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Abstract

The Great Recession, the Great Depression, and the Japanese slump of the 1990s

were all preceded by periods of major technological innovation, which happened about

10 years before the start of the decline in economic activity. In an attempt to un-

derstand these facts, we estimate a model with noisy news about the future. We

find that beliefs about long-run income adjust with an important delay to permanent

shifts in productivity. This delay, together with estimated permanent shifts in the

three cases, tell a common and simple story for the observed dynamics of productivity

and consumption on a 20 to 25 year window. Our analysis highlights the advantages

of a look at this data from the point of view of the medium run.
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“Shifts in the economy are rarely forecast and often not fully

recognized until they have been underway for some time.”

Larry Summers, Financial Times, March 25th, 2012

1 Introduction

A medium-run look at the three deepest recessions in developed economies re-

veals that they were all preceded by periods of great technological innovation

and economic transformation. Specifically, the Great Recession in the United

States was preceded by a technological revolution, happening in the mid- to late

1990s, related to Information Technology (henceforth IT) (Greenwood and Jo-

vanovic 1999; Hobijn and Jovanovic 2001; Pastor and Veronesi 2009). Similarly,

the Japanese slump of the 1990s was preceded by a period of unprecedented

industrial innovation in the 1980s. During this period, Japanese corporations

developed several key products that placed Japan at the global centerstage in

electronics.1 We view this period as containing the elements of a technological

revolution with effects concentrated in Japan. Finally, before the Great Depres-

sion, roughly between 1915 and 1925, the United States witnessed the so-called

2nd Industrial Revolution (David and Wright 2000).2

Thus, in each of these cases there seems to be roughly a 10-year gap be-

tween the technological revolution and the start of the economic slump. At

face value, this suggests the existence of slow-moving, joint dynamics of tech-

nological progress and economic activity, common to all three episodes. In this

paper, we investigate whether there is indeed evidence of these dynamics in the

data, and make an effort to rationalize them using a simple framework. We

take a simple permanent income model in which a representative agent learns

slowly about his future income. Future income is determined by permanent

shifts in productivity, assumed to embody technological progress. These per-

manent shifts can be gauged by persistent productivity growth. However, in

real time they can be difficulty to tell apart from just transitory shifts. Due

to imperfect information, detecting permanent shifts can be a challenging task

1The two main players here were the Sony Corporation and JVC, which developed a large number of
these electronic products. To name a couple, consider the Walkman, the VHS, or the Betamax.

2The general purpose technology here was the combustion engine. Among other things, this technology
made possible the mass production of automobiles for the American household by the Ford Motor Company.
This also brought drastic improvements in management as, for instance, the use of the moving assembly
line (Bardou et al. 1982).
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for the agent. Consumers, who update their beliefs about future income on the

basis of noisy signals, adjust their behavior gradually. This allows us to fit the

dynamics of spending present in the data.

The reason we need to introduce learning in the model is clear evidence of

the long delays in the adjustment of spending. This, together with the gradual

adjustment of productivity growth around these waves of innovation, gives rise

to a slow-moving cycle. This cycle can be summarized by the following sequence

of events:

1. First, there is an initial and persistent increase in productivity growth.

Anecdotically, this shift seems to coincide with the waves of innovation

mentioned previously.

2. Second, the increase in productivity growth generates, with a delay of

several years, a (rational) “wave of optimism”. This optimism increases

consumer spending.

3. Third, there is a large and very persistent a decline in productivity growth.

This decline usually starts years before the economic slump. Arguably, it

is caused by a slowdown in the pace of innovation, which can be attributed

to the exhaustion of the low-hanging fruits of the new technology.

4. Fourth, a “wave of pessimism” arrives. This pessimism persistently de-

creases consumer spending.

In order to visualize these facts, consider Figure 1, plotting the (smoothed)

growth rates of U.S. labor productivity and the ratio of consumption-to-productivity

before and during the recent Great Recession.3 According to the permanent

income hypothesis, the consumption-to-productivity ratio carries information

about consumers’ view of their future income, a point developed fully in Sec-

tion 2 below. Figure 1 shows that the growth rates of productivity increased

by more than 0.70% a year between roughly 1994 to 2000, with growth peaking

around the turn of the century.4 However, consumption increased (relative to

productivity) with a lag of several years, peaking around 2006 or 2007. Pro-

ductivity growth had started to decline several years earlier. This decline was

sustained.5 Consumers took a while to revise spending downwards, with the

3Using TFP instead of labor productivity delivers a similar picture.
4Labor productivity annual growth rates averaged 1.46% from 1993 to 1995, and increased to an average

of 2.19% from 1996 to 2002.
5The decline bottoms in the 2010s. (Labor productivity annual growth rates averaged 0.61% from 2010

to 2014.)
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ratio of consumption-to-productivity starting to decline only in 2007 (dotted-

black line: raw data, full-red: smoothed). Overall, it is remarkable how long it

took for consumers to revise their views about their long-run income.

Figure 1: Productivity Growth and Delayed Adjustment of Consumption
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Notes: Annualized labor productivity growth rates (dashed-blue, smoothed using a
band pass filter at 32-200 frequencies) with scale in the left axis (percentages); and
consumption-to-productivity ratio (thin dotted-black for raw data and solid-red for
smoothed data using a band pass filter at 32-200 frequencies) with scale in the right
axis (average normalized to 1). The band pass filter is used to isolate the medium-run
dynamics.

We attempt to make sense of these observations within a standard model.

Our model has two main ingredients. The first is the presence of both permanent

and transitory shocks to productivity. The second is the presence of news about

the future (Beaudry and Portier 2006; Jaimovich and Rebelo 2009; Barsky and

Sims 2012). Similar to Blanchard, L’Huillier, and Lorenzoni (2013), we allow

news to be noisy. Our focus though is on the effect of permanent shifts in

productivity and the slow adjustment of expectations, instead of the effect of

noise shocks.6

In order to estimate permanent shocks, we use a tractable framework in

which beliefs about the long run drive the behavior of consumption. As econo-

metricians, the permanent income logic together with rational expectations al-

low us to infer the underlying movements in the productivity trend by looking

6Edge, Laubach, and Williams (2007) explore learning about shifts in long-run productivity growth
using U.S. data up to 2005.

3



at consumption. Here, we borrow the basic idea of an important body of work

on household income dynamics (see Blundell and Preston 1998, among others.)

Specifically, we proceed as follows. First, we estimate our model through

standard methods and then use the variance decomposition of beliefs at differ-

ent horizons in order to gauge which of the shocks present in the model explain

its variability on the medium run. We define the “medium run” as an horizon

of about 5 years or more after the impulse of a particular shock. This decom-

position indicates that most of the variability of consumption in the medium

run is explained by permanent productivity shocks.

Having established the importance of permanent shocks to understand the

medium-run dynamics of the beliefs, we estimate these shocks using a Kalman

smoother. We then feed the estimated permanent shocks into the model (shut-

ting down all other shocks) and simulate. We do this in order to match a

collection of medium-run moments, such as the magnitude of the productivity

growth increase, and the magnitude of the subsequent decrease. We also focus

on “timing” moments, such as the date of the peak of productivity growth,

and the date of the peak of the ratio of consumption-to-productivity. Lastly,

we look at the number of years elapsed between these two peaks, which is a

measure of the delay in the adjustment of consumption. Our estimates of the

permanent shocks that hit the U.S. economy over this period match this set of

stylized facts quite well. We also repeat this exercise for the cases of Japan and

the Great Depression, and conclude that the model is consistent with the data

in these two cases as well.

We perform a number of out-of-sample checks by simulating other endoge-

nous variables. In terms of beliefs, we compare model-generated beliefs to

survey evidence for the U.S. economy, 1994–2010. We find that according to

both the model and the survey, the U.S. consumer was most optimistic about

his long-run income around 2004. We perform a similar exercise for net exports.

Little attention has been devoted to the study of medium-term aggregate

consumption dynamics. The bulk of the empirical DSGEs literature which

focuses on the short run. A noticeable exception is the paper by Comin and

Gertler (2006). They generate medium-term dynamics using an endogenous

determination of productivity through the explicit modeling of R&D. In the

case of our paper, we simplify the determination of productivity by making it

exogenous, and instead focus on the effect of learning. Other work in this vein

includes Blanchard (1997), which focuses on unemployment and capital shares.
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Evans, Honkapohja, and Romer (1998) is an interesting paper that resonates

with our findings of high and low growth episodes, and how this interacts with

agents’ expectations. Relatedly, our paper provides an empirical basis for the

optimism preceding crises of emerging countries in the theoretical contribution

by Boz (2009).

The rest of the paper proceeds as follows. We present the model in Section

2. We take a preliminary but useful look at the data in Section 3. We present

the model estimation results in Section 4. We conclude in Section 5. Appendix

A contains a detailed description of our data. The supplementary material

presents further theoretical and empirical results.

2 The Model

2.1 Productivity Process and Information Structure

We model an open economy similar to Schmitt-Grohe and Uribe (2003), adding

a “news and noise” information structure (Blanchard, L’Huillier, and Lorenzoni

2013, henceforth BLL).7 Specifically, productivity at (in logs) is the sum of two

components, permanent, xt, and transitory zt:

at = xt + zt . (1)

Consumers do not observe these components separately. The permanent

component follows the unit root process

∆xt = ρx∆xt−1 + εt . (2)

The transitory component follows the stationary process

zt = ρzzt−1 + ηt . (3)

The coefficients ρx and ρz are in [0, 1), and εt and ηt are i.i.d. normal shocks

with variances σ2
ε and σ2

η. Similar to BLL, we assume that

ρx = ρz ≡ ρ , (4)

7Boz, Daude, and Durdu (2011) use a similar framework. We simplify it further by removing labor
supply and capital. Those extra ingredients do not change anything to our analysis, as we explain below
(p. 9).
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and that the variances satisfy

ρσ2
ε = (1− ρ)2 σ2

η , (5)

which implies that the univariate process for at is a random walk, that is

E[at+1|at, at−1, ...] = at . (6)

This assumption is analytically convenient. Moreover, it is broadly in line with

productivity data.8 To see why this property holds, note first that the impli-

cation is immediate when ρ = ση = 0. Consider next the case in which ρ is

positive and both variances are positive. An agent who observes a productivity

increase at time t can attribute it to an εt shock and forecast future produc-

tivity growth or to an ηt shock and forecast mean reversion. When (4) and (5)

are satisfied, these two considerations exactly balance out and expected future

productivity is equal to current productivity.9

Consumers have access to an additional source of information, as they ob-

serve a noisy signal about the permanent component of productivity. The signal

is given by

st = xt + νt , (7)

where νt is i.i.d. normal with variance σ2
ν .

We think of εt as the “news” shock because it builds up gradually and thus

provides (noisy) advance information information about the future level of pro-

ductivity (through the signal (7)). Our focus throughout the paper is on the

dynamics implied by this shock. It is useful to say a word about the methodolog-

ical role of the signal in our exercise. It plays a key role in our identification by

providing an extra source of information to consumers regarding the permanent

component. Indeed, through this assumption the econometrician will be able

to make inferences about the productivity trend by looking at the behavior of

consumption. As mentioned in the introduction, this connects our paper to the

work of Blundell and Preston (1998). (Our identification strategy is discussed

in detail below.)10

8In a similar exercise, BLL (working paper version) relax this assumption and show that for U.S. data
this does not change the empirical inference about (1), (2) and (3).

9See BLL for the proof.
10Forni, Gambetti, Lippi, and Sala (forthcoming) also use the term “noisy news”, but they use a different

specification of the information structure.
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2.1.1 Slow Adjustment of Beliefs

Here we focus on an important property of the signal extraction problem for

our purposes. Agents optimally form beliefs about the permanent component

xt using a Kalman filter.11 Then, they form beliefs about the future path of xt.

The following definition is useful to make these ideas precise.

Definition 1 (BLR) Given information at time t, the agent’s best estimate of

the productivity in the future is

lim
τ−→∞

Et [at+τ ] =
Et [xt − ρxt−1]

1− ρ
=
xt|t − ρxt−1|t

1− ρ
, (8)

where xτ |t denotes the conditional expectation Et[xτ ] of xτ on information avail-

able at time t. We call the estimate of long-run productivity, beliefs about the

long run (BLR) and denote it by xt+∞|t.

The second equality comes directly from the definition of xτ |t. To prove the

first equality, we make use of equations (1), (2), and (3).

Because of noisy information, agents will be slow to adjust their beliefs

xt+∞|t. In particular, they will be slow to adjust their beliefs following a per-

manent shock εt.

Definition 2 (Delayed adjustment of beliefs) After a permanent shock, εt =

1, under perfect information, BLR jumps immediately to the long-run level

1/(1 − ρ) and stays at that level in the absence of future shocks. However,

under imperfect information, it takes time for the BLR to reach the long-run

level. We define the BLR-delay by the time it takes BLR to reach half of the

long-run level.

2.2 Production and Consumption

We now describe the rest of the model. A representative consumer maximizes

E

[
∞∑
t=0

βt logCt

]
11The construction of the filter is standard. We refer the interested reader to BLL for more details.
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where E[ · ] is the expectation operator conditional on information available

contemporaneously. The maximization is subject to

Ct+Bt−1= Y t+QtBt , (9)

where Bt is the external debt of the country, Qt is the price of this debt, and

Yt is the output of the country.

Output is produced using only labor through the linear production function:

Yt = AtN , (10)

where At = eat . We abstract from fluctuations on employment, i.e. the con-

sumer supplies labor N inelastically.12 We normalize N = 1. The resource

constraint is

Ct +NXt = Yt ,

where NXt stands for net exports. The price of debt is sensitive to the level

of outstanding debt, taking the form used by Schmitt-Grohe and Uribe (2003),

and Aguiar and Gopinath (2007), among others:

1

Qt

= Rt = R∗ + ψ
{
e
Bt
Yt
−b̄ − 1

}
, (11)

where b̄ represents the steady state level of the debt-to-output ratio.13

The only first-order condition is:

1

Ct
= βRtEt

[
1

Ct+1

]
. (12)

In order to examine the dynamics of consumption, we define the ratio of consumption-

to-productivity. This is simply the logarithm of normalized consumption:

ct ≡ log (Ct/At)− log (C/A) .

12This approach is, to some extent, justified by our focus on the medium-run. However, we have used
labor supply in previous versions of this model and obtained very similar results. We comment more on
this feature of the model below (p. 9).

13It is straightforward to generalize our model to a two-country economy, and our main results do not
change in that case. See the discussion in Appendix B.7 (supplementary material).

8



Also, we define the variable ĉt, which the log-deviation of consumption

ĉt = ct + at

(see the supplementary material for the remaining details of the model normal-

ization.)

In the standard parametrization of the log-linearized model (a discount fac-

tor β close to 1 and an elasticity of the interest rate ψ close to 0)14, the effects

of productivity shocks on consumption ĉt are mainly determined by BLR, as

established by the following proposition.

Proposition 1 As β −→ 1, and ψ −→ 0, consumption ĉt is only a function of

BLR. Specifically,

ĉt = xt+∞|t .

The proof is in the supplementary material. Given this formal result, and

our goal of relying on the permanent income behavior of consumption for our

inferences, throughout the paper we shall calibrate β and ψ to be close to this

limit. In Cao, L’Huillier, and Yoo (2016) we prove a version of this theorem

for a more general model that includes labor supply and capital. Therefore, for

this calibration, including those ingredients in our framework does not change

our results. Section 4 presents an extension with investment and capital.15

The rest of the parameters is taken from the estimation of the model for the

U.S. below. The parameter ρ is set at 0.97, implying slowly building permanent

shocks and slowly decaying transitory shocks. The standard deviation of pro-

ductivity growth, σa, is set at 0.53%. These values for ρ and σa yield standard

deviations of the two technology shocks, σε and ση, equal to 0.01% and 0.51%,

respectively. The standard deviation of the noise shock, σν , is set to 1.22%,

implying a fairly noisy signal.

Figure 2 shows a simulation of the model for these parameter values. The

figure shows the responses of productivity at, consumption ĉt, the consumption-

to-productivity ratio ct, and net exports nxt, to a one-standard deviation in-

crease in εt (the permanent technology or “news” shock). The time unit on

the x-axis is one year (four quarters). The scale of productivity, consumption,

14See Schmitt-Grohe and Uribe (2003), Aguiar and Gopinath (2007), Boz et al. (2011), Hoffmann et al.
(2013), among others.

15Using the common value in the DSGE literature of β = 0.99, or the same value for ψ used in the
literature (ψ = 0.0010) does not qualitatively affect our conclusions. (The reason is that these values are
close to the limits of interest.)
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and the ratio is relative percentage deviations from steady state. The scale of

net exports is absolute percentage deviations from the steady state value of net

exports-to-output, NX/Y .

Figure 2: Impulse Response Functions to a Permanent Technology Shock
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In response to a one-standard-deviation increase in εt, the permanent tech-

nology shock, productivity increases slightly on impact, and then gradually con-

tinues to increase until it reaches a new long-run level. This sustained increase

is slow; in fact, half of the productivity increases are reached only after 7 years.

In the perfect information benchmark consumption would rise immediately to

its long-run level, but here this happens gradually. In this parametrization con-

sumption actually overshoots the long-run level, and then goes back down. This

is again a consequence of noisy information, together with the high persistence

of the permanent component.

A key response for our purposes is the one of the ratio of consumption-to-

productivity. The behavior of this variable in the data will be the objective of

the analysis of the next section. Because in the perfect information benchmark

consumption would immediately jump to its long-run level, the ratio would

have a declining shape. However, in this parametrization with significant noise,

the ratio first increases, peaks 8 years after the shock, and then goes back to

zero. Initially, net exports rise (not visible on the figure), because productivity

increases faster than beliefs about long-run productivity. This is a reflection

of the amount of noise in this simulation. After 3 quarters net exports fall,
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because agents have received enough “news” and a standard income effect kicks

in. This is translated into a sharp accumulation of external debt. In the long

run, productivity, together with consumption, reach a new level (at 0.53%).

The ratio and net exports go back to zero.

2.3 Bivariate Representation of the Simple Model

Another striking implication of Proposition 1 is that the model admits a bivari-

ate representation on productivity and consumption, which provides useful in-

sights into the behavior of consumption and allows to clearly discuss parameter

identification. Because the proposition is also valid in the model that includes

investment and labor supply, this representation is also valid quite generally,

justifying the use of the simple model in our benchmark estimations below.

The representation is given by the following two equations:

ĉt = ĉt−1 + uct (13)

at = ρat−1 + (1− ρ) ĉt−1 + uat , (14)

where uct and uat are innovations. The derivation of all expressions discussed

here not presented previously can be found in Appendix B.6 (supplementary

material). According to (13), consumption in the limiting model is a random

walk, which simply follows from the law of iterated expectations. Equation (14)

clarifies an interesting property of productivity in this model. Even though

productivity at was restricted by (4) and (5) to have a univariate random walk

representation, it is no longer a random walk in the bivariate representation,

i.e. when conditioning its expected changes on the past value of consumption

ĉt−1. The reason is as follows. Past consumption ĉt−1 carries extra information

beyond the previous realization of productivity at−1 about the permanent com-

ponent xt. This information comes from the signal st−1 that consumers have

received which, due to the persistence of the permanent component, helps them

forecast its future path.

Not only the limit model admits a simple representation as (13) and (14),

we also know that the parameters of interest are identified. The parameter σa

is identified by the standard deviation of the growth rates of productivity ∆at.

Identification of ρ comes from equation (14), which can be estimated by OLS
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in the following form:

∆at = (1− ρ)(ĉt−1 − at−1) + uat . (15)

The intuition provided by equation (15) is closely related to the permanent

income hypothesis. Indeed, how much consumption deviates from current pro-

ductivity reflects beliefs of consumers about future income, i.e. BLR, and by

implication contains information about future changes in at.
16 The higher is

consumption with respect to current productivity at t − 1, the higher the ex-

pected productivity growth at t. The coefficient in front of the consumption-

to-productivity ratio identifies ρ. If the permanent component is not very per-

sistent (ρ is low), its expected long-run level is close to its current level, and

the correlation between the ratio and productivity changes one quarter ahead

is high. Instead, when the permanent component is very persistent (ρ is high),

its expected long-run level is different from its current level, and the correlation

between the ratio and productivity changes one quarter ahead is low. Notice,

this does not reflect a failure of consumers to forecast the productivity trend,

because at longer horizons the equation is

at+j − at = (1− ρj)(ĉt−1 − at−1) + uat+j , (16)

and thus for long horizons the coefficient in front of the ratio goes to 1. In

other words, the longer the horizon, for a given variance of the consumption-

to-productivity ratio, the higher the correlation between the consumption-to-

productivity ratio and the productivity trend. Notice also that these equations

are valid for any degree of noise in the signal. In particular, the relationship

between the productivity trend and the consumption-to-productivity ratio (15)

holds on average and takes into consideration the extra volatility of the ratio

coming from the noise in the signal.17 Having identified ρ, the sizes of the

permanent and transitory shocks σε and ση can be derived from σε = (1− ρ)σa

and ση =
√
ρσa, which follow from (4), (5) and (6).

It remains to discuss the identification of the standard deviation of noise

shocks, σν . This is determined by the correlation between innovations to con-

sumption uct and innovations to productivity uat . If the signal is not informative

16Similar to Campbell (1987) the consumer “saves for a rainy day,” i.e., negative ĉt−1 − at predicts low
future productivity growth ∆at.

17Notice that in the model productivity follows a random walk, and therefore productivity by itself is
not useful to identify ρ.
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(σν −→ ∞), the only information available to consumers is productivity itself,

and this correlation is 1. If the signal is perfectly informative (σν −→ 0), this

correlation attains a lower bound.18 The relation is monotonic and uniquely

pins down σν .

Given the importance of the ratio of consumption-to-productivity to evaluate

consumers’ views about the future, the next section fully focuses on this ratio

and presents some novel stylized facts.

3 Preliminary Look at the Data: The Ratio of

Consumption-to-Productivity

Before showing the results from estimation, we shall zoom into a transformation

of the data ct = ĉt − at, because according to (15), it delivers insights into

consumers’ beliefs about the future. Intuitively, a high (low) ratio ĉt − at is

an indicator of ‘over- (under-) consumption’ with respect to current income

at, which can be rationalized by optimistic (pessimistic) beliefs. We will look

at the shape of this ratio in the three cases and then discuss two theoretical

benchmarks. This will turn out to be a useful lead into the structural estimation

section below.

Data. Our baseline data set includes series on labor productivity and con-

sumption. We use quarterly data. The series for the Great Recession is from

the Bureau of Economic Analysis and the Bureau of Labor Statistics. The series

for Japan is from the OECD.

In the case of the Great Depression, we have data for the components of GDP

from the Gordon-Krenn data set. In this case our sample length is restricted by

the fact that there are no quarterly data on GDP components before the end of

World War I in 1918. Gordon and Krenn (2010) use the Chow and Lin (1971)

method for interpolating annual national accounts series and obtain cyclical

variation at quarterly frequency, thereby obtaining an estimated series for GDP

components. In order to produce a series for labor productivity, we obtain an

estimate for GDP from the Gordon-Krenn data set, and we use the Kendrick

(1961, Appendix A, Table XXIII, 2nd column) data set for employment, using

a linear interpolation out of the annual series.

18See BLL for the computation of this bound.
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Appendix A contains further details on the data used and the construction

of the variables.

The Ratio of Consumption-to-Productivity. Figure 3 plots the loga-

rithm of the ratio of consumption-to-productivity around the Great Recession,

the Japanese crisis, and the Great Depression. The vertical axis is centered

around the average of the ratio over the period considered (normalized to 1.)

The medium-run dynamics of these series are isolated using a band pass filter

(between 32 and 200 quarters, following Comin and Gertler 2006.)

In all three cases, the ratio follows a slow moving “wave” that results in

a hump-shaped path (after a short initial fall). This slow-moving path takes

about 20 to 25 years (in case of the Great Depression our sample starts in

1920 for data availability reasons.) As the top panel shows, in the case of the

Great Recession the ratio has relatively low values in the early 1990s, with a

slight decreasing portion between 1990 and 1992. This is because during this

period productivity is growing at a higher rate than consumption. The ratio

starts to increase around 1992, and this increase becomes more pronounced

starting in 1997, where consumption grows at a considerably stronger rate than

productivity. The ratio reaches its highest point around 2007, after which a

reversal starts in which the ratio quickly goes back to its level from 20 years

earlier. The reversal is quite sharp and coincides with the start of the Great

Recession in 2007.

The middle panel plots the same ratio for Japan. The ratio starts again at

relatively low values, which indicate a stronger growth of productivity. We can

then see an increase in the ratio, which is when consumption grows faster. The

highest point of the ratio is reached in 1997, after which a downward movement

brings the ratio back down, suggesting that similarly to the previous case, the

ratio followed a slow-moving up-and-down wave. The bottom panel plots the

ratio for the Great Depression. Due to data availability, we look at this data

starting 1920. However, the ratio in this case seems to follow a similar hump-

shaped pattern as in the two other panels. It starts at low values, then increases,

reaches a highest point at the onset of the Great Depression in 1929, and then

reverts back to its level of 14 years before.

To shed light on these dynamics, it is useful to considered two extreme

theoretical benchmarks.
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Figure 3: Consumption-to-Productivity Ratio
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Notes: Productivity is real GDP divided by employment. Consumption is NIPA consumption divided by popu-
lation. In the model the ratio is ct = ĉt − at. Black-dashed line: raw data. Red-solid line: smoothed data using
a band pass filter at 32-200 frequencies.

Benchmark (a): “No-news”. In this case, σν tends to infinity and thus

the signal is completely uninformative. Given the random walk Assumption (6)
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BLR are

xt+∞|t = at ,

and so, under the conditions of Proposition 1, consumption is equal to produc-

tivity:

ct = at, ∀t .

Thus, the ratio of consumption-to-productivity is flat. A flat ratio clearly fails

to fit the data.

Benchmark (b): Perfect Foresight. Under perfect foresight, agents have

knowledge of all future shocks right from the start. Under the conditions of

Proposition 1, consumption jumps immediately to the long-run level of produc-

tivity xt+∞ and remains there. As a result of the positive and then negative

permanent shocks, productivity first increases and then decreases. The ratio

thus inherits the opposite dynamics: it decreases and then increases. This,

again, fails to fit the data, where the ratio increases and then decreases.

To conclude, in both extremes of “no-news” and the perfect foresight, the

model has a strongly counterfactual prediction for the behavior of the consumption-

to-productivity ratio. As demonstrated below, noisy signals (finite σν > 0)

imply a delay of consumption that allows the ratio to slowly increase and then

decrease as consumption catches up with the increase and decrease of produc-

tivity growth, resulting in a hump shape.

4 Estimation

In this section we first explain how we estimate the model. We first show the

results for the Great Recession, and we perform a number of exercises with

the estimated model to study which facts can be matched. We then execute a

similar application to Japan and the Great Depression.

Estimation Procedure. The state-space form of the model can be estimated

through Maximum Likelihood (ML).19 Because of the bivariate representation of

the model, in our baseline estimations we include the demeaned first differences

of the logarithm of labor productivity ∆at and of consumption ∆ct as observable

19The information structure in this model is identical to the one used in BLL, and more details are
provided there on how to compute the likelihood function for general representative-agent models with
signal extraction.
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variables.20 We estimate the parameters ρ, σa and σν . (Notice, given the

random walk Assumption (6) for at, σε and ση are determined by ρ and σa.)

4.1 Great Recession

Here we present our baseline estimates for the U.S. Great Recession. Table

1 contains the parameter estimates obtained from a 1985Q1–2016Q3 sample.

The persistence parameter ρ is estimated at 0.97, implying very persistent pro-

cesses both for the permanent and the transitory components of productivity.

The standard deviation of productivity is estimated at 0.53% in the case of the

Great Recession. Given the random walk Assumption (6) for productivity, this

high value of ρ imply a standard deviation for permanent technology shocks

that is fairly small, 0.01%, and a fairly large standard deviation for the transi-

tory technology shock, 0.51%. The standard deviation of noise shocks is large,

1.22%.21 Notice also that permanent shocks are small compared to transitory

shocks. This implies that, conditional on having observed the previous period’s

productivity at−1, current productivity at is also a fairly imprecise signal about

xt. To sum up, this discussion illustrates the major signal extraction problem

that consumers face according to this estimates. By implication, the BLR-delay

in learning is quite long, computed to 3 years and 1 quarter for the parameters

above.

Table 1: Parameter Estimates, Great Recession

Parameter Description Value s.e.

ρ Persistence tech. shocks 0.97 0.01
σa Std. dev. productivity 0.53 0.02
σε Std. dev. permanent tech. shock (implied) 0.01 –
ση Std. dev. transitory tech. shock (implied) 0.51 –
σν Std. dev. noise 1.22 0.49

Notes: ML estimates of the log-linearized state-space representation of the model. The observation
equation is composed of the first differences of the logarithm of U.S. labor productivity and con-
sumption. Standard errors are reported to the right of the point estimate. The values for σε and ση
are implied by the random walk Assumption (6) for productivity.

20Using the ratio of net exports-to-GDP nxt instead of consumption does not qualitatively change the
results (see our previous working paper Cao and L’Huillier 2012.)

21These estimates are of the same order of magnitude and qualitatively similar to those in BLL who
estimate ρ = 0.89, σa = 0.67% and σν = 0.90% using a 1970–2008 sample (p. 3056).
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4.2 Variance Decomposition and Estimated Permanent

Shocks

Figure 8 of the supplementary material presents the variance decomposition of

BLR at different horizons. For brevity, we comment here only the main feature

of this decomposition for our purposes: Starting from the medium horizon

onwards (after, say, 5 years), the largest share of the forecast error of BLR

is accounted for by the permanent technology shocks. The opposite holds at

shorter horizons: In this case, the forecast error of BLR is mostly accounted for

by transitory and noise shocks. Thus, given our emphasis on the medium run,

we focus on the effect of permanent shocks throughout the paper.

The state-space representation of the estimated model can be used in order

to estimate the state and shocks using a Kalman smoother. Figure 4 shows

our estimated permanent shocks in the case of the Great Recession.22 We

estimate positive shocks from roughly 1989 to 1999, and negative shocks later

on. The serial correlation of our estimated permanent shocks is not a violation

of the i.i.d. assumption on these shocks, but instead purely a reflection of the

information available to the econometrician. Given the small size of permanent

shocks, it difficult to the econometrician to pin point with precision the quarter

when each particular shock hits. This introduces an estimation error that is

autocorrelated, and thus the smoothed shocks turn out autocorrelated as well.

This has implications for the interpretation of the estimated series. Indeed,

there is fairly strong evidence in the data of either a large positive shock or

several positive shocks somewhere in the early 90s, although it is not possible

to know exactly when. The opposite holds starting in 1999.23

In order to assess the ability of the model to recover the right shocks, we

compare the implied productivity growth rates to the data. This is a standard

historical decomposition exercise, as follows. We feed into the model the se-

ries of estimated permanent shocks shown in Figure 4, top panel, setting the

other two shocks ηt and νt to zero. We then simulate the implied productivity

growth rates. We superimpose these model implied growth rates to their data

counterpart, using a 10-year centered moving average in order to isolate the

medium-run movements. The result is presented in the bottom panel of the

figure, showing that the model does a remarkable job at estimating the shocks

22For brevity we do not show the estimated transitory and noise shocks here, see Figure 9 in the supple-
mentary material.

23We have verified that Kalman smoothed shocks out of simulated data have a similar degree of auto-
correlation.
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responsible for the medium-run variation in productivity growth.

Figure 4: Smoothed Permanent Shocks and Implied Productivity Growth, Great Recession
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Notes: In the upper panel, smoothed permanent shocks are estimated using a Kalman
smoother on the Great Recession sample. In the lower panel, the dotted-blue line
represents productivity growth implied by the smoothed permanent shocks and the
dashed-black line represents the centered 10-year moving average of the (demeaned)
first differences of the logarithm of labor productivity.

Our finding of a persistent increase, and then a decrease, of productivity

growth finds support in other independent research. The estimated permanent

shocks imply that we should have observed a productivity acceleration in the

mid-90s, and a subsequent slowdown, arriving several years before the start of

the Great Recession. First, using different techniques, Kahn and Rich (2007)

also find evidence of a permanent increase in productivity growth that started

in the mid-1990s. Furthermore, Fernald (2014) documents detailed evidence,

at different levels of aggregation, that the growth of both labor and total-factor

productivity slowed down at around 2004 in most industries. (The slow down

was most pronounced in IT-intensive industries.)
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4.3 Medium-Run Facts Reproduced by the Estimated

Permanent Shocks

We now turn to a quantitative assessment. We ask: Given the ML-estimated

model, what medium-run facts of interest are these permanent shocks able to

reproduce?

We start by looking at a collection of key non-targeted moments, docu-

mented in Table 2. The first moment we consider is the peak or maximum

increase in productivity growth in the 1985 to 2016 years (away from the aver-

age trend of 1.44% per annum.). The second is the bottom or maximum decrease

in productivity growth in the same years (again away from the trend).24 In the

data, productivity growth increases by 0.68% and then declines by -0.97%, with

a total decline of -1.66%. We feed the smoothed permanent shocks through the

model and simulate. We find that the model, with only the help of the per-

manent shocks, does a remarkable job at capturing the increase in growth, and

accounts for a bit more than half of the decline.

Table 2: Moments, Great Recession (Non-Targeted)

Moment Model Data

Magnitudes

Increase in Productivity Growth 0.62% 0.68%
Decrease in Productivity Growth -0.49% -0.97%

Timing

Date of Peak of Productivity Growth 1998Q2 2000Q1
Date of Peak of Ratio c = ĉ− a 2002Q3 2003Q4

Gap Between Peaks: 4.25 years 3.75 years

Notes: The moments from the model are calculated using the time series of the endogenous variables
(productivity growth, consumption-to-productivity ratio) generated by the smoothed permanent
shocks (upper panel in Figure 4). The moments for the data are calculated using the time series for
the same variables after taking centered 10-year moving averages.

Given our emphasis on the slow-moving cycle and the delays in consump-

tion present in the data, we also present a number of “timing” moments. These

include, first, the respective dates of the peaks of productivity growth and the

24We use a 10-year centered moving average on the data in order to isolate the medium-run movements.
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ratio. Here, the model performs well. According to the permanents shocks

run through model, productivity growth peaked in 1998Q2; in the data, pro-

ductivity growth peaks in 2000Q1. According to the model, the ratio peaked

in 2002Q3; in the data, the ratio peaked in 2003Q4. So, the model’s implied

timing of these peaks using the permanent shocks is less than two years apart of

the actual timing of the peaks, which is a small difference from a medium-run

perspective. We also focus on the time gap between these two peaks, which is

another intuitive measure of the delay in the reaction of consumption. In this

case, it is interesting to note that the model delivers a slightly longer delay than

in the data, which is of 3 years and 3 quarters.

We now look at the path of the consumption-to-productivity ratio generated

by the permanent shocks (Figure 5). As claimed in Section 3, the model delivers

a ratio that increases initially and then decreases, in a slow-moving hump shape.

Figure 5: Model-Implied Ratio of Consumption-to-Productivity, Great Recession
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We finally present two supplementary out-of-sample checks of our estima-

tion. We simulate the path of key endogenous variables using the permanent

shocks only and compare these to the data. We focus on BLR and net exports.

Our beliefs data come from a survey published by Consensus Forecasts25.

This survey was used in the paper by Hoffmann, Krause, and Laubach (2013).

The survey includes a question of participants’ expectations about GDP growth

up to 10 years ahead, and therefore it should be comparable to our notion of

BLR (this is the longest horizon in the sample.) Figure 6, left panel, compares

the evolution of growth expectations according to the survey (the bottom panel

of Figure 1 in Hoffmann et al. 2013) and the BLR generated by our model.

According to both measures U.S. agents seem to have been relatively most

25In the limit model BLR and consumption are the same object, but this is of course not the case in the
data.
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optimistic between 00 and 05.26 The right panel of Figure 6 compares actual

data on net exports to those generated by the model. As a reminder, the model

was estimated using data on productivity and consumption only. The model

produces a path of net exports consistent with the data, with net exports being

most negative in the mid-2000s.

Figure 6: Out-of-Sample Checks: BLR and Net Exports
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Notes: In the left panel, the dotted-black line represents survey data, reproduced from Hoffmann, Krause,
and Laubach (2013) (Figure 1, bottom panel), and the solid-blue line represents model-implied BLR,
generated by the permanent shock estimates (upper panel in Figure 4). In the right panel, the dashed-
black line represents moving-average of net exports (centered 10-year), and the solid-blue line represents
model implied net exports.

4.4 Japan and Great Depression

For reasons of space, here we briefly present our results for the Japan crisis and

the U.S. Great Depression. Our sample in the former episode spans 1980–2000,

in the latter 1920–1935. In both cases both technology processes are, again,

estimated to be very persistent. Also, there is quite a bit of noise in consumers’

inference about long-run productivity. The parameter estimates are presented

in detail in the supplementary material.

26Estimating our model using net exports instead of consumption delivers the same result (see our
previous working paper Cao and L’Huillier 2012.)
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Table 3 shows the key non-targeted moments in these two cases. In the

case of Japan, the model correctly predicts an increase and a decrease of both

productivity growth and the ratio, but shows limited impact of the permanent

shocks, accounting for roughly one third to one half of the increase and decrease

of productivity growth. For instance, the model predicts that productivity

increases by 0.64% away from the trend, wheras the increase in the data is

larger, of 1.43%. Similarly, the model predicts this increase to be followed by

a decrease of 0.59% away from the trend (a total decrease of 1.23%), whereas

in the data the decrease is of 1.39% (total of 2.82%). In terms of the dates, the

model does well in predicting the timing of the peak of productivity growth,

which happened in 1985Q2 according to the data. The gap between the peaks

of productivity growth and the ratio are very long in the data (13 years and

1 quarter), and the model significantly underpredicts this gap (to 5 years and

a half). Accordingly, the model predicts the peak of the ratio to happen in

1993Q2, whereas in the data the ratio peaks later, in 1998Q4.

In the case of the Great Depression, data availability restricts our sample

to start in 1920. We observe productivity growth declining steadily from the

start of the sample, which suggests that we are not able to observe the peak in

productivity growth.27 We observe a decrease of productivity growth of 1.61%,

and the model is able to account a bit more that a third of this decline (-

0.61%). Importantly, and consistent with our model of slow learning, most of

this slowdown happens before the start of the Great Depression in 1929 (which

is visible in Figure 10, right panel, in the supplementary material), and the peak

of the ratio also happens before 1929. The model does a good job matching

the date at which the ratio peaks (1926Q4 in the model, 1927Q3 in the data).

The conclusion is that the gap between these two peaks must be greater than 6

years according to the model (5 years and 3 quarters according to the data).28

For brevity, we also report the implied path of the ratio of consumption-

to-productivity in these two cases in the appendix (Figure 12). In both cases

the ratio initially increases and then decreases, again in a slow-moving hump

shape. (In the case of the Great Depression the increase is less pronounced,

presumably due to the lack of data pre-1920.)

27This observation is consistent with the implementation timing of key innovations. For instance the
Ford Model-T was introduced in 1908. This suggests that one would like to have a sample for quarterly
consumption and productivity starting at least 10 years before 1920.

28Different from the case of Japan and U.S. Great Recession, productivity growth features a very strong
recovery when the Great Depression ends (say 1933). This fact was first noted by Field (2003), among
others.
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Table 3: Moments, Japan and Great Depression (Non-Targeted)

Moment Model Data
Japan

Magnitudes

Increase in Productivity Growth 0.64% 1.43%
Decrease in Productivity Growth -0.59% -1.39%

Timing

Date of Peak of Productivity Growth 1987Q4 1985Q2
Date of Peak of Ratio c = ĉ− a 1993Q2 1998Q4

Gap Between Peaks: 5.50 years 13.25 years

Great Depression
Magnitudes

Increase in Productivity Growth – –
Decrease in Productivity Growth -0.61% -1.61%

Timing

Date of Peak of Productivity Growth – –
Date of Peak of Ratio c = ĉ− a 1926Q4 1927Q3

Gap Between Peaks: >6.00 years >5.75 years

Notes: The moments from the model are calculated using the time series of the endogenous variables
(productivity growth, consumption-to-productivity ratio) generated by the smoothed permanent
shocks (upper panel in Figure 4). The moments for the data are calculated using the time series for
the same variables after taking centered 10-year moving averages.

4.5 Extension: A Model with Investment

We extend the model to include capital and investment. The goal is to study

whether the estimated permanent shocks imply realistic dynamics of invest-

ment.

Our specification of capital dynamics is standard. Capital accumulation is

subject to the adjustment cost function

G(It, Kt−1) = It +
χ

2

(It − δKt−1)2

Kt−1

,
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where Kt−1 stands for aggregate capital at time t and It stands for investment.

In addition, the aggregate production function uses both capital and labor:

Yt = Kα
t−1 (AtN)1−α ,

where N is normalized to 1.

The budget constraint is now

Ct +Bt−1 +G(It, Kt−1) = Yt +QtBt

and

Kt = (1− δ)Kt−1 + It . (17)

With investment, net exports are given by

NXt = Yt −G(It, Kt−1)− Ct .

The supplementary material presents the first-order conditions and the log-

linearization.

We proceed as follows. We estimate this model using data on productivity

and consumption. Here, we focus on the informational parameters of interest to

us (ρ, σ∆a, σν), fixing the other parameters defining the production function and

capital dynamics at standard values.29 We then estimate the permanent shocks,

and run these through the model to obtain the implied path of investment. We

then compare this model-implied path of investment to the data. Because we

did not use investment as an observable variable, this is a tough test of whether

the permanent shocks are able to generate realistic investment dynamics.

For brevity, we do not present the parameter estimates and smoothed per-

manent shocks here (they can be found in the appendix.) Figure 7 presents

the comparison of model-implied investment to the data. The model performs

well at reproducing the overall hump-shaped behavior of investment over 1985

to 2016: an increase in investment (from trend) starting around 1995, a peak

some years later, and a decline after 2005. The model somewhat anticipates

this path. Also, given that we are just using the permanent shocks (which are

capable of generating only smooth medium-run dynamics) the model does not

account for the high frequency variation quite visible in the early 2000s (a drop

around the turn of the century, and a rise a few years later). However, given

29We use α = 0.33, δ = 0.025, χ = 4.
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the simplicity of the model and the fact that investment data was not used as

an input in the estimation, we find the performance of the model overall quite

satisfactory.

Figure 7: Investment
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Notes: The series for investment (dotted-black) was constructed following Justiniano et al. (2010). The
dashed-red line represents its centered 10-year moving average. The solid-blue line represents the model
implied investment. Units on the right axis corresponds to percentage deviations from trend or steady-state.
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5 Conclusion

We have explored the movements of productivity and consumption before and

during the Great Recession, the Japanese crisis of the 1990s, and the Great

Depression. In the three cases, productivity and consumption feature common

medium-run dynamics which can be accommodated by a learning model.

At face value, the conclusion of the exercise is that the three major slumps

of the developed world during the last hundred years have technological roots.

But these roots are quite subtle and to see them requires taking a medium-run

perspective on the data. This differentiates our paper from the bulk of the

business cycles literature.

Given the obvious importance of financial frictions in the three episodes, it is

quite surprising that such a simple model can account for the broad medium-run

patterns in the data. Considering this, we purposely decided to keep financial

frictions out of the exercise, but further work will clearly enrich our understand-

ing of these episodes by adding these (rather short-run) frictions to a similar

medium-run permanent income framework.

Finally, a question left open is what exactly makes these episodes special.

Based on our findings we conjecture that the answer lies on the special nature

of the observed realization of permanent technology shocks: A strong and per-

sistent pick up of productivity growth rates, and an equally strong reversal.

These seem to “sow the seeds” for trouble. Exploring this possibility further

seems like a promising research avenue.
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A Data Appendix

In the case of the Great Recession, the series for productivity is constructed by

dividing GDP by the labor input and taking logs. GDP is measured by taking

the series for Real GDP from the Bureau of Economic Analysis (available through

the Federal Reserve Bank of Saint Louis online database, series ID GDPC1). The

labor input is measured by the employment series (Bureau of Labor Statistics online

database, series IDs LNS12000000Q). The series for net exports is constructed by

dividing net exports by population. Net exports are measured by the difference

between Real Exports and Real Imports from the St. Louis Fed database (series

IDs EXPGSC96 and IMPGSC96 respectively). Population is from the BLS (series

IDs LNS10000000Q). The series for consumption is constructed by dividing Real

Personal Consumption Expenditures by Population and taking logs. The series for

Real Personal Consumption Expenditures is from the St. Louis Fed database (series

ID PCECC96). The series for TFP was downloaded from John Fernald’s website

(“A Quarterly, Utilization-Adjusted Series on Total Factor Productivity”, Fernald

2012, supplement, series dtfp_util). The series for Real Investment Expenditures is
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from the St. Louis Fed database (series ID GPDIC1). The series on Real Personal

Durable Consumption Expenditures is from the St. Louis Fed database.

In the case of Japan, the series for productivity and net exports are constructed

in the same way. All series come from the OECD website. GDP, Exports and

Imports are contained in the measure named VOBARSA. Employment comes from

the OECD website. It is published in monthly frequency, and thus its frequency was

changed to quarterly by computing the quarterly arithmetic average at every quarter.

Population comes from the ALFS Summary tables in annual frequency, and thus a

linear interpolation was performed to obtain quarterly frequency data.

In the case of the Great Depression, the series for productivity is constructed by

dividing per capita GDP by the labor input and taking logs. The labor input series

was obtained from Kendrick 1961, Appendix A, Table XXIII, 2nd column (“Persons

Engaged”). (Gordon 2000 uses the same measure.) The series for net exports

is constructed by the difference between exports and imports. Per capita GDP,

consumption, exports and imports were obtained from Robert Gordon’s website.

Our data set is available upon request.

30



[FOR ONLINE PUBLICATION]

Supplementary Material for “Technological

Revolutions and the Three Great Slumps: A

Medium-Run Analysis”

Dan Cao and Jean-Paul L’Huillier

April 2017

B Model Solution, Proofs, and Other Results

B.1 Definitions

In order to log-linearize the model, we also define the following endogenous variables

rt, bt, and nxt:

rt ≡ Rt −R ,

and

bt ≡
Bt
Yt
− b̄ ,

nxt ≡
NXt

Yt
− NX

Y
.

NX/Y is the steady-state value of the net exports-to-output ratio.

B.2 Steady State

We look for a steady state in which the following variables (normalized and non-

normalized) are constant: c̄ = C/A, b̄ = B/Y , R, and Q. We assume that the steady

state level of normalized debt b̄ is determined exogenously.

From the intertemporal condition (12), we have

1

C
= βR

1

C+
,

where the subscript + is used to denote value one period ahead. Equivalently, then

A

C
= βR

A

A+

A+

C+
.
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Given that C/A = C+/A+ in the steady state, it implies that

1 = βR
A

A+
. (18)

Since A+ /A = 1,

R =
1

β
.

The resource constraint (9) gives

C +B = Y +
1

R
B+ ,

or
C

A
+
B

Y

Y

A
=
Y

A
+

1

R

B+

Y+

Y+

A+

A+

A
.

So

c̄+ b̄ = 1 + βb̄ ,

this implies

c̄ =
(
1− (1− β) b̄

)
.

B.3 Log-Linearization

This equilibrium is given by the equations for the shock processes (1), (2), and (3),

and other four equations:

ct = −rt + Et[ct+1 + ∆at+1] , (19)

rt = ψ · bt , (20)

ct +
1

C/Y
nxt = 0 , (21)

nxt = bt−1 − βbt +
B

Y

(
−∆at + β2rt

)
. (22)

We log-linearize the intertemporal condition

1

Ct
= βRtEt

[
1

Ct+1

]
,

to obtain (19). Log-linearizing the interest-elasticity equation (11) immediately gives

(20).

Approximating the resource constraint delivers

C

Y
(ct + 1) +

NX

Y
+ nxt = 1 ,
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which leads to (21).

Net exports are

NXt = Bt−1 −QtBt ,

and therefore, approximating

NX

Y
+ nxt =

(
B

Y
+ bt−1

)
(−∆at + 1)− 1

R

(
− 1

R
rt + 1

)(
B

Y
+ bt

)
to obtain (22).

B.4 Closed-form Solution

In this section we solve the model in closed form. Let

b̂t = bt +
B

Y
at .

From the intertemporal budget constraint (22), together with the budget constraint

(21), we have:

b̂t = bt +
B

Y
at

=
1

β
bt−1 −

1

β

C

Y
(−ct) +

1

β

B

Y

(
−∆at + β2rt

)
+
B

Y
at

=
1

β
b̂t−1 −

1

β

C

Y
(−ct) +

1

β

B

Y

(
−at + β2rt

)
+
B

Y
at

=
1

β
b̂t−1 +

1

β

C

Y
ct −

B

Y

1− β
β

at +
B

Y
βrt

Substituting rt from (20) into the last equality, and also using the definition of ĉt, we

arrive at

b̂t =
1

β
b̂t−1 +

1

β

C

Y
ct −

B

Y

1− β
β

at +
B

Y
βψbt

=
1

β
b̂t−1 +

1

β

C

Y
ct −

B

Y

1− β
β

at +
B

Y
βψ

(
b̂t −

B

Y
at

)
=

1

β
b̂t−1 +

1

β

C

Y
ĉt −

1

β
at +

B

Y
βψ

(
b̂t −

B

Y
at

)
.
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So

b̂t

(
1− B

Y
βψ

)
=

1

β
b̂t−1 +

1

β

C

Y
ĉt

−

(
1

β
− βψ

(
B

Y

)2
)
at

From the Euler equation (19), we have

ĉt = −ψbt + Et[ĉt+1]

= −ψb̂t + ψ
B

Y
at + Et[ĉt+1] .

We conjecture and verify later that

ĉt = Dbb̂t−1 +DkXt ,

where the state variable Xt is defined as

Xt =
[
at xt|t xt−1|t zt

]′
,

and solve for the coefficients Db and Dk using the method of undetermined coeffi-

cients.

Indeed, from the Euler equation:

ĉt = −ψb̂t + ψ
B

Y
at + Et[ĉt+1]

= −ψb̂t + ψ
B

Y
at + Et[Dbb̂t +DkXt+1]

= (Db − ψ) b̂t + ψ
B

Y
at + E[DkXt+1]

= (Db − ψ)
1

1− B
Y βψ

 1
β b̂t−1 + 1

β
C
Y ĉt

−
(

1
β − βψ

(
B
Y

)2)
at


+ψ

B

Y
at +DkAXt .

Where the second equality comes from applying the conjectured solution for ct+1, the

dynamics of shocks, and the formula for the Kalman filter presented in BLL Appendix

5.1, from which we have

Et[Xt+1] = AXt ,
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where

A =


0 1 + ρ −ρ ρ

0 1 + ρ −ρ 0

0 1 0 0

0 0 0 ρ

 .

So (
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
ĉt

= (Db − ψ)
1

1− B
Y βψ

1

β
b̂t−1

− (Db − ψ)
1

1− B
Y βψ

(
1

β
− βψ

(
B

Y

)2
)
at

+ψ
B

Y
at +DkAXt .

Comparing coefficient-by-coefficent to the initial conjecture of ĉt, we obtain the sys-

tem of equations on Db and Dk:

(Db − ψ)
1

1− B
Y βψ

1

β
=

(
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Db

and

(Db − ψ)
1

1− B
Y βψ

(
1

β
− βψ

(
B

Y

)2
)(

1 0 0 0
)

+

(
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Dk

= ψ
B

Y

(
1 0 0 0

)
+DkA

The first equation is a quadratic equation in Db:

D2
b +

(
1

C/Y
−
(

1− B

Y
βψ

)
β

1

C/Y
− ψ

)
Db − ψ

1

C/Y
= 0 .

This equation has two roots, but we pick the negative root to ensure the stability of

the dynamic system:

Db =
−
(

1
C/Y −

(
1− B

Y βψ
)
β 1
C/Y − ψ

)
−
√(

1
C/Y −

(
1− B

Y βψ
)
β 1
C/Y − ψ

)2
+ 4ψ 1

C/Y

2
.

(23)
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Given Db, we solve for the coefficients Dk using the second equation. First, the

coefficient on at:

(Db − ψ)
1

1− B
Y βψ

(
1

β
− βψ

(
B

Y

)2
)

+

(
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Dk,1

= ψ
B

Y

So

Dk,1 =
ψB
Y − (Db − ψ) 1

1−B
Y
βψ

(
1
β − βψ

(
B
Y

)2)(
1− (Db − ψ) 1

1−B
Y
βψ

1
β
C
Y

) . (24)

The coefficient on zt|t: (
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Dk,4

= ρDk,1 + ρDk,4

so

Dk,4 =
ρDk,1

1− (Db − ψ) 1
1−B

Y
βψ

1
β
C
Y − ρ

. (25)

The coefficients on xt|t and xt−1|t:(
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Dk,2

= (1 + ρ)Dk,1 + (1 + ρ)Dk,2 +Dk,3

and (
1− (Db − ψ)

1

1− B
Y βψ

1

β

C

Y

)
Dk,3

= −ρDk,1 − ρDk,2 .

So [
ρ+ x̃ 1

ρ 1− x̃

](
Dk,2

Dk,3

)
= −

(
1 + ρ

ρ

)
Dk,1

where x̃ = (Db − ψ) 1
1−B

Y
βψ

1
β
C
Y . Thus
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(
Dk,2

Dk,3

)
= − 1

(1− ρ− x̃) x̃

[
1− x̃ −1

−ρ ρ+ x̃

](
1 + ρ

ρ

)
Dk,1

= −
Dk,1

x̃

1

(1− ρ− x̃)

(
1− x̃ (1 + ρ)

−ρ+ ρx̃

)
.

B.5 Limit Result for Consumption

First, we notice that from the steady-state equations,

C

Y
= 1− (1− β)b̄

which goes to 1 as β → 1.

From the expression for Db, (23), we have

lim
ψ→0

Db = − (1− β)
1

C/Y
.

This implies

lim
β→1

lim
ψ→0

Db = 0.

From the expression for Dk,1,(24):

lim
ψ→0

Dk,1 =
− limψ→0Db

β

1− limψ→0Db
β

C
Y

= (1− β)
1

C/Y
.

This implies

lim
β→1

lim
ψ→0

Dk,1 = 0.

Similarly, from the expression for Dk,4, (25) we obtain:

lim
β→1

lim
ψ→0

Dk,4 = 0.

From the expression for x̃:

lim
ψ→0

x̃ = lim
ψ→0

Db
1

β
= −1− β

β
.

Therefore,

lim
β→1

lim
ψ→0

x̃ = 0
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and

lim
β→1

lim
ψ→0

Dk,1

x̃
= −1.

Combining these limits with the expression for Dk,2, Dk,3, we have:

lim
β→1

lim
ψ→0

(
Dk,2

Dk,3

)
=

1

1− ρ

(
1

−ρ

)
.

These limits imply the desired expression for ĉt.

B.6 VAR Representation of the Limiting Model

In this section we derive (13) and (14). We know that

at − ρat−1 = xt + zt − ρ (xt−1 + zt−1)

= xt − ρxt−1 + ηt .

At the limit

ĉt =
1

1− ρ
Et [xt − ρxt−1] .

Notice that

xt − ρxt−1 = xt−1 − ρxt−2 + εt ,

so

Et−1 [ĉt]

=
1

1− ρ
Et−1 [Et [xt − ρxt−1]]

=
1

1− ρ
Et−1 [xt−1 − ρxt−2 + εt]

= ĉt−1 ,

and

Et−1 [at − ρat−1] = Et−1 [xt − ρxt−1]

= (1− ρ) ĉt−1 .

Therefore we have the VAR representation (13) and (14).

Equation (16) is obtained by induction in j. We just showed it holds for j = 0.

If it holds for j, then Et [at+j ] = ρjat +
(
1− ρj

)
ĉt. Taking expectations at time t− 1
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on both sides yields

Et−1[at+j ] = ρjEt−1[at] + (1− ρj)Et−1[ĉt]

= (1− ρj)ĉt−1 + ρj(ρat−1 + (1− ρ)ĉt−1)

= ρj+1at−1 + (1− ρj+1)ĉt−1 ,

the second equality follows from (13) and (14), the third from rearranging.

B.7 A Two-country Open Economy Model

The model in Section 2 can be extended to two countries. For each variable X of

the home country, denote X∗ the corresponding variable for the foreign country. The

interest rate equation (11) is modified to:

Rt = R∗t + ψ

{
e
Bt
Yt
−b̄ − 1

}
(26)

Let m and m∗ denote the population sizes of the home and foreign country respec-

tively.

An equilibrium is a set of choices {Ct, Nt, Bt, C
∗
t , N

∗
t , B

∗
t }
∞
t=0 and equilibrium in-

terest rates {Rt, R∗t }
∞
t=0 such that

mBt +m∗B∗t = 0

and the interest rate spread Rt −R∗t follows (26).

We assume that the two countries have the same steady state growth rate so in

steady state:

R = R∗ =
1

β
.

In the log-linearized version of this model, we replace the interest rate equations

for the home and the foreign countries, equation (20), by:

rt = r∗t + ψ · bt . (27)

Moreover, we need to add the linearization for the bond market clearing conditions:

mbt +m∗b∗t = 0 . (28)

It is straightforward to show that Proposition 1 generalizes to this model. There-

fore, for the standard parametrization in the literature, our main results can also be

obtained in a two country model.
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C Supplementary Material on Estimations

Here we present all results skipped in Section 4.

Variance Decomposition. Figure 8 shows the forecast error explained by each

shock for the model estimated for the Great Recession case.

Figure 8: Variance Decomposition of BLR at Different Horizons
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Notes: Percentage of forecast error explained by each shock.

Other shocks: Great Recession. For completeness, we report our estimated

transitory and noise shocks.

Figure 9 plots these shocks for the case of the Great Recession. In contrast to

the estimated permanent shocks shown in the body of the paper (p. 19), transitory

and noise shocks do not have any particular pattern. Figure 11 below plots these

shocks for Japan and the Great Depression. Similarly, these shocks do not have any

particular pattern either.

Parameter Estimates: Japan and Great Depression. The persistence

parameter ρ is estimated at 0.96 in the case of Japan, and at 0.94 in the case of

the Great Depression, quite similar to the one obtained for the Great Recession.

Both values imply persistent processes both for the permanent and the transitory

components of productivity. The standard deviation of productivity is estimated at

1.07% in the case of Japan, and at 1.80% in the case of the Great Depression. These

values are considerably larger than the ones obtained for the Great Recession. Given

the random walk Assumption (6) for productivity, these values imply a standard
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Figure 9: Smoothed Transitory and Noise Shocks, Great Recession
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Notes: Shocks estimated using a Kalman smoother on the Great Recession sample. The
observation equation is composed of the first differences of the logarithm of U.S. labor
productivity and consumption. The values for σε and ση are implied by the random walk
Assumption (6) for productivity. The units on the y-axis are percentages.

deviation for permanent technology shocks of 0.06% in the case of Japan, and of

0.09% in the case of the Great Depression, and a standard deviation for the transitory

technology shock of 1.05% in the case of Japan, and of 1.74% in the case of the Great

Depression. The standard deviation of noise shocks is also larger than obtained

before, 8.26% and 8.90% respectively, in part due to the larger standard deviation of

productivity growth σa.

Table 4: Parameter Estimates, Japan and Great Depression

Japan Great Dep.
Parameter Description Value s.e. Value s.e.

ρ Persistence tech. shocks 0.96 0.01 0.95 0.01
σa Std. dev. productivity 1.07 0.07 1.80 0.14
σε Std. dev. permanent tech. shock (implied) 0.04 – 0.09 –
ση Std. dev. transitory tech. shock (implied) 1.05 – 1.74 –
σν Std. dev. noise 8.26 3.91 8.90 3.14

Notes: ML estimates of the log-linearized state-space representation of the model. The observation equation is composed
of the first differences of the logarithm of labor productivity and consumption. Standard errors are reported to the
right of the point estimate. The standard deviations of the permanent and transitory shocks are implied by the random
walk Assumption (6) for productivity.
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Smoothed Permanent Shocks: Japan and Great Depression. The vari-

ance decomposition for these two cases (non reported) is similar to the one shown in

Figure 8. Figure 10 plots the estimated permanent shocks. In the case of Japan we

estimate, as in the case of the Great Recession. positive shocks in the first part of the

samples, and negative shocks later on. In the case of Japan, the positive shocks hit

roughly between 1980 and 1987. These estimated permanent shocks imply that we

should have observed a productivity acceleration and deceleration. This is shown in

Table 3. In the case of the Great Depression, we estimate only a few positive shocks

at the beginning of the sample (this is a feature of the data that we comment on in the

body.) Most importantly, we estimate negative shocks before the Great Depression

starts, which is consistent with the pre-Great Recession productivity growth decline

and the slow adjustment of beliefs about the future.

Figure 10: Smoothed Permanent Shocks, Japan and Great Depression
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Notes: Shocks estimated using a Kalman smoother on the Japanese sample, and on
the U.S. Great Depression sample. The observation equation is composed of the first
differences of the logarithm of labor productivity and consumption. The units on the
y-axis are percentages.
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Figure 11: Smoothed Transitory and Noise Shocks, Japan and Great Depression
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Notes: Shocks estimated using a Kalman smoother on the Japanese sample, and on the U.S. Great
Depression sample. The observation equation is composed of the first differences of the logarithm of
labor productivity and consumption. The units on the y-axis are percentages.

Figure 12: Model-Implied Ratio of Consumption-to-Productivity, Japan and Great Reces-
sion
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D Model with Investment

D.1 First-Order Conditions

Let Φt denote the Lagrange multiplier on the capital accumulation equation (17).

The first-order conditions that characterize the equilibrium are:

1. F.O.C in Bt:
1

Ct
= βRtEt

[
1

Ct+1

]
(29)
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2. F.O.C in Kt :

Φt = βE
[

1

Ct+1
αKα−1

t (At+1N)1−α + (1− δ)Φt+1

+
1

Ct+1

χ

2

(It+1 − δKt)
2

K2
t

+
1

Ct+1

χ

2

2δ (It+1 − δKt)

Kt

]
(30)

3. F.O.C in It:

Φt =
1

Ct

(
1 + χ

It − δKt−1

Kt−1

)
. (31)

D.2 Solution

Steady-State. The first-order conditions yields the following equations that de-

termine the steady-state of this economy:

βR = 1

and

αAKα−1 = β(1− δ)

and

Φ =
1

C
.

Log-linear Approximation. As in the baseline model, we work with the fol-

lowing normalized variables:

ct = log

(
Ct
At

)
− log

(
C

A

)
and

kt = log

(
Kt

At

)
− log

(
K

A

)
and

yt = log

(
Yt
At

)
− log

(
Y

A

)
and

nxt =
NXt

Yt
− NX

Y
,

and

bt =
Bt
Yt
− b̄ ,

and

rt = Rt −R.
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and

φt = log (ΦtAt)− log (ΦA) .

Using the normalized variables the production function is log-linearized as:

yt = α (kt−1 −∆at)

and the capital accumulation equation (17) is log-linearized as:

kt = (1− δ) (kt−1 −∆at) + δ (dt + it) .

Log-linearizing the F.O.Cs yields the following linear equations.

F.O.C. (29):

ct = −rt + Et [∆at+1 + ct+1]

F.O.C. (30):

ΦAφt

= βEt

[
−α∆at+1

A

C
α

(
K

A

)α−1

− ct+1
A

C
α

(
K

A

)α−1

+ (α− 1) kt
A

C
α

(
K

A

)α−1
]

+ βEt
[
(1− δ)ΦA (φt+1 −∆at+1) +

A

C
χδ (it+1 + ∆at+1 − kt)

]
Notice that from the steady-state equation, Φ = 1

C , this equation simplifies to

φt

= βEt

[
−α∆at+1α

(
K

A

)α−1

− ct+1α

(
K

A

)α−1

+ (α− 1) ktα

(
K

A

)α−1
]

+ βEt [(1− δ) (φt+1 −∆at+1) + χδ (it+1 + ∆at+1 − kt)]

F.O.C. in I (31):

ΦA(φt + dt) = −A
C
ct +

A

C
χ
I
A (it −∆at)− δKA kt−1

K
A

.

Again, because Φ = 1
C :

φt + dt = −ct + χδ (it −∆at − kt−1) .

From the definition of nxt

nxt =
Yt −G(It,Kt−1)− Ct

Yt
− Y −G(I,K)− C

Y
,
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which yields:

nxt = −G1

(
I

A
,
K

A

)
I

A
it
A

Y
−G2

(
I

A
,
K

A

)
K

A
(kt−1 −∆at)

A

Y
+
G(I,K)

Y
yt −

C

Y
ct +

C

Y
yt

= − I
Y
it +

G(I,K)

Y
yt −

C

Y
ct +

C

Y
yt .

= − I
Y
it +

I

Y
yt −

C

Y
ct +

C

Y
yt .

Using NXt we rewrite the budget constraint as

Bt−1 = NXt +QtBt .

After dividing by Yt, we obtain:

Bt−1

Yt−1

Yt−1

At−1

At−1

At

At
Yt

=
NXt

Yt
+Qt

Bt
Yt

so

bt−1 + b̄ (yt−1 −∆at − yt) = nxt + βbt − b̄β2rt .
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