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Abstract

A market-game mechanism is studied in a two-good, pure-exchange setting with
potential information aggregation. The mechanism has two stages. At the first
stage, agents make offers, which turn out to be provisional for all but a small and
randomly selected group. After first-stage offers are announced, everyone else gets
to make new offers at a second stage in which payoffs are determined via a Shapley-
Shubik market game. When the number of players is finite but large, there exists
an essentially unique equilibrium in pure symmetric strategies, an equilibrium that
is almost ex post effi cient.
Key words: mechanism-design, information-aggregation, market-game, optimal-

ity.
JEL classification numbers: D82, D43

1 Introduction

We study strategic trade in a two-good, pure-exchange setting with potential information
aggregation. There is an unobserved state-of-the-world with dispersed and incomplete
information about that state in the form of private signals. The realized utility of an agent
depends both on the state and on the private signal received. A long-standing theoretical
challenge is to devise mechanisms for such settings that satisfy two requirements: first,
the mechanism achieves good outcomes; second, the mechanism is robust in the sense
that it does not rely on detailed information about the economy, such as the functional
form of agents’utilities or the detailed way that private signals relate to the unobservable
state-of-the-world. Robustness of this sort is part of the motivation in Hurwicz et al. [6].

There are two main candidate mechanisms that satisfy the robustness requirement: a
double auction and a Shapley-Shubik [11] market game. In a quasi-linear setting with an
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indivisible good (agents consume either zero or one unit), Reny and Perry [10] show that
a double auction achieves near ex post effi ciency when the economy is suffi ciently large.
A similar result for divisible goods is obtained by Vives [13] in a setting with quadratic
utilities and with normally distributed signals. However, in the divisible-good (or multi-
unit) case, double-auction mechanisms must use demand schedules as actions for agents
(see, also, Cripps and Swinkels [1]).

We use a market-game mechanism because the actions are simpler; they are quantities
(see, also, Dubey et al. [4], page 108). Previous work on market games does not, in
general, aggregate information in a way that leads to effi ciency.1 Those mechanisms
fail because an agent commits to a quantity before the relevant information is revealed.
(In contrast, double auctions in which actions are demand schedules permit an agent’s
trade to be contingent on the actions of others.) Our market-game mechanism departs
from those studied previously by having two stages, the first of which is used mainly for
information aggregation.

Two- or multiple-stage mechanisms used for information aggregation are not uncom-
mon. A straw poll in a voting situation is one such mechanism. Another, which is closely
related to our mechanism, is pari-mutuel betting. In pari-mutuel betting, running bet to-
tals (and, therefore, odds) are announced before final odds are determined (via a market
game). Information aggregation has also been studied in experiments in which the focus
is on how to design rewards in order to elicit what agents know (see, for example, Axelrod
et al. [9]).

Our mechanism elicits information at the first stage in the following way. At the first
stage, each agent names an offer. Then, in a random fashion, the mechanism divides the
agents into two groups: a small inactive group and a large active group. Those in the
inactive group participate no further; their first-stage offers are executed at an exogenous
price. Those in the active group participate in a second-stage market game after the
histogram of their first-stage offers is announced– an announcement that resembles the
announcement of running odds in pari-mutuel betting.

In such a mechanism, an agent at the first-stage faces a trade-off. Contingent on
becoming inactive, the agent’s first-stage offer determines his final payoff so that it is in
the agent’s interest to reveal his private information. Contingent on becoming active, his
first-stage offer affects his final payoff only by way of its influence on the beliefs of other
active agents at the second stage. Therefore, beliefs, both on and off the equilibrium path,
play a crucial role in determining how the first-stage action affects the payoffcontingent on
becoming active. As a consequence, those beliefs determine how the first-stage trade-off
between the two contingent payoffs is resolved.

We have three main results– one about existence, one about uniqueness, and one
about ex post optimality. If a mild genericity condition holds and if the finite number of

1Palfrey [8] uses a Cournot mechanism and obtains ex post optimality, but, as Vives [12] points out,
only because marginal cost is common and constant so that it does not matter how production is allocated
among the firms in the model. Dubey et al. [4] study a dynamic market game with trades in multiple
periods. They show that information may be aggregated, but only after trades and consumption at the
first-period are observed. As they emphasize, this precludes ex post effi ciency.
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agents is suffi ciently large, then there exists a symmetric (perfect bayesian) equilibrium in
pure strategies in which stage-1 actions reveal the private-information held by all active
agents. The main ingredient in the argument is the formulation of beliefs so that the
above trade-off is resolved entirely in favor of the payoff contingent on being inactive. Our
formulation of beliefs is simple and plausible: it associates each (on- and off-equilibrium)
offer with an agent type and then employs Bayes’ rule to derive the beliefs over the
state-of-the-world. Under slightly stronger assumptions, including a restriction on off-
equilibrium beliefs that is similar to the “no-signaling-what-you-don’t-know”restriction
in Fudenberg and Tirole [3], the trade-off is resolved in the same way in any symmetric
equilibrium in pure strategies. As a consequence, any such equilibrium reveals the private-
information held by all active agents. Moreover, in any such equilibrium, the stage-2
behavior converges to the competitive equilibrium under complete information.

Finally, we show that any equilibrium in pure strategies that reveals the private-
information held by all active agents is almost ex post effi cient, where the notion of
effi ciency is similar to that in Gul and Postlewaite [5] and in McLean and Postlewaite
[7]. In closely related settings and using direct mechanisms, Gul and Postlewaite [5] and
McLean and Postlewaite [7] obtain a similar effi ciency result. However, their mechanisms
depend on detailed features of the economy, may not have a unique equilibrium, and are
not intended for actual use (see [7], page 2441). As we discuss in the concluding remarks,
we view our mechanism as one that could actually be used.

2 The model and the mechanism

We describe, in turn, the environment, our mechanism, and the equilibrium concept.

2.1 Environment

Our economy is an endowment economy with two goods and N agents. (The set of agents
is denoted N .) Each agent is assigned a type, denoted x, where x ∈ X, a finite set. An
agent of type x ∈ X maximizes expected utility with ex post utility function, u(q, r;x, z),
where (q, r) ∈ R2

+ is the vector of quantities of the two goods consumed and z ∈ Z, a finite
set, is a state-of-the-world. The function u(·, ·;x, z) is strictly increasing, strictly concave,
continuously twice differentiable, and satisfies Inada conditions. For simplicity, each agent
is endowed with the per capita endowment of each good, denoted q̄ and r̄, respectively.
Finally, we assume that u(·, ·;x, z) is such that the implied complete-information competi-
tive demands are monotone.2 The consequences of dropping this assumption are discussed
in our concluding remarks.

The sequence of events is as follows. First, nature draws a state-of-the-world z ∈
Z with probability π(z), a state which no one observes. Then each agent gets a type
realization, x ∈ X, which is private to the agent. Conditional on the realization z, these
realizations are i.i.d. across people. We denote the conditional probability P[x | z] by

2A gross-substitutes assumption about u(·, ·;x, z) is suffi cient for such monotonicity.
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µz(x), and denote the implied posterior probability P[z | x] by τx(z). We assume that
π(z) > 0 for each z ∈ Z and that µz(x) > 0 for each x ∈ X and z ∈ Z. We also assume
that x is informative in the sense that z 6= z′ implies µz(x) 6= µz′(x) for some x ∈ X. (This
informativeness assumption is without loss of generality: If µz(x) = µz′(x) for all x ∈ X,
then we treat z and z′ as a single state z′′ with utility u(q, r;x, z′′) = π(z)u(q, r;x, z)
+π(z′)u(q, r;x, z′).) Our interpretation is that x is an idiosyncratic taste shock and z
is a common taste shock. Notice that the realized type, x, plays two roles: it serves as
private information about z and it is private information about preferences. Of course,
we could have formulated the types x as x = (xt, xs), where xt affects utility and xs is a
signal about z. However, this formulation is equivalent to ours and only complicates the
notation.

2.2 The mechanism

After types are realized, each agent n chooses an offer an = (anq , a
n
r ) ∈ O, where

O = {(oq, or) ∈ [0, q̄]× [0, r̄] : oqor = 0}. (1)

Then agents are randomly divided into two groups in the following way. Let η ∈ (0, 1)
and let d(1 − η)Ne = M denote the smallest integer that is no less than (1 − η)N . An
assignment, which assigns a number n′ to each agent n ∈ N in a one-to-one fashion, is
drawn from the uniform distribution over the set of all such assignments, and agent n is
called active if n′ ≤ M and is called inactive if n′ > M . The payoff for each inactive
agent is given by trade at the fixed price, p1 = r̄/q̄. That is,

(qn, rn) =

(
q̄ − anq +

anr
p1

, r̄ − anr + p1a
n
q

)
for n /∈M, (2)

whereM is the set of active agents. Next, the mechanism announces the histogram of the
stage-1 offers of the active agents, denoted ν : O → {0, 1, 2, ...,M}.3 For each a ∈ O, ν(a)
is the number of active agents whose stage-1 offers are a. Then, given that information,
the second stage has active agents participating in a market game. Each active agent n
makes an offer bn = (bnq , b

n
r ) ∈ O and gets payoff

(qn, rn) =

(
q̄ − bnq +

bnr
p2

, r̄ − bnr + p2b
n
q

)
for n ∈M, (3)

where p2 = R/Q and

(Q,R) =
∑
n∈M

bn +Mκ. (4)

Here, κ = (κq, κr), where κq > 0 and κr > 0 are exogenous (small) quantities that
avoid the need to define payoffs when there are zero-offers on one side of the market and

3We could let the mechanism announce two histograms, one for active agents and one for inactive
agents. However, that would complicate the notation and would not change the results.
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that prevent no-trade from being an equilibrium, a formulation borrowed from Dubey
and Shubik [2]. Notice that p2 functions as a “price,”but a price that depends on the
aggregation of offers from active agents.4

As it stands, this mechanism violates feasibility. The trades of inactive agents at the
fixed price do not clear that market. In addition, resources are required for the positive
κq and κr. We proceed as if the mechanism designer has the resources required to support
this mechanism. In the concluding remarks, we suggest that a small entry fee could be
used to provide those resources. In any case, the departure from feasibility (and budget-
balancedness) can be made arbitrarily small in per capita terms by choosing η and κ to
be small.

The restriction in O that agents can only make offers on one side of the market plays
a significant role in our analysis. It is used to obtain the uniqueness of best responses.
The following lemma shows that the restriction is not binding on the agent when there
is complete information, which will be the case for the stage-2 game in the candidate
equilibrium we construct.5

Lemma 1. Fix stage-2 offers of all other agents. Given those offers, for any offer b′ ∈
[0, q̄]× [0, r̄], there exists b′′ ∈ O that has the same payoff as b′.

Obviously, the restriction is also not binding in the same sense on payoffs for inactive
agents.

2.3 Strategies, beliefs, and equilibrium

A stage-1 strategy is sn1 (x) ∈ O, while a stage-2 strategy is sn2 (x, a, ν−a) ∈ O, where
the second component in the domain is the agent’s stage-1 action, and the third is the
announced histogram of offers of active agents net of the agent’s own action. (That is,
for any a′ ∈ O, ν−a(a′) = ν(a′) if a 6= a′ and ν−a(a) = ν(a) − 1.) A strategy profile
{(sn1 , sn2 ) : n ∈ N} is a perfect bayesian equilibrium (PBE) if for each n ∈ N , sn1 is a best
response to {(sn′1 , s

n′
2 ) : n′ 6= n} and sn2 is a best response to {sn

′
2 : n′ 6= n} with respect to

a belief ϕn that is consistent with Bayes’rule whenever possible.

Throughout the paper, we focus on symmetric equilibrium in pure strategies. A PBE
{(sn1 , sn2 ) : n ∈ N} is a symmetric equilibrium if for all n ∈ N , (sn1 , s

n
2 ) = (s1, s2) and

ϕn = ϕ. In a symmetric equilibrium, an agent’s expected payoff at stage-2 depends only
on his private history (x, a) and the configuration of other active agents’private histories
θ : X × O → {0, 1, 2, ...,M − 1}. Thus, we may formulate the belief ϕ(x, a, ν−a) as an
element of∆(Z×Θ), where Θ is the set of all configurations θ of type/stage-1-action of the
other active agents. Then, a symmetric equilibrium is a triple (s1, s2, ϕ) such that (a) s1(x)
is a best response to s1 and s2; (b) s2(x, a, ν−a) is a best response to s2 and ϕ(x, a, ν−a);
(c) ϕ(x, a, ν−a) is derived from equilibrium behavior using Bayes’rule whenever possible.

4Our market game is a version of what is known as the “buy-sell”game, as opposed to the “sell-all”
version which makes use of inside money and needs to be augmented by bankruptcy rules in order to be
a game (see Shapley-Shubik [11]).

5All proofs appear in the Appendix.
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It is also useful to define a separating equilibrium. A separating equilibrium is a
symmetric equilibrium in which x 6= y implies s1(x) 6= s1(y). In a separating equilibrium,
all active agents share the same belief on the equilibrium path. In particular, in such
an equilibrium, ν−a and the agent’s own type reveal the true configuration of types of
the active agents and each agent uses that true configuration and Bayes’rule to form a
common posterior over Z. Thus, on the equilibrium path in a separating equilibrium,
although the agent’s private type matters for the agent’s preferences at stage 2, all active
agents share the same information at that stage.

3 Separating equilibrium: existence and characteri-
zation

We show that a separating equilibrium exists generically for suffi ciently large N . We
establish existence by demonstrating that it is optimal for an agent at the first stage
to choose an action that is best contingent on being inactive when others do so. The
main ingredient in that argument is the off-equilibrium belief formulation. The genericity
qualification is very simple: it requires that the ratios of marginal utilities at the optimal
consumption levels under the fixed price p1 differ across types. We begin with existence
and characterization of the stage-2 equilibrium when stage-1 is separating. That existence
result is used along with explicit stage-1 strategies and beliefs to construct the candidate
equilibrium.

3.1 Stage-2 equilibrium when stage-1 is separating

In a separating equilibrium (s1, s2), the belief ϕ about the type/stage-1-action config-
uration is degenerate on the configuration θ given by θ(x, s1(x)) = ν−a(s1(x)) on the
equilibrium path. This implies that there is common knowledge at stage 2 about the
type-configuration of active agents, a configuration we denote σ : X → {0, 1, ...,M},
where M is the number of active agents.6 It also implies a common posterior over Z,
denoted φ, which is derived from the type-configuration σ via Bayes’rule.

Therefore, the stage-2 game in a separating equilibrium only depends on the type-
configuration σ. In fact, the stage-2 game along such an equilibrium path with type
configuration σ can be regarded as a Bayesian game defined as follows: (a) the players
are the active agents; (b) the action set for each player consists of offers (bq, br) ∈ O; (c)
the payoffs are determined by the market game and u; (d) the number of players of type
x is σ(x), which is common knowledge among the players; (e) the common prior over Z is
given by φσ ∈ ∆(Z) that is derived from σ via Bayes’rule. Indeed, it can be regarded as
a one-shot, complete-information game in which φ is a preference parameter. We denote
a symmetric equilibrium for this stage-2 game by βσ : X → O.

6In what follows, and only to simplify notation, we assume that σ(x) > 0 for all x ∈ X. Obviously,
this holds with arbitrarily high probability for suffi ciently large N .
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Then we have

Proposition 1. For any type-configuration σ : X → {1, ...,M}, βσ exists.

The proof is a routine application of Brouwer’s fixed point theorem. It does, however,
depend crucially on the constraint bqbr = 0. With it, the best response, which is the
mapping studied in order to get a fixed point, is a function; without that constraint, the
mapping is not necessarily a convex correspondence. However, Lemma 1 implies that
an equilibrium obtained in Proposition 1 is also an equilibrium in the game without the
constraint bqbr = 0. Dubey and Shubik [2] give a similar existence result using this
observation.

Although there is no uniqueness claim in Proposition 1, we can characterize the limit of
βσ as N →∞ for any suitable sequence of type-configurations σN . Our characterization
result is based on the following implication of our informativeness assumption. Fix z ∈ Z
and let σN be the type configuration of active agents for an economy of size N . If for
some z ∈ Z the sequence {σN}∞N=1 is such that limN→∞ σ

N(x)/d(1 − η)Ne = µz(x) for
each x ∈ X (which holds almost surely conditional on z), then limN→∞ φ

σN (z) = 1. This
follows from our informativeness assumption– namely, for any z 6= z′, there exists some
x such that µz(x) 6= µz′(x)– and the full-support assumption that µz(x) > 0 for all x, z.

We show that βσ
N

converges to the competitive equilibrium of the following economy.
Let Lz(κ) denote an economy with z known, with fraction of type-x agents equal to
µz(x), and with exogenous per capita trades κ.7 A competitive equilibrium in Lz(κ) is
{pz, (qz(x), rz(x))x∈X} such that (qz(x), rz(x)) maximizes u(q, r;x, z) subject to pzq+ r =
pz q̄ + r̄ for each x ∈ X and

κr
pz

+
∑
x∈X

µz(x)qz(x) = q̄ + κq.

Lemma 2. The economy Lz(κ) has a unique competitive equilibrium and it is continuous
in κ.

The competitive allocation for the economy Lz(κ), (qz(x), rz(x))x∈X , has correspond-
ing offers {βzq(x), βzr(x)}x∈X defined by

βzq(x) = max{q̄ − qz(x), 0} and βzr(x) = max{r̄ − rz(x), 0},

and βz = {βzq(x), βzr(x)}x∈X is our candidate limit for βσ.

Proposition 2. Fix z ∈ Z. If the sequence {σN}∞N=1 is such that limN→∞ σ
N(x)/d(1 −

η)Ne = µz(x) for each x ∈ X, then limN→∞ β
σN = βz.

This is one of the places where positive κ plays a role. If κ = 0, then no trade could
be a stage-2 equilibrium of the game even if it is far from a competitive equilibrium. The
proof uses the fact that the sequence {βσN}∞N=1 is bounded and, therefore, has conver-
gent subsequences. It applies the Maximum Theorem to conclude that any convergent
subsequence has limit βz. Here, again, the constraint bqbr = 0 is useful: with it, there is

7Of course, if µz(x) is not rational, then Lz(κ) has to be a continuum economy.
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a unique best-response and the Maximum Theorem implies that the best-response varies
continuously.8

3.2 Existence of separating equilibrium

Contingent on being inactive, an agent of type-x at stage-1 chooses a ∈ O to maximize

Gx(a) =
∑
z∈Z

τx(z)u(q̄ − aq +
ar
p1

, r̄ − ar + p1aq;x, z). (5)

By the argument in the proof of Proposition 1, a unique maximum of Gx(a) exists. We
denote it α∗ = {α∗(x)}x∈X . Generically, α∗ is separating in the sense that x 6= y implies
α∗(x) 6= α∗(y). Indeed, if α∗ is not separating, then for some x 6= y, α∗(x) = a∗ = α∗(y)
and ∑

z∈Z τx(z)uq(q
∗, r∗;x, z)∑

z∈Z τx(z)ur(q∗, r∗;x, z)
= p1 =

∑
z∈Z τ y(z)uq(q

∗, r∗; y, z)∑
z∈Z τ y(z)ur(q∗, r∗; y, z)

,

where q∗ = q̄−a∗q+ a∗r
p1
and r∗ = r̄−a∗r+p1a

∗
q. But this restriction holds only for knife-edge

cases for two distinct aspects of the environment: the probabilities, τx(·) and τ y(·), and
the utilities, u(q∗, r∗;x, ·) and u(q∗, r∗; y, ·).

Now we describe candidate beliefs under the assumption that α∗ is separating. For
any a ∈ O, let

q1(a) = q̄ − aq +
ar
p1

∈ [0, 2q̄]. (6)

By separation of α∗, x 6= y implies q1(α∗(x)) 6= q1(α∗(y)). Therefore, we can order the
elements of X so that q1(α∗(xi)) < q1(α∗(xi+1)) for i ∈ {1, 2, ..., |X| − 1}, where |X|
denotes the cardinality of X. Next, partition the interval [0, 2q̄] into |X| subintervals
indexed by that ordering as follows:

I(xi) =



[
0, q1(α∗(x2))+q1(α∗(x1))

2

)
for i = 1

[
q1(α∗(xi))+q1(α∗(xi−1))

2
, q1(α∗(xi+1))+q1(α∗(xi))

2

)
for i = 2, 3, ..., |X| − 1

[
q1(α∗(xi))+q1(α∗(xi−1))

2
, 2q̄
]
for i = |X|

. (7)

For |X| = 2, I(x1) and I(x2) are depicted in Figure 1.

8Without imposing the constraint bqbr = 0, Dubey and Shubik [2] obtain a similar result in a deter-
ministic replica economy.
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Figure 1. Intervals for beliefs: two types

[- - - - - - - - I(x1) - - - - - - - - -)[- - - - - - - I(x2) - - - - - - - - - - -]

[– – – – – •– – – – – – – – •– – – – – – – – •– – – – – – ]

0 q1(α∗(x1)) q1(α∗(x2)) 2(q̄)

An agent’s belief is a joint distribution over the type/stage-1-action configuration of
the other active agents and the state-of-the-world z. It is derived from the observed
histogram, ν, and from knowledge of the agent’s own private information and is defined
for arbitrary stage-1 outcomes.

Candidate for equilibrium beliefs, ϕ∗: ϕ∗(x, a, ν−a) puts probability 1 on the configu-
ration θν−a defined by

θν−a(y, a
′) =

{
ν−a(a′) if q1(a′) ∈ I(y)

0 otherwise
. (8)

Its marginal distribution over Z is given by the posterior derived from Bayes’rule using
the type-configuration of all active agents σ∗ : X → {0, 1, ...,M} defined by

σ∗(y) =

{ ∑
a′∈O θν−a(y, a

′) if y 6= x∑
a′∈O θν−a(x, a

′) + 1 if y = x
. (9)

Condition (8) says that each agent forms a degenerate distribution over the type/stage-
1-action configuration of the other active agents by treating an observed stage-1 action
in I(xi) as coming from an agent of type xi. Condition (9) says that the agent gets a
type-configuration over all active agents by using the type-configuration for other active
agents implied by (8) and the agent’s own true type.

In order to describe the candidate for equilibrium strategies, it is helpful to distinguish
between two classes of active agents according to their private histories. We call an agent
of type x a nondefector if the agent’s stage-1 action is in I(x); otherwise, the agent is
called a defector. Notice that if no one defects, then all agents’beliefs are symmetric
in the sense assumed in Proposition 1: all have the same posterior on z and all active
agents have the same belief about the type-configuration over all active agents, which
happens to be the true configuration. If one agent defects or more than one defect, then
all nondefectors have symmetric beliefs; they have the same posterior on z and any such
active agent has the same belief about the type-configuration over all active agents, which,
however, is not the true configuration. Each defector has a different posterior on z and a
different belief about the type-configuration for the active agents.

The belief ϕ∗ has each agent believing that other agents do not defect. Our spec-
ification for a candidate equilibrium is consistent with that belief. In particular, our
candidate stage-2 strategy, which must be defined for arbitrary stage-1 actions, has each
agent believing that other agents did not defect at stage-1.
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Candidate for equilibrium strategies. For stage-1, our candidate is

s∗1(x) = α∗(x), (10)

the offer that maximizes Gx(a) (see (5)). For stage-2 strategies, consider an agent with
private history (x, a, ν−a) and q1(a) ∈ I(x′). Let σ∗ be the agent’s belief about the type-
configuration of all active agents under ϕ∗ and let σ′ be the type-configuration that he
believes other agents believe (see (9)). [If x′ = x (nondefector), then σ′(y) = σ∗(y) for all
y; otherwise (defector), σ′(x) = σ∗(x) − 1, σ′(x′) = σ∗(x′) + 1 and σ′(y) = σ∗(y) for all
y /∈ {x, x′}.] Then s∗2(x, a, ν−a) satisfies

s∗2(x, a, ν−a) ∈ arg max
b∈O

∑
z∈Z

φσ
∗
(z)u

(
q̄ +

brQ− − bqR−
R− + br

, r̄ +
bqR− − brQ−
Q− + bq

;x, z

)
, (11)

where φσ
∗
(z) is derived from σ∗ using Bayes’rule and where

(Q−, R−) = Mκ+
∑
y 6=x

σ∗(y)βσ
′
(y) + (σ∗(x)− 1)βσ

′
(x).

When the agent is a nondefector, that is, when σ′ = σ∗, we have s∗2(x, a, ν−a) = βσ
∗
(x).

Notice that in the above construction we fix a βσ for any σ; that is, agents coordinate on
a particular proposition-1 equilibrium for any believed type-configuration.

Theorem 1. Suppose that α∗(x) 6= α∗(y) for any x 6= y. There exists N̄ such that if
N ≥ N̄ , then the N -agent economy has a separating equilibrium.

The proof shows that the above candidate is an equilibrium. By construction, s∗1 = α∗

implies that ϕ∗ is consistent with Bayes’rule. Also, by construction, s∗2(x, a, ν−a) is a
best response to s∗2 with respect to ϕ

∗. That follows because, according to ϕ∗, the agent
believes that every other active agent is a nondefector. And, if they follow s∗2, then their
actions are described by βσ

′
. Therefore, what remains, and is the focus of the proof,

is to show that α∗ is optimal given that other agents follows the candidate equilibrium.
An agent at the first stage faces a tradeoff. Conditional on being inactive, playing α∗ is
optimal for any N . Conditional on being active, a type-x agent could gain by playing
something not in I(x). By doing that, the agent influences the beliefs and, thereby, the
stage-2 actions of other active agents. The proof shows that any such gain vanishes as
N gets large and is, therefore, smaller than the loss implied by playing something that is
not in I(x)– a play which, by construction, is bounded away from α∗(x).

The threat of being inactive plays a crucial role in the proof. Without it, there would
be no penalty attached to stage-1 actions that are devoted entirely to manipulating the
beliefs of others and such manipulation could be desirable for any finite N . Therefore,
we strongly suspect that, in general, a separating equilibrium does not exist if η = 0.
In this respect, there is a significant distinction between the model with a finite number
of agents and the same model with a continuum of agents. In the continuum version as
usually formulated, one agent cannot manipulate the beliefs of others and a separating
equilibrium exists even if η = 0.
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Finally, although our mechanism does not rely on detailed information about the
structure of the model, the threshold N̄ in this theorem and that in the uniqueness theorem
below do depend on those details. In particular, both η and κ affect the convergence rate.

4 Uniqueness of equilibria

Here we show under some mild additional conditions that any equilibrium is separating.
There are three such conditions. The first is a stronger assumption about the informa-
tiveness of signals; the second is a modification of the mechanism; and the third is a
restriction on off-equilibrium beliefs.

A1. Let Y = {Y1, Y2} be any bipartition of X and let µz(Yi) ≡
∑

y∈Yi µz(y). For any
z 6= z′, µz(Y1) 6= µz′(Y1).

Assumption A1 implies that for any partition Y = {Y1, ..., YK} of X with K ≥ 2 and for
any z 6= z′, there exists some k such that µz(Yk) 6= µz′(Yk). Although this assumption is
stronger than our original informativeness assumption, parameters for which it does not
hold are nongeneric.

A2. If all agents make the same stage-1 offer, then all active agents are required to make
zero offers at the second stage.

Assumption A2 says that the market shuts down after the first stage if all agents announce
the same offer at the first stage. Under the assumption that α∗(x) 6= α∗(y) for all x 6= y,
this modification then rules out any equilibrium (s1, s2) such that s1(x) = s1(y) for all
x, y ∈ X, but does not change any other symmetric equilibrium if it exists. In particular,
this modification does not affect the existence of a separating equilibrium. Moreover,
our mechanism is still robust to the details of the environment under this modification.
Finally, because all agents have the same endowments, in the rare event that every agent
receives the same signal in a separating equilibrium, such shutting down is costless in
terms of realized welfare because in that rare event there is no role for trade.

A3. If a single deviating offer is observed at the first stage, then it is believed to come
from some set of types A ⊂ X. Moreover, that belief and the equilibrium play of other
agents is used via Bayes’rule to form a belief over Z and the type configuration of other
active agents.

Along the equilibrium paths of a symmetric equilibrium in pure strategies, the equilibrium
belief associates each equilibrium stage-1 offer a with a set of types and then applies
Bayes’ rule to derive a belief about the type configuration and the state. A3 requires
off-equilibrium beliefs to be derived using the same procedure, but allows there to be an
arbitrary set of types, A, to be to be associated with an arbitrary deviating offer. The
assumption that A is common to all nondefectors is convenient, but not crucial. The
crucial part of A3 is that a set of types is assumed for the defector and that Bayes’
rule is used based on that set. As a result, A3 excludes off-equilibrium beliefs that
allow the deviator to signal something about other agents’types or about the state in
a way that is not warranted by the deviator’s private information. This requirement is

11



essentially the requirement for “reasonable”belief systems in Fudenberg and Tirole [3].
Their requirement says that inferences drawn from a deviating action should be limited
to the deviator’s type (that is, no signaling about what you don’t know). We need to
augment their requirement with the use of Bayes’rule because of the presence in our model
of a payoff-relevant state-of-the-world. Doing so is reasonable because an agent is trying
to update his belief about the types and the state-of-the-world, which are exogenous.9

Theorem 2. Suppose that α∗(x) 6= α∗(y) for any x 6= y and that A1-A3 hold. There
exists N̄ such that if N > N̄ , then any equilibrium sN = (sN1 , s

N
2 ) is separating.

Theorem 2 shows that, when the population is suffi ciently large, only separating equi-
librium can occur in our mechanism. Moreover, as the proof shows, for suffi ciently large
populations, in any equilibrium the stage-1 behavior is characterized by α∗ and the stage-
2 behavior is close to “price-taking”with respect to a price that is close to the unique
competitive equilibrium price under a known state as described in Lemma 2.

The proof proceeds by contradiction. First, we use A2 to eliminate a complete pooling
equilibrium– one in which s1(x) = s1(y) for all x, y ∈ X. Next, we consider a semi-pooling
equilibrium– one in which there is a partition Y = {Y1, ..., YK} of X with |X| > K ≥ 2
such that s1(y) = s1(y′) if y, y′ ∈ Yk and s1(y) 6= s1(y′) if y ∈ Yk and y′ ∈ Yk′ with k 6= k′.
Such an equilibrium is eliminated by an argument that resembles the main idea of the
proof of Theorem 1: because a deviation by one agent has a vanishing effect on the beliefs
of other agents, an agent is induced to defect from a semi-pooling equilibrium and play
the stage-1 strategy that is best contingent on becoming inactive. However, the details
differ; A1 is used to deal with the asymmetric information that exists in a semi-pooling
equilibrium and A3 is used to restrict off-equilibrium beliefs.

5 Almost ex post optimality

In our setup there are three sources of exogenous uncertainty, described by three random
variables: agents’types, denoted ζN = (ζ1, ..., ζn, ...ζN) ∈ XN ; the assignment of each
agent to one of two categories, denoted cN = (c1, ..., cN), where cN ∈ CN and CN = {cN ∈
{0, 1}N :

∑
n∈N cn = d(1− η)Ne}, and cn = 0 means that agent n is inactive and cn = 1

means that agent n is active; and the state of the world z ∈ Z. To discuss effi ciency,
we consider allocations as mappings from these three random variables to consumption
bundles for all agents. Therefore, an allocation takes the form 〈ωn : n ∈ N〉 such that
for each n ∈ N , ωn is a mapping from XN × CN × Z to a consumption bundle (qn, rn)
for agent n. Notice that corresponding to any strategy profile is an outcome which is an
allocation of this form, but one which does not depend on z.

Now we are ready to define almost ex post effi ciency. For any (ε, δ) ∈ R2
+, we say

that an allocation 〈ωn : n ∈ N〉 is ex post (ε, δ)-effi cient if two conditions hold: (a)

9A less restrictive extension would allow the off-equilibrium belief to associate a deviating offer with
a distribution of types and then employ Bayes’rule to pin down the belief about the state and the type
configuration of other agents. However, it is rather complicated to formulate the use of Bayes’rule under
this assumption and doing so does not seem to affect our main results.
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∑
n∈N ω(ζN , cN , z) ≤ N(q̄ + δ, r̄ + δ) for each (ζN , cN , z) ∈ XN × CN × Z; (b) there

is a collection of events Ez,cN ⊂ XN such that (i) P [Ez,cN |z, cN ] ≥ 1 − ε for each (z,
cN) ∈ Z × CN and (ii) there is no other allocation 〈ω′n : n ∈ N〉 satisfying

∑
n∈N

ω′n(ζN , cN , z) ≤ max

{∑
n∈N

ωn(ζN , cN , z), N(q̄, r̄)

}
(12)

and
u[ω′n(ζN , cN , z); ζn, z] > u[ωn(ζN , cN , z); ζn, z] + ε for each n ∈ N (13)

for some (z, cN) ∈ Z × CN and some ζN ∈ Ez,cN .

When ε = δ = 0, the above definition coincides with the usual definition of ex post
effi ciency.10 And, except for the presence of cN , if δ = 0, then this definition coincides with
the definitions in McLean and Postlewaite [7] and in Gul and Postlewaite [5]. We use δ > 0
to reflect the resources that the mechanism designer may need to run the mechanism. In
the concluding remarks, we discuss how to achieve almost ex post effi ciency with δ = 0.
In any case, we do permit alternative allocations to use as much of each good as does ωn
(see (12)).

Theorem 3. Suppose that α∗(x) 6= α∗(y) for any x 6= y. Let (ε, δ) > 0 be given.

(i) There exists κ̄ > 0 and a function N(κ, η) such that if max{κq, κr} < κ̄, η ≤
min{κq

4q̄
, κr

4r̄
}, and N > N(κ, η), then there exists a separating equilibrium whose out-

come is ex post (ε, δ)-effi cient.

(ii) Suppose that A1-A3 hold. Then there exists κ̄ > 0 and a function N(κ, η) such that if
max{κq, κr} < κ̄, η ≤ min{κq

4q̄
, κr

4r̄
}, and N > N(κ, η), then the outcome of any symmetric

equilibrium in pure strategies is ex post (ε, δ)-effi cient.

Theorem 3 shows that when (κ, η) is suffi ciently small and when N is suffi ciently large,
our mechanism gives outcomes that are arbitrarily close to ex post effi ciency. The two
parts of Theorem 3 correspond to Theorems 1 and 2, respectively. The first part, which
only depends on the genericity condition, shows existence of equilibria that are almost ex
post effi cient. The second part, which requires A1-A3, states that all equilibria are almost
ex post effi cient.

6 Concluding remarks

As noted at the outset, our mechanism violates feasibility. The payoffs of inactive agents,
which are determined by the execution of their stage-1 offers at the exogenous price,
r̄/q̄, and the exogenous stage-2 offers, κ, give rise to a net payout of one of the goods.
Feasibility could be restored using entry fees levied on all agents before types are realized.

10Notice that when ε = 0, (13) requires the allocation ω′n(ζ
N , cN , z) to be strictly better than

ωn(ζ
N , cN , z) for all n ∈ N . This is without loss of generality: any allocation that is weakly better

off for all n and strictly better for some n can be modified to be strictly better off for all n because both
goods are divisible and utilities are continuous in our economy.
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In particular, if the entry fee is 2κ, then η can be chosen to insure feasibility. And,
provided there is suffi cient motivation for trade coming from the appearance of types in
the utility function, κ can be chosen to be small enough to induce participation. With
such an entry fee, we could impose δ = 0 in our notion of almost ex post effi ciency (and
in Theorem 3). That would allow us to achieve the same kind of effi ciency result as those
in Gul and Postlewaite [5] and in McLean and Postlewaite [7].

Amechanism that would insure feasibility except for κ and would more closely resemble
pari-mutuel betting would have the stage-1 offers of the inactive agents be part of the
offers that determine the “price”in the second-stage market game and would have their
payoffs determined as they are for active agents. However, that would give rise to two-
way interaction between the stages. In such a version, if the economy is suffi ciently large,
it seems as if agents at stage 1 would, as in our version, make stage-1 offers based on
the presumption that they will be chosen to be inactive. Even so, they would want to
predict the stage-2 price which, itself, is affected by their offers– both directly and by
the information revealed by stage-1 offers. Thus, to get a fixed point, we would have to
study a mapping that takes both stages into account. Moreover, the mapping would have
to be defined over all feasible stage-1 actions, including stage-1 actions that give rise to
asymmetric information at stage-2. Our approach decouples stage-1 payoffs from what
happens at stage 2 and, therefore, is simpler. Given that it has good welfare properties,
its simplicity is a virtue– both for us in analyzing the properties of the mechanism and
for those who play the implied game.

We make one strong assumption about preferences; namely, that complete-information
competitive demand is monotone, which assures that there is a unique competitive equi-
librium (CE) in the version with no uncertainty. If, instead, there were multiple CE’s,
then our existence argument would fail if agents at stage 1 believed that their stage-1 ac-
tions would determine the limit to which a sequence of proposition 1 equilibria converges.
If that were the case, then the influence of stage-1 actions on payoffs contingent on being
active would not disappear as the size of the economy grows. One way to avoid such a
belief would be to assume that there is coordination on the sequence of proposition-1 equi-
libria regarding the limit to which they converge. That would work if there is a sequence
of proposition-1 equilibria that converges to any CE. Whether that is true seems not to
be known even for complete-information versions of our market game. With a unique CE,
that coordination issue does not arise.

We assume a finite number of types and a finite number of states-of-the-world. The
latter plays no role. In contrast, the former is important for us. Although the realization
of types is random, as the size of the economy grows, conditional independence of types
gives us something that resembles replication in a deterministic version. Even more
important, our existence result, via the specification of beliefs, depends on a finite number
of types.11 Another simplifying assumption is that all agents have the same endowments.
For our existence result, this assumption can be replaced by any profile of endowments

11Reny and Perry [10] cannot use a specification with a finite number of types because they have
a limit-order mechanism. With such a mechanism and a finite number of types, there can remain an
indeterminacy regarding how the gains from trade are distributed. That does not happen for market-
game mechanisms.
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that is common knowledge. However, for our uniqueness result, if agents’endowments
are heterogeneous (or there is another source of known heterogeneity), then assumption
A2 would need to be modified: we would require that the second stage be shut down
whenever all agents with the same endowment make the same offer at the first stage.

Regarding the information structure, two special cases of the model deserve mention.
One is a specification in which the state-of-the-world does not appear in preferences.
Even in that case, the state could still be a source of aggregate risk as it determines the
proportions of agents’types. Therefore, stage-1 would still be useful because information
aggregation would remain important for ex post effi ciency. Another special case is a
specification in which types do not appear as arguments of preferences. Although our
results apply, this case is problematic because trade disappears at stage 2 as κ → 0 and
agents may not want to enter in the presence of an entry fee.

Like all of the previous work on strategic games for accomplishing trade with private
information that we cited at the outset and all auction models, we have a two-good model.
One well-known way to extend our model to K + 1 goods is to treat good K + 1 as cash
and to have K simultaneous markets (trading posts) with market k having trade between
cash and good k. However, then, as is well-known, we would want to have multiple rounds
of trade because the proceeds of sales in one market cannot be used to make simultaneous
purchases in another market.

Such an extension with multiple rounds in real time is pertinent for what we see as one
important potential use of our mechanism. It could be used for spot trades in securities
like the common stock of publicly traded companies. Of course, in order to use it for such
trades, two time intervals have to be selected: one is the interval between stages 1 and 2
of each round; the other is the interval between market rounds.

7 Appendix: Proofs

Lemma 1. Fix stage-2 offers of all other agents. Given those offers, for any offer b′ ∈
[0, q̄]× [0, r̄], there exists b′′ ∈ O that has the same payoff as b′.

Proof. Let (Q−, R−) ∈ R2
++ be total offers of other agents (including the exogenous

offers). For any b ∈ [0, q̄]× [0, r̄], (3) implies that the corresponding payoffs are

q(bq, br) = q̄ +
brQ− − bqR−
R− + br

and r(bq, br) = r̄ +
bqR− − brQ−
Q− + bq

. (14)

Case (i): b′rQ− − b′qR− > 0. In this case, let b′′q = 0 and let b′′r be the unique solution
to

b′′rQ−
R− + b′′r

=
b′rQ− − b′qR−
R− + b′r

≡ γ, (15)

where it follows that γ ∈ (0, Q−). The solution is b′′r = R−γ/(Q− − γ). It follows by (15)
that q(b′′q , b

′′
r) = q(b′q, b

′
r). Also,

r(b′′q , b
′′
r)− r̄ = b′′r = R−γ/(Q− − γ) = r(b′q, b

′
r)− r̄,
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where the last equality follows from the definition of γ.

Case (ii): b′rQ− − b′qR− < 0. This is completely analogous, but with b′′r = 0.

Case (iii): b′rQ− − b′qR− = 0. Here, of course, we let b′′q = b′′r = 0.�

7.1 Existence

Proposition 1. For any type-configuration σ : X → {1, ...,M}, βσ exists.

Proof. Let S = {[0, q̄]× [0, r̄]}X , which is compact and convex. We let s = {sy}y∈X with
sy = (syq , s

y
r) denote a generic element of S. For s ∈ S and x ∈ X, let F : S → S be given

by
Fx(s) = arg max

b∈O
Hx(b;Q−, R−), (16)

where

Hx(b;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ +
brQ− − bqR−
R− + br

, r̄ +
bqR− − brQ−
Q− + bq

;x, z) (17)

and
(Q−, R−) = Mκ+

∑
y 6=x

σ(y)sy + [σ(x)− 1]sx.

Here φ is the common posterior on z. We have to show that Fx(s) is unique and is
continuous in s. We start with uniqueness. Notice that (Q−, R−) ∈ R2

++ for any s ∈ S.

Because of the bqbr = 0 constraint in (16), it is helpful to separately considerHx(bq, 0;Q−, R−)
and Hx(0, br;Q−, R−), where

Hx(bq, 0;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ − bq, r̄ +
bqR−
Q− + bq

;x, z) ≡ g(bq),

and

Hx(0, br;Q−, R−) =
∑
z∈Z

φ(z)u(q̄ +
brQ−
R− + br

, r̄ − br;x, z) ≡ h(br).

For any (Q−, R−) ∈ R2
++, the functions fq(bq) = r̄ + bqR−

Q−+bq
and fr(br) = q̄ + brQ−

R−+br

are strictly concave. Then, because u is strictly concave and because a strictly increasing
concave function of a concave function is strictly concave, both g and h are strictly
concave. It follows that g has a unique maximum and that h has a unique maximum,
denoted b̂q and b̂r, respectively. Moreover, by the Inada conditions on u, these maxima
are characterized by

b̂q =

{
0 if g′(0) ≤ 0

satisfies g′(b̂q) = 0 if g′(0) > 0
, (18)

and

b̂r =

{
0 if h′(0) ≤ 0

satisfies h′(b̂r) = 0 if h′(0) > 0
. (19)
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Therefore, a suffi cient condition for uniqueness is min{g′(0), h′(0)} ≤ 0. But,

g′(0) =
∑
z∈Z

φ(z)

[
−uq (q̄;x, z) + ur (r̄;x, z)

R−
Q−

]
,

and

h′(0) =
∑
z∈Z

φ(z)

[
uq (q̄;x, z)

Q−
R−
− ur (r̄;x, z)

]
.

Therefore,

sign[h′(0)] = sign[
R−
Q−

h′(0)] = sign[−g′(0)] = −sign[g′(0)], (20)

which implies min{g′(0), h′(0)} ≤ 0.

Now we turn to continuity in s, which follows if (b̂q, b̂r) is continuous in (Q−, R−). By
(20), g′(0) = 0 iff h′(0) = 0. That and (18) and (19) imply that max{b̂q, b̂r} satisfies a
first-order condition with equality. Then, the implicit-function theorem applied to that
first-order condition gives the required continuity.

It follows that the mapping F satisfies the hypotheses of Brouwer’s fixed-point theo-
rem. Although the domain of the mapping, S, does not satisfy bqbr = 0, the range does.
Therefore, the fixed point satisfies bqbr = 0.�
Lemma 2. The economy Lz(κ) has a unique competitive equilibrium and it is continuous
in κ.

Proof. Given our assumptions about u(·, ·;x, z), existence and uniqueness is entirely
standard, as is continuity in κ.�
Proposition 2. Fix z ∈ Z. If the sequence {σN}∞N=1 is such that limN→∞ σ

N(x)/d(1 −
η)Ne = µz(x) for each x ∈ X, then limN→∞ β

σN = βz.

Proof. This proof applies the Theorem of the Maximum to a sequence of proposition 1
equilibria. We can write the best-response objective (see (17)) as

Hx(b;Q−, R−, φ) =
∑
z′∈Z

φ(z′)u (q, r;x, z′) , (21)

with

q = q̄ +
br

p(1 + br
R−

)
− bq

1 + br
R−

, and r = r̄ − br

1 + bq
Q−

+
pbq

1 + bq
Q−

,

and p = R−/Q−.

Now, let
Fx(b; p, c1, c2, φ) =

∑
z′∈Z

φ(z′)u (q, r;x, z′)

with

q = q̄ +
br

p(1 + c2br)
− bq

1 + c2br
, and r = r̄ − br

1 + c1bq
+

pbq
1 + c1bq

,
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and where the domain for Fx is A = O ×
[

κr
q̄+κq

, r̄+κr
κq

]
×
[
0, 1

κr

]
×
[
0, 1

κq

]
× ∆(Z). It

follows that Fx(b; p, 1/Q−, 1/R−, φ) = Hx(b;Q−, R−, φ). Therefore, by the argument used
in the proof of proposition 1, Fx(·; p, c1, c2, φ) has a unique maximum, gx(p, c1, c2, φ). And
because Fx is continuous on A, the Theorem of the Maximum implies that gx(p, c1, c2, φ)
is continuous.

Now consider

Hx(b;Q
N
− , R

N
− , φ

N) = Fx

(
b;
RN
−

QN
−
,

1

QN
−
,

1

RN
−
, φN

)
with

(QN
− , R

N
− ) =

∑
y∈X

σN(y)(βN(y) + κ)− βN(x)

and with φN being the common prior derived from σN using Bayes’rule. Notice that

(
RN−
QN−
, 1
QN−
, 1
RN−

) ∈
[

κr
q̄+κq

, r̄+κr
κq

]
×
[
0, 1

κr

]
×
[
0, 1

κq

]
. Therefore, by the definition of βN , βN(x) =

gx(
RN−
QN−
, 1
QN−
, 1
RN−
, φ). Because {βN}∞N=1 is bounded, it has a convergent subsequence, say

{βNs}∞s=1, with limit denoted β̂. Notice that limN→∞ φ
N = 1z, where 1z[z′] = 1 for z′ = z

(and 0 otherwise). By the continuity of gx, it follows that

β̂(x) = lim
s→∞

gx

(
RNs
−

QNs
−
,

1

QNs
−
,

1

RNs
−
, φNs

)
= gx

(
lim
s→∞

RNs
−

QNs
−
, lim
s→∞

1

QNs
−
, lim
s→∞

1

RNs
−
, lim
s→∞

φNs
)

= gx(p̂, 0, 0,1z)

where

p̂ =

∑
µz(y)β̂r(y) + κr∑
µz(y)β̂q(y) + κq

.

By the definition of Fx, it follows that β̂(x) maximizes u
(
q̄ − bq + br

p̂
, r̄ − br + p̂bq;x, z

)
.

Therefore, it is a Nash equilibrium in Lz(κ). By lemma 2, it follows that β̂ = βz.�
Theorem 1. Suppose that α∗(x) 6= α∗(y) for any x 6= y. There exists some N̄ such that
if N ≥ N̄ , then the N -agent economy has a separating equilibrium.

Proof. We show that for large N’s, ((s∗1, s
∗
2), ϕ∗) is a PBE, where s∗1(x) = α∗(x) for all

x ∈ X, and s∗2 and ϕ
∗ are given by (11) and (8)-(9), respectively. Notice that both s∗2

and ϕ∗ depend on N but not s∗1. By construction, s
∗
2 is a best response against s

∗
2 w.r.t.

ϕ∗ and ϕ∗ is consistent with Bayes’rule. It remains to show that s∗1 is a best response to
(s∗1, s

∗
2) for suffi ciently large N .

LetMN = d(1−η)Ne be the number of active agents and consider an agent of type x.
Because the assignment into active/inactive categories is drawn independently from the
types, conditional on being active, the agent’s belief about other agents’types is such that
those types are i.i.d. with marginal probabilities (µz(x))x∈X conditional on each state z.
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Let γNz be the i.i.d. distribution over XMN−1 generated by (µz(x))x∈X . Given s∗2, the
first-stage problem for the agent of type x is maxa∈OG

N
x (a), where

GN
x (a) = ηGx(a) + (1− η)FN

x (a). (22)

Here, Gx is the stage-1 problem contingent on being inactive; while for a ∈ I(x̄),

FN
x (a) =

∑
z∈Z

τx(z)

 ∑
ξ∈XMN−1

γNz (ξ)
[
u(qN(a; z, ξ), rN(a; z, ξ);x, z)

] , (23)

where for each z and ξ = (ξ1, ..., ξMN−1) ∈ XMN−1, the types of the other active agents.

qN(a; z, ξ) = q̄ +
s∗2,r(x, a, ν

ξ,−a)QN
− − s∗2,q(x, a, νξ,−a)RN

−

s∗2,r(x, a, ν
ξ,−a) +RN

−
,

and

rN(a; z, ξ) = r̄ +
s∗2,q(x, a, ν

ξ,−a)RN
− − s∗2,r(x, a, νξ,−a)QN

−

s∗2,q(x, a, ν
ξ,−a) +QN

−
.

Here, νξ,−a is the announced histogram given that other active agents’types are ξ and
that other agents follow s∗1, and Q

N
− and R

N
− are the implied stage-2 offers of other active

agents according to the candidate equilibrium. That is,

νξ,−a(s∗1(y)) =
MN−1∑
i=1

1y(ξi) for each y ∈ X and νξ,−a(a′) = 0 otherwise, (24)

and
(QN
− , R

N
− ) =

∑
y∈X

σξ(y)(βσ
ξ

(y) + κ)− βσξ(x̄) (25)

where σξ is the type-configuration believed by other active agents; namely (recall that
a ∈ I(x̄)),

σξ(y) =
MN−1∑
i=1

1y(ξi) for each y 6= x̄ and σξ(x̄) =
MN−1∑
i=1

1x̄(ξi) + 1. (26)

The theorem is proved using the following two claims. The first describes the cost of being
a defector and the second describes the potential gain.

Claim 1. Let q1(a;x) be the consumption of q of a type-x agent who plays a and becomes
inactive. There exists ε > 0 such that if q1(a;x) /∈ I(x), then Gx(a) < Gx(s

∗
1(x))− ε.

Proof of claim 1. As mentioned before, maxa∈OGx(a) is equivalent to maxq∈[0,2q̄] Lx(q),
where

Lx(q) =
∑
z∈Z

τx(z)u(q, p1q̄ + r̄ − p1q;x, z).

Let 2δx = miny∈X, y 6=x |q1(α∗(x))− q1(α∗(y))|. Then, q /∈ I(x) implies |q − q1(α∗(x))| ≥
δx. Because Lx(q) is strictly concave in q and has a maximum at q1(α∗(x)), it follows
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that Ax = min{−L′x(q1(α∗(x)) + δx
2

), L′x(q1(α∗(x)) − δx
2

)} > 0. Then, for any q such
that |q − q1(α∗(x))| ≥ δx

2
, Lx(q) ≤ Lx(q1(α∗(x))) − δx

2
Ax. Take εx = (δx/4)Ax. Then,

q1(a;x) /∈ I(x) implies Gx(a) = Lx(q1(a;x)) ≤ Lx(q1(α∗(x))) − 2εx < Gx(s
∗
1(x)) − εx.

Finally, let ε = min{εx}x∈X .2

Claim 2. Let ξ = (ξ1, ..., ξn, ...) be an infinite sequence of X-valued random variables
that is i.i.d. w.r.t. the marginal distribution (µz(x))x∈X and let ξ

MN−1 = (ξ1, ..., ξMN−1),
where ξM

N−1 describes the types of the other active agents when there are MN of them.
Then

lim
N→∞

qN(a; z, ξM
N−1) = q̄ +

βzr(x)

pz
− βzq(x), lim

N→∞
rN(a; z, ξM

N−1) = r̄ + βzq(x)pz − βzr(x),

in probability and
lim
N→∞

FN
x (a) =

∑
z∈Z

τx(z)u(qz(x), rz(x);x, z), (27)

uniformly in a ∈ O, where (qz(x), rz(x)) is the CE allocation of Lz(κ) (see Lemma 2).

Proof of claim 2. By our construction of off-equilibrium beliefs, (8) and (9), FN
x (a)

depends only on the interval I(x) such that a ∈ I(x). Because there are only finitely
many such intervals, uniformity follows from convergence; namely, (27).

By definition, ξM
N−1 = (ξ1, ..., ξMN−1) is distributed according to γNz . For each N , let

σN = σξ
MN−1

as defined in (26) (recall that a ∈ I(x)) and let νN = νξ
MN−1,−a, as defined in

(24). That is, σN is the type-configuration believed by all other agents. Then, the sequence
{σN} is such that

∑
y∈X σ

N(y) = MN and for each y ∈ X, limN→∞(σN(y)/MN) = µz(y)

almost surely. Consider a realization of ξ for which limN→∞(σN(y)/MN) = µz(y). Then,
by Proposition 2, we have limN→∞ β

σN = βz. This implies that

lim
N→∞

(
QN
−

MN
,
RN
−

MN
) =

∑
y∈X

µz(y)(βz(y) + κ) and lim
N→∞

RN
−

QN
−

= pz, (28)

where QN
− and R

N
− are defined in (25) with ξ = ξM

N−1.

Finally, we show that limN→∞ s
∗
2(x, a, νN) = βz(x), where s∗2 is defined in (11). Letting

φN = margZϕ
∗(x, a, νN), where ϕ∗ is defined in (8) and (9), we have

lim
N→∞

φN [z] = 1.

Notice that φN is derived from the type-configuration believed by the agent, which is
different from σN if x 6= x̄. For each N , s∗2(x, a, νN) solves

max
b∈O

HN
x (b) = max

b∈O

∑
z′∈Z

φN [z′]u

(
q̄ +

brQ
N
− − bqRN

−
RN
− + br

, r̄ +
bqR

N
− − brQN

−
QN
− + bq

;x, z′
)
. (29)

Now, let
Jx(b; p, c1, c2, φ) =

∑
z′∈Z

φ[z′]u (q, r;x, z′)
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with q = q̄ + br
p(1+c2br)

− bq
1+c2br

and r = r̄− br
1+c1bq

+ pbq
1+c1bq

, and where the domain for Jx is

O×
[

κr
q̄+κq

, r̄+κr
κq

]
×
[
0, 1

κr

]
×
[
0, 1

κq

]
×∆(Z). It follows that Jx(b;

RN−
QN−
, 1/QN

− , 1/R
N
− , φ

N) =

HN
x (b). Therefore, by the argument used in the proof of Proposition 1, Jx(·; p, c1, c2, φ)

has a unique maximum, jx(p, c1, c2, φ). And because Jx is continuous on its domain, the
Maximum Theorem implies that jx(p, c1, c2, φ) is continuous.

Now, for each N , s∗2(x, a, νN) = jx(
RN−
QN−
, 1/QN

− , 1/R
N
− , φ

N). By (28) and the continuity

of jx, it follows that

b∗ = lim
N→∞

s∗2(x, a, νN) = lim
N→∞

jx

(
RN
−

QN
−
, 1/QN

− , 1/R
N
− , φ

N

)
= jx(p

z, 0, 0,1z).

By the definition of Jx, it follows that b∗ maximizes u
(
q̄ − bq + br

pz
, r̄ − br + pzbq;x, z

)
.

Therefore, it is a separating stage-2 equilibrium in the limit model. By Lemma 2, it
follows that b∗ = βz(x).2

In order to have any effect on FN
x (a), the agent must choose an offer suffi ciently far

from s∗1, the offer that maximizes Gx(a). Claim 1 shows that the implied loss in terms of
Gx(a) is bounded away from zero (and does not depend on N). By claim 2, any effect on
FN
x (a) goes to zero as N →∞. Together, they imply that s∗1 is a best response to (s∗1, s

∗
2)

for suffi ciently large N .�

7.2 Uniqueness

Theorem 2. Suppose that α∗(x) 6= α∗(y) for any x 6= y and that A1-A3 hold. There
exists N̄ such that if N > N̄ , then any equilibrium sN = (sN1 , s

N
2 ) is separating.

Proof. First we exclude complete pooling, i.e., an equilibrium s such that for some ā ∈ O,
s1(x) = ā for all x ∈ X.

Claim 0. For any equilibrium s, there exist x 6= y ∈ X such that s1(x) 6= s1(y).

Proof. Suppose that s is an equilibrium with s1(x) = ā for all x ∈ X. By A2, this
implies that the realized payoff of all active agents is (q̄, r̄), no-trade. However, because
α∗ is separating, there exist some x such that Gx(ā) < Gx(α

∗(x)). Recall that inactive
agents’payoffs are still determined by p1 under A2. Therefore, this agent has a profitable
deviation to α∗(x) because no-trade is feasible at stage-2 contingent on being active. 2

Claim 0 implies that any candidate equilibrium that is not separating is associated
with a partition Y = (Y1, ..., YK) of X with 1 < K < |X|. We denote such a candidate
equilibrium for N agents by sN . We prove, by way of contradiction, that sN cannot be an
equilibrium for suffi ciently large N . The contradiction is that one agent, called the target
agent, has a profitable deviation (to the stage-1 action described by α∗).

For a target agent of type-x, the stage-1 objective function is

GN
x (a) = ηGx(a) + (1− η)FN

x (a),
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where FN
x (a) is the expected payoff implied by offer a at stage-1 conditional on being

active. We show that for any ε > 0, FN
x (a) does not vary with a by more than ε for

suffi ciently large N . By assumption A3, FN
x (a) depends on the associated set of types,

A ⊆ X, that is believed by other active agents when a is offered at stage-1. Indeed, this
holds for equilibrium beliefs as well: if a is an equilibrium offer with a = sN1 (y), then
a is associated with A = Yk with y ∈ Yk. Therefore, we may rewrite FN

x (a) as FN
x (A)

with A ⊆ X being the set of types associated with a. To calculate FN
x (A), we need to

characterize the stage-2 offers following a public announcement νN such that νN(ã) = 1
for some ã that is associated with A and νN(a) = 0 if a /∈ {sN1 (Yk) : k = 1, ..., K} ∪ {ã}.

We divide the rest of the proof into four claims and a final argument. Each of the
first three claims has two similar parts– one part for the target agent and the other for
non-target agents. Claim 1 is concerned with beliefs along the equilibrium path and has
nothing to do with behavior. Claim 2 provides bounds on offers that assure that con-
sumption of each good is bounded away from zero– bounds that hold in any equilibrium.
Those bounds imply bounds on the derivatives that appear in the first-order conditions
that hold at all best responses. Claim 3 establishes uniform convergence of equilibrium
offers, βN , to “price-taking”offers with a known state-of-the-world and with a price that
is given by the equilibrium offers of others, where the uniformity is over all possible se-
quences of equilibria. Claim 4 is closely related to claim 2 in the proof of Theorem 1
because it says that FN

x (a) does not vary much with a for suffi ciently large N . The final
argument follows the logic of the proof of Theorem 1. In what follows, letMN = (1−η)N
be the number of active agents.

Claim 1a. Let νN be the public announcement which includes the offer ãN (made by
the target agent) associated with the set A, while other agents follow sN1 . Let λ

N be
the corresponding signal configuration for the non-target agents. Following the signal
configuration λN of the non-target agents, the stage-2 beliefs of the target agent of type
x are

φ̃
N

x [z̄] =
π(z̄)µz̄(x)

∏K
k=1[µz̄(Yk)]

λN (Yk)∑
z∈Z π(z)µz(x)

∏K
k=1[µz(Yk)]

λN (Yk)
, γ̃Nz [ξ1, ..., ξK ] =

K∏
k=1

λN (Yk)∏
i=1

µz(ξ
k
i )

µz(Yk)
,

where ξk = (ξk1, ..., ξ
k
λN (Yk)) ∈ Y

λN (Yk)
k describes the types for those non-target agents who

make the offer associated with Yk (λ
N(Yk) is the number of such agents), and

ϕN(x, ã, ν−ãN )[z, ξ1, ..., ξK ] = φ̃
N

x [z]γ̃Nz [ξ1, ξ2, ..., ξK ].

Here, φ̃
N

x [z̄] is the posterior over states, γ̃Nz is that over the types of other active agents
conditional on the state, and ϕN is the joint distribution.

Given a state z∗ ∈ Z and a type x ∈ X, for any ε > 0, there exist N1
a (ε) and δ1

a(ε) ≤ ε

such that if N > N1
a (ε) and if

∣∣∣λN (Yk)
MN − µz∗(Yk)

∣∣∣ < δ1
a(ε) for all k, then for each y ∈ X,

φ̃
N

x [z∗] > 1− ε and γ̃Nz∗
[∣∣∣∣ρ̃N(y)− µz∗(y)

µz∗(Yk)

∣∣∣∣ < ε

]
> 1− ε,
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where
ρ̃N(y) = #{ξki : ξki = y, i = 1, ..., λN(Yk)}/λN(Yk),

the fraction of non-target agents with types in Yk who are type y.

Claim 1b. Let νN and λN be defined as in Claim 1a. Consider a non-target agent with
type x. For such an agent the relevant signal configuration is the offer ãN and λN− defined
as follows: If x ∈ Yk̄, then λN− (Yk) = λN(Yk) for each k 6= k̄ and λN− (Yk̄) = λN(Yk̄) − 1.
After observing the signal configuration λN− and ã

N , the stage-2 beliefs of such a non-target
agent are

φ̂
N

x [z̄] =
π(z̄)µz̄(x)µz̄(A)

∏K
k=1[µz̄(Yk)]

λN− (Yk)∑
z∈Z π(z)µz(x)µz(A)

∏K
k=1[µz(Yk)]

λN− (Yk)
,

and

γ̂Nz [ξ1, ..., ξK , ξ̃] =
µz(ξ̃)

µz(A)

K∏
k=1

λN− (Yk)∏
i=1

(
µz(ξ

k
i )

µz(Yk)

) ,
where ξk = (ξk1, ..., ξ

k
λN (Yk)) ∈ Y

λN (Yk)
k describes the types for those who make the offer

associated with Yk and ξ̃ describes the type of the agent who offered ãN , and

ϕN(y, s1(y), ν
−s1(y)
N )[z, ξ1, ..., ξK , ξ̃] = φ̂

N

y [z]γ̂Nz [ξ1, ..., ξK , ξ̃].

Here, φ̂
N

x is the posterior distribution over states, γ̂
N
z is that over types of the other active

agents conditional on the state, and ϕN is the joint distribution.

Given a state z∗ ∈ Z and a type x ∈ X, for any ε > 0, there exist N1
b (ε) and δ1

b(ε) ≤ ε

such that if N > N1
b (ε) and if

∣∣∣λN (Yk)
MN − µz∗(Yk)

∣∣∣ < δ1
b(ε) for all k, then for each y ∈ X,

φ̂
N

x [z∗] > 1− ε and γ̂Nz∗
[∣∣∣∣ρ̂N(y)− µz∗(y)

µz∗(Yk)

∣∣∣∣ < ε

]
> 1− ε,

where for each realization of other active non-target agents’types (ξk)k=1,...,K and for each
y ∈ X,

ρ̂N(y) = #{ξki : ξki = y, i = 1, ..., λN− (Yk)}/λN− (Yk).

Proof. We prove Claim 1b only. The derivation of φ̂
N

x and γ̂
N
z follows directly from A3

and Bayes’rule. Therefore, consider the claim for ρ̂N . For each z ∈ Z, consider K infinite
sequences of random variables (ζ1, ζ2, ..., ζK) such that ζki is Yk-valued for all i ∈ N, the
K sequences are independent of each other, and ζk is an i.i.d. sequence with marginal
distribution ( µz(y)

µz(Yk)
)y∈Yk . Let γz denote the joint distribution of (ζ1, ζ2, ..., ζK). Then,

given a sequence of signal-configurations λN and a realization (ζ1, ζ2, ..., ζK), for each
k = 1, ..., K, each y ∈ Yk, and each N , define

ρN(y) = #{ζki : ζki = y, i = 1, ..., λN− (Yk)}/λN− (Yk).

Notice that for each y ∈ X, ρN(y) and ρ̂N(y) have the same distribution. By the law of
large numbers, for each y ∈ Yk, ρN(y) converges to µz(y)/µz(Yk) in probability under γz
for any k as λN− (Yk) converges to infinity. This implies the result.2
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Now we turn to equilibrium behavior, where, again, we distinguish between the target
agent and the other agents. We use β̃

N,A
(x) to denote the equilibrium offer from the

target agent with type x and use β̂
N,A

(x) to denote the equilibrium offer from a non-target

agent with type x. β̃
N,A

(x) and β̂
N,A

(x) then maximize H̃λN

x (b) and ĤλN

x (b), respectively,
subject, of course, to b ∈ O that are defined in the following.

Following a signal configuration λN for non-target agents, the target agent of type x
has the stage-2 objective function,

H̃λN

x (bq, br) =
∑
z∈Z

φ̃
N

x [z]Eγ̃Nz

[
u

(
q̄ +

brQ̃
N
− − bqR̃N

−

R̃N
− + br

, r̄ +
bqR̃

N
− − brQ̃N

−

Q̃N
− + bq

;x, z

)]
, (30)

where
(Q̃N
− , R̃

N
− ) =

∑
k=1,..,K

∑
y∈Yk

λN(Yk)ρ̃
N(y)β̂

N,A
(y) +MNκ.

Following a signal configuration λN− of other non-target agents, a non-target agent of type
x has the stage-2 objective function,

ĤλN

x (bq, br) =
∑
z∈Z

φ̂
N

x [z]Eγ̂Nz

[
u

(
q̄ +

brQ̂
N
− − bqR̂N

−

R̂N
− + br

, r̄ +
bqR̂

N
− − brQ̂N

−

Q̂N
− + bq

;x, z

)]
, (31)

where
(Q̂N
− , R̂

N
− ) =

∑
k=1,..,K

∑
y∈Yk

λN− (Yk)ρ̂
N(y)β̂

N,A
(y) + β̃

N,A
(ξ̃) +MNκ.

Noitce that here ξ̃ denotes the target agent’s type.

Claim 2. There exist b̄ = (b̄q, b̄r) < (q̄, r̄) such that β̃
N,A

(x) ≤ b̄ and β̂
N,A

(x) ≤ b̄.

Proof. As might be expected, this follows from the Inada conditions and the bounds
on prices implied by κ > 0. We prove the claim for β̃

N,A
; the other case is exactly the

same. Obviously, we are only concerned with positive offers. We spell out the details for
β̃
N,A

q (x) > 0. To abbreviate notation denote β̃
N,A

q (x) by b∗q.

Being positive, b∗q satisfies the first-order condition (uq and ur denote the first-order
derivatives of u),∑

z∈Z
φ̃
N

x [z]

{
Eγ̃Nz

[
−uq(q(b∗q), r(b∗q);x, z) + ur(q(b

∗
q), r(b

∗
q);x, z)

Q̃N
− R̃

N
−

(Q̃N
− + bq)2

]}
= 0 (32)

where

(q(bq), r(bq)) =

(
q̄ − bq, r̄ +

bqR̃
N
−

Q̃N
− + bq

)
. (33)

For any bq ∈ [0, q̄], Q̃N
− ∈ [MNκq, (M

N − 1)q̄ + MNκq)], and R̃N
− ∈ [MNκr, (M

N − 1)r̄ +
MNκr)],

ur(q(bq), r(bq);x, z)
Q̃N
− R̃

N
−

(Q̃N
− + bq)2

≤ max
q∈[0,q̄],z∈Z

ur (q, r̄;x, z)
(q̄ + κq)(r̄ + κr)

κ2
q

≡ A.
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For each bq ∈ [0, q̄), let

J(bq) = min
r∈[r̄,r̄+

q̄(r̄+κr)
κq

],z∈Z
uq(q̄ − bq, r;x, z).

Because [r̄, r̄+ q̄(r̄+κr)
κq

] is compact and X and Z are both finite, J is well-defined, positive,
strictly increasing, limbq→q J(bq) =∞, and, of course, J(bq) ≤ uq(q(bq), r(bq);x, z).

Let γ > 1 be such that there is a solution for bq to J(bq) = γA. Denote the solution,

which is unique, b̃q(x). We next show that β̃
N,A

q (x) = b∗q ≤ b̃q(x) < q̄. The second
inequality follows from γA < ∞. Suppose the first inequality does not hold. Then, by
(32), for some (z, Q̃N

− , R̃
N
− ), we must have

uq(q(b
∗
q), r(b

∗
q);x, z)− ur(q(b∗q), r(b∗q);x, z)

Q̃N
− R̃

N
−

(Q̃N
− + bq)2

≤ 0

with (q(bq), r(bq)) as in (33). Because b∗q > b̃q(x),

uq(q(b
∗
q)), r(b

∗
q);x, z) > γA and ur(q(b∗q), r(b

∗
q);x, z)

Q̃N
− R̃

N
−

(Q̃N
− + bq)2

≤ γA,

a contradiction. The argument for β̃
N,A

r (x) > 0 is exactly analogous.

Finally, take b̄q = max{b̃q(x), b̂q(x) : x ∈ X} and b̄r = max{b̃r(x), b̂r(x) : x ∈ X},
where b̂q(x) and b̂r(x) are the analogous bounds for β̂

N,A
(x).2

Claim 3. Fix a state z∗ ∈ Z. For any p > 0 let χ(x; p) = (χq(x; p), χr(x; p)) be the
unique solution to

max
b∈O

Hx(b; p) = max
b∈O

u(q̄ − bq +
br
p
, r̄ − br + bqp;x, z

∗).

For any ε > 0, there existsN3(ε) and δ3(ε) ≤ ε such that ifN > N3(ε) and if
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ <

δ3(ε) for all k, then for each x ∈ X,

|β̃N,Aq (x)− χq(x; pN)|+ |β̃N,Ar (x)− χr(x; pN)| < ε

and
|β̂N,Aq (x)− χq(x; pN)|+ |β̂N,Ar (x)− χr(x; pN)| < ε,

where

pN =

∑
y∈X µz∗(y)β̂

N,A

r (y) + κr∑
y∈X µz∗(y)β̂

N,A

q (y) + κq
.

Proof. We first prove the claim for β̃
N,A
. The objective H̃λN

x (b), defined in (30), for which

β̃
N,A

(x) is a best response, differs from Hx(b; p
N), for which χ(x; pN) is a best response, in
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two respects. In Hx(b; p
N), offers of others are weighted by limit weights, while in H̃λN

x (b)
they are weighted by the agent’s posterior over the types of others. And, in Hx(b; p

N),
the price is unaffected by the agent’s own offer, while in H̃λN

x (b) it responds to the agent’s
offer as in the market game. The proof of the claim shows that both differences disappear
for suffi ciently large N .

Let d = 1
2

min{q̄− b̄q, r̄− b̄r}. First we show that, for any ε > 0, there exist N2(ε) and

δ2(ε) such that if N > N2(ε) and if
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ2(ε) for all k, then for all x ∈ X

and for all bq ∈ [0, q̄ − d] and all br ∈ [0, r̄ − d],∣∣∣∣ ∂∂bqHx(bq, 0; pN)− ∂

∂bq
H̃λN

x (bq, 0)

∣∣∣∣ < ε and

∣∣∣∣ ∂∂brHx(0, br; p
N)− ∂

∂br
H̃λN

x (0, br)

∣∣∣∣ < ε.

(34)
Because the arguments are essentially the same, we only prove the first of these.

Fix some x ∈ X and let

L(bq, p1, p2) = uq(q̄ − bq, r̄ + bqp1;x, z∗)− ur(q̄ − bq, r̄ + bqp1;x, z∗)p2.

L(bq, p1, p2) is continuous over [0, q̄−d]×
[

κr
q̄+κq

, κr+r̄
κq

]2

and, hence, is uniformly continuous.

Therefore, for any ε > 0, there exists some δ̂(ε) ≤ ε such that

|p1 − p′1| < δ̂(ε) and |p2 − p′2| < δ̂(ε)⇒ |L(bq, p1, p2)− L(bq, p
′
1, p
′
2)| < ε. (35)

Notice that ∂
∂bq
Hx(bq, 0; pN) = L(bq, p

N , pN) and that

∂

∂bq
H̃λN

x (bq, 0) =
∑
z∈Z

φ̃
N

x [z]Eγ̃Nz

[
L

(
bq,

R̃N
−

Q̃N
− + bq

,
Q̃N
− R̃

N
−

(Q̃N
− + bq)2

)]
.

Hence, it is suffi cient to show that pN is close to both
R̃N−

Q̃N−+bq
and

Q̃N− R̃
N
−

(Q̃N−+bq)2 as N becomes

large and as λN/MN converges uniformly.

Because

pN −
R̃N
−

Q̃N
−

=

∑
y∈X µz∗(y)β̂

N,A

r (y) + κr∑
y∈X µz∗(y)β̂

N,A

q (y) + κq
−
∑

k=1,..,K

∑
y∈Yk

λN− (Yk)

MN ρ̃N(y)β̂
N,A

r (y) + κr∑
k=1,..,K

∑
y∈Yk

λN− (Yk)

MN ρ̃N(y)β̂
N,A

q (y) + κq
,

we have ∣∣∣∣∣pN − R̃N
−

Q̃N
−

∣∣∣∣∣ ≤ 2(q̄ + κq)(r̄ + κr)

κ2
q

K∑
k=1

∣∣∣∣∣µz∗(Yk)− λN− (Yk)

MN
ρ̃N(y)

∣∣∣∣∣ .
Moreover,∣∣∣∣∣ Q̃N

− R̃
N
−

(Q̃N
− + bq)2

−
R̃N
−

Q̃N
−

∣∣∣∣∣ ≤ r̄ + κr
κq

q̄(2κq + q̄
MN )

κ2
qM

N
and

∣∣∣∣∣ R̃N
−

Q̃N
− + bq

−
R̃N
−

Q̃N
−

∣∣∣∣∣ ≤ r̄ + κr
κq

q̄

κqMN
.
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Hence, for any ε > 0 there exist Ñ(ε) and δ̃(ε) ≤ ε such that if N > Ñ(ε) and if∣∣∣ρ̃N(y)− µz∗ (y)
µz∗ (Yk)

∣∣∣ < δ̃(ε) and
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ̃(ε) for all k, then∣∣∣∣∣ Q̃N

− R̃
N
−

(Q̃N
− + bq)2

− pN
∣∣∣∣∣ < ε and

∣∣∣∣∣ R̃N
−

Q̃N
− + bq

− pN
∣∣∣∣∣ < ε for all bq. (36)

Let B = 2 max{1, uq(d, r;x, z), ur(q, d;x, z) : r ∈
[
0, r̄ + 2q̄ r̄+κr

κq

]
, q ∈ [0, q̄], z ∈ Z}. Then

|L(bq, p1, p2)| ≤ 1
2
B for all (bq, p1, p2) ∈ [0, q̄−d]× [ κr

q̄+κq
, κr+r̄

κq
]2. Let δ′ = δ̂( ε

10B
) (see (35)).

Let
δ2(ε) = min{δ1(

ε

10B
), δ1(δ̃(δ′))} and N2(ε) = max{N1(

ε

10B
), Ñ(δ2(ε))},

where Ñ and δ̃ are given in (36) and δ1(ε) = min{δ1
a(ε), δ

1
b(ε)} andN1(ε) = max{N1

a (ε), N1
b (ε)}

with δ1
a(ε), δ

1
b(ε), N

1
a (ε), N1

b (ε) given in Claim 1.

Suppose that N > N2(ε) and that
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ2(ε) for all k. By Claim 1a,

because N > N2(ε) ≥ N1(ε/10B) and for all k,
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ2(ε) ≤ δ1(ε/10B),

we have φ̃
N

x [z∗] > 1− ε/10B.

Moreover, because N > N1(δ̃(δ′)) and because
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ1(δ̃(δ′)) for all k,

it follows from Claim 1a that

γ̃Nz∗

[∣∣∣∣ρ̃N(y)− µz(y)

µz(Yk)

∣∣∣∣ < δ̃(δ′)

]
> 1− δ̃(δ′) ≥ 1− ε

10B
.

Now, by (36), it follows that if
∣∣∣ρ̃N(y)− µz∗ (y)

µz∗ (Yk)

∣∣∣ < δ̃(δ′), if
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ̃(δ′), and

if N > Ñ(δ′), then

max

{∣∣∣∣∣pN − R̃N
−

Q̃N
− + bq

∣∣∣∣∣ ,
∣∣∣∣∣pN − Q̃N

− R̃
N
−

(Q̃N
− + bq)2

∣∣∣∣∣
}
< δ′ = δ̂(

ε

10B
).

This and (35) imply∣∣∣∣∣L
(
bq,

R̃N
−

Q̃N
− + bq

,
Q̃N
− R̃

N
−

(Q̃N
− + bq)2

)
− L(bq, p

N , pN)

∣∣∣∣∣ < ε

10B
.

Therefore,
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ̃(δ′) and N > Ñ(δ′) imply that

γ̃Nz∗

[∣∣∣∣∣L
(
bq,

R̃N
−

Q̃N
− + bq

,
Q̃N
− R̃

N
−

(Q̃N
− + bq)2

)
− L(bq, p

N , pN)

∣∣∣∣∣ < ε

10B

]
> 1− ε

10B
.
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Combining these results we have∣∣∣∣ ∂∂bqHx(bq, 0; pN)− ∂

∂bq
H̃λN

x (bq, 0)

∣∣∣∣
≤ Eγ̃N

z∗

[
L

(
bq,

R̃N
−

Q̃N
− + bq

,
Q̃N
− R̃

N
−

(Q̃N
− + bq)2

)
− L(bq, p

N , pN)

]
+ (1− φ̃Nx [z∗])B

< [
ε

10
+

ε

10B
(2B)] + [ε/10B]B < ε.

This establishes (34).

Now we complete the proof of Claim 3 for β̃
N,A
. Let Q(bq, br; p) = q̄ − bq + br

p
. It is

straightforward to check that there exists a D1 > 0 such that

|bq − b′q|+ |br − b′r| < D1|Q(b; p)−Q(b′; p)| for all (b, b′, p) ∈ O2 ×
[

κr
q̄ + κq

,
κr + r̄

κq

]
.

Also, letting

M(q; p) = uq(q, pq̄ + r̄ − pq;x, z∗)− ur(q, pq̄ + r̄ − pq;x, z∗)p,

we have

∂

∂bq
Hx(bq, 0; pN) = −M(Q(bq, 0; pN); pN) and

∂

∂br
Hx(0, br; p

N) = M(Q(0, br; p
N); pN)/pN .

Now, let D2 satisfies

1/D2 = −max{uqq(q, r;x, z∗)− 2puqr(q, r;x, z
∗) + p2urr(q, r;x, z

∗) :

(q, r, p) ∈
[
d, q̄ +

r̄(q̄ + κq)

κr

]
×
[
d, r̄ +

q̄(r̄ + κr)

κq

]
×
[

κr
q̄ + κq

,
κr + r̄

κq

]
},

where uqq, uqr, and urr denote second-order derivatives of u. Because u is strictly concave
and continuously twice differentiable, D2 is well-defined and D2 > 0. Moreover,

M ′(q; pN) = uqq(q, r;x, z
∗)− 2pNuqr(q, r;x, z

∗) + (pN)2urr(q, r;x, z
∗)

with r = pN q̄ + r̄ − pNq. Hence, M ′(q; pN) < −1/D2 for all q = Q(b; pN) with (b, pN) ∈
O2 ×

[
κr
q̄+κq

, κr+r̄
κq

]
.

Because the offer χ(x; pN) is a “price-taking”offer, it satisfies the first-order conditions
at equality, i.e., M(Q(χ(x; pN); pN); pN) = 0. Therefore, by the Mean Value Theorem, for
any ε > 0, if |M(q̄ − bq + br

pN
; pN)| < ε/D1D2 with bqbr = 0, then

|bq − χq(x; pN)|+ |br − χr(x; pN)| < ε. (37)

Let D = 2D1D2
r̄+κr
κq
. Then, for any pN ∈

[
κr
q̄+κq

, κr+r̄
κq

]
, pND1D2 < D.
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Now, let N3(ε) = N2(ε/D) and δ3(ε) = δ2(ε/D), where N2 and δ2 are given by (34).

Suppose that N > N2(ε) and that
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ2(ε) for all k. We consider three

cases.

(a) β̃
N,A

q (x) > 0.

Then, ∂
∂bq
H̃λN

x (β̃
N,A

q (x), 0) = 0. By (34), we have
∣∣∣ ∂∂bqHx(β̃

N,A

q (x), 0; pN)
∣∣∣ < ε/D and

hence |M(Q(β̃
N,A

q (x), 0; pN); pN)| < ε/D. This, by (37), implies that

|β̃N,Aq (x)− χq(x; pN)|+ |χr(x; pN)| < ε.

(b) β̃
N,A

r (x) > 0.

Then, ∂
∂br
H̃λN

x (0, β̃
N,A

r (x)) = 0. By (34), we have
∣∣∣ ∂∂brHx(0, β̃

N,A

r (x); pN)
∣∣∣ < ε/D and

hence |M(Q(β̃
N,A

q (x), 0; pN))/pN | < ε/D. This, (37), and D/pN > D1D2 for all pN ∈[
κr
q̄+κq

, κr+r̄
κq

]
imply

|χq(x; pN)|+ |β̃N,Ar (x)− χr(x; pN)| < ε.

(c) β̃
N,A

q (x) = 0 = β̃
N,A

r (x).

Then, ∂
∂bq
H̃λN

x (0, 0) ≤ 0 and ∂
∂br
H̃λN

x (0, 0) ≤ 0. By (34), we have

−M(Q(0, 0; pN); pN) =
∂

∂bq
Hx(0, 0; pN) <

∂

∂bq
HλN

x (0, 0) + ε/D ≤ ε/D

and

M(Q(0, 0; pN); pN)/pN =
∂

∂br
Hx(0, 0; pN) <

∂

∂br
HλN

x (0, 0) + ε/D ≤ ε/D.

It then follows that |M(Q(0, 0; pN); pN)| < ε/D1D2 and hence

|χq(x; pN)|+ |χr(x; pN)| < ε.

This concludes the proof of Claim 3 for β̃
N,A
.

The argument is identical for β̂
N,A
, except that we need an additional argument to

show that for any ε > 0, there exists N2(ε) and δ2(ε) such that if N > N2(ε) and if∣∣∣λN (Yk)
MN − µz∗(Yk)

∣∣∣ < δ2(ε) for all k, then for all bq ∈ [0, q̄ − d] and all br ∈ [0, r̄ − d],∣∣∣∣ ∂∂bqHx(bq, 0; pN)− ∂

∂bq
ĤλN

x (bq, 0)

∣∣∣∣ < ε and

∣∣∣∣ ∂∂brHx(0, br; p
N)− ∂

∂br
ĤλN

x (0, br)

∣∣∣∣ < ε.

(38)
Although (38) is completely analogous to (34), an additional argument is required because

β̃
N,A

appears in (Q̂N
− , R̂

N
− ), while pN only involves β̂

N,A
.
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Notice that

pN −
R̂N
−

Q̂N
−

=

∑
y∈X µz∗(y)β̂

N,A

r (y) + κr∑
y∈X µz∗(y)β̂

N,A

q (y) + κq
−

∑
k=1,..,K

∑
y∈Yk

λN− (Yk)

MN ρ̂N(y)β̂
N,A

r (y) + 1
MN β̃

N,A

r (ξ̃) + κr∑
k=1,..,K

∑
y∈Yk

λN− (Yk)

MN ρ̂N(y)β̂
N,A

q (y) + 1
MN β̃

N,A

q (ξ̃) + κq
.

Therefore,∣∣∣∣∣pN − R̂N
−

Q̂N
−

∣∣∣∣∣ ≤ 2(q̄ + κq)(r̄ + κr)

κ2
q

[
K∑
k=1

∣∣∣∣∣µz∗(Yk)− λN− (Yk)

MN
ρ̂N(y)

∣∣∣∣∣+
∣∣∣ q̄

MN
+

r̄

MN

∣∣∣] .
Also,∣∣∣∣∣ Q̂N

− R̂
N
−

(Q̂N
− + bq)2

−
R̂N
−

Q̂N
−

∣∣∣∣∣ ≤ r̄ + κr
κq

q̄(2κq + q̄
MN )

κ2
qM

N
and

∣∣∣∣∣ R̂N
−

Q̂N
− + bq

−
R̂N
−

Q̂N
−

∣∣∣∣∣ ≤ r̄ + κr
κq

q̄

κqMN
.

Thus, for any ε > 0 there exist Ñ(ε) and δ̃(ε) ≤ ε such that if N > Ñ(ε) and if∣∣∣ρ̂N(y)− µz∗ (y)
µz∗ (Yk)

∣∣∣ < δ̃(ε) and
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ̃(ε), then∣∣∣∣∣pN − R̂N

−

Q̂N
−

∣∣∣∣∣ < ε,

∣∣∣∣∣ Q̂N
− R̂

N
−

(Q̂N
− + bq)2

− pN
∣∣∣∣∣ < ε, and

∣∣∣∣∣ R̂N
−

Q̂N
− + bq

− pN
∣∣∣∣∣ < ε

for all bq. Given these results, the rest of the argument is exactly the same as for β̃
N,A
.2

Claim 4. For any ε > 0, there exists N4(ε) such that if N > N4(ε), then for all x ∈ X,

|FN
x (A)− FN

x (sN1 (x))| < ε for any A ⊆ X, (39)

where, recall, FN
x (A) is the expected payoff from offer a that is associated with the set A

at stage-1 conditional on being active.

Proof. Consider a state z. First we show that for any ε > 0, there exist N5(ε) and δ5(ε)
such that if N ≥ N5(ε) and if

∣∣λN(Yk)/M
N − µz(Yk)

∣∣ < δ5(ε), then for each x ∈ X,

‖ β̂N,A(x)− βz(x) ‖< ε and ‖ β̃N,A(x)− βz(x) ‖< ε, (40)

where ‖ b − b′ ‖= |bq − b′q| + |br − b′r| for all b, b′ ∈ O. We establish (40) for β̂
N,A

and a
fixed state z∗. The other case is exactly the same. For any δ = (δq, δr) ≥ (0, 0), let βδ be
the unique offers corresponding to the competitive equilibrium in the economy Lz∗(κ+ δ)
as defined in Lemma 2. Then, βz

∗
= βδ=0 and βδ is continuous in δ by Lemma 2.

If we set
δ̃ = (δ̃q, δ̃r) =

∑
x∈X

µz∗(x)[βN(x)− χ(x; pN)],
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then, by construction, (χ(x; pN))x∈X satisfies

pN =

∑
x∈X µz∗(x)χr(x; pN) + κr + δ̃r∑
x∈X µz∗(x)χq(x; pN) + κq + δ̃q

.

That is, (χ(x; pN))x∈X = β δ̃. Because βδ is continuous in δ, for any ε > 0, there exists a
δP (ε) ≤ ε such that if max{|δ̃q|, |δ̃r|} ≤ δP (ε), then

‖βz∗(x)− χ(x; pN)‖ < ε for all x ∈ X. (41)

Now for any ε > 0, let δ′ = δP (ε/2) and let δ5(ε) = δ3(δ′). Let N5(ε) = N3(δ′). By Claim

3, if
∣∣∣λN (Yk)

MN − µz∗(Yk)
∣∣∣ < δ3(δ′) for all k and if N > N3(δ′), then

‖β̃N,A(x)− χ(x; pN)‖ < δ′ ≤ ε

2
for all x ∈ X.

This then implies that

|δ̃q|+|δ̃r| ≤
∑
x∈X

µz∗(x)|β̃N,Aq (x)−χq(x; pN)|+
∑
x∈X

µz∗(x)|β̃N,Ar (x)−χr(x; pN)| < δ′ = δP (ε/2).

By (41), this implies that ‖βz∗(x)− χ(x; p)‖ < ε/2. Thus, for each x,

‖β̃N,A(x)− βz∗(x)‖ ≤ ‖β̃N,A(x)− χ(x; pN)‖+ ‖βz∗(x)− χ(x; pN)‖ < ε,

which is (40).

Let γ̄Nz be the probability distribution over other active agents’types conditional on
state z, that is, γ̄Nz [ξ1, ..., ξMN−1] =

∏MN

t=1 µz(ξt). For any nonempty A ⊆ X,

FN
x (A) =

∑
z∈Z

τx[z]Eγ̄Nz

[
u

(
q̄ +

β̃
N,A

r (x)QN
− − β̃

N,A

q (x)RN
−

β̃
N,A

r (x) +RN
−

, r̄ +
β̃
N,A

q (x)RN
− − β̃

N,A

r (x)QN
−

β̃
N,A

q (x) +QN
−

;x, z

)]
,

where

(QN
− , R

N
− ) =

∑
y∈X

σ(y)β̂
N,A

(y) +MNκ and σ(y) = #{ξt : t = 1, ...,MN − 1, ξt = y}.

By the law of large numbers, σ(y)/MN converges to µz(y) in probability under γ̄Nz .
As a result, λN(Yk)/M

N converges to µz(Yk) in probability under γ̄
N
z . Therefore, by (40),

for any ε′ > 0 there exists N z(ε′) such that if N > N z(ε′), then

γ̄Nz

[∣∣∣∣∣
(
β̃
N,A

r (x)QN
− − β̃

N,A

q (x)RN
−

β̃
N,A

r (x) +RN
−

)
−
(
βzr(x)

pz
− βzq(x)

)∣∣∣∣∣ < ε′

]
> 1− ε′

and

γ̄Nz

[∣∣∣∣∣
(
β̃
N,A

q (x)RN
− − β̃

N,A

r (x)QN
−

β̃
N,A

q (x) +QN
−

)
−
(
βzq(x)pz − βzr(x)

)∣∣∣∣∣ < ε′

]
> 1− ε′.
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With appropriate ε′’s, this implies that∣∣∣∣∣FN
x (A)−

∑
z∈Z

τx[z]u

(
q̄ +

βzr(x)

pz
− βzq(x), r̄ + βzq(x)pz − βzr(x);x, z

)∣∣∣∣∣ < ε.

Claim 4 follows from the fact that there are only finitely many nonempty A ⊆ X.2

Now we complete the proof. Recall that we begin with a candidate semi-pooling
equilibrium associated with the partition Y = {Y1, ..., YK} with 1 < K < |X|. Because
such an equilibrium does not exist when |X| = 2, we may assume that for some y1, y2 ∈ X,
y1 6= y2 ∈ Y1. Recall that Gx(a) is the objective function for a type-x agent at stage-1
conditional on being inactive (see (5)). Because y1 6= y2, there exists C > 0 such that
for any a ∈ O, either Gy1(a) < Gy1(α∗(y1)) − C or Gy2(a) < Gy2(α∗(y1)) − C. Assume
without loss of generality that Gy1(sN1 (Y1)) < Gy1(α∗(y1))− C so that sN1 (y1) 6= α∗(y1).

Let N̄ = N4( ηC
2(1−η)

). Then, by claim 4, if N ≥ N̄ ,

|FN
y1 (sN1 (Y1))− FN

y1 (α∗(y1))| < ηC

2(1− η)
and |FN

y2 (sN1 (Y1))− FN
y2 (α∗(y2))| < ηC

2(1− η)
.

Then, for N ≥ N̄ ,

ηGy1(sN1 (Y1)) + (1− η)FN
y1 (sN1 (Y1))

< η(Gy1(α∗(y1))− C) + (1− η)(FN
y1 (α∗(y1)) +

ηC

2(1− η)
)

= ηGy1(α∗(y1)) + (1− η)FN
y1 (α∗(y1))− ηC

2
.

Hence, deviating from sN1 (y1) to α∗(y1) is profitable, a contradiction.�

7.3 Optimality

Theorem 3. Suppose that α∗(x) 6= α∗(y) for any x 6= y. Let (ε, δ) > 0 be given.

(i) There exists κ̄ > 0 and a function N(κ, η) such that if max{κq, κr} < κ̄, η ≤
min{κq

4q̄
, κr

4r̄
}, and N > N(κ, η), then there exists a separating equilibrium whose out-

come is ex post (ε, δ)-effi cient.

(ii) Suppose that A1-A3 hold. Then there exists κ̄ > 0 and a function N(κ, η) such that if
max{κq, κr} < κ̄, η ≤ min{κq

4q̄
, κr

4r̄
}, and N > N(κ, η), then the outcome of any symmetric

equilibrium in pure strategies is ex post (ε, δ)-effi cient.

Proof of (i). Recall that {(qz(x;κ), rz(x;κ))}x∈X stands for the competitive allocation
in the economy Lz(κ) (see Lemma 2). Consider another economy J (κ, ρ), where ρ :
X → [0, 1] stands for the proportion of agents with different types in the economy, and
each agent has endowment (q̄ + κq, r̄ + κr). Let {(q̃z(x;κ, ρ), r̃z(x;κ, ρ))}x∈X denote the
competitive allocation for J (κ, ρ) under known state-of-the-world z. We omit the proof
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of the following claim, which only asserts continuity of competitive allocations w.r.t.
endowment parameters and the proportion of different types.

Claim 1. Let {(qz(x;κ), rz(x;κ))}x∈X and {(q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ))}x∈X be defined as
above. For any ε > 0, there is a δ1(ε) > 0 such that if |ρ(x) − µz(x)| < δ1(ε) for each
x ∈ X and if max{κq, κr} < δ1(ε), then for each x ∈ X,

|u(qz(x;κ), rz(x;κ);x, z)− u(q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ);x, z)| < ε.

The next claim constructs the high probability event Ez,cN (ε) that we need to establish
(ε, δ) ex post optimality of a Theorem-1 equilibrium. The event Ez,cN will be the intersec-
tion of two events, E1

z,cN and E
2
z,cN : the first involves only exogenous random variables;

the second depends on a selected equilibrium.

Fix some (κ, η) > 0. For any realization ζN and cN , there is a unique corresponding
type-configuration for active agents, denoted σ(ζN , cN) = (σ(ζN , cN)(x) : x ∈ X). For
each (z, cN) ∈ Z × CN and for any ε > 0, define the event E1

z,cN (ε) as

E1
z,cN (ε) =

{
ζN : (∀x)

∣∣σ(ζN , cN)(x)/MN − µz(x)
∣∣ < δ1(ε)

}
, (42)

where δ1(ε) is defined in Claim 1 above. By Theorem 1, there exists a number N̄(κ, η)
such that if N > N̄(κ, η), then there exists a separating equilibrium (sN1 , s

N
2 ). As above,

we use βσ to denote the stage-2 offers along the corresponding equilibrium path for a
realization of type-configuration σ for active agents; we also use (qσ(x), rσ(x)) to denote
the corresponding payoffs as determined in (3) from offers βσ. The event E2

z,cN (ε) is then
defined as

E2
z,cN (ε) =

{
ζN : (∀x)

∣∣∣u(qσ(ζN ,cN )(x), rσ(ζN ,cN )(x);x, z)− u(qz(x;κ), rz(x;κ);x, z)
∣∣∣ < ε

}
,

(43)
where (qz(x;κ), rz(x;κ))}x∈X denotes the competitive allocation in the economy Lz(κ).
Finally, let Ez,cN (ε) = E1

z,cN (ε) ∩ E2
z,cN (ε).

Claim 2. Let (κ, η) be given. Fix a sequence of separating equilibria {sN1 , sN2 }N>N̄(κ,η)

and let Ez,cN be defined w.r.t. {sN1 , sN2 }N>N̄(κ,η). There exists a number N2(κ, η, ε) such
that if N > N2(κ, ζ, ε), then for any (z, cN) ∈ Z × CN , P

[
Ez,cN (ε) | cN , z

]
> 1− ε.

Proof. Let ξ be an infinite sequence of i.i.d. X-valued random variables with marginal
distribution given by µz. Because c

N is independent of the realization of types and the
state-of-the-world, for any N the sequence {ζn : 1 ≤ n ≤ N, cn = 1} and the sequence
{ξm : m = 1, ...,MN} have the same distribution conditional on z and cN . For each N and
ξM

N

= (ξ1, ..., ξMN ), let βσ
N

describe the equilibrium stage-2 offers under (sN1 , s
N
2 ) along

the equilibrium path with σN(x) = #{1 ≤ m ≤MN : ξm = x} and let (qσ
N
, rσ

N
) describe

the corresponding equilibrium payoffs for active agents. By Proposition 2, it follows that
limN→∞ β

σN = βz in probability conditional on z. Hence, by continuity of u, for any z,

lim
N→∞

u
(
qσ

N

(x), rσ
N

(x);x, z
)

= u(qz(x;κ), rz(x;κ);x, z)
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in probability conditional on z. Moreover, by the law of large numbers, for any z and
x ∈ X,

lim
N→∞

σN(x)/MN = µz(x)

in probability conditional on z.�
Now we can complete the proof. Given (ε, δ), let κ̄ = min{δ/2, δ1( ε

3
)} and consider

our mechanism with max{κq, κr} < κ̄ and with η ≤ min{κq
4q̄
, κr

4r̄
}.

Given a separating equilibrium (sN1 , s
N
2 ) for N agents, and given a type realization,

ζN = (ζ1, ..., ζN) ∈ XN , and an activeness-status realization, cN = (c1, ..., cN), the corre-
sponding allocation is as follows: if cn = 0, then

ωs
N

n (ζN , cN , z) =

(
q̄ − αq(ζn) +

αr(ζn)

p1
, r̄ − αr(ζn) + αq(ζn)p1

)
,

where sN1 (x) = (αq(x), αr(x)) for all x ∈ X; if cn = 1, then

ωs
N

n (ζN , cN , z) = (qσ(ζN ,cN )(ζn), rσ(ζN ,cN )(ζn)).

Let N(κ, η) = N2(κ, η, ε
3
). Now we show that if max{κq, κr} < κ̄ and η ≤ min{κq

4q̄
, κr

4r̄
},

and if N > N(κ, η), then the allocation {ωsNn : n ∈ N} corresponding to the separating
equilibrium (sN1 , s

N
2 ) from the sequence in Claim 2 is ex post (ε, δ)-effi cient. For any

realization ζN = (ζ1, ..., ζN) ∈ XN and cN = (c1, ..., c
N), letM(ζN , cN) = {m ∈ N : cm =

1}.

Then,

∑
n∈N

ωs
N

n (ζN , cN , z) =
∑

m∈M(ζN ,cN )

ωs
N

m (ζN , cN , z) +
∑

n∈N−M(ζN ,cN )

ωs
N

n (ζN , cN , z)

≤ (1− η)N(q̄ + κq, r̄ + κr) + ηN(2q̄, 2r̄)

≤ N [(q̄, r̄) + (κq, κr) + (
κq
2
,
κr
2

)] < N [(q̄, r̄) + (δ, δ)].

which gives condition (a) in our definition. For each z and for each cN , by claim 2,
N > N2(κ, η, ε

3
) implies P[Ez,cN (ε/3)|z, cN ] > 1− ε, condition b(i). As for b(ii), suppose,

by way of contradiction, that ω′n satisfies (12) and (13) for some z, c
N and for some

ζN ∈ Ez,cN (ε/3). Let ω′n(ζN , cN , z) = (q′n, r
′
n) for each n ∈ N .

Let ρ(x) = σ(ζN , cN)(x)/MN . Then, {(q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ)) : x ∈ X} is the com-
petitive allocation for a finite economy which has σ(ζN , cN)(x) agents of type-x for each
x and in which each agent has endowment (q̄+2κq, r̄+2κr). Now, consider the allocation
{(q′′n, r′′n) : n ∈ N} given by (q′′n, r

′′
n) = (q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ)) if cn = 1 and ζn = x and

by (q′′n, r
′′
n) = (0, 0) if cn = 0. Because ζN ∈ E1

z,cN (ε/3) and max{κq, κr} < δ1(ε/3), it
follows from Claim 1 that

|u(qz(x;κ), rz(x;κ);x, z)− u(q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ);x, z)| < ε/3.
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Moreover, because ζN ∈ E2
z,cN (ε/3), we have∣∣∣u(qσ(ζN ,cN )(x), rσ(ζN ,cN )(x);x, z)− u(qz(x;κ), rz(x;κ);x, z)

∣∣∣ < ε/3.

Thus,

u(q̃z(x; 2κ, ρ), r̃z(x; 2κ, ρ);x, z) < u(qσ(ζN ,cN )(x), rσ(ζN ,cN )(x);x, z) + 2ε/3.

Now, for each n such that cn = 1 and ζn = x,

u(q′′n, r
′′
n;x, z) < u(ωs

N

n (ζN , cN , z);x, z) + 2ε/3 < u(q′n, r
′
n;x, z)− ε/3; (44)

while for each n such that cn = 0 and ζn = x,

u(q′′n, r
′′
n;x, z) = u(0, 0;x, z) ≤ u(ωs

N

n (ζN , cN , z);x, z) < u(q′n, r
′
n;x, z)− ε, (45)

where the second inequality in each of (44) and (45) follows from (13), the contradicting
assumption. Therefore, {(q′n, r′n) : n ∈ N} Pareto dominates {(q′′n, r′′n) : n ∈ N}.

However, {(q′′n, r′′n) : n ∈ N} is a competitive allocation (with inactive agents having
zero endowments) for an economy with total resources no less than that for the allocation
{(q′n, r′n) : n ∈ N}. By the first fundamental theorem of welfare economics, it follows that
{(q′′n, r′′n) : n ∈ N} cannot be Pareto dominated by {(q′n, r′n) : n ∈ N}.

Proof of (ii). Under A1-A3 and by Theorems 1 and 2, it follows that there is a number
Ñ(κ, η) such that if N > Ñ(κ, η), then any symmetric equilibrium in pure strategies
(sN1 , s

N
2 ) is a separating equilibrium. For any (ε, δ) > 0 we can then construct κ̄ and

N(κ, η) as in the proof of (i) to show almost ex post effi ciency for (ε, δ). However, we
need to modify Claim 2 in that proof so that the convergence rate does not depend on
the sequence of equilibria that we choose. Claim 3 is the modified version. There, as in
Claim 2, δ1 comes from Claim 1.

Claim 3. Let (κ, η) be given. Let N > Ñ(κ, η). Then, for any ε > 0, there exists
N3(κ, η, ε) > Ñ(κ, η) such that if N > N3(κ, η, ε), then for any equilibrium (sN1 , s

N
2 ) and

for any (z, cN) ∈ Z×CN , the event Ez,cN (ε) given by (42) and (43) w.r.t. the equilibrium
(sN1 , s

N
2 ) satisfies P

[
Ez,cN (ε) | cN , z

]
> 1− ε.

Proof. In the proof of Theorem 2, we establish that for any semi-pooling equilibrium
(including the separating equilibrium), the convergence rate of βσ

N

to βz (as defined in
Proposition 2) is uniformly bounded across all equilibria. When N > Ñ(κ, η), all such
equilibria are separating. Indeed, by equation (40) (taking Y = {{x} : x ∈ X} and
assuming that the target agent follows equilibrium behavior at stage-1), for any ε > 0
there exist N5(ε) and δ5(ε) such that if |σN(x)/MN − µz(x)| < δ5(ε) for all x and if
N > N5(ε), then ‖ βσN (x) − βz(x) ‖< ε for all x ∈ X. The claim then follows from
continuity of u and the law of large numbers, which implies that for any z and x ∈ X,
limN→∞ σ

N(x)/MN = µz(x) in probability conditional on z. �
Given Claim 1 and Claim 3, the rest of the proof is the same as the proof of (i), except

for letting N(κ, η) = N3(κ, η, ε
3
). 2

35



References

[1] Cripps, M. W. and J. M. Swinkels, Effi ciency of large double auctions. Econometrica,
74 (2006) 47-92.

[2] Dubey, P. S. and M. Shubik, A theory of money and financial institutions. 28. The
non-cooperative equilibria of a closed trading economy with market supply and bid-
ding strategies. Journal of Economic Theory, 17 (1978) 1-20.

[3] Fudenberg, D. and J. Tirole, Perfect bayesian equilibrium and sequential equilibrium.
Journal of Economic Theory, 53 (1991) 236-260.

[4] Dubey, P.S., J. Geanakoplos, and M. Shubik, The revelation of information in strate-
gic market games. Journal of Mathematical Economics, 16 (1987) 105-137.

[5] Gul, F. and A. Postlewaite, Aymptotic effi ciency in large exchange economies with
asymmetric information. Econometrica, 60 (1992) 1273-92.

[6] Hurwicz, L., E. Maskin, and A. Postlewaite, Feasible Nash implementation of social
choice rules when the designer does not know endowments or production sets. In The
Economics of Informational Decentralization: Complexity, Effi ciency, and Stability,
edited by J. Ledyard, Kluwer Academic Publishers, Boston/Dordrecht/London, 1995,
pages 367-433.

[7] McLean, R. and A. Postlewaite, Informational size and incentive compatibility.
Econometrica, 70 (2002) 2421-53.

[8] Palfrey, T.R., Uncertainty resolution, private information aggregation and the
Cournot competitive limit. The Review of Economic Studies, 52 (1985) 69-83.

[9] Axelrod, B., B. Kulich, C. Plott, and K. Roust, Design improved parimutuel-type
information aggregation mechanisms: inaccuracies and the long-shot bias as dise-
quilibrium phenomena. Journal of Economic Behavior and Organization, 69 (2009)
170-181.

[10] Reny, P.J. and M. Perry, Toward a strategic foundation for rational expectations
equilibrium. Econometrica, 74 (2006) 1231—69.

[11] Shapley, L.S. and M. Shubik, Trade using one commodity as a means of payment,
Journal of Political Economy, 85 (1977) 937-68.

[12] Xavier Vives, Aggregation of information in large cournot markets. Econometrica, 56
(1988) 851-76.

[13] Xavier Vives, Strategic supply function competition with private information. Econo-
metrica, 79 (2011) 1119-66.

36


