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Abstract

Libor is an estimate of interbank borrowing costs computed daily from quotes submitted
by a �xed panel of banks. There is evidence suggesting that several banks manipulated these
rates in recent years by misreporting their borrowing costs. In this paper, I use structural
econometric methods from the empirical auctions literature to estimate a model of strategic
quote submission that identi�es banks' borrowing costs as well as their motives to misreport.
The structural estimation puts a lower bound on the value that Libor would have taken had
banks truthfully reported their borrowing costs. The model is also used to determine to what
extent misreporting was motivated by signaling or by banks' portfolio exposure to Libor. The
model is identi�ed even when there is unobserved heterogeneity in the form of a common cost
component that is known by all banks but unobservable to the econometrician, and that is
allowed to be persistent in time, even non-stationary. The only data used for identi�cation
are the banks' quotes. Therefore, the paper answers the question of how much information
about banks' borrowing costs can be inferred from their misreports, given a model of strategic
submission. Overall, I �nd that the estimated lower bound for the truthful Libor is always
above the published Libor, with an average deviation of 23 basis points (bp) at the worst of
the �nancial crisis. Moreover, the estimated bound is close to two other measures of interbank
borrowing costs that have been used previously to assess the extent of Libor manipulation.
Finally, the estimation results imply that sending signals of credit worthiness may be the main
driver of systematic misreporting.
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1 Introduction

On April 16th, 2008, the Wall Street Journal published an article suggesting that banks had been

underreporting their borrowing costs in the interbank market for unsecured funds, by submitting

quotes for the computation of Libor (London interbank o�er rate) below estimates of such costs

implied by credit default swaps (CDS) spreads. Libor is a measure of average costs of short-term

unsecured borrowing in the London interbank market. Before recent regulatory adjustments, it

was computed daily by Thomson Reuters, on behalf of the British Banking Authority (BBA), as a

trimmed mean of the quotes submitted by a �xed panel of large banks. Several banks have been

investigated in recent years for their alleged attempts to manipulate these rates. In May 21, 2015,

the Council on Foreign Relations reported on its website that banks had paid more than $9 billion

dollars in �nes and settlements with regulators globally, due to their involvement in the Libor rigging

scandal.1 According to rough estimates, manipulation of Libor may have cost around $6 billion to

issuers in the municipal-bond market,2 just to cite an example of the disruption it might have caused

in �nancial markets. Even after the manipulation scandal, Libor remains as the primary benchmark

for short term interest rates globally. According to a report issued by the Market Participants Group

on Reforming Interest Rate Benchmarks (2014), �nancial contracts with notional values adding up

to around 216.5 trillion dollars were pegged to Libor at the time of the report, including 97% of the

syndicated loans, 15% of the nonsecuritized residential mortgages, and 65% of the over-the-counter

US dollar-denominated interest rate swaps (see Du�e and Stein (2015) for a more detailed account

of the crucial role that Libor plays in �nancial markets around the world).

All the banks submitting Libor quotes hold billions of dollars worth of these loans, credits and

derivatives that are indexed to this benchmark. As a result, their returns are exposed to variation

in the benchmark rate, for the duration of the corresponding contracts. Also, Libor is used as a

measure of perceived credit risk in the banking sector. Therefore, a bank submitting Libor quotes

above the average could be seen as facing higher risks than others, which, in turn, might increase its

funding costs or even trigger a run, as well documented in Du�e and Stein (2015) and the references

1A more detailed account of the penalties that regulators imposed on banks can be found at:
http://www.cfr.org/united-kingdom/understanding-libor-scandal/p28729

2See Preston (2012) for a description of the impact of Libor manipulation on the municipal-bond market.
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therein. In fact, �nancial regulators, the academic literature and the press have all recognized that

sending signals of creditworthiness to the market, and bene�ting from exposure to the benchmark

were the two main drivers of Libor misreporting during the �nancial crisis. Section 2 provides a

description of these motives to submit quotes that do not accurately re�ect the underlying funding

costs.

Throughout the paper, I say a bank misreports its borrowing costs if it submits Libor quotes

that do not accurately re�ect them. Libor manipulation, on the other hand, refers to the act of

distorting the reference rate from the value that it would have had under truthful reporting. There

is empirical evidence suggesting that Libor misreporting was not limited to just a few isolated cases.

Abrantes-Metz, Villas-Boas, and Judge (2011) �nd that the US Libor rate violates Benford's Law,

a statistical regularity commonly observed in several data sets, suggesting anomalies in the quotes

submitted by banks. Abrantes-Metz, Kraten, Metz, and Seow (2012) fail to reject the null hypothesis

of no Libor manipulation during the period 8/9/2007 through 4/16/2008, when comparing Libor to

other benchmarks of average borrowing costs. However, they do �nd suspicious clustering patterns

in Libor quotes for the same period, as well as inconsistencies between the ordinal rankings of CDS

spreads and Libor quotes. Both results suggest that misreporting was a generalized practice, not

restricted to speci�c banks or dates. Cassola, Hortaçsu, and Kastl (2013) estimate the maximum

rates that banks are willing to pay for short-term collateralized loans at the liquidity auctions run by

the European Central Bank (ECB). They �nd that Euribor3 quotes are usually below the estimated

willingness to pay for secured loans during 2007 and 2008, even though Euribor quotes correspond

to interest rates on unsecured lending, and hence should include a risk premium. In several cases,

Euribor quotes are even bellow the banks' bids at the liquidity auctions, despite the fact that banks

strategically shade their bids. Similarly, Kuo, Skeie, and Vickery (2012) compare Libor quotes to

other measures of individual borrowing costs from 2007 to 2009. They use individual bids for funds

at the Federal Reserve term auction facility (TAF), as well as rates inferred from Fedwire payments

data, and �nd evidence of underreporting. In particular, they show that after March 2008 (when

Bear Stearns failed), Libor quotes frequently lie below matching TAF bids and term rates inferred

from Fedwire, and the frequency increased after the bankruptcy of Lehman Brothers, in September

3Euribor is the equivalent of Libor for the euro interbank market.
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2008. They also analyze changes in the spreads between Libor and other estimates of average costs

for unsecured funding, speci�cally, the New York Funding Rate (NYFR) and a Eurodollar deposits

rate published by the Federal Reserve, and show that during the period considered the spread is

negative and wider than in previous years. This suggests that if Libor was in fact manipulated, the

published rate underestimated banks' average borrowing costs during the �nancial crisis. In Section

3, I describe the behavior of these two spreads, paying special attention to the 2007 - 2010 period.

In this paper, I use structural econometric methods from the empirical auctions literature to

estimate a model of strategic quote submission that identi�es a set of parameters determining banks

incentives to misreport, as well as (the underlying distributions of) their borrowing costs. Based on

my estimates, I put a lower bound on the value that Libor would have taken, had banks truthfully

reported their borrowing costs. The only data used to estimate this lower bound on the truthful

Libor are the banks' quotes. Strikingly, it is above the published Libor during the whole period

considered, suggesting that Libor understates interbank borrowing costs in that period. Moreover,

it is closer than Libor to both the NYFR and the Eurodollar deposits rate, which is consistent with

the results of the aforementioned studies. The model also identi�es signaling and portfolio exposures

to Libor as distinct motives to misreport. The results suggest that the main driver of misreporting

during the �nancial crisis was an attempt to send signals of creditworthiness to the market.

Section 4 presents a model of quote submission where such process is analyzed as a Bayesian

game. Each day, each bank receives a private shock to its borrowing cost in the interbank market

and submits a quote to the regulator. The regulator computes a trimmed mean, after dropping

roughly the top 25% and bottom 25% of the quotes, and publishes the resulting reference rate,

as well as all the quotes submitted together with the identities of the submitting banks. Banks

interact strategically, they all potentially bene�t from manipulating the reference rate, given their

portfolio exposure to it, and from underreporting their private borrowing costs, to signal themselves

as creditworthy, adequately liquid �nancial institutions. But they also face potential costs from

misreporting, since there is a risk of being detected by the regulator. The banks make their strategic

decisions simultaneously and independently. Explicit cooperation is not allowed in the model, but

implicit coordination may arise as long as banks know they share similar incentives. The individual
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borrowing costs are a�liated, in the sense of Milgrom and Weber (1982), but I impose a speci�c

type of a�liation that seems natural in the present context. I assume that the borrowing cost of

each bank is the sum of a private an a common component. Under this same assumption, Du�e

and Dworczak (2014) propose a robust benchmark rate that is based on observed transactions.

Unlike them, I assume further that the common component is known by all banks but unobservable

to the econometrician (or the regulator computing the benchmark). This introduces unobserved

heterogeneity, analogous to the one studied by Li, Perrigne, and Vuong (2000) and Krasnokutskaya

(2011) in the context of procurement auctions estimation.

Section 5 presents identi�cation results, borrowing methods from these two papers. Roughly, the

identi�cation relies on the assumption that, once the unobserved heterogeneity is controlled for, the

quotes observed each day correspond to the banks' equilibrium strategies of the same static game,

for repeated independent realizations of the private costs. A contribution of this paper is that I allow

the realizations of the common cost component to be dependent, that is, to follow a persistent (even

non-stationary) process, relaxing an implicit assumption in both Li, Perrigne, and Vuong (2000) and

Krasnokutskaya (2011). In Section 6, I argue that allowing for persistence is relevant, not just as a

natural generalization of their method, but in order to provide a more accurate model of the series

involved. In the present context, assuming either independence or stationarity might result in largely

inaccurate estimates, given the high persistence of these time-series (at least during September,

2007 to May, 2010), as suggested by an augmented Dickey-Fuller test performed on both Libor and

the TED Spread (Libor - Three-month Treasury Bill rate). Consequently, Section 7 proposes an

estimation method that is suitable for the case with dependent, highly persistent unobserved common

costs. Similarly to a result in Krasnokutskaya (2011), the quotes inherit the additive structure of the

borrowing costs. Moreover, quotes can be expressed as the sum of the common cost component and

an independent individual term. A necessary step in the estimation procedure consists of removing

the persistent common cost component to obtain normalized quotes that are independently drawn

from the same distribution each day (although from di�erent distributions for each bank).

The model in Section 4 is based on previous work by Snider and Youle (2012), Chen (2013) and

Youle (2014). Snider and Youle (2012) assume complete information and, as a result, banks in their
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model know with certainty if their own quotes would be included by the regulator in the computation

of the trimmed mean. Their focus is to propose a manipulation test, based on characteristics of the

distribution of quotes predicted by the model. They compare the observed distribution of quotes

to a "plausible joint distribution of true borrowing costs" and �nd strong evidence of manipulation

driven by the exposure of banks' portfolios to Libor. Their model does not include signaling as

a likely motive for manipulation. Chen (2013) assumes symmetric independent private costs and

adds signaling to the banks' objective function. In his model, all banks are ex ante identical and

they draw mutually independent private signals (borrowing costs) from the same distribution. He

proves the existence of a Bayesian Nash equilibrium (BNE) in pure non decreasing strategies and

analyzes how the mechanism in place provides incentives to rig Libor. In particular, he studies how

those incentives change under alternative hypothetical distributions of private costs with di�erent

levels of dispersion. However, he does not propose an estimation procedure to recover such costs. A

related literature studies alternative mechanisms that could reduce the incentives for misreporting

or prevent manipulation. See Du�e and Stein (2015) and the references therein.

Youle (2014) adds ex ante heterogeneous banks to the model, allowing them to di�er in their

incentives to misreport and in the distributions of their borrowing costs. He conducts a structural

estimation of the parameters of the model capturing the portfolio based incentives to manipulate

Libor. However, his strategy does not identify the signaling motives for misreporting and, thus, he

cannot recover the manipulation free Libor. The model I propose in this paper (Section 4) generalizes

the one in Chen (2013), and coincides with Youle (2014) in the speci�cation of the potential costs and

bene�ts from submitting quotes di�erent than the borrowing costs (the utility or payo� functions

of the banks). Nonetheless, there are crucial di�erences in the way I model the process followed by

borrowing costs, that are necessary for a valid identi�cation and estimation of the model parameters.

Speci�cally, as already mentioned, I assume borrowing costs include a common component that is

known by all banks, but not observable to the econometrician. As I show in Section 5, the key for

the identi�cation of the quotes distributions is to remove this common component, by applying an

extension of the deconvolution method in Li, Perrigne, and Vuong (2000) and Krasnokutskaya (2011).

Consequently, the identi�cation strategy proposed here di�ers considerably from the previous work,
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which mainly relies on additional data sources (CDS spreads) and the use of instrumental variables.

To the best of my knowledge, such di�erences allow me to be the �rst to separately identify portfolio

exposures and signaling as the two main drivers of misreporting, and to recover a lower bound for the

truthful Libor that accounts for both potential sources of manipulation. It is worth emphasizing that

I obtain identi�cation from banks' Libor quotes alone, without relying on any other information on

their borrowing costs. The fact that this lower bound is closer than the published Libor to the NYFR

and the Eurodollar deposits rate, as shown in Section 8, supports the validity of the estimation.

In Section 7, I propose a method to estimate the quotes that banks would have submitted

every day, if the common cost was just a constant (a counterfactual scenario with no unobserved

heterogeneity), and banks had been subject to the same private costs shocks that they actually

experienced during each of the periods for which the estimation is performed. I call these the

normalized quotes. Once the common cost component is removed from the quotes, two additional

assumptions are su�cient to separately identify the parameters of the model that determine the

two drivers of misreporting. First, I assume that, for each bank, the idiosyncratic components of

the borrowing costs are drawn from a distribution with the same mean an median, which is weaker

than assuming that such distribution is symmetric. In principle, there are no reasons to expect that

the private costs of any given bank would lie more frequently either above or below their mean.

Second, I assume that the means are the same for all banks in the US Dollar Libor panel (but I

allow the higher moments of these distributions to di�er across banks, in particular their variance).

It is important to keep in mind that, for each bank, the private cost is the daily di�erence between

the interest rate that it pays for an average-size loan from other bank and the mean interbank

rate (the common cost). Hence, I am assuming that over longer periods, no bank in the panel

signi�cantly deviates on average from the overall panel's mean in terms of the interest rates that

it pays on interbank loans. With truthful reporting, the distributions of the normalized quotes

would inherit these properties of the private costs, just because, for all banks, these quotes would

be equal to their private costs plus a constant common term. However, as shown in Section 8, the

estimated distributions of the normalized quotes do not have the same means across banks and, for

a given bank, do not generally have the same mean and median. In the model, these alterations of
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the normalized quotes distributions could only be explained by banks misreporting their borrowing

costs due to signaling and portfolio exposures. Moreover, since there are two characteristics of the

quotes distributions to be rationalized for each bank, both parameters in the corresponding pay-o�

function of each bank are separately identi�ed. In the Appendix, I report an alternative estimation

that does not use the assumption that the means of the private costs are equal for all banks, but

relies on additional data, besides the quotes, to obtain an approximate measure of the common

cost. The results regarding the relative importance of signaling and portfolio exposures as drivers

of misreporting are robust to a relaxation of this assumption.

Section 8 presents the results of the estimation, using data on the USD three-month Libor from

09/03/2007 to 05/17/2010. To begin with, I establish precisely how much we can learn about banks'

incentives and borrowing costs from their quotes alone, that is, without relying on any other data

sources. In particular, I �nd that a lower bound on the common cost component is identi�ed, and

thus a bound on the value of Libor under truthful reporting can be inferred from quotes alone,

given the model of strategic reporting. The estimated lower bound is always above the published

Libor, suggesting that Libor underestimates banks' average borrowing costs during this period,

which con�rms the results in Kuo, Skeie, and Vickery (2012). In the aftermath of Lehman Brother's

bankruptcy, the estimated lower bound is, on average, 23 basis points (bp) higher than the published

Libor. The former is also closer than the latter to NYFR and the Eurodollar deposits rate, which

suggests that the estimated truthful Libor is a better measure of interbank borrowing costs than

the published rate. After providing estimates for all the parameters in the payo� functions of the

banks, in particular those that determine whether misreporting is motivated by portfolio exposures

to Libor or signaling, I found that most of the deviation between Libor quotes and borrowing costs

is explained by banks' attempts to send signals of credit worthiness and adequate liquidity to the

market. Thus, previous studies that have focused exclusively on the portfolio channel have ignored

the main potential reason of manipulation. A robustness check reported in the Appendix suggests

that this result does not depend on the assumption that the means of the private cost components

are the same for all banks.

Additionally, the estimated parameters show substantial heterogeneity in banks' portfolio ex-
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posures to Libor, both in time and across di�erent banks. For instance, in the period beginning

with the bankruptcy of Lehman Brothers, there are two banks in the panel for whom the portfolio

incentives seem to imply an average deviation of at least -15bp of their reported quotes from their

borrowing costs, while for others there is no statistically signi�cant evidence that they misreported

their costs to bene�t from their exposure to Libor. The estimates also suggest large changes in the

incentives to misreport through time. A plausible explanation (although, just a conjecture) is that

the high level of uncertainty characterizing �nancial markets at the peak of the crisis, facilitated

Libor misreporting by decreasing the perceived likelihood, and thus the expected costs, of being

detected.

2 Bank Motives to Misreport

Libor in an average of interbank o�er rates, computed daily for di�erent currencies and maturities,

based entirely on quotes submitted by a �xed panel of banks that participate in the corresponding

markets. The published reference rate is a trimmed mean of the quotes submitted by banks, after

dropping, roughly, the 25% highest and 25% lowest quotes. The exact number of quotes that are

dropped changes with the currency and the size of the panel. Each panel consists of approximately

sixteen leading banks trading in London in the corresponding currency.4 Each day, each bank in the

panel submits a quote answering the following question: �At what rate could you borrow funds, were

you to do so by asking for and then accepting interbank o�ers in a reasonable market size just prior

to 11 am?� Banks are thus expected to truthfully report their own borrowing cost. After receiving

all quotes, the regulator publishes the reference rate, and also the set of all quotes submitted by

banks with their respective identities.5

At least three general motives for misreporting have been highlighted in the academic literature

4There might be some variation in the number and the identities of the banks in the panel when long periods,
comprising several years, are considered. Also, for some currencies the panel is smaller. In particular, there were
sixteen banks in the USD Libor panel from September 2007 to May 2010, the period used for the estimation of the
model, although there was a change in its composition in January 2009.

5From 1985 to 2013, the British Banking Authority (BBA) was responsible for the administration of Libor. As
a consequence of the manipulation scandal, in January 31, 2014, administration was handed over to Intercontinental
Exchange Benchmark Administration (IBA). Since then, some changes have been implemented following the recom-
mendations contained in Wheatley (2012). In particular, the individual quotes are now published three months after
the submission date.
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and the �nancial press (see, among others, Du�e and Stein (2015), Mollenkamp and Whitehouse

(2008), Abrantes-Metz, Kraten, Metz, and Seow (2012) and Gandhi, Golez, Jackwerth, and Plazzi

(2014)). To begin with, interest rates on short-term loans outside the interbank market are indexed

to Libor. As a result, net borrowers in this markets would have a clear incentive to manipulate the

published rate downwards and the opposite would hold for net lenders. Also, trillions of dollars in

derivatives are pegged to these rates and banks hold such assets in their portfolios, exposing them to

variation in the rates. For example, issuers in the municipal bonds market hedge their Auction Rate

Securities (ARS) with interest rate swaps pegged to Libor. In those swap contracts, municipalities

agree to pay �xed rates to the banks and receive in exchange a �oating rate that is a �xed fraction of

Libor. The interest rates on ARS are expected to rise with borrowing costs elsewhere, but if Libor is

kept arti�cially low, banks would bene�t from the swap. Furthermore, banks might use their Libor

quotes to send signals to the market about their creditworthiness, liquidity, and more broadly, their

�nancial soundness, specially during times of general distress. As argued in Du�e and Stein (2015),

during the �nancial crisis, a bank that had seemed less creditworthy than its competitors could have

faced even higher funding costs and even risked a run. Correspondingly, the model presented in

Section 4 assumes that banks potentially bene�t from reporting Libor quotes below their borrowing

costs to protect their reputation, but also from manipulating the reference rate published by the

regulator in a direction consistent to their portfolio exposure to it. For banks with a long exposure

this two incentives counteract, while for banks with a short exposure, they reinforce each other.

3 Descriptive Empirical Evidence

For a period of more than two years overlapping the �nancial crisis, Libor seems to lie below other

measures of borrowing costs for unsecured funds in the interbank market. Following Kuo, Skeie, and

Vickery (2012), I compare the three-month USD Libor to two such measures: the New York Funding

Rate (NYFR), provided by ICAP (an interbank broker), and a Eurodollar deposits rate (ICAP's

Eurodollar), also computed by ICAP and published by the FED on its H.15 report. NYFR is also

based on a survey of participants in interbank markets. Contrary to Libor, the individual quotes

are not reported and the identity of the contributors answering the survey is unknown. Besides,
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contributors are asked to report estimates of funding rates for a representative A1/P1 institution,

rather than their own borrowing costs. ICAP's Eurodollar is computed from quotes provided by

brokers that serve as intermediaries in the interbank market. Hence, these brokers observe the terms

(rates and quantities) of some transactions within a regular day.

Figure (1) shows the spreads between Libor and these two rates. From the left panel, it is clear

that Libor had followed ICAP's Eurodollar rare closely since its inception until late 2007, mostly

lying slightly above it. However, for the next three years, Libor was considerably lower than ICAP's

Eurodollar rate, reaching a striking spread of almost 200bp (two percentage points) at the peak of

the crisis. The right panel focuses on the period 2007 - 2012, and adds the Libor - NYFR spread

to the comparison. Unfortunately, NYFR was not introduced until June 2, 2008. For a few months

before Lehman Brothers �led for bankruptcy protection, the Libor - NYFR spread was, on average,

no more than 1.5bp. However, this di�erence increases drastically after September 15, 2008 and

remains large and negative for at least one year. The Libor - ICAP's Eurodollar spread shows

some interesting patterns during the �nancial crisis too. It becomes negative and relatively large in

magnitude around August 2007, when BNP Paribas announced that it had suspended redemption

in two funds invested in subprime mortgages. Then it jumps drastically with Lehman's collapse,

reaching and unprecedented lowest historical value. As the crises evolves, this spread narrows but

it remains negative, and large in magnitude compare to its pre-crisis behavior.

The empirical �ndings presented in this section suggest that banks might have been able to ma-

nipulate Libor during the crisis, pushing it below their average borrowing costs. However, this does

not constitute a proof of manipulation, and there might be other explanations for why the spreads

show this peculiar patterns. Kuo, Skeie, and Vickery (2012) , explore some of these alternatives, all

of them related to di�erences in the way each rate is computed and to institutional aspects of the

markets involved. For instance, the trading sessions in London (Libor) and New York (NYFR) do

not take place simultaneously and market segmentation prevents funds to �ow freely between the

two markets. Despite these di�erences, I show in Section 8 that the estimated lower bound on the

counterfactual truthful Libor (absent any misreporting) is closer too NYFR and ICAP's Eurodollar

rate, providing additional evidence that the published Libor underestimated average borrowing costs
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Figure 1: Spreads between Libor and other measures of borrowing costs
H15 is a measure of Eurodollar deposits rates computed from quotes provided by ICAP's brokers that have access
to data on actual interbank transactions. The New York Funding Rate (NYFR) is based on a survey of contributors
that participate in the market for unsecured funds. Clearly, during the �nancial crisis Libor lies below these other two
measures of borrowing costs for unsecured funds. Four dates are highlighted with vertical lines in the right panel. (a)
09/03/2007: First trading day after BNP Paribas suspended redemption in two funds heavily invested in subprime
mortgages. (b) 09/15/2008: Lehman Brothers �led for bankruptcy protection. (c) 12/31/2008: The BBA changed
the composition of the Libor panel, Scottish HBOS was replaced by french Societa Generale. (d) 05/17/2010: A
somewhat arbitrary date chosen based on an apparent sudden and persistent change in the Libor - ICAP's Eurodollar
spread trend.

during the �nancial crisis. In the next section we review what could have been the incentives for

individual banks to misreport their borrowing cost and to attempt manipulation of the reference

rate.

4 The Model

There is a �xed set of banks, N = {1, ..., N}, that participate in the game. Each day t, bank

i ∈ N observes its own borrowing costs in the interbank market for unsecured funds, si,t, for a

given currency and maturity. The regulator asks the banks to report their cost, and in response

each submits a quote ri,t. For all i 6= j, si,t and sj,t are assumed to be independent, conditional on

a common cost component µt that is common knowledge. The distributions of the costs might be

di�erent for di�erent banks, and are common knowledge too.
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4.1 Banks' Incentives and Costs A�liation

At a given day t, all banks submit their quotes simultaneously, to maximize their expected utility

from participating in the static game, conditional on µt. After observing all the quotes, the regulator

computes the reference rate r̃t (r1,t, ..., rN,t), and reveals r̃t and the whole vector of individual quotes

to the public. Banks could bene�t from the game in two di�erent ways: by manipulating the

reference rate (in a direction that is consistent to their portfolio exposure), and from sending signals

to the market of their creditworthiness. Correspondingly, their utility functions include a linear

gain on the level of the reference rate r̃t (portfolio), and a linear term on the di�erence between

the reference rate and their quote (signaling). Additionally, a cost component that is quadratic in

the di�erence si,t − ri,t re�ects credibility concerns and the expected costs from the likelihood of

being detected submitting quotes di�erent than their costs. Formally, bank i's expected utility from

submitting quote ri,t after observing both si,t and µt is:

ui (ri,t; si,t, µt) = E

αir̃t (ri,t, r−i,t)︸ ︷︷ ︸
portfolio

+ vi (r̃t (ri,t, r−i,t)− ri,t)︸ ︷︷ ︸
signaling

− γi (si,t − ri,t)2︸ ︷︷ ︸
cost

|µt

 (1)

where vi > 0 and γi > 0, but αi is allowed to have an arbitrary sign re�ecting the possibility

that banks' exposure to the reference rate might be long or short. All these constants are common

knowledge, thus the only source of uncertainty are the private components of other banks' costs.

The reference rate r̃t is a function of the vector of quotes submitted by all banks and is de�ned by:

r̃t =
1

Ñ

n̄−1∑
k=n+1

r
(k)
t (2)

where r
(k)
t is the k-th smallest element of the vector of quotes (r1,t, ..., rN,t). n and n̄ are cut-o�s set

by the regulator, and known by the banks, determining which quotes are left out from the trimmed

mean.

Assuming a speci�c functional form for banks' utility might raise some concerns on how accu-

rately the model captures their incentives. Nevertheless, the linear gain on the portfolio exposure to
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the reference rate r̃t seems quite reasonable. Suppose, for simplicity, a bank has a single asset that

pays periodic coupons of A0r̃t. Clearly, the change in the bank's cash �ow due to an increase in r̃t

of 1bp (0.01 percent points) would be constant, regardless of the level of the reference rate. Besides,

a single bank cannot cause the reference rate to deviate largely from the value it would have under

truthful reporting, since extreme quotes would not be included in the computation of the reference

rate. Regarding the signaling and cost components of the utility function, they can be interpreted

as a �rst and second order approximations to more general speci�cations of the respective gains and

costs. Higher order e�ects might be plausible, but they should not be the main drivers of banks'

quotes.

The borrowing costs are allowed to be a�liated in the sense of Milgrom and Weber (1982), but

I assume a speci�c type of a�liation. The cost of each bank (si,t) is determined by a common

component µt, known to all banks, and a private shock εi,t. Each day t, εi,t is drawn independently

from the same distribution Fi with mean zero.

Assumption 1. For all i ∈ N and all t, si,t = µt + εi,t. µt is common knowledge but εi,t is only

privately known.

In their work on the design of robust interest rates benchmarks, Du�e and Dworczak (2014)

also assume that private borrowing costs are the sum of a common component and a zero mean

idiosyncratic shock. Unlike them, I also assume that µt is common knowledge, but not observed by

the econometrician.

Assumption 2. For a given i, εi,t
iid∼ Fi with E [εi,t] = 0, and for any t and j 6= i, εi,t and εj,t are

independent. The support of Fi is a closed interval [ε, ε̄] on the real line, assumed to be the same for

all i. The distributions Fi, for all i, are also common knowledge.

Notice that the independence of si,t and sj,t, conditional on µt, follows directly from Assumptions

1 and 2. Also, from Assumption 2, let S (µ) = [µ+ ε, µ+ ε̄] be the support of si,t, conditional on

µt. S (µ) is the set of all possible types for each player i, given µ.

Assumption 3. For all i, the random variable εi,t is absolutely continuous with respect to the

Lebesgue measure.
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The last assumption guarantees that both εi,t and si,t have Lebesgue integrable densities on their

support.

4.2 Bayes Nash Equilibrium

The focus of this section is to describe the Bayes Nash equilibrium of the static game. Speci�cally,

I will show that there is a BNE equilibrium in pure, strictly increasing, bounded strategies. To do

so, let us start by characterizing the best response of any bank i, ρi, to a set of bounded strategies

ρ−i = {ρj : j 6= i} followed by all other players. Given ρ−i, bank i's best response is de�ned by

ρi (si) = argmax
ri∈R

E
[
αir̃ (ri, r−i) + vi (r̃ (ri, r−i)− ri)− γi (si − ri)2 |µ

]
(3)

for all si ∈ S (µ) (here I drop the time sub-index for convenience).

We need to make sure that ρi (si) is well de�ned for all si ∈ S (µ), that is, that the corresponding

maximization problem does have a solution. Given that all other strategies ρ−i are bounded, it fol-

lows from equation (2) that E [r̃ (ri, r−i) |µ, si] attains a minimum as a function of ri, say at r
6. Then,

in the set (−∞, r), the derivative of the the utility function ui in (3) simpli�es to ∂ui(ri,;si,,µ)
∂ri

= −vi+

2γi (si − ri). Therefore, ∂ui∂ri
> 0 for all ri such that ri < min

(
si − vi

2γi
, r
)
. It follows that ρi (si) ≥

min
(
si − vi

2γi
, r
)
. Similarly, E [r̃ (ri, r−i) |µ, si] attains a maximum at some r̄ and thus, ∂ui

∂ri
< 0

for all ri > max
(
si − vi

2γi
, r̄
)
. Then ρi (si) ≤ max

(
si − vi

2γi
, r̄
)
. It follows that the continuous

function ui (·; si,t, µt) attains a maximum in the compact set
[
min

(
si − vi

2γi
, r
)
,max

(
si − vi

2γi
, r̄
)]
.

Moreover, since S (µ) = [µ+ ε, µ+ ε̄], min
(
µ+ ε− vi

2γi
, r
)
≤ ρi (si) ≤ max

(
µ+ ε̄− vi

2γi
, r̄
)
, for all

si ∈ S (µ), and hence ρi is bounded.

Moreover, when thought of as a function of both the action ri and the type si, the utility

function ui satis�es the single crossing property (SCP) of Milgrom and Shannon (1994), for any set

of strategies ρ−i, as can be veri�ed by direct di�erentiation (in fact, ∂2ui
∂si∂ri

= 2γi > 0). Therefore,

the best response ρi is non-decreasing. Notice that we have not ruled out the possibility that there

is more than one solution to problem (3), for some si. Hence, in principle, ρi might be set-valued

6An explicit equation for E [r̃ (ri, r−i) |µ, si] in terms of the distributions of all other player's actions can be found
in the Appendix.
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or, equivalently, a correspondence. By Berge's Theorem of the Maximum, we know ρi is non-

empty, upper hemicontinous and compact valued. Moreover, in the Appendix I show that, as a

correspondence, ρi is not decreasing in a very strong sense, i.e, for all s, s′ ∈ S (µ), with s < s′,

max ρi (si) ≤ min ρi (s′i).

The utility function of bank i satis�es SCP, in particular, when all other banks use nondecreasing

strategies. Therefore, it also satis�es the single crossing condition for games of incomplete informa-

tion of Athey (2001) and it follows from her Theorem 2 that the game has a Bayes Nash equilibrium

in pure non-decreasing strategies. Moreover, since ui satis�es SCP, regardless of the strategies used

by all other players, it follows that in any pure strategy Bayes Nash equilibrium of this game the

strategies are non-decreasing.

A set of necessary conditions for (ρ1, ..., ρN ) to be a vector of equilibrium strategies can be

obtained from the �rst order conditions of the utility maximization problem of the banks (3). For

any i ∈ N and si ∈ Si, if ρi (si) is a solution (best response) to the strategies of all other banks ,ρ−i,

then

(αi + vi)
∂E [r̃ (ρi (si) , ρ−i (s−i)) |µ, si]

∂ri
− vi + 2γi (si − ρi (si)) = 0 (4)

where ρ−i (s−i) = {ρj (sj) : j 6= i} and E [·|µ, si] denotes the conditional expectation operator from

the perspective of bank i, that is, when si is known (non-stochastic), but sj , for all j 6= i, is considered

a random variable, with known conditional distribution.

As noted by Chen (2013), the derivative ∂E[r̃(ri,r−i)|µ,si]
∂ri

can be expressed in terms of the proba-

bility (as perceived by bank i) that its quote would be included in the trimmed mean de�ning the

reference rate, that is, the probability that r(n) ≤ ri ≤ r(n̄) (see the Appendix for a proof of this

statement). That is,

∂E [r̃ (ri, r−i) |µ, si]
∂ri

=
1

Ñ
Pi

{
r(n) ≤ ri ≤ r(n̄)|µ

}
(5)

Let φi (ri|µ) denote such probability. Notice that it depends on the vector of strategies of all other

banks and the distributions of their costs. Besides, it is not necessary to condition on si given that

borrowing costs are independent, conditional on µ.

Since applying a�ne transformations to the utility functions in equation (1) would not change
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the (equilibrium of) the game, I apply the normalization γi = 1
2 , without loss of generality.

7 The

expression for the necessary conditions in (4) simpli�es to:

βiφi (ρi (si) |µ)− vi + (si − ρi (si)) = 0 (6)

for all i ∈ N and all si ∈ S (µ), where βi = αi+vi
Ñ

.

For all bank i, its equilibrium strategy ρi satis�es equation (6). It follows that, the corresponding

system of functional equations (one for each bank), characterizes any Bayes Nash equilibrium of the

game. Unfortunately, for an arbitrary vector of distributions (F1, ..., FN ), this system cannot be

solved analytically for the vector of equilibrium strategies (ρ1, ..., ρN ). In other words, we cannot

obtain explicit analytical expressions for the equilibrium strategies. Roughly, the reason is that the

functions φi (·|µ) depend on ρ−i and the distributions(F1, ..., FN ) in a non-trivial way, in fact, it can

be shown that:

φi (·|µ) =
n̄−2∑
k=n

∑
|M | = k

i /∈M

∏
j∈M

Fj

(
ρ−1
j (ri)− µ

) ∏
j∈Mc/{i}

(
1− Fj

(
ρ−1
j (ri)− µ

)) (7)

where ρ−1
j denotes the inverse of the function ρj , and the inner sum is performed over all sets of

banks of size k, not including bank i.

However, each equation in the system of �rst order conditions can be easily inverted as follows:

si = ri − βiφi (ri|µ) + vi (8)

Such inversion is crucial for proving some of the properties of the Bayes Nash Equilibrium. Besides,

it also provides the key for the identi�cation of the model, following a strategy similar to Guerre,

Perrigne, and Vuong (2000), Li, Perrigne, and Vuong (2000), Li, Perrigne, and Vuong (2002), and all

the subsequent literature in structural estimation of auctions, as will be shown below in the section

7Equivalently, since αi, vi and γi cannot be separately identi�ed, I rede�ned αi and vi to be measured as fractions
of 2γi.
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on identi�cation. In fact, together with Proposition 1, it allows us to write explicit expressions for

the inverse equilibrium strategies.

Proposition 1. For each bank i, the equilibrium strategy ρi is strictly increasing at all si ∈ S (µ)

The proof of Proposition 1 is straightforward. For all si ∈ S (µ), ρi (si) satis�es equation (6), and

thus (8). Moreover, (8) provides an explicit expression for the inverse function of the equilibrium

strategy, si = ρ−1
i (ri). Since ρi is nondecreasing and invertible, it must be strictly increasing in

S (µ).

5 Identi�cation Strategy

Ideally, we would want the model in section (4) to identify the distributions of the borrowing costs

(at least conditional on µ) and, if possible, for every bank i and every day t, the speci�c borrowing

cost si,t it faced. If we could recover all these costs, we would be able to compute the daily average

borrowing cost of the N banks in the panel, which is precisely the value that the reference rate would

have under truthful reporting (the manipulation-free Libor). Unfortunately, for reasons that will be

made clear below, this goal is too ambitious to be feasible. However, we can identify a lower bound

on the manipulation-free Libor, which is quite useful given the evidence suggesting that Libor was

manipulated downwards during the period considered. In fact, as shown in Section 8, the estimated

lower bound is always above the published rate during this period, which is consistent with the

previous evidence.

Consider, as a benchmark, the �rst price sealed bid auction with independent private values

analyzed in Guerre, Perrigne, and Vuong (2000), where the private values of all bidders at each

auction are indeed identi�ed from the set of bids submitted by all bidders. As opposed to their case,

here the inverse equilibrium strategies (8) depend on parameters (βi and vi), that are unknown to

the econometrician. Moreover, the costs are not independent across banks, but only conditionally

independent given a common component µ, that is common knowledge for the banks, but unobserv-

able to the econometrician. Our setup is closer to that of Campo (2012), who admits heterogeneous

risk aversion, and Krasnokutskaya (2011), who allows for unobserved auction heterogeneity. In the
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former, the risk aversion coe�cients of all bidders are identi�ed by imposing strong conditions on the

distributions of their private values (they are all assumed to have the same marginal distributions).

In the latter, the distributions of the private and the common cost components (in a procurement

auction) are identi�ed, but the speci�c realizations of these costs that correspond to the observed

bids, are not. A common assumption when estimating static games is that at each repetition of

the game, the observable set of actions chosen by the players correspond to the same equilibrium

(conditional on the unobserved heterogeneity). Such an assumption is hard to sustain if the game

under consideration has multiple equilibria. For the time being, I will implicitly assume uniqueness

to obtain the identi�cation results. In the Appendix I present the results of numerical simulations

suggesting that the BNE of the game is in fact unique.

The set of inverse equilibrium strategies (8) expresses the private costs as functions of the ob-

servable quotes and their conditional distributions. In particular, the probability that bank i's

quote is included in the computation of the reference rate when it reports ri, i.e. φi (ri|µ) =

Pi
{
r(n) ≤ ri ≤ r(n̄)|µ

}
, is clearly a function of ri and the distributions of all other banks' quotes

conditional on µ.

Suppose µt was constant for all t in our sample (taking an arbitrary value µ̄). Then banks would

be playing the exact same static game at each t, and each observed quote ri,t would be a draw from

their equilibrium distribution, implied by the distribution of costs and the equilibrium strategies. In

such case, the distribution of the equilibrium quotes could be estimated directly from the observed

quotes, for each bank i participating in the game. Moreover, we could also estimate the probabilities

φi (ri,t|µ̄), from the estimated distributions of the quotes. Additionally, if vi and βi were identi�ed,

for all i ∈ N , then we could recover the private costs observed by each bank, at each t, from the

inverse equilibrium strategies:

si,t = ri,t − βiφi (ri,t|µ̄) + vi (9)

Unfortunately, this conclusion follows from highly unrealistic assumptions. In particular, as I will

argue below, the data strongly suggests that the unobserved common cost component µt is not

constant, its realizations are not drawn independently each day, and it might even follow a non-

stationary process.
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5.1 Unobserved Game Heterogeneity

A di�culty when controlling for µt in the estimation of the model is not only that it is unobservable

to the econometrician, but also that it changes the game that banks are playing each day, since their

payo�s and the distributions of their costs are all functions of µt. In a few words, µt introduces

unobserved game heterogeneity. Still, following an argument analogous to that in Haile, Hong, and

Shum (2003) and Krasnokutskaya (2011), Proposition 2 states that the equilibrium strategies (when

thought of as functions of both the purely private costs εi,t and the common cost µt), are additively

separable into a common component and a private quote component.

Proposition 2. Let ρj (εi; 0) be the equilibrium strategies of all banks j ∈ N , when µ = 0. If the

strategy of each bank j 6= i, when µ 6= 0, is

ρj (εj ;µ) = µ+ ρj (εj ; 0) (10)

then i's best response is also ρi (εi;µ) = µ+ ρi (εi; 0).

The proof of Proposition 2 is left for the Appendix. It consists of directly verifying that µ +

ρi (εi; 0) maximizes i's expected utility, when all other players are using the strategies in (10). An

immediate corollary of Proposition 2 is that, if
(
ρ0

1, ..., ρ
0
N

)
is a BNE of the game with µ = 0, then

(ρ1, ..., ρN ), with ρi = ρ0
i +µ for all i ∈ N , is a BNE of the game with µ 6= 0. Again, analogous results

for the �rst price sealed bid auction are proved in Haile, Hong, and Shum (2003) and Krasnokutskaya

(2011).8

Let εi,t be the private cost component of bank i at time t, and qi,t = ρi (εi,t; 0) be the normalized

equilibrium quote that bank i would submit, when its purely private cost is εi,t, and µt = 0. It

follows that , for all i ∈ N ,

ri,t = µt + qi,t (11)

8The normalization µ = 0 and the fact that E [εi,t] = 0, for all i ∈ N , imply that we are allowing for negative
borrowing costs, which seems unrealistic. However, such normalization is completely arbitrary and I chose zero just
for mathematical convenience. I could have chosen any other �xed value µ̄ such that µ̄ + ε > 0, to avoid negative
borrowing costs, and all the identi�cation results would remain the same.
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In particular, for any two banks i1, i2 ∈ N ,

ri1,t = µt + qi1,t

ri2,t = µt + qi2,t

Notice that qi1,t and qi2,t are each a function of εi1,t and εi2,t, respectively, and hence they are

independent. Moreover, from the point of view of the econometrician, the random variable µt is also

independent of qi1,t and qi2,t. The goal now is to recover the unknown distributions of µt, qi1,t and

qi2,t from the observable distributions of ri1,t and ri2,t. Under the additional assumption that µt is

independently drawn from the same distribution at all t, this is the same deconvolution problem

introduced by Li and Vuong (1998), in the context of measurement error with multiple indicators,

and later studied by Li, Perrigne, and Vuong (2000) and Krasnokutskaya (2011) for the estimation

of procurement auctions with a common cost component. All of them base their results on a Lemma

proved by Kotlarski (1966).

An additional di�culty here is that we want to allow µt to be drawn from a di�erent distribution

at each t and we do not want to assume that these draws are independent across time, hence the

assumptions of Kotlarski's Lemma no longer hold. In particular, Li, Perrigne, and Vuong (2000)

and Krasnokutskaya (2011) provide identi�cation results for the case with i.i.d. µt, that require

that at least two bids and the identities of the corresponding bidders are observable. I will not

reproduce their results here. Instead, I will show identi�cation in the case where µt is not necessarily

stationary and the draws are not necessarily independent. The additional assumption necessary for

identi�cation is that at least three quotes, with the identities of the banks, are observable.

Proposition 3. If the characteristic functions of the normalized quotes qi1,t, qi2,t and qi3,t are

nonvanishing everywhere, their distributions are identi�ed, up to an additive constant, from the

joint distribution of (ri1,t − ri2,t, ri3,t − ri2,t).
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Proof. Notice that (11) implies

ri1,t − ri2,t = −qi2,t + qi1,t

ri3,t − ri2,t = −qi2,t + qi3,t

where qi1,t, qi2,t and qi3,t are mutually independent and, thus, these two equations satisfy the assump-

tions of Kotlarski's Lemma. Let Ψ denote the joint characteristic function of (ri1,t − ri2,t, ri3,t − ri2,t)

and Ψ1, its partial derivative with respect to its �rst argument. Also, let Φqi1
, Φ−qi2 and Φqi3

denote

the characteristic functions of qi1,t, −qi2,t and qi3,t, respectively. Then,

Φ−qi2 (s) = exp

(ˆ s

0

Ψ1 (0, u)

Ψ (0, u)
du− isE [qi1 ]

)
Φqi1

(s) =
Ψ (s, 0)

Φ−qi2 (s)
(12)

Φqi3
(s) =

Ψ (0, s)

Φ−qi2 (s)

Since the characteristic function of a random variable uniquely determines its distribution, it follows

that the distributions of qi1 − E [qi1 ], qi2 − E [qi1 ] and qi3 − E [qi1 ] are all identi�ed.

It is worth noticing that the constant term E [qi1 ] in the proof of Proposition 3 is not identi�ed.

That is precisely why we only achieve identi�cation of the normalized quotes up to an additive

constant. Still, Proposition 3 is useful for the identi�cation of the model, because it removes the

unobserved heterogeneity from the game and, most importantly, from the equilibrium quotes.

Furthermore, if µt was i.i.d. we could directly apply the results in Li, Perrigne, and Vuong

(2000) and Krasnokutskaya (2011) to show that the distributions of the observable quotes (up to

a constant), but also the distribution of µt, are all identi�ed. In Section 6 I show some empirical

evidence suggesting that µt is highly persistent and might not even be stationary.

5.2 Identi�ed Parameters

Besides unobserved game heterogeneity, an additional challenge for the identi�cation of the distribu-

tions of each bank's borrowing costs are the unknown preference parameters βi and vi in the inverse
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equilibrium strategies (8). I will show now that, under an additional assumption on the distribution

of the purely private costs εi,t, we can identify βi, vi and the distribution of εi,t, for all i ∈ N .

Consider a hypothetical game with µ = −E [qi1 ].9 Substituting terms in (8), we obtain

−E [qi1 ] + εi = qi − E [qi1 ]− βiφi (qi − E [qi1 ] | − E [qi1 ]) + vi

for all i ∈ N . From Proposition 3, we know that the distribution of qi − E [qi1 ] is identi�ed

for all i ∈ N , since we observe the quotes and identities of all banks. Hence, the probabilities

φi (qi − E [qi1 ] | − E [qi1 ]) are also identi�ed for all values of qi − E [qi1 ] in its support. Moreover,

taking expectations,

− E [qi1 ] = E [qi]− E [qi1 ]− βiE [φi (qi − E [qi1 ] | − E [qi1 ])] + vi (13)

and subtracting the latter equation from the former,

εi = qi − E [qi1 ]− (E [qi]− E [qi1 ]) (14)

−βi (φi (qi − E [qi1 ] | − E [qi1 ])− E [φi (qi − E [qi1 ] | − E [qi1 ])])

Again, the distributions of the random variables at the right hand side of equation (14), that is,

qi − E [qi1 ] and φi (qi − E [qi1 ] | − E [qi1 ]), are identi�ed and, thus, their means, E [qi] − E [qi1 ] and

E [φi (qi − E [qi1 ] | − E [qi1 ])], are identi�ed as well. Equation (14) is the key for the identi�cation

of βi and the distribution of εi, Fi. However, an additional restriction must be imposed on Fi to

achieve identi�cation.

Assumption 4. For all i ∈ N , the median of εi is zero, which is denoted by Med (εi) = 0.

By Assumption 2, E [εi] = 0, then Assumption 4 only requires some symmetry of the distri-

butions of the purely idiosyncratic components of the borrowing costs. Under such assumption,

the parameters βi and vi, as well as the distribution of εi are identi�ed, as stated in the next two

9Again, the mathematical possibility of having negative borrowing costs is just a consequence of the particular
normalization chosen, but all the results hold under a di�erent normalization that implies a zero probability of having
negative rates (see footnote 8).
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propositions.

Proposition 4. Under Assumptions 1-4, the preference parameter βi is identi�ed, for all i ∈ N ,

from the distributions of the normalized quotes. Moreover,

βi =
Med (qi − E [qi1 ])− (E [qi]− E [qi1 ])

φi (Med (qi − E [qi1 ]) | − E [qi1 ])− E [φi (qi − E [qi1 ] | − E [qi1 ])]
(15)

The proof of Proposition 4 is left for the Appendix. It relies on the fact that equation (14) is a

translation of the inverse equilibrium strategy of bank i in the game with µ = −E [qi1 ] and, thus, it

is strictly monotone as a function of qi. The existence of a unique q∗i such that εi = 0 in equation

(14) guarantees the existence of a unique βi such that Med (εi) = 0.

Proposition 5. For all i ∈ N , the distribution of εi, Fi, and the deviation of the private signaling

parameters from their mean, vi − v̄, are identi�ed.

Identi�cation of Fi follows in a straightforward way from Proposition 4 and equation (14), since all

the distributions and the constants on the right hand side of this equation are identi�ed. Regarding

vi − v̄, we can take the intraday means in equation (13) and subtract the result from (13) again to

obtain:

−E [qi1 ] = E [q̄]− E [qi1 ]− E
[
β̄φ
]

+ v̄

−E [qi1 ] = E [qi]− E [qi1 ]− βiE [φi (qi − E [qi1 ] | − E [qi1 ])] + vi

vi − v̄ = E [q̄]− E [qi] + βiE [φi (qi − E [qi1 ] | − E [qi1 ])]− E
[
β̄φ
]

(16)

where

E [qi]− E [q̄] = E [qi − E [qi1 ]]− 1

N

∑
i∈N

E [qi − E [qi1 ]]

and β̄φ = 1
N

∑
i∈N (βiφi (qi − E [qi1 ] | − E [qi1 ])). Hence, all the terms in the right hand side are

identi�ed from the distributions of qi − E [qi1 ].

Unfortunately v̄ is not identi�ed, but we can still obtain conservative estimates of the individual

signaling parameters by introducing an additional assumption.

Assumption 5. min {vi : i ∈ N} = 0
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Suppose a given bank, say k, has the lowest signaling incentive to underreport its borrowing cost

or, equivalently, the highest perceived cost of doing so. Under 5, the only reason why this bank

would misreport is due to its portfolio exposure to the reference rate. Moreover, since vi − v̄ is

identi�ed for all banks, and vk = 0, by assumption, it follows that v̄ and vi are also identi�ed, for

all i ∈ N . Notice that if vk was any positive constant c, then we would be underestimating every

vi by c. Thus, after imposing 5, we identify lower bounds for all the signaling parameters vi, as the

next proposition states.

Proposition 6. For all i ∈ N , a lower bound on its private signaling parameter vi is identi�ed.

Notice that I have not provided any argument showing that the daily realizations of the common

cost component µt are identi�ed. In fact, the identi�cation strategy described in this section consists

of removing the game heterogeneity due to µt from each instance of the game, so they can be

considered as independent occurrences of the same game. That allows us to identify the distributions

of the normalized quotes, but the corresponding normalization implies that the results are invariant

to additive constants a�ecting all costs equally. Nevertheless, in Section 7, I propose a method

to recover (with low-variance noise, though) the whole set of purely private costs components, εi,t,

observed by all banks, for each day in the sample. Furthermore, combining such noisy estimates of

the idiosyncratic shocks with estimates of the parameters shown to be identi�ed in this section, I

propose a (noisy) estimator of a lower bound of the common cost component µt. In Section 8, I show

that the estimated lower bound always lays above the reported Libor, and mostly in-between two

other measures of average borrowing costs already described in Section 3. The estimation provides

further evidence that if banks succeeded in manipulating Libor during the period considered, they

set it below their true average borrowing costs.

6 Non-Stationary Unobserved Game Heterogeneity

Section 5 contains identi�cation results that do not require the common borrowing cost µt to be i.i.d.,

either the distribution might change or the draws could be dependent across time. Correspondingly,

Section 7 will present an estimation procedure that is valid even if µt is not i.i.d. To the best of
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my knowledge, the particular case with non-stationary heterogeneity has not been considered before

in the empirical auctions literature, although it is just a natural extension of the model with i.id.

heterogeneity, as already shown. In this section, I argue that allowing for non-stationary µt is not

just a generalization that is worth considering for theoretical completeness. Indeed, it might actually

better capture a key feature of the game under scrutiny. Thus, assuming a stationary or i.i.d. µt

might compromise the precision of the resulting estimates.

Let us recall, from equation (11), that the quotes are additively separable in a common and a

private component. Moreover, the private component is indeed stationary. That is, from the point

of view of the econometrician each quote ri,t = µt + qi,t, where µt is the unobservable common cost

component and qi,t is drawn independently from the same distribution, at each day t. Therefore,

Libor (r̃t) can be also decomposed as r̃t = µt + q̃t, where q̃t = 1
Ñ

∑n̄−1
k=n+1 q

(k)
t . Notice that q̃t is also

stationary, since it is just a function of the vector of normalized quotes, and it is also independent

of µt. It follows that µt is stationary if and only if Libor is stationary. However, some empirical

evidence suggests that Libor might not be stationary, or at least is highly persistent, when the period

used for the estimation of the model is considered.

A simple eyeball analysis of the three-month USD Libor time series from 09/03/2007 to 17/05/2010

(Figure 2) suggests very high persistence. Moreover, an augmented Dickey-Fuller test does not re-

ject the null hypothesis that Libor has a unit root. Similarly, Rose (1988) fails to reject the null

hypothesis that nominal interest rates have unit roots, using quarterly data from several countries,

and monthly data on Treasury bills (T-bills) returns for the US. However, such results have been

disputed by other authors (e.g., Garcia and Perron (1996) argue that regime shifts might explain why

the unit root hypothesis cannot be rejected when long periods including the shifts are considered).

A related question would be if the risk premium implicit in Libor also seems to exhibit non-

stationary, or highly persistent, behavior. Let us then consider the TED spread, which is de�ned

as the di�erence between the three-month USD Libor and the interest rate on three-month T-bills.

Since the T-bills are considered risk-free, TED is a measure of credit risk. If TED were stationary,

we could simply express the whole model (in particular, the individual quotes) in deviations from

the three-month T-bill interest rate, and we would get rid of the possibility of a unit root in the
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Figure 2: Three_Month USD LIBOR: 09/03/2007 - 17/05/2010
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Figure 3: TED Spread: 3M USD Libor - 3M T-BILL Interest Rate
There is statistical evidence that the TED spread behaves as a non-stationary process during the �nancial crisis. An
augmented Dickey-Fuller test (without drift, no trend term included and one lag) does not reject the null hypothesis
that TED follows a random walk. The test statistic is 0.553 and the 10% critical value for rejection of the null is -2.57
(for a one-sided test). The result is robust to other speci�cations of the test.

common cost component. Nevertheless, once again an augmented Dickey-Fuller test fails to reject

the null hypothesis that TED has a unit root (when conducted using daily data from the 09/03/2007

- 17/05/2010 period). Figure (3) shows the corresponding TED spread time series and also includes

the results of the test. The test statistic is 0.553 and the 10% critical value for rejection of the null

is -2.57.

Despite the evidence presented in this Section, the question of whether interest rates or risk

premia have unit roots its out of the scope of this paper. My purpose here is just to argue that

assuming independence or stationarity of the unobserved common cost component might result in
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highly inaccurate estimates, given that both Libor and the TED spread exhibit very high persistence

during the period considered.

7 Estimation

The model can be estimated using a procedure based on the deconvolution result presented in

Section 5. Very similar estimation algorithms are proposed in Li and Vuong (1998), Li, Perrigne,

and Vuong (2000) and Krasnokutskaya (2011). Roughly, the idea would be to use the empirical

characteristic function of (ri1,t − ri2,t, ri3,t − ri2,t) to estimate Ψ and its derivative Ψ1. Then, the

formulas in (12) can be used to obtain estimates of the characteristic functions Φqi1
, Φ−qi2 and

Φqi3
. Subsequently, the densities of qi1 , qi2 and qi3 can be estimated by applying the inverse Fourier

transform to the estimates of their characteristic functions. As a result, we would obtain estimated

densities (distributions) of the normalized quotes qi1−E [qi1 ], qi2−E [qi2 ] and qi3−E [qi3 ]. Given that

we observe the quotes of all banks, with their identities, this procedure could be used to estimate

the distributions of the normalized quotes for all banks in the panel. From there, the estimation of

the identi�ed parameters is straightforward, since Section 5 contains explicit expressions for βi and

vi − v̄, as functions of the distributions of the normalized quotes.

Li, Perrigne, and Vuong (2000) establish conditions under which the estimators of the densities

just described are uniformly consistent. However, this type of deconvolution estimators are known

to have slow convergence rates, as shown by Li and Vuong (1998), even under strong assumptions

about the smoothness of the distributions involved. Besides, the empirical characteristic function

must be smoothed to guarantee the existence of the integral in the inverse Fourier transform, which

requires the econometrician to make some choices regarding smoothing functions and parameters.10

Broadly speaking, the moral is that for short samples (say, less than 500 observations) the density

estimators would have non-negligible noise and would be highly sensitive to the choice of a particular

smoothing method.

10See Ch. 5 in Horowitz (2009) for a general description of the deconvolution estimator and a discussion on the
slow rate of convergence of the corresponding density estimator.
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7.1 Alternative Estimation Procedure

As an alternative, I propose an estimation method that has a noise term that does not vanish

asymptotically, but still has low variance relative to the variance of the quotes, as I show below.

From Section 5, under maintained assumptions, the quotes are additively separable in a common

component and a purely private component. That is, ri,t = µt+qi,t, for all i ∈ N and all t. Therefore,

r̄t = µt + q̄t, where r̄t = 1
N

∑
i∈N ri,t and q̄t is analogously de�ned. Now, let ξt = q̄t − E [q̄], be the

deviation of the intraday average of the normalized quotes from its (long run) mean. It follows that

ri,t − r̄t = qi,t − E [q̄]− ξt

where, by construction, E [ξt] = 0 and V ar [ξt] = V ar [q̄t] = 1
N2

∑
i∈N V ar [qi,t]. The idea is to use

the observable deviation of the individual quotes from their intraday average, ri,t−r̄t, as (moderately)

noisy measures of the normalized quotes qi,t − E [q̄].11

By subtracting the intraday mean from the observed quotes we are removing the unobserved

heterogeneity almost entirely, except for the remaining mean-zero error term ξt, that has a variance

one order of magnitude lower than the variance of the normalized quotes. For each day t in the

sample, and each bank i in the panel, the observed ri,t − r̄t is an independent draw from the

distribution of the normalized quote qi−E [q̄] (plus noise −ξt). Thus, the entire sample {ri,t − r̄t}Tt=1

can be used to estimate the (empirical) distribution of qi − E [q̄], for each i ∈ N . Section 5 shows

that the distributions of qi − E [qi1 ] are identi�ed. Equivalently, the distributions of qi − E [q̄] are

identi�ed, since qi − E [q̄] = qi − E [qi1 ] − 1
N

∑
i∈N E [qi − E [qi1 ]]. Thus, all the results concerning

(the distributions of) qi−E [qi1 ] also hold for qi−E [q̄], after substituting E [qi1 ] for E [q̄] everywhere.

In other words, in Section 5.2, we could have considered the hypothetical game with µ = −E [q̄]

(instead of µ = −E [qi1 ]) and all the results would hold.

An advantage of this alternative estimation procedure, compared to the one based on deconvolu-

tion, is that it identi�es (with low-variance mean-zero error) the actual realizations of the normalized

quotes for each t, and not just their distributions. That is, suppose that at day t, bank i observes

11Even though E [ξt] = 0, it should be noted that ξt cannot be interpreted as classical measurement error, since it
is correlated with qi,t.
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the cost si,t = µt + εi,t, for a speci�c realization of εi,t, and correspondingly submits a quote ri,t.

Then, ri,t − r̄t identi�es (with low-variance noise) the quote that bank i would have submitted in

a counterfactual game with µt = −E [q̄], if it had faced the cost si,t = −E [q̄] + εi,t (for the same

realization of εi,t). Thus, for each t, (r1,t − r̄t, ..., rN,t − r̄t) is an estimate of the vector of realized

normalized quotes, corresponding to the actual purely private costs observed by banks, (ε1,t, ..., εN,t),

under the normalization µt = −E [q̄].

Let q̃i,t = r1,t − r̄t, it follows from the previous argument that we have the whole sample

{(q̃1,t, ..., q̃N,t)}Tt=1 of realized normalized quotes, available for the estimation of the model. In fact,

an estimator of φi (ri,t|µt), the probability that bank i's quote is included in the computation of

the reference rate, can be easily obtain from it. Intuitively, these probabilities do not really depend

on the common cost component µt (despite the notation), due to the additive separability of the

quotes, only on the distributions of the purely private components, and thus can be computed from

the normalized quotes. Formally,

φi (ri,t|µt) = Pi

{
r

(n)
t ≤ ri,t ≤ r(n̄)

t |µt
}

= Pi

{
r

(n)
t − µt ≤ ri,t − µt ≤ r

(n̄)
t − µt

}
= Pi

{
q

(n)
t ≤ qi,t ≤ q(n̄)

t

}
= Pi

{
q

(n)
t − E [q̄] ≤ qi,t − E [q̄] ≤ q(n̄)

t − E [q̄]
}

where Pi denotes the probability from the point of view of bank i, that is, when µt is observed and

the quotes of all other banks are regarded as random variables with known distributions. r
(n)
t and

r
(n̄)
t (q

(n)
t and q

(n̄)
t ) are order statistics of the vector of all (normalized) quotes. Hence, a natural

estimator of φi (ri,t|µt) would be:

φ̂i (ri,t|µt) =
1

T

T∑
τ=1

1
(
q̃(n)
τ ≤ q̃i,t ≤ q̃(n̄)

τ

)
(17)

However, to increase the e�ciency of φ̂i (ri,t|µt), I use a resampling method based on Hortaçsu

(2000) and Hortaçsu and McAdams (2010). The procedure works as follows. Fix any bank i, and

30



for each other bank j 6= i, take Ts draws with replacement from the sample {q̃j,t}Tt=1 of normalized

quotes. Let qsj,τ denote the τ -th of such draws. Then, build Ts possible scenarios for bank i, that is

Ts vectors of normalized quotes,
{
qs−i,τ

}Ts
τ=1

that the other banks could have submitted, given the

distribution of their normalized quotes, which is known by bank i in equilibrium. Finally, for each

ri,t estimate the probability φi (ri,t|µt) by

φ̂i (ri,t|µt) =
1

T s

T s∑
τ=1

1
(
qs(n)
τ ≤ q̃i,t ≤ qs(n̄)

τ

)
(18)

With an estimate of φi (ri,t|µt) at hand, the preference parameter βi could then be estimated

using the sample counterpart of the expression for βi in Proposition 4. However, below I propose

a di�erent estimator that is bounded by the inequalities in (19) in order to guarantee that the

estimated equilibrium strategies are, in fact, well de�ned functions of the costs. Suppose, for now,

that we have such an estimate β̂i, for all i ∈ N . Then, the private cost component observed by each

bank i at each date t in the sample, εi,t can be estimated by

ε̂i,t = q̃i,t −
1

T

T∑
t=1

q̃i,t − β̂i

(
φ̂i (q̃i,t| − E [q̄])− 1

T

T∑
t=1

φ̂i (q̃i,t| − E [q̄])

)

which is the empirical counterpart of equation (14). Notice that φ̂i (q̃i,t| − E [q̄]) = φ̂i (ri,t|µt), as

de�ned in equation (17). Similarly, an estimate of vi − v̄, the signaling parameter of bank i's utility

function, is given by

v̂i = − 1

T

T∑
t=1

q̃i,t + β̂i
1

T

T∑
t=1

(
φ̂i (q̃i,t| − E [q̄])− 1

N

∑
i∈N

β̂iφ̂i (q̃i,t| − E [q̄])

)

the empirical counterpart of equation (16). Moreover, lower bounds on each vi can be obtained from

5 by letting the lowest one of all vi's be equal to zero or, equivalently, by setting:

v̂i = v̂i −min {v̂i : i ∈ N}

With such lower bounds at hand, we can even estimate a lower bound for the whole process
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{µt}Tt=0 of the common cost components, since µt = ri,t − βiφi (ri,t|µ̄) + vi − εi,t, from 8, and we

either observe or can estimate all the terms at the right hand side of this expression. Clearly, an

estimate for this lower bound is given by

µ̄t =
1

N

N∑
i=1

(
ri,t − β̂iφ̂i (q̃i,t| − E [q̄]) + v̂i − ε̂i,t

)

7.2 Estimation of βi

The identi�cation of βi relies on the assumption Med (εi) = 0. In fact, Section 5 shows that under

such assumption, βi can be explicitly expressed as a function of the distributions of the normalized

quotes. Therefore, we should be able to de�ne a point estimator of βi that is a function of the

estimated distributions of the normalized quotes, regardless of the method used to obtain the latter.

I propose such an estimator in this section, but before I derive a result of the model that will prove

to be useful in the estimation of βi, since it put bounds on the values of βi that are consistent with

the optimality of the observed quotes ri,t.

As previously shown, for all si ∈ S (µ), the optimal quote ρi (si) satis�es

si = ρi (si)− βiφi (ρi (si) |µ̄) + vi

Assuming further that the best response ρi is di�erentiable
12, it follows that, for all si ∈ S (µ)

dρi (si)

dsi
=

(
1− βi

dφi (ρi (si) |µ)

dri

)−1

Since ρi is strictly increasing in S (µ), dρi(si)dsi
> 0 and thus 1 − βi dφi(ρi(si)|µ)

dri
> 0, for all si ∈ S (µ).

Therefore, for all optimal ri, in particular, for any equilibrium quote ri,

1− βi
dφi (ri|µ)

dri
> 0 (19)

12I assume di�erentiability of the best response functions only for notational convenience, but the bounds on βi can
also be derived from weaker assumptions using only one-sided derivatives.
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or, equivalently,

βi < 1/
dφi (ri|µ)

dri
if
dφi (ri|µ)

dri
> 0 (20)

βi > 1/
dφi (ri|µ)

dri
if
dφi (ri|µ)

dri
< 0

Now let µ = 0, and de�ne two sets of normalize quotes Q+
i and Q−i by,

Q+
i =

{
qi ∈

(
q
i
, q̄i

)
:
dφi (qi)

dqi
> 0

}

and

Q−i =

{
qi ∈

(
q
i
, q̄i

)
:
dφi (qi)

dqi
< 0

}
It follows that,

1/inf
qi∈Q

−
i

(
dφi(qi)
dqi

)
≤ βi ≤ 1/sup

qi∈Q
+
i

(
dφi(qi)
dqi

)
(21)

These inequalities put bounds on the values of βi that rationalize the observed (normalized) quotes.

It is possible, though, that the set Q−i (Q
+
i ) is empty for some banks. That is, it might be the case

that some banks never choose a quote such that the derivative of the probability that such quote

is included in the computation of the reference rate is negative (positive). In such case the lower

(upper) bound is just −∞ (∞).

We have shown so far, then, that under Assumptions 1-4, a set of distributions of the normalized

quotes is rationalized by the model in Section 4 only if βi lies within the bounds in (21), for all i ∈ N ,

and, more strongly, only if βi satis�es equation (15) in Proposition 4. Clearly, any βi that satis�es

(15) also meets the inequalities de�ning these bounds. However, despite the point identi�cation

result, the bounds are still useful for estimation because, in a �nite sample, the corresponding point

estimate could lie outside the interval de�ned by the estimated bounds. In principle, we could de�ne a

criterion function for the estimation of βi that penalizes both deviations from the sample counterpart

of (15) as well as some measure of distance to the interval de�ned by the bounds. However, any

violation of the bounds would imply that some of the observed quotes are not optimal, which

contradicts the assumptions of the model. Therefore, to obtain estimates that are consistent with
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the assumption that all observed quotes correspond to the BNE of the game, I de�ne an estimator

of βi that always lies within (estimators of) the bounds in (21).

Consequently, we �rst need some estimators of the bounds. For the estimation of dφi(qi)dqi
, I apply

a standard two-point �nite di�erence formula to the estimate φ̂i (q̃i,t| − E [q̄]) at each observed

normalized quote q̃i,t. For brevity, let me denote this estimate φ̂
′
i (q̃i,t). Then I estimate the sets Q+

i

and Q−i as

Q̂+
i =

{
q̃i,t ∈

[
q̂
i
, ˆ̄qi

]
: φ̂′i (q̃i,t) > 0

}
and

Q̂−i =
{
q̃i,t ∈

[
q̂
i
, ˆ̄qi

]
: φ̂′i (q̃i,t) < 0

}
where q̂

i
= min {q̃i,t : t = 1, ..., T} and ˆ̄qi = max {q̃i,t : t = 1, ..., T} are just the minimum and the

maximum normalized quotes observed in the sample. The corresponding estimators of the lower and

upper bounds, denoted β̂lbi and β̂ubi , respectively, are:

β̂lbi =


1/min

qi∈Q̂
−
i
{φ̂′i(q̃i,t)} if Q−i 6= ∅

blbT if Q−i = ∅

and

β̂ubi =


1/max

qi∈Q̂
+
i
{φ̂′i(q̃i,t)} if Q+

i 6= ∅

bubT if Q+
i = ∅

for some constants blbT < 0 and blbT > 0 that grow unboundedly (in absolute value) with the sample

size T .

Again, since Med (εi) = 0 is the key assumption for the identi�cation of βi, the idea is to �nd a

value β̂i in the interval
[
β̂lbi , β̂

ub
i

]
that minimizes the squared median of the sample of private shocks

to the borrowing costs implied by the inverse equilibrium strategies, and the observed distributions

of the normalized quotes.
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For any b ∈
[
β̂lbi , β̂

ub
i

]
, let

εi,t (b) = q̃i,t −
1

T

T∑
t=1

q̃i,t − b

(
φ̂i (q̃i,t| − E [q̄])− 1

T

T∑
t=1

φ̂i (q̃i,t| − E [q̄])

)

The estimator just proposed can be formally de�ned as

β̂i = argmin
b∈[β̂lbi ,β̂ubi ]

(Med {εi,t (b) : t = 1, ..., T})2 (22)

which is a minimum distance estimator.

Instead of relying on its asymptotic distribution, we use bootstrapping to estimate its variance

and to perform inference, as described in the Appendix.

8 Results

The model in Section 4 is estimated using only three-month USD Libor quotes, for three di�er-

ent sample periods covering the �nancial crisis: (i) 09/03/2007 - 09/14/2008, (ii) 09/15/2008 -

12/31/2008 and (iii) 02/09/2009 - 05/17/2010. (i) corresponds to the period in between BNP

Paribas' announcement and Lehman's bankruptcy. (ii) Starts the day Lehman �led for bankruptcy

and goes until the end of 2008, when the BBA made a change in the composition of the USD Libor

panel.13 Finally, (iii) extends until May 2010, when there seems to be a sudden and persistent

change in the behavior of Libor, relative to other measures of average borrowing costs in interbank

markets. The main criterion to choose these periods is that at the reference dates there is an appar-

ent structural change in borrowing costs, or there are reasons to expect changes in banks' incentives

to misreport (see Figure 1). Within each period, we estimate a lower bound for each realization

of the common cost component, the daily idiosyncratic cost shocks faced by each bank, and all

the parameters in the utility function of the banks. It is worth emphasizing that the common cost

component is precisely what Libor is meant to capture. Thus, we recover a lower bound on the

13Since banks are ex-ante heterogeneous, and all the parameters in their utility functions are common knowledge, a
change in the Libor panel implies a new game structure. Therefore, I separately estimate the model before and after
this change.
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truthful Libor, that is, the value that Libor should have taken if all banks had truthfully reported

their borrowing costs. In order to estimate the corresponding parameters, the potential bene�ts for

the banks from manipulating Libor or misreporting their borrowing costs, and the expected costs

from untruthful reporting, are held constant for each period. Hence, the corresponding estimates

are, roughly, averages of these possibly time varying quantities. In principle, the model could be

estimated separately with data from more, but shorter periods, to capture more subtle changes in

those parameters, at the cost of decreasing the precision of the estimators. Instead, I choose as

reference dates for splitting the sample, two events that are well known for having caused large

disruptions in interbank markets (BNP Paribas and Lehman) and another one that changed a main

feature of the game (i.e., the set of banks in the panel).

8.1 Estimation of the Borrowing Costs

The estimates of the common cost component µt reported in this section provide an estimated

lower bound for the value that the Libor should have had, if all banks had truthfully reported

their borrowing cost. Since most of the previous literature have found that if banks succeeded in

manipulating Libor during the period considered here, they actually pushed it downwards, most

likely the following results are conservative estimates of the extent of such manipulation. Figure

4 illustrates these results. The left panel shows the daily estimated spread between Libor and

the common cost component. According to these estimates, Libor always lies below the common

cost, con�rming the results of other studies, with an average spread of -23bp at the worst of the

�nancial crisis, reaching a maximum absolute deviation of 32bp on 09/24/2008, only seven days

after Lehman's bankruptcy. However, there is no strong evidence of manipulation in the period

before Lehman, when the average lower bound of the spread is above -2bp. Finally, for the period

starting on 02/09/2009, the average spread is -6pb, and it displays very low daily variation. The

right panel compares the estimated common cost to two other measures of average borrowing costs

in the interbank market, already described in Section 3. On 82% of the days after 06/02/2008,

when ICAP started publishing the NYFR, our estimated truthful Libor lies between the other two

measures, and is consistently closer to the NYFR. This suggests that, after Lehman's bankruptcy,
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Figure 4: Spreads between Libor and the Estimated Average Borrowing Costs
The left panel shows the spread between Libor and the estimated lower bound for the common cost component µt
(our measure of the counterfactual truthful Libor). The two highlighted dates are 09/15/2008, when Lehman Brothers
�led for bankruptcy protection, and 12/31/2008, when the BBA changed the composition of the Libor panel. I have
no data from 01/01/2009 to 02/09/2009. At the worst of the crisis, Libor was below the estimated average borrowing
costs of the banks in the USD Libor panel by more than 30bp. 95% con�dence intervals are shown in gray dotted
lines.
The right panel compares the estimated common cost component to two other measures of average borrowing costs
already described in Section 3 and Figure 1. On 82% of the days after 06/02/2008, when the NYFR became available,
our estimated truthful Libor lies between NYFR and H15 (Eurodollar Deposits Rate).

NYFR was a more accurate measure of average costs in the interbank market than the reported

USD 3M Libor. Moreover, it is an indication that the Libor - NYFR, and Libor - H15 Eurodollar

deposits rate spreads could be interpreted as providing evidence of manipulation, despite the caveats

put in place by Kuo, Skeie, and Vickery (2012).

8.2 Incentives to Misreport

As previously shown, we recover the whole time series of the common cost component µt (daily

lower bounds) and all the realizations of the daily idiosyncratic shocks εi,t. As a result, we can also

obtain lower bounds for the true daily borrowing cost of each bank, si,t = µt + εi,t, as well as for the

deviations of their Libor quotes from these borrowing costs, rit − si,t. Furthermore, the di�erence

between a bank's quote and its funding cost, at time t, can be separated into two components, one

that captures the deviation due to the bank's portfolio exposure to Libor and another that measures

misreporting as motivated by signaling. In fact,

rit − si,t =
αi

Ñ
φi (ri,t|µt)︸ ︷︷ ︸
Portfolio

+
vi

Ñ
φi (ri,t|µt)− vi︸ ︷︷ ︸
Signaling

(23)
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Therefore, after identifying vi and αi, we can estimate to what extent misreporting of borrowing costs

corresponded to each of these two types of incentives. Table 1 contains estimates of the respective

terms in equation (23), for each bank. Even though we can estimate the whole time series of these two

expressions, I only report their averages for each of the three periods in which the sample is divided.

The estimates show substantial heterogeneity among banks. Again, it seems reasonable to obtain

such heterogeneity in banks' portfolio exposure to Libor, given the large range of derivatives that are

pegged to the rate. In fact, Gandhi, Golez, Jackwerth, and Plazzi (2014) �nd considerable variation

in such exposure, both among banks and through time, as measured by equity return sensitivity to

Libor changes. Considering that the parameters vi and αi measure the bene�ts from misreporting

relative to the expected costs of being sanctioned by the regulator, a possible explanation for the

heterogeneity in signaling are di�erences in the perceived costs of misreporting (which depend on

the expected probability of being detected) and changes on this perception through time.

For most banks signaling seems to be the main driver of systematic misreporting, in all three

periods. Clearly, period (ii) displays the largest deviations of bank's quotes from their borrowing

costs. According to these estimates, in period (ii) signaling alone is responsible for di�erences of

approximately 20bp, on average, and this number is only a lower bound. In contrast, during the

same period, for most of the banks, the di�erences due to portfolio exposures are lower than 5bp

(in magnitude). Notable exceptions are Citibank (-16bp) and Lloyds Bank (-15bp). For the other

two periods, the indications are less clear. In contrast, for period (i) there is no strong statistical

evidence of misreporting. In this period, the largest estimated deviation due to signaling is -3bp

(JPM), and the di�erences attributable to portfolio exposures are all below 1bp. Finally, in period

(iii) the portfolio incentives remain low, but there is a persistent e�ect of the signaling incentives

from period (ii), with a deviation of at least 5bp, on average, between banks' borrowing costs and

their reported quotes.

In the Appendix, I report a robustness check based on an alternative estimation of the model

that do not imposes the assumption that the private costs distributions have the same mean for all

banks. Instead, I estimate these possibly di�erent means, but I restrict the parameter v associated

with signaling to be the same for all banks. In this version of the model, an additional measure of the
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(i): 09/032007 - 09/14/2008 (ii): 09/14/2008 - 12/31/2008 (iii): 02/09/2009 - 05/17/2010

Signaling Portfolio Signaling Portfolio Signaling Portfolio

BOA -2.7* 0.2 -29.5* 1.8* -6.9* 0.7*

BTMU -1.3* 0.5* -13.9* 2.4* -0.9* 0.5*

Barclays 0.0 0.5* 0.0 3.7* -4.0* -2.1*

Citibank -2.1* -1.0* -15.9* -15.6* -7.8* 0.1

Credit Suisse -0.4 -0.7* -13.2* 1.2 -1.7* -2.8*

Deutsche -2.1* 0.1 -19.0* -0.7 -8.5* -1.0*

HBOS -0.6 -0.5* -7.4* -5.1* -7.8* -1.3

HSBC -2.4* -0.6* -30.8* 1.8* -10.3* -0.1

JPM -2.8* 0.1 -47.7* -0.9* -7.2* 1.2*

Lloyds -2.3* 0.2* -16.3* -14.8* 0.0 -0.1

Norinchukin -0.6* 0.3* -19.4* 3.1* -0.8* -3.0*

RBC -1.6* -0.3 -25.2* 1.6 -0.6 -0.8*

RBS -2.2* -0.1 -11.5* -1.8* -8.5* 0.6*

Rabobank -2.4* -1.0* -34.7* -4.0* -7.2* 0.7*

UBS -2.4* 0.0 -26.0* 3.1* -3.3* -1.9*

WestLB -1.0* -0.0 -24.9* 2.9* -0.7* 0.7*

Table 1: Signaling vs Portfolio Incentives
This table presents estimates of two separate components of the average di�erences si − ri, that depend on whether
incentives to misreport are driven by signaling or portfolio exposures to Libor.
*Signicant at the 5% level (Inference is performed using the bootstrap, as described in the Appendix).

common cost component µt is necessary to separately identify the signaling and the portfolio drivers

of misreporting. I use the NYFR and the Eurodollar deposits rate as plausible approximations to the

common cost. In both cases, signaling seems to be the main driver of misreporting, which con�rms

the results in Table 1. Thus, the former are robust to a relaxation of the assumption about the

means of the private costs.

9 Conclusion

This paper serves as an illustration that econometric methods from the empirical auctions literature

can be applied to a broader class of Bayesian games, to identify and estimate parameters of the payo�

functions and the distributions of the players' types. Despite evidence that Libor quotes did not

accurately represent interbank rates in recent years, in the speci�c application studied, a structural

analysis of the strategic interaction between banks helps to identify their incentives to misreport,

and to estimate a more precise measure of their borrowing costs. In particular, the identi�cation
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strategy proposed here allows for an estimation of a lower bound on the �truthful Libor�, de�ned as

the value that the published Libor would have had if banks had truthfully reported their borrowing

costs. It is worth emphasizing that the aforementioned result relies solely on the banks' quotes and

the model of strategic interaction that rationalizes those quotes, no additional data is needed for

identi�cation. When compared to other available measures of average borrowing costs, the estimated

bound is generally closer than the published Libor, which validates the estimation results. Looking

forward, this paper might contribute to evaluate reforms to Libor regulation and to design alternative

benchmark interest rates that are not prone to manipulation. Speci�cally, the results in the last

section of the paper suggest that the recent decision to delay the publication of the quotes, until

three months after their submission, should increase their reliability substantially, since using quotes

as signals of credit worthiness seems to have been the main determinant of misreporting.
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Appendix

Here I include the proofs of several claims and propositions stated in the main body of the paper,

as well as a description of the method used to derive con�dence intervals for the reported estimates,

using the bootstrap. I also present the results of an alternative estimation that allows the means of

the private costs components to di�er across banks.

Nondecreasing Best Response Correspondences

Let the best response correspondence of bank i be de�ned by

Γi (si) = argmax
ri∈R

E
[
αir̃ (ri, r−i) + vi (r̃ (ri, r−i)− ri)− γi (si − ri)2

]
We will show now that Γi is nondecreasing in the following sense (which is stronger than non-

decreasing in the strong set order, as de�ned in Athey (2001)). For all s, s′ ∈ S. with s < s′,

max Γ (si) ≤ min Γ (s′i).

Let si ∈ S (µ), and ri = max Γ (si). By de�nition, for all r < ri

E
[
αir̃ (ri, r−i) + vi (r̃ (ri, r−i)− ri)− γ (si − ri)2

]
≥ E

[
αir̃ (r, r−i) + v (r̃ (r, r−i)− r)− γ (si − r)2

]
⇐⇒

(αi + vi) (E [r̃ (ri, r−i)]− E [r̃ (r, r−i)]) ≥ vi (ri − r) + 2γsi (r − ri) + γi
(
r2i − r2

)
⇐⇒

2γisi (ri − r) ≥ vi (ri − r) + γi
(
r2i − r2

)
− (αi + vi) (E [r̃ (ri, r−i)]− E [r̃ (r, r−i)])

Moreover, since γi > 0, for any s′i > si, 2γis
′
i (ri − r) > 2γisi (ri − r), then

2γis
′
i (ri − r) > vi (ri − r) + γ

(
r2i − r2

)
− (αi + v) (E [r̃ (ri, r−i)]− E [r̃ (r, r−i)])

⇐⇒

E
[
αir̃ (ri, r−i) + vi (r̃ (ri, r−i)− ri)− γi

(
s′i − ri

)2]
> E

[
αir̃ (r, r−i) + vi (r̃ (r, r−i)− r)− γi

(
s′i − r

)2]

Thus, for all s′i > si, ri yields a strictly higher payo� than any r < ri. Therefore, any element of

min Γ (s′i) is at least as large as ri, in particular max Γ (si) ≤ min Γ (s′i).
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Proof of equation (5).

We want to show that ∂Ei[r̃(ri,r−i)|µ]
∂ri

is equal to the probability that ri is included in the computation

of the reference rate r̃. The probability is computed from the perspective of bank i, that is, when

the quotes of all other banks are random variables with known probability distributions (conditional

on the common cost component µ).

Proof. Let R
(n)
−i be the n-th order statistic of the vector r−i of quotes submitted by all banks other

than i. From the perspective of bank i, R
(n)
−i is a random variable with known distribution G(n)|µ.

I follow the convention R
(1)
−i ≤ R

(2)
−i ≤ ... ≤ R

(N−1)
−i . Notice that, regardless of i's quote, ri, for

all k ∈ {n+ 1, ..., n̄− 2} , R(k)
−i is included in the computation of the reference rate r̃. Moreover,

whether ri, R
(n)
−i or R

(n̄−1)
−i is the other quote included, depends on their relative positions. For

instance, with probability 1−G(n)|µ (ri), R
(n)
−i > ri, and in such case R

(n)
−i would be included.

Therefore, the expected value of the reference rate r̃, when i submits quote ri can be written as:

E [r̃ (ri) |µ] =
1

Ñ

 n̄−2∑
k=n+1

E
[
R

(k)
−i |µ

]
+ E

[
R

(n)
−i |R

(n)
−i > ri, µ

] (
1−G(n)|µ (ri)

)
+ri

(
G(n)|µ (ri)−G(n̄−1)|µ (ri)

)
+E

[
R

(n̄−1)
−i |R(n̄−1)

−i ≤ ri, µ
]
G(n̄−1)|µ (ri)

)

Notice that

E
[
R

(n)
−i |R

(n)
−i > ri, µ

] (
1−G(n)|µ (ri)

)
=

ˆ r̄

ri

xg(n)|µ (x) dx

where g(n)|µ is the probability density function of R
(n)
−i . A similar expression can be easily found for

E
[
R

(n̄−1)
−i |R(n̄−1)

−i ≤ ri, µ
]
G(n̄−1)|µ (ri) and thus, it follows from Leibniz integral rule that:

∂E [r̃ (ri) |µ]

∂ri
=

1

Ñ

(
G(n)|µ (ri)−G(n̄−1)|µ (ri)

)
where G(n)|µ (ri)−G(n̄−1)|µ (ri) is precisely the probability that ri is included in the computation of

r̃.
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Proof of Proposition 1

Proposition. Let µ 6= 0, if the strategy of all bank j 6= i is

ρj (µ+ δj + εj ;µ) = µ+ ρj (δj + εj ; 0)

Then i's best response is ρi (µ+ δi + εi;µ) = µ+ ρi (δi + εi; 0).

Proof. Consider the game with µ = 0 and let qi = ρi (δi + εi; 0). Clearly, for all q̆i ∈
[
q
i
, q̄i

]
,

ui (qi, δi + εi) ≥ ui (q̆i, δi + εi). Then

(αi + v)E [r̃ (qi, q−i) |0]− vqi − γ (δi + εi − qi)2 ≥ (αi + v)E [r̃ (q̆i, q−i) |0]− vq̆i − γ (δi + εi − q̆i)2

where q−i is the vector of actions of all other players j 6= i and qj = ρj (δj + εj ; 0). For any µ 6= 0,

let rj = ρj (µ+ δj + εj ;µ) then, by assumption rj = µ+ qj for all j 6= i.

Intuitively, compared to the game where µ = 0, when µ 6= 0, from the point of view of i, the

distributions of all other banks' quotes are the same, except for a change in a location parameterµ.

Thus,

E [r̃ (q̆i + µ, r−i) |µ] = E [r̃ (q̆i, q−i) |0] + µ

for all q̆i ∈
[
q
i
, q̄i

]
, and it follows that

(αi + v)E [r̃ (qi + µ, r−i) |µ]− v (qi + µ)− γ (µ+ δi + εi − (qi + µ))2 =

(αi + v) (E [r̃ (qi, q−i) |0] + µ)− v (qi + µ)− γ (δi + εi − qi)2 ≥

(αi + v) (E [r̃ (q̆i, q−i) |0] + µ)− v (q̆i + µ)− γ (δi + εi − q̆i)2

Since every r̆i ∈
[
q
i
+ µ, q̄i + µ

]
can be written as r̆i = q̆i+µ for some q̆i ∈

[
q
i
, q̄i

]
, it follows that for

such r̆i, ui (qi + µ, µ+ δi + εi) ≥ ui (r̆i,+µ+ δi + εi) and, thus, ri = qi +µ is i's best response when

µ 6= 0, all other banks strategies are ρj (µ+ δj + εj ;µ) = µ+ρj (δj + εj ; 0) and its cost is µ+ δi + εi.
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That is, in the game with µ, bank i's best response strategy is

ρi (µ+ δi + εi;µ) = µ+ ρi (δi + εi; 0)

Proof of Proposition 4

Proposition. Under Assumptions 1-4, the preference parameter βi is identi�ed, for all i ∈ N , from

the distributions of the normalized quotes. Moreover,

βi =
Med (qi − E [qi1 ])− (E [qi]− E [qi1 ])

φi (Med (qi − E [qi1 ]) | − E [qi1 ])− E [φi (qi − E [qi1 ] | − E [qi1 ])]

Proof. Notice the equation εi = q̂i − βiφ̂i can be interpreted as the inverse equilibrium strategy of

bank i, in the game with µ = −E [qi1 ] (translated by a constant). Since the equilibrium strategies

are strictly increasing, the inverse equilibrium strategies are strictly increasing as well, as functions

of qi, and hence, there is a unique q∗i such that εi = 0. It follows from equation (14) that only at q∗i :

q∗i − E [qi1 ]− (E [qi]− E [qi1 ])− βi (φi (q∗i − E [qi1 ] | − E [qi1 ])− E [φi (qi − E [qi1 ] | − E [qi1 ])]) = 0

(24)

Moreover, by assumption, zero is an interior point in the support of εi. Therefore, since the inverse

equilibrium strategy is strictly increasing

q̂i − βiφ̂i < 0 for all q < q∗i and q̂i − βiφ̂i > 0 for all q > q∗i

It follows that P
{
q̂i − βiφ̂i ≤ 0

}
= P {q ≤ q∗i }. Since, by assumption P

{
q̂i − βiφ̂i ≤ 0

}
=

P {εi ≤ 0} = 1
2 , then P {q∗i ≤ q} = 1

2 and hence q∗i is the median of the distribution of qi. Let

Med (X) denote the median of X. We just showed that Med (εi) = 0 implies Med (qi) = q∗i . Besides,

q∗i satis�es equation (24), which uniquely identi�es βi as

βi =
Med (qi − E [qi1 ])− (E [qi]− E [qi1 ])

φi (Med (qi − E [qi1 ]) | − E [qi1 ])− E [φi (qi − E [qi1 ] | − E [qi1 ])]
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Standard Errors and Con�dence Intervals Based on the Bootstrap

The method described in Section 7 requires the estimation of the bounds in equation (21). Such

bounds are in the boundary of the support of the distribution of the random variable dφi(qi)
dqi

. However,

the bootstrap is inconsistent for parameters in the boundary, as shown by Andrews (2000). To solve

this issue, I estimate the bounds using the whole sample, and I keep this estimates �xed at each

iteration of the bootstrap. Except for that modi�cation, the procedure used is standard. That is, a

random sample is obtained by sampling with replacement T vectors of normalized quotes from the

whole sample {(q1,t, ..., qN,t)}Tt=1. K random samples are drawn in this way, and
{(
qk1,t, ..., q

k
N,t

)}T
t=1

denotes the k-th such sample. For each k, the estimation procedure described in Section 7 is applied

to
{(
qk1,t, ..., q

k
N,t

)}T
t=1

, except for the modi�cation just mentioned, to obtain a bootstrap replication

of the vector of estimates θ̂, denoted θ̂k. For simplicity, we use θ here for the vector of all identi�ed

parameters. The K replications are used to compute standard errors for θ̂, and con�dence intervals

for θ. The con�dence intervals are based on the 0.05 and 0.95 quantiles of the distribution of the

root
√
T
(
θ̂k − θ̂

)
, under the conjecture that it consistently estimates the distribution of the root

√
T
(
θ̂ − θ

)
.

Robustness Check: Heterogeneous Private Costs Means

I conduct an alternative estimation where I relax the assumption that the mean of the private costs

distribution is the same for all banks. Instead, I estimate these means for all banks (allowing them

to di�er), but now I restrict the parameter v associated with signaling to be the same for all banks.

In this version of the model, an additional measure of the common cost component µt is necessary

to separately identify the signaling and the portfolio drivers of misreporting. I use the NYFR and

the Eurodollar deposits rate (H15) as plausible approximations to the common cost. In both cases,

signaling seems to be the main driver of misreporting, which con�rms the results of Section 8.2.

Thus, the former do not depend on the assumption about the means of the private costs.

Table 2 presents the results of this alternative estimation. There are substantial di�erences in
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magnitude depending on whether H15 or NYFR is used to approximate µt, given the large spread

between these two rates (see Figure 1). However, regardless of the rate, signaling seems to be

the main driver of systematic misreporting, con�rming the qualitative results reported in Table 1.

According to the estimates in Table 2, in period (ii) signaling alone is responsible for di�erences

of, roughly, 14 to 90bp between bank's borrowing costs and their quotes. In contrast, during the

same period, for most of the banks, the di�erences due to portfolio exposures are lower than 5bp (in

magnitude). Notable exceptions are Citibank (15 to 20.5 bp), HBOS (5.7 to 12.6 bp) and Lloyds

Bank (14.7 to 19.4 bp) which, once again, is consistent with the results in Section 8.2.

For the other two periods, the deviations from truthful reporting seem much lower. The less

conservative estimates, based on H15, suggest misreports due to signaling alone of approximately

11bp and 23bp below borrowing costs, in periods (i) and (iii) respectively. However, if NYFR is used

instead to approximate µt, the corresponding numbers are closer to zero, and not even statistically

signi�cant in period (iii). Only for this last period, and just for the most conservative estimates

(NYFR), the deviations due to portfolio incentives seem larger in magnitude than those motivated

by signaling, but are still lower than 3bp for all banks. Again, this changes across periods resemble

the results in Section 8.2.
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(i): 09/032007 - 09/14/2008 (ii): 09/14/2008 - 12/31/2008 (iii): 02/09/2009 - 05/17/2010

Portfolio Signaling Portfolio Signaling Portfolio Signaling

H15 NYFR H15 NYFR H15 NYFR H15 NYFR H15 NYFR H15 NYFR

-0.4* 0.3* -11.3* -1* -3.2* 3.1* -90.7* -14.1* -1.1* 1.5* -23.2* -0.1

-0.2 0.5* -11.3* -1* -0.9 2.4* -94.2* -14.6* 0 0.6* -25.3* -0.1

0.1* 0.5* -11.6* -1* 0.9 3.3* -95.3* -14.8* -3.7* -1.8* -23.9* -0.1

-1.6* -1* -11.4* -1* -20* -15.5* -92.7* -14.4* -1.3* 0.7* -23.8* -0.1

-1.7* -0.8* -11.1* -1* -2.9* 1.1 -93.3* -14.5* -5.2* -2.7* -23.3* -0.1

-0.5* 0.1 -11.3* -1* -7.7* -0.2 -89.3* -13.9* -1.5* -0.7* -25.1* -0.1

-1.4* -0.6* -11.1* -1* -12.6* -5.7* -89.9* -14* -2.1 -0.9 -24.7* -0.1

-1.1* -0.5* -11.4* -1* -3.2 3.2* -90.6* -14.1* -0.2* 0 -25.7* -0.1

-0.4 0.2 -11.4* -1* -1.1* -0.8* -97.8* -15.2* -1 2.2* -22.7* -0.1

-0.5* 0.3* -11.1* -1* -19.4* -14.7* -92.5* -14.4* -0.5* -0.1 -25.4* -0.1

-0.2* 0.2* -11.5* -1* -2 3.4* -91.7* -14.2* -5.4* -2.9* -23.3* -0.1

-1.3* -0.2 -10.9* -1* -5.8* 3* -87.7* -13.6* -1.9* -0.8* -24.7* -0.1

-0.8* 0 -11.2* -1* -4.5* -1.9* -95* -14.8* -0.7* 1.3* -23.8* -0.1

-1.4* -0.9* -11.4* -1* -6* -3.3* -94.8* -14.7* -0.7 1.3* -23.7* -0.1

-0.7* 0.1 -11.2* -1* -4.4* 4.6* -87.4* -13.6* -3.7* -1.7* -23.8* -0.1

-0.8* 0 -11.2* -1* -4 4.1* -88.5* -13.7* -0.2* 0.7* -24.9* -0.1

Table 2: Average di�erences between Libor Quotes and Borrowing Costs
This table presents the results of an alternative estimation, where the means of the private cross distributions are
allow di�er across banks. The estimates are based on the assumption that either ICAP's Eurodollar deposits rate
(H15) or NYFR are approximate measures of the average borrowing costs µt. The results are consistent with those
reported in Section 8.2 and thus suggest that the former do not depend on the assumption that the means of the
private costs are the same for all banks.
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