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Abstract

By using an extensive panel data set of Italian firms, we show empirically that

the fraction of firms that engage in a lumpy investment follows a non-normal,

double-exponential distribution across region-year. We propose a simple sectoral

model that generates the double-exponential distribution that arises from the

complementarity of the firms’ lumpy investments within a region. We calibrate

the degree of complementarity by estimating an individual firm’s behavior with
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the firm-level data. Simulations show that the degree of complementarity es-

timated at the firm level is consistent with the double-exponential fluctuations

observed at the aggregate level.

Keywords: Interaction models, strategic complementarity, propagation effect,

non-Gaussian fluctuations, double-exponential distribution

JEL codes: L16, E22

1 Introduction

Despite the presence of significant aggregate fluctuations in outputs in the short run,

it is often difficult to identify the underlying shocks. While there exists much liter-

ature on the estimation of unobserved aggregate shocks using business cycle models,

it is puzzling that we do not observe corresponding large shocks on the fundamentals

reported by practitioners in normal times. This issue would be resolved if idiosyncratic

shocks are the source of aggregate fluctuations. However, this explanation leads to

another question as to why the law of large numbers does not cancel out the effects of

idiosyncratic shocks.

This issue has led to a substantial amount of literature being devoted to the fric-

tions that prevent the law of large numbers from averaging out the idiosyncratic shocks.

For example, Jovanovic [20] presented several models that generate aggregate risk from

idiosyncratic shocks through a propagation mechanism due to the strategic complemen-

tarity of the agents’ actions. Moreover, Horvath [19] investigated the postponement of

the effect of the law of large numbers in a sectoral model with a sparse input-output

matrix. Recently, Gabaix [15] elucidated the role played by the idiosyncratic shocks

on large firms, and Carvalho [8] extended Horvath [19] to a richer network structure

of the input-output relations. Nirei [25] constructed a model with discrete actions
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and strategic complementarity that generates a non-normal distribution for aggregate

fluctuations with non-negligible variance even when the number of players is large.

This paper shows that the non-normal distribution well replicates the empirically

observed distribution of aggregate investments. By using rich Italian firm-level data, we

demonstrate that the aggregate fluctuations in the fraction of firms that engage in large

investments in a region-year follow a non-normal, double-exponential distribution. We

propose a model that includes a firm’s lumpy investments and complementarity. We

will analytically show that the model generates a double-exponential distribution. By

calibrating the model with our estimate for the degree of complementarity obtained

from the firm-level data, we show that the simulated distribution of the fraction of

investing firms quantitatively replicates the empirically observed distribution.

Our model includes the complementarity and lumpiness of the firms’ investments.

The model is a simple version of Long and Plosser’s [22] sectoral business cycle model,

in which the firms’ investments are complements in the sense that an investment by one

firm induces the investment of another. The complementarity is a necessary ingredient

of the model for generating the double-exponential distribution because if the firms’

investments are independent, aggregate investments follow a normal distribution due

to the central limit theorem.

We introduce lumpy investments to the Long-Plosser model. The lumpiness may

come from the indivisibility of capital, or it may be a result of the optimization behav-

ior when capital adjustments incur fixed costs, as we show in a supplementary model.

In the class of sectoral models we investigate, we show that the lumpy investments

always generate a double-exponential distribution, while the divisible investments nec-

essarily lead to a normal distribution. The reason for the normal distribution is that

when the investments are smooth, a firm’s response to the other firms’ investments is
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locally linear. In this case, even though the firms’ investments are correlated through

complementarity, the idiosyncratic shocks to the firms are aggregated linearly, and the

central limit theorem holds for the aggregate investments. Thus, both lumpiness (non-

linearity) and complementarity are necessary for our model to generate a non-normal

distribution.

To see why the propagation of lumpy investments leads to a double-exponential

distribution, let us consider the simplest example of propagation effects where an agent

acts with a certain probability, given that its neighbor acts. Then, the number of agents

who act follows a geometric distribution, which has an exponential tail. The shape of

the distribution is affected by the precise structure of the agents’ interaction. For

example, in Banerjee’s [2] herd behavior model, an agent’s action is affected by the

actions taken by all the agents who acted before. Banerjee showed that, in this case,

it is possible that all agents take the same action. In our model, the propagation

effect does not degenerate to such a deterministic cascade, and it generally leads to a

stochastic cascade with an exponential tail.

An obvious explanation for our empirical observation without resorting to the firms’

interactions would be to consider an exogenous aggregate shock that follows a double-

exponential distribution. However, this does not explain why the exogenous aggregate

shock follows a double-exponential distribution. In reality, the aggregate investments

are affected by many independent exogenous factors, and thus, the central limit theorem

predicts that the aggregate shock should follow a normal distribution. Conversely, it

is reasonable to have a set of unspecified exogenous factors as the main drivers of the

aggregate fluctuations only when we observe a normal distribution for the aggregate

fluctuations. Thus, we argue that the non-normal distribution of aggregate investments

is an indicator of an interaction model, instead of a model with exogenous aggregate
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shocks.

This paper has things in common with several threads of previous literature. Broadly,

this study belongs to the research agenda on interacting agents, which was set forth by

such authors as Brock and Durlauf [4] and Glaeser, Sacerdote, and Scheinkman [16].

The main objective of interacting agent models is to study the mechanisms by which

the interactions of micro-level agents give rise to macro-level fluctuations. However, as

Manski [24] pointed out, the interaction parameters of such models are often difficult

to identify econometrically. Thus, the literature focuses not only on model building

but also on developing a framework that facilitates empirical identification. In the con-

text of information spillovers, Guiso and Schivardi [18] tackled the problem by using

the structure of the firms’ network. In the context of sectoral comovements over the

business cycle, Shea [27, 28] and Bartelsman, Caballero, and Lyons [3] proposed to use

the heterogeneity of the input-output matrix to estimate the interaction of sectoral

activity. This paper follows the approach taken by Bartelsman et al. [3].

Long and Plosser [22] explained the sectoral comovements through sectoral comple-

mentarity. However, the complementarity in their model generates too small fluctua-

tions, as pointed out by Lucas [23] and Dupor [13]. It fails to generate large fluctuations

because the firms’ decisions are locally linear in the aggregate output, and thus, the

law of large numbers holds even though the model exhibits complementarity. Our

paper differs from Long and Plosser [22] in that we introduce the firms’ lumpy invest-

ment, which is one of the most commonly observed non-linear behaviors at the firm

level. We show that the combination of non-linearity and complementarity generates

quantitatively large fluctuations.

The lumpy investment behavior was empirically established by Doms and Dunne

[12] and has attracted much attention from business cycle researchers since then. On
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one hand, the empirical studies (Caballero and Engel [6]; Cooper, Haltiwanger, and

Power [11]) suggested that the firms’ lumpy investments contribute to the fluctua-

tions of the aggregate investments through the variations at the extensive margin (i.e.,

firms at the threshold level of capital for lumpy adjustments). On the other hand,

the theoretical research (Caplin and Spulber [7]; Caballero and Engel [5]) showed that

the deviations of the extensive margin from its steady state level can quickly disap-

pear in an aggregate economy with the firms’ lumpy investments, the so-called (S,s)

economy. This implies that complementarity and lumpiness (non-linearity) do not

generate the aggregate fluctuations from the idiosyncratic shocks in an (S,s) economy

with a continuum of firms. It is extensively debated whether the (S,s) economy gives

rise to the business cycle fluctuation under realistic calibration in the framework of

the continuum-of-firms models (Thomas [31]; Gourio and Kashyap [17]; Bachmann,

Caballero, and Engel [1]).

In this context, we show that the idiosyncratic shocks can generate the aggregate

fluctuations if there exist a large but finite number of firms, instead of a continuum of

firms. In this case, the firms’ capital will be distributed almost uniformly within an

inaction band but with some small disturbances. If the firms’ actions are independent

of each other, this disturbance caused by the finite population alone generates little ag-

gregate fluctuation due to the law of large numbers. If the firms’ actions are correlated

due to complementarity, the small aggregate fluctuations caused by the idiosyncratic

shocks can be propagated. Suppose that a firm at the threshold level of capital decides

to invest; this results in a discrete investment by the firm that is positioned closest to

the threshold; then, the investment of the second firm can result in an investment by

the next closest firm, and so on. This chain reaction stops at the point where there are

no other firms positioned close enough to the threshold. The mechanism is similar to
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a domino game: the line of falling tiles stops where two adjacent tiles are standing too

far apart. Since the point where this domino effect stops can change by much through

a slight change in the position of the tiles, the total number of falling tiles can vary

considerably depending on the configuration of the initial points of the tiles. Simi-

larly, when a finite number of firms interact with each other, the slight disturbance in

the cross-section distribution of the position becomes an important source of aggregate

fluctuations. Of course, we do not actually observe such a sequential effect in our static

equilibrium model, but the domino effect provides us with a handy interpretation of

the large shifts in equilibrium caused by the idiosyncratic shocks.

The rest of the paper is organized as follows. Section 2 describes the data and

presents the evidence that the fraction of firms engaging in large investments follows a

double-exponential distribution rather than a normal distribution. Section 3 presents

a sectoral model with the lumpy investments. In Section 4, we estimate the struc-

tural decision rule on the firms’ lumpy investments using micro-level data, and obtain

an estimate for the degree of complementarity. We show our main results in Section

5. First, we numerically simulate the calibrated model with the estimate of the de-

gree of complementarity, and show that the simulated distribution provides a good

approximation of the double-exponential distribution. Second, we analytically derive

the exponential tail of the aggregate fluctuations in our model. The model predicts

that the slope of the double-exponential distribution is determined by the degree of

complementarity among the firms’ lumpy investments. Third, we show that our model

without the lumpy investments generates a normal distribution. Section 6 concludes.
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2 Aggregate fluctuations of the lumpy investments

2.1 Evidence for the lumpy investments in the Italian firm-

level data

Figure 1 depicts the histograms of the investment-capital ratios of Italian firms of

different sizes. To obtain the investment-capital ratios, we use the longitudinal data

of Italian firms drawn from the Company Accounts Data Service (CADS). The data

set consists of an unbalanced panel of over 30,000 firms from 20 regions, 23 industries,

and 15 years from 1982 to 1996.1 Both investment and capital are in real terms. Real

capital is constructed using the perpetual inventory method by Cingano and Schivardi

[9], in which the deflators and the depreciation rates of capital were obtained from the

National Accounts data of the Italian National Institute for Statistics. We focus on

the gross fixed investments of continuing firms, and thus, drop new entrants from our

1The data set we use was compiled by Guiso and Schivardi [18]. The firms in the data set consist of

the borrowers of leading banks in Italy, which may result in a selection bias. However, comparing the

summary statistics of the data set with census data, Guiso and Schivardi [18] found that the sample is

sufficiently representative despite the bias. We convert the original 4-digit industry code in our data

set to a 2-digit industry code that is consistent with the OECD’s industry classification. The following

industries are included: Mining and quarrying; Food, beverages and tobacco; Textiles, apparel and

leather; Wood products and furniture; Paper, paper products and printing; Industrial chemicals; Drugs

and medicines; Rubber and plastic products; Iron and steel; Non-ferrous metals; Metal products; Non-

electrical machinery; Electrical apparatus; Radio, TV and communication equipment; Shipbuilding

and repairing; Other transport; Motor vehicles; Aircraft; Professional goods; Other manufacturing;

Electricity, gas and water. The original data set contains 306,364 observations. We drop observations

with missing industry or region codes and observations in the agricultural sector. We also drop

observations of new entry, which include observations in the initial year 1982 and those with an

investment-capital ratio greater than 1. As a result, we are left with 205,513 observations.
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Figure 1: Histograms of the firms’ investment-capital ratios for different firm sizes in

terms of their capital. The vertical axis shows the relative frequency of the observations

in percent.

sample by deleting the observations that appear for the first time for a firm.

The large skewness and long right tail in the distribution of investment rates seen

in Figure 1 has been widely observed in other studies as well (e.g., Doms and Dunne

[12] and Cooper et al. [11]). Moreover, Doms and Dunne [12] found a characteristic

lumpiness in the investment behavior: there were active capital adjustments in a short

amount of time and almost no adjustments in the other periods. In order to concentrate

on the lumpy investments behavior, we divide the firms’ investment behavior at any

particular point in time into one of two categories: lumpy investments and inaction.

That is, we convert the investment-capital ratio into a binary variable, d(i, t), which

takes 1 if the investment-capital ratio is greater than d̄ and 0 otherwise.

We set the threshold value for the lumpy investments as d̄ = 0.2, which is compa-

rable to the threshold used in the literature on lumpy investments (e.g., Cooper et al.

[11]). The results obtained in this paper are robust to the threshold value. In our data,

36% of the observations are classified as lumpy investments when using this threshold,

and the sum of the lumpy investments on average accounts for 50% of the total fixed
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investment in each year. This implies that the lumpy investments are an important

factor in affecting the aggregate investments.

Figure 1 indicates that the distributions of the investment-capital ratios are similar

across different sizes of the firm’s capital. For all the histograms, the relative frequency

shows a slow decline from the level of about 6 percent when the investment-capital ratio

is just above 0. The average investment-capital ratio for all observations is 0.194, while

that for the first quartile and the last quartile in terms of size is 0.203 and 0.187,

respectively. Moreover, the fraction of firms with the lumpy investments does not vary

much across the firm sizes: it is 0.358 for all observations, and 0.367 for the first and

0.356 for the last quartile. Thus, the lumpy investment behavior as defined here seems

homogeneous across the firm sizes.

2.2 Fluctuations of the fraction of investing firms

In order to capture the effect of the firms’ lumpy investments at an aggregate level, we

consider the fraction of investing firms. The fraction of investing firms is defined as

the number of firms that engage in a lumpy investment divided by the total number

of firms in a region for a year. Let Gr denote the set of firms that belong to the same

region r. Using the binary investment variable d(i, t), we define the fraction of investing

firms for each group as X(r, t) =
∑
i∈Gr d(i, t)/#Gr.

2

In this paper, we are interested in the variation of X(r, t) across region-year that

is not explained by the exogenous aggregate or common shocks, such as national-level

2The number of observations in Gr may change over time. The time subscript t is suppressed here

for notational simplicity. We omit the regions that have a small number of firms, because the behavior

of X can be overly volatile for those regions. The threshold for the small region is set as the fifth

percentile of the size of the region group, which is 21.
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shocks or region-specific fixed effects. To capture this unexplained variation in X(r, t),

we form a new fraction variable X̃(r, t) using the residual of the linear regression of

X(r, t) on the year-dummy and region-dummy variables.3

Figure 2 shows the kernel density estimate of the distribution of X̃(r, t). A normal

density with the same variance as the sample is plotted alongside. We observe that the

distribution exhibits a symmetric and leptokurtic pattern. The standard deviation of

X̃(r, t) accounts for more than half of the standard deviation of X(r, t). Thus, there is a

considerable amount of variation in the fraction of investing firms that is not explained

by common shocks at the national level or by any fixed effects.

2.3 Normality tests for the fluctuations of the fraction of in-

vesting firms

Our goal is to characterize and explain the distribution of the fraction of investing

firms X̃. We first fit parametric distributions to the empirical distribution. Our null

3We exclude the effect of common shocks on X(r, t) by subtracting the mean of X(r, t), even

though the investment decision is discrete. When the investment decision is binary as in our case,

a common shock z affects the fraction X through the extensive margin, and thus, the impact of z

is determined by the density of firms around the threshold of their binary decision. Consider a case

where z affects the threshold of the firms’ state (capital) through function x∗(z) where the firms obey

a one-sided (S,s) policy in which they invest if their capital xi is smaller than x∗. Then, the fraction

of investing firms is written as
∑

i∈G:xi<x∗(z) d(i)/#G. If xi follows the distribution function F , then,

as the number of firms #G tends to infinity, this fraction converges to F (x∗(z)), which is unbiasedly

estimated by the average of X(r, t) across Gr. An underlying premise here is that each group has

achieved the stationary state in which the distribution F of the state xi is common across Gr. In a

group with a finite number of firms, the actual realization of the fraction of investing firms can differ

from F (x∗(z)). However, the error is as small as of order z2.

11



0
5

10
15

D
en

si
ty

.2 .1 0 .1 .2
X(r)tilde

Kernel density estimte
Normal density

Figure 2: Kernel density estimate of X̃(r, t). X̃ is the fraction of investing firms X

excluding the year effects and region-specific fixed effects. Width parameter is set as

0.009.

hypothesis is that X̃ follows the normal distribution. One alternative hypothesis is

that X̃ follows the double-exponential distribution, in which |X̃| conditional on X̃ >

0 follows an exponential distribution with mean λ+ and |X̃| conditional on X̃ < 0

follows an exponential distribution with mean λ−. In this case, the density function

has two parts as Pr(X̃ = x̃|x̃ > 0) = e−(1/λ+)x̃/(2λ+) and Pr(X̃ = x̃|x̃ < 0) =

e−(1/λ−)(−x̃)/(2λ−). The other alternative hypothesis is that X̃ follows the Laplace

distribution, in which |X̃| follows an exponential distribution with mean λ: Pr(X̃ =

x̃) = e−(1/λ)|x̃|/(2λ). The Laplace distribution is a special case of the double-exponential

distribution, with restriction λ+ = λ−.

We start from conventional normality tests based on the third and fourth moments.

Table 1 shows those moments of X̃. The large kurtosis indicates that X̃ is leptokurtic.

The normality tests such as the skewness-kurtosis test, the Shapiro-Wilk test, and the
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Variable Obs. Mean Std. Dev. Skewness Kurtosis Min Max Median

#Gr 268 766.2 1094 2.363 8.599 21 5502 291

X(r, t) 268 0.326 0.078 0.107 3.618 0.081 0.579 0.325

X̃(r, t) 268 0 0.043 0.069 5.162 -0.154 0.156 -0.001

Table 1: Summary statistics of the size of region groups, #Gr, the fraction of investing

firms, X(r, t), and the fraction of investing firms excluding the common shocks and

fixed effects, X̃(r, t).

Shapiro-Francia test overwhelmingly reject the normality hypothesis for X̃(r, t). Note

that the kurtosis of X is smaller than that of X̃. This suggests that the yearly common

shocks and fixed effects “round” the distribution of aggregate fluctuations toward a

normal distribution much like the addition of many random noises will decrease the

kurtosis.

Next, we conduct another normality test that is based only on kurtosis and not on

skewness. The concentration of the fourth moment is useful for testing the hypotheses

among a class of symmetric distributions, in our case, the Laplacian and the Gaussian.

The true kurtosis is equal to 3 under the Gaussian hypothesis and 6 under the Laplacian

hypothesis. Consider the method of moment estimator (
∑N
i=1 x

4
i /N)/(

∑N
i=1 x

2/N)2.

Its asymptotic variance is V (x4
i )/σ

2N , which is equal to 96/N under the Gaussian

hypothesis. Thus, the sample kurtosis in Table 1 rejects the Gaussian hypothesis

at the 1% significance level, although the estimator is not efficient. In contrast, the

asymptotic variance of the method of moment estimator is (8!− 4!2)/28N = 155.25/N

under the Laplacian hypothesis. Thus, the Laplacian hypothesis is not rejected for

X̃(r, t) at the 5% significance level by the method of moment test. As such, the
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Maximum likelihood estimates Log Likelihood Vuong’s statistic

Exponential λ+ 0.0310 (0.0027) λ− 0.0306 (0.0026) 479.1 2.44 2.96

Laplace λ 0.0308 (0.0019) 465.9 0.22 Null

Normal µ 0.000 (0.0026) σ 0.0429 (0.0002) 464.3 Null

Table 2: Parameter estimates for various distributions. Standard errors are in paren-

theses.

normality test based on kurtosis rejects the Gaussian hypothesis while failing to reject

the Laplacian hypothesis.

Table 2 shows the maximum likelihood estimates for each parametrization. The

estimated mean of the exponential distribution is 0.031 for the positive side and 0.0306

for the negative side. The estimated λ for the Laplacian distribution is 0.0308, which

is the middle value for the exponential slopes for the positive and negative sides. We

test the normality hypothesis using a likelihood-based test. Let L(i;H) denote the

likelihood of a sample point i under the hypothesis H. Defining the log likelihood

ratio for each i as li = logL(i;H1)− logL(i;H0), Vuong [33] showed that the statistic

V ≡
√
Nl̄i/Std(li) follows a standard normal distribution if the hypotheses H0 and H1

are equivalent. Thus, if V as computed for H1 against the null H0 is greater than 1.96,

then the null is rejected in favor of the alternative at the 5% significance level. Vuong’s

statistics are reported in Table 2 for the exponential and the Laplacian hypotheses

against the Gaussian null hypothesis and for the exponential against the Laplacian.

The estimates show that the exponential hypothesis is favored against the Gaussian

and the Laplacian hypotheses at the 5% significance.

To sum this section up, we constructed the fraction of lumpy-investing firms at the
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regional level, and formed the distribution of the fractions that are not explained by

national-level shocks or regional fixed effects. We showed that the empirical distribution

of the fractions favors the model that generates an exponential pattern over those that

generate normal distributions. In the following sections, we analyze the mechanism

that generates the exponential pattern of the fluctuations.

3 Model of investment fluctuations

3.1 Model and equilibrium

This section presents a simple model of investment fluctuations that generates an expo-

nential tail for the distribution of X as observed in the previous section. One obvious

hypothesis for the exponential distribution is that there is an exogenous common shock

that follows an exponential distribution. However, economies usually have many exoge-

nous independent factors, which will constitute a normally distributed common shock

by the central limit theorem rather than an exponentially distributed one. Therefore,

we pursue a model with complementarity and non-linearity (lumpiness) in which the

aggregate fluctuations are not driven by the exogenous common shocks.

Consider that there are N firms, each of which monopolistically supplies a differ-

entiated good subject to the following production function:

yi = Ain
α
i (1)

for i = 1, 2, . . . , N . Ai denotes the exogenous productivity, and ni denotes the inputs.

The returns-to-scale, α, is less than one. We assume that the operation scale, ni, of

the firm is constrained to the following discrete set:

ni ∈ {1, λ±1
i , λ±2

i , . . .}, (2)
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where λi > 1 is an exogenous parameter for lumpiness. The constraint assumes that op-

erations are subject to indivisibility in production units. For example, we can imagine

the case where the firms must choose an integer for the number of plants they oper-

ate. Besides the indivisibility of capital, the fixed costs involved in adjusting capital

are another important source of the discreteness captured by (2). In Appendix A, we

present an extension of the model where the firm’s state variable is capital and capital

adjustment requires a fixed cost. In this case, the firm adjusts its capital only if the

adjustment increases the value of the firm by more than the fixed cost. When the firm

decides to adjust its capital, it does so through a lumpy investment, and the extent of

the lumpiness is determined by the magnitude of the fixed cost. Thus, the fixed cost

of adjustments can provide a micro-foundation for the discreteness constraint.

Input ni is a composite good produced by using all the goods in a CES manner:

ni =

 N∑
j=1

χ
1/σ
i,j z

(σ−1)/σ
i,j

σ/(σ−1)

, (3)

where σ > 1 and χi,j denotes the input weights for industry i. Next, we define the

aggregate index of the input prices for industry i as a weighted sum:

Pi ≡
 N∑
j=1

χi,jp
1−σ
j

1/(1−σ)

. (4)

Then, the derived demand for good j is given in an isoelastic form as z∗i,j = (pj/Pi)
−σχi,jni.

Thus, the derived demand z∗i,j changes proportionally to the weight χi,j when the input

ni varies. The minimized cost satisfies
∑
j pjz

∗
i,j = Pini.

We assume that the firm is owned by a representative household. The house-

hold has a preference U(C) which is increasing in a composite consumption good

C =
(∑N

j=1 χ
1/σ
C,j z

(σ−1)/σ
C,j

)σ/(σ−1)
. The income of the representative household is derived

only from the aggregate profit
∑
j πj. We can incorporate labor in this model without al-
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tering our results, but we refrain from doing so in order to avoid complicating the nota-

tion. We define the aggregate index of consumer prices as PC ≡ (
∑N
j=1 χC,jp

1−σ
j )1/(1−σ),

and normalize it to 1. Then, the derived demand for zC,j is z∗C,j = p−σj χC,jC. The

optimal expenditure satisfies
∑
j pjz

∗
C,j = C =

∑
j πj.

The market clearing condition for good i is yi =
∑
j zj,i + zC,i. In this setup, the

total demand function becomes isoelastic:

yi = p−σi Yi, (5)

where Yi is the aggregate demand factor for good i defined as follows:

Yi ≡
∑
j

P σ
j njχj,i + CχC,i. (6)

The aggregate output is defined as Y ≡ ∑N
i=1 piyi =

∑N
i=1 y

1−1/σ
i Y

1/σ
i .

The equilibrium is defined as a pair of allocation (yi, ni, zi,j, C, zC,j) and prices (pi)

such that (yi, ni, zi,j, pi) maximizes monopolist i’s profit πi = piyi−
∑
j pjzi,j subject to

(1,2,3,5), (C, zC,j) maximizes U(C) subject to C =
∑
i πi, and the markets clear for all

N goods.

Since the economy has non-convex costs, multiple equilibria may exist for some

productivity profiles (Ai). We select an equilibrium that is close to its smoothly-

adjusting counterpart in the following sense. The smoothly-adjusting equilibrium is

defined by the equilibrium of our model without indivisibility constraint (2). The

smoothly-adjusting equilibrium exists uniquely. Then, under the smoothly-adjusting

equilibrium level of demand (Yi) and input prices (Pi), we compute the net number

of firms that adjust their capital upward if the indivisibility constraint is imposed.

If the net number of upwardly adjusting firms is positive, we select an equilibrium

with the smallest aggregate output that is larger than that of the smoothly-adjusting
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equilibrium. If the net number is negative, we select an equilibrium with the largest

aggregate output that is smaller than that of the smoothly-adjusting equilibrium.4 By

this equilibrium selection, we exclude an equilibrium that is far from the smoothly-

adjusting equilibrium in the case when a nearer equilibrium exists. Thus, we exclude

the fluctuations that occur purely from information coordination such as in sun-spot

equilibria.

A note on the general equilibrium properties of this model is in order. In this model,

the representative household delegates the investment decision to the firms. Since each

firm’s operation faces non-convex costs due to the indivisibility constraint, there is a

possibility that the equilibrium outcome differs from the first-best that is achieved if

the representative household directly chooses the allocation (ni). In this sense, ours is

a model of coordination failure in the capital market. In order to truly represent the

coordination failure in the capital market, however, we need a dynamic model in which

the intermediate input is replaced with investments. Appendix A shows the dynamic

extension of our model. Since this paper is concerned with a regional economy, we can

assume that the discount factor of the firms is exogenously determined as in a small

open economy. Then, our results will hold in a dynamic setup. Our results may change

in the dynamic general equilibrium of a closed economy, since the opportunity cost of

investments is determined by the marginal rate of intertemporal substitution, which is

affected by the investments. We defer the analysis of this closed economy to a separate

paper (Nirei [26]).

4Alternatively, we can select an equilibrium with an aggregate output closest to that of the

smoothly-adjusting equilibrium. This does not change our results much (see Nirei [26] for details).

This alternative selection has a simpler intuition, but its analysis becomes complicated.
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3.2 Firms’ threshold rule

At the optimal point of the firms’ cost minimization, the cost of inputs satisfies∑
j pjzi,j = Pini. Then, the monopolist’s problem is written as maxni piyi − Pini sub-

ject to (1,2,5). Because of the indivisibility constraint (2), the firms’ optimal behavior

follows a threshold rule, in which the firms adjust their input only if it is outside the

“inaction band” [n∗i , λin
∗
i ). The optimal threshold n∗i is determined by the condition

that the profits must be equalized at the lower and upper bounds of the inaction band.

Thus, the threshold is solved as

n∗i =

λα(1−1/σ)
i − 1

λi − 1
A

1−1/σ
i Y

1/σ
i P−1

i

 1
1−α(1−1/σ)

. (7)

Using this threshold, the equilibrium is determined as a profile of ni that satisfies

n∗i ≤ ni < λin
∗
i and the indivisibility constraint (2).

We can further characterize the threshold rule by considering the homogeneous

case when the input weight χi,j is the same across i: χi,j = χj for all i including

χC,j. The case of heterogeneous weights is investigated in the next section through

numerical simulations. The homogeneous weight implies that the aggregate output

can be simplified as Y = (
∑
i χ

1/σ
i y

1−1/σ
i )σ/(σ−1) and that the input prices (Pi) are

equal to the price of consumption good PC , which is normalized to one. The optimal

threshold n∗i is then given as the function of input profile (nj) and productivities (Aj):

n∗i = aiA
1−1/σ

1−α(1−1/σ)

i Y
1

σ(1−α(1−1/σ)) = aiA
1−1/σ

1−α(1−1/σ)

i

∑
j

χ
1
σ
j A

1− 1
σ

j n
α(1−1/σ)
j

 1
(σ−1)(1−α(1−1/σ))

,

(8)

where ai ≡
(
χ

1/σ
i (λ

α(1−1/σ)
i − 1)/(λi − 1)

) 1
1−α(1−1/σ) .

We consider small shocks on productivities (Ai) and the firms’ response to the

shocks. We start from an initial equilibrium input profile (ni). We define the gap
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between the actual input and the lower threshold at the initial equilibrium as follows:

si ≡
log ni − log n∗i

log λi
. (9)

Thus, si is the state variable associated with the initial equilibrium before the pertur-

bation. Then, the optimal rule for a firm is to invest upon the perturbation if si is

sufficiently close to 0:

si <
d log n∗i
log λi

≈ 1

log λi

β(σ − 1)

α
d logAi + β

N∑
j=1

bj
∆ log nj
log λj

 , (10)

where

β ≡ 1

σ(1/α− 1) + 1
, (11)

bj ≡
χ

1
σ
j A

1− 1
σ

j n
α(1−1/σ)
j,0∑

l χ
1
σ
l A

1− 1
σ

l n
α(1−1/σ)
l,0

λ
α(1−1/σ)
j − 1

α(1− 1/σ)
. (12)

The right-hand side of (10) is equal to the derivative on the left-hand side exactly at

the limit N →∞, as shown in Appendix B.

The propagation effect stemming from nj occurs both through the input-output

relations among the firms and through the aggregate demand externality in which

an investment increases the household’s income, and thus, increases the consumption

demand of other goods. An investment by firm j increases Y , which lowers the thresh-

old and increases the likelihood of firm i investing. The magnitude of this impact

(∆ log nj) on the gap of i, and thus, on the likelihood of i’s investment, through the

complementarity is expressed by the following term in (10):

βbj
log λi

∆ log nj
log λj

. (13)

Expression (13) is reduced to approximately β/N in the homogeneous case. We

can see this by noting that ∆ log nj/ log λj = 1 for an upward lumpy adjustment, that
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the first fraction of bj in (12) is 1/N if the firms are homogeneous, and that the second

fraction is approximately log λj when the lumpiness is small (λj is close to 1). The

coefficient β represents the impact of firm j’s lumpy investment on the threshold of

firm i. Thus, we call β the degree of complementarity.

The degree of complementarity β also represents the asymptotic mean (as N →∞)

of the number of firms that are induced to adjust due to a firm’s adjustment. Consider

the case where si is a random variable uniformly distributed on the unit circumference

of a circle as in a steady state of a one-sided (S,s) economy.5 In this case, the probability

that j’s adjustment induces i to adjust is equal to βbj/ log λi. The probability is reduced

to β/N for the homogeneous case with small lumpiness.6 Thus, the mean number of

firms that are induced to adjust due to a firm’s adjustment is the probability β/N

times population N − 1.

4 Estimation of the complementarity by firm-level

data

In this section, we estimate the degree of complementarity β, which is the impact

of a lumpy investment on the likelihood of lumpy investments by other firms within

5Since a one-sided (S,s) rule has the adjustments only in one direction (e.g., an increase in capital or

inaction), the invariant distribution of si becomes uniform in various setups. See Caplin and Spulber

[7] and Caballero and Engel [5].
6We can also consider the case where si does not follow a uniform distribution, as in the case of

transition to a steady state. We suppose, as a first-order approximation of such a general distribution

of si, that the density around si = 0 is constant q. Then, the probability that j’s adjustment induces

i to adjust is equal to qβbj/ log λi, and the remaining analysis continues to hold with a modified

parameter.
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the same region. In our model, the optimal decision rule for the firms’ indivisible

investment is d(i) = 1 if si < ∆ log n∗i / log λ. Thus, the optimal threshold rule for the

firms’ lumpy investments in our model, (7), provides us with a regression equation.

Using (7), the firms choose d(i) = 1 if

1

1− α(1− 1/σ)

log

λα(1−1/σ)
i − 1

λi − 1
A

1−1/σ
i

− si +
1

σ
log Yi − logPi

 > 0. (14)

Assuming that the stationary distribution of si is uniform over [0, 1) as in the standard

one-sided (S,s) economy, the decision rule implies a linear probability model Pr(d(i) =

1) = ∆ log n∗i / log λ. However, we do not have a sufficient set of variables in our data

set to fully specify ∆ log n∗i . Considering this, we employ the following probit model

for our estimation:

Pr(d(i, t) = 1) = Φ(γDDi,t + γZZi,t + βOWXOW
i,t + βIWXIW

i,t ). (15)

The terms inside Φ correspond to the left-hand side of (14). Di,t and Zi,t capture the

changes in logAi. D denotes dummy variables for the industry and region-year pairs.

Zi,t includes the industry-wise growth in the productivity of capital, the cash flow in

the previous period, and the growth in the real aggregate investment in the industry-

region to which firm i belongs.7 XOW
i,t denotes the changes in log Yi in (14) caused by

the lumpy investments by the firms in the same region as i, and XIW
i,t captures a part

of the changes in logPi caused by the lumpy investments. They are defined as

XOW
i,t ≡

∑
l

π(li, l)∑
h π(li, h)

#Gri,l

#Gl

X(ri, l, t), (16)

7The capital productivity is given by the residual log Y − αK logK − αL logL, where Y , K, and

L are the average industry-wise output and inputs for each period, and αK and αL are the average

expenditure shares during the sample periods in the industry to which i belongs. The cash flow is

normalized by the firm’s nominal size of capital.
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XIW
i,t ≡

∑
l

π(l, li)∑
h π(h, li)

#Gri,l

#Gl

X(ri, l, t), (17)

where π(l, h) denotes the (l, h) coordinate of the input-output matrix, Gl denotes the

set of firms that belong to industry l, Gr,l denotes the set of firms that belong to region

r and industry l, li denotes the industry that firm i belongs to, and ri denotes the

region that firm i belongs to.

We show that XOW
i,t corresponds to the changes in log Yi caused by the lumpy

investments in the structural model. When the vector (Pj) and consumption C are

fixed, the effect of nj on the threshold n∗i can be derived as

∂ log n∗i
∂ log nj

=
βP σ

j njχj,i

αYi
= β

zj,ip
σ
i

αYi
. (18)

To approximate this expression by data, we use the (lj, li) coordinate of the input-

output matrix normalized row-wise, divided by the number of firms in industry j.

This approximation is exact if the firms in the same industry are homogeneous in size

and if σ = 1.8 Summing (18) across firms in region ri, we obtain:

∆ log n∗i,t
log λ

∣∣∣∣∣
P̄i,t,Āi,t,C̄t

= β
∑
j∈Gri

π(li, lj)

#Gl
∑
h π(li, h)

d(j, t) = βXOW
i,t . (19)

Following Bartelsman et al. [3], we callXOW
i,t the output-weighted average of the fraction

of investing firms in the industry-region groups. The output-weight represents the

“demand-pull” or “customer” impact from a firm in industry l to firm i.

Equation (14) contains the input prices (Pi), which are also affected by a change in

nj. This effect through the input prices is absent if the input weights χi,j and χC,j are

homogeneous, since in the homogeneous case, the input prices are always equal to the

8When we use the input-output matrix as the exogenous parameters, we implicitly assume that

the share structure is stable over the sample periods. The input share is constant in the model only

if σ = 1.
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consumption goods price. The prices affect the decision rule for n∗i directly through Pi

or indirectly through Yi in (7). The sum of these effects is complex, but a large impact

comes directly through Pi from a change in pj. This impact comes through the channel

in which an investment by j decreases its own price pj and thus decreases the input

cost of i as per the amount of good j i uses. This effect is linear in ∂ logPi/∂ log pj =

χi,jp
1−σ
j /

∑
l χi,lp

1−σ
l = zi,jpj/(niPi). The last expression is good j’s share of total

derived demand of firm i. Thus, we can derive, as with XOW
i,t , that the impacts on

log n∗i,t/ log λ by the lumpy investments in region ri through this channel is equal to

XIW
i,t . XIW

i,t is called an input-weighted average of the fraction of investing firms in the

industry-region groups. The input-weight (π(l, li)/
∑
h π(h, li))(#Gri,l/#Gl) represents

the “supply-push” or “supplier” impact from a firm in industry l to firm i.

When constructing XOW
i,t and XIW

i,t , we formed firm i’s share of the total demand

by the transaction value in the input-output matrix divided by the number of firms

(observed in our data set) in the same industry as i. By this procedure, we implicitly

assume that Italy as a whole produces as much intermediate goods as it demands

them. While our equilibrium model assumes that an economy (in this case, a regional

economy) is closed, we do not make this closed-economy assumption on the regional

economy for the micro-level estimation in this section. In the micro-level estimation,

we do not fully specify where the demand Yi in the decision rule (7) comes from, and

thus, Yi may include demand from other regions or abroad.

We estimate the degree of complementarity β in our model by the coefficient of

XOW
i,t in our probit estimation equation, βOW . It is not possible to estimate the com-

plementarity effect by simply regressing d(i, t) on X̃(ri, t), since such a regression may

well pick up a common shock effect that affects all the firms in a region-year. Even

though we include a region-year dummy to control for such a common shock, the simple
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probit regression could still cause an endogeneity bias in the estimate of β, because

X(ri, t) is constructed by the left-hand-side variable d(i, t) in the same region. This is

the reflection problem formulated by Manski [24]. Our strategy to avoid this issue is

two-fold. First, we use the fact that increased derived demand by a firm has different

effects across industries and regions, as proposed by Shea [27] and Bartelsman et al. [3].

The different effects can be seen in the output-weight in (16), in which the first fraction

shows the heterogeneous input weight π(li, l) across industries, and the second fraction

shows the heterogeneous industry composition across regions. Second, we employ a

two-step estimation, in which X(ri, l, t) is first regressed to exogenous variables, and

then, the linear predictor X̂(ri, l, t) is used to form XOW
i,t and XIW

i,t in (16,17).

The auxiliary regression of the two-step estimation is formed as follows. First, as

in Section 2, we construct X̃(li, t) by subtracting the year effects and industry (fixed)

effects from the industry-year fraction X(li, t) (which is computed by excluding the

firms in region ri). Thus, X̃(li, t) captures the industry-wide shocks (observed in the

regions other than ri) on the lumpy investments, which we deem exogenous to the firm

in the industries other than li. Next, we regress X(ri, li, t) on X̃(li, t) and the aggregate

investment growth rate for each industry in Italy and in the nearby nations9 to obtain

the linear predictors. The results of this auxiliary regression are reported in Table

3. These results show that the industry shocks X̃(li, t) have good explanatory power.

The aggregate growth rates do not have a significant effect, which suggests that the

lumpy investments are determined differently from the aggregate investments. Then,

we substitute X̂(ri, li, t) for X(ri, li, t) in (16) to obtain X̂OW
i,t , the exogenous portion

9To construct the aggregate investment measure, we take the sum of the gross capital formation

of France, the Netherlands, and Belgium. The reason for choosing these countries is that continuous

data are available for them in the STAN database for the period 1983-1996.
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X̃(l, t) ∆ Inv. in Italy ∆ Inv. in FRA, NLD, BEL Adjusted R2 N. obs

X(r, l, t) 0.952*** (0.072) -0.006 (0.015) 0.015 (0.014) 0.10 1686

Table 3: Result of auxiliary linear regression of the fraction of investing firms in

industry-region X(r, l, t) on the fraction of investing firms in industry X̃(l, t) summed

across regions excluding r.

of the variation in XOW
i,t .10 We obtain X̂IW

i,t similarly in (17). We then use X̂OW
i,t and

X̂IW
i,t for the probit estimation (15). In the estimation, we include robust clustered

standard errors with respect to firms.

The results of the probit estimation are shown in Table 4. We observe a positive and

significant estimate of βOW , whereas the estimate of βIW is less significant and has a

smaller value. This result is consistent with the estimate of Bartelsman et al. [3], which

shows that in the short run, the inter-industry effects flow from the downstream to the

upstream industries. We also find positive and significant coefficients for the lagged

cash flow and the aggregate investment in the industry-region that the firm belongs to.

The positive effect of the cash flow is consistent with the findings in the investment

literature. The aggregate investment variable controls for the industry-region level

common shocks, whereas the dummy variables for the region-year pairs control for the

regional common shocks. The effect of productivity growth is not significantly different

from zero.

10For the summation over l in (16), we do not include industry li when we construct X̂OW
i,t , in order

to make sure that X̂OW
i,t does not contain d(i, t), the left-hand side variable of the probit equation.
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dΦ/dx (s.e.) dΦ/dx (s.e.) dΦ/dx (s.e.)

∆ Productivity -0.0166 (0.0113) -0.0174 (0.0113) -0.0168 (0.0113)

Lagged Cash Flow 0.0007* (0.0004) 0.0007* (0.0004) 0.0007* (0.0004)

Inv. in industry-region 0.0339*** (0.0025) 0.0334*** (0.0025) 0.0338*** (0.0025)

XOW 0.841*** (0.264) 0.824*** (0.265)

XIW 0.359* (0.206) 0.327 (0.206)

Log likelihood -120428.4 -120435.6 -120426.5

Table 4: Probit estimation of firms’ binary investments. There are 183, 896 observations

for each estimation. ***, **, and * indicate significance at the 1%, 5%, and 10% levels,

respectively.

5 Main results

In Section 2, we showed that the fraction of investing firms follows a double-exponential

distribution. In this section, we show that the model in Section 3 calibrated with the

parameter values estimated in Section 4 can explain this distribution. First, we show

that the calibrated model can quantitatively explain the empirical double-exponential

distribution observed in Section 2. Second, we show analytically that the model gener-

ates the exponential tail for the aggregate fluctuations. Third, we show that the model

without the lumpy investment generates a normal distribution even if the investments

are complements, and thus, argue that the lumpiness of the investments is the neces-

sary ingredient for the model to generate the exponential distribution of the aggregate

investments.
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5.1 Simulated distributions of the fraction of investing firms

We first calibrate β to the point estimate β̂OW obtained in the third specification in

Table 4 that yielded the highest log likelihood. We set the mark-up rate as 12.5%

(σ = 9). The total number of firms N is set to the median of the sample firms per

region, 291. The distribution of firms across industries is set as in our data set. To

calibrate χi,j and Ai, we use the Italian input-output matrix (the 1985 version of the

Italian total transaction table). First, we extract a 23-by-23 submatrix of the input-

output matrix for the 23 industries we use. Then, we divide the transaction value for

industry pair (i, j) by the number of firms in i and the number of firms in j observed

in our data set. We regard the value computed above as the equilibrium input demand

from a firm in j to a firm in i. Then, we collect these values in an N -by-N matrix

where N is the number of firms in the model. By normalizing the matrix to 1 column-

wise and transposing it, we obtain the matrix for χi,j that is equal to j’s share in i’s

total inputs. Further, by taking the sum of the matrix column-wise, we obtain the

distribution of the input demand. We then set Ai so that the obtained distribution

matches the distribution of the equilibrium input demand Yi across the firms implied

by Ai. We calibrate the distribution of λi to an exponential distribution with lower

bound 1.1 and mean 1.2, which mimics the histogram of the investment rate in our data

shown in Figure 1.11 Finally, we specify the perturbation shock to Ai as a normally

distributed random variable. The standard deviation of the shock is set so that the

mean fraction of firms that are induced to invest by the perturbation shocks is 3%. In

other words, these firms decide to invest even if there is no propagation effect (i.e., if

β = 0 in (10)). This value is chosen to fit the empirical variance of the total fraction of

11Our result of the double-exponential distribution of the fraction of investing firms does not depend

on λi following an exponential distribution.
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investing firms. However, it is not that we can fit any distribution by tuning the size

of the shock arbitrarily. The shock is drawn from a normal distribution, and thus, it

cannot generate an exponential tail by itself.

We compute the distribution of the number of investing firms using the Monte Carlo

simulations of the model with the calibrated parameters. We first randomly draw the

profiles of λi and Ai across the firms from the distribution functions calibrated in the

previous paragraph. Next, we compute a smoothly-adjusting counterpart of our model,

in which the firms are assumed to adjust smoothly without the indivisibility constraint.

We then compute the equilibrium profile of our lumpy economy (n0
i ). Next, we add a

profile of small shocks to Ai, and compute a new smoothly-adjusting equilibrium and

a new lumpy-adjusting equilibrium profile (n1
i ). If multiple equilibria exist, we select

an equilibria close to the smoothly-adjusting counterpart as described in Section 3.1.

We repeat the procedure and compute the equilibria for 100,000 draws of a profile of

Ai and shocks to Ai, while λi are fixed. The shocks to Ai correspond to d logAi in

the decision rule (10), and the realization of (Ai) determines the distribution of gap

variable si.

The left panel of Figure 3 compares the resulting simulated distribution of the

fraction of investing firms with the empirical distribution of X̃(r, t). Figure 3 shows

the semi-log plots of the cumulative distributions for the positive and negative values of

X̃. To produce the plot, we first divide X̃ into two groups depending on the sign of X̃,

and for each positive or negative group, we rank |X̃| in a descending order. Then, the

log of the rank divided by the total number of observations is plotted against |X̃| for the

positive and negative groups. Thus, the vertical line shows the percentiles of firms in

a descending order. In the semi-log scale, an exponential distribution function would

show as a straight line. Our plot demonstrates that both the positive and negative
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Figure 3: Left: the cumulative distribution of |X̃(r, t)| in our data and the simulated

distribution. Right: simulated histogram of the fraction of investing firms for various

values of returns to scale α and mark-up rate 1/(σ − 1).

sides of the distribution of X̃(r, t) are fitted well by straight lines. As can be seen, the

simulated distribution exhibits a good fit for the slope of the exponential decay of the

empirical distribution.

The right panel of Figure 3 shows the simulated distributions for the various values

of α and σ. The returns to scale are set at α = 0.5 and 0.8. The mark-up rate µ is

set as 10% and 20%, which corresponds to σ = 11 and 6, respectively. The variance of

the perturbation to Ai is set so that the mean number of firms that invest due to the

shock alone is 1. We observe that the simulated histogram conforms to the exponential

pattern for all parameter sets. We also observe that the variance of the distribution is

larger for the larger values of α and µ. This comparative statics is consistent with the

analytical prediction of our model, as we will show in Section 5.2.
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5.2 Analytical derivation of the exponential tail

We analytically show, under some approximation, that the model generates an ex-

ponential tail distribution for the fluctuations in the fraction of investing firms. To

analytically characterize the equilibrium defined in the model, we consider a fictitious

tatonnement process. Using the fictitious tatonnement process, the number of invest-

ing firms is computed as the sum of firms that choose to invest during the fictitious

tatonnement from the initial equilibrium to the new equilibrium. When there exist

multiple equilibria, we select an equilibrium close to the smoothly-adjusting equilib-

rium as described in Section 3.1. The selected equilibrium can be computed by the

fictitious tatonnement process, if we set the smoothly-adjusting equilibrium to the ini-

tial state of the fictitious tatonnement, as shown in Vives [32] and Cooper [10]. The

precise definition of the fictitious tatonnement is provided in Appendix C.

The fictitious tatonnement process depends on the realization of the initial produc-

tivity and the perturbation. Thus, before these random variables realize, the fictitious

tatonnement process can be regarded as a stochastic process, and the difference in

equilibrium output is expressed as the sum of this stochastic process.12 The stochastic

process is expressed using the probability that j’s adjustment induces i to adjust, given

by (13). Consider the fictitious tatonnement process that starts from the initial state

(si). If there is only one firm j that adjusts capital in the first step of the tatonnement

upon perturbation, the number of firms that are induced to adjust in the second step

of the tatonnement, conditional on the adjustment of firm j, follows a convolution of

Bernoulli trials with probability βbi/ log λj across i 6= j. Then, the number of firms

that adjust in step 2, m2, conditional on m1 = 1 is an integer random variable that

follows the above convolution and has mean φ ≡ βE(
∑N
i=1 bi)E(1/ log λj). If there are

12The method to embed the fictitious tatonnement in a stochastic process is presented in Nirei [25].
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m1 > 1 firms that adjust in the first step, then the number of firms that are induced

to adjust in the second step follows an m1-convolution of the above integer random

variable and has mean φm1. The number of firms mu that adjust in each step u of the

tatonnement conditional on mu−1 follows a distribution that is represented as a mu−1-

times convolution of the integer random variable with mean φ. The integer random

variable is identically distributed across u as long as N is so large that
∑u
v=1 mv/N is

small, and thus, the density of si of the affected firms is constant.13 We thus can use

the following theorem:

Theorem 1 (Otter) Consider a branching process mu, u = 1, 2, . . . , that starts from

m1 = 1. Let φ denote the mean number of children in u + 1 born to each parent in u.

We define the total number as M =
∑T
u=1 mu. Then,

Pr(M = m|m1 = 1) = C0e
−(φ−1−log φ)mm−1.5 (20)

for a large integer m, where C0 is a constant.

This theorem can be further tuned in a homogeneous set up where the lumpiness

λi, the productivity Ai, and the input weight χi,j are common across i, j. In this case,

the probability of the Bernoulli trial βbi/ log λj becomes β/N . Thus, the number of

firms mu that are induced to adjust upward in u by mu−1 firms that adjusted in the

previous step of the tatonnement u − 1 asymptotically follows a Poisson distribution

with mean βmu−1 as N →∞. Then, we obtain the following proposition.

Proposition 1 When λi, Ai, and χi,j are common across i, j, M follows a symmetric

probability distribution function:

Pr(|M | = m | m1) = (m1/m)e−βm(βm)m−m1/(m−m1)! (21)

13See Nirei [25] for further details and generalizations.
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for m = m1,m1 + 1, . . . The tail of the distribution function is approximated as

Pr(|M | = m | m1) ∼ (m1(eβ)−m1/
√

2π)e−(β−1−log β)mm−1.5. (22)

Proof: See Appendix D.

Proposition 1 shows that M conditional on m1 follows a distribution that is a mix-

ture of the power and exponential functions as seen in (22). Since the exponential

function declines faster than the power function, the tail of the distribution is domi-

nated by the exponential part. We argue that this corresponds to our empirical finding

that the fraction of investing firms X follows an exponential distribution. The distribu-

tion obtained above is conditional on m1, which is the net number of firms that adjust

capital upward as a direct effect of the perturbation. If the perturbation is sufficiently

small, m1 is much smaller than M .

Proposition 1 further shows that the slope of the exponential distribution is deter-

mined by β. Equation (22) implies that the exponential slope is equal to β− 1− log β;

the mean and standard deviation of the exponential part are determined by the inverse

of the slope. Since the slope is decreasing in β in the region β < 1, a large β implies a

large fluctuation of M . This is intuitive because β is the mean number of firms that

are induced to invest when another firm conducts a lumpy investment in the fictitious

tatonnement. The same implication that the degree of complementarity β determines

the slope of the exponential decay holds for the case with heterogeneous firms as in

(20), in which β is replaced by φ.

Finally, the analysis shown here is also consistent with our simulations. From (11),

small returns-to-scale (a small α) or a low mark-up (a large σ) imply a small β, and

thus, a steep slope by Proposition 1. This prediction is confirmed by our simulations,
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as shown in the right panel of Figure 3. Thus, the exponential tail analytically derived

by Proposition 1 under approximation seems to robustly characterize the distribution

of the exact equilibrium.

5.3 Comparison between a smooth economy and a lumpy econ-

omy

In order to show that the lumpiness of the firms’ capital adjustments is necessary to

generate the exponential pattern of aggregate fluctuations in investment and output,

we consider an economy in which capital is adjusted smoothly. We do so by eliminating

the indivisibility constraint (2) from our model and keeping everything else unchanged.

We refer to this as a smooth economy. The result is then compared with the case in

which the capital adjustment is lumpy, which we refer to as a lumpy economy. In this

comparison, we concentrate on the fluctuations of aggregate output Y =
∑
i piyi rather

than the fraction of investing firms, because all firms adjust in the smooth economy.

The aggregate investment in the smooth economy is proportional to the aggregate

output.

The left panel of Figure 4 shows the distribution of the log-deviation in Y in the

lumpy economy. The plots show that the aggregate output inherits the exponential

pattern in the distribution of the fraction of investing firms. The right panel of Figure

4 shows the log deviation of aggregate output Y in the smooth economy. When simu-

lating the smooth economy, we use the same realizations of the random variables as in

the simulation of the lumpy economy. In a semi-log plot, a normal distribution looks

like a parabola, and we see that the plot clearly shows a parabola for the distribution

of ∆ log Y in the smooth economy. This presents a striking contrast to the exponential

distribution in the lumpy economy shown in the left panel.
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Figure 4: Simulated histograms of the log-deviations of the aggregate output when the

adjustments are lumpy (left) and when the adjustments are smooth (right)

It can be analytically shown that the aggregate output distribution has an exponen-

tial tail if the firms are homogeneous. In the homogeneous case, the output is written

as Y = A(
∑
i n

α(1−1/σ)
i )σ/(σ−1)N1/(1−σ), and thus, the distribution of log Y reflects the

distribution of the sum of inputs.

We can also analytically derive the normal distribution for the smooth economy

when λi and χi,j are homogeneous across i. Considering the first-order condition with

respect to ni and combining it with the equilibrium conditions, we obtain the equilib-

rium aggregate output:

Y =

(α(1− 1

σ

))(1− 1
σ ) α

1−α(1−1/σ) ∑
i

(
A

1− 1
σ

i χ
1
σ
i

) 1
1−α(1−1/σ)


σ(1−α(1−1/σ))

(σ−1)(1−α(1−1/σ))−α

. (23)

This shows that the equilibrium output log Y is a weighted sum of the idiosyncratic

growth shocks to Ai, and thus, follows a normal distribution due to the central limit

theorem.

The smooth economy generates a normal distribution because the response of an
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individual firm is locally linear in the aggregate investments. To see this, consider

the simple case where decisions at the micro-level are positively dependent on the

aggregate such as xi = β
∑N
j=1 xj/N+εi. Then, the equilibrium aggregate is determined

as
∑N
i=1 xi/N = (1/(1 − β))

∑N
i=1 εi/N , and follows the normal distribution when the

exogenous shocks εi are independent. In contrast, in the lumpy model the response of

an individual firm is non-linear (non-linearity exhibited as a threshold rule), and thus,

the aggregation of individual behavior does not follow the central limit theorem.

Another salient difference between the distributions in Figure 4 is the magnitude

of fluctuations. The standard deviation in the smooth economy is four orders of mag-

nitude smaller than that in the lumpy economy, even though they both incur the same

realization of random shocks. Thus, the micro-level lumpy adjustments have a strong

effect in terms of propagating idiosyncratic shocks. The smooth economy is not com-

pletely without such a propagation mechanism. The simple model in the previous

paragraph shows that an exogenous idiosyncratic shock εi will be magnified by the

multiplier 1/(1− β). However, in the case of lumpy adjustments, the complementarity

effect at the micro-level is non-linear because of the threshold rule. Due to non-linearity,

the multiplier effect depends on capital and productivity profiles before shocks occur.

In a dynamic setup, this will imply that the multiplier is history-dependent in an (S,s)

economy. In our model where the finite profile of initial capital is drawn randomly

from the invariant distribution of capital, the multiplier reflects the randomness in the

capital profile, and thus, becomes stochastic. The exponential tail we have observed in

the aggregates captures the nature of this stochastic multiplier effect. Returning to the

domino analogy mentioned earlier, this is exactly the same as how small differences in

the position of domino tiles can greatly affect the number of tiles that fall.14

14It can be further argued that the domino effect constitutes a mechanism of endogenous deter-
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In sum, this section showed that the simulated distribution in our calibrated model

serves as a good approximation of the double-exponential distribution of the fraction

of investing firms observed in the Italian data. This suggests that the empirical dis-

tribution favors the model of aggregate fluctuations that is driven by a propagation

mechanism, rather than by exogenous shocks, which tend to generate the normal dis-

tribution due to the central limit theorem. Moreover, we showed that our model of

lumpy investments generates the double-exponential distribution for a wide range of

parameter values, while our model without lumpiness generates a normal distribution

of the output fluctuations. This implies that the sectoral model with complementar-

ity needs some non-linearity at the micro-level in order to generate the non-normal

distribution with the considerable volatility observed empirically.

6 Conclusion

This paper argued that the distribution of the fraction of firms that engage in large

investments provides a useful test for the existence of propagation effects among the

firms’ investment decisions. Testing for the endogenous propagation effects is often a

challenge because the model of such propagation effects is observationally equivalent

to the model with exogenous common shocks. We argued that in the class of binary

choice models, the model with common shocks results in a normal distribution of

the number of investing firms when the common shocks consist of many independent

factors, whereas the model of propagation effects leads to a non-normal distribution

ministic fluctuations. Consider a dynamic extension of the model as in Appendix A in which capital

depreciates by δi and the firms decide whether or not to increase capital by λi in each period. Then,

the aggregate output follows a non-linear dynamic that can generate fluctuations even without the

exogenous shocks to Ai. This possibility is explored in a separate paper (see Nirei [26]).
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that is better characterized by a double-exponential distribution.

For our empirical analysis, we studied a panel of investment data for the Italian

firms. We investigated the fraction of firms for which the investment-capital ratio

exceeded a certain threshold. We showed that the empirical distribution of the fraction

of investing firms across the region-year rejects the hypothesis that the distribution is

normal, whereas the empirical distribution does not reject the hypothesis that the

distribution is exponential.

In order to explain the exponential distribution of the fraction of investing firms,

we presented a simple model of lumpy investments when the firms’ investment deci-

sions are interrelated through complementarity. The complementarity stems from the

fact that the firms are linked by the input-output relations as well as the aggregate

demand externality of consumption. In the model, when a firm increases production,

it generates increased factor demand, and thus, provides an incentive for the upstream

firms in the input-output relationship to produce more. We analytically showed that

this complementarity generates an exponential distribution for the fluctuations of the

fraction of investing firms.

We estimated the firms’ decision rule derived in the model, by using the firm-level

observations in our data set. In particular, we estimated the degree of complementar-

ity, taking account of the issue of endogeneity bias by using a heterogeneous input-

output matrix and a two-step estimation. We then used the degree of complementarity

estimated at the firm level for the calibration of our model. The simulations of the

calibrated model showed that with the estimated degree of complementarity, our model

of lumpy investments explains the exponential pattern empirically observed. Finally,

we showed that the model generates a normal distribution if the investments are not

lumpy. Thus, we argued that the observed exponential pattern supports the view

38



that some aggregate fluctuations are generated by the interactions of firm-level lumpy

investments.

Appendix

A Extension with capital adjustment costs

In this section, we incorporate a fixed adjustment cost of capital in our model in order to

show a micro-foundation of the discreteness assumption (2). We consider a production

function modified from (1):

yi = Aik
γ
i n

α
i , (24)

where ki denotes capital. We assume diminishing returns to scale γ + α < 1. We

consider a two-period model. In period 0, the firms are endowed with initial capital

ki,0 and decide the level of capital used in period 1. In period 1, production and

transaction take place. We assume that the firms rent capital at fixed rental price

r. Capital adjustments require fixed costs Di. If no adjustment occurs, the capital

in period 1 is determined by ki = (1 − δi)ki,0, where δi denotes the rate of capital

depreciation.

The input ni is produced as in (3). As in Section 3, the firms’ cost minimization

behavior leads to
∑
j pjzi,j = Pini. Thus, the maximization problem of a firm as a

monopolist is formulated as:

max
pi,yi,ni,ki

piyi − Pini − rki −Di1ki 6=(1−δi)k0,i (25)

subject to (24,5). Substituting in optimal choices for pi, yi, ni, this problem can be
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rewritten as maxki π(ki)−D1ki 6=(1−δi)ki,0 , where

π(ki) ≡
(α(1− 1

σ

))α(1−1/σ) (
1− α

(
1− 1

σ

))1−α(1−1/σ)

A
1−1/σ
i

Y
1/σ
i

P
α(1−1/σ)
i

 1
1−α(1−1/σ)

−rki.

(26)

Solving this, we obtain the optimal level of capital when the firm adjusts:

k∗i =

αα(1−1/σ)γ1−α(1−1/σ)
(

1− 1

σ

)
A

1−1/σ
i

Y
1/σ
i

P
α(1−1/σ)
i r1−α(1−1/σ)

 1
1−(α+γ)(1−1/σ)

. (27)

The optimal policy of firm i is to adjust capital to k∗i if ki,0 is outside the region

(ki, k̄i], referred to as an inaction band, and not to adjust otherwise. The bounds of

the inaction band ki and k̄i must satisfy π((1 − δi)ki) = π((1 − δi)k̄i) = π(k∗i ) − Di.

Such two bounds exist below and above k∗i , since π is strictly concave. We can show

that an increase in fixed cost Di increases the width of the inaction band.

If we further assume that the capital adjustment is irreversible in the sense that

ki has to be greater than or equal to (1 − δi)ki,0, the firms’ optimal rule is to adjust

to k∗i if ki,0 < ki and not to adjust otherwise. In this case, k∗i /ki corresponds to the

lumpiness parameter λi in Section 3. This implies that the model of capital adjustment

with fixed costs provides us with a micro-foundation of the discrete behavior that we

assumed in the main model.

In a fully dynamic setup, a firm’s objective function reflects not only the current

profits π but also the value of capital ki in the future. In order to address this is-

sue, we extend the two-period model above to a recursive situation. We consider a

firm’s dynamic programming problem in continuous time in which firm i maximizes its

discounted sum of profits:

V (ki,0) = max
ki,Ti ,Ti

∫ Ti

0
e−ρtπ(ki,t)dt+ e−ρTi(V (ki,Ti)−Di), (28)
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where ρ denotes the investors’ required rate of return, Ti denotes the time taken by

the firm to adjust capital, and ki,Ti denotes the capital level chosen by the firm in Ti.

Thus, for t < Ti, capital is naturally depreciated over time as ki,t = e−δitki,0. This type

of dynamic programming with fixed adjustment costs was analyzed by Sheshinski and

Weiss [29], and is widely used as in Stokey [30].

Here, we consider a stationary equilibrium with a continuum of firms in which Yi, Pi,

and r are constant over time. The firms face the time-invariant dynamic optimization

problem with state ki,t in a stationary equilibrium, and thus, the optimal level of capital

to which the firm adjusts is time-invariant. Let k∗i denote the optimal level of capital

to adjust to. For firm i who just adjusted capital, the capital levels at 0 and Ti are

equal to k∗i . Thus, at the adjustment point, the value function satisfies:

V (k∗i ) = max
k∗i ,Ti

∫ Ti

0
e−ρtπ(e−δitk∗i )dt+ e−ρTi(V (k∗i )−Di). (29)

The first-order conditions for optimal Ti and k∗i are

π(e−δiTik∗i )− ρ(V (k∗i )−Di) = 0, (30)∫ Ti

0
e−(ρ+δi)tπ′(e−δitk∗i )dt+ e−ρTiV ′(k∗i ) = 0. (31)

For the interior of the inaction band, the value function satisfies the Bellman equa-

tion:

V (k) = π(k)dt+e−ρdtV (e−δidtk) = π(k)dt+(1−ρdt)(V (k)−V ′(k)δikdt)+o(dt). (32)

Taking the limit dt→ 0, we obtain

0 = π(k)− ρV (k)− δikV ′(k). (33)

We can solve this ordinary differential equation for the value function within the inac-

tion band as a polynomial of the same degree as π(k). Combining the value function
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with the first-order conditions, we can determine Ti and k∗i . The threshold point for

adjustment (i.e., the capital level just before adjusting capital) is also determined as

ki = e−δiTik∗i . The lumpiness is determined by λi = k∗i /ki = e−δiTi , which is affected by

the size of fixed costs Di. The optimal capital dynamic for firm i is thus k̇i,t/ki,t = −δi
for ki,t ∈ (ki, k

∗
i ] and ki,t = k∗i when ki,t reaches ki. This is the typical dynamics under

a one-sided (S,s) rule. The gap variable si,t = (log ki,t − log ki)/ log λi always stays

within a unit interval as in our main model.

The model in this section provides the microfoundation for our main model in

which λ is fixed. To be precise, our main model features a choice set that is an infinite

sequence (2) rather than binary. However, the main model is reduced to a binary

choice model, since we focus on the shifts in the equilibrium when the productivities

are perturbed slightly enough not to induce a capital adjustment larger than λ.

B Impact of a lumpy investment on total demand

We start from Y0 =
(∑

j χ
1
σ
j A

1− 1
σ

j n
α(1−1/σ)
j,0

)σ/(σ−1)

. Suppose that firm i chooses to

invest. Then, log ni,1− log ni,0 = log λi. We calculate the new aggregate output by the

Taylor series expansion around Y0 as follows:

log Y1 − log Y0 = α
χ

1
σ
i A

1− 1
σ

i n
α(1−1/σ)
i,0∑

j χ
1
σ
j A

1− 1
σ

j n
α(1−1/σ)
j,0

∞∑
k=1

(α(1− 1/σ))k−1(log λi)
k

k!
+O(N−2)(34)

= α
χ

1
σ
i A

1− 1
σ

i n
α(1−1/σ)
i,0∑

j χ
1
σ
j A

1− 1
σ

j n
α(1−1/σ)
j,0

λ
α(1−1/σ)
i − 1

α(1− 1/σ)
+O(N−2). (35)

To obtain the second equation, we used the relation
∑∞
k=0 a

k/k! = ea. Note that the

first term is of order N−1. The term of order N−2 results from the derivative of the

summation in the denominator of the first term with respect to ni. From this we obtain
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expression (13). By summing across all the firms that adjust ni, we obtain (10).

C Fictitious tatonnement

Consider a sequence of input profiles nu = (n1,u, n2,u, . . . , nN,u) for discrete steps u =

1, 2, · · ·. The sequence starts from the initial equilibrium that is defined for a realization

of (Ai,0, λi). The initial point is denoted by a profile n0. There is a corresponding

threshold rule at the initial equilibrium, determined by (7) and denoted by n∗0. The

initial gap variables are accordingly defined as (si,0).

Next, perturbation εi is drawn independently across i. Productivity is perturbed

such that logAi,1 = logAi,0 + ε. We then solve for the optimal prices for firms (pi)

under (A1, n0). Then, the threshold is altered according to (7), and the new threshold

profile under (A1, n0) is denoted by n∗1. The gap variable is also updated and denoted

by s1. We apply the new threshold rule, and some firms find it optimal to adjust their

input. The best reply is denoted by n1.

Then, the second step starts. Under (A1, n1), we compute a new profile of threshold

n∗2, the gap variable s2, and the best reply n2. We iterate this process until nu converges.

The stopping step is denoted by T . Thus, ni,T = ni,T−1 for all i. This sequence of input

profiles, (n0, n1, . . . , nT ), constitutes the fictitious tatonnement.

D Proof of Proposition 1

The following proof largely draws on Nirei [25]. mu conditional on mu−1 for u ≥
2 follows a Poisson distribution with mean βmu−1. Since a Poisson distribution is

infinitely divisible, the Poisson variable with mean βmu−1 is equivalent to an mu−1-
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times convolution of a Poisson variable with mean β. Thus, mu for u ≥ 2 constitutes

a branching process with a step random variable that is a Poisson variable with mean

β. Since β ≤ 1, the process mu reaches 0 by a finite stopping time with probability

one (see Feller [14]). Thus, this process is a valid algorithm of equilibrium selection

in the sense that the convergence is achieved by a finite stopping time T . Then, as a

consequence of the Poisson branching process (see Kingman [21]), the accumulated sum

M conditional on the initial value m1 > 0 follows an infinitely divisible distribution

called Borel-Tanner distribution, which is shown in (21). For a negative initial value

m1 < 0, the above analysis applies symmetrically to −M . Approximation (22) is

obtained by applying Stirling’s formula m! ∼
√

2πe−mmm+0.5. 2
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