 = Φ̄ȳcyc

t + [I − Π ]Ψ̄ εt+1. (A.40)

We note furthermore that (A.40) describes a jointly stationary set of processes, since the matrix Φ̄

is stable on the subspace of vectors v of the form v = [I − Π ]ȳ for some vector ȳ.60 Hence there
exist a well-defined vector of unconditional means E and an unconditional variance-covariance
matrix V. The unconditional means are all zero, while the matrix V is given by the solution to
the linear equation system

V = Φ̄VΦ̄ ′ + [I − Π ]Ψ̄ ΣΨ̄ ′[I − Π ′].
In the case of some policy rules, it may be necessary to include additional lags of ỹt or ξt

in the extended state vector yt , in order for the equilibrium dynamics under the rule r to have a
representation of the form (61). However, in this case, the additional elements of ycyc

t will all be
lags of elements of the vector considered above. Hence the law of motion (A.40) can be used to
derive the relevant unconditional moments in this case as well (though we omit the algebra).

59 Under the assumption (made in the text) that the extended state vector is difference-stationary, this limit must be well
defined.
60 When restricted to this subspace, the operator Φ̄ has eigenvalues consisting of those eigenvalues of Φ̄ that are less
than one in modulus; these are in turn a subset of the eigenvalues of Φ that are less than one in modulus (some zero
eigenvalues have been dropped).
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