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Abstract

We study the optimal anticipated policy in a pure-currency economy with flexible prices and a non-
degenerate distribution of money holdings. The economy features a business cycle and lump-sum monetary 
injections have distributional effects that depend on the state of the cycle. We parsimoniously characterize 
the dynamics of the economy and study the optimal regulation of the money supply as a function of the 
state under commitment. The optimal policy prescribes monetary expansions in recessions, when insurance 
is most needed by the cash-poor unproductive agents. Conversely, the optimal policy prescribes monetary 
contractions during booms, so that the inflationary effect of the occasional expansions is undone.
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1. Introduction

We study the optimal monetary policy in a competitive flexible-price economy where infinity-
lived agents are subject to idiosyncratic productivity shocks and money is valued in equilibrium 
due to anonymity. The state of this economy is described by the wealth distribution, i.e. the dis-
tribution of money holdings, which evolves through time following the history of shocks and 
determines the value of money and aggregate output. Our objective is to characterize how to 
optimally regulate the money supply as a function of the state of the economy, what we call 
an optimal state-dependent monetary policy. A key feature of the setup is that monetary pol-
icy affects the wealth distribution, as in Wallace (1984) or Berentsen et al. (2005) and many 
other monetary models whose first principles are explicitly spelled out. Although the propaga-
tion of such redistributive effects of monetary policy is often “muted” by means of appropriate 
assumptions for the sake of tractability, as in Lucas (1990), Shi (1997), or Lagos and Wright
(2005), in this paper we use an analytically tractable setup that allows us to study the role of sys-
tematic monetary policy taking fully into account the dynamics of the wealth distribution. The 
key assumption for tractability, following Scheinkman and Weiss (1986), is that we consider the 
simplest economy with time varying wealth distribution, namely one with two types of agents. 
We see this as a convenient starting point to study the interactions between the dynamics of the 
wealth distribution and monetary policy.

We think the question is interesting because it is novel in the theory and because the analysis 
provides a framework to interpret the large monetary expansions, sometimes observed during 
deep recessions, with a mechanism that is completely different from the canonical one relying 
on sticky prices.1 The properties of an optimal monetary policy in models where incomplete 
markets and heterogeneous agents allow for a potential redistributive role of monetary policy 
were first studied by Levine (1991). They have since been explored in a variety of contexts by 
Kehoe et al. (1992), Imrohoroglu (1992), Shi (1999), Bhattacharya et al. (2005), Molico (2006), 
Manuelli and Sargent (2010), Algan et al. (2011), and Rocheteau et al. (2015), for example. 
A common feature of these models is a tension between the benefits of a contractionary policy, 
i.e. one that yields an efficient return on money as under Friedman’s rule, and the benefits of 
an expansionary policy, which provides partial insurance to cash-poor agents. A novelty of this 
paper is that, while previous models focused on a constant rule, i.e., seeking the optimal constant 
rate of monetary expansions, we consider a state-dependent monetary policy in which the rate of 
monetary expansion depends on the state of the economy.

Our model extends Scheinkman and Weiss’s (1986) analysis, which assumes a constant money 
supply, by letting the government control the money supply through lump-sum transfers.2 We 
provide a characterization of the price of money and of aggregate production in terms of the 
policy rule in a competitive equilibrium. We adopt an ex-ante welfare criterion and characterize 
an efficient monetary policy by solving a Ramsey problem. Our results cast some light on the 
interactions between the dynamics of the wealth distribution and the optimal anticipated policy. 
The main policy choice is a tradeoff between providing insurance (through monetary expan-
sions) and ensuring an efficient return on savings (through monetary contractions). As argued 

1 The assumption of flexible prices is useful to emphasize the workings of the redistributive role of monetary policy, 
and to distinguish it from the better understood mechanism that arises with sticky prices.

2 As in Levine (1991) we assume that the government does not know which agent is productive, so that the transfers 
are equal across agents. See Kehoe et al. (1992) for a thorough discussion of this assumption and in particular Levine
(1991) for a derivation of the equal-treatment restriction from first principles.
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by Wallace (2014) this is a central tradeoff of several “general monetary economies”, i.e. en-
vironments where money is essential, there are non-insurable shocks and money holdings are 
non-degenerate.3 In particular, in our setup the importance of the insurance motive varies with 
the state of the economy, so that a state-dependent monetary policy allows for a significant im-
provement compared with a constant policy. An expansionary monetary policy is efficient in 
recessions, when the poor and unproductive economic agents benefit from some redistribution of 
wealth. Surprisingly, in spite of the occasional large monetary expansions in states where the in-
surance motive is large, the optimal policy neutralizes the inflationary effect of these expansions 
by contracting the money supply in states where the insurance motive is small. In this way the 
state-dependent nature of the optimal policy allows for the provision of insurance when mostly 
needed without severely distorting the expected return of the asset. Thus, although our setup cre-
ates a potentially beneficial role for monetary expansions, the optimal rule prescribes an almost 
complete undoing of the inflationary effects of those expansions, and it implements a policy that 
brings the expected return on money as close as possible to the constant rate prescribed by the 
Friedman rule.

Our analysis is related to Molico (2006), who considers a search model of money with a 
non-degenerate distribution of cash holdings, showing that mild monetary expansions can be 
beneficial. In his model randomly matched agents may exchange goods for money. The price 
paid by the buyer results from bargaining and depends on the amount of money held by each 
agent upon entering the pairwise meeting. Therefore, the distribution of money is non-degenerate 
and monetary injections, via lump-sum transfers, can improve the terms of trade of poor buyers. 
Related results in the context of search models of money and mechanism design are obtained 
by Berentsen et al. (2005), Green and Zhou (2005), Deviatov and Wallace (2012), and Wallace
(2013). The most important departure from Molico’s analysis is that we restrict attention to an 
economy with only two types of agents, so that the wealth distribution (i.e. the state space) re-
mains tractable. Because of this assumption we can study a policy that depends on the distribution 
of money holdings, while Molico focuses on a constant policy. A key feature of our model is that 
business cycles, and the magnitude of fluctuations, depend on the tightness of the borrowing con-
straint. More precisely, unlike other models in which it is the borrowing constraint itself which 
varies over the business cycle, e.g. because of the evolving value of the collateral as in Kiyotaki 
and Moore (1997), in our model it is the shadow value of the borrowing constraint which evolves 
with the business cycle. Even though our borrowing constraint is constant, its shadow value in-
dicates that it is tighter in downturns (i.e. the value of money is higher in recessions). As a result 
inflation (the inverse of the return on money) is positively correlated with aggregate activity, thus 
generating a “Phillips curve”. This result relates to Guerrieri and Lorenzoni (2009) and Guerrieri 
and Lorenzoni (2011) who explore the effects of borrowing constraints on business cycles in a 
model with liquid assets. Similar to their papers, as the borrowing constraint becomes tighter, 
economic fluctuations become more severe in our model. The relative simplicity of our setup 
allows us to investigate the optimal provision of liquidity. Our analysis is also related to Algan 
et al. (2011), who characterize the output-inflation tradeoff in a flexible price economy with in-
complete markets and persistent wealth inequality among agents. While the setups are similar, 
the focus is different as monetary policy is treated as an exogenous parameter in these models.

3 To the best of our knowledge there are few models that provide a characterization of optimal policy under these 
assumptions. Rocheteau et al. (2015) is a recent interesting case.
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The model also illustrates a novel mechanism to interpret high frequency changes in the veloc-
ity of money (the ratio between GDP and real balances). This mechanism explains why money 
growth is not equal to inflation at every point in time, in spite of the fact that the two growth rates 
are equal in the long run. This suggests that the dynamics of the wealth distribution may help 
to understand the behavior of velocity, a result that is reminiscent of the segmented asset market 
literature as in e.g., Alvarez et al. (2009).

The paper is organized as follows. Section 2 presents the model. Section 3 shows how to 
characterize the monetary equilibrium. Section 4 analyzes the value of money in equilibrium 
under a state-dependent rule and compares it with the one with a constant money rule. Section 5
defines an ex ante welfare criterion and studies the best regulation of the money supply. Section 6
concludes.

2. The model

This section describes the model economy: agents’ preferences, production possibilities, and 
markets. Two benchmark economies are discussed: the (efficient) allocation under complete mar-
kets and the optimal monetary policy with no uncertainty. We also establish that value functions 
and allocations are homogeneous in the exogenous parameters of interest; this is useful as it 
allows us to reduce the dimensionality of the problem by an appropriate normalization.

We consider two types of infinitely lived agents (with a large mass of agents of each type), 
indexed by i = 1, 2, and assume that at each point in time only one type of agent can produce. We 
further restrict attention to the case where agents of the same type play the same action at every 
point in time so that we can discuss the model in terms of two representative agents, one of each 
type. Because there are two agents in this economy, we can solve the model by looking at the 
problem from the perspective of agent one (i.e., i = 1). Let It = {0, 1} denote the productive type 
of the agent at time t . When It = 1 the agent can produce and transforms labor into consumption 
one for one; we label this agent as productive. When It = 0 the agent cannot produce; in this 
case we label the agent as unproductive. The productivity of labor is state dependent: the duration 
of productivity spells is random, exponentially distributed, with mean duration 1/λ > 0. Money 
is distributed at each time t between the two agents so that m1

t + m2
t = Mt . The growth rate of 

the money supply at time t is μt ; then, the money supply follows Mt = M0e
∫ t

0 μj dj , with M0

given. As in Scheinkman and Weiss (1986) and Levine (1991), we let the individual state of an 
agent be private information, precluding agents from issuing private debt.4 A key assumption is 
that agents face a borrowing constraint restricting their unique savings instrument, money, to be 
non-negative. Because of the assumption of anonymity, fiscal policy has limited powers in this 
setup.5

Let ρ > 0 denote the time discount rate. Each agent chooses consumption ct , labor supply �t , 
and depletion of money balances ṁ1

t in order to maximize her expected discounted utility,

4 Having a large mass of agents of each type is important for the argument as it implies that a single agent cannot infer 
the productive state of a different agent given his own state.

5 As common to many monetary models the distinction between fiscal and monetary policy is somewhat arbitrary, as 
first showed by Wallace (1981): if taxation is held constant, monetary policy affects the real present value of government 
liabilities. In the online Appendix we discuss what allocations can be achieved using tax policy under various assumptions 
about government powers (commitment vs. no commitment), types of available taxes (lump-sum vs. distortionary), and 
government knowledge about the state (agent’s type observable vs. not observable).
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max
{ct ,�t ,ṁ

1
t }∞t=0

E0

⎧⎨
⎩

∞∫
0

e−ρt (ln ct − �t ) dt

⎫⎬
⎭ (1)

subject to the constraints

ṁ1
t ≤ (�t + τt − ct ) /q̃t if It = 1 (2)

ṁ1
t ≤ (τt − ct ) /q̃t and �t = 0 if It = 0 (3)

m1
t ≥ 0 , �t ≥ 0 , ct ≥ 0 , m1

0, I0 given , (4)

where q̃t denotes the price of money, i.e., the inverse of the consumption price level, τt denotes 
a government lump-sum transfer to each agent, and where expectations are taken with respect to 
the productivity process defining It and Mt conditional on time t = 0.

A monetary policy with μt > 0 is called expansionary, a policy with μt < 0 is called con-
tractionary. It is immediate that when the money supply is constant for all t (i.e., μt = 0 ∀ t ) 
the economy is the one analyzed by Scheinkman and Weiss (1986). The monetary policy μt

determines the transfers to the agents τt through the government budget constraint,

q̃t μt Mt = 2τt . (5)

The government transfer scheme implies that in the case of a contractionary policy, agents must 
use their money holdings to pay taxes (i.e. τt < 0). The “tax solvency” constraint, m1

t ≥ 0, im-
poses this restriction. Notice that in the continuous time characterization of the model the tax 
solvency constraint coincides with the borrowing constraint.

Note that the government cannot differentiate transfers across agent types. This follows from 
the assumption that the identity of the productive type is not known to the government. Levine
(1991) shows in a similar setup that, because of anonymity, the best mechanism is linear and 
resembles monetary policy. Moreover, notice that the restriction of lump-sum transfers is such 
that we do not allow the planner to use the transfer scheme to motivate agents to truthfully reveal 
the level of their money stock.6 As widely done in the literature, we make this assumption to 
keep things as simple as possible.

Next we state two important remarks. The first one characterizes a symmetric efficient alloca-
tion with complete markets (the proof is standard so we omit it):

Remark 1. Assume complete markets and an ex-ante equal probability of each productive 
state. The symmetric efficient allocation prescribes the same constant level of consumption, 
ct = 1 for all t .

Thus, without borrowing constraints, the efficient allocation solves a static problem, and it 
encodes full insurance: Agents consume a constant amount (since ex-ante agents are equal) and 
aggregate output is constant.

The second remark characterizes the optimal monetary policy in the case of no uncertainty. 
This helps highlighting the essential role of uncertainty in our problem. In particular, consider the 
case where each agent oscillates deterministically between productive and unproductive cycles 

6 This possibility is explored in Andolfatto (2010, 2013) and Wallace (2013). There, the transfer is composed of two 
terms: A lump-sum term and one that is increasing in the money stock of the agent. Because of this term, it seems possible 
to construct a transfer scheme where agents truthfully report their money stock.
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of length T . Without loss of generality, for the characterization of the stationary equilibria, let us 
assume that the economy starts in period t = 0 with the agent being productive and holding no 
money, so that m1

0 = 0. We have:

Remark 2. Consider a deterministic production cycle of length T . The symmetric efficient allo-
cation, ct = 1 for all t is attained by deflating at the rate of time preference μt = −ρ for all t .

A proof is available in Appendix B.1. This remark, together with the efficient allocation de-
scribed in Remark 1, shows that without uncertainty this economy replicates the result of the 
optimality of the “Friedman rule” in Townsend (1980) and Bewley (1980).

To conclude notice that, by inspection of the agent problem presented in equations (1) to 
(4) and the evolution of money supply (i.e., Mt = M0e

∫ t
0 μj dj ), it is seen that the problem is 

homogeneous on {λ, ρ, μt }: allocations (the flows) are homogeneous of degree 0 while prices 
and values (the stocks) are homogeneous of degree minus 1. This follows since the Poisson 
rate of changing states λ, the discount rate ρ, and the monetary expansion rate μt are all being 
measured with respect to a time unit (e.g., per year). Therefore, after normalizing by λ, the model 
has only two parameters: the normalized discount rate, ρ/λ, and the normalized money growth 
rate, μt/λ. As a result, once we treat μt as a policy instrument, the model has only one exogenous 
parameter: the normalized discount rate ρ/λ.

3. Characterization of monetary equilibrium

This section defines and characterizes a monetary equilibrium. We show that the equilibrium 
amounts to a system of differential equations (and boundary conditions), and that the history 
of shocks is summarized by the wealth distribution. Finally we show that permanent monetary 
contractions cannot be sustained in equilibrium.

We look for an equilibrium where the price of money depends on the whole history of shocks, 
as encoded in the current values of the money supply, the distribution of money holdings, and 
the current state of productivity; that is, we let q̃t = q̃(Mt , m1

t , It ). With a slight abuse of nota-
tion this implies ct = c(Mt , m1

t , It ), �t = �(Mt , m1
t , It ), and ṁ1

t = ṁ1(Mt , m1
t , It ). As usual the 

nominal variables are homogenous of degree one in the level of money. With this in mind, we 
simplify the state space by letting q̂(zt , It ) = Mtq̃(Mt , m1

t , It ) denote the price of money when 

the agent holds zt ≡ m1
t

Mt
share of total money balances-a measure of the wealth distribution-

where zt ∈ [0, 1]. Likewise, the consumption and labor supply rules are homogeneous of de-
gree zero in the level of the money supply, cp(zt ) = c(Mt , m1

t , 1), cu(zt ) = c(Mt , m1
t , 0), and 

�p(zt ) = �(Mt , m1
t , 1).

Let xt denote the wealth share in the hands of the unproductive agent. Note that this vari-
able will record discrete jumps every time the identity of the productive type changes: whenever 
the identity of the productive type switches, the state x jumps. That is, if x = z before the state 
switches, then x = 1 − z after it the switch occurs. We allow the planner to choose a Markovian 
monetary policy μt that is a continuous function of the state x ∈ [0, 1]. As a result, xt sum-
marizes the whole history of the economy and, without loss of generality, μt = μ(xt ). Given 
the symmetry of the problem we let q(xt ) denote the price of money in terms of consumption 
units, which occurs when the unproductive type assets are xt . That is, if agent 1 holds wealth zt , 
q(xt ) = q̂(zt , 0) if she is unproductive and q(xt ) = q̂(1 − zt , 1) when she is productive. Next we 
define a monetary equilibrium.
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Definition 1. Given the continuous policy rule μ(xt), the initial level of money supply M0, the 
initial productivity status I0, the initial distribution of money holdings x0, a monetary equi-
librium is a price function q̃t = 1

Mt
q(xt ), with q : [0, 1] → R

+ and a stochastic process xt with 
values in [0, 1] such that, for all t , consumers maximize expected discounted utility (equation (1)) 
subject to (2), (3) and (4), and the market clearing constraint cp(1 − xt ) + cu(xt ) = �(1 − xt ) and 
the government budget constraint are satisfied.

From now on we omit the time index t to simplify the notation. A straightforward result is 
that permanent monetary contractions cannot be implemented in equilibrium. We state this result 
in the next lemma.

Lemma 1. There is no monetary equilibrium where μ(x) < 0 for all x. Moreover, all monetary 
equilibria must satisfy μ(0) ≥ 0.

See Appendix B.2 for a proof. The economics of this result is simple. As the length of the 
unproductive spell cannot be bounded above, there is a nonzero probability that a poor unpro-
ductive agent fails to cover her tax obligations. The only way she can fulfill her tax obligations 
is by keeping half of the money stock and not trading for goods. Because of no trade, money has 
no value (i.e. q(x) = 0 for all x), there is no monetary equilibrium, and the allocation is autar-
kic. Moreover for any rule, including those that may allow for monetary contractions, the money 
growth rate cannot be negative at x = 0. This is immediate since when x = 0 unproductive agents 
hold no assets and are unable to cover their tax obligations.

Solving the model requires characterizing the marginal value of money given by the La-
grange multipliers for ṁ1 in the problem defined in (1). Let p̃(M, m1) and ũ(M, m1) denote 
the un-discounted multipliers associated with the constraints in equations (2) and (3), respec-
tively, so that, e.g., ũ(M, m1) measures the marginal value of money for agent 1 when the 
money supply is M , her wealth share is m1/M , and she is unproductive. Likewise, p̃(M, m1)

measures the marginal value for agent 1 when her wealth share is m1/M and she is produc-
tive. Using the homogeneity in the level of money M , we can write ũ(M, m1) = u(z)/M and 
p̃(M, m1) = p(z)/M .

Combining the first order conditions with respect to � and cu gives

p(z) = q(x) ,
1

cp(z)
= p(z)

q(x)
, and

1

cu(z)
= u(z)

q(x)
, (6)

where z is the share of money in the hands of the agent and x is the share of money in the 
hands of the unproductive agent. These conditions equate marginal costs and benefits of an ad-
ditional unit of money. The first two equations apply when the agent is productive (i.e. I = 1). 
The first one states that the marginal benefit of an additional unit of money, p(z), equals the 
cost of obtaining that unit, i.e. the disutility of work to produce and sell a consumption amount 
q(x). The second equation states that the marginal cost of the foregone unit of money, which 
is p(z), equals the marginal benefit, which is given by the product of the price q(x) (con-
sumption per unit of money) times the marginal utility of consumption 1/cp(z). Notice that 
combining these two equations implies that cp(z) = 1 for all z. Finally, the third equation ap-
plies when the agent is unproductive (i.e., I = 0) and states that the marginal cost of the forgone 
unit of money u(z), equals the benefit that is given by the additional units of consumption that 
can be bought with it: the product of the price q(x) times the marginal utility of consump-
tion 1/cu(z).
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The following functions define the evolution of money holdings,

żu(z) = hu(z) and żp(z) = hp(z) , (7)

where hu(z) is the change in the share of money holdings of an unproductive agent hold-
ing a share z, and hp(z) is the analogue for a productive agent. It is immediate that 
hu(z) + hp(1 − z) = 0. Consider the law of motion for z by type 1 when unproductive,

hu(z) = μ(x)

(
1

2
− z

)
− cu(z)

q(x)
= μ(x)

(
1

2
− z

)
− 1

u(z)
, (8)

where we used the budget constraint of the unproductive agent, equation (3), the government 
budget constraint, and the first order condition in equation (6).

For any z ∈ (0, 1) the marginal value of money for productive and unproductive agents, p(z), 
and u(z), solve a system of differential equations, which is the continuous time counterpart of 
the discrete time Euler equations,

(ρ + μ(x)) p(z) = p′(z) hp(z) + λ(u(z) − p(z)) , (9)

(ρ + μ(x)) u(z) = u′(z) hu(z) + λ(p(z) − u(z)) . (10)

The derivation is standard so we omit it. To provide some intuition consider the first equation: 
When the agent is productive and holds a share of money z, the value flow, discounted by the 
nominal rate (ρ + μ(x)), is equal to the change in the marginal value due to the evolution of 
her money holdings, p′(z)hp(z), and to the expectations of the change in value in case the state 
switches and the agent becomes unproductive: λ(u(z) − p(z)).

To complete the description of the equilibrium we provide the boundary condition for the 
marginal values of money p(z) and u(z). The boundary occurs when the unproductive agent has 
no money. In this case an unproductive agent spends the whole money transfer to finance her 
consumption, so that hu(0) = hp(1) = 0.7 The budget constraint gives that the consumption of 
an unproductive agent with no money is limz→0 cu(z) = τ(0) = q(0)μ(0)/2. Using equation (6),

lim
z→0

u(z) = 2

μ(0)
, (11)

with limz→0 u(z) = +∞ if limx→0 μ(x) = 0, and where the limit obtains because of Inada con-
ditions. This is an important result in our analysis. An expansionary policy provides an upper 
bound to the marginal utility of money because the agent enjoys a positive consumption even 
with no wealth. If there is no money growth when the unproductive agent is poor (i.e., when 
μ(x) → 0 as x → 0), the agent is not able to consume in poverty and therefore Inada conditions 
imply that her marginal utility diverges. Also, evaluating equation (9) at z = 1 and x = 0 gives

u(1) =
(

1 + ρ

λ
+ μ(0)

λ

)
p(1) . (12)

Notice that μ(0), the money growth rate when the unproductive agent has zero wealth, appears 
in both boundaries. An implication is that the choice of the money growth rate simultaneously 
affects the insurance needs of the unproductive agents and the production incentives of the pro-
ductive agents.

7 We provide a formal proof of this statement in Section 4.



F. Lippi et al. / Journal of Economic Theory 159 (2015) 339–368 347
4. The value of money in equilibrium

The previous analysis showed that allocations in a monetary equilibrium are fully character-
ized by the Lagrange multipliers, u(z) and p(z), that solve the system of Euler equations and 
associated boundary conditions. This section characterizes the properties of these multipliers, 
measuring the “value of money” to the productive and unproductive agents, under two rules for 
the money supply. The first rule is state independent, i.e., equal to a constant non-negative money 
growth value μ ∈ [0, +∞). The second rule assumes that the money growth rate is a continuous 
function of the wealth share of the unproductive agent: μ(x). We show that allowing the rule to 
respond to x has a substantive impact on the shape of the value of money. This feature will play 
a crucial role in the optimal regulation of the money supply studied in Section 5.

Using equations (9)–(10) we can define the following system:

p′(z) = (ρ + λ + μ(1 − z))p(z) − λu(z)

hp(z)
, (13)

u′(z) = (ρ + λ + μ(z))u(z) − λp(z)

hu(z)
. (14)

The first equation describes the marginal value of money for a productive agent holding z, so 
that x = 1 − z, i.e., monetary policy is a function of the wealth of the unproductive agent. The 
second equation describes the marginal value for an unproductive agent holding z, so that x = z. 
The solution of this system, together with the boundary condition, fully characterizes the value 
of money in equilibrium.

Next we state a result that is key in characterizing the problem.

Lemma 2. Assume μ(x) is continuous in [0, 1] and that the forcing terms on the right hand side 
of (13)–(14) have no singularities in (0, 1). Then, it holds that hu(z) < 0 for all z ∈ (0, 1) and 
limz→0 hu(z) = 0.

See Appendix B for a proof.8 The economic content of the proposition is that unproductive 
agents deplete their share of money holdings as long as they remain unproductive. Lemma 2
allows us to characterize some interesting features of the Lagrange multipliers, the marginal value 
of money p(z) and u(z), by representing their evolution in the corresponding phase diagram. To 
this end we define the sets Lp and Lu with elements (U, P) ∈ (R+)2, which evolve as z varies 
in [0, 1]: U and P are given by

Lp : P = λ

ρ + λ + μ(1 − z)
u(z) , and Lu : P = ρ + λ + μ(z)

λ
u(z) ,

according to z that moves in its domain. These geometrical loci are very useful for investigating 
some features of the Lagrange multipliers. Indeed, by construction, p′(z)hp(z) and u′(z)hu(z)

are zero on Lp and Lu, respectively; thus, according to the sign of terms hp(z) and hu(z), both 
Lp and Lu determine different regions in the phase plane (U, P) where the functions u(z), 
p(z) change behavior according to the sign of their derivative. Two examples are shown in 
the top panels of Fig. 1 where the arrows describe the increasing/decreasing behavior for u(z)

8 This result arises from the requirement of continuity and uniform Lipschitz condition in the space (0, 1) for the 
forcing terms of equations (13)–(14).
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Fig. 1. The marginal value of money.

and p(z). The direction of the arrows is determined by taking into account both the sign of terms 
p′(z)hp(z), u′(z)hu(z) and the evolution of money holdings established in Lemma 2. The phase 
diagrams describe the model dynamics: the first case, plotted in the upper–left panel, describes a 
constant money rule; the second case, describing a state-dependent rule, is plotted in the upper–
right panel. The bold dot in each plot corresponds to the boundary condition in equation (12), 
u(1) = ρ+λ+μ(0)

λ
p(1), which lies on Lp , the 45-degree line P = U is denoted by dotted line. 

The dashed curve is a possible path for the solution. Next we exploit the phase diagram to inves-
tigate some features of the solution under the different type of policies. In particular, our analysis 
allows us to provide global results for the constant policy. However, when the policy is allowed 
to vary with the state, the same results can be obtained only locally when x is sufficiently small 
(i.e., when the productive agent holds most of the money).

When μ is constant, so that μ(x) = μ ≥ 0 for every value of the aggregate state x, our results 
extend those provided in (Scheinkman and Weiss, 1986), which only considered the case where 
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μ = 0. The phase diagram determines three regions where the functions u(z) and p(z) change 
behavior according to their derivative sign. It is evident that the only positive solutions of the 
problem must stay in the third region, where both functions are decreasing on the entire (0,1) 
interval. More precisely, their path develops in the area that is dotted in the figure. The next 
proposition characterizes the marginal value of money when μ is constant.

Proposition 1. Under a constant policy μ(x) = μ ≥ 0 we have that:

(i) p(z) < u(z), and (ii) p′(z) < 0, u′(z) < 0 for all z ∈ (0,1) .

See Appendix B.4 for a proof. The first part of the proposition establishes that when the monetary 
policy is constant, the value of money for an unproductive agent is higher than the value of money 
for a productive agent, u(z) > p(z), at all levels of money holdings z ∈ (0, 1). This property, 
first highlighted by Scheinkman and Weiss (1986), seems intuitive: Because the only difference 
between productive and unproductive agents holding z is that the productive agent can work, an 
unproductive agent values more an extra unit of money; as a result, her Lagrange multiplier is 
higher. Second, the proposition also states that the functions u(z) and p(z) are decreasing in z at 
all levels of money holdings z ∈ (0, 1). The bottom–left panel in Fig. 1 displays these properties 
and the upper–left panel presents the phase diagram explaining their origin: Since region III is 
the only admissible region for a solution to satisfy the boundary condition, the curves satisfy the 
properties listed in Proposition 1.

When the monetary policy depends on the state x, some interesting new features arise. In-
spection of the upper–right panel of Fig. 1 shows that the equilibrium Lagrange multipliers must 
reach the boundary condition, which occurs when x = 0 and the productive agent money hold-
ings are z = 1 (i.e., the bold dot in the figure), in the region that is under Lp and Lu (i.e., the 
dotted region). As a result, when the productive agent money holdings z are large enough, the 
solution path develops in the area where both p(z) and u(z) are decreasing functions, as was the 
case for the constant policy. But crucially this result holds only locally, and in general the func-
tions p(z) and u(z) that solve the problem can take many shapes. The next proposition states this 
result.

Proposition 2. Suppose that μ(x) is continuous and that the following assumptions hold:

(A1) the policy μ(x) satisfies λ
ρ+λ+μ(0)

<
ρ+λ+μ(1)

λ
;

(A2) the policy μ(x) satisfies μ′(x) < 0 for all 0 ≤ x < υ , where υ ∈ R
+

Then there is a neighborhood for the productive agent money holdings at z = 1, denoted by the 
interval Iz, where the multipliers satisfy

(i) p(z) < u(z), and (ii) p′(z) < 0, u′(z) < 0 for all z ∈ Iz .

See Appendix B.5 for a proof. The reason for the local similarity of the constant and the state-
dependent problem is the following. Start by noting that when the productive agent money 
holdings are z = 1, the unproductive agent money holdings are x = 0; in this case, by Lemma 1, 
μ(0) ≥ 0. It follows by the continuity of μ(x) that μ(1 − z) ≥ 0 for any z ∈ Iz. This non-
negativity constraint on the money growth rate, together with assumptions A1 and A2, produces 
a “local phase diagram,” and implied behavior of the multipliers, that is similar to the behavior 
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under a constant policy. As shown in the upper–right panel of Fig. 1, under the state dependent 
policy μ(x) we have that u(z) > p(z) and that both curves are decreasing only when the un-
productive agent money holdings are low (i.e., x close to zero) and the productive agent money 
holdings are high (i.e., z close to one). Assumptions A1 and A2 are important as they bound 
the local behavior of the dynamical system. Assumption A1 guarantees that in the neighborhood 
of z = 1 the locus Lp lies below the locus Lu, as depicted in the upper–right panel of Fig. 1.9

Assumption A2 guarantees that in the neighborhood of z = 1, the locus Lp is decreasing. While 
assumptions A1 and A2 are useful to analytically characterize the behavior of the economy under 
a state-dependent policy, they are not imposed in the numerical solution of the optimal policy that 
is developed below. We notice, however, that in all the cases that we analyzed they were satisfied 
at an optimum.

Notice that when z /∈ Iz, the money growth μ(1 − z) can be negative so that u(z) can be below 
p(z) and one (or both) of them can be increasing. To understand this result it is useful to contrast 
the state dependent case with the constant case. In the constant case the only difference between 
productive and unproductive agents is the production opportunity since policy is constant; as 
shown in Proposition 1 this immediately implies that u(z) > p(z) for all z. But when the mone-
tary rule varies with the state x, a comparative static across productivity states, i.e. comparison 
of u(z) vs. p(z), also involves a different path for the monetary rule. To make this point clear we 
make explicit the dependence of the marginal value of money on the money rule μ. That is, let 
{p(z; μ(x)), u(z; μ(x))} denote the marginal value of money for an agent with money holdings z
and where the money rule is μ. Consider a productive agent holding money z. Under a constant 
policy her current value is p(z; μ) and, if the state switches, her value will be u(z; μ). Under 
the state dependent rule her current value is p(z; μ(1 − z)) and, if there is a state switch, her 
value would become u(z; μ(z)). This shows that when the policy is state dependent the value 
of money across agent types differs not only because of differences in production opportunities, 
but also because the money rule depends on the wealth distribution. It follows that the restric-
tion p(z) < u(z) needs not to hold over the whole state space under a state-dependent rule. This 
feature, as we discuss next, allows for a substantial welfare improvement.

To understand why relaxing the properties (i) and (ii) of Proposition 1 is important for our 
problem, notice that the complete markets allocation features a constant consumption for all 
agents (see Remark 1). If a money rule existed to implement a first best allocation, it can be seen, 
using the first order conditions, that the rule would imply

u(z) = p(1 − z) for all z ∈ [0,1]
or, in words, that the functions u(z), p(z) are symmetric around z = 1/2. Obviously this feature 
cannot be achieved by a constant rule, since in that case the functions u(z), p(z) are decreasing. 
The next proposition shows that the complete markets allocation cannot be sustained even under 
a state dependent policy (see B.6 for the proof).

Proposition 3. Let ρ/λ > ρ̄ > 0. There is no monetary rule μ(x) that supports the complete 
markets allocation as a monetary equilibrium.

In spite of the impossibility to implement the first best, the state dependent monetary policy when 
μ is allowed to depend on x, is able, at least partially, to produce the required symmetry. This 

9 To see this notice that this assumption can be extended to the inequality λ
ρ+λ+μ(1−z)

≤ ρ+λ+μ(z)
λ so that Lp lies 

below Lu . A sufficient condition for satisfying this assumption is μ(1) ≥ −ρ.
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can be seen in the lower–right panel of Fig. 1 where we plot u(z) and p(z) under the optimal 
money rule μ̂(x) computed in the next section.10

5. The optimal regulation of the money supply

In this section we use a standard ex-ante utilitarian welfare criterion to characterize the optimal 
regulation of money, namely a money supply rule μ(x) defined for x ∈ [0, 1]. This amounts to 
solving a Ramsey problem: picking the best competitive equilibria, as defined in Section 3, under 
the assumption that there is commitment to the money supply rule μ(x).

Let V (x0; μ(x)) denote the discounted present value of the sum of utilities of both types of 
agents (who are given identical Pareto weights) for a given function μ(x) when the current state 
is x0. The continuous time Bellman equation is

ρ V (x0;μ(x)) = ln cu(x0;μ(x)) − cu(x0;μ(x))

+ Vx(x0;μ(x))hu(x0;μ(x)) + λ (V (1 − x0;μ(x)) − V (x0;μ(x)) ) .

(15)

where the notation emphasizes that consumption when unproductive cu(x0; μ(x)), the dynamics 
of money holdings hu(x0; μ(x)) and hence the value function V (x0; μ(x)) all depend on the 
money supply rule. As usual, the equation states that the flow value ρ V equals the sum of the 
period utility for both agents plus the expected change in the value function. The latter occurs 
because of the evolution of money holdings (the change in x0) as well as of the possibility that 
the identity of the productive agent will change. Notice that in this case the state, i.e., the wealth 
of the unproductive agent, switches from x0 to 1 − x0.

The planner’s problem is to find the best money supply function μ(x), in the sense that

v(xo) = max
μ(x)

V (xo;μ(x)) (16)

We consider the problem from an ex-ante perspective, i.e., assuming that at the “beginning 
of time” nature assigns the initial productive states and the planner can choose the initial wealth 
distribution and a policy rule for money growth. We assume that the planner can commit to the 
policy rule. Note that because individual types are not observable, and given the symmetry of the 
environment (and identical Pareto weights), the planner will give the same amount of liquidity 
to every agent and therefore it is ex-ante optimal to set x0 = 1

2 . Thus the planner chooses the 
function μ(x) in order to maximize v(1/2).

To evaluate the policy it is useful to define a certainty equivalent compensating variation. 
Let α denote the consumption equivalent cost of market incompleteness associated with a given 
policy. That is, α solves the following equation

2 ln (1 − α) − 2 = ρ v (1/2) (17)

so that α measures the fraction of the consumption under complete markets that agents would be 
willing to forego to eliminate the volatility of consumption due to market incompleteness for a 
given policy rule μ.11

Having established that the complete markets allocation cannot be achieved (Proposition 3), 
we look for the optimal policy μ̂(x) by searching numerically for the policy that maximizes the 

10 The optimal policy μ̂(x) satisfies assumptions A1 and A2 so that u(z) and p(z) satisfy Proposition 2.
11 Recall that under complete markets cu(z) = cp(z) = 1 for all z, and lp(z) = 2 for all z.
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ex-ante expected welfare v(1/2). Since the system of differential equations that characterizes the 
equilibrium allocations cannot be solved in closed form we must resort to numerical analysis. We 
solve the model by using a standard value function iteration approach, to compute equation (15), 
and a discretization method to solve the system of differential equations in equations (13)–(14)
with the associated boundary conditions in equations (11)–(12). It is worth mentioning a numer-
ical difficulty that arises as x → 0 due to the fact that hu(x) → 0. This implies that the forcing 
term in equation (14) may diverge and potentially generate an error propagation issue. We tackle 
this issue by an appropriate grid choice for the evaluation routine.12 We restrict our attention to 
monetary policies that are piecewise linear continuous.13 For simplicity the results discussed in 
this section are obtained by considering a policy function with five nodes. In Appendix D we 
show that the optimal policy μ̂(x) shares the same properties if we allow for more nodes, and 
the welfare gains for allowing more nodes are small.14 It is also worth mentioning that neither 
assumption A1 or A2 are imposed in the algorithm used to solve the problem. Details on the nu-
merical solution algorithm can be found in Appendix C. To aid in the understanding of the policy 
we also compute an alternative policy, μ̄, which maximizes v(1/2) under the restriction that the 
policy has to be constant. Fig. 2 plots both policies obtained for the baseline parametrization 
of the model where the normalized discount rate ρ/λ equals 1/2. Given this parameter choice, 
setting the discount rate to the standard value of 0.05 implies that λ equals 1/10, so that the 
average length of a productive state is 10 periods. Qualitatively similar results are obtained for 
other parameterizations for ρ/λ (see below).

The constant policy μ̄ consists of an expansion of the monetary base of 0.1 percent; μ̄ is 
positive because, for ρ/λ = 1/2, the insurance motives outweigh the inflation costs.15 The prob-
lem solved by the constant policy is reminiscent of the problem solved by Imrohoroglu (1992)
(see the related literature survey in the online Appendix for a discussion of the relation between 
these papers). As shown in Fig. 2 the optimal state dependent policy μ̂(x) is very different: it 
prescribes an expansion of the money supply when x is low and a contraction of the money sup-
ply when x is high. This happens because the optimal policy is able to decouple the insurance 
motives and the provision of incentives (a high return on money) through its state-dependent 
nature. The welfare cost of market incompleteness α, as defined in equation (17), under the con-
stant policy is 31.7 percent while under the optimal policy is 3.3 percent, which shows that 
the optimal policy increases welfare substantially. Finally notice that, although the state de-
pendent policy is continuous in the state variable x, the policy is discontinuous whenever the 
productive state switches from x to 1 − x: in these circumstances the policy jumps from μ(x)

to μ(1 − x).

12 For instance the forcing term diverges as x → 0 in the original Scheinkman and Weiss formulation where μ is 
constant and equal to zero. More details on the numerical approach are given in Appendix C.1.
13 Although we do not provide a formal proof, we argue that the optimal policy function μ(x) is continuous in x as 
a consequence of the Theorem of the Maximum (see Stokey and Lucas, 1989, p. 62). In order to satisfy the theorem, 
given that the period utility function is continuous, all we need is that the correspondence � : S → S′ is continuous, 
which holds in our setting. This follows as the equilibrium requires that, for any policy rule, μ(0) > 0, which bounds the 
marginal values of money u and p.
14 We also explored solving the problem using smooth (differentiable) functions, such as quadratic B-splines, which 
produced similar results.
15 The online Appendix explores how μ̄ changes with ρ/λ. For low values for ρ/λ, when the inflation costs outweigh 
the insurance motives, μ̄ = 0. For larger values for ρ/λ, μ̄ exhibit a monotonic relationship with the normalized discount 
rate; this is a natural consequence of the insurance motives being increasing in ρ/λ.
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Fig. 2. Optimal policy.

We now describe the features of the optimal policy and interpret them in terms of the trade-off 
between the provision of insurance versus the provisions of incentives to produce (by offering a 
high expected return on money to the productive agent). When the insurance motives are very 
strong, which happens when x ≈ 0, the policy prescribes the largest expansion of the money sup-
ply. As the insurance motives decrease, which happens as x moves away from zero, the optimal 
money growth rate falls. Eventually, at x ≈ 0.2, the motive for providing production incentives 
outweighs the insurance role of monetary policy and, as a result, the policy turns to prescribing 
monetary contractions. When x lies in an intermediate region the policy prescribes the largest 
monetary contractions, much below the money growth rate associated with the Friedman rule 
in deterministic environments.16 These extreme contractions are a reflection of the large expan-
sions that occur when x is low: because expansions damage the return of money, large (future) 
monetary contractions undo the detrimental effects of the expansions on production incentives 
(as agents are forward looking). Intuitively, the expansions and contractions compensate each 
other, striking a balance between the insurance provision and the production incentives. As x
increases towards 1 the level of the monetary contractions decreases. This is a reflection of the 
provision of insurance that might be needed if a switch of the state occurred: when x is high the 
unproductive agent is rich, and her insurance needs are small. But the productive agent is poor 
and, if a state switch occurred, she would be unproductive and with a high insurance need. This 
would then trigger a large monetary expansion. Since monetary contractions are regressive when 
x > 1/2 (i.e. they tend to increase x, all else the same), contractions become less attractive at 
high levels of x. This explains the v-shaped form of the optimal policy.

16 The Friedman rule advocates that the rate of return should equal the time discount. In many deterministic models the 
rule can be implemented by contracting the money supply at the rate of time discount.
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Fig. 3. Consumption when unproductive and the return on money.

Fig. 3 illustrates the profiles of the consumption function and the expected return on money 
under the optimal policy μ̂(x) and the constant policy μ̄.17 The main result, illustrated in the 
left panel of the figure, shows that the consumption of the unproductive type under the optimal 
policy is (i) smoother than under the constant policy, and (ii) closer to the consumption implied 
by the complete markets allocation (where cu(z) = 1). The smoother consumption profiles of the 
state-dependent rule also yields a flatter profile for the expected return on money r(x), as shown 
in the right panel of the figure. The right panel of Fig. 3 shows that the expected return on money 
is high when x is low. The expected return on money is proportional to the consumption growth 
of the productive agent. At x = 0 the productive agent is consuming c = 1, and expects, in case 
of a state switch, to consume cu(1) > 1, which explains the high expected return at x = 0. The 
same logic explains the expected low return on money when production is high (i.e. when x is 
high). The figure shows that the less extreme values of consumption (under the state dependent 
policy) translate into less extreme values of the expected returns of money.18

To aid in the analysis of the optimal policy, we results obtained by numerical simulations 
of the model. The simulations are simple to compute given the functions u(z) and p(z) for the 
marginal values of money and the money growth rate. We stress that these functions, produced 
by solving the planner’s problem, completely determine all equilibrium objects of the economy. 
The simulation simply involve a sequence of state switches, that occur with Poisson rate λ, which 
immediately yield the time series for x, and for any other economy outcome such as the consump-
tion level, or the real rate of return of money. Fig. 4 plots the times series for the consumption of 
one agent over one particular sample path, produced by a simulation. The upper panel describes 
the sample path under the state dependent rule, the bottom panel under the constant rule. The 
sample realization of productivity switches is common across the two panels: it can be seen that 
when the periods in which consumption is constant at 1 (i.e. when the agent is productive) are the 

17 See Appendix A for details on derivation of the expected return of money.
18 The price of money q(x) can be seen in the lower–right panel of Fig. 1 by noticing that q(x) = p(1 − x).
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Fig. 4. Sample paths for the consumption of Agent 1.

Table 1
Economic outcomes under alternative policy rules: Summary statistics.

State dependent policy, μ̂(x) Constant policy, μ̄

E[μ] 0.22 0.001
Std[μ] 0.34 0

E[r(x)] 0.08 0.05
Std[r(x)] 0.03 0.18

E[cu(x)] 0.8 0.3
Std[cu(x)] 0.2 0.4

Fraction of time x < 0.025 0.48 0.13

Computed by Montecarlo simulation. (Parameter: ρ/λ = 0.5).

same in the two panels. But it is apparent that consumption is smoother and on average higher 
under the state dependent policy.

Table 1 reports the mean and standard deviation for some statistics of interest under the invari-
ant distribution, both under the best constant policy and under the best state dependent policy. As 
the table shows, the unproductive agent spends much more time being poor (with a ow x) under 
the state dependent policy. This is the consequence of the optimal insurance provided by the state 
dependent policy which alters the welfare consequences of ending up with low wealth. In spite 
of the fact that the unproductive agent spends more time with x ≈ 0 under the state dependent 
policy, the unproductive agent enjoys higher average consumption under the state dependent pol-
icy than under a constant policy (0.8 vs 0.3) and a lower variability of consumption (the standard 
deviation is 0.2 under state dependent policy vs. 0.4 under constant policy).
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Fig. 5. Wealth distribution and Money holding behavior.

The left panel of Fig. 5 shows the histograms of the invariant distribution of the unproductive 
agent’s wealth under the best constant policy (where μ = 0.001) and the best state-dependent 
policy of Fig. 2. As mentioned, the unproductive agents spends more time near x ≈ 0 under the 
state dependent policy than under the constant policy. This is an immediate consequence of the 
insurance provision. However the consumption profile is overall smoother and higher (on av-
erage) under the state dependent policy as can be seen from Fig. 3. The right panel shows the 
dynamics of the money demand holdings for an unproductive agent as a function of the initial 
state x (vertical axis) and the time elapsed being unproductive (horizontal axis). The figure shows 
how wealth is decumulated over time (under the assumption that productivity does not change). 
It can be seen that the unproductive agent escapes from high wealth much faster under the con-
stant policy (a fact that is reflected in the low mass over high values of x in the histogram of the 
left panel). The mirror image of this pattern is that under the constant policy the unproductive 
agent avoids going near x ≈ 0 because that means low consumption, while the agent dives to-
wards zero very quickly under the state dependent policy as soon as x gets low and the transfers 
prescribed by the state dependent rule materialize.

Notice that the state-dependent pattern of the policy rule can be equivalently interpreted in 
terms of the business cycle. As aggregate production is increasing in x (because consumption of 
the unproductive agent is increasing in x – see the left panel of Fig. 3), then the optimal policy 
μ̂(x) is such that monetary expansions happen when aggregate production is low and monetary 
contractions occur otherwise. In other words, the policy is expansionary during recessions and 
contractionary during expansions. Furthermore, the fact that there is an invertible mapping be-
tween the wealth level x and aggregate production implies that the requirement that the planner 
observes x can be equivalently understood as requiring the planner to observe aggregate produc-
tion or some other aggregate variable such as the price level.

The model also produces a novel mechanism to interpret high frequency changes in the veloc-
ity of money (the ratio between GDP and real balances), namely the fact that the money growth 
rate is not equal to inflation at every point in time. This is immediately seen in the right panel 
of Fig. 3 by noting that even in the case with constant money μ̄ we have that inflation (related 
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Fig. 6. Optimal policy.

to the inverse of the return on money) is not constant. The high frequency data on money and 
inflation produced by this model will not align on the 45 degree line, even though in the long 
run (e.g. averaging over very many periods) inflation is equal to money growth. The mechanism 
behind this fact is that the precautionary demand for money varies along the state of the cycle (as 
reflected in the time varying price of money).

To conclude this section we explore the effect of changing the fundamental parameter of 
the model: ρ/λ. This is a “normalized” discount factor, i.e. the ratio between the intertempo-
ral discount rate ρ and the arrival rate of productivity switches λ. Low values of ρ/λ describe 
an economy in which the agents are patient (low ρ), or equivalently the expected length of a 
productive cycle is short (high λ). In Fig. 6 we plot the optimal policy under three different 
parametrizations. The first case uses our baseline parameter values, ρ/λ = 0.5; the second case 
uses ρ/λ = 1 which represents an economy with a more impatient agent (relative to the base-
line) or equivalently an economy with longer productive cycles. The third ◦case, ρ/λ = 0.1, 
is an economy with more patient agents (relative to the baseline) and/or shorter cycles. As the 
figure shows, the qualitative features of the policy are similar for the three parameter configu-
rations: high monetary injections when insurance motives are high (when x is low), and high 
monetary contractions when they are the lowest (when x is close to 1/2). Even though similar 
in qualitative terms, these cases differ in the level of monetary injections. Monetary expansions 
and contractions are more extreme when ρ/λ is small. Our interpretation of these results is that 
shorter cycles, and/or more patient agents, insurance is easier to provide since the monetary ex-
pansions is going to be short lived (cycles are short) and/or agents are more patient which allows 
a more efficient substitution of the returns across time (i.e. current expansions are more easily 
compensated by future contractions).

Finally, as previously discussed, the welfare cost α, which is 3.3 percent under the baseline 
configuration, increases to 11.7 percent when the cycle is long (high ρ/λ), and falls to 0.3 percent 
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when the cycle is short (small ρ/λ). The improvement in welfare as the cycle shortens follows 
because the insurance motives decrease as the average length of an unproductive spell falls.

6. Concluding remarks

In a variety of models monetary policy has persistent effects on the distribution of wealth 
(money or other assets). These distributional effects are often muted or kept to a minimum in 
theoretical models to preserve tractability. This paper explored how these distributional concerns 
affect the optimal monetary policy in a monetary model that allows for a full dynamic analysis 
of the (two-way) interactions between monetary policy and the wealth distribution.

Two forces shape the design of optimal policy in this setup. As in other monetary models, 
distortions are minimized when the return on money equals the rate of time discount (i.e., Fried-
man’s rule). However with uncertainty and incomplete markets an expansionary policy can be 
desirable due to insurance needs. A trade-off arises as expanding the liquidity base dampens the 
return on the asset, therefore reducing the production incentives. The optimal regulation of the 
money supply strikes a balance between these two forces. Since the relevance of these forces 
depends on the wealth distribution, which evolves through the business cycle, the optimal (antic-
ipated) monetary policy is state dependent.

The novelty of our paper is that we acknowledge this dependence and we explore how the 
state-dependent policy balances the costs of anticipated inflation with the needs for insurance 
along the business cycle. This policy allows for a dramatic improvement in welfare compared 
with a policy that does not respond to the state. The optimal policy expands the supply of liquid-
ity when the unproductive agents are poor (when the insurance needs are large), and it contracts 
the liquidity base otherwise to maximize production incentives. The principle underlying this 
prescription is due to the state-dependent redistributive role of monetary policy, and it differs 
from the one arising in sticky-price models. Because aggregate production is low when the un-
productive group is poor and high when they are rich, the best policy can be interpreted as 
counter-cyclical. Interestingly, in spite of the policy being far away from contracting the money 
supply at the rate of preference, the optimal policy “echoes” Friedman’s rule as the expected real 
return of money approaches the rate of preference.

While the specific predictions of the analysis likely depend on the details of the model, the 
paper highlights the potential relevance of a transmission channel of monetary policy that seems 
reasonable and little explored. Several interesting extensions are left for future work. An impor-
tant, and classical, assumption for our results is that the planner has the ability to levy lump-sum 
taxes, and that agents are not allowed to renege from their obligations. However, as pointed out 
by Andolfatto (2013), if agents are allowed to voluntarily be subject to taxation, the degree of 
monetary contractions has to be limited by the voluntary nature of participation. Therefore, it is 
possible that the incentive-feasible allocation cannot support the optimal policy we constructed in 
this paper, as this one requires large monetary contractions. An interesting open question is to use 
a mechanism design approach to find the optimal state-dependent policy under voluntary partic-
ipation. Another interesting extension is to reformulate our model, following Atkeson and Lucas
(1992), considering an endowment economy where agents are subject to preference shocks. If 
only two types of agents are considered, as we did in this paper, the two setups share several 
similarities and the solution developed for this paper can also be used in this other context.
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Appendix A. The expected return on money

The expected return on money, r(x). Define the stochastic expected net return on money for a 
small time interval 	 as

r(x)	 = E

[
q̃t+	

q̃t

− 1

∣∣∣∣xt = x

]
= E

[
qt+	

qt

− 	μt − 1

∣∣∣∣xt = x

]
,

where q̃t = q(xt )/Mt .19 Without loss of generality consider the case where at time t agent 1 
is productive with money holdings given by z1

t , and let z2
t denote the money holdings of the 

unproductive agent at time t . Then, using that q(x) = p(z), we have

r(xt )	 = (1 − λ	)p(z1
t+	) + λ	p(z2

t+	)

p(z1
t )

− 1 − 	μt .

A first order Taylor expansion of p(zi
t+	) gives

r(xt )	 = p′(z1
t )h

p(z1
t )	

p(z1
t )

+ λ	

(
p(z2

t ) + p′(z2
t )h

p(z2
t )	

p(z1
t )

− p(z1
t ) + p′(z1

t )h
p(z1

t )	

p(z1
t )

)

− 	μt .

Then, taking the limit of r(xt )	/	 as 	 → 0 gives r(xt ) = p′(z1
t )h

p(z1
t )

p(z1
t )

+ λ 
(

p(z2
t )

p(z1
t )

− 1
)

− μt . 

Using equation (9) gives r(xt ) = ρ + λ 
(

p(z2
t )

p(z1
t )

− u(z1
t )

p(z1
t )

)
or, using that in this proof we assumed 

that agent 2 was unproductive at time t , i.e. xt = z2
t .

r(x) = ρ + λ
p(x) − u(1 − x)

p(1 − x)
= ρ + λ

p(x)

p(1 − x)

cu(1 − x) − 1

cu(1 − x)
.

In a complete markets setting, such as the one described in Remark 2, consumption is constant 
and the expected real return equals the time discount, ρ. With incomplete markets the return on 
money depends on the history of the shocks, as summarized by the wealth distribution x.

Appendix B. Proofs

B.1. Proof of Remark 2

Let i = 1 be the index for the unproductive agent, and consider her decision problem. The 
money supply growth is μ = Ṁt

Mt
and let ũt denote the Lagrange multiplier of the money flow 

constraint in equation (3). The first order condition with respect to ct gives: ut = qt/ct , where 
we used the homogeneity of degree −1 in the aggregate money supply Mt for both ũt and q̃t . The 
Euler equation for ṁ1

t gives ρ = u̇t

ut
− Ṁt

Mt
= q̇t

qt
− ċt

ct
− μ where the last equality uses ut = qt/ct . 

Notice that this is solved by ct = 1, ċt = q̇t = 0, and μ = −ρ.
The constant level of q is pinned down by imposing that total nominal assets at the beginning 

of a cycle, which in the stationary equilibrium are held by the unproductive agent, equal total 
nominal consumption plus tax receipts over the cycle of length T . Without loss of generality 

19 Notice that, because of Jensen’s inequality, the expected return on money does not coincide with the inverse of the 
expected inflation rate (see the online Appendix for a calculation).
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let’s consider the first cycle, starting at time 0, where the unproductive agent holds all the money 
supply; m0 = M0. Using that Mt = M0e

μt , μ = −ρ, and q̃t = 1
Mt

q , we have

T∫
0

1

q̃t

dt +
T∫

0

ρMt dt = M0 , which gives q = 1 − e−ρT

ρe−ρT
∼= T

1 − ρT
,

where the approximation is accurate for small T . It is immediate to verify that this allocation also 
solves the Euler equation of the productive agent and that her money holdings are never negative.

B.2. Proof of Lemma 1

We first present a proof of the first part of the statement, namely that there is no monetary 
equilibrium if μ(x) < 0 ∀ x. We then present a proof of the second part of Lemma 1.

A contractionary policy μ(x) < 0 ∀ x requires agents to pay lump sum taxes (τ(x) < 0 ∀ x). 
Consider the case where agent 1 has fraction of money balances zt , and the current state of 
the economy is It = 0, which means that agent 1 is unproductive. If zt is low enough, given 
that λ > 0 and finite, the agent will fail to comply with the monetary authorities with non-zero 
probability. On the other hand, consider the case where zt = 1. In this case the agent is able 
to comply with her tax obligations with certainty, as she can make her consumption profile to 
be arbitrarily low. This implies that there exists a threshold ζ ∈ (0, 1) such that for zi ≥ ζ the 
agent is able to cover her lifetime tax needs with probability one. Note that the threshold must 
be independent of the current state It as with positive probability the states are reversed. In the 
next claim we characterize this threshold.

Claim 1. If μt < 0 ∀ t , for any state of the world It , there is a unique threshold: ζ = 1/2, and a 
unique ergodic set where zt = 1

2 ∀ t , that ensures tax solvency.

Proof. We will first prove by contradiction that ζ /∈ [0, 1/2). Then we will show that ζ = 1/2
is enough to cover the lifetime tax obligations. Suppose that ζ < 1/2. Without loss of generality 
assume that zt ∈ (ζ, 1/2) and agent 1 is unproductive. Conditional on no reversal of the state, it 
follows that zt+	 < zt for any 	 > 0. Then for a given 	 ∈R

+, Pr
[
zt+	 < ζ

]
> 0 and therefore 

the agent will fail to comply with her tax obligations with positive probability. Then, ζ /∈ [0, 1/2). 
Consider now the case where zt = ζ = 1/2. As the agent can decide not to trade she can always 
keep her share of outstanding money balances z above 1/2 and therefore for any μ ∈ (0, 1) she 
will be able to cover her tax needs. That z = 1/2 is the ergodic set is trivial. If z < 1/2 there is a 
positive probability that an agent fails to pay for her lifetime taxes. An unproductive agent with 
money holdings z > 1/2 is willing to buy goods (and the productive one with z < 1/2 willing to 
take the money) until z reaches 1/2. �

Intuitively, given the uncertain duration of the productivity spell, the only value of money 
holdings that ensures compliance with tax obligations for both types of agents is z = 1/2. At this 
point, for any history of shocks, the identical lump-sum (negative) transfers reduce the money 
holdings of both agents proportionally, leaving the wealth distribution unaffected. This leads us 
to

Remark 3. Let μ(x) < 0 ∀ x: In the ergodic set there is no stationary monetary equilibrium and 
consumption allocations are autarkic.
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The proof of Remark 3 follows from noting that Claim 1 implies no trade in the ergodic 
set. Productive agents have an unsatisfied demand for money and unproductive ones have an 
unsatisfied demand for consumption goods.

Now we turn to prove that μ(0) ≥ 0. Consider the law of motion for the share of money held 
by type 1 when unproductive, hu(z) = μ(x)

( 1
2 − z

)− cu(z)
q(x)

. Because cu(z) ≥ 0 and q(x) > 0 (i.e. 
prices are positive in a monetary equilibrium) we can bound above the law of motion hu(z): 
hu(z) ≤ μ(x)

( 1
2 − z

)
. Notice that because the agent is unproductive z = x. We apply this result 

into the previous equation and evaluate it at x = 0 to get hu(0) ≤ μ(0)
2 , from where it can be seen 

that hu(0) < 0 if μ(0) < 0 which is inconsistent with the borrowing and tax-solvency constraints. 
Therefore, μ(0) ≥ 0.

B.3. Proof of Lemma 2

The boundary condition (11) yields limz→0 hu(z) = 0. Moreover, we have hu(1/2) =
− 1

u(1/2)
< 0. Under the continuity assumption on μ(x), hu(z) is a continuous function; then 

the inequality can be extended over a suitable neighborhood of the asset z = 1
2 . More precisely, 

it is possible to consider an interval ( 1
2 − δ, 12 + δ) ⊂ (0, 1) where hu(z) < 0. The further as-

sumption related to the lack of singularities yields that the function hu(z) cannot nullify within 
the domain and its sign has to be uniform. It follows that the interval ( 1

2 − δ, 12 + δ) overlaps 
the whole integration interval and the previous inequality holds for all z ∈ (0, 1). In this way, the 
result is completely obtained.

The assumptions in the proposition mean that the solution (u(z), p(z)) evolves for z ∈ (0, 1)

in a region of R2+ where the forcing term has no singularity and is continuous, with the classical 
uniform Lipschitz condition locally satisfied. We recall that this kind of smoothness is a basic as-
sumption which is needed for investigating the solution of the differential problem. As discussed 
in Ascher et al. (1988), smoothness together with the requirement of solvability of the algebraic 
system related to the boundary conditions are the crucial issues for establishing the existence of 
a solution.

B.4. Proof of Proposition 1

The proof follows from the inspection of the phase diagram, which is plotted in upper–left 
Fig. 1. We assume the policy μ(x) = μ ≥ 0 is constant and exploit the geometric loci in (R+)2

defined as

Lp =
{
(U,P ) ∈ (R+)2 |P = λ

ρ + λ + μ
U

}
, and

Lu =
{
(U,P ) ∈ (R+)2 |P = ρ + λ + μ

λ
U

}
. (18)

We first note that λ
ρ+λ+μ

< 1 < ρ+λ+μ
λ

; this implies that the locus Lp lies under Lu and the 
dotted line P = U is between them, as it is shown in the figure. Then, according to equations 
(13)–(14), the terms p′(z)hp(z) and u′(z)hu(z) are zero on Lp and Lu, respectively. Thus, the 
uniform signs of hu(z) < 0 and hp(z) > 0 allow us to gain an insight about the increasing/de-
creasing pattern of the Lagrange multipliers p(z) and u(z), as it is shown by the arrows in the 
figure. It can be seen that region III is the only admissible area for a solution to satisfy the bound-
ary condition u(1) = ρ+λ+μ(0)

p(1), which is on Lp . Indeed the only positive solutions must stay 

λ
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in that region and their path develops in the dotted area. Therefore, both p(z) and u(z) are de-
creasing functions: it follows that p′(z) < 0 and u′(z) < 0 everywhere. Moreover, in the same 
region, we have p(z) ≤ λ

ρ+λ+μ
u(z) < u(z) for all z.

B.5. Proof of Proposition 2

The results in Proposition 2 can be stated by investigating the upper–right plot in Fig. 1, where 
some qualitative features of the solution are represented by exploiting the paths describing two 
specific different geometric loci in (R+)2. We define the following sets

Lp =
{
(U,P ) ∈ (R+)2 | ∃ z ∈ [0,1] so that U = u(z) solves equations (13)–(14)

at the state z and P = λ
ρ+λ+μ(1−z)

U
}

,

and

Lu =
{
(U,P ) ∈ (R+)2 | ∃ z ∈ [0,1] so that U = u(z) solves equations (13)–(14)

at the state z and P = ρ+λ+μ(z)
λ

U
}

.

They can be considered as a generalization of the geometric loci already defined by (18) in 
Appendix B.4, where the monetary policy is assumed to be state independent. As a difference 
with respect to (18), here we consider an explicit dependence on the state z for both U and 

P in the plane (R+)2: the sets are described by the points 
(
u(z),�p(z) := λ

ρ+λ+μ(1−z)
u(z)

)
∈

Lp and 
(
u(z),�u(z) := λ

ρ+λ+μ(z)
u(z)

)
∈ Lu, as z varies in the domain [0, 1]. Again the terms 

p′(z)hp(z) and u′(z)hu(z) in equations (13)–(14) are zero on Lp and Lu, respectively. Then, 
according to the sign of terms hp(z) and hu(z), both Lp and Lu determine different regions in 
the plane (U, P) where the functions u(z), p(z) change behavior according to the sign of their 
derivative.

The following features are crucial to draw the loci Lp, Lu, and to characterize the solution of 
the differential problem assuming A1 and A2:

(P1) The loci may intersect in an even number of points, since condition �p(z) = �u(z) is 
equivalent to have ρ2 + 2ρλ + (ρ + λ)(μ(z) + μ(1 − z)) + μ(z)μ(1 − z) = 0, which is a 
symmetric formula with respect to z = 1/2.

(P2) Condition λ
ρ+λ+μ(0)

< 1 ≤ ρ+λ+μ(1)
λ

in assumption A1 can be extended in order to have the 

inequality λ
ρ+λ+μ(1−z)

≤ ρ+λ+μ(z)
λ

, satisfied in a suitable neighborhood of z = 1. It follows 
that, in the same neighborhood, the locus Lp is under Lu.

(P3) The boundary condition u(1) = ρ+λ+μ(0)
λ

p(1) lies on Lp (denoted by a bold dot in the 
figures). It has to be reached by the solution in correspondence with z converging to 1.

(P4) Lp and Lu determine different regions in the phase plane (U, P) where both functions u(z), 
p(z) change behavior according to their derivative sign. Since Lp lies under Lu, as shown 
in the upper–right panel of Fig. 1, the local behavior of u(z) and p(z) in a neighborhood 
of z = 1 can be determined as follows. Let the arrows describe the increasing/decreasing 
patterns for u(z) and p(z), accounting for the signs of hu(z) < 0 and hp(z) > 0 established 
by Lemma 2. It is evident that u(z) is decreasing when the money holdings of the productive 
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agent is near z = 1, since the solution must reach the boundary condition (the bold dot 
on Lp) according to P3.

(P5) The increasing/decreasing shape for Lp can be established by noticing that, for any 

z ∈ [0,1], �′
p(z) = λ

ρ+λ+μ(1−z)

(
u(z)μ′(1−z)

u′(z)(ρ+λ+μ(1−z))
+ 1

)
u′(z). We remark that μ(1 −z) ≥ 0

and μ′(1 − z) < 0 near z = 1. The first condition is due to the continuity for μ(x) and 
μ(0) ≥ 0; the second relationship arises from assumption A2. In this respect, since u(z) is 
decreasing when z moves near 1 (see P4), then u′(z) < 0. It follows that �′

p(z) < 0 and the 
locus Lp decreases in a neighborhood of z = 1.

The previous features can be exploited in order to draw the picture in Fig. 1, whose inspection 
lets the proof of Proposition 2 be completed. It is evident that the only solutions that are positive 
must reach that boundary condition in the dotted region, that is under Lp and Lu (the dashed 
curve represents a possible path for the solution). Hence there exists a threshold z̄ ∈ [0, 1] such 
that for all z ∈ Iz = [z̄, 1] the solution develops in the region where both p(z) and u(z) are 
decreasing functions, that is equivalent to have p′(z) < 0 and u′(z) < 0. In the same region we 
have p(z) < u(z). Indeed, since μ(0) ≥ 0 and u(1) = ρ+λ+μ(0)

λ
p(1), the point (u(1), p(1)) ∈

Lp lies under the 45 degree line and p(1) < u(1). Since the function μ is continuous then the 
inequality can be extended in Iz. This completes the proof.

B.6. Proof of Proposition 3

We prove that the complete markets allocation cannot be sustained when ρ
λ

> ρ̄ (i.e. when 
the expected duration of the cycle is sufficiently long). To this end it suffices to show that 
consumption is not equal to 1 at all values of the state x ∈ [0, 1]. In particular let us con-
sider x = 0. The consumption function and the continuity of the consumption function give 
that cu(0) = μ(0)p(1)/2. Recall that μ(0) is finite (since μ(x) is continuous over a compact 
set). The boundary condition in equation (12) can be rewritten as p(1) = 1

ρ
λ
+1+ μ(0)

λ

u(1). Since 

u(1) is finite in any monetary equilibrium, it follows that cu(0) can be made arbitrarily small by 
increasing ρ

λ
, i.e. that limρ/λ→∞ cu(0) = 0. Therefore there exists a threshold ρ̄ > 0 such that 

for all ρ/λ ∈ (ρ̄, ∞) we have that cu(0) < 1, or that the complete markets allocation cannot be 
implemented.

Appendix C. Solving the ODEs and computing optimal policy

Here we describe the algorithm used to solve for the optimal policy μ̂(x). Given that we 
restrict our attention to piecewise continuous linear policy rules in [0, 1], the policy can be char-
acterized by a vector with elements ai where i indexes the number of nodes. More precisely, 
we assume that μ̂(x) is continuous on [0, 1], it is linear on each subinterval [(i − 1)/I , i/I ]
for i = 1, . . . , I , and we set its nodal values as μ̂(i/I ) = ai for each i = 0, 1, . . . , I . For a given 
initial guess vold of the value function evaluated at x = 1/2, the algorithm proceeds as follows:

1. Guess a set of values ai for all i = 0, 1, . . . , I .
2. Solve the system given by equations (9), (10), (11), and (12). Details on the numerical im-

plementation of the system are presented in Appendix C.1.
3. Compute the value function v(1/2) in equation (16). Let vnew = v(1/2).
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4. If |vnew − vold| < ε, then stop the algorithm and call ai the optimal policy μ̂(x). If the in-
equality is not satisfied, let vold = vnew and return to step 1.

To initialize the algorithm we let the initial vold be equal to the value under complete markets. Our 
initial guess of the policy rule is a constant rule (so that ai = aj for all i, j ). The optimization 
with respect to the draws for ai is performed following a simulated annealing algorithm. One 
advantage of the simulated annealing is that it is a global optimizer, which allows the optimization 
routine to deal with local maxima.

C.1. Solving the system of ODEs

Here we discuss the numerical implementation followed to solve the model. It is useful to 
rewrite the boundary value problem presented in equations (9), (10), (11), and (12) as we describe 
next. First the domain for x ∈ [0, 1], is halved and the following functions are defined

y(1)(z) = p(z), y(2)(z) = u(z), y(3)(z) = p(1 − z), y(4)(z) = u(1 − z),

for z ∈ [ 1
2 , 1

]
. Thus, the evolution dynamics of the vector y(z) = [y(1)(z), y(2)(z), y(3)(z),

y(4)(z)] ∈ R
4 is described by the following equation

ẏ(z) = f (z, y(z)), z ∈
[

1

2
,1

]
, (19)

where the forcing term entries are defined as

f (1)(z, y) = (ρ + λ + μ(1 − z))y(1) − λy(2)

μ(1 − z) ( 1
2 − z) + 1

y(4)

,

f (2)(z, y) = (ρ + λ + μ(z))y(2) − λy(1)

μ(z) ( 1
2 − z) − 1

y(2)

,

f (3)(z, y) = − (ρ + λ + μ(z))y(3) − λy(4)

μ(z) (z − 1
2 ) + 1

y(2)

,

f (4)(z, y) = − (ρ + λ + μ(1 − z))y(4) − λy(3)

μ(1 − z) (z − 1
2 ) − 1

y(4)

.

The boundary conditions are expressed as F(y(1/2)) = 0 and G(y(1)) = 0, where 0 = [0,0] ∈R
2

and the functions F , G map R4 onto R2 with entries

F (1)(w) = w(1) − w(3), F (2)(w) = w(2) − w(4),

and

G(1)(w) = w(4) − 2c̄

μ(0)
, G(2)(w) = w(2) −

(
1 + ρ

λ
+ μ(0)

λ

)
w(1).

Notice that expressing the boundary in this way imposes that p(z) = p(1 −z) and u(z) = u(1 −z)

at z = 1/2, i.e. that the p and u functions are continuous.
We adopt an s-stage explicit Runge–Kutta method (akj , bk, ck) of order s for integrating the 

system of differential equations. In the approximation, the interval ( 1 , 1) is discretized with a 
2
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variable step-length hn and two sets of nodes: the primary nodes zn+1 = zn +hn, the intermediate 
nodes znk

= zn + ckhn (k = 1, . . . , s, ck ≤ 1) for n = 0, . . . , N , with z0 = 1/2 and zN = 1. In the 
sequel, yn and ynk

denote the approximations for y(zn) and y(znk
), respectively. We start from a 

pair of values (ς, υ) ∈R
2 and set y(1/2) = y0 := [ς, υ, ς, υ] ∈ R

4. Then, the discrete dynamics 
can be described with the following recursive formula

ynk
= yn + hn

k−1∑
j=1

akj f (znj
, ynj

), k = 1, . . . , s,

yn+1 = yn + hn

s∑
k=1

bk f (znk
, ynk

),

n = 0, . . . ,N − 1, (20)

First the intermediate values ynk
are evaluated as defined in the first line of the previous 

scheme (20); then, they are used to compute the primary approximation yn+1 as shown in the 
second line.

Since F(y0) = 0 holds by the previous definition of y0, what remains to be checked is that the 
boundary condition G(yN) = 0 is satisfied. The scheme in (20) gives an explicit algorithm where 
the value for yN can be computed as soon as y0 is known. Thus, we have to search for the pair 
(ς, υ) ∈ R

2 such that G(yN) = 0. This amounts to solving a system of two nonlinear equations 
with respect to the unknowns ς, υ . This procedure can be interpreted as a “shooting approach”.

In particular, our numerical results are obtained by applying the so-called “classical Runge–
Kutta method”, which is very accurate since it features fourth order accuracy with respect to 
the step-lengths hn. To find the pair (ς, υ) ∈ R

2 which solves G(yN) = 0, we use the following 
recursive procedure in order to evaluate yN :

y0 = [ς,υ,ς,υ],
yn1 = yn, yn2 = yn + hn

2
f (zn1 , yn1),

yn3 = yn + hn

2
f (zn2 , yn2), yn4 = yn + hnf (zn3 , yn3),

yn+1 = yn + hn

6
(f (zn1 , yn1) + 2f (zn2 , yn2) + 2f (zn3 , yn3) + f (zn4 , yn4)),

where the inner stages are

zn1 = zn, zn2 = zn + hn

2
,

zn3 = zn + hn

2
, zn4 = zn + hn = zn+1,

z0 = 1/2, zN = 1.

In order to implement the previous algorithm we exploit the fsolve built-in Matlab function 
for solving the two equations and finding the values ς, υ .

We conclude by describing some features of this numerical procedure. A convenient property 
of the approach is that it requires to solve only two nonlinear equations in only two real vari-
ables υ , ς .20 It must be noticed that, for the problem under scrutiny, any numerical algorithm 

20 Other approaches could be pursued, such as methods that rely on classical Gaussian collocation. They solve a larger 
set of nonlinear equations in many unknowns.
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Table 2
Optimal policy μ(x): robustness to number of nodes.

α max μ̂(x) arg max μ̂(x) min μ̂(x) arg min μ̂(x)

Baseline, ρ/λ = 1/2
3 nodes 9.45% 0.06 0 −0.13 0.5
5 nodes 3.31% 0.59 0 −0.52 0.5
9 nodes 3.28% 0.59 0 −0.53 0.5
17 nodes 3.25% 0.61 0 −0.57 0.5

Short cycles, ρ/λ = 1/10
3 nodes 0.78% 0.50 0 −0.34 0.5
5 nodes 0.41% 1.06 0 −0.75 0.5
9 nodes 0.40% 1.08 0 −0.67 0.5
17 nodes 0.39% 1.08 0 −0.68 0.5

Long cycles, ρ/λ = 1
3 nodes 13.63% 0.11 0 −0.21 0.5
5 nodes 11.69% 0.20 0 −0.33 0.5
9 nodes 9.61% 0.23 0 −0.35 0.5
17 nodes 9.57% 0.23 0 −0.35 0.5

that exploits the direct evaluation of the forcing term in equation (14), has the drawback of eval-
uating the fraction defining u′(x) where the denominator nullifies as x → 0, which corresponds 
to z → 1 in equation (19). Two cases may arise: in the first case u′(x) diverges as x → 0, as 
it happens with the constant money supply studied by Scheinkman and Weiss (1986). In this 
case the direct evaluation of the forcing term causes a failure in the algorithm. In the second 
case u′(x) is finite as x → 0, that happens when both the numerator and the denominator are in-
finitesimal of the same order. Because the algorithm must perform divisions by a number that is 
close to zero, the approximation may give rise to oscillations that cause numerical instability and 
affect the whole solution. In general, for the discretization of equation (14) the instability arises 
in a neighborhood of x = 0. In our approach, the approximation of equation (19) happens for 
z ∈ ( 1

2 , 1) and the instability arises at a point close to the boundary z = 1, so that its propagation 
is confined at the end of the integration process. To deal with this, we exploit an adapted spatial 
mesh with a non-uniform length hn, with a finer grid inside the integration interval, and a coarser 
grid near the boundary where z = 1. The finer grid in the interior of the interval is chosen so as to 
have high accuracy of the approximation, while the coarser grid close to z = 1 is chosen so as to 
minimize the number of fraction evaluations and the instability that occur near the boundary.21

Appendix D. Robustness to the number of nodes

In this section we explore the robustness of the optimal policy to the number of nodes for three 
different cases. The first case is our baseline parameterization of the model, where ρ/λ = 1/2. 
The second case assumes that ρ/λ = 1/10, which maps to business cycles of shorter duration 
relative to the baseline parameterization. The third case uses ρ/λ = 1, which maps to business 
cycles of longer duration relative to the baseline parameterization. The results are presented in 
Table 2. In the table we present, for each of these three cases, some relevant features of the 
optimal policy μ̂(x) for 3, 5, 9 and 17 nodes. For each value of ρ/λ and number of nodes, we 

21 We verified, through numerical exploration, that a non-uniform spatial mesh with N = 4 020 primary nodes for x was 
enough to tackle any propagation of unstable oscillations.
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Fig. 7. Optimal policy: robustness to number of nodes (for ρ/λ = 0.5).

present α, the consumption equivalent cost of market incompleteness associated with a given 
policy (see equation (17)), the maximum and minimum values of the policy and the values of 
x at which they occur. We present these particular statistics as we view them as particularly 
useful in gauging the robustness of the optimal policy to the number of nodes. Inspection of 
Table 2 reveals that the optimal policy μ̂(x) stabilizes once the number of nodes reaches five. 
First, the welfare gains from increasing the number of nodes become very small. Second, there 
is no variation in terms of at which value of x the policy is minimized and maximized. Third, 
there is also small variation of the maximum and minimum values attained by the optimal policy. 
Finally, in Fig. 7 we present, for the baseline parameterization, the policy rule μ(x) for 3, 5, 
and 17 nodes. To preserve visibility, we do not plot the policy with 9 nodes. Consistent with the 
results in the table, the figure shows that the policy stabilizes as we increase the number of nodes 
above 5.

Appendix E. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.07.005.
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