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INCENTIVE AND SELECTION EFFECTS OF
MEDIGAP INSURANCE ON INPATIENT CARE

VALENTINO DARDANONI AND PAOLO LI DONNI

Abstract. The Medicare program, which provides insurance coverage to the elderly in the

United States, does not protect them fully against high out-of-pocket costs. For this reason

private supplementary insurance, named Medigap, has been available to cover Medicare

gaps. This paper studies how Medigap affects the utilization of inpatient care, separating

the incentive and selection effects of supplementary insurance. For this purpose, we use

two alternative estimation methods: a standard recursive bivariate probit and a discrete

multivariate finite mixture model. We find that estimated incentive effects are modest and

quite similar across models. On the other hand, there seems to be very significant selection

when one conditions only on variables used by Medigap insurers, with the presence of both

adversely and advantageously selected individuals, stemming from the multidimensional

nature of residual heterogeneity.

JEL Classification Numbers C52, D82, G22, I10.

Keywords Health Insurance; Asymmetric Information; Medigap; Health Care Demand; Fi-

nite Mixture Models.

1. Introduction

Medicare is a public program which provides health insurance for the elderly (aged 65

or older) and some disabled non elderly. As many other standard health insurance plans,

Medicare relies deeply on mechanisms such as coinsurance, deductibles and copayments

to control health care expenditure for many covered services. This insurance structure

leaves beneficiaries at risk for large out-of-pocket expenses. As a result, many beneficiaries

purchase voluntary supplemental private policies, such as Medigap, to fill Medicare’s gaps

in non-covered health care services and limit cost sharing.

Medicare cost-sharing structure reflects the belief that health insurance, by lowering the

price per services, gives individuals’ an incentive to increase the demand for health care.

Although the presence of an incentive effect - usually called ex-post moral hazard - is very

well known by the theoretical literature on contract theory (Arrow[4], Pauly [50] and Zweifel

and Manning [59]), its empirical relevance is still debated in the literature see Abbring et

al. [1]-[2], Buchmuller et al. [7], Cardon and Hendel [11], Cohen [16], Schellhorn [54], and

Cohen and Spiegelman [17] for a review. A major difficulty in estimating the presence of
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moral hazard in Medigap insurance is the existence of self-selection, since individuals who

expect high health care costs may choose a more generous coverage and then ex-post purchase

more services.

In an important body of literature following the seminal paper by Chiappori and Salanié

[15], the presence of asymmetric information in insurance markets is appraised using the so

called “positive correlation” (PC) test (see two recent reviews by Cohen and Spiegelman [17]

and Einav et al. [27]), which rejects the null hypothesis of no asymmetric information when

there is a positive correlation between insurance purchases and risk occurrence, conditional

on the individual characteristics used by insurers to price contracts. The PC test, however,

cannot disentangle incentive and selection effects, since finding a positive insurance coverage-

risk occurrence correlation in the data does not provide conclusive evidence whether there

is adverse selection into insurance contracts, moral hazard, or both.

As discussed in the review by Cohen and Spiegelman [17], some empirical studies have

found evidence of adverse selection in various insurance markets, including automobile, an-

nuities, life, reverse mortgages and crop. Adverse selection has also been found in very recent

applications to health insurance such as Olivella and Vera-Hernandez [49]), Carlin and Town

[12]), and Lustig [45]. However, contrary to the theoretical prediction of the standard ad-

verse selection insurance model, a number of empirical studies of insurance markets have

found negative risk-coverage correlation, a phenomenon which has been named advantageous

selection.1 In a seminal paper, Finkelstein and McGarry [31] study the US long-term care in-

surance market and find negative correlation between insurance purchase and nursing home

use, and argue this is due to the existence of two conflicting sources of private information,

namely individuals’ actual risk and risk attitudes. Negative risk-coverage correlation has also

been found in a recent paper by Fang, Keane and Silverman [30], who show that individuals

with Medigap insurance tend to spend less on medical care. This is explained again by the

existence of multiple dimensions of private information, with cognitive ability being one of

the key sources of advantageous selection.2

There are different ways to distinguish empirically selection from incentive effects. A strat-

egy is to use experimental data such as the RAND Health Insurance Experiment (RHIE),

where to identify the incentive effect controlling for self-selection individuals were randomly

assigned to plans with different coverages so that insurance choice becomes exogenous. An-

other strategy is to exploit (quasi) natural experiments where insurance choice or the in-

centive structure has been modified exogenously (Chiappori et al. [13] and Eichner [24]).

Einav, Finkelstein and Cullen [26] recently lay down a novel framework for analyzing private

information in insurance markets by means of a model which estimates the demand and cost

1Alternatively, some authors refer to this situation as favorable or propitious selection. See Hemenway [36]
for an early discussion of the relevance of advantageous selection in insurance markets.
2The possibility that multidimensional private information may invalidate standard insurance model predic-
tions has also been the subject of recent theoretical work (see e.g. Chiappori et al. [14], de Meza and Webb
[20], Smart [55], Villeneuve [56], Wambach [57]).
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curves for the insurance contract. This framework allows not only a simple test for the pres-

ence and nature of selection effects based on the estimated cost curves (MC test), but also

provides a tool to evaluate the policy implications of private information. While the Einav

and Finkelstein model is an excellent example of the integration of economic theory and

empirical investigation, it requires access to insurance administrative data with information

on premiums and claim-level expenditures, and, crucially, exogenous identifying variation in

prices.

In non-experimental settings most studies use large observational data sets which include

information on health care use and insurance status. Researchers typically either estimate

health care utilization with a probit (Hurd and McGarry [40]) or two-parts (Ettner [29],

Khandker and McCormack [44]) model using health indicators to mitigate the presence

of unobserved heterogeneity in health status, or estimate insurance coverage and claims

considering selection on observable and unobservable factors, by means of a bivariate probit

model with a recursive structure between insurance and health care utilization (Holly, et al.

[37], Jones et al. [41], Buchmuller et al. [7]).

The aim of this paper is to estimate incentive and selection effects of Medigap insurance

on inpatient care, by employing two different empirical strategies. We first lay down a simple

theoretical framework for interpreting selection and incentive effects with observational data

on claims and insurance purchase. We then discuss the use of a standard recursive bivariate

probit for estimating incentive and selection effect, and in alternative we set a multivariate

discrete finite mixture model which may be more appropriate for detecting selection effects.

We use data from the Health and Retirement Survey (HRS), which contains information

on a rich set of variables concerning health status and individual preferences for risk, and

use Medigap purchase and hospital admissions as binary dependent variables representing

insurance purchase and health care utilization.

The paper is organized as follows. In section 2 and 3 we model and estimate the incentive

and selection effects. Section 4 describes the data. Sections 5 and 6 report estimation results

and some concluding remarks respectively.

2. Modeling incentive and selection effects

Suppose we observe a binary variable I ∈ {0, 1} which takes value 1 if an individual has

bought a supplemental medical insurance contract, and a binary variable L ∈ {0, 1} which

takes value 1 if the individual incurs a given medical care loss. In general, I and L need not

be binary variables, but frequently the researcher can only observe whether the individual

occurred in the risk or whether she is covered by an insurance plan. In our application,

L denotes having used hospital care in a given time period, and I having bought Medigap

insurance.3

3Appendix C provides more details on the Medicare and Medigap health insurance system.
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Standard economic theory predicts that risk occurrence and insurance coverage are posi-

tively correlated and this relationship depends on two sources (Rothschild and Stiglitz [53]

and Arnott and Stiglitz [3]). On the one hand when individuals have private information

about their actual risk, the insurance contract will be adversely selected, with high risk indi-

viduals choosing higher insurance coverage. On the other hand, the insurance contract may

give the incentive to increase risk occurrence by increasing the probability to incur in the risk

(ex-ante moral hazard) or by increasing utilization (ex post moral hazard). Both sources of

asymmetric information (adverse selection and moral hazard) will cause the same observed

positive correlation in the data. The predicted positive correlation between risk and cover-

age has inspired the seminal contribution by Chiappori and Salanié [15], who considered the

testable implications of asymmetric information in insurance markets, and proposed the so

called Positive Correlation (PC) test. The PC test rejects the null of absence of private in-

formation in a given insurance market when, conditional on consumers’ characteristics used

by insurance companies to price contracts, individuals with more coverage experience more

of the insured risk.

Let x denote the set of variables used by insurance companies to price a given insurance

contract. Conditioning on x is crucial to properly account for asymmetric information, since

without conditioning on x it would not be possible to know whether a correlation arises

because individuals which are offered the same contract have different risk or rather because

they face contracts at different prices (Chiappori and Salanié [15], Einav and Finkelstein

[25]). In practice, in many insurance markets there are observable characteristics which

cannot be used either by regulatory laws or political economy concerns. For example as

mentioned in Appendix C, in the Medigap market insurance companies can price contracts

mostly on the applicant’s age and gender. Thus, a natural choice is to use as conditioning

variables those which are effectively used by insurers to price contracts so as to look at how

people behave conditional on the menu of contracts they actually face, and in this sense

unobserved heterogeneity is implicitly captured by whatever affects L and I but is not used

by insurance companies to price contracts.

To clarify the nature of incentive and selection effects in this contests, let R ∈ {0, 1}
denote a private information variable describing risk types, so that R = 0 denotes low risks

and R = 1 denotes high risks. The question is how the joint distribution of the observables

(L, I), conditional on x, is affected by incentive and selection effects in the presence of the

unobservable R.

2.1. Incentive and selection effects. For simplicity, assume initially that the analysis is

conditional on a given value of the observables x used by the insurance company to price

contracts.4

4In this section when not explicitly stated all probabilities should be interpreted as conditional on a given
value of x, which we omit for simplicity.
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To focus first on selection, let us initially assume that there is no moral hazard:

Assumption 1. P (L = 1 | R, I = 0) = P (L = 1 | R, I = 1).

The classic RS definition of adverse selection, that higher risk individuals (i.e. those with

higher loss probability) are more likely to buy insurance, implies that insurance purchase

and loss probabilities are comonotone:

Definition 1. (Adverse Selection 1): The insurance contract I is adversely selected if(
P (L = 1 | R = 1)− P (L = 1 | R = 0)

)
·
(
P (I = 1 | R = 1)− P (I = 1 | R = 0)

)
> 0.

An alternative definition of adverse selection in this context can be derived by comparing

the loss and insurance purchase probabilities for the two risk types to the average purchase

and loss and purchase probabilities, denoted P̄L and P̄I ;
5 the insurance contract is adversely

selected by type R = i ∈ {0, 1} if(
P (L = 1 | R = i)− P̄L

)
·
(
P (I = 1 | R = i)− P̄I

)
> 0.

Definition 2. (Adverse Selection 2): The insurance contract I is adversely selected if it is

adversely selected by types R = 0, 1.

Definitions 1 and 2 are not directly testable since they involve the unobserved variable R.

Consider then the following two testable conditions:

Definition 3. (Positive Correlation Test 1):

P (L = 1 | I = 1) > P (L = 1 | I = 0),

and

Definition 4. (Positive Correlation Test 2):

P (L = 1, I = 1) · P (L = 0, I = 0)

P (L = 1, I = 0) · P (L = 0, I = 1)
> 1.

Definitions 3 and 4 are two ways to implement the PC test in this context. Definition 3 says

that the expected loss for consumers who chose to insure is greater than for consumers who

did not. Definition 4 says that the odds ratio between L and I should be greater than one,

that is, L and I should be positively correlated, and goes back to the original implementation

of Chiappori and Salanié [15].6 The following result, which is proven in Appendix A, clarifies

the relationship between the four definitions:

Proposition 1. Definitions 1–4 are equivalent under Assumption 1.

5That is, P̄L = P (R = 0)P (L = 1 | R = 0) + P (R = 1)P (L = 1 | R = 1) and P̄I = P (R = 0)P (I = 1 | R =
0) + P (R = 1)P (I = 1 | R = 1).
6Both alternative definitions of the PC test are discussed in the literature; for example, the review of Einav,
Finkelstein and Levin [27] privileges the first, while the review of Cohen and Spiegelman [17] considers both.
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The proposition shows that without incentive effect, adverse selection, which involves the

unobservable R, is equivalent to the positive correlation property which involves only ob-

servables. For advantageous selection one simply reverses the inequalities above.

How does the presence of moral hazard affect testing for selection effects? Under moral

hazard, insured individuals have a higher expected cost conditional on their risk type, so we

can model (I, L,R) as

P (I = 1 | R = r) = F
(
aI(r)

)
, r ∈ {0, 1},

P (L = 1 | R = r, I = i) = F
(
aL(r) + bI

)
, r ∈ {0, 1}, i ∈ {0, 1}

(1)

where F denotes a chosen link function, such as probit or logit. In words, b represents the

ex-post increase in expected costs (in the chosen probit or logit scale) which is incurred after

individuals have selected the insurance contract. In particular, the incentive effect captured

by b is net of the moral hazard induced by the selection of a contract by different types,

who anticipate that their behavior will change after buying the contract (e.g. they adapt

to the insurance coverage structure).7 This anticipated effect is naturally included in the

selection effect and is incorporated in the type-specific constants a(r), while the incentive

effect b can be interpreted as the residual unanticipated effect of buying insurance on the

loss occurrence.

Under moral hazard (i.e. when Assumption 1 does not hold), the equivalence of the PC

testing procedures (Definitions 3-4) and the selection definitions (Definitions 1-2) breaks

down. How do these definitions change in model (1) which incorporates moral hazard?

In Definition 1 of adverse selection, since we are interested in the expected cost of the

individuals who buy the contract, replace the marginal loss probability with the insureds’

loss probability:(
P (L = 1 | R = r, I = 1)−P (L = 1 | R = 0, I = 1)

)
·
(
P (I = 1 | R = 1)−P (I = 1 | R = 0)

)
> 0.

It thus follows that under model (1), which takes into account the presence of moral hazard,

the contract is adversely (advantageously) selected when:(
aL(R = 1)− aL(R = 0)

)
·
(
aI(R = 1)− aI(R = 0)

)
> (<)0. (2)

In practice, rewrite model (1) (including now for completeness the pricing variables x) as

I = 1(aI(R = r) + x
′
βI + ξI > 0),

L = 1(aL(R = r) + x
′
βL + bI + ξL > 0)

(3)

7Recent studies refer to this effect as selection on moral hazard and interpret it as the possibility that
individuals select into insurance coverage by anticipating their behavioral response to the coverage structure
(see Einav et al. [28] who showed that selection on moral hazard can be an empirically relevant component
of moral hazard.)
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with 1(.) denoting the indicator function, and ξI and ξL being idiosyncratic errors with

continuous c.d.f F . In model (3), aI(r) and aL(r) can be used to evaluate selection according

to (2), while b estimates the incentive effect.

3. The estimation of the incentive and selection effects

3.1. The recursive bivariate probit model. A standard approach to estimate model (3)

is by using the recursive binary probit model

I = 1(x
′
βI + ϵI > 0),

L = 1(x
′
βL + bI + ϵL > 0)

(4)

with ϵI and ϵL being standard normal errors with correlation ρ, which captures unobserved

selection. Comparing models (3) and (4), we see that in the standard recursive bivariate

probit the correlation in ϵI and ϵL depends on the underlying behavior of the unobserved

types, so that the null of the absence of selection amounts to testing ρ = 0, with a positive

(negative) ρ indicating adverse (advantageous) selection. The null of no incentive effect can

be tested by imposing b = 0.

In our application, I is a binary variable indicating purchase of supplementary Medigap

insurance in 2006 and L is a binary variable indication use of hospital services in 2006. Since

Medigap insurance pricing is almost entirely based only on the applicant’s age and gender,

in our application x denotes gender and a third degree polynomial in age, with interactions.

3.1.1. An extended recursive bivariate probit model. Estimating (4) with a recursive bivariate

probit to disentangle incentive and selection effects has some theoretical and econometric

difficulties. From an econometric point of view, identification of model (4) relying on the

normality assumption, though theoretically feasible as long as data on x are of full rank (see

Wilde [58]), it is quite fragile in the absence of exclusion restrictions. A common strategy to

check the robustness of the recursive bivariate probit estimates is to compare estimates to

those obtained by performing separate probit regressions for the two response variables. It

is not uncommon, however, that these differ substantially, even in the case when a standard

LR test does not reject the null of ρ = 0. When this happens, it can be taken as evidence of

potential identification problems in the bivariate probit model.

In addition to these econometric issues, from the theoretical perspective the bivariate

normality assumption can be severely limiting when residual heterogeneity is actually mul-

tidimensional. Following Finkelstein and McGarry [31] suppose for example there are two

conflicting sources of private information, say individual’s actual risk R and risk aversion

A. For a simple example, suppose the probit errors can be written as ϵI = A + ηI and

ϵL = R + ηL, with ηI , ηL uncorrelated idiosyncratic errors, so that risk aversion affects in-

surance purchase and risk type affects actual loss. If R and A are independent, there is

zero residual correlation between I and L (ρ = 0), which is interpreted as evidence of no

selection. However, the contract is, for example, adversely selected by individuals with high
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risk aversion A and high risk R since, compared to the population, they are both more likely

to buy insurance and to have a loss; and at the same time the contract is advantageously

selected by individuals with high A and low R since they tend to buy the contract but not

to incur the loss.8

A natural strategy for better identification of the model is to extend model (4) by adding

a vector of additional controls which affect insurance purchase and medical care use but are

not used by insurance companies to price contracts (i.e., do not belong to x). In practice,

regulatory constraint and political economy considerations often restrict quite considerably

the set x, so there are many observable variables which are good candidates for explaining I

and L. Let w denote a set of demographic and socio-economic variables which are typically

included in medical care use applications, and z a set of observable proxies for the unobserv-

able characteristics such as risk tolerance, attitude towards medical care use and insurance

purchase, actual (health) riskiness and so on. Examples of such proxies in this context are

cognitive abilities, occupational risk, risk reducing or increasing behavior such as preventive

care, seat belt use, smoking and drinking, past insurance choices and claims, and objective

and subjective health status indicators. In our Medigap application, w contains education

and income; z is made of four binary variables (namely, supplementary insurance purchase

and hospital use in 2002 and 2004), and two discrete ordered health status variables.

An extended recursive bivariate probit is then

I = 1(x
′
βI +w

′
γI + z

′
δI + θI > 0),

L = 1(x
′
βL +w

′
γL + z

′
δL + bI + θL > 0)

(5)

where sharper parameters identifiability can be obtained with appropriate inclusion/exclusion

restrictions setting to zero appropriate elements of w and/or z in the two equations.9 Model

(5) can be considered as the standard applied econometric tool for studying health care

insurance markets (see e.g. Ettner [29], Holly et al. [37], Buchmuller et al. [7], Jones et

al. [41]). By appropriate inclusion/exclusion restriction, it can allow a much more robust

parameter identification compared to model (4) above. However, it still suffers from some

limitations. Compared with the simple model (4) above, the extended model makes de-

tection and interpretation of selection effects problematic, since the residual heterogeneity

which affects claims and insurance coverage given current pricing x does not have anymore

a clear and direct interpretation.

8When there are more than 2 types, the equivalence of the two selection definitions 1 and 2 breaks down;
to be precise, here we discuss local selection by type by comparing claims and coverages to the population
averages as in Definition 2.
9Using lagged variables to proxy unobserved heterogeneity is a common strategy in this framework (see
e.g. Abbring et al. [2], Jones et al. [41]). It is well known that lagged dependent variables may affect the
consistency of parameter estimates. In a very recent paper, de Jong and Woutersen [42] show consistency of
probit estimates whenever the error distribution conditional on exogenous covariates and lagged regressors
is standard normal. As robustness check, we estimate model (5) without lags to see whether estimated
incentive effect b changes significantly.
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Summing up, while a carefully set model (5) may in principle be capable of accurate

estimation of the incentive effect, it may difficult to use the model for the understanding of

selection effects, especially under multidimensional private information. Thus, the objective

of the extended model is not to estimate selection, because one is including variables that

are not used for pricing; on the other hand, the estimate of the incentive effect in (4) and

(5) should be similar if both models properly account for selection.

3.2. A discrete multivariate finite mixture model. An alternative procedure to esti-

mate model (3) allowing a clear understanding of selection effects under multidimensional

private information is by using a latent class model which identifies a finite number of

“types”, which differ with respect to their attitude to buy insurance and use medical care.

Suppose there is a set of residual heterogeneity variables which affect insurance choice

and outcomes after conditioning on x. If we assume that such variables are discrete (a

fairly innocuous assumption since any continuous variable can be approximated arbitrarily

well by a discrete one), we can cross-classify them into a single discrete variable which

identifies the set of heterogeneous “types”. Let then U be a random variable with support in

{1, 2, . . . ,m} which cross-classifies all relevant unobserved heterogeneity. Clearly since the

label of the types is arbitrary, no order is assumed on U : for example, with two binary private

information variables capturing risk type and risk preference, as shown by Smart [55] there

is no ordering of the four types since single crossing of the indifference curves fails to hold. In

this setting, different types are simply meant to capture heterogeneous insurance and claim

behaviours after conditioning on x, without any assumption on the underlying structure;

what matters here is that a sufficient number of types is used to capture all heterogeneity.

To analyze selection and incentive effects of the insurance contract we then need to esti-

mate (cfr. model (1))

I = 1(
∑m

u=1 αI(u)U(u) + x
′
βI + ηI > 0),

L = 1(
∑m

u=1 αL(u)U(u) + x
′
βL + bI + ηL > 0)

(6)

where U(u), u = 1, . . . ,m denotes a set of m mutually exclusive dummy variables defining

types’ membership, so that the α coefficients can be interpreted as random intercepts with a

nonparametric discrete specification, like in Heckman and Singer [35]. Since no underlying

structure is imposed on U , the α’s can capture in a unrestrictive way any variable which

affects medical care use and insurance demand after conditioning on x, and thus take into

account the potential multidimensionality of residual heterogeneity. (ηI , ηL) can be seen as

idiosyncratic errors, which are uncorrelated since, in the spirit of finite mixture models, U

makes I and L conditional independent. In this sense, comparing (6) and (4), the finite

mixture model decomposes residual heterogeneity by “uncovering” the deep types which

systematically affect claims and coverage.
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Model (6) is completed by the types membership probabilities. To force the types proba-

bilities to lie between zero and one and sum to one, it is convenient use a multinomial logit

parameterization:

P (U = u) =
exp(αU(u))∑m
u=1 exp(αU(u))

, αU(m) = 0, u = 1 . . . ,m. (7)

Notice that the m− 1 logit parameters αT are simply reparametrizations of the membership

probabilities, and do not impose any parametric restriction on the distribution of U .

Within model (6)-(7) there is an incentive effect when b > 0. Since the labeling of the

types is arbitrary, selection effects can be identified by first relabeling the types according to

their willingness to buy insurance αI(1) ≥ · · · ≥ αI(m), and then if αL(1) ≥ · · · ≥ αL(1) the

market is adversely selected, while if αL(1) ≤ · · · ≤ αL(1) there is advantageous selection. If,

on the other hand, the αI ’s and αL’s are not comonotone, then locally there are types which

adversely/advantageously select the contract.10 Model (6)-(7) can be seen as an instance of a

semiparametric finite mixture model, where the parameters αI ’s and αL’s can be interpreted

as random intercepts with a nonparametric discrete specification, like in Heckman and Singer

[35], and the parametric part is given by the choice of the errors’ distribution in (6) (we use

the standard logistic distribution). Well known applications of this framework are Deb and

Trivedi ([21] and [22]) in health economics and Cameron and Heckman [10] in education.

The semiparametric finite mixture model is a well known and well established tool to

capture residual heterogeneity. However, in our bivariate binary context, it could be limited

in the identification of multiple unobserved types. In fact, conditionally on x, we observe

only two binary variables (that is, 3 parameters), while even with only two mixture types

there are 5 parameters to estimate. Thus, it must rely on covariates’ variation to achieve

parameter identification, which in our Medigap application are limited to age and gender.

In practice, model (6)-(7) typically achieves identification of very few unobserved types; in

many applications only two types are identified.

To achieve shaper identification of residual heterogeneity, in spirit with Finkelstein and

Poterba [32], Finkelstein and McGarry [31] and Cutler, Finkelstein and McGarry [19], we

may obtain identifying variation by using a set of observable variables z unused by insurers

for pricing but acting as indicators of U (that is, observable manifestations of the unobserved

heterogeneity which affects insurance choice and medical care use). Thus, we may set an

auxiliary system of equations, which is estimated jointly with the main equations (6) and

the membership probability equation (7) to help identification of the heterogeneous types.

The econometric model we use is based on the decomposition of a joint multivariate dis-

tribution of a set of discrete variables into a finite mixture of conditionally independent

10This testing procedure uses the same motivation of Einav et al. [26] MC test, since both tests are based
on the comonotonicity of willingness to pay and marginal cost. The MC test rejects the hypothesis of no
selection if the MC curve is constant, whereas the selection is adverse (advantageous) if the MC curve is
increasing (decreasing) in price.
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univariate distributions, and thus requires that these indicators are discrete ordered vari-

ables.11 Suppose we have k auxiliary variables, with zj ∈ {0, . . . , lj}, say, for j = 1, . . . , k.

In our application, we use past insurance choice and hospital use, who are actually binary

variables (so that lj is actually equal to 1), and health status indicators which take 5 ordered

values. Appendix B discusses how the auxiliary system may help identification of latent

parameters by increasing the number of observable ones; the key intuition is that adding

observable responses zj’s increases observable parameters at a much slower rate that latent

ones.

The auxiliary system of equations can then be written as a standard ordered regression

model

z∗j =
∑m

u=1
αzj(u)U(u) + ϵj, j = 1, . . . , k (8)

where zj = l ↔ δj,l−1 ≤ z∗j ≤ δj,l, for l = 1, . . . lj and j = 1, . . . , k, and ϵ1, . . . , ϵk are

independent idiosyncratic standard logistic errors. When zj is binary, equation (8) estimates

m conditional probabilities, while when zj takes more than two values there are m random

heterogeneity intercepts and lj − 1 cut points.

The discrete multivariate finite mixture model is defined by the main equations (6), the

membership probability equation (7), and the auxiliary equations (8). It can be seen as an in-

stance of a discrete multivariate MIMIC (Joreskog and Goldberger[43]) model (see Goodman

[34] for the seminal paper on finite mixture models with multivariate binary responses, and

Huang and Bandeen-Roche [39] for a recent general treatment). Differently to the MIMIC

model, the residual heterogeneity U is not a continuous univariate variable on the real line,

but an unstructured nonparametric variable.

3.3. Variations in the model. For the purposes of detecting selection and incentive ef-

fects, in model (6-7-8) we are mainly interested in estimating the parameters of the two

main equations 6. However, alternative specifications of the membership probabilities in

equation (7) and of the auxiliary equations in equation (8), by identifying different sets of

heterogenous types U , may of course influence parameter estimates in the main equation (6).

For example, controlling for education in the auxiliary and in the membership probability

equations helps identifying types according to their education-adjusted (i.e. relative) health

condition, propensity to insure, risk tolerance etc. Thus, for robustness, it is important to

expand equations 7 and 8 to take into account further appropriate controls.

In our application, after estimating the simplest model (6-7-8), we also estimate a more

complete model where: i) the multinomial membership probabilities and all the indicators

zj depend on x and on demographic w; ii) the two past hospital use indicators in addition

depend also on insurance purchase. Additional models which selectively add controls to

different components of 7 and 8 may be also estimated for robustness.

11There are various different models with a discrete latent variable and continuous indicators which impose
different distributional assumptions, see e.g. Bartholomew and Knott [5]
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3.4. Estimation of the finite mixture models. Estimation of the multivariate finite

mixture models can be obtained by the EM algorithm, which is the standard approach for

maximum likelihood estimation of finite mixture models, and has been shown (Dempster et

al. [23]) to converge to the maximum of the true likelihood. A detailed discussion of the EM

algorithm in a system of non linear structural equations with latent classes can be found in

Bergsma et al. [6].12

It is well known that the EM algorithm may converge even if the model is not identified,

which is a crucial issue for finite mixture models. Conditions for parametric identification

are discussed in Theorem 1 of Huang and Bandeen Roche [39]; local identification can be

checked using the the numerical test described by Forcina [33], which consists in checking

that the Jacobian of the transformation between the parameters of the observable responses

and the mixture model parameters is of full rank for a wide range of parameter values.

Preliminary to estimation, we have run this test for all models considered, and they all seem

solidly identified.

Despite the usefulness of finite mixture models to detect underlying residual heterogeneity,

one unresolved issue in their application is how to determine the number of unobserved types

m. The currently preferred approach suggests the use of Schwartz’s Bayesian Information

Criterion (BIC) to guide this choice, which in certain conditions is known to be consistent

and generally helps preventing overparametrization (see McLachlan and Peel [47] for a thor-

ough introduction to finite mixture models and a review of existing criteria for the choice of

the number of types). BIC is calculated from the maximized log-likelihood L by penalizing

parameters’ proliferation, BIC = −2L + υlog(n), where n denotes sample size and υ the

number of parameters; the model with the lowest BIC is preferred.

Finally, it may be worth noticing that, since the number of types m is not predetermined,

formal hypotheses tests performed in finite mixture models are in fact conditional on m,

and pre-testing for the number of types may invalidate distributional results of the test

statistics employed. Of course, while pre-testing is a common problem in most applied

research whenever final estimates are obtained after searching for appropriate specification,

this is an issue which should be kept in mind whenever test results differ significantly when

performed under different values of m.

4. Data and Descriptive Statistics

We use data from the Health and Retirement Study (HRS). Since 1992 the HRS is a

biennial survey targeting elderly Americans over the age of 50 sponsored by the National

Institute on Aging. Although the survey is not conducted on an yearly basis, from 1998 it

provides longitudinal data for an array of information, consistently administrated, on several

different fields such as health and health care utilization, type of insurance coverage. We use

12We are grateful to Antonio Forcina for kindly providing the Matlab code for the EM estimation. Estimation
has been done with a code rewritten in STATA, which is available upon request.
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the 2006 wave as reference point and collect information from the previous two waves (2002

and 2004). Since we study the effect of supplemental insurance (Medigap) on health care in

the Medicare system (see Appendix C for a detailed discussion of this insurance market), we

also exclude those individuals that received additional coverage through a former employer,

spouse or some other government agency. Following Fang et al. [30] we define an individual

as having additional health insurance coverage (Medigap) if she purchased directly health

insurance policy in addition to Medicare.

Since our focus is to disentangle incentive and selection effects at time 2006 for those

individual who deliberately choose to purchase additional coverage, our sample should be

limited only to people who are covered by Medicare, are not covered by additional public

insurance and pay personally the required monthly premium. Therefore we exclude those

who are enrolled in any other public program different from Medicare or that are covered

at year 2006 by Medigap insurance plan provided by own or spouse’s former employer. For

this reason we consider only individuals older than 65 in 2002.

Our sample is composed by 3368 individuals and descriptive statistics are reported in table

4. Supplemental insurance is coded as a binary variable which takes value 1 if respondent

has any (no long-term care) supplemental private Medigap insurance coverage. Almost 42

percent of Medicare beneficiaries in the sample has a supplemental insurance, and 87 percent

of them are continuously covered since they turn 65; thus, most of Medicare beneficiaries,

if they purchase a supplemental insurance coverage they do it as soon as they are enrolled

in Medicare. In addition to these variables we also use information on whether additional

coverage was provided in the previous years by a former employer (iemp04) or by the spouse

(iemps04). These variables have been used in the literature to explain individual choice to

take out voluntary supplemental coverage, and can be considered as appropriate instruments

since they are likely to affect insurance choice but they can be excluded from the inpatient

care equation (Ettner [29] finds that selection into additional coverage can be driven by

employer-provided plans since high-risk (or risk averse) workers may self-select into jobs

that provide better retirement medical benefits).

The HRS offers detailed information on health care consumption. We focus on hospital

staying over the three waves (h02, h04 and h06). Hospital admissions account for 29% of

the Medicare’s total expenditure and it is an important part of the Medicare total expendi-

ture (see CMS, Office of the Actuary, National Health Expenditure Accounts, 2007). These

variables are binary and take value 1 if individual had at least one hospital admission, and 0

otherwise. As explained in details in Appendix C, in the Medigap market insurance compa-

nies are constrained by Federal law to use only age and gender to price contracts. Therefore

as variables used by insurer to predict risk we only use these two measures; specifically we

set as controls a polynomial in age of order three with each term multiplied by gender to

allow for differential pricing of women and man.
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We follow previous studies on health care demand (Cameron et al. [9], Jones et al. [41],

Deb and Trivedi [22]) and insurance choice (Propper [51], Cameron and Trivedi [8]) as guid-

ance for selecting relevant controls. Health conditions have an important influence both on

the decision to subscribe supplementary insurance as well as on the utilization of health care

services. We include in the analysis the number of self-reported doctor diagnosed longstand-

ing or chronical diseases (DIS) - such as high blood pressure, hypertension, cardiovascular

disease, lung disease, kidney conditions, emotional and psychiatric problems - and the index

of Activities of Daily Living (ADL), which measures difficulties in bathing, dressing, eating,

getting in/out of bed and walking across a room. Both indices are defined on a discrete scale

ranging between 0-4, and are averaged out over the two previous years period to capture the

persistency of need status and any preexisting condition which may affect insurance choice

over the time. The last group of variables includes socio-economic characteristics, such as

education and wealth. Education is measured using three dummy variables, while individ-

ual wealth is measured as a continuous variables averaging individual wealth over the three

waves. As reported in Table 4, we find that people with additional insurance tend to have

higher education, to be in the top wealth quartile, and to have a lower score of ADL, though

the average number of diseases does not vary substantially.

5. Results

5.1. Single probit and bivariate probit results. We first estimated a bivariate probit

model using only the age and gender pricing variables as controls. As mentioned in sec-

tion 3.1, parameter identification is a potential issue in the absence of inclusion/exclusion

restrictions. This is evidenced by the conflicting results of the Wald test for the null ρ = 0

(which is rejected with p-value 0.018) and the likelihood ratio test which does not reject

the null with p-value 0.792. As argued by Monfardini and Radice [48], the LR test in gen-

eral performs significantly better compared to the Wald test, but when the two tests give

contrasting results this usually signals identification problems.

We then turn to the extended model in equation (5), which includes additional controls,

which help to identify the incentive effect and act as proxy the underlying unobserved het-

erogeneity. In the extended model, we add in both equations income, education, the two

measures of health status, and lagged values of hospital use and insurance purchase. For

identification, we also exclude some variables from the outcome (hospital) equation which

are correlated with insurance choice but, conditional on exogenous variables, uncorrelated

with hospital utilization. Following Ettner [29], in our specification we have adopted as

instruments past supplemental insurance coverage provided by own (iemp04) or spouse’s

(iemps04) former employer.

Table 6 in Appendix D shows the single equation probits and the recursive bivariate pro-

bit estimated coefficients of insurance choice and inpatient stay for the extended model (5).

Estimated parameters from the recursive bivariate probit model reveal that the probability
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of a hospital staying increases with age and education, but not with wealth, and it is pos-

itively associated with low persistent health status and past inpatient stay. On the other

hand, the probability of enrolling in a supplementary insurance plan significantly increases

with past insurance status, but not with wealth and education. In addition, having better

coverage in the past (provided either individually, spins02 and spins04, or by a former em-

ployer, iemp04 and iemps04) significantly increases the probability of having supplementary

insurance. These results seem to indicate that individuals with a persistent coverage over

the years tend to be more likely to purchase supplemental insurance.

The estimated ρ is equal to -0.232, with a s.e. equal to 0.213. The Wald test statistic and

LR test statistics are equal to 1.09 and 0.35 and are asymptotically distributed as χ2
1. Both

statistics cannot reject the null ρ = 0 with a p-values of 0.294 and 0.555 respectively. Thus,

the two testing procedures in this case give very similar conclusions.

However, as argued in section 3.1.1, the extended model does not allow a direct inter-

pretation in terms of selection effects, because of the inclusion of potentially observable

heterogeneity that cannot be priced by the insurance companies (due to regulation); thus,

the evidence of the absence of residual claims/coverage correlation is not conclusive evidence

of absence of selection.

Finally, to check the sensitivity of the estimated coefficients to the assumed exclusion

restrictions, we estimated the bivariate probit model under different specifications of the

outcome equation, analogously to Buchmuller et al. [7]. Table 5 in Appendix D reports

results on the two parameters of interest, b and ρ, for several versions of the model. Al-

though the point estimates vary slightly depending on which variables are excluded from the

utilization equation, the qualitative results are similar across the different specifications.

A rather puzzling finding is that for all versions of the extended recursive bivariate probit

model the estimated incentive effect is much larger (but with a large standard error) than

the one from the single equation probit model, even if ρ is never statistically significant.

It is plausible to conclude that the errors in the two estimated equations are independent,

and the single equation probit model gives a more reliable estimate of the incentive effect

parameter b. The average marginal effect in the single equation probit is equal to 0.041.13

5.2. Discrete multivariate finite mixture model. We now consider model (6-7-8) using

different specifications for the type membership probabilities and the auxiliary system as

discussed in section 3.3. We initially estimated a large number of different configurations of

controls. Interestingly, the calculated BIC indicates that in all the models we considered,

four types are adequate to represent residual heterogeneity.

13As discussed in footnote 8, for robustness we also estimated model (5) without lags. In the single equation
probit case, without lagged variables the estimated incentive effect b is equal to 0.13 with a s.e. of 0.04; in
the bivariate probit model the estimated b is equal to 0.40 with a s.e. of 1.5. A comparison with Table 6
reveals that lagged dependent variables do not significantly change the general pattern of estimated incentive
effects.
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For reasons of space, we discuss only estimation of the “smallest” and “biggest” models,

and other two models with the lowest BIC values:

• Model 1 is the smallest model as described in equations (6-7-8) with no controls in

the auxiliary and membership probability equations.

• Model 2 is the largest model, which adds age and gender (with interactions), wealth,

and education in all auxiliary equations and in the multinomial membership prob-

ability equation, and in addition adds supplementary insurance in the hospital use

equations h02 and h04.

• Model 3 adds, in model 1, supplementary insurance in the hospital use equations h02

and h04.

• Model 4 adds, in model 1, income and education to the membership probabilities.

Table 1 reports the the maximized log-likelihood L, the Schwartz’s Bayesian Information

Criterion BIC and the number of parameters in the four models for values of m = 2, . . . , 5.

Table 1. Model Selection Criteria for alternative model specifications
Model 1
Number of Latent Classes

m=2 m=3 m=4 m=5
L -19169.19 -18833.72 -18662.63 -18638.94
BIC 38647.02 38049.17 37780.09 37805.81
# of parameters 38 47 56 65

Model 2
Number of Latent Classes

m=2 m=3 m=4 m=5
L -18920.65 -18602.25 -18440.83 -18417.65
BIC 38791.58 38317.23 38156.83 38272.9
# of parameters 117 137 157 177

Model 3
Number of Latent Classes

m=2 m=3 m=4 m=5
L -19166.43 -18833.01 -18658.88 -18657.07
BIC 38657.75 38064.01 37788.84 37858.31
# of parameters 40 49 58 67

Model 4
Number of Latent Classes

m=2 m=3 m=4 m=5
L -19990.16 -18781.05 -18589.38 -18560.93
BIC 40321.45 38008.82 37731.07 37779.74
# of parameters 42 55 68 81

Since, as argued above, in all configurations BIC indicates that four types are adequate to

represent residual heterogeneity, we will comment on incentive and selection effects focusing

on the case m = 4. The results with different number of types (which are not further

discussed, but are available upon request) show that the incentive effect parameter b of

main interest is quite robust to the number of types m = 3, 4, 5, and in all cases there is

substantial residual heterogeneity as described by the α coefficients, which seem to vary very

significantly across types.



INCENTIVE AND SELECTION EFFECTS OF MEDIGAP INSURANCE 17

Table 7 in Appendix D contains parameter estimates for model 4, which is the model with

the lowest value of BIC. In the sample about 33% is of type one, and about 26%, 17%

and 22% are of the remaining three types. Let us first focus on the incentive effect. The

parameter b is positive and highly significant. The average marginal effect is equal to 0.045,

which is slightly greater than the average marginal effect calculated in the single equation

probit model reported in section 5.1 (namely, 0.037 in the simple model and 0.041 in the

extended model). The similarity of estimated marginal effects in the probit and the finite

mixture models may seem surprising since the former does not account satisfactorily for

selection.

The explanation for this puzzle may become clear after the discussion below of the esti-

mated residual heterogeneity, which shows the existence of two unobserved variables which

are cross-classified into four types which pull observed I and L in different directions. This

may imply that, conditional on x, there is not a great deal of marginal association in the

joint distribution of I and L (4).14

Regarding selection effects, rather than looking at the estimated α parameters, it is more

instructive to derive the conditional probabilities of all response variables.15 Table 2 shows

very substantial heterogeneity in hospital admission and Medigap purchase by the four types:

types 3-4 tend to have a much higher probability of hospital admission than types 1-2, while

types 1-4 have a much lower probability of buying Medigap than types 2-3.16 Types 1-2

Table 2. Estimated conditional probabilities

U=1 U=2 U=3 U=4
h06 0.1830 0.1505 0.5566 0.5278
h04 0.1073 0.1279 0.5436 0.5353
h02 0.1077 0.1485 0.5018 0.4634
spins06 0.1379 0.7868 0.7531 0.1085
spins04 0.0679 0.9338 0.9010 0.0887
spins02 0.0917 0.8210 0.8467 0.1357
adl≥1 0.0721 0.0788 0.3649 0.4235
adl≥2 0.0178 0.0195 0.1181 0.1461
adl≥3 0.0063 0.0070 0.0450 0.0568
adl≥4 0.0027 0.0030 0.0198 0.0251
dis≥1 0.8520 0.8836 0.9816 0.9839
dis≥2 0.5018 0.5703 0.9032 0.9142
dis≥3 0.1713 0.2141 0.6571 0.6863
dis≥4 0.0432 0.0561 0.2947 0.3231

are also more likely to have a lower ADL score and number of diseases than types 3-4.

14Estimated coefficients imply that the marginal correlation between the unobserved heterogeneity in the
two equations is about -.05.
15The estimated conditional probabilities are obtained by substituting the estimated parameters reported in
Table 7 in the inverse-logit link function and averaging out for covariates.
16While it is apparent that residual heterogeneity coefficients α’s (and thus the conditional probabilities
above) vary substantially across types, we can still check whether this simply reflects sampling variation by
testing the equality constraint αh06(1) = · · · = αh06(4) and αspins06(1) = · · · = αspins06(4). The LR test
statistic rejects the null of no selection with a p-value lower than 10−4.
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Thus, it appears that there are at least two different sources of residual heterogeneity: the

attitude to buy insurance (which is low for types one and four and high for types two

and three), and the propensity to use medical care (which is high for types three and four

and low for types one and two). The overall picture which emerges from our estimates is

strongly suggestive of multidimensional residual private information, and there appears to

be both advantageous and adverse selection of Medigap insurance the four types, since the

contract is adversely selected by individuals who have the same (high or low) propensity

for insurance purchase and hospital admission, and advantageously selected by individuals

who have opposite attitudes.17 Since, conditional on age and gender, all types actually face

the same pricing, this suggests the existence of substantial cross-subsidization of high risks

at the expense of low ones. In fact, high risks have almost twice the probability of using

inpatient care then low risks.

Regarding other parameters, similarly to the probit case, after controlling for residual

heterogeneity it seems that age and gender do not significantly impact insurance choice and

hospital utilization. On the other hand, education and income seem to affect type’s mem-

bership probabilities: taking types 1 (who are those individuals with low attitude to medical

care use and insurance purchase) as benchmark, more educated and wealthier individuals

tend to have higher insurance preference when they have low medical care use, and lower

medical care use when they have low insurance preference.

Finally, for robustness we report the incentive and selection effects for the other 3 models.

These are collected in Table 3 below.

17As discussed in footnote 8 above, we have appraised local selection by type by comparing claims and
coverages to the population averages as in Definition 2.
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Table 3. Incentive and selection effects for alternative model specifications

Model 1
U=1 U=2 U=3 U=4

h06 0.1842 0.1558 0.5846 0.5427
spins06 0.1311 0.7766 0.7628 0.1149
Marginal Effect 0.0395

Model 2
U=1 U=2 U=3 U=4

h06 0.1892 0.1573 0.6131 0.5574
spins06 0.1437 0.7751 0.7468 0.1097
Marginal Effect 0.0409

Model 3
U=1 U=2 U=3 U=4

h06 0.1853 0.1547 0.5889 0.5414
spins06 0.1311 0.7787 0.7604 0.1158
Marginal Effect 0.0399

Model 4
U=1 U=2 U=3 U=4

h06 0.1830 0.1505 0.5566 0.5278
spins06 0.1379 0.7868 0.7531 0.1085
Marginal Effect 0.0463
Estimated probabilities are averaged out for x.

Table 3 shows that the estimated incentive effect does not vary substantially across models.

Regarding selection effects, estimated conditional probabilities show a very close pattern of

unobserved heterogeneity in the two main equations across models. This confirms the general

picture that Medigap is an insurance market with substantial multidimensional residual

heterogeneity and heavy cross-subsidization of high risk types at the expense of low risk

ones, probably due to regulatory constraints which severely limit insurers’ pricing policies.

For additional sensitivity we finally estimated also the standard semiparametric finite

mixture model (6-7) under different numbers of latent classes. Since identification relies

mainly on covariates’ variation, we include in the multinomial membership probabilities z

and w to help identification. The BIC for m = 2, 3, 4 are equal to 7681.62, 7637.53 and

7664.83, indicating that three classes are adequate. Parameter estimates are reported in

Table 8.

The estimated α coefficients for the main system show that types one have a low propensity

of medical care utilization but high propensity to buy insurance, while types three have

opposite attitudes. Types two have low propensity of using health care and buying insurance.

Thus, it appears that while the multivariate model (6-7-8) allows a finer partition of types,

model (6-7) tends to lump different types together. A closer look at estimated parameters

however reveals that some of the α’s and their related s.e. are very large, suggesting possible

identification issues. Possible identification problems are also revealed by the estimated

incentive effect b, which is much larger than that in model (6-7-8), but is very imprecisely

estimated.
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6. Final remarks

In the Medigap insurance market there seems to be substantial residual heterogeneity in

insurance coverage and inpatient care use after conditioning on variables used by insurers to

price the contract. We have employed two alternative econometric approaches to detect the

incentive and selection effects of Medigap:

a standard recursive bivariate model, and a discrete multivariate finite mixture model.

Our estimates of the incentive effect seem to be remarkably similar in all well identified

models we considered: individuals who buy Medigap seem, on average, to increase their

probability of having an inpatient stay of 4 percentage points. The estimated average mar-

ginal effect of Medigap on hospital use is slightly smaller than the difference, in the sample,

between the probability of hospital admission of individuals who are covered (0.36) and those

who are not covered (0.31) by Medigap.

We also find a substantial degree of selection in the market, driven mainly by two residual

heterogeneity variables capturing attitude to buy insurance and health care utilization. This

paints a general picture that Medigap is an insurance market with substantial multidimen-

sional residual heterogeneity and heavy cross-subsidization of high risk types at the expense

of low risk ones. Since the Medigap market is heavily regulated, this suggests further re-

search investigating the welfare effects of regulatory practices which severely limit insurers’

pricing policies. The theoretical analyses of Hoy [38], Cracker and Snow [18] and Rothschild

[52], and the empirical model described in Einav et al. [27] seem the right places to start

this investigation.

Appendix A. Proof of Proposition 1

To show that 3 is equivalent to 4, rewrite 4 as P (L = 1, I = 1) · P (L = 0, I = 0) >
P (L = 1, I = 0) · P (L = 0, I = 1), substitute P (L, I) with P (L | I)P (I), then use P (L =
1 | I) = 1− P (L = 0 | I), and simplify; to show that 1 is equivalent to 2, substitute P̄L and
P̄I = P (R = 0)P (I = 1 | R = 0) + P (R = 1)P (I = 1 | R = 1) in 2 and simplify. To show
the equivalence between 3 and 1 under Assumption (1), use the Law of Total probability

P (L | I) = P (R = 0 | I) · P (L | I, R = 0) + P (R = 1 | I) · P (L | I, R = 1)

and (1) to get

P (L | I) = P (R = 0 | I) · P (L | R = 0) + P (R = 1 | I) · P (L | R = 1).

Thus,
P (L = 1 | I = 1)− P (L = 1 | I = 0) =(

P (R = 1 | I = 1)− P (R = 1 | I = 0)
)
·
(
P (L = 1 | R = 1)− P (L = 1 | R = 0)

)
using P (R = 0 | I) = 1 − P (R = 1 | I). By the same argument used above to show the
equivalence of 3 and 4, it is easily seen that P (R = 1 | I = 1) > P (R = 1 | I = 0) if and
only if P (I = 1 | R = 1) > P (I = 1 | R = 0).
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Appendix B. Identification

In this section we discuss the intuition on the identification of the finite mixture model
(6-7-8). Suppose we want to identify the insurance and loss probabilities in 6 and the types
membership probabilities in 7 conditionally on a given value of x. In total there are m + 1
unobserved parameters for the loss equation, m for the insurance demand equation, and
m − 1 membership probabilities, for a total of 3 ×m. Since we observe only I and L (the
joint distribution of two binary variables with 3 free parameters), unless covariates’ variation
and parametric restrictions are imposed, it is impossible to identify (6-7) even with m = 2.
Our strategy is to look for external sources of variation by means of the set of indicators

of the unobservable variable U , zj = 1, . . . , k, which allow to increase the number of ob-
servable parameters; and at the same time to impose appropriate conditional independence
restrictions, which are typical of finite mixture models, to reduce the number of parameters
to be identified.18 In our application, in the auxiliary system 8 there are 4 binary variables
and 2 ordered variables which take 4 levels. Thus, equation 8 adds 4 × m plus 2 × m + 6
unobservable parameters to 6-7, for a total of 9×m+6 unobservable parameters. However,
the joint distribution of the observable responses (i.e. I and L which are of main interest
and the set of indicators zj which are instrumental for identification) has 26 × 42 − 1 = 1023
free parameters. Thus, conditionally on x, in principle a very large number of types can be
identified without relying on covariates’ variation.
It is well known that counting the number of observable parameters is only a necessary

condition for identification of model parameters; there are well known pathological exam-
ples in the literature on finite mixture models which show that this counting condition is
not sufficient. More formally, if we let p denote the vector which arrays the unobservable
parameters of the mixture model (6-8-7) (the α’s and b), and q the vector which arrays
the observable joint distribution of I, L and zj = 1, . . . , k, q is a known function of p, say
q = f(p). Model (6-7-8) is identified if, for every p′ and p′′,

f(p′) = f(p′′) → p′ = p′′ (9)

that is, the model is identified if the mapping between the parameters of the observable
responses and the mixture model parameters is one-to-one; in other words, the model is
identified if the equation q = f(p) has at most one solution for each value of q.
Since the state of the mathematical art is such that there are no general conditions for the

uniqueness of the solution of nonlinear systems of equation, researchers have then applied
the weaker local identification condition which requires local uniqueness of the solution of the
equation q = f(p). Local identification of the mixture model (6-7-8) is thus ensured when
the Jacobian of the mapping q = f(p) is of full rank. In practice, local identification can be
checked numerically by using the test described by Forcina [33], which consists in checking
that the Jacobian is of full rank for a wide range of randomly drawn parameter values. We
performed this test with 10000 replications and found the all models we estimate are well
identified.

18The use of conditional independence assumptions as a possible strategy for achieving nonparametric iden-
tification is discussed, among others, in the survey by Matzkin [46].
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Appendix C. Health insurance and access to care for elderly in US

C.1. Medicare. Medicare is probably the main source of health insurance for all individuals
aged 65 in US and the coverage is near universal (about 97% of the elderly have Medicare).19

The Medicare program consists mainly of two plans in which people may be enrolled. The
first plan, named Medicare Part A, is also known as “Hospital Insurance” since it covers the
basic hospital’s health care services such as inpatient’s admissions. Most of beneficiaries, who
have paid Medicare taxes for at least 10 years, are automatically enrolled with their spouse in
Part A when they turn 65. Part A plan pays almost the entire medical expenditure (except
a deductible) for the first 60 nights of inpatient hospital staying and imposes an increasing
cost sharing structure if hospital admission lasts over this first period. The second plan is
Medicare Part B. Most of beneficiaries choose to extend Medicare Part A insurance coverage
to Part B because it covers several medicare services such as doctors’ services, outpatient care
and some preventive services. Part B enrollment requires the payment of a monthly premium
which may depend on income. Part B’s deductible and co-payment amount respectively to
$110 and to 20% of expenses.

C.2. Supplemental insurance coverage and medigap policy. There are several limi-
tations of Medicare original plans: limitation in the coverage of health care services, high
out-of-pocket expenses to beneficiaries and lack of a catastrophic cap expenditure. These
induce seniors to seek additional coverage provided by private insurance. There are three
main sources of supplemental private insurance which pay for some additional (to Medicare)
services or help pay the share of the costs of Medicare-covered services. The first one is the
employer-sponsored supplemental insurance and it is purchased usually by a former employer
or union. The second one is represented by Tricare (available only to military personal) and
the Medicare Advantage plans (Part C) provided by by private health insurance. The third
one and also the most common source of supplemental coverage comes from Medigap-private
health insurance which are specifically designed to cover those “gaps” of coverage left by orig-
inal Medicare plans. Since 1990 the Medigap insurance market is highly regulated by Federal
law. Medigap plans are standardized into ten plans,“A” through “J”, which cover a single
individual, offer certain additional services and help beneficiaries pay health care cost (de-
ductibles and co-payment) that the original Medicare plan does not cover. This means that
if individuals are enrolled in Medicare plus a supplemental Medigap insurance, health care
cost is covered by both plans. For example the basic plan, A, covers the entire coinsurance
or copayments for hospital stays, physician visits and outpatient care. Federal regulation of
the Medigap market designed a particular mechanism favoring the insured: Medigap insur-
ance companies must offer the basic plan “A” if they offer any other more generous plan.
In addition, there is a free enrolment period which lasts for six months from the first month
in which people are both 65 years old and enrolled in Medicare Part B. During this period
Medigap cannot refuse any insurer even if there are pre-existing conditions. Legal restric-
tions involve also the pricing criteria, which are mainly based on individual’s age and gender.
In the supplemental health insurance market the most popular Medigap plans are C and F,
because they cover major benefits and are less expensive than other plans. For example,
plan C offers coverage for skilled-nursing-facility coinsurance, foreign-travel emergencies, de-
ductibles that are required under traditional Medicare and other basic benefits like hospital
and outpatient coinsurance. All these plans include Medigap A, which is the basic one,

19Current Population Reports (2005) “Income, Poverty and Health Insurance Coverage in the United States:
2004”.
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the least expensive and least comprehensive. This plan covers several losses; for example it
provides (increasing) coverage for daily medicare copayment per day for hospitals stays; it
reimburses the full cost of up to 365 additional hospitals days and the partial cost of other
services related to doctor’s (outpatient) visits, preventive health screening and outpatient
prescription drug.

Appendix D. Tables

Table 4. Sample characteristics and variables definition

Variable Definition of Binary Variables Full Sample No Ins. With Ins.

Insurance Status

spins06 1 = enrolled in Medigap at 2006. 0.42 0.00 1.00
spins04 1 = enrolled in Medigap at 2004. 0.45 0.21 0.80
spins02 1 = enrolled in Medigap at 2002. 0.43 0.22 0.72
iemp04 1 = additional coverage from former emp. at 2004. 0.08 0.10 0.05
iemps04 1 = additional coverage from spouse emp. at 2004. 0.04 0.05 0.04

Hospital Admission

h06 1 = entered a hospital in 2005-2006. 0.33 0.31 0.36
h04 1 = entered a hospital 2003-2004. 0.29 0.29 0.29
h02 1 = entered a hospital in 2001-2002. 0.27 0.26 0.28

Variables Used by insurer to price Medigap plan
fem 1 = female. 0.61 0.59 0.63
age individual age at 2006. 78.3 78.1 78.7
ageF interaction between female and age . 48.1 46.6 50.1

Other Controls unused by insurer

edu3 1 = if individual is high-school graduate. 0.35 0.33 0.39
edu4 1 = if individual has a degree lower than BA. 0.19 0.17 0.20
edu5 1 = if individual has college degree or greater. 0.16 0.16 0.15
totinc average individual total wealth. 0.12 0.11 0.14
dis average number of disease. 2.15 2.16 2.14
adl average ADL. 0.30 0.33 0.27

No ins. and With ins. denote subsamples without and with Medigap coverage in 2006.

Table 5. Partial results for alternative bivariate probit specifications
Variables excluded in the utilization equation b ρ Likelihood Ratio

None 0.124 - -
(0.061)

iemps04 0.514 -0.223 0.75
(0.428) (0.247)

iemp04 0.421 -0.179 0.41
(0.462) (0.266)

iemp04+iemps04 0.529 -0.231 0.35
(0.367) (0.213)

Note: Robust standard errors are reported in brackets.
The sample size for all models is 3368.
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Table 6. Estimated parameter for probit model of equation (5)

Probit Model Bivariate Probit Model
Independent Variables Hospital 2006 Insurance 2006 Hospital 2006 Insurance 2006
spins06 0.124 . 0.529 .

(0.0603) . (0.368) .
spins04 0.0580 1.405 -0.136 1.405

(0.0668) (0.0634) (0.169) (0.0633)
spins02 -0.0413 0.735 -0.134 0.733

(0.0612) (0.0593) (0.104) (0.0594)
h04 0.552 -0.0106 0.547 -0.00967

(0.0517) (0.0599) (0.0532) (0.0598)
h02 0.165 0.0272 0.161 0.0325

(0.0537) (0.0602) (0.0536) (0.0603)
dis 0.167 -0.0204 0.168 -0.0199

(0.0215) (0.0234) (0.0214) (0.0235)
adl 0.104 -0.0610 0.108 -0.0627

(0.0335) (0.0379) (0.0331) (0.0378)
fem -0.169 -0.0245 -0.166 -0.0226

(0.125) (0.130) (0.124) (0.130)
age 0.181 -0.529 0.221 -0.534

(0.381) (0.404) (0.382) (0.405)
age2 -0.122 0.489 -0.160 0.509

(0.392) (0.421) (0.396) (0.422)
age3 0.0431 -0.114 0.0519 -0.121

(0.110) (0.118) (0.111) (0.118)
fem*age 0.296 0.0636 0.301 0.0798

(0.477) (0.515) (0.475) (0.515)
fem*age2 0.0304 0.157 0.00120 0.129

(0.471) (0.518) (0.472) (0.519)
fem*age3 -0.0667 -0.0720 -0.0561 -0.0628

(0.128) (0.142) (0.129) (0.142)
edu3 -0.0678 0.0820 -0.0745 0.0859

(0.0582) (0.0644) (0.0582) (0.0646)
edu4 -0.0883 0.0951 -0.0965 0.100

(0.0706) (0.0784) (0.0709) (0.0788)
edu5 0.00808 0.0815 0.00164 0.0913

(0.0763) (0.0867) (0.0767) (0.0876)
wealth -0.0806 0.354 -0.117 0.368

(0.164) (0.239) (0.176) (0.238)
iemp04 0.0630 0.544 . 0.544

(0.0880) (0.0956) . (0.0947)
iemps04 0.115 0.623 . 0.629

(0.110) (0.117) . (0.116)
Constant -1.175 -1.321 -1.193 -1.332

(0.115) (0.125) (0.115) (0.126)
# of Obs. 3368
Log-likelihood -1951.51 -1560.15 -3511.84
Note: Robust standard errors are reported in brackets
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Table 8. Estimated parameter for the standard finite mixture model
Main System Multinomial Membership Probabilites

Hospital 2006 Insurance 2006 m = 2 m = 2
spins06 0.483 . . .

(0.483) . . .
spins04 . . -2.763 -2.011

. . (0.367) (0.311)
spins02 . . -1.691 -1.562

. . (0.286) (0.269)
h04 . . -0.326 1.455

. . (0.197) (0.292)
h02 . . -0.0480 0.113

. . (0.160) (0.204)
dis . . -0.00290 0.595

. . (0.0659) (0.123)
adl . . 0.0850 0.314

. . (0.109) (0.114)
edu3 . . -0.218 -0.275

. . (0.175) (0.239)
edu4 . . -0.270 -0.355

. . (0.210) (0.292)
edu5 . . -0.272 -0.162

. . (0.228) (0.309)
wealth . . -1.690 0.0452

. . (0.613) (0.599)
fem -0.248 -0.299 . .

(0.282) (0.508) . .
age 0.774 -2.454 . .

(0.811) (1.694) . .
age2 -0.419 2.296 . .

(0.805) (1.710) . .
age3 0.266 1.687 . .

(1.029) (1.980) . .
fem*age 0.208 -0.877 . .

(0.993) (1.881) . .
fem*age2 0.109 -0.540 . .

(0.219) (0.465) . .
fem*age3 -0.131 0.111 . .

(0.265) (0.501) . .
α(1) -1.218 2.326 . .

(0.492) (0.458) . .
α(2) -1.569 -3.227 . .

(0.162) (0.787) . .
α(3) 11.24 -1.677 . .

(89.22) (0.252) . .
αU . . 0.255 -1.414

. . (0.160) (0.330)
Note: Standard errors are reported in brackets
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