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Abstract

This paper reports on experimental tests of the Lucas asset pricing model with

heterogeneous agents and time-varying endowment streams. In order to emulate key

features of the model (perishability of consumption, stationarity, infinite horizon), a

novel experimental design was required. The experimental evidence provides broad

support for cross-sectional and intertemporal pricing restrictions. However, asset prices

are significantly more volatile than fundamentals and returns are less predictable than

theory suggests. Despite this, allocations are nearly Pareto optimal. The paper argues

that this is the result of participants expectations about future prices, which are at

odds with the predictions of the Lucas model but are nonetheless almost self-fulfilling.

These findings suggest that excessive volatility of prices may not be indicative of welfare

losses.1
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1 Introduction

For over thirty years, the Lucas asset pricing model (Lucas, 1978) has served as the

basic platform for research on dynamic asset pricing and business cycles. The Lucas

model provides both cross-sectional and time-series predictions and links the two. The

central cross-sectional prediction is consistent with the central predictions of static

models: only aggregate risk is priced. For instance, in CAPM (the Capital Asset Pricing

Model), the quintessential static model, aggregate risk is measured by the return on the

market portfolio, and the price of an asset is a decreasing function (equivalently, the

return on the asset is an increasing function) of the covariance of the return on the asset

with the return on the market portfolio; i.e., with the “beta” of the asset. In the Lucas

model, aggregate risk is a function of aggregate consumption, and prices decrease with

“consumption beta.” The central time-series predictions of the Lucas model are that

asset price changes are correlated with economic fundamentals (aggregate consumption

growth) and that there is a strong connection between the volatility of asset prices and

the volatility of economic fundamentals. The most important consequence of this

prediction is that asset prices need not follow a martingale (with respect to the true

probabilities) and the price of an asset need not be the discounted present value of its

expected future dividends (with respect to the true probabilities). These contradict the

strictest interpretation of the Efficient Markets Hypothesis (Samuelson, 1973; Malkiel,

1999; Fama, 1991).2

The most familiar version of the Lucas model assumes a representative agent, whose

holdings consist of the aggregate endowment of securities and whose consumption is the

aggregate flow of the (perishable) dividends. Asset prices are constructed as shadow

prices with respect to which the representative agent would have no incentive to trade.

A crucial characteristic of the Lucas model is that it assumes the representative agent

has rational expectations, and so correctly forecasts both future prices and his own fu-

ture decisions. The multi-agent version of the Lucas model that we study here assumes

that all agents have rational expectations, and so correctly forecast both future prices

and their own future decisions, and that prices and allocations form an equilibrium,

and in particular that allocations are Pareto optimal so that each agents optimally

smooths consumption over time and states of nature. Without question, the empirical

relevance of the Lucas model hinges on the viability of these underlying assumptions.

2Because prices do not admit arbitrage, the Fundamental Theorem of Asset Pricing implies the existence

of a probability measure typically different from the true probability measure with respect to which prices

do follow a martingale.
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This paper reports on experimental laboratory tests of the Lucas model. The na-

ture of the Lucas model presents a number of unusual challenges for the laboratory

environment: an infinite time horizon, stationary primitives, perishable goods and

consumption smoothing. Our experiments address these challenges in novel ways. We

emulate an infinite horizon through a random ending time and induce stationarity by

using an ending protocol that makes asset payoffs in the last period equal to con-

tinuation values of these assets. We emulate perishability by imposing forfeiture of

participants’ cash holdings (the consumption good) at the end of every non-terminal

period: cash held at the end of the terminal period – and only then – is “consumed” and

so constitutes the subject’s payoff from the session. The desire to smooth consumption

is a consequence of this perishability and the risk aversion that subjects bring to the

laboratory.3

In our laboratory economy, there were two securities: a (consol) “Bond” whose

dividend each period is fixed and a “Tree” whose dividend is stochastic, taking one

of two values, according to a known process. Our economy is populated by agents

whose initial asset endowments and (time-varying) income streams differ. Given these

parameters, the asset market is potentially dynamically complete; in particular, it is

possible for the economy to achieve Pareto optimal final allocations,

We find experimental evidence that provides broad support for both the theoretical

cross-sectional and intertemporal pricing predictions, but with notable differences. On

the one hand, as theory predicts, asset prices co-move with economic fundamentals and

this co-movement is stronger when cross-sectional price differences are greater (holding

consumption beta constant). On the other hand, asset prices are significantly more

volatile than fundamentals and returns are less predictable than theory suggests. In-

deed, for the consol bond, the noise in the price data is so great that we cannot reject

the null that price changes are random. Despite this divergence from the theoretical

predictions, we find a great deal of consumption smoothing, suggesting that alloca-

tions are nearly Pareto optimal. We suggest that this divergence arises from subjects’

forecasts about future asset prices, which appear to be vastly at odds with the predic-

tions of the Lucas model, yet almost self-fulfilling. Of course asset price forecasts that

are exactly self-fulfilling must coincide with the prices predicted by the Lucas model

— this is just the definition of equilibrium in the model. Surprisingly, however, asset

price forecasts can be almost self-fulfilling and yet far from the predictions of the Lucas

model. Among other things, these findings suggest that excessive volatility of prices

3That experimental subjects display substantial risk aversion, even for the relatively small stakes of

laboratory experiments, is well-documented; see Bossaerts and Zame (2008) for example.
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may not be indicative of welfare losses.

The remainder of this paper is organized as follows. The next section elaborates on

the difference between experimental tests of the Lucas model and traditional econo-

metric tests on historical field data, and highlights the difficulties when studying the

model in the laboratory. Section 3 presents the Lucas model within the framework

of the laboratory economy we created. Section 4 provides details of the experimental

setup. Results are provided in Section 5. Section 6 discusses potential causes behind

the excessive volatility of asset prices observed in the laboratory markets. Section 7

concludes.

2 Test Of The Lucas Model In Experiments Vs.

On Historical Field Data

Analysis of the Lucas model, both empirical and theoretical, has traditionally focused

on the “stochastic Euler equations” that deliver the equilibrium pricing restrictions

(Cochrane, 2001). These equations derive from the first-order conditions of the con-

sumption/investment optimization problem of the representative agent in the economy.

Empirical tests of the stochastic Euler equations on historical field data have been

disappointing. Starting with Mehra and Prescott (1985), the fit has generally been

considered to be poor. Attempts to improve model fit have concentrated on the auxil-

iary assumptions rather than on its primitives. Some authors have altered the original

preference specification (time-separable expected utility) to allow for, among others,

time-nonseparable utility (Epstein and Zin, 1991), loss aversion (Barberis et al., 2001),

or utility functions that assign an explicit role to an important component of human be-

havior, namely, emotions (such as disappointment; Routledge and Zin (2011)). Others

have looked at measurement problems, extending the scope of aggregate consumption

series in the early empirical analysis (Hansen and Singleton, 1983), to include non-

durable goods (Dunn and Singleton, 1986), or acknowledging the dual role of certain

goods as providing consumption as well as collateral services (Lustig and Nieuwer-

burgh, 2005). Included in this category should be the long-run risks model of (Bansal

and Yaron, 2004) because it is based on difficulty in recovering an alleged low-frequency

component in consumption (growth).

Here, we investigate the Lucas model experimentally. We focus on the primitives

of the model, rather than merely trying to find an instantiation of the stochastic Euler

equations that best fits a given series of price (and aggregate consumption) data. An
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experimental study of the Lucas model introduces new challenges, however. Foremost,

the model assumes the existence of a representative agent. Short of assuming that

everyone is identical (which is not only counterfactual, it would also preclude the

very trade on which the success of financial markets experiments builds), one needs to

structure the economy in the right way, so as to facilitate Pareto improvements. (When

allocations are Pareto optimal, the existence of a representative agent is assured.)

One way to facilitate Pareto efficiency would be to organize a complete set of mar-

kets, by creating as many securities (with independent payoffs) as there are states.

(Allocations in the resulting walrasian equilibrium are guaranteed to be Pareto opti-

mal.) The empirical issue would then be limited to whether the walrasian equilibrium

emerges. But in any realistic setting – and in the experiments that we report on here

– one cannot have a complete set of markets; there are just too many possible states.

The alternative is to organize markets in a way that they could be complete merely

in the dynamic sense (Duffie and Huang, 1985). This is what we opted for. It should

be emphasized that emergence of optimal allocations is not trivial even if markets are

dynamically complete. Participants would have to resort to the complex investment

policies that exhibit the hedging feature at the core of the modern theory of derivatives

analysis (Black and Scholes, 1973; Merton, 1973a) and dynamic asset pricing (Merton,

1973b). Furthermore, investors would need to have correct anticipation of (equilib-

rium) price processes, so that a Radner perfect foresight equilibrium (Radner, 1972)

becomes possible.

In the laboratory, we will be able to verify all aspects of the (Radner) equilibrium,

and not just whether prices satisfy some set of stochastic Euler equation. It would

be hard to do so with historical data from the field. The problem is that in the field

we lack crucial structural information, such as aggregate supplies of securities, beliefs

about dividend processes, or private income flows. (This is related to the Roll critique

(Roll, 1977).) By contrast, laboratory experiments provide control over and knowledge

of all the important variables.

Additional challenges need to be addressed before one can test the Lucas model

in the laboratory. Specifically, the model assumes that the world is stationary, that

it continues forever, and that investment demands are driven primarily by the desire

to smooth consumption. The infinite horizon is easy to deal with: as in Camerer and

Weigelt (1996), one could introduce a stochastic ending time. The finite experiment

duration, however, makes stationarity particularly difficult to induce, as beliefs would

necessarily change when time approaches the officially announced termination of the

experiment. Likewise, it is difficult to imagine that participants care about the timing
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of their consumption (earnings) across periods during the course of an experiment, and

hence merely spreading payment over time does not induce demand for smoothing.

We introduced novel features to the standard design of an intertemporal asset pricing

experiment to overcome these challenges.

Our experiment is related to that of Crockett and Duffy (2010). There are at

least two major differences, however. First, we did not induce demand for smoothing

by means of nonlinearities in take-home pay as a function of period earnings, but

induced it as the result of novel experimental design. The predicted pricing patterns

are therefore driven solely by the uncertainty of the dividends of (one of) the assets,

exactly as in the original Lucas model, unconfounded by nonlinearities. Second, to

avoid endgame effects, and hence, to ensure stationarity, we altered the design in a

way that was consistent with the theory. The aims of the two studies were different,

though. In Crockett and Duffy (2010), the goal was to show that asset price bubbles

did not emerge once Lucas-style consumption smoothing was introduced. The goal

here was, as mentioned before, to test the primitives of the Lucas model.

3 The Lucas Asset Pricing Model

We envisage an environment with minimal complexity yet one that generates a rich

set of predictions about prices across time and allocations across types of investors.

Perhaps most importantly, the environment is such that trading is necessary in each

period. Following Bossaerts and Zame (2006), we wanted to avoid a situation (as in

Judd et al. (2003)), where theory predicts that trade will take place only once. When

bringing the setting to the laboratory, it would indeed be rather awkward to give

subjects the opportunity to trade every period while the theory predicts that they

should not!4

Our environment generates the original Lucas model, which is stationary in levels

(dividends, and hence, prices). This is in contrast to the models that have informed

empirical research of historical field data. Starting with Mehra and Prescott (1985),

these are stationary in growth. Level stationarity is easier to implement in the lab-

oratory, and thus is preferred for an experiment that already poses many challenges

in the absence of growth. While there is no substantive difference between the level

and growth versions of the Lucas model (e.g., in both cases, prices move with funda-

mentals), the reader is cautioned that results are not isomorphic. For instance, when

4Crockett and Duffy (2010) confirm that it is crucial to give subjects a reason to trade every period in

order to avoid bubbles in laboratory studies of dynamic asset pricing.

5



dividend levels are independently and identically distributed (i.i.d.), dividend growth

is not (dividend growth is expected to be high when dividends are low, and low when

dividends are low).

We consider a stationary, infinite horizon economy in which infinite-lived agents

with time-separable expected utility are initially allocated two types of assets: (i) a

Tree that pays a stochastic dividend of $1 or $0 every period, each with 50% chance,

independent of past outcomes, and (ii) a (consol) Bond that always pays $0.50.

There is an equal number of two types of agents. Type I agents receive income of

$15 in even periods (2, 4, 6,...), while those of Type II receive income of $15 in odd

periods. As such, total (economy-wide) income is constant over time. Before period 1,

Type I agents are endowed with 10 Trees and no Bonds; Type II agents start with 0

Trees and 10 Bonds.

Assets pay dividends dk,t (k ∈ {Tree,Bond}) before period t (t = 1, 2, ...) starts. At

that point, agents also receive their income, yi,t (i = 1, ..., I), as prescribed above. As

dividends and income are fungible, we refer to them as cash, and cash is perishable.

In what follows, ci,t denotes the cash available to agent i in period t . Agents have

common time-separable utility for cash:

Ui({ci,t}∞t=1) = E

{ ∞∑
t=1

βt−1u(ci,t)

}
. (1)

Markets open and agents can trade their Trees and Bonds for cash, subject to a stan-

dard budget constraint. To determine optimal trades, agents take asset prices pk,t

(k ∈ {Tree,Bond}) as given, and correctly anticipate (à la Radner (1972)) that future

prices are a time-invariant function of the only variable economic fundamental in the

economy, namely, the dividend on the Tree dTree,t. In particular they know that prices

are set as follows:

pk,t = βE[
u′(ci,t+1)

u′(ci,t)
(dk,t+1 + pk,t+1)]. (2)

We shall not go into details here, because the derivation of the equilibrium is standard.

Instead, here are the main predictions of the resulting (Lucas) equilibrium. For the

parametric illustrations, we set β = 5/6, and we assume constant relative risk aversion;

if risk aversion equals 1, agents are endowed with logarithmic utility (u(ci,t) = log(ci,t)).

1. Cross-sectional Restrictions: Because the return on the Tree has higher co-

variability (or “beta”) with aggregate consumption (which varies only because of

the dividend on the Tree), its equilibrium price is lower than that of the Bond,

replicating a well-known result from static asset pricing theory. Note that this
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Table 1: Equilibrium Prices And Dollar Equity Premium As A Function Of (Constant

Relative) Risk Aversion And State (Level Of Dividend On Tree).

Risk Aversion State Tree Bond (Dollar Equity Premium)

0.1 High 2.50 2.55 ($0.05)

Low 2.40 2.45 ($0.05)

(Difference) (0.10) (0.10) ($0)

0.5 High 2.50 2.78 ($0.22)

Low 2.05 2.27 ($0.22)

(Difference) (0.45) (0.51) ($0)

1 High 2.50 3.12 ($0.62)

Low 1.67 2.09 ($0.42)

(Difference) (0.83) (1.03) ($0.20)

Table 2: Equilibrium Returns And (Percentage) Equity Premium As A Function Of State

(Level Of Dividend On Tree), Logarithmic Utility (Risk Aversion = 1).

State Tree Bond (Equity Premium)

High 3.4% -0.5% (3.9%)

Low 55% 49% (6%)
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result is far from trivial: returns are determined not only by future dividends,

but also future prices, and it is not a priori clear that prices behave like divi-

dends! With logarithmic utility, the difference between the price of the Tree and

that of the Bond is $0.62 if the dividend on the Tree is high ($1), and $0.42

when this dividend is low ($0). See Table 1. This table also lists prices and cor-

responding equity premia for risk aversion coefficients equal to 0.5 (square-root

utility) and 0.1.5 We refer to the difference between the Bond and Tree prices as

the equity premium. Usually, the equity premium is defined as the difference in

expected returns (between a risky benchmark and a relatively riskfree security).

To avoid confusion, we refer to our version of the equity premium as the dollar

equity premium. For logarithmic preferences, the results translate into expected

(percentage) returns and percentage equity premia as in Table 2.

2. Intertemporal Restrictions: Asset prices depend on the dividend of the Tree.

As such, prices depend on fundamentals, a key prediction of the Lucas model.

The explanation is that when dividends are abundant (the state is High), agents

need to be incentivized to consume the (perishable) dividend rather than buying

assets. Markets provide the right incentives by pricing the assets dearly. Con-

versely, in the Low state, agents should be induced to save and invest rather than

consume, which is accomplished through low pricing of the assets. Numerically,

with logarithmic utility, the Tree price is $2.50 when the Tree dividend is high,

and $1.67 when it is low; the corresponding Bond prices are $3.12 and $2.09. See

Table 1. Such prices induce significant predictability in the asset returns: when

the dividend of the Tree is high, the expected return on the Tree is only 3.4%

(equal to (0.5. ∗ (2.50 + 1) + 0.5 ∗ 1.67)/2.5− 1) while it equals 55% when the div-

idend on the Tree is low! See Table 2. This predictability contrasts with simple

formulations of EMH (Fama, 1991) which posit that expected returns are con-

stant. Time-varying expected returns obtain despite the fact that the dividends

are i.i.d. (in levels). Notice that the equity premium (difference in expected re-

turn on the Tree and the Bond) is countercyclical. Again, this incentivizes agents

correctly. When dividends are low, the equity premium is high, enticing agents

to take risk and invest in Trees, keeping them from consuming the (scarce) divi-

dends. When dividends are high, the equity premium is low, keeping agents from

taking too much risk and investing in Trees, thus incentivizing them to consume

5The equilibrium prices are unique; in particular, they do not depend on the State outcome in Period 1

(State = dividend on tree).
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the abundant dividends.6

3. Linking Cross-sectional and Intertemporal Restrictions: as risk tolerance

increases, the (cross-sectional) difference between the prices of the Tree and the

Bond diminishes, as does the (time-series) dependence of prices on economic

fundamentals. Table 1 shows how the difference in prices of an asset decreases

with risk aversion (the Tree price difference decreases from 0.83 to 0.45 and 0.10

as one moves from logarithmic utility down to risk aversion equal to 0.5 and 0.1)

while at the same time the dollar equity premium (averaged across states) drops

from 0.52 to 0.22 to 0.05. In the extreme case of risk neutrality, both the Tree and

Bond are priced at a constant $2.50. For the range of risk aversion coefficients

between 0 (risk neutrality) and 1 (logarithmic utility), the correlation between

the difference in prices across states and the dollar equity premium (averaged

across states) equals 0.99 for the Tree and 1.00 for the Bond!7

4. Equilibrium Consumption: In equilibrium, consumption across types is per-

fectly rank-correlated, a key property of Pareto optimal allocations with time-

separable expected utility. With only two (dividend) states, this means that

consumption for both types is high in the high state and low in the low state. If

we assume that agents have identical preferences, they should consume a constant

fraction of the aggregate cash flow (the total of dividends and incomes). Thus,

agents fully offset their income fluctuations and as a result obtain smooth con-

sumption. Pareto optimal allocations obtain as if we had a complete set of state

securities. But we don’t. We only have two securities (a Tree and a Bond). Still,

conditional on investors implementing sophisticated dynamic trading strategies

(more on those below), two securities suffice. Markets are said to be dynamically

complete. Our model, therefore, is an instantiation of the general proposition

that complete-markets Pareto optimal allocations can be implemented through

trading of a few well chosen securities (Duffie and Huang, 1985). Implementation

depends, however, on correct anticipation of future prices. That is, implemen-

6From Equation 2, one can derive the (shadow) price of a one-period pure discount bond with principal

of $1, and from this price, the one-period risk free rate. In the High state, the rate equals -4%, while in

the low state, it equals 44%. As such, the risk free rate mirrors changes in expected returns on the Tree

and Bond. The reader can easily verify that, when defined as the difference between the expected return on

the market portfolio (the per-capita average portfolio of Trees and Bonds) and the risk free rate, the equity

premium is countercyclical, just like it is when defined as the difference between the expected return on the

Tree and on the Bond.
7The relationship is slightly nonlinear, which explains why the correlation is not a perfect 1.
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Table 3: Type I Agent Equilibrium Holdings and Trading As A Function Of (Constant

Relative) Risk Aversion And Period (Odd; Even).

Risk Aversion Period Tree Bond (Total)

0.1 Odd 5.17 2.97 (8.14)

Even 4.63 6.23 (10.86)

(Trade in Odd) (+0.50) (-3.26)

0.5 Odd 6.32 1.96 (8.28)

Even 3.48 7.24 (10.72)

(Trade in Odd) (+2.84) (-5.28)

1 Odd 7.57 0.62 (8.19)

Even 2.03 7.78 (9.81)

(Trade in Odd) (+5.54) (-7.16)

tation is through a Radner equilibrium (Radner, 1972). This contrasts with a

complete-markets version of our model, which would generate Pareto optimal-

ity through a simple Walrasian equilibrium. In the complete-markets Walrasian

equilibrium, there is no need to formulate beliefs about future prices, because

all state securities, and hence, all prices are available from the beginning. See

Bossaerts et al. (2008) for an experimental iuxtaposition of the two cases.

5. Trading for Consumption Smoothing: Agents obtain equilibrium consump-

tion smoothing mostly through exploiting the price differential between Trees and

Bonds: when they receive no income, they sell Bonds and buy Trees, and since

the Tree is always cheaper, they generate cash; conversely, in periods when they

do receive income, they buy (back) Bonds and sell Trees, depleting their cash

because Bonds are more expensive. See Table 3.8 To see why agents obtain con-

sumption smoothing mostly through the difference in prices of Trees and Bonds

rather than by simpling selling any security when in need of cash, one needs to

consider price risk, which we do next.

6. Trading to Hedge Price Risk: Because prices move with economic funda-

8Equilibrium holdings and trade do not depend on the state (dividend of the Tree). However, they do

depend on the state in Period 1. Here, we assume that the state in Period 1 is high (i.e., the Tree pays a

dividend of $1). When the state in Period 1 is low, there is a technical problem for risk aversion of 0.5 or

higher: in Odd periods, agents need to short sell Bonds. In the experiment, short sales were not allowed.
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mentals, and economic fundamentals are risky (because the dividend on the Tree

is), there is price risk. When they sell assets to cover an income shortfall, agents

need to insure against the risk that prices might change by the time they are

ready to buy back the assets. In equilibrium, prices increase with the dividend

on the Tree, and agents correctly anticipate this. Since the Tree pays a dividend

when prices are high, it is the perfect asset to hedge price risk. Consequently (but

maybe counter-intuitively!), agents buy Trees in periods with income shortfall and

they sell when their income is high. See Table 3, which shows, for instance, that

a Type I agent with logarithmic preferences will purchase more than 5 Trees in

periods when they have no income (Odd periods), subsequently selling them (in

Even periods) in order to buy back Bonds. Hedging is usually associated with

Merton’s intertemporal asset pricing model (Merton, 1973b) and is the core of

modern derivatives analysis (Black and Scholes, 1973; Merton, 1973a). Here, it

forms an integral part of the trading predictions of the Lucas model.

In summary, our implementation of the Lucas model predicts that securities prices

differ cross-sectionally depending on consumption betas (the Tree has the higher beta),

while intertemporally, securities prices move with fundamentals (dividends of the Tree).

The two predictions reinforce each other: the bigger the difference in prices across

securities, the larger the intertemporal movements. Investment choices should be such

that consumption (cash holdings at the end of a period) across states becomes perfectly

rank-correlated between agent types (or even perfectly correlated, if agents have the

same preferences). Likewise, consumption should be smoothed across periods with and

without income. Investment choices are sophisticated: they require, among others,

that agents hedge price risk, by buying Trees when experiencing income shortfalls (and

selling Bonds to cover the shortfalls), and selling Trees in periods of high income (while

buying back Bonds). In the experiment, we tested these six, inter-related predictions.

4 Implementing the Lucas Model

When planning to implement the above Lucas economy in the laboratory, three diffi-

culties remain.

a. There is no natural demand for consumption smoothing in the laboratory. Be-

cause actual consumption is not feasible until after an experimental session con-

cludes, it would not make much of a difference if we were to pay subjects’ earnings

gradually, over several periods.
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b. The Lucas economy has an infinite horizon, but an experimental session has to

end in finite time.

c. The Lucas economy is stationary.

In our experiment, we used the standard solution to resolve issue (b), which is to

randomly determine if a period is terminal (Camerer and Weigelt, 1996). This ending

procedure also introduces discounting: the discount factor will be proportional to the

probability of continuing the session. We set the termination probability equal to 1/6,

which means that we induced a discount factor of β = 5/6 (the number used in the

theoretical calculations in the previous section). In particular, after the markets in

period t close, we rolled a twelve-sided die. If it came up either 7 or 8, we terminated;

otherwise we moved on to a new period.

To resolve issue (a), Crockett and Duffy (2010) resorted to nonlinearities in payoff-

earnings relationships: period payoffs are transformed into final experiment earnings

through a nonlinear transformation. This way, it mattered that subjects spread payoffs

across periods, and hence, demand for smoothing was induced. Ideally, however, one

would like to avoid this, because nonlinearities are not part of the original Lucas model.

Instead, risk sharing is what drives pricing in the model.

Our solution was to make end-of-period individual cash holdings disappear in each

period that was not terminal; only securities holdings carried over to the next period.

If a period was terminal, however, securities holdings perished. Participants’ earnings

were then determined entirely by the cash they held at the end of this terminal pe-

riod. As such, if participants have expected utility preferences, their preferences will

automatically become of the time-separable type that Lucas used in his model, albeit

with an adjusted discount factor: the period-t discount factor becomes (1 − β)βt−1.9

It is straightforward to show that all results (prices; allocations) remain the same,

simply because the new utility function to be maximized is proportional to the old one

[Eqn. (1)] with constant of proportionality (1− β).

As such, the task for the subjects was to trade off cash against securities. Cash is

needed because it constituted experiment earnings if a period ended up to be terminal.

9Starting with Epstein and Zin (1991), it has become standard in research on the Lucas model with

historical field data to use time-nonseparable preferences, in order to allow risk aversion and intertemporal

consumption smoothing to affect pricing differentially. Because of our experimental design, we cannot

appeal to time-nonseparable preferences if we need to explain pricing anomalies. Indeed, time separability

is a natural consequence of expected utility. We consider this to be a strength of our experiment: we have

tighter control over preferences. This is addition to our control of beliefs: we make sure that subjects

understand how dividends are generated, and how termination is determined.
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Securities, in contrast, generated cash in future periods, for in case a current period was

not terminal. It was easy for subjects to grasp the essence of the task. The simplicity

allowed us to make instructions short. See Appendix for sample instructions.

It is far less obvious how to resolve problem (c). In principle, the constant termi-

nation probability would do the trick: any period is equally likely to be terminal. This

does imply, however, that the chance of termination does not depend on how long the

experiment has been going, and therefore, the experiment could go on forever, or at

least, take much longer than a typical experimental session. Our own pilots confirmed

that subjects’ beliefs were very much affected as the session reached the 3 hour limit.

Here, we propose a simple solution, exploiting essential features of the Lucas model.

It works as follows. We announced that the experimental session would last until a

pre-specified time and there would be as many replications of the (Lucas) economy as

could be fit within this time frame. If a replication finished at least 10 minutes before

the announced end time, a new replication started. Otherwise, the experimental session

was over. If a replication was still running by the closing time, we announced before

trade started that the current period was either the last one (if our die turned up 7

or 8) or the penultimate one (for all other values of the die). In the latter case, we

moved to the next period and this one became the terminal one with certainty. This

meant that subjects would keep the cash they received through dividends and income

for that period. (There will be no trade because assets perish at the end, but we always

checked to see whether subjects correctly understood the situation.) In the Appendix,

we re-produce the time line plot that we used alongside the Instructions to facilitate

comprehension.

It is straightforward to show that the equilibrium prices remain the same whether

the new termination protocol is applied or if termination is perpetually determined
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with the roll of a die. In the former case, the pricing formula is:10

pk,t =
β

1− β
E[
u′(ci,t+1)

u′(ci,t)
dk,t+1]. (3)

To see that the above is the same as the formula in Eqn. (2), apply the assumption of

i.i.d. dividends and the consequent stationary investment rules (which generate i.i.d.

consumption flows) to re-write Eqn. (2) as follows:

pk,t =
∞∑
τ=0

βτ+1E[
u′(ci,t+τ+1)

u′(ci,t+τ )
dk,t+τ+1]

= βE[
u′(ci,t+1)

u′(ci,t)
dk,t+1]

∞∑
τ=0

βτ

=
β

1− β
E[
u′(ci,t+1)

u′(ci,t)
dk,t+1],

which is the same as Eqn. (3).

Because income and dividends, and hence, cash, fluctuated across periods, and cash

were taken away as long as a period was not terminal, subjects had to constantly trade.

As we shall see, trading volume was indeed uniformly high. In line with Crockett and

Duffy (2010), we think that this kept serious pricing anomalies such as bubbles from

emerging. Trading took place through an anonymous, electronic continous open book

system. The trading screen, part of software called Flex-E-Markets,11 was intuitive,

requiring little instruction. Rather, subjects quickly familiarized themselves with key

aspects of trading in the open-book mechanism (bids, asked, cancelations, transaction

determination protocol, etc.) through one mock replication of our economy during the

instructional phase of the experiment. A snapshot of the trading screen is re-produced

in Figure 1.

10To derive the formula, consider agent i’s optimization problem in period t, which is terminal with

probability 1− β, and penultimate with probability β, namely: max (1− β)u(ci,t) + βE[u(ci,t+1)], subject

to a standard budget constraint. The first-order conditions are, for asset k:

(1− β)
∂u(ci,t)

∂c
pk,t = βE[

∂u(ci,t+1)

∂c
dk,t+1].

The left-hand side captures expected marginal utility from keeping cash worth one unit of the security; the

right-hand side captures expected marginal utility from buying the unit; for optimality, the two expected

marginal utilities have to be the same. Formula (3) obtains by re-arrangement of the above equation. Under

risk neutrality, and with β = 5/6, pk,t = 2.5 for k ∈ {Tree,Bond}
11Flex-E-Markets is documented at http://www.flexemarkets.com/site; the software is freely available to

academics upon request.
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Shortsales were not allowed because of an obvious problem with ensuring subject

solvency. Indeed, human subject protection rules do not allow us to charge subjects

in case they finish with negative experiment earnings, which they could very well end

up with if we had allowed shortsales. This is also why, contrary to Lucas’ original

model, the Bond is in positive net supply. This way, more risk tolerant subjects could

merely reduce their holdings of Bonds rather than having to sell short (which was not

permitted). Allowing for a second asset in positive supply only affects the equilibrium

quantitatively, not qualitatively.12

All accounting and trading was done in U.S. dollars. Thus, subjects did not have

to convert from imaginary experiment money to real-life currency.

We ran as many replications as possible within the time allotted to the experimental

session. In order to avoid wealth effects on subject preferences, we paid for only a fixed

number (say, 2) of the replications, randomly chosen after conclusion of the experiment.

(If we ran less replications than this fixed number, we paid multiples of some or all of

the replications.)

5 Results

We conducted six experimental sessions, with the participant number ranging between

12 and 30. Three sessions were conducted at Caltech, two at UCLA, and one at the

University of Utah. This generated 80 periods in total, spread over 15 replications.

Table 4 provides specifics. Our novel termination protocol was applied in all sessions.

The starred sessions ended with a period in which participants knew for sure that it

was the last one, and hence, generated no trade.

We first discuss volume, and then look at prices and choices.

Volume. Table 5 lists average trading volume per period (excluding periods in

which should be no trade). Consistent with theoretical predictions, trading volume in

Periods 1 and 2 is significantly higher; it reflects trading needed for agents to move to

their steady-state holdings. In the theory, subsequent trade takes place only to smooth

consumption across odd and even periods. Volume in the Bond is significantly lower

in Periods 1 and 2. This is an artefact of the few replications when the state in Period

1 was low. It deprived Type I participants of cash (Type I participants start with 10

Trees and no income). In principle, they should have been able to sell enough Trees to

buy Bonds, but evidently they did not manage to complete all the necessary trades in

12Because both assets are in positive supply, our economy is an example of a Lucas orchard economy

(Martin, 2011).
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Table 4: Summary data, all experimental sessions.

Session Place Replication Periods Subject

Number (Total, Min, Max) Count

1 Caltech∗ 4 (14, 1, 7) 16

2 Caltech 2 (13, 4, 9) 12

3 UCLA∗ 3 (12, 3, 6) 30

4 UCLA∗ 2 (14, 6, 8) 24

5 Caltech∗ 2 (12, 2, 10) 20

6 Utah∗ 2 (15, 6, 9) 24

(Overall) 15 (80, 1, 10)

the alotted time (four minutes). Across all periods, 23 Trees and 17 Bonds were traded

on average. With an average supply of 210 securities of each type, this means that

roughly 10% of available securities was turned over each period.13 Overall, the sizeable

volume is therefore consistent with theoretical predictions. To put this differently: we

designed the experiment such that it would be in the best interest for subjects to trade

every period, and subjects evidently did trade a lot.

Cross-Sectional Price Differences. Table 6 displays average period transaction

prices as well as the period’s state (“High” if the dividend of the Tree was $1; “Low”

if it was $0). Consistent with the Lucas model, the Bond is priced above the Tree,

with the price differential (the dollar equity premium) of about $0.50. When checking

against Table 1, this reflects a (constant relative) risk aversion aversion coefficient of 1

(i.e., logarithmic utility).

Prices Over Time. Figure 2 shows a plot of the evolution of (average) prices

over time, arranged chronologically by experimental sessions (numbered as in Table 4);

replications within a session are concatenated. The plot reveals that prices are volatile.

In theory, prices should move only because of variability in economic fundamentals,

which in this case amounts to changes in the dividend of the Tree. Specifically, prices

should be high in High states, and low in Low states. In reality, much more is going

on; prices are credpb excessively volatile. In particular, contrary to the Lucas model,

price drift can be detected. Still, the direction of the drift is not obvious; the drift

appears to be stochastic.

13Since trading lasted on average 210 seconds each period, one transaction occurred approximately every

5 seconds.
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Table 5: Trading volume.

Periods Tree Bond

Trade Volume Trade Volume

All

Mean 23 17

St. Dev. 12 11

Min 3 2

Max 59 58

1 and 2

Mean 30 21

St. Dev. 15 14

Min 5 4

Max 59 58

≥ 3

Mean 19 15

St. Dev. 8 9

Min 3 2

Max 36 41

Table 6: Period-average transaction prices and corresponding ‘equity premium’.

Tree Bond ‘Equity

Price Price Premium’

Mean 2.75 3.25 0.50

St. Dev. 0.41 0.49 0.40

Min 1.86 2.29 -0.20

Max 3.70 4.32 1.79

17



Table 7: Mean period-average transaction prices and corresponding dollar equity premium,

as a function of state.

State Tree Bond Equity Premium

Price Price (Dollar)

High 2.91 3.34 0.43

Low 2.66 3.20 0.54

Difference 0.24 0.14 -0.11

Nevertheless, behind the excessive volatility, evidence in favor of the Lucas model

emerges. As Table 7 shows, prices in the high state are on average 0.24 (Tree) and

0.14 (Bond) above those in the low state. That is, prices do appear to move with

fundamentals (dividends). The table does not display statistical information because

(average) transaction prices are not i.i.d., so that we cannot rely on standard t tests

to determine significance. We will provide formal statistical evidence later on, taking

into account the stochastic drift evident from Figure 2.14

Cross-Sectional And Time Series Price Properties Together. While prices

in High states are above those in Low ones, the differential is small compared to the

size of the dollar equity premium. The average equity premium of $0.50 corresponds

to a coefficient of relative risk aversion of 1, as mentioned before. This level of risk

aversion would imply a price differential across states of $0.83 and $1.03 for the Tree

and Bond, respectively. See Table 1. In the data, the price differentials amount to only

$0.24 and $0.14. In other words, the co-movement between prices and fundamentals is

lower than implied by the cross-sectional differences in prices between securities.

Still, the theory also states that the differential in prices between High and Low

states should increase with the dollar equity premium. Table 8 shows that this is true

in the experiments. The observed correlation is not perfect (unlike in the theory), but

marginally significant for the Tree; it is insignificant for the Bond.

Prices: Formal Statistics. To enable formal statistical statements about the

price differences across states, we ran a regression of period transaction price levels

14Table 7 also shows that the dollar equity premium is higher in periods when the state is Low than when

it is High. This is inconsistent with the theory. The average level of the dollar equity premium reveals

logarithmic utility, and for this type of preferences, the equity premium should be lower in bad periods; see

Table 1. This prediction is true for other levels of risk aversion too, but for lower levels of risk aversion, the

difference in dollar equity premium across states is hardly detectible.
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Table 8: Correlation between dollar equity premium (average across periods) and price

differential of tree and bond across High and Low states.

Tree Bond

Correlation 0.80 0.52

(St. Err.) (0.40) (0.40)

onto the state (=1 if high; 0 if low). To adjust for time series dependence evident in

Figure 2, we added session dummies and a time trend (Period number). In addition,

to gauge the effect of our session termination protocol, we added a dummy for periods

when we announce that the session is about to come to a close, and hence, the period

is either the penultimate or last one, depending on the draw of the die. Lastly, we add

a dummy for even periods. Table 9 displays the results.

We confirm the positive effect of the state on price levels. Moving from a Low to

a High state increases the price of the Tree by $0.24, while the Bond price increases

by $0.11. The former is the same number as in Table 7; the latter is a bit lower. The

price increase is significant (p = 0.05) for the Tree, but not for the Bond.

The coefficient to the termination dummy is insignificant, suggesting that our termi-

nation protocol is neutral, as predicted by the Lucas model. This constitutes comforting

evidence that our experimental design was correct.

Closer inspection of the properties of the error term did reveal substantial depen-

dence over time, despite our including dummies to mitigate time series effects. Table 9

shows Durbin-Watson (DW) test statistics with value that correpond to p < 0.001.

Proper time series model specification analysis revealed that the best model involved

first differencing price changes, effectively confirming the stochastic drift evident in

Figure 2 and discussed before. All dummies could be deleted, and the highest R2 was

obtained when explaining (average) price changes as the result of a change in the state.

See Table 10.15 For the Tree, the effect of a change in state from Low to High is a

significant $0.19 (p < 0.05). The effect of a change in state on the Bond price remains

insignificant, however (p > 0.05). The autocorrelations of the error terms are now

acceptable (marginally above their standard errors).

At 18%, the explained variance of Tree price changes (R2) is high. In theory,

15We deleted observations that straddled two replications. Hence, the results in Table 10 are solely based

on intra-replication price behavior. The regression does not include an intercept; average price changes are

insignificantly different from zero.
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Table 9: OLS regression of period-average transaction price levels on several explanatory

variables, including state dummy. (∗ = significant at p = 0.05; DW = Durbin-Watson

statistic of time dependence of the error term.)

Explanatory Tree Price Bond Price

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Session Dummies:

1 2.69∗ (2.53, 2.84) 3.17∗ (2.93, 3.41)

2 2.69∗ (2.51, 2.87) 3.31∗ (3.04, 3.59)

3 1.91∗ (1.75, 2.08) 2.49∗ (2.23, 2.74)

4 2.67∗ (2.50, 2.84) 2.92∗ (2.66, 3.18)

5 2.47∗ (2.27, 2.67) 2.86∗ (2.56, 3.17)

6 2.23∗ (2.05, 2.40) 3.42∗ (3.16, 3.69)

Period Number 0.06∗ (0.03, 0.08) 0.06∗ (0.01, 0.10)

State Dummy (High=1) 0.24∗ (0.12, 0.35) 0.11 (-0.07, 0.29)

Initiate Termination -0.07 (-0.28, 0.14) -0.01 (-0.33, 0.31)

Dummy Even Periods -0.00 (-0.11, 0.11) -0.11 (-0.28, 0.06)

R2 0.71 0.52

DW 1.05∗ 0.88∗

Table 10: OLS regression of changes in period-average transaction prices. (∗ = significant

at p = 0.05.)

Explanatory Tree Price Change Bond Price Change

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Change in State Dummy

(None=0; High-to-Low=-1, 0.19∗ (0.08, 0.29) 0.10 (-0.03, 0.23)

Low-to-High=+1)

R2 0.18 0.04

Autocor. (s.e.=0.13) 0.18 -0.19
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Table 11: Average consumption (end-of-period cash holdings) as a function of participant

Type and State. Autarky numbers in parentheses.

Consumption ($) Consumption Ratio

Type High Low High Low

I 14.93 (19.75) 7.64 (4.69) 1.01 (0.52) 1.62 (3.26)

II 15.07 (10.25) 12.36 (15.31)

one should be able to explain 100% of price variability. But prices are excessively

volatile, as already discussed in connection with Figure 2. Overall, the regression in

first differences shows that, consistent with the Lucas model, fundamental economic

forces are behind price changes, significantly so for the Tree. But at the same time,

prices are excessively volatile, with no distinct drift.

Figure 3 displays the evolution of price changes, after chronologically concatenating

all replications for all sessions. Like in the data underlying the regression in Table 10,

the plot only shows intra-replication price changes. The period state (=1 if Low; 2 if

High) is plotted on top.

Consumption Across States. Prediction 4 of the Lucas model states that agents

of both types should trade to holdings that generate high consumption in High states,

and low consumption in Low states. Assuming identical preferences, they should con-

sume a fixed fraction of total period cash flows, or the ratio of Type I to Type II

consumption should be equal in both states. The left-hand panel of Table 11 displays

the average amount of cash (consumption) per type in High vs. Low states.16 In paren-

theses, we indicate consumption levels assuming that agents do not trade (i.e., under an

autarky). The statistics in the table confirm that consumption of both types increases

with dividend levels. The result is economically significant because consumption is

anti-correlated under autarky. This is strong evidence in favor of Lucas’ model.

Notice that under autarky (numbers in parentheses), consumption is anti-correlated

across subject types. Type I subjects consume more in the High than in the Low

state, and vice versa for Type II subjects. We deliberately picked parameters for our

experiment to generate this autarky outcome, to contrast it with the (Pareto-optimal)

outcome of the Lucas model, which predicts that consumption would become positively

correlated.

16To compute these averages, we ignored Periods 1 and 2, to allow subjects time to trade from their initial

holdings to steady state positions.
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Table 12: Average consumption (end-of-period cash holdings) as a function of participant

and period Types.

Consumption ($)

Type Odd Even

I 7.69 (2.41) 13.91 (20.65)

II 14.72 (20) 11.74 (5)

The right panel of Table 11 displays Type II’s consumption as a ratio of Type I’s

consumption. The difference is substantially reduced from what would obtain under

autarky (which is displayed in parentheses). Again, this supports the Lucas model,

though the theory would want the consumption ratios to be exactly equal across states

if preferences are the same.

Consumption Across Odd And Even Periods. Our fourth prediction is that

subjects should be able to perfectly offset income differences across odd and even peri-

ods. Table 12 demonstrates that our subjects indeed managed to smooth consumption

substantially; the outcomes are far more balanced than under autarky (in parentheses;

averaged across High and Low states, excluding Periods 1 and 2).17

Price Hedging. The above results suggest that our subjects (on average) managed

to move substantially towards (Pareto-optimal) equilibrium consumption patterns in

the Lucas model. However, contrary to model prediction, they did not resort to price

hedging as a means to ensure those patterns. Table ?? displays average asset holdings

across periods for Type I subjects (who receive income in even periods). They are

net sellers of assets in periods of income shortfall (see “Total” row), just like the

theoretical agents with logarithmic utility (see Table 3). But unlike in the theoretical

model, subjects decrease Tree holdings in low-income periods and increase them in

high-income periods (compare to Table 3). As a by-product, Type I subjects generate

cash mostly through selling Trees as opposed to exploiting the price differential between

the Bond and the Tree. Only in period 9 is there some evidence of price hedging: Type

I subjects on average buy Trees when they are income-poor (Period 9’s holding of Trees

is higher than Period 8’s).

Altogether, it appears that the findings from our experiments are in line with the

17Autarky consumption of Type II subjects is not affected by states, because they are endowed with Bonds

which always pay $0.50 in dividends. In contrast, autarky consumption of Type I subjects depends on states.

We used the sequence of realized states across all the sessions to compute their autarky consumption.
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Table 13: End-Of-Period Asset Holdings Of Three Randomly Chosen Type I Subjects. Initial

allocation is listed in column (0), for reference. Data from one replication in the first Caltech

session.

Subject (0) 1 2 3 4 5 6

Trees:

3 10 4 4 3 4 3 4

5 10 1 1 0 1 1 3

7 10 7 10 13 15 19 20

Bonds:

3 0 3 5 3 5 3 4

5 0 8 15 14 15 16 17

7 0 2 3 0 4 0 4

predictions of the Lucas model, with two exceptions: (i) prices were excessively volatile;

(ii) subjects did not engage in price hedging.

These two anomalies could be related. Subjects may actually have expected volatile

prices with no relation to economic fundamentals. If so, they would rationally have

perceived no need to hedge price risk. In the short time span of a typical replication,

their beliefs could not easily be falsified because prices were indeed very noisy. Still,

the beliefs are actually wrong, at least as far as the Tree is concerned – but this we

ourselves discovered only after pooling the price behavior from all sessions.

Regarding choices, however, there are significant individual differences, reminiscent

of the huge cross-sectional variation in choices in static asset pricing experiments that

led to the development of the ε-CAPM (Bossaerts et al., 2007a). Table 13 illustrates

how three randomly chosen subjects of the same type (Type I) end up holding vastly

different portfolios of Trees and Bonds. Curiously, subject 7 increased his holdings

of Trees over time. Significantly, this subject bought Trees even in periods with in-

come shortfall (odd periods), effectively implementing the price hedging strategy of

the theory. Subject 3 is almost a perfect agent, diversifying across Trees and Bonds.

But Subject 3 does not resort to price hedging, because Tree holdings decrease in odd

periods. The message to be drawn from the table should be clear: one ought not to

draw conclusions about prices or allocations at the market level from merely observing

a single individual. Conversely, it is difficult to find a subject whose choices “explain”

prices.
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6 Discussion

The experiments demonstrate that our design “delivers” in the sense that it generates

meaningful results in line with the Lucas model, with the exception of the excessively

volatile prices and the absence of concern for price hedging among subjects.

Here, we discuss how these two anomalies may actually be related.

To see how, remember that in our setting, for the Lucas pricing results to obtain,

agents need to have perfect foresight of the equilibrium relationship between prices and

dividends. That is, the Lucas pricing results are the outcome of a Radner equilibrium

(Radner, 1972). An interesting question is whether small deviations from perfect fore-

sight would have noticeable effects on equilibrium prices and allocations. As we shall

see, the effect on prices is substantial; while the effect on allocations is minimal. The

effect on prices was independently discovered in Adam et al. (2012), and proves useful

to explain excess volatility in historical field data, just like we can use it to make sense

of our experimental data.18

The absence of demand for (price) hedging may indeed reflect subjects’ belief that

prices do not co-move with economic fundamentals. It seems that subjects expected

prices to be a martingale, as if subjects believed in the naive version of the EMH that

the Lucas model discredits. The belief is wrong, as we pointed out, but not readily

falsifiable within the short time of an experiment, and even after 80 observations (80

periods), not falsifiable for Bond prices (see Table 10). That is, the belief is a credible

working hypothesis.

To determine the equilibrium effects of these beliefs, imagine that agents always ex-

pect past prices to be best predictions of future prices, irrespective of future economic

fundamentals. Given these beliefs, agents correctly solve their dynamic investment-

consumption problem, send corresponding demands to markets, where prices are such

that there is equilibrium each period. How would this equilibrium evolve over time?

Simulations which we performed reveal that prices behave very much like in the exper-

iment. They exhibit stochastic drift. While they do co-move with dividends, they are

very noisy, and hence, excessively volatile. Figure 4 plots the evolution of the prices of

18Most analyses of belief mistakes in the context of the Lucas model have looked at false beliefs about the

(exogenous) economic fundamentals. See, e.g., Hassan and Mertens (2010). Adam et al. (2012) and ours are

the only studies that focus exclusively on the endogenous aspects of a Lucas economy, namely, the mapping

of states to prices. We claim that agents would have a much harder time learning about endogenous random

variables – prices – than about exogenous random variables – dividends. In fact, in our experimental setting,

subjects were told what the process of exogenous random variables was, while we left it to them to correctly

anticipate future prices.
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the Tree and Bond over the first 100 periods in one simulation. Plotted also are the

state realizations (in red). The similarity with prices in our experiments (see Figure 2)

is striking; the similarity was confirmed in formal statistical tests.

Importantly, just like in the experiments, excessive volatility makes it hard for one to

reject the null that prices are unrelated to fundamentals. At conventional p levels (5%),

it almost always takes 10 periods before detecting significant correlation between prices

and fundamentals, and even then, the effect is only marginal economically, meaning

that one may not want to implement the elaborate price hedging strategies that are

required to generate the Lucas equilibrium.

Overall, then, beliefs are not far off the mark. Agents expect past prices to be

best predictors of future prices, and these beliefs are almost confirmed in the resulting

equilibrium. This is “almost” a Radner equilibrium (beliefs about prices are almost

correct), yet prices are vastly different from the real Radner equilibrium (i.e., the Lucas

model). Our exercise teaches that the Lucas model is not robust to slight mistakes

in expectations about prices. As mentioned before, Adam et al. (2012) derived an

analogous result, and showed that it provides a good rationale for excessive volatility

of historical real-world stock market prices.

Interestingly, allocations in our “near” Radner equilibrium are close to Pareto op-

timal, just like in the experiments. This is because agents invest correctly given their

beliefs, and their beliefs are “near” correct. As such, “near” Radner equilibria may

look vastly different from the Lucas outcome in terms of pricing, but generate nearly

the same allocations. The message is clear: if welfare is the goal, excessive volatility

is of little concern, as long as beliefs are nearly fulfilled, and agents correctly act on

them.19

7 Conclusion

Over the last thirty years, the Lucas model has become the core theoretical model

through which scholars of macroeconomics and finance view the real world, advise

investments in general and retirement savings in particular, prescribe economic and

financial policy and induce confidence in financial markets. Despite this, little is known

about the true relevance of the Lucas model. The recent turmoil in financial markets

19Notice that our conclusion is diametrically opposed to that in Hassan and Mertens (2010), but this is

because the latter paper assumes that agents have incorrect beliefs about economic fundamentals. Instead,

our agents have the right beliefs about fundamentals, and only slightly incorrect beliefs about equilibrium

prices.
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and the effects it had on the real economy has severely shaken the belief that the Lucas

model has anything to say about financial markets. Calls are being made to return

to pre-Lucas macroeconomics, based on reduced-form Keynesian thinking. This paper

was prompted by the belief that proper understanding of whether the Lucas model (and

the Neoclassical thinking underlying it) is or is not appropriate would be enormously

advanced if we could see whether the model did or did not work in the laboratory.

Of course, it is a long way from the laboratory to the real world, but it should be

kept in mind that no one has ever seen convincing evidence of the Lucas model “at

work” – just as no one had seen convincing evidence of another key model of finance

(the Capital Asset Pricing Model or CAPM) at work until the authors (and their

collaborators) generated this evidence in the laboratory (Asparouhova et al., 2003;

Bossaerts and Plott, 2004; Bossaerts et al., 2007a). The research provides absolutely

crucial – albeit modest – evidence concerning the scientific validity of the core asset

pricing model underlying formal macroeconomic and financial thinking.

Specifically, despite their complexity, our experimental financial markets exhibited

many features that are characteristic of the Lucas model, such as the co-existence of a

significant equity premium and (albeit reduced) co-movement of prices and economic

fundamentals. Consistent with the model, the co-movement increased with the magni-

tude of the equity premium. And subjects managed to smooth consumption over time

and across states. Smoothing was not perfect, but sufficient for consumption to be-

come positively correlated across subject types, consistent with Pareto optimality, and

in sharp contrast with consumption under autarky, which was negatively correlated.

Prices were excessively volatile though (not unlike in the real world, incidentally). And

we did not observe price hedging, perhaps because subjects believed that the best pre-

dictor for future prices were past prices (reminiscent of a naive version of EMH?).

Still, such beliefs were not irrational: within the time frame of a single replication,

there was insufficient evidence to the contrary, because the excess volatility made it

hard to determine to what extent prices really reacted to fundamentals.

Overall, we view our experiments as a success for the Lucas model. Note that

this model is only a reduced-form version of a general equilibrium. It assumes that

markets somehow manage to reach Pareto optimal allocations, but is silent about how

to get there. In our experiment, markets were incomplete, which makes attainment of

Pareto optimality all the more challenging – markets had to be dynamically complete,

and sophisticated trading strategies were required. Our design was in part mandated

by experimental considerations: with incomplete markets, subjects had to trade every

period. Crockett and Duffy (2010) have demonstrated that subjects need a serious
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reason to trade in all periods, otherwise pricing anomalies (bubbles) emerge. But we

would also argue that realistic markets are generically incomplete, and as such, our

experiments provide an ecologically relevant test of the Lucas model.

Real-world financial markets are thought to be excessively volatile, and policy mak-

ers have long been worried about this. On the policy side, our experimental results lead

to a provocative conclusion: if welfare is the goal, excessive volatility is of little concern.

This conclusion holds as long as beliefs are nearly fulfilled, and agents correctly act on

them. The possibility that financial markets may be able to generate Pareto optimal

outcomes in spite of excessive volatility has so far escaped the attention of empiricists

and theorists, because evaluation of Pareto optimality cannot be performed on field

data. Pricing had to be focused on, taking allocations as given. Experiments like ours,

in contrast, allow one to study the optimality of allocations, and the interplay between

prices and allocations.

Our experimental results also illustrate that it is dangerous to extrapolate from the

individual to the market. As in our static experiments (Bossaerts et al., 2007b), we

find substantial heterogeneity in choices across subjects; most individual choices have

little or no explanatory power for market prices, or even for choices averaged across

subjects of the same type (same endowments). Overall, the system (market) behaves

as in the theory (modulo excessive price volatility), but the theory is hardly reflected in

individual choices. As such, we would caution against developing asset pricing theories

where the system is a mirror image of (one of) its parts. For instance, it is doubtful that

prices in financial markets would reflect, say, prospect theoretic preferences (Barberis

et al., 2001), merely because many humans exhibit such preferences (leaving aside the

problem that these preferences do not easily aggregate). The “laws” of the (financial)

system are different from those of its parts.

The next step in our experimental analysis should be to reduce the termination

probability, thereby generating longer time series. This way, one could study to what

extent markets eventually converge to the Lucas equilibrium. The reader may wonder

why we have not done so already. One reason is experimental. We wanted to make sure

that subjects understood that any period, including the first one, could be terminal.

To be credible, we needed to generate a few cases where termination occurred early

on (one of the replications in the first session terminated after one period, and we

did not fail to mention this during the instruction phase of the subsequent sessions).

This required a high termination probability. The second reason is based on personal

opinion. We do not believe that the real world is stationary. Parameters change

before full convergence to the Lucas equilibrium. As such, it is irrelevant to ask what
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happens in Lucas economies of long duration. Despite the short horizon, we find it

remarkable that our experimental markets manage to generate results that are very

much in line with general equilibrium theory (suitably modified to explain the noise

prices). Nevertheless, eventual convergence to the Lucas equilibrium is an interesting

theoretical possibility, and here again, laboratory experiments could be informative.
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! "!

#$%!&''($))*!+,-./0(.12.-3$241$'56+76!

8)$(!9.7$*!

:.));0('*!

<=>?@8A?<B=>!

"1 >,35.3,09!

B9$!)$)),09!0+!34$!$CD$(,7$93!209),)3)!0+!.!957%$(!0+!($D-,2.3,09)!0+!34$!).7$!),35.3,09E!
($+$(($'!30!.)!!"#$%&'1!!

F05!;,--!%$!.--02.3$'!'"()#$*$"'!34.3!G05!2.9!2.((G!34(05/4!.--!D$(,0')1!F05!;,--!.-)0!%$!
/,H$9!(+',E!%53!2.)4!;,--!903!2.((G!0H$(!+(07!09$!D$(,0'!30!.9034$(1!!

IH$(G!D$(,0'E!7.(J$3)!0D$9!.9'!G05!;,--!%$!+($$!30!*#+&"!G05(!)$25(,3,$)1!F05!%5G!
)$25(,3,$)!;,34!2.)4!.9'!G05!/$3!2.)4!,+!G05!)$--!)$25(,3,$)1!!

A.)4!,)!903!2.((,$'!0H$(!.2(0))!D$(,0')E!%53!34$($!;,--!%$!3;0!)05(2$)!0+!+($)4!2.)4!,9!.!
9$;!D$(,0'1!K,()3E!34$!)$25(,3,$)!G05!.($!40-',9/!.3!34$!$9'!0+!34$!D($H,05)!D$(,0'!7.G!
D.G!&$-$&".&'1!?4$)$!',H,'$9')!%$207$!2.)4!+0(!34$!)5%)$L5$93!D$(,0'1!>$209'E!%$+0($!
34$!)3.(3!0+!)D$2,+,2!D$(,0')E!G05!7.G!%$!/,H$9!$.(%/"1!?4,)!,9207$!%$207$)!2.)4!+0(!
34$!D$(,0'1!<3!;,--!%$!J90;9!%$+0($4.9'!,9!;4,24!D$(,0')!G05!($2$,H$!,9207$1!!

I.24!D$(,0'!-.)3)!M!7,953$)1!?4$!303.-!957%$(!0+!D$(,0')!,)!903!J90;9!%$+0($4.9'1!
<9)3$.'E!.3!34$!$9'!0+!.!D$(,0'E!;$!'$3$(7,9$!;4$34$(!34$!$CD$(,7$93!2093,95$)E!.)!
+0--0;)1!#$!34(0;!.!3;$-H$N),'$'!',$1!<+!34$!053207$!,)!O!0(!PE!;$!3$(7,9.3$!34$!)$)),091!
B34$(;,)$!;$!2093,95$!.9'!.'H.92$!30!34$!9$C3!D$(,0'1!=03,2$*!34$!3$(7,9.3,09!24.92$!
,)!3,7$N,9H.(,.93Q!,3!'0$)!903!'$D$9'!09!40;!-09/!34$!$CD$(,7$93!4.)!%$$9!/0,9/1!!

!"#$%&'(&$)*&+,%&-$+)+./%-$&%0&,&$*)+&0%12%,3&%4-/3%2"#%-$&%3"50)+.%-,%,3&%&+0%
"6%,3&%(&$)"0%)+%73)43%,3&%/&//)"+%&+0/8%%

>0E!,+!G05!$9'!.!D$(,0'!;,34053!2.)4E!.9'!;$!3$(7,9.3$!34$!)$)),09!.3!34.3!D0,93E!G05!;,--!
903!$.(9!.9G!709$G!+0(!34$!)$)),091!?4,)!'0$)!903!7$.9E!40;$H$(E!34.3!G05!)405-'!
$9)5($!34.3!G05!.-;.G)!$9'!;,34!09-G!2.)4!.9'!90!)$25(,3,$)1!K0(!,9!34.3!2.)$E!,+!;$!
2093,95$!34$!$CD$(,7$93E!G05!;,--!903!($2$,H$!',H,'$9')E!.9'!4$92$E!G05!)3.(3!34$!
)5%)$L5$93!D$(,0'!;,34053!2.)4!R.9'!90!)$25(,3,$)S!59-$))!34,)!,)!.!D$(,0'!;4$9!G05!
($2$,H$!,9207$1!!!

#$!;,--!(59!.)!7.9G!)$)),09)!.)!2.9!%$!+,3!,9!34$!.--033$'!3,7$!0+!3;0!405()!+0(!34$!
$CD$(,7$931!<+!34$!-.)3!)$)),09!;$!(59!4.)!903!%$$9!3$(7,9.3$'!%$+0($!34$!)24$'5-$'!$9'!
0+!34$!$CD$(,7$93!;$!;,--!3$(7,9.3$!34$!)$)),09!.9'!G05!;,--!$.(9!34$!2.)4!G05!.($!
40-',9/!.3!34.3!D0,931!!

F05!;,--!%$!D.,'!34$!$.(9,9/)!0+!3;0!(.9'07-G!240)$9!)$)),09)1!<+!;$!7.9./$!30!(59!
09-G!09$!)$)),09!'5(,9/!34$!.--033$'!3,7$!+0(!34$!$CD$(,7$93E!G05!;,--!%$!D.,'!'05%-$!34$!
$.(9,9/)!+0(!34.3!)$)),091!

T5(,9/!34$!$CD$(,7$93E!.220593,9/!,)!'09$!,9!($.-!'0--.()1!

!

29



! "!

"# $%&%!

'()*)!+,--!.)!&+/!&01)2!/3!2)45*,&,)26!4%--)7!!"##!%87!$%&'#!98)!58,&!/3!&()!&*))!1%02!%!
*%87/:!!"#"!$%!&'(&)$*'&'*&'%$&!'++,*6!+,&(!);5%-!4(%84)<!1%2&!7,=,7)872!(%=)!8/!
,83-5)84)!/8!&(,2!4(%84)#!>'()!%4&5%-!7*%+!,2!/.&%,8)7!52,8?!&()!2&%87%*7!12)57/@
*%87/:!85:.)*!?)8)*%&/*!,8!&()!1*/?*%:!A:%&-%.BC#!98)!58,&!/3!&()!./87!,+-,./&0,./&
("(1.&2$%1/#!D/5!+,--!*)4),=)!&()!7,=,7)872!/8!0/5*!(/-7,8?2!/3!&*))2!%87!./872!,8!4%2(!
$#(%"#!%!8)+!1)*,/7!2&%*&2#!E2!254(6!0/5!+,--!*)4),=)!7,=,7)872!/8!0/5*!,8,&,%-!%--/4%&,/8!
/3!&*))2!%87!./872!.)3/*)!&()!3,*2&!1)*,/7!2&%*&2#!

D/5!+,--!2&%*&!&(,2!2)22,/8!+,&(!)*+!"##,+%87!*+$%&',#!9&()*2!:%0!2&%*&!+,&(!7,33)*)8&!
,8,&,%-!%--/4%&,/82#!

F8!%77,&,/86!0/5!+,--!*)4),=)!,84/:)!)=)*0!%-&)*8%&)!1)*,/7#!F8!%''!1)*,/72!>G6HIC!0/5!
+,--!*)4),=)!8/&(,8?6!%87!,8!#-#&!1)*,/72!>"6J6IC!0/5!+,--!*)4),=)!GK!7/--%*2#!'(,2!
,84/:)!,2!%77)7!&/!0/5*!4%2(!%&!&()!.)?,88,8?!/3!%!8)+!1)*,/7#!9&()*2!:%0!(%=)!%!
7,33)*)8&!,84/:)!3-/+#!!

L)4%52)!4%2(!,2!&%M)8!%+%0!%&!&()!)87!/3!%!1)*,/7!+()8!&()!2)22,/8!7/)2!8/&!&)*:,8%&)6!
&()!7,=,7)87!1%0:)8&2!0/5!*)4),=)6!&/?)&()*!+,&(!0/5*!,84/:)6!%*)!&()!2/-)!2/5*4)2!/3!
4%2(!3/*!%!8)+!1)*,/7#!

H#!NO%:1-)2!>3/*!,--52&*%&,/8!/8-0C!

'%.-)2!G!%87!"!?,=)!&+/!2%:1-)!)O%:1-)2!/3!/5&4/:)2!,8!%!2)22,/8#!F&!,2!%225:)7!&(%&!
&()!2)22,/8!)872!%3&)*!&()!P&(!1)*,/7#!'%.-)!G!2(/+2!&()!%22)&!(/-7,8?26!7,=,7)87!%87!
4%2(!)%4(!1)*,/7!,3!&()!2&%&)2!%*)!%2!1)*!*/+!"!%87!&()!,87,=,75%-!2&,4M2!&/!&()!,8,&,%-!
%--/4%&,/8!&(*/5?(/5&#!'()!3,8%-!&%M)@%+%0!4%2(Q)%*8,8?!,2!"K!7/--%*2!%2!&()!2)22,/8!
&)*:,8%&)7!%3&)*!P&(!1)*,/7#!F&!+/5-7!(%=)!.))8!RS!,3!,&!(%7!&)*:,8%&)7!,8!1)*,/7!K#!

'%.-)!"!2(/+2!&()!4%2)!+()*)!&()!,87,=,75%-!&*%7)2!%2!3/--/+2T!

• F8!1)*,/7!G6!&/!%8!%--/4%&,/8!/3!K!&*))2!%87!K!./8726!!
• E87!25.2);5)8&-06!2)--,8?!&/!%4;5,*)!:/*)!4%2(!,3!7,=,7)872!%87!,84/:)!%*)!

7)):)7!&//!-/+6!
• 9*!.50,8?!:/*)!%22)&2!+()8!7,=,7)872!%87!,84/:)!%*)!(,?(#!!

U,84)!&()*)!,2!%!GQP!4(%84)!&(%&!&()!2)22,/8!)872!,8!&()!1)*,/7!+()8!%!2)45*,&0!,2!./5?(&6!
,&2!)O1)4&)7!=%-5)!);5%-2!>!

!!!
!!!!!C!&,:)2!&()!)O1)4&)7!7,=,7)87!>+(,4(!,2!);5%-!3/*!./&(!

&()!&*))!%87!&()!./87C6!/*!>KC!V!>S#KC!W!"#KS#!'*%7)!,2!%225:)7!&/!&%M)!1-%4)!%&!"#KS#!X/&)6!
(/+)=)*6!&(%&!&()!%4&5%-!&*%7,8?!1*,4)2!:%0!.)!7,33)*)8&6!%87!&(%&!&()0!:%0!)=)8!4(%8?)!
/=)*!&,:)6!7)1)87,8?!/86!)#?#6!&()!7,=,7)87!/8!&()!&*))#!'()!3,8%-!&%M)@%+%0!4%2(!,8!&(,2!
4%2)!,2!RGK#SS#!F&!+/5-7!(%=)!.))8!RGH#SS!,3!&()!2)22,/8!(%7!&)*:,8%&)7!,8!1)*,/7!K#!

! !

30



! "!

!"#$%&'(&

PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

Dividends       
Tree $1*10=10 $0*10=0 $0*10=0 $1*10=10 $0*10=0 $1*10=10 

Bond $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 
Income 0 15 0 15 0 15 
Initial Cash $10  

(=10+0+0) 
$15  
(=0+0+15) 

$0  
(=0+0+0) 

$25  
(=10+0+15) 

$0 
(=0+0+0) 

$25  
(=10+0+15) 

Trade       
Tree 0 0 0 0 0 0 

Bond 0 0 0 0 0 0 
Cash Change $0 $0 $0 $0 $0 $0 
Final 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

CASH $ 10.00 $ 15.00 $ 0.00 $ 25.00 $ 0.00 $ 25.00 
 
!

!"#$%&)(&

 
PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 5 6 4 5 3 
Bond 0 5 6 4 6 4 

Dividends       
Tree $1*10=10 $0*5=0 $0*6=0 $1*4=4 $0*5=0 $1*3=3 

Bond $0.5*0=0 $0.5*5=2.5 $0.5*6=3 $0.5*4=2 $0.5*6=3 $0.5*4=2 
Income $0 $15 $0 $15 $0 $15 
Initial Cash $10  

(=10+0+0) 
$17.5  
(=0+2.5+15) 

$3 
(=0+3+0) 

$21  
(=4+2+15) 

$3 
(=0+3+0) 

$20 
(=3+2+15) 

Trade       
Tree -5 +1 -2 +1 -2 +1 

Bond +5 +1 -2 +2 -2 +1 
Cash Change $0 -$5 +$10 -$7.5 +$10 -$5 
Final 
Holdings 

      

Tree 5 6 4 5 3 4 
Bond 5 6 4 6 4 5 

CASH $ 10.00 $ 12.50 $ 13.00 $ 13.50 $ 13.00 $ 15.00 
!
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Appendix: Time Line Plot To Complement In-

structions

Period 1 Period 2 Period 3 

   Dividends
from initial allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

   Dividends
from carried over allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

Etc.
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Figure 1: Snapshot of the trading interface. Two bars graphically represent the book of

the market in Trees (left) and in Bonds (right). Red tags indicate standing asks; blue tags

indicate standing bids. Detailed information about standing orders is provided by clicking

along either of the bars (here, the Tree bar is clicked, at a price level of $3.66). At the

same time, this populates the order form to the left, through which subjects could submit

or cancel orders. Asset holdings are indicated next to the name of the market, and cash

balances are given in the top right corner of the interface. The remaining functionality in

the trading interface is useful but non-essential.
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Figure 2: Time series of Tree (solid line) and Bond (dashed line) transaction prices; averages

per period. Session numbers underneath line segments refer to Table 4.
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Figure 3: Time series of period-average Tree (red line) and Bond (blue line) transaction

price changes. Changes are concatenated across all replications and all sesions, but exclude

inter-replication observations. State is indicated by black solid line on top; state = 2 when

High (tree dividend equals $1); state = 0 when Low (tree dividend equals $0).
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Figure 4: Simulated equilibrium Tree (blue line) and Bond (green line) prices, first 100

periods. State is indicated by red solid line on bottom; state = 1 when High (tree dividend

equals $1); state = 0 when Low (tree dividend equals $0). Equilibrium is based on (false)

agent beliefs that the past prices are the best prediction of future prices.
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