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Abstract

We study the sampling properties of two alternative approaches to estimating the conditional distri-
bution of a continuous outcome Y given a vector X of regressors. One approach – distribution re-
gression – is based on direct estimation of the conditional distribution function; the other approach
– quantile regression – is instead based on direct estimation of the conditional quantile function.
Indirect estimates of the conditional quantile function and the conditional distribution function may
then be obtained by inverting the direct estimates obtained from either approach or, to guarantee
monotonicity, their rearranged versions. We provide a systematic comparison of the asymptotic and
finite sample performance of monotonic estimators obtained from the two approaches, considering
both cases when the underlying linear-in-parameter models are correctly specified and several types
of model misspecification of considerable practical relevance.
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1 Introduction

In this paper we compare the sampling properties of two alternative approaches to estimating the con-

ditional distribution of a continuous outcome Y given a vector X of regressors.

One approach – the distribution regression or DR approach – models parametrically the conditional

distribution function (CDF) F(y | x) = Pr{Y ≤ y |X = x} locally in y ∈ Y , and obtains estimates F̂(· | x)

of the CDF by fitting a sequence of binary regression models at a finite number of cutoff values y1, . . . , yJ ,

each model corresponding to the conditional mean of the binary indicator Dj = 1{Y ≤ y j}. In fact, a

convenient strategy is to model not F(y | x) directly, but rather the conditional log-odds function (CLF)

t(y | x) = ln F(y | x)−ln
�

1− F(y | x)
�

. While this strategy leaves the range of t completely unrestricted,

it guarantees that estimates of F(y | x) obtained by inverting estimates of t(y | x) are bounded between

zero and one. An important special case is the linear-in-parameters specification t(y | x) = P(x)>θ (y),

where P(x) is a vector of known transformations of the regressors, θ (y) is a point in some finite-

dimensional parameter space and all elements of θ may vary with y . Although restrictive, this spec-

ification leads to models that are easy to estimate and to interpret. Further, any smooth CLF can be

approximated arbitrarily well by one that is linear in parameters. This approach, first proposed by

Foresi and Peracchi (1995), has recently been considered by Fortin, Lemieux and Firpo (2011), Rothe

(2012), Chernozhukov, Fernández-Val and Melly (2013) and Hothorn, Kneib and Bühlmann (2014).

The other approach – the quantile regression or QR approach – models parametrically the condi-

tional quantile function (CQF) Q(p | x) = inf{y ∈ Y : F(y | x) ≥ p} locally in p ∈ (0, 1), and obtains

estimates of the CQF by fitting a sequence of asymmetric least absolute deviation regressions at a finite

number of quantile levels p1, . . . , pJ . Here again, an important special case is the linear-in-parameter

specification Q(p | x) = P(x)>γ(p), where P(x) is a vector of known transformations of the regres-

sors, γ(p) is a point in some finite-dimensional parameter space and all elements of γ may vary with

p. This approach, first proposed by Koenker and Bassett (1978), has been generalized in many direc-

tions, including penalized likelihood methods, semi-parametric methods, methods for nonidentically

distributed or dependent observations, extremal quantile regression, and weighted quantile regression

(see Koenker 2005 for a review).

The CDF and the CQF are equivalent characterizations of the conditional distribution of Y given X ,

as they are generalized inverses of each other, that is, Q(F(y | x) | x) ≤ y and F(Q(p | x)) ≥ p, which

implies that F(y | x)≥ p if and only if Q(p | x)≥ y . Thus, by analogy with this relationship, given a direct

estimate F̂(· | x) of the CDF, one may obtain an indirect estimate of the CQF by taking its generalized

inverse Q̃(p | x) = inf
�

y : F̂(y | x)≥ p
	

. Similarly, given a direct estimate Q̂(· | x) of the CQF, one may
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obtain an indirect estimate of the CDF by taking its generalized inverse F̃(y | x) = inf
�

p : Q̂(p | x)≥ y
	

.

In the unconditional case, where no parametric assumption is needed, the empirical distribution

function and the empirical quantile function are generalized inverses of each other, so the DR and

QR approaches are equivalent. When conditioning on a set of regressors, however, the DR and QR

approaches are generally not equivalent because a convenient parametric model for the CQF, such as

a linear-in-parameter specification, need not imply an equally convenient or easily interpretable model

for the CDF, and viceversa.

Further, estimates based on linear-in-parameter specifications, while easy to obtain, need not be

proper since they need not satisfy the key monotonicity properties of the CDF and the CQF, namely

F(y ′ | x) ≥ F(y | x) whenever y ′ > y and Q(p′ | x) ≥ Q(p | x) whenever p′ > p, for any x . Non-

monotonicity of the estimates may just be a finite-sample problem or may reflect, more fundamentally,

misspecification of the underlying parametric model for the CDF or the CQF. In any case, far from being

a minor technical problem, the issue of how to guarantee monotonicity is of central importance, as in-

direct estimates can only be proper if they are obtained by inverting a proper estimate of the CDF or the

CQF, and only in this case their asymptotic properties can be derived by means of the functional delta

method.

Among the various ways of guaranteeing monotonicity proposed in the literature, in this paper we

concentrate on the rearrangement procedure suggested by Chernozhukov, Fernández-Val and Galichon

(2010), which is particularly attractive for its general nature and computational simplicity. We provide

a systematic study of the asymptotic and finite sample performance of monotonic estimators obtained

from the DR and QR approaches, considering both cases when the underlying linear-in-parameter mod-

els are correctly specified and several types of model misspecification of considerable practical rele-

vance. We focus on bias, precision (as measured by the variance) and efficiency (as measured by the

mean squared error) of the various estimators, both in finite samples and asymptotically. Of course,

efficiency is only one of the many theoretical and practical criteria for comparing estimators, and other

criteria may be taken into account, such as statistical robustness, computational ease, etc.

We assume throughout the paper that the available data {(X i , Yi)}ni=1 are a sample from the joint

distribution of the random vector (X , Y ) with support X ×Y , where X ⊆ Rk and Y ⊆ R. This restric-

tive assumption helps simplify the presentation, but our results can easily be generalized to the case

of heterogeneous or dependent observations. We also assume that the distribution of X has a finite

nonsingular second moment matrix and that, for any x ∈ X , the CDF of Y given X = x is continuous

and strictly increasing, which implies that the conditional density f (y | x) of Y given X = x exists and
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is finite and bounded away from zero. This in turn implies that the CDF and the CQF are inverses of

each other, that is, F(Q(p | x) | x) = p and Q(F(y | x) | x) = y . We further assume that our linear-in-

parameter models for the CDF and the CQF always include an intercept, and to simplify notation we

set P(X ) = (1, X>)> ≡ X and P(x) = (1, x>)> ≡ x . Finally, we denote by l∞(S ) the space of bounded

and measurable real-valued functions defined on S .

The remainder of the paper is organized as follows. Section 2 introduces the direct DR estimator

of the CDF and the indirect estimator obtained by rearrangement. Section 3 introduces the direct QR

estimator of the CQF and the indirect estimator obtained by rearrangement. Section 4 compares the

asymptotic properties of estimators obtained under the DR and the QR approach, both when the linear-

in-parameter models on which they are based are correctly specified and when they are not. Section 5

compares the finite sample properties of the various estimators considered via a set of Monte Carlo

experiments. Finally, Section 6 summarizes and offers some conclusions.

2 DR estimators

Given a random sample {(X i , Yi)}ni=1 from the distribution of (X , Y ) and a linear-in-parameter model

t(y | x) = x>θ (y) for the CLF, an estimate θ̂ n(y) of θ (y) may be obtained by maximizing over the

parameter space the average pseudo log-likelihood

Ln(θ ; y) = n−1
n
∑

i=1

�

Dyi X>i θ − ln
�

1+ exp X>i θ
��

,

where Dyi = 1{Yi ≤ y}. Given θ̂ n(y), the direct DR estimate of the population CDF at the cutoff value

y is F̂‡
n(y | x) = Λ

�

x>θ̂ n(y)
�

, where Λ(u) = eu/(1 + eu) is the standard logistic distribution function

with density λ(u) = Λ(u)(1−Λ(u)).

The population analog of F̂‡
n(y | x) is denoted by F‡(y | x) = Λ

�

x>θ (y)
�

, where θ (y)maximizes the

expected pseudo log-likelihood L(θ ; y) = E
�

Dy X>θ − ln
�

1+ exp(X>θ )
��

over the parameter space.

If the assumed model for the CLF is correctly specified, then F‡(y | x) = F(y | x) for almost all x and y

values, so a consistent indirect estimator of the CQF may simply be obtained by taking the generalized

inverse of F̂‡
n . However, if the assumed model is misspecified, then F̂‡

n converges to a limit function F‡

that differs from F on a subset of X ×Y with positive measure. This has two consequences. First, the

direct estimator F̂‡
n is inconsistent for F , so the indirect estimator obtained by taking the generalized

inverse of F̂‡
n is inconsistent for Q. Second, although bounded between zero and one, the limit function

F‡ need not be a proper CDF because it need not be nondecreasing in y for all x . This implies that the
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generalized inverse of F‡ is not a continuous function, which prevents one from using the functional

delta method to study the asymptotic properties of the CQF estimator obtained by inverting F̂‡
n .

A simple way to guarantee monotonicity is the rearrangement procedure proposed by Chernozhukov,

Fernández-Val and Galichon (2010).1 Their procedure relies on the fact that, even when F̂‡
n is nonmono-

tonic, a proper estimate of the CDF is F̂+n (y | x) = inf{p : Q̂+n (p | x)≥ p}, where

Q̂+n (p | x) =
∫ ∞

0

1{F̂‡
n(y | x)≤ p}d y −

∫ 0

−∞
1{F̂‡

n(y | x)> p}d y (1)

can be shown to be a proper estimate of the CQF (the proof is in Chernozhukov, Fernández-Val and

Galichon 2007). Notice that while the DR approach does not directly estimate the CQF, rearrangement

produces joint estimates of both the CDF and the CQF. If F̂‡
n is monotone, then F̂+n and F̂‡

n coincide. In

general, F̂+n (y | x) = F̂‡
n(y | x) at all points where F̂‡

n(y | x) is increasing in y and the equation F̂‡
n(y | x) =

p has a unique solution. The same rearrangement procedures applied to the limit function F‡ gives both

its rearranged version of F+ and its generalized inverse Q+.

Rearrangement offers two main advantages. First, the rearranged estimator F̂+n is the continuous

and Hadamard differentiable inverse of Q̂+n , so its asymptotic properties can be derived via the functional

delta method. Second, as shown by Chernozhukov, Fernández-Val and Galichon (2010) in their Monte

Carlo experiments, F̂+n has a smaller bias than the original estimator F̂‡
n .

Chernozhukov, Fernández-Val and Melly (2013) derive the asymptotic properties (as n → ∞) of

the stochastic processes
p

n
�

θ̂ n(y)− θ (y)
�

,
p

n
�

F̂‡
n(y | x)− F‡(y | x)

�

and
p

n
�

F̂+n (y | x)− F+(y | x)
�

.

Their results, summarized in Theorem 1 below for the case when the assumed model is linear in pa-

rameters, rely on the following two assumptions:

A.1: There exist y < y in the interior of Y such that, for any y ∈ [y , y], θ (y) uniquely maximizes

L(θ ; y) on a compact subset Θ of the parameter space.

A.2: For any x ∈ X , the number of critical points {y : ∂y F‡(y | x) = 0} is finite.

Assumption A.1 and the assumption that X has finite nonsingular second moments guarantee that

Ln(θ ; y) is twice differentiable in θ and that its first and second partial derivatives have finite second

moments. It also implies that the matrix H(y) = E
�

λ
�

X>θ (y)
�

XX>
�

is finite and negative definitive

for all y ∈ [y , y], and that θ (y) is continuously differentiable in y . In fact, applying the implicit function

theorem to the system of equations ∂ L(θ ; y)/∂ θ = 0 shows that θ (y) is continuous and differentiable

1 Other procedures that guarantee monotonicity have been proposed by Foresi and Peracchi (1996), Hall, Wolff and Yao
(1999), Hall and Müller (2003), and Dette and Volgushev (2008) among others.
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in y , with derivative θ ′(y) = [H(y)]−1
�

E f (y |X )X
�

, so it is also continuously differentiable in y . As

a consequence, F‡(y | x) is continuously differentiable in both its arguments.

Assumption A.2 guarantees that, for all x , y and p, the equation F‡(y | x) = p, or equivalently the

equation x>θ (y) = ln[p/(1− p)], has a finite number N(p | x) of roots which we denote by y j(p | x).

We also denote by U ∗x ⊂ (0,1) the set of regular values of the function F‡(y | x), that is, the subset

of the codomain of F‡(· | x) whose preimage does not contain critical points, and define (0, 1)X ∗ =

{(p, x): p ∈ U ∗x , x ∈ X}.

Theorem 1 If A.1 holds, then the process θ̂ n(·) is uniformly consistent for θ (·), that is, supy≤y≤y ‖θ̂ n(y)−

θ (y)‖ = op(1), and the process H(·)
p

n
�

θ̂ n(·)− θ (·)
�

converges weakly on l∞([y , y]) to a zero-mean

multivariate Gaussian process BD(·) with covariance function

ΣD(y, y ′) = E
��

Dy −Λ(X>θ (y))
� �

Dy ′ −Λ(X>θ (y ′))
�

XX>
�

, y ≤ y ′.

In addition, for any compact subset K ⊂ [y , y] ×X , the process
p

n
�

F̂‡
n(y | x)− F‡(y | x)

�

, indexed by

(y, x), converges weakly on l∞(K ) to a zero-mean Gaussian process W defined as

W (y | x) = λ
�

x>θ (y)
�

x>H(y)−1BD(y). (2)

If A.1–A.2 hold then, for any compact subsetK ⊂ (0, 1)X ∗, the process
p

n
�

Q̂+n (p | x)−Q+(p | x)
�

, indexed

by (p, x), converges weakly on l∞(K ) to a zero-mean Gaussian process CW defined as

CW (p | x) = −
N(p | x)
∑

j=1

W (y j(p | x) | x)
�

�∂y F‡(y j(p | x) | x)
�

�

.

Finally, letting K ∗ =
¦

(y, x) ∈ [y , y]×X :
�

F+(y | x), x
�

∈K
©

, the process
p

n
�

F̂+n (y | x)− F+(y | x)
�

,

indexed by (y, x), converges weakly on l∞(K ∗) to a zero-mean Gaussian process DW defined as

DW (y | x) = −





N( F‡(y|x) | x)
∑

j=1

1
�

�∂y F‡
�

y j(F+(y | x) | x)
�

� x
��

�





−1

CW

�

F+(y | x)
�

� x
�

.

The function CW (p | x) in Theorem 1 is the Hadamard differential of Q+ at W tangentially to the

space of continuous functions defined on YX =
�

(y, x):
�

F+(y | x), x
�

∈ (0,1)X ∗
	

(see e.g. van der

Waart 1998). If F‡ is strictly increasing in y then the equation F‡(y | x) = p has a unique root and

F+(y | x) = F‡(y | x) for all x , y and p, so CW (p | x) = −W
�

Q+(p | x)
�

� x
�

/∂y F‡
�

Q+(p | x)
�

� x
�

and

DW (y | x) =W (y | x).
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It follows from Theorem 1 that the asymptotic variance of F̂‡
n(p | x) is equal to V

�

F̂‡
n(p | x)

�

=

λ
�

x>θ (y)
�2

x> VD(y) x , where VD(y) = H(y)−1ΣD(y, y)H(y)−1 denotes the asymptotic variance of

θ̂ n(y). If the assumed linear-in-parameter model for the CLF is correctly specified, then ΣD(y, y) =

H(y) and VD(y) = H(y)−1, so the asymptotic variance of F̂‡
n(y | x) simplifies toV

�

F̂‡
n(y | x)

�

= λ
�

x>θ (y)
�2

x>H(y)−1 x .

3 QR estimators

An alternative to directly estimate the CDF is to first estimate the CQF and then obtain indirect estimates

of the CDF by taking the generalized inverse or by rearrangement. To fix the ideas, consider the linear

location model

Y = α+ X>β + U , (3)

where U is a random error distributed independently of X with a strictly increasing distribution function

G. Its CQF is Q(p | x) = x>γ(p), where γ(p) =
�

α+ G−1(p),β>
�>

. This model has the restrictive feature

that Q(p | x) − Q(p′ | x) = G−1(p) − G−1(p′), that is, conditional quantiles corresponding to different

values of p are at a constant distance from each other. A straightforward generalization retains linearity

in the parameters but allows all elements of γ(p) to depend on p, leading to the linear-in-parameter

specification Q(p | x) = x>γ(p), where γ(p) is a point in some finite-dimensional parameter space and

all elements of γ may vary with p.

Given a random sample {(X i , Yi)}ni=1 from the distribution of (X , Y ) and a linear-in-parameter model

for the CQF, an estimate γ̂n(p) of γ(p) may be obtained by minimizing over the parameter space the

objective function

`n(γ; p) = n−1
n
∑

i=1

ρp

�

Yi − X>i γ
�

,

where ρp(u) = u [p − 1{u ≤ 0}] is the asymmetric absolute loss function. Given γ̂n(p), the direct QR

estimate of the population CQF at the quantile level p is Q̂∗n(p | x) = x>γ̂n(p).

The population analog of Q̂∗n(p | x) is denoted by Q∗(p | x) = x>γ(p), where γ(p) is the minimizer

over the parameter space of `(γ; p) = Eρp

�

Y − X>γ
�

, the population analog of `n(γ; p). If the assumed

model for the CQF is correctly specified, then Q∗(y | x) = Q(p | x) for almost all x and p values, so a

consistent indirect estimator of the CDF may simply be obtained by taking the generalized inverse of Q̂∗n.

However, if the assumed model is misspecified, then Q̂∗n converges to a limit function Q∗ that differs from

Q on a subset of Y ×X with positive measure. This poses the same problems discussed in Section 2. As

suggested by Chernozhukov, Fernández-Val and Galichon (2010), a possible solution is again rearrange-

ment. When Q̂∗n is nonmonotonic, a proper estimate of the CQF is Q̂◦n(p | x) = inf{y : F̂◦n(y | x) ≥ p},
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where

F̂◦n(y | x) =
∫ 1

0

1{Q̂∗n(p | x)≤ y}dp (4)

is a proper estimate of the CDF. The same rearrangement procedures applied to the limit function Q∗

gives both its rearranged version Q◦ and its generalized inverse F◦. Notice that Q∗ and Q◦ coincide if Q∗

is monotone. Moreover, Q◦(p | x) =Q∗(p | x) provided that Q∗(p | x) is increasing at p and Q∗(p | x) = p

has a unique solution for y =Q◦(p | x).

Chernozhukov, Fernández-Val and Melly (2013)) also provide the QR counterpart of Theorem 1.

Their results, summarized in Theorem 2 below, rely on the following two assumptions:

B.1: There exist p < p in the interior of (0,1) such that, for any p ∈ [p, p], γ(p) uniquely minimizes

`(γ; p) on a compact subset Γ of the parameter space.

B.2: For any x ∈ X , the number of critical points {p : ∂pQ∗(p | x) = 0} is finite.

Assumptions B.1–B. 2 play the same role as Assumptions A.1–A.2 in Section 2. In particular, As-

sumption B.1 implies that the matrix J(p) = E
�

f
�

X>γ(p) |X
�

XX>
�

is finite and positive definite for

all p in the closed interval [p, p], and that the function γ(p) is continuously differentiable on [p, p] with

derivative γ′(p), while Assumption B.2 guarantees that, for all x , y and p, the equation Q∗(p | x) = y ,

or equivalently the equation x>γ(p) = y , has a finite number N(y | x) of roots which we denote by

p j(y | x). We also denote by Y ∗x the subset of the codomain of Q∗(· | x) whose preimage does not con-

tain critical points. Thus, ∂pQ∗(p | x) 6= 0 for all p such that Q∗(p | x) ∈ Y ∗x .

Theorem 2 If B.1 holds, then the process γ̂n(·) is uniformly consistent for γ(·), that is, supp≤p≤p ‖γ̂n(p)−

γ(p)‖= op(1), and the process J(·)
p

n
�

γ̂n(·)− γ(·)
�

converges weakly on l∞([p, p]) to a zero-mean mul-

tivariate Gaussian process BQ(·) with covariance function

ΣQ(p, p′) = E
��

p−1{Y < X>γ(p)}
� �

p′ −1{Y < X>γ(p′)}
�

XX>
�

, p ≤ p′.

In addition, for any compact subset H ⊂ [p, p] ×X , the process
p

n
�

Q̂∗n(p | x)−Q∗(p | x)
�

, indexed by

(p, x), converges weakly on l∞(H ) to the zero-mean Gaussian process Z defined as

Z(p | x) = x>J(p)−1 BQ(p).

If B.1–B.2 hold then, for any compact subsetK ⊂ (0, 1)X ∗, the process
p

n
�

Q̂+n (p | x)−Q+(p | x)
�

, indexed

by (p, x), converges weakly on l∞(K ) to a zero-mean Gaussian process CW defined as

CZ(y | x) = −
N(y | x)
∑

j=1

Z
�

p j(y | x) | x
�

�

�∂pQ∗
�

p j(y | x) | x
��

�

.
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Finally, letting K ∗ =
¦

(y, x) ∈ [y , y]×X :
�

F+(y | x), x
�

∈K
©

, the process
p

n
�

F̂+n (y | x)− F+(y | x)
�

,

indexed by (y, x), converges weakly on l∞(K ∗) to a zero-mean Gaussian process DW defined as

DZ(p | x) =

 

N(y | x)
∑

j=1

1
�

�∂pQ∗
�

p j(y | x) | x
��

�

!−1

CZ(y | x)

�

�

�

�

�

�

y=Q◦(p | x)

.

The function CZ(p | x) in Theorem 2 is the Hadamard differential of F◦ at Z tangentially to the

space of continuous functions defined on (0,1)X . If Q∗ is strictly increasing in p then the equa-

tion Q∗(p | x) = y has a unique root and Q◦(p | x) = Q∗(p | x) for all x , y and p, so CZ(y | x) =

−Z
�

p(y | x)
�

/∂pQ∗
�

p(y | x) | x
�

and DZ(p | x) = Z(p | x).

It follows from Theorem 2 that the asymptotic variance of Q̂∗n(p | x) is V
�

Q̂∗n(p | x)
�

= x>VQ(p) x ,

where VQ(p) = J(p)−1ΣQ(p, p) J(p)−1 denotes the asymptotic variance of γ(p). If the assumed linear-

in-parameter model is correctly specified, then J(p) = E
�

f
�

X>γ(p) |X
�

XX>
�

. In particular, under the

linear location model (3), ΣQ(p, p) = p(1− p) PX and J(p) = gp PX , with gp = g(G−1(p)) and g = G′,

so the asymptotic variance of γ(p) simplifies to VQ(p) = [p(1− p)/g2
p] P−1

X .

4 Asymptotic relationships

In this section we compare the asymptotic properties of estimators obtained under the two approaches,

both when the assumed linear-in-parameter models for the CLF and the CQF are correctly specified and

when they are not. Figure 1 summarizes the relationships between the various estimators considered

and their population counterparts.

4.1 Correct specification

If the assumed linear-in-parameter models for the CDF and the CQF are both correctly specified, which

is essentially equivalent to assuming that the data satisfy the linear location model (3) with logistic

errors, then Theorems 1 and 2 imply that, for any x and all y ∈ [y , y] such that p ≤ F(y | x) ≤ p, the

asymptotic variances of all estimators considered are linked by the following relationships

V
�

F̂‡
n(y | x)

�

= V
�

F̂+n (y | x)
�

= f (y | x)2 V
�

Q̂+n (F(y | x) | x)
�

and

V
�

F̂◦n(y | x)
�

= f (y | x)2 V
�

Q̂∗n(F(y | x) | x)
�

= f (y | x)2 V
�

Q̂◦n(F(y | x) | x)
�

.
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This set of results implies that, for any x and all p ∈ [p, p] and y ∈ [y , y] such that F(y | x) = p and

Q(p | x) = y , we have

ARE
�

F̂◦n(y | x), F̂+n (y | x)
�

= ARE
�

Q̂◦n(p | x), Q̂
+
n (p | x)

�

.

Thus, the relative performance of the DR and QR approaches in estimating the CDF is asymptotically

the same as their relative performance in estimating the CQF. Consistently with this result, Azzalini

(1981) found that the approximate mean squared error (MSE) of the direct kernel estimator F̂ of a

distribution function (obtained by integrating a kernel density estimator) relative to the MSE of the

empirical distribution function is about the same as the MSE of the indirect estimator of the quantile

function, obtained by inverting F̂ , relative to the MSE of the sample quantile function.

4.2 Misspecification

If the assumed linear-in-parameter model for the CLF is misspecified, then the DR approach leads to

inconsistent estimates, as F‡ no longer coincides with the true CDF. The same is true for the QR ap-

proach if the assumed linear-in-parameter model for the conditional CQF is misspecified. In these cases,

asymptotic comparison of the various estimators may be based on their MSE, which is asymptotically

dominated by bias.

In this section we focus on a fairly general type of misspecification, namely the case when the

assumed models for the CLF and the CQF are linear in parameters but the sample observations are

generated from the nonseparable data generating process (DGP)

Y = α+ X>β +ψδ(X , U), (5)

where U is distributed independently of X as standard logistic, δ is a scalar parameter, and ψδ(X , U) is

a term that captures the particular way in which the logistic linear location model may be misspecified.

We assume that the function ψδ(x , u) varies smoothly with δ for all x and u, and that ψδ(x , u) = u

only when δ = 0. Thus, when δ = 0, model (5) reduces to the logistic linear location model, in which

case our linear-in-parameter models for the CLF and the CQF are both correct.2

The DGP (5) is quite general and encompasses several important types of departure from the logistic

linear location model. Notice that the degree to which the logistic linear location model is misspecified

2 Notice that we are assuming that the DGP is the same for all observations. An alternative is to allow a fraction δ of
the observations to deviate from the assumed model. Asymptotic results for this case are presented in Leorato and Peracchi
(2015).
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only depends on the value of the scalar parameter δ, which we will term the “degree of misspecifica-

tion”. When δ = 0 there is no misspecification, but the precise meaning of δ depends on the type of

misspecification considered.

Under the assumption that the function ψδ(x , u) is strictly increasing in u for all x and δ, with

inverse function ϕδ(x , u), the CDF implied by (5) is

Fδ(y | x) = Λ
�

ϕδ(x , y −α− x>β)
�

,

while its CQF is

Qδ(p | x) = α+ x>β +ψδ
�

x ,Λ−1(p)
�

,

where Λ−1(p) = ln[p/(1− p)]. Putting δ = 0 gives the CDF and the CQF of the logistic linear location

model, namely F0(y | x) = Λ
�

y −α− x>β
�

and Q0(p | x) = α+ x>β +Λ−1(p).

The remainder of this section discusses in more detail four types of departure from the logistic linear

location model that are of considerable practical relevance and represent the main focus of the Monte

Carlo study described in Section 5.

(i) Omitted variables: The GDP takes the following form

Y = α+ X>β +δφ(X ) + U ,

so ψδ(x , u) = δφ(x) + u and ϕδ(x , u) = u−δφ(x). By suitable defining X and the function φ(x), this

formulation includes both the case of omitted variables and the case of nonlinearity of the conditional

mean of Y .

(ii) Heteroskedasticity: The GDP takes the following form

Y = α+ X>β +σδ(X )U ,

whereσδ(x) = 1+δφ(x) is a positive scale function, soψδ(x , u) = σδ(x)u andϕδ(x , u) = u/σδ(x). By

suitable defining X and the function φ(x), this formulation also includes the case when the conditional

mean and the conditional variance of Y depend on different sets of regressors.

(iii) Nonlogistic models: The GDP takes the following form

Y = α+ X>β + G−1
δ (Λ(U)) ,

where Gδ is a strictly increasing distribution function such that G0 = Λ, so ψδ(x , u) = G−1
δ
(Λ(u)) and

ϕδ(x , u) = Λ−1
�

Gδ(u)
�

, which depends only on u, not on x .
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(iv) Transformation models: The GDP takes the following form

φδ(Y ) = α+ X>β + U ,

where φ0(y) = y and φδ(y) is strictly monotone in y for every δ with inverse function φ−1
δ

. In this

case ψδ(x , u) = φ−1
δ
(α+ x>β + u)− α− x>β and ϕδ(x , u) = φδ(α+ x>β + u)− α− x>β . A leading

example is when Y is a nonnegative random variable and φδ(Y ) = Y (1−δ) + 1, where Y (1−δ) is the

Box-Cox transform of Y , that is, Y (1−δ) = (Y 1−δ − 1)/(1−δ) if δ 6= 1 and Y (1−δ) = ln Y if δ = 1.3

If we increase the sample size keeping fixed the degree of misspecification δ, then we eventually

reach a situation where the bias completely dominates the MSE. The usual approach in order to strike

a balance between asymptotic precision and bias is to allow the standard error of estimation and the

degree of misspecification to vanish asymptotically at the same rate. Following this approach, Leorato

and Peracchi (2015) derive the bias of estimators based on linear models for the CLF or the CQF when the

logistic linear location model is locally misspecified, that is, the DGP is of the form (5) butδ = c/n−1/2 for

some constant c. Their results require two conditions: the function ψδ(x , u) must be strictly increasing

and differentiable in u for all x and δ, and the function

Ψ(x , u) = lim
δ→0

ψδ(x , u)− u
δ

must exist and be square integrable in x , uniformly in u. Since all types of misspecification considered

in this paper satisfy these two conditions, we can use their results to compute the local asymptotic bias

of all our estimators, namely their asymptotic bias under local misspecification.

When δ = c/
p

n, it follows from Corollary 1 in Leorato and Peracchi (2015) that, for any x ∈ X

and all y ∈ [y , y], the direct DR estimator F̂‡
n of the CDF has the same local asymptotic bias as the

rearranged DR estimator F̂+n , namely

B
�

F̂+n (y | x)
�

= cλy(x)
�

Ψy(x)− x>
�

Eλy(X )XX>
�−1 �
Eλy(X )Ψy(X )X

�

�

, (6)

where λy(x) = λ(y − α− x>β), Ψy(x) = Ψ(x , y − α− x>β), λy(X ) = λ(y − α− X>β) and Ψy(X ) =

Ψ(X , y−α−X>β). Similarly, for any x ∈ X and all p ∈ [p, p], the local asymptotic bias of the rearranged

DR estimator Q̂+n of the CQF is

B
�

Q̂+n (p | x)
�

= −c
�

Ψy(p|x) (x)− x>
�

Eλy(p|x)(X )XX>
�−1 �
Eλy(p|x)(X )Ψy(p|x)(X )X

�

�

, (7)

3 This particular specification of the Box-Cox transformation model guarantees that (3) holds when δ = 0.
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where y(p | x) = α+ Λ−1(p) + x>β , Ψy(p|x)(x) = Ψ(x ,Λ−1(p)), λy(p|x)(X ) = λ(Λ−1(p) + (x − X )>β),

and Ψy(p|x)(X ) = Ψ(X ,Λ−1(p) + (x − X )>β). Further, for any x ∈ X and all p ∈ [p, p], the direct QR

estimator Q̂∗n of the CQF has the same local asymptotic bias as the rearranged QR estimator Q̂◦n, namely

B
�

Q̂◦n(p | x)
�

= −c
�

Ψy(p|x)(x)− x>(E XX>)−1
�

Ψy(p|X )(X )X
��

, (8)

where Ψy(p|X )(X ) = Ψ(X ,Λ−1(p)). Finally, for any x ∈ X and all y ∈ [y , y], the local asymptotic bias

of the rearranged QR estimator F̂◦n of the CDF is

B
�

F̂◦n(y | x)
�

= cλy(x)
�

Ψy(x)− x>(E XX>)−1
�

EΨ(X , y −α− x>β)X
��

. (9)

Given these results and Theorems 1–2, we compute the local asymptotic MSE of each estimator as the

sum of its asymptotic variance and its local asymptotic squared bias.

Notice that the term in square brackets in (8) is the error in approximating Ψy(p|x)(x) using the

linear least-squares projection of Ψy(p|X )(X ) on X , while the corresponding term in (7) is the error in

approximating Ψy(p|x)(x) using the weighted linear least-squares projection of Ψy(p|x)(X ) on X with

weights equal to λy(p | x)(X ). The term in square brackets in (9) is instead the error in approximating

Ψy(x) using the linear least-squares projection of Ψ(X , y−α− x>β) on X , while the corresponding term

in (6) is the error in approximating Ψy(x) using the weighted linear least-squares projection of Ψy(X )

on X with weights equal to λy(X ).

As shown in the Appendix, the local asymptotic bias of the various estimators depends on the prop-

erties of the function Ψ(x , u). In the case of omitted variables, where Ψ depends only on x , all esti-

mators are generally inconsistent, but the asymptotic bias of Q̂◦n does not depend on p. In the case of

heteroskedasticity, again all estimators are generally inconsistent, but the asymptotic bias of Q̂◦n is pro-

portional to Λ−1(p), so it vanishes when p = 1/2. In the case of nonlogistic models, Ψ depends only on

u, say Ψ(x , u) = ζ(u) for some function ζ, so the asymptotic biases of F̂◦n and Q̂◦n are both proportional to

x>P−1
X (E X)−1. Since x>P−1

X (E X) = 1 for any x , the QR estimators have no asymptotic bias. The situ-

ation is just the opposite for transformation models. In this case Ψ(x , u) = χ(α+x>β+u) for some func-

tion χ, so the bias of F̂+n is proportional to x>H(y)−1E
�

λy(X )X
�

− 1, where H(y) = E
�

λy(X )XX>
�

.

Since x>H(y)−1E[λy(X )X] = 1 for any x and y , F̂+n has no asymptotic bias. A similar argument holds

for Q̂+n . Thus, the DR estimators have no asymptotic bias.

By combining two or more sources of misspecification, the four types of departures from the logistic

linear location model considered in this section can be used to construct more complex scenarios.4

4 For example, in the case of a Box-Cox transformation model, a logistic error distribution is generally misspecified because
it is unbounded from below: the combination in this case of the two forms of misspecification (iii) and (iv) produces a function
of the form Φ(x , u) = ζ(u)χ(α+ x>β + u), and both approaches lead to inconsistent estimates.
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5 Finite-sample properties

In this section we present the results of a set of Monte Carlo experiments aimed at comparing the finite-

sample properties of DR and QR estimators based on simple linear-in-parameter models for the CLF and

the CQF.

5.1 Monte Carlo design

We compute DR and QR estimators from samples of size n generated from a DGP of the form (5), where

X is a single regressor uniformly distributed on the interval (0,1), U has a standard logistic distribution,

the function ψδ(x , u) varies smoothly with δ for all x and u, is strictly increasing in u for all x and δ,

and is such that ψδ(x , u) = u for all x and u only when δ = 0. In our benchmark case we set δ = 0,

which implies that the DGP is a linear location model with logistic errors, so a linear specification is

correct for both the CLF and the CQF.5

We also consider the four types of departure from this benchmark discussed in Section 4.2. The first

is the omitted variables case, where

Fδ(y | x) = Λ
�

y −α− β x −δφ(x)
�

,

Qδ(p | x) = α+Λ−1(p) + β x +δφ(x).

We set φ(x) = x2, so the true CLF and CQF are both quadratic in x . In this case, estimators based on

linear specifications are always inconsistent.

The second is the case of heteroskedasticity, where

Fδ(y | x) = Λ
�

y −α− β x
σδ(x)

�

,

Qδ(p | x) = α+ β x +σδ(x)Λ
−1(p).

We set σδ(x) = 1 + δx2, so estimators based on a linear specification of the CLF are inconsistent.

Estimators based on a linear specification of the CQF are also inconsistent, except when p = .50.6

The third case is when the distribution function of the error in the linear location model (3) is a

convex combination Gδ = (1− δ)Λ+ δG of Λ and another strictly increasing distribution function G,

with mixing probability 0≤ δ < 1. In this case

Fδ(y | x) = Gδ
�

y −α− β x
�

,

Qδ(p | x) = α+ β x + G−1
δ (p),

5 In this case, the parameter β is linked to the population regression R2 through the relationship β2σ2
X/σ

2
U = R2/(1− R2).

6 This is because Λ−1(.50) = 0 by symmetry of the standard logistic distribution, so Qδ(.50 | x) = α+ β x for any δ.
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so estimators based on a linear specification of the CQF are consistent, while those based on a linear

specification of the CLF are not. We consider various values of δ and different choices of G, such as the

Student t with 3 degrees of freedom, which is symmetric about zero but has no moments beyond the

second, and the standard Gumbel (Type 1 extreme value), which is not symmetric about zero but has

moments of all order.

The fourth is the case when the logistic linear location model holds after applying a Box-Cox trans-

form, that is, the DGP is Y (1−δ) + 1 = α + βX + U , with U distributed as standard logistic. In this

case,

Fδ(y | x) = Λ
�

y(1−δ) + 1−α− β x
�

and

Qδ(p | x) =

(

�

(1−δ)
�

α+ β x +Λ−1(p)
�

+δ
�1/(1−δ)

, if δ 6= 1,

exp
�

α+ β x +Λ−1(p)− 1
�

, if δ = 1.

Unlike the previous case, now estimators based on a linear specification of the CLF are consistent, while

those based on a linear specification of the CQF are not.

For each Monte Carlo experiment, we generate 1000 samples of size n, with n = 900, 1600 and

3600 (so
p

n = 30, 40 and 60), and estimate the CDF at a grid {y j ∈ R, j = 1, . . . , J} of cutoff values

and the CQF at a grid {p j ∈ (0,1), j = 1, . . . , J} of quantile levels. For the p-grid we take J = 199 equally

spaced quantile levels, while for the y-grid we take the empirical marginal quantiles of Y at level p j ,

j = 1, . . . , J .7 As for the values of x , we consider a grid of 999 equally spaced values ranging from .001

to .999. Estimates of F(y | x) and Q(p | x) at points not in the p-, x- or y-grids, needed to compute the

generalized inverse, are obtained by linear interpolation.

5.2 Monte Carlo results

This section summarizes the results of our set of Monte Carlo experiments, first for the benchmark

linear location model (3) with logistic errors, and then for the four types of deviation from this bench-

mark discussed in Section 4.2, namely heteroskedasticity, omitted variables, nonlogistic models, and

transformation models. We present both graphical displays and tabular evidence.

Figures 2–6 present, for each type of DGP, a few summaries of the Monte Carlo distribution of the

monotonic estimators F̂+n and F̂◦n as functions of the cutoff level y , and of the monotonic estimators

7 In principle, J should increase with the sample size, but for our Monte Carlo experiment we found that a fine enough
fixed grid was a good choice. Our choice of a grid of J = 199 points is the result of some experimentation. Reducing the grid
size increases the bias, increasing it slows down the computations. To check the validity of our choice of J , we performed
1000 simulations from the logistic linear location model with finer grid sizes for the largest sample (J = 397 and J = 793)
and found no difference in the bias and variance of all estimators. Results are available upon request.
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Q̂+n and Q̂◦n as functions of the quantile level p. The summaries considered are the squared bias, the

variance and the MSE, all averaged over the distribution of X . Each panel in a figure compares the

results obtained from samples of increasing size (n = 900, 1600 and 3600) drawn from the same DGP.

Tables 1–5 focus on our two monotonic estimators of the CQF, namely the DR estimator Q̂+n and

the QR estimator Q̂◦n, and present their average squared bias and average variance at various quantile

levels (p = .10, .25, .50, .75 and .90) for different sample sizes.8 The last two columns of each table

present asymptotic calculations based on the results in Sections 2–4. To facilitate comparisons between

the Monte Carlo results and the asymptotic calculations, we rescale all estimates multiplying by
p

n.

Thus, care is needed when making comparisons across columns of a table corresponding to different

sample sizes.

The results for the logistic linear location model are presented in Table 1, separately for β = 2π

and β = 6π, corresponding respectively to a medium (.50) and a high (.90) value of the regression R2.

To save space, the results for the other DGPs discussed in Section 4.2 are presented in Tables 2–5 for

β = 2π only. In line with our asymptotic framework, we allow the degree of misspecification to change

with the sample size by setting δ = c/
p

n for different values of c.9

Before discussing specific results for each DGP, we briefly summarize some findings that are common

across DGPs. First, the profiles of the average variance are different for estimators of the CDF and the

CQF: for the former they have an inverted U-shape with evidence of asymmetry and bimodality, for the

latter they instead have a nice symmetric U-shape with a minimum near p = .50. Second, F̂◦n and Q̂+n
have smoother average variance and MSE profiles than F̂+n and Q̂◦n, especially when the sample size is

relatively small (n= 900), which reflects the fact that the former are obtained by integration, the latter

by inversion. Third, the DR estimators F̂+n and Q̂+n are always less precise (i.e., have higher average

variance) than the QR estimators F̂◦n and Q̂◦n. Thus, the DR estimators are more efficient (i.e., have

lower average MSE) than the QR estimators only in a few cases when they are substantially less biased

(i.e., have lower average squared bias) than the QR estimators. Fourth, the asymptotic approximations

to bias and variance are quite accurate, i.e., close to the Monte Carlo biases and variances, even for

relatively small samples, except perhaps when y is near the tails of Y or p is close to 0 or 1. In particular,

the average squared bias of all estimators and the ratio of their average squared bias to their average

variance are roughly proportional to c2 for any value of n. Finally, changes in the value of β affect

8 The corresponding tables for our two monotonic estimators of the CDF, F̂+n and F̂ ◦n , are available upon request. Tables
are also available for the squared bias and the variance of Q̂+n and Q̂◦n at specific value of x . Qualitatively, the results are very
similar to those for the average squared bias and the average variance.

9 We choose the values of c in such a way that δ is constant along the main anti-diagonal of the 3× 3 table corresponding
to the nine different combinations of c and n that we consider.
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heavily the variance of the DR estimators, but only have a very small effect on the variance of the QR

estimators. The effects of changes in the value of β on the bias of the different estimators, and of changes

in the value of δ and c on their bias and variance, vary instead with the form of misspecification.

5.2.1 Logistic linear location model

Figure 2 refers to the benchmark case with β = 2π. Since a linear specification is correct for both the

CLF and the CQF, it is not surprising that all our estimators shows little evidence of bias. As a result,

their average variance and MSE have essentially the same profiles.

Table 1 shows the average squared bias and the average variance of the DR estimator
p

nQ̂+n and

the QR estimator
p

nQ̂◦n at various quantile levels, separately for β = 2π and β = 6π. The squared bias

of Q̂+n is almost always slightly larger than the bias of Q̂◦n, while its variance is always larger than the

variance of Q̂◦n. Notice that the squared bias and the variance of Q̂+n both increase with β , especially in

smaller samples (n = 900). On the contrary, those of Q̂◦n do not change with β . This is a consequence

of the shift equivariance property of linear QR estimators (see e.g. Koenker 2005, p. 39), as the QR

estimates of the intercept and the slope of model (3) when (α,β) = (0, 6π) are linked to those when

(α,β) = (0,2π) by the relationships α̂(0, 6π) = α̂(0,2π) and β̂(0,6π) = β̂(0, 2π) + 4π. Since Q̂◦n is

always more precise and is almost always less biased than Q̂+n , it emerges clearly as the estimator of

choice. Further, consistently with earlier findings in Koenker, Leorato and Peracchi (2013), the relative

advantage of the QR estimator in terms of efficiency increases with β .

5.2.2 Omitted variables

Figure 3 refers to the case when φ(x) = x2 and δ = 10. Since our estimators omit a quadratic term,

they are all biased. The average squared bias of F̂+n and F̂◦n has an inverted U-shape with a peak at the

center of the distribution of Y , while that of Q̂+n and Q̂◦n changes little with p. The DR estimators F̂+n
and Q̂+n have less bias than the QR estimators F̂◦n and Q̂◦n, but they are also less precise, so their MSE

is actually larger than that of the QR estimators when n = 900 and is only slightly smaller for larger

sample sizes.

Table 2 shows the values of the average squared bias and variance of
p

nQ̂+n and
p

nQ̂◦n when the

degree of misspecification is δ = c/
p

n, for different values of c and n. Notice that, in line with the

asymptotic calculations, the average squared bias of Q̂◦n changes very little with p. Increasing c increases

by about c2 the average squared bias of both estimators, and therefore also the ratio between their

average squared bias and their average variance. For example, when p = .50 and n = 1600, doubling
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c from 30 to 60 increases the average squared bias from 3.51 to 14.05 for Q̂◦n and from .73 to 2.56 for

Q̂+n . It also increases the ratio between the average squared bias and the average variance from .48 to

1.91 for Q̂◦n and from .07 to .23 for Q̂+n .

From the table we can also compute the average squared bias and variance of Q̂+n and Q̂◦n at any given

quantile level p when δ is kept constant but n grows. The results are again in line with the asymptotic

calculations. For example, when β = 2π and δ = c/
p

n = 1, reading along the anti-diagonal shows

that the average squared bias of Q̂◦n at p = .50 changes only marginally from 3.494/900= .00388 when

n = 900 to 13.866/3600 = .00385 when n = 3600. On the contrary, the average variance of Q̂◦n at

p = .50 falls from 8.179/900 = .0091 when n = 900 to 7.433/3600 = .0021 when n = 3600. The

latter value represents 22.7 percent of the average variance when n = 900, very close to the value of

25 percent based on the asymptotic calculations.

The table shows that the relative advantage of Q̂+n in terms of lower bias falls with n but increases

with c. In line with the asymptotic calculations, it also falls as p moves towards 0 or 1. On the other

hand, the relative disadvantage of Q̂+n in terms of lower precision changes little with n or c, but falls as

p moves towards 0 or 1.

5.2.3 Heteroskedasticity

Figure 4 refers to the case whenσδ(x) = 1+δx2, with δ = 1/6, that is, the scale function is quadratic in

x . Except for Q̂◦n when p = .50, all estimators are biased, as a linear specification of the CLF or the CQF

is generally incorrect under this form of heteroskedasticity.10 However, the DR estimators F̂+n and Q̂+n
are both more biased and less precise than the QR estimators F̂◦n and Q̂◦n, so they are clearly dominated

in terms of MSE.

Table 3 shows the values of the average squared bias and variance of
p

nQ̂+n and
p

nQ̂◦n when the

degree of misspecification is δ = c/
p

n, for different values of c and n. As in the omitted variables

case, increasing c increases by about c2 the average squared bias of both estimators, and therefore also

the ratio between their average squared bias and their average variance. For example, when p = .10

and n = 900, doubling c from 5 to 10 increases the average squared bias from .48 to 1.91 for Q̂◦n and

from 2.66 to 11.21 for Q̂+n . It also increases the ratio between the average squared bias and the average

variance from .02 to .08 for Q̂◦n and from .10 to .38 for Q̂+n .

The relative disadvantage of Q̂+n in terms of bias changes little with n but, in line with the asymptotic

calculations, changes a lot with p and c, and is especially large when p = 1/2 (the quantile level at which

10 Results for other forms of heteroskedasticity where one of the two approaches (either DR or QR) remains consistent are
available upon request.
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the QR estimator Q̂◦n is consistent by the symmetry of the logistic distribution). On the other hand, the

relative disadvantage of Q̂+n in terms of precision changes little with n, p and c.

5.2.4 Nonlogistic models

Figure 5 refers to the case when the DGP is of the form (3) but the error is a mixture (1−δ)∗U +δ ∗ T ,

where δ = 1/4, U is distributed as standard logistic, and T is distributed as Student t with 3 degrees

of freedom. The DR estimators F̂+n and Q̂+n are biased, as a linear specification is correct for the CQF

but not for the CLF, and their average squared bias has a bimodal profile. This bimodality is in line with

the asymptotic calculations as in this case Ψ(x , u) = ζ(u), where ζ(u) = (Λ(u)− G(u))/λ(u) and G(u)

denotes the distribution function of a Student t, and the square of ζ(u) is bimodal. Notice that there

is also some evidence of bias for F̂◦n . Overall, the DR estimators are both more biased and less precise

than the QR estimators, so they are clearly dominated in terms of MSE.

Table 4 shows the values of the average squared bias and variance of
p

nQ̂+n and
p

nQ̂◦n when the

mixing probability is δ = c/
p

n, for different values of c and n. Since the bias of Q̂◦n falls with n,

the relative disadvantage of Q̂+n in terms of bias increases with n. It also varies a lot with p and c, in

accordance with the asymptotic calculations.

We obtain qualitatively similar results when the error in model (3) is distributed asymmetrically as

a mixture of the standard logistic and the standard Gumbel, the main difference being that now the bias

and the variance of the DR estimators are no longer symmetric.11

5.2.5 Transformation models

Figure 6 refers to the case when the DGP is a Box-Cox transformation model of the form Y (1−δ) + 1 =

α+βX +U , with δ = 1/4 and β = 2π. We also set α= 4π to guarantee that Z = α+βX +U is almost

always nonnegative so, for any δ 6= 1, the inverse transformation Y = [δ + (1 − δ)Z]1/(1−δ) returns

almost always a real number. Now the QR estimators F̂◦n and Q̂◦n are biased, as a linear specification

is correct for the CLF but not for the CQF, and the average squared bias of F̂◦n has an inverted U-shape

with a peak at the center of the distribution of Y , while that of Q̂◦n is relatively small and changes little

with p. Although the DR estimators F̂+n and Q̂+n have almost no bias, they are always much less precise

than the QR estimators, so their MSE is actually larger than the MSE of the QR estimators.

Table 5 shows the values of the average squared bias and variance of
p

nQ̂+n and
p

nQ̂◦n when the

degree of misspecification is δ = c/
p

n, for different values of c and n. The results support the graphical

11 Results for this case are available upon request.
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evidence from Figure 6. In particular, even in the worst case for Q̂◦n (namely c = 2, p = .10 and n= 900),

the ratio of its MSE to the MSE of Q̂+n is equal to .851.

6 Conclusions

In this paper we presented asymptotic results and Monte Carlo evidence on the sampling properties

of monotonic CDF and CQF estimators obtained from the DR approach under the assumption that the

CLF is linear in parameters and from the QR approach under the assumption that the CQF is linear in

parameters. We considered both cases when the underlying linear-in-parameter models are correctly

specified and several types of model misspecification of considerable practical relevance.

Our results may be summarized as follows. First, the profiles of the average variance are different

for estimators of the CDF and the CQF: for the former they have an inverted U-shape, with evidence of

asymmetry and bimodality, for the latter they instead have a nice symmetric U-shape even for relatively

small samples (n= 900).

Second, estimators obtained by rearrangement (F̂◦n and Q̂+n ) have smoother average variance and

MSE profiles than estimators obtained by inversion (F̂+n and Q̂◦n), especially in smaller samples.

Third, the main advantage of the DR approach relative to the QR approach is that it produces es-

timators that are less biased (i.e., have lower average squared bias) in some settings. These include

the cases when the assumed model ignores a quadratic term in the conditional mean or the need of

monotonically transforming the outcome of interest. On the other hand, QR estimators are less biased

when the assumed model ignores the presence of heteroskedastic or nonlogistic errors.

Fourth, DR estimators are always less precise (i.e., have higher average variance) than QR estima-

tors. Thus, the only case when they are more efficient (i.e., have lower average MSE) than QR estimators

is when they have substantially less bias. In our Monte Carlo experiments this only occurs when the

assumed models omit a quadratic term in the conditional mean.

Fifth, the asymptotic approximations to bias and variance are quite accurate, even for relatively

small samples, except perhaps when y is near the tails of Y or p is close to 0 or 1.

We hope that our results provide guidance to practitioners about the choice between the DR and

the QR approach. Of course, when it comes to choosing between the two approaches, other aspects

may also matter besides the sampling properties in finite or in large samples. One important aspect is

the possibility of generalizing to the case when Y is discrete, or subject to censoring, or multivariate.

Another is the presence of censoring or mass points in the distribution of the outcome of interest. In

both these cases, which we leave for future research, the DR approach may look more natural.
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n= 900 n= 1600 n= 3600 n=∞
β = 2π

B2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n )

p = .10 .004 .057 .012 .038 .028 .027 .000 .000
p = .25 .000 .014 .007 .013 .008 .009 .000 .000
p = .50 .001 .008 .001 .008 .004 .012 .000 .000
p = .75 .003 .015 .006 .035 .004 .019 .000 .000
p = .90 .013 .068 .095 .071 .021 .067 .000 .000

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 22.159 25.407 21.712 24.891 20.117 24.261 20.149 24.616
p = .25 10.578 13.792 9.968 13.358 9.572 12.961 9.672 13.028
p = .50 8.101 10.618 7.173 10.050 7.480 10.122 7.254 10.091
p = .75 10.233 13.528 9.883 12.994 9.998 13.007 9.672 13.028
p = .90 22.114 25.630 20.372 24.580 20.012 24.326 20.149 24.616

β = 6π
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 .004 .311 .012 .152 .023 .061 .000 .000
p = .25 .001 .078 .008 .033 .009 .017 .000 .000
p = .50 .001 .029 .001 .013 .004 .018 .000 .000
p = .75 .003 .117 .005 .078 .005 .055 .000 .000
p = .90 .012 .390 .088 .207 .020 .131 .000 .000

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 22.035 49.833 21.197 51.167 19.977 49.572 20.149 50.617
p = .25 10.472 27.631 9.781 27.716 9.609 26.973 9.672 27.489
p = .50 8.107 20.626 7.174 20.294 7.480 20.061 7.254 20.457
p = .75 10.126 27.358 9.791 27.202 9.999 27.080 9.672 27.489
p = .90 22.061 50.146 20.304 49.999 19.892 49.488 20.149 50.617

Table 1: Average squared bias B2 and variance V of the rescaled CQF estimators
p

nQ̂◦n and
p

nQ̂+n
for different sample sizes at 5 different quantile levels. The DGP is the logistic linear location model
Y = βX + U , with X ∼ U(0, 1) and U ∼ standard logistic.
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n= 900 n= 1600 n= 3600 n=∞
c = 60

B2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n )

p = .10 13.539 4.116 13.613 4.650 13.518 5.755 14.047 7.218
p = .25 13.600 2.221 13.718 2.570 13.647 2.825 14.047 4.074
p = .50 13.936 2.331 14.053 2.560 13.866 2.823 14.047 4.053
p = .75 14.195 1.796 14.277 2.219 14.030 2.682 14.047 4.074
p = .90 14.403 3.339 14.606 4.354 13.912 4.955 14.047 7.218

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 22.836 28.894 21.416 27.523 20.714 26.154 20.149 24.616
p = .25 10.832 16.038 9.899 14.910 9.725 14.054 9.672 13.028
p = .50 8.269 12.102 7.372 11.212 7.433 10.880 7.254 10.091
p = .75 9.838 15.352 9.436 14.442 9.862 13.813 9.672 13.028
p = .90 21.374 28.631 18.899 27.137 19.318 25.939 20.149 24.616

c = 40
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 6.068 2.336 6.059 2.459 5.985 2.888 6.243 3.208
p = .25 6.082 1.237 6.101 1.377 6.059 1.402 6.243 1.810
p = .50 6.184 1.217 6.230 1.250 6.142 1.315 6.243 1.801
p = .75 6.232 .974 6.263 1.147 6.198 1.305 6.243 1.810
p = .90 6.249 1.968 6.474 2.467 6.105 2.573 6.243 3.208

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 22.141 27.642 21.339 26.521 20.411 25.481 20.149 24.616
p = .25 10.642 15.256 9.661 14.386 9.615 13.677 9.672 13.028
p = .50 8.206 11.621 7.330 10.817 7.487 10.632 7.254 10.091
p = .75 9.710 14.684 9.404 13.943 9.962 13.527 9.672 13.028
p = .90 21.489 27.546 19.130 26.166 19.471 25.345 20.149 24.616

c = 30
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 3.428 1.502 3.392 1.521 3.357 1.738 3.512 1.804
p = .25 3.427 .789 3.420 .856 3.395 .835 3.512 1.018
p = .50 3.494 .741 3.507 .726 3.440 .744 3.512 1.013
p = .75 3.487 .595 3.520 .693 3.467 .758 3.512 1.018
p = .90 3.469 1.298 3.672 1.595 3.404 1.586 3.512 1.804

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 22.065 27.048 21.411 26.008 20.379 25.151 20.149 24.616
p = .25 10.646 14.887 9.599 14.133 9.663 13.491 9.672 13.028
p = .50 8.179 11.380 7.266 10.633 7.498 10.508 7.254 10.091
p = .75 9.743 14.394 9.373 13.682 9.925 13.384 9.672 13.028
p = .90 21.630 27.043 19.194 25.728 19.692 25.016 20.149 24.616

Table 2: Average squared bias B2 and variance V of the rescaled CQF estimators
p

nQ̂◦n and
p

nQ̂+n for
different sample sizes at 5 different quantile levels. The DGP is the quadratic model Y = 2πX+δX 2+U ,
with X ∼ U(0, 1), U ∼ standard logistic, and δ = c/

p
n.
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n= 900 n= 1600 n= 3600 n=∞
c = 10

B2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n )

p = .10 1.914 11.209 1.977 10.707 2.003 10.475 1.884 10.168
p = .25 .478 5.883 .518 5.907 .514 5.940 .471 5.587
p = .50 .001 4.291 .001 4.849 .004 4.882 .000 4.666
p = .75 .456 3.808 .457 3.997 .454 3.990 .471 3.979
p = .90 1.818 5.998 1.951 6.078 1.800 6.226 1.884 6.818

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 26.928 29.269 26.170 28.014 22.207 25.745 20.149 24.616
p = .25 13.032 16.110 11.677 15.054 10.579 13.958 9.672 13.028
p = .50 10.075 12.761 8.592 11.481 8.397 11.040 7.254 10.091
p = .75 12.535 16.696 11.836 15.303 11.335 14.525 9.672 13.028
p = .90 26.998 32.370 24.008 29.249 22.329 27.464 20.149 24.616

c = 6.67
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 .855 4.826 .908 4.610 .929 4.528 .837 4.519
p = .25 .215 2.588 .244 2.592 .241 2.655 .209 2.483
p = .50 .001 1.962 .001 2.263 .004 2.270 .000 2.074
p = .75 .201 1.763 .201 1.835 .202 1.822 .209 1.768
p = .90 .791 2.778 .921 2.731 .788 2.797 .837 3.030

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 25.352 27.897 23.920 26.882 21.412 25.217 20.149 24.616
p = .25 12.169 15.296 11.104 14.502 10.245 13.621 9.672 13.028
p = .50 9.396 12.014 8.110 10.966 8.093 10.733 7.254 10.091
p = .75 11.705 15.589 11.128 14.519 10.883 13.997 9.672 13.028
p = .90 25.519 30.025 22.185 27.663 21.511 26.386 20.149 24.616

c = 5
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 .484 2.664 .527 2.543 .552 2.495 .471 2.542
p = .25 .124 1.445 .147 1.445 .146 1.510 .118 1.397
p = .50 .001 1.126 .001 1.325 .004 1.332 .000 1.166
p = .75 .113 1.026 .112 1.063 .113 1.047 .118 .995
p = .90 .438 1.603 .542 1.534 .441 1.589 .471 1.705

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 24.445 27.216 22.651 26.329 21.040 24.985 20.149 24.616
p = .25 11.672 14.890 10.459 14.221 10.068 13.450 9.672 13.028
p = .50 9.068 11.653 7.868 10.729 7.936 10.573 7.254 10.091
p = .75 11.220 15.053 10.483 14.132 10.640 13.745 9.672 13.028
p = .90 24.499 28.884 20.898 26.851 21.095 25.843 20.149 24.616

Table 3: Average squared bias B2 and variance V of the rescaled CQF estimators
p

nQ̂◦n and
p

nQ̂+n
for different sample sizes at 5 different quantile levels. The DGP is the heteroskedastic model Y =
2πX + (1+δX 2)U , with X ∼ U(0,1), U ∼ standard logistic, and δ = c/

p
n.
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n= 900 n= 1600 n= 3600 n=∞
c = 15

B2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n )

p = .10 .005 1.546 .146 1.618 .012 1.495 .000 1.405
p = .25 .001 2.910 .010 3.677 .009 3.585 .000 4.458
p = .50 .004 .243 .008 .380 .025 .357 .000 .515
p = .75 .023 3.133 .018 3.930 .033 3.841 .000 4.458
p = .90 .012 1.542 .081 1.747 .031 1.733 .000 1.405

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 19.819 23.149 19.586 23.927 20.072 23.604 20.149 24.616
p = .25 7.738 10.976 7.763 11.354 8.620 11.498 9.672 13.028
p = .50 4.641 8.016 5.337 8.321 5.449 8.649 7.254 10.091
p = .75 7.773 10.695 7.573 11.014 8.312 11.653 9.672 13.028
p = .90 19.549 22.489 19.088 22.798 20.479 24.295 20.149 24.616

c = 10
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 .018 .426 .061 .538 .005 .624 .000 .624
p = .25 .002 1.367 .004 1.715 .019 1.642 .000 1.981
p = .50 .006 .115 .008 .180 .035 .161 .000 .229
p = .75 .026 1.608 .011 1.901 .024 1.868 .000 1.981
p = .90 .005 .517 .036 .669 .013 .829 .000 .624

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 19.762 23.372 19.911 23.562 20.229 23.789 20.149 24.616
p = .25 8.553 11.605 8.298 11.600 8.832 11.810 9.672 13.028
p = .50 5.221 8.461 5.677 8.691 5.921 8.986 7.254 10.091
p = .75 7.950 11.054 7.939 11.434 8.622 11.979 9.672 13.028
p = .90 19.086 22.912 19.034 23.101 20.739 24.123 20.149 24.616

c = 7.5
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 .027 .157 .067 .281 .008 .359 .000 .351
p = .25 .006 .713 .006 1.025 .022 .917 .000 1.114
p = .50 .005 .066 .012 .116 .033 .091 .000 .129
p = .75 .030 .923 .009 1.146 .021 1.059 .000 1.114
p = .90 .001 .232 .029 .325 .016 .494 .000 .351

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 19.673 23.585 20.341 23.618 19.938 23.975 20.149 24.616
p = .25 8.655 11.844 8.827 11.983 8.871 11.996 9.672 13.028
p = .50 5.492 8.795 6.040 9.122 6.135 9.114 7.254 10.091
p = .75 8.101 11.507 8.542 11.946 8.794 12.065 9.672 13.028
p = .90 19.213 23.401 19.981 23.451 20.319 24.084 20.149 24.616

Table 4: Average squared bias B2 and variance V of the rescaled CQF estimators
p

nQ̂◦n and
p

nQ̂+n for
different sample sizes at 5 different quantile levels. The DGP is the nonlogistic model Y = 2πX+V , with
X ∼ U(0,1) and V ∼ (1−δ) ∗ U +δ ∗ T , where U ∼ standard logistic, T ∼ Student t3, and δ = c/

p
n.
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n= 900 n= 1600 n= 3600 n=∞
c = 2

B2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n ) B

2(Q̂◦n) B
2(Q̂+n )

p = .10 0.055 0.081 0.051 0.049 0.066 0.032 0.034 0.000
p = .25 0.045 0.020 0.042 0.017 0.039 0.011 0.029 0.000
p = .50 0.044 0.011 0.035 0.011 0.031 0.014 0.025 0.000
p = .75 0.034 0.022 0.030 0.047 0.027 0.022 0.022 -0.000
p = .90 0.037 0.101 0.114 0.095 0.035 0.082 0.019 0.000

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 31.259 36.396 27.221 32.497 23.961 28.907 20.149 24.616
p = .25 15.128 20.008 12.676 17.608 11.462 15.542 9.672 13.028
p = .50 11.847 15.579 9.573 13.355 9.032 12.204 7.254 10.091
p = .75 14.781 20.048 12.818 17.392 12.118 15.766 9.672 13.028
p = .90 32.661 38.377 26.006 33.147 24.122 29.631 20.149 24.616

c = 1.33
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 0.021 0.072 0.027 0.045 0.045 0.030 0.015 0.000
p = .25 0.017 0.017 0.020 0.015 0.021 0.010 0.013 0.000
p = .50 0.017 0.010 0.014 0.010 0.014 0.014 0.011 0.000
p = .75 0.013 0.019 0.012 0.042 0.012 0.021 0.010 0.000
p = .90 0.020 0.088 0.090 0.086 0.023 0.076 0.008 -0.000

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 27.634 32.171 24.845 29.674 22.556 27.244 20.149 24.616
p = .25 13.308 17.608 11.524 16.025 10.783 14.616 9.672 13.028
p = .50 10.416 13.656 8.681 12.121 8.470 11.456 7.254 10.091
p = .75 12.929 17.513 11.603 15.746 11.348 14.772 9.672 13.028
p = .90 28.446 33.404 23.530 29.933 22.572 27.717 20.149 24.616

c = 1
B2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n ) B
2(Q̂◦n) B

2(Q̂+n )
p = .10 0.011 0.068 0.019 0.043 0.038 0.029 0.008 0.000
p = .25 0.010 0.016 0.015 0.015 0.015 0.010 0.007 0.000
p = .50 0.010 0.009 0.007 0.010 0.009 0.013 0.006 0.000
p = .75 0.007 0.018 0.007 0.040 0.007 0.020 0.005 -0.000
p = .90 0.015 0.082 0.082 0.082 0.019 0.074 0.005 0.000

V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n ) V(Q̂◦n) V(Q̂+n )
p = .10 26.021 30.287 23.744 28.378 21.873 26.457 20.149 24.616
p = .25 12.499 16.542 10.992 15.301 10.466 14.179 9.672 13.028
p = .50 9.773 12.805 8.266 11.557 8.204 11.103 7.254 10.091
p = .75 12.110 16.394 11.048 14.995 10.987 14.304 9.672 13.028
p = .90 26.596 31.215 22.394 28.470 21.842 26.818 20.149 24.616

Table 5: Average squared bias B2 and variance V of the rescaled CQF estimators
p

nQ̂◦n and
p

nQ̂+n
for different sample sizes at 5 different quantile levels. The DGP is the Box-Cox transformation model
Y (1−δ) = 4π+ 2πX + U , with X ∼U (0, 1), U ∼ standard logistic, and δ = c/

p
n.
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F,Q

{(X i, Yi)}

(F̂ ‡
n, F ‡) (Q̂∗n,Q∗)

integral transform

integral transform

(F̂ ◦n , F ◦) (Q̂+n ,Q+)
inversion

inversion

(F̂+n , F+) (Q̂◦n,Q◦)

Figure 1: Scheme of the DR and QR approaches.
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Figure 2: Average squared bias (first column), variance (second column) and MSE (third column) of
F̂+n (y | x), F̂◦n(y | x), Q̂+n (p | x) and Q̂◦n(p | x) (first to fourth row). The DGP is the logistic linear location
model Y = 2πX + U , with X ∼U (0,1) and U ∼ standard logistic.
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Figure 3: Average squared bias (first column), variance (second column) and MSE (third column)
of F̂+n (y | x), F̂◦n(y | x), Q̂+n (p | x) and Q̂◦n(p | x) (first to fourth row). The DGP is the quadratic model
Y = 2πX + X 2 + U , with X ∼U (0,1) and U ∼ standard logistic.
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Figure 4: Average squared bias (first column), variance (second column) and MSE (third column) of
F̂+n (y | x), F̂◦n(y | x), Q̂+n (p | x) and Q̂◦n(p | x) (first to fourth row). The DGP is the heteroskedastic model
Y = 2πX + (1+ X 2/6)U , with X ∼U (0, 1) and U ∼ standard logistic.
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Figure 5: Average squared bias (first column), variance (second column) and MSE (third column) of
F̂+n (y | x), F̂◦n(y | x), Q̂+n (p | x) and Q̂◦n(p | x) (first to fourth row). The DGP is the nonlogistic model
Y = 2πX + V , with X ∼ U (0, 1) and V ∼ (3/4) ∗ U + (1/4) ∗ T , where U ∼ standard logistic and T ∼
Student t3.
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Figure 6: Average squared bias (first column), variance (second column) and MSE (third column) of
F̂+n (y | x), F̂◦n(y | x), Q̂+n (p | x) and Q̂◦n(p | x) (first to fourth row). The DGP is the Box-Cox transformation
model Y (3/4) + 1= 4π+ 2πX + U , with X ∼U (0, 1) and U ∼ standard logistic.
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Appendix

This appendix provides expressions for the local asymptotic bias of estimators based on linear-in-parameter

models for the CLF and the CQF when the DGP is of the form (5) for various specifications of the func-

tion ψδ(x , u) and δ = c/
p

n for some constant c. We denote by Λ(u) and λ(u) the distribution function

and the density of the standard logistic distribution, and let x = (1, x>)>, X = (1, X>)>, PX = E XX>,

λy(X ) = λ(y −α− X>β), H(y) = E
�

λy(X )XX>
�

, and y(p | x) = α+Λ−1(p) + x>β .

Omitted variables

Since ψδ(x , u) = δφ(x) + u and Ψ(x , u) = φ(x), we have

B
�

F̂‡
n(y | x)

�

= B
�

F̂+n (y | x)
�

= cλy(X )
�

φ(x)− x>H(y)−1E
�

λy(X )φ(X )X
��

,

B
�

F̂◦n(y | x)
�

= cλy(X )
�

φ(x)− x>P−1
X E

�

φ(X )X
��

,

B
�

Q̂+n (p | x)
�

= −c
�

φ(x)− c x>H
�

y(p | x)
�−1E

�

λy(p | x)(X )φ(X )X
�

�

,

B
�

Q̂∗n(p | x)
�

= B
�

Q̂◦n(p | x)
�

= −c
�

φ(x)− x>P−1
X E

�

φ(X )X
��

.

Heteroskedasticity

Since ψδ(x , u) =
�

1+δφ(x)
�

u and Ψ(x , u) = φ(x)u, we have

B
�

F̂‡
n(y | x)

�

= B
�

F̂+n (y | x)
�

= cλy(X )
�

φ(x) (y −α− x>β)− x>H(y)−1E
�

φ(X )λy(X ) (y −α− X>β)X
��

,

B
�

F̂◦n(y | x)
�

= cλy(X )
�

φ(x) (y −α− x>β)− x>P−1
X E

�

φ(X ) (y −α− x>β)X
��

,

B
�

Q̂+n (p | x)
�

= −cφ(x)Λ−1(p) + c x>H
�

y(p | x)
�−1E

�

φ(X )λy(p | x)(X )
�

y(p | x)−α− X>β
�

X
�

,

B
�

Q̂∗n(p | x)
�

= B
�

Q̂◦n(p | x)
�

= −cΛ−1(p)
�

φ(x)− x>P−1
X E

�

φ(X )X
��

.

Nonlogistic models

Since ψδ(x , u) = G−1
δ
(Λ(u)) and Φ(x , u) = ζ(u) for some function ζ, we have

B
�

F̂‡
n(y | x)

�

= B
�

F̂+n (y | x)
�

= cλy(X )ζ(y −α− x>β)− cλy(X ) x
>H(y)−1E

�

λy(X )ζ(y −α− X>β)X
�

,

B
�

F̂◦n(y | x)
�

= cλy(X )ζ(y −α− x>β)
�

1− x>P−1
X µX

�

= 0,

B
�

Q̂+n (p | x)
�

= −c ζ
�

Λ−1(p)
�

+ c x>H
�

y(p | x)
�−1E

�

λy(p | x)(X )ζ
�

y(p | x)−α− X>β
�

X
�

,

B
�

Q̂∗n(p | x)
�

= B
�

Q̂◦n(p | x)
�

= −c ζ
�

Λ−1(p)
� �

1− x>P−1
X µX

�

= 0,

where µX = E X and we used the fact that x>P−1
X µX = 1 for any x .
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Transformation models

Consider the monotone transformation modelφδ(Y ) = α+X>β+U , where U is logistic,φδ(y) is mono-

tone for every δ and limδ→0φδ(y) = y . Then φδ is invertible for all δ and the model can equivalently

be written as Y = α+ X>β +ψδ(X , U), where ψδ(x , u) = φ−1
δ
(α+ x>β + u)−α− x>β . Since

Ψ(x , u) = lim
δ→0

φ−1
δ
(α+ x>β + u)− (α+ x>β + u)

δ
= χ(α+ x>β + u),

for some function χ, we have

B
�

F̂‡
n(y | x)

�

= B
�

F̂+n (y | x)
�

= cλy(X )χ(y)
�

1− x>H(y)−1E
�

λy(X )X
��

= 0,

B
�

F̂◦n(y | x)
�

= cλy(X )
�

χ(y)− x>P−1
X E

�

χ(y − (x − X )>β)X
��

,

B
�

Q̂+n (p | x)
�

= −cχ
�

y(p | x)
�

�

1− x>H
�

y(p | x)
�−1E

�

λy(p | x)(X )X
�

�

= 0,

B
�

Q̂∗n(p | x)
�

= B
�

Q̂◦n(p | x)
�

= −c
�

χ
�

y(p | x)
�

− x>P−1
X E

�

χ(y(p | x))
��

,

where we used the fact that x>H(y)−1E
�

λy(X )X
�

= 1 for any x and y .
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