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Abstract

We empirically identify the e¤ect of in�ation on relative price
distortions, using a novel identi�cation approach derived from
sticky price theories with time or state-dependent adjustment
frictions. Our approach can be directly applied to micro price
data, does not rely on estimating the gap between actual and �ex-
ible prices, and only assumes stationarity of unobserved shocks.
Using the micro price data underlying the U.K. CPI, we docu-
ment that suboptimally high (or low) in�ation is associated with
distortions in relative prices. At the level of individual prod-
ucts, the marginal e¤ect of in�ation on relative price distortions
is highly statistically signi�cant and aligns well with theoretical
predictions. In the cross-section of products, the variance of price
distortions comoves positively with aggregate in�ation over time.
In contrast, overall cross-sectional dispersion fails to comove with
in�ation over time. We show that it is predominantly driven by
movements in the dispersion of �exible prices.
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1 Introduction

The monetary models employed in academia and central banks assert
that too high (or too low) rates of in�ation give rise to distortions in
relative prices. The asserted price distortions drive many of the trade-o¤s
and policy prescriptions of monetary models, e.g., the recommendation
to implement low and stable in�ation rates.1 Despite its centrality in
monetary theory, there exist no structural empirical evidence validating
the notion that in�ation has a distorting impact on relative prices.
This gap forms the focal point of our investigation. We �rst derive

a novel theory-consistent empirical approach that allows estimating the
marginal e¤ect of in�ation on relative price distortions. Subsequently, we
apply this methodology to the micro price data underpinning the U.K.
Consumer Price Index. We document that in�ation is associated - at
the level of individual products - with economically signi�cant amounts
of price distortions, in line with what sticky price theories predict. Fur-
thermore, in the cross-section of products, price distortions turn out to
covary positively with aggregate in�ation over time.
Documenting the relationship between in�ation and relative price

distortions proved challenging and the present paper makes progress on
a number of fronts.
First, it is challenging to recover in�ation-induced distortions in rel-

ative prices from actual price observations. To see why, let pjt denote
the relative price actually charged for product j in period t; and p�jt the
corresponding �exible relative price.2 The price gap gapjt due to price
setting frictions is then given by

ln pjt = ln p
�
jt + ln gapjt; (1)

and price distortions for product j are conveniently summarized by the
variance of the product-speci�c gaps over time:3

distj = V ar(ln gapjt):

Monetary models postulate that the price distortions (distj) depend on
in�ation, but empirically documenting this relationship is challenging:
while the actual relative price in equation (1) can be observed, the �exi-
ble relative price is unobserved, so that the price gap remains also unob-

1See, for instance, Woodford (2003), Galí (2015), Adam and Weber (2019) or
Archarya, Challe and Dogra (2023).

2The �exible relative price is the price that would be charged for product j in
the absence of price setting frictions. It may itself be distorted, e.g., due to market
power.

3We discuss the variance of price gaps in the cross-section of products below.
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served.4 In fact, we formally show in the paper that the �exible relative
price and thus the price gap cannot be identi�ed from actual relative
prices, whenever the �exible price contains a stationary stochastic com-
ponent.
Given this di¢ culty, the previous literature does not attempt to iden-

tify how price gaps depend on in�ation (Wulfsberg (2016) and Naka-
mura, Steinsson, Sun and Villar (2018)), instead highlights the di¢ cul-
ties associated with empirically recovering price gaps.5

An important contribution of the present paper is to show that the
marginal e¤ect of in�ation on price distortions, i.e., how distj varies with
in�ation, can be identi�ed from observed actual prices, even though the
level of the price gaps (gapjt) are not identi�ed. This is feasible because
the variance of the �exible relative price p�jt in equation (1) is independent
of in�ation, so that the variance of the actual relative price V ar(ln pjt)
is informative about the variance of price gaps, i.e., price distortions.
We show that time and state-dependent pricing models make iden-

tical predictions (up to a second-order approximation) about how the
marginal e¤ect of in�ation on price distortions can be estimated from
observed actual prices: in a �rst step, one computes residual price varia-
tion around the life-cycle trend of a product�s actual relative price time
series. In a second step, one relates this residual variation - in the cross-
section of products - to a measure of in�ation.6 This structural approach
is valid without restrictions on the behavior of the cross-sectional distri-
bution of �exible prices over time.
A second challenge with identifying the relationship between in�ation

and relative price distortions is that sticky price theory implies that a
marginally higher in�ation rate can either increase or decrease relative
price distortions. The direction of the e¤ect depends on whether the
observed in�ation rate, ln�; lies above or below the optimal in�ation
rate, ln��j ; for product j.

7 Existing work tends to ignore this issue and
often assumes that the optimal in�ation rate is zero. Yet, the optimal
in�ation rate di¤ers from zero for most products and has been found to
vary systematically in the cross-section of products (Adam and Weber

4In rare cases, additional information about marginal costs and the desired mark-
up is available, which identi�es the �exible relative price and thereby the price gap.
Eichenbaum, Jaimovich and Rebelo (2011) estimate price gaps for supermarket goods
using such information, but do not analyze how in�ation a¤ects price distortions.

5See section IV.A in Nakamura et al. (2018).
6More precisely, it needs to be related to a measure of suboptimal in�ation, as we

explain in the next paragraph.
7If the optimal level of in�ation lies above (below) the observed level of in�a-

tion, then marginally higher rates of in�ation decrease (increase) price distortions,
according to sticky price models.
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(2022), Adam, Gautier, Santoro and Weber (2022)).
To address this issue, the present paper considers price distortions

generated by suboptimal in�ation (ln� � ln��j), i.e., by the di¤erence
between observed and the product-speci�c optimal level of in�ation. We
thus obtain estimates of the marginal e¤ect of suboptimal in�ation on
relative price distortions.
A third challenge this paper addresses is that it is generally di¢ cult

to establish a causal relationship between in�ation and price distortions
by exploiting variation in aggregate in�ation over time: outside hyperin-
�ationary episodes or periods with large energy price shocks, aggregate
in�ation tends to move only slowly over time, so that movements in
in�ation are often hard to distinguish from a slow-moving time trend.8

As a result, trends in price dispersion over time might either re�ect the
trend in in�ation or others trends which operate concurrently but are
unrelated to in�ation, e.g., a secular change in the variety of products
over time.
Our empirical approach overcomes this identi�cation issue by exploit-

ing cross-sectional variation in the product-speci�c optimal in�ation rate
ln��j during a period in which aggregate in�ation � was relatively sta-
ble in the U.K. economy. Variation in the optimal rate ��j in the cross-
section of products j is driven by product-speci�c fundamentals, such
as the di¤erent rates of productivity progress or a di¤erent evolution of
monopoly power over time. According to sticky-price theory, such cross-
sectional heterogeneity in product-speci�c fundamentals is unrelated to
in�ation and thus induces quasi-exogenous variation in the gap between
actual and optimal in�ation, (ln��ln��j), that we be exploit to estimate
the causal e¤ects of suboptimal in�ation on price distortions.
Addressing these three challenges, we show that suboptimal in�ation

causes relative price distortions in the U.K. economy. Speci�cally, we
�nd that price distortions at the level of individual products depend on
the squared value of suboptimal in�ation, in line with the theoretical pre-
dictions of time or state-dependent pricing models. The squared value
of suboptimal in�ation has the sign predicted by theory and is statisti-
cally signi�cant in 94% of the expenditure categories underlying the U.K.
consumer price index. It also has surprisingly high explanatory power
across individual products within the typical expenditure category. And
in line with the underlying sticky price theories, the distortionary e¤ects
of suboptimal in�ation are estimated to be stronger in the presence of
stronger price rigidities.
Having established that suboptimal in�ation gives rise to price dis-

8To avoid the possibility that our results are driven by energy price or other special
shocks, we exclude the Covid and post-Covid period from our analysis.
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tortions over time at the level of individual products, we turn consider-
ation to the dispersion of prices in the cross-section of products. Cross-
sectional price dispersion has been the point of departure for much of
the earlier literature.
We show that cross-sectional dispersion of actual relative prices,

V arj(ln pjt), is strongly increasing over the sample period (1996 - 2016).
Interestingly, cross-sectional price dispersion increases despite the fact
that U.K. in�ation displays no time trend and only moderate �uctua-
tions.
To explain why overall cross-sectional price dispersion fails to covary

with in�ation in the data, let p� detjt denote the deterministic component
of a products��exible relative price and p�stochjt its stochastic component.
We then obtain from equation (1)

V arj(ln pjt) = V arj(ln p� detjt ) + V arj
�
ln p�stochjt + ln gapjt

�
: (2)

We show that the deterministic component of the �exible price p� detjt can
be identi�ed in the data and that its cross-sectional variance, V arj(ln p� detjt ),
accounts for 99% of observed dispersion of actual prices V arj(ln pjt). It
also explains the overwhelming part of the observed increase in the cross-
sectional dispersion of actual prices.
According to sticky price theory, the last term on the right-hand-

side of equation (2), which accounts for about 1% of the dispersion of
actual prices, should vary with in�ation. In fact, we show that in�ation-
induced movements in the last term re�ect exclusively in�ation-induced
movements in cross-sectional price distortion V arj(ln gapjt).9 Speci�-
cally, the theory implies that V arj(ln gapjt) should increase with in�a-
tion, provided the optimal in�ation rate ��j lies below observed in�ation
for most products.
This is what we �nd: V arj (ln gapjt) comoves positively with in�ation

over time with a correlation equal to +0:67 that is statistically signi�-
cant at the 1% level. Cross-sectional price distortions thus increase with
in�ation over the sample period. And we show that this positive comove-
ment is predominantly driven by products with a low optimal in�ation
rate ��j , as predicted by the underlying sticky price theories. We also
compute an upper and lower bound on the contribution of in�ation to
cross-sectional price dispersion. Doing so, we �nd that the peak contri-
bution of in�ation to the cross-sectional standard deviation of price gaps,
Stdj(ln gapjt), ranges between 3.8% and 5.0% over the sample period.

9Note that V arj(ln p� detjt ) is - by de�nition - independent of in�ation. We show
that the covariance Covj

�
ln p�stochjt ; ln gapjt

�
also does not depend on in�ation, ac-

cording to sticky price theory.
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Our �nding that an increase in aggregate in�ation leads to an increase
in cross-sectional price distortions in the U.K. aligns well with key as-
sumptions made in monetary models and should thus increase con�dence
in the economic relevance of key policy recommendations derived from
these models, e.g., the desirability of targeting low and stable in�ation
rates. It also aligns well with recent �ndings in Ascari, Bonmolo and
Haque (2022), who show that high in�ation rates are associated with a
loss in the economy�s output potential. Relative price distortions are one
source of potential output losses associated with high in�ation rates, as
emphasized in the literature the infers price-induced misallocations aris-
ing from product speci�c mark-ups (Baqaee, Farhi and Sangani (2022),
Meier and Reinelt (2022)).
The paper is also related to Alvarez, Beraja, Gonzalez-Rozada and

Neumeyer (2019) who estimate a nonlinear relationship between the
cross-sectional dispersion of prices and in�ation using data from Ar-
gentina. They �nd that cross-sectional price dispersion responds only
weakly to in�ation for in�ation rates below 10%, but rises strongly for
higher rates and eventually levels o¤. Relatedly, Sheremirov (2020)
uses supermarket scanner data for the U.S. and documents how lo-
cal cross-sectional price dispersion correlates with local in�ation over
time.10 Instead of estimating a reduced-form relationship between the
cross-sectional dispersion of prices and in�ation over time, our struc-
tural approach calls for estimating across-time dispersion of prices at
the level of individual products and relating it to a product-speci�c mea-
sure of suboptimal in�ation.
Section 2 illustrates the empirical approach developed in this paper

using the simplest possible setup. Section 3 introduces the full theory
and shows how sticky price models with time or state-dependent pricing
frictions imply a regression approach that allows estimating the causal
e¤ect of suboptimal in�ation on product-level price distortions. Section 4
introduces the U.K. micro price data and section 5 presents our baseline
empirical results and a large number of robustness exercises. Section
6 presents a more involved estimation approach that allows to relax
some of the identifying assumptions underlying the baseline approach.
Section 7 discusses the decomposition of cross-sectional dispersion of
actual prices and the comovement of cross-sectional price distortions
with in�ation over time. A conclusion brie�y summarizes.

10Sara-Zaror (2022) extends the empirical approach of Sheremirov (2020) and doc-
uments that cross-sectional price dispersion strongly rises with the absolute deviation
of in�ation from zero, with the relationship becoming �atter for larger in�ation rates.
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2 The Approach in a Nutshell

This section illustrates how one can empirically identify from micro price
data the marginal contribution of suboptimal in�ation on price distor-
tions. The approach di¤ers from the one pursued in Nakamura et al.
(2018), who proposed considering the absolute size of price changes as a
proxy for relative price distortions. We show that this proxy can some-
times provide misleading signals about the relationship between in�ation
and relative price distortions.
In our baseline approach, identi�cation is achieved by considering a

set of products for which (i) price stickiness and (ii) the shock process
driving the idiosyncratic component of the �exible price is homogeneous
across products.11 One can then exploit variation in the optimal in�ation
rate across products to identify the marginal e¤ect of in�ation on price
distortions. This holds true even if the actual in�ation rate is constant
over time.
To provide a simple example, suppose that idiosyncratic shocks are

simply absent, so that the �exible relative price evolves deterministically,
and that prices get adjusted in regular intervals every N > 1 periods
(Taylor (1979)).12 Consider product j, which is a physical object or
service sold in a speci�c location.13 The �exible optimal relative price
p�jt = P �jt=Pt of product j is the price the �rm would like to charge in
the absence of any price setting frictions and evolves deterministically
according to

ln p�jt = ln p
�
j � t � ln��j ; (3)

where p�j is a product-speci�c intercept and �
�
j a product-speci�c time

trend, capturing di¤erences in marginal costs (or other factors) across
products. Finally, suppose gross in�ation is constant and equal to �.
In this setting, the optimal in�ation rate for product j is given by

ln� = ln��j because the relative price then gets eroded at the desired
rate ln��j : the nominal price for product j can remain constant, so that
price setting frictions do no matter for tracking the desired relative price.
When ln� > ln��j (ln� < ln��j), the relative price gets eroded too
quickly (slowly). As a result, adjustments of the nominal price have to
be made to correct for the �wrong�trend induced by in�ation during non-
adjustment periods. Due to price stickiness, these adjustments occur

11These assumptions can be releaxed further, as we show in section 6.
12These assumptions are special because they allow identifying the �exible price

from micro price data, which fails to be true under the more general assumptions
considered later on, but useful for illustrating the approach.
13Objects or services that are sold in di¤erent locations are treated as di¤erent

products. The same holds true when an existing product gets substituted by a new
product.
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only occasionally, so that suboptimal in�ation leads to deviations of the
relative price from the �exible relative price.
Figure 1 illustrates the situation. It depicts the �exible relative price

ln p�jt for three products (j = 1; 2; 3), for which the �exible relative price
falls at rate ��1 < ��2 < ��3. Assuming that actual in�ation � is equal
to ��1, the �exible relative price of product 1 coincides with the sticky
relative price ln pjt, so that there are no relative price distortions. For
product j = 2, in�ation is too low, which means that the relative price
falls insu¢ ciently during non-adjustment periods. To compensate for
this e¤ect, it becomes optimal to choose a relative price that is lower
than the �exible price in adjustment periods, to reduce the gap between
the sticky and the �exible relative price over the lifetime of the sticky
price. Suboptimally low in�ation thus leads to a deviation of the sticky
relative price from the �exible relative price. This deviation is even
stronger for product j = 3, which has a higher optimal in�ation rate and
- in adjustment periods - a relative price that is even further below the
�exible relative price. A larger gap between in�ation and the optimal
in�ation rate thus gives rise to larger deviations of the sticky relative
price from the �exible relative price.
Since symmetric arguments apply when in�ation is higher than op-

timal in�ation, it is easy to verify that the variance of the gapj between
the sticky relative price around its time trend, i.e., the price distortion
for product j, is a function of the square of suboptimal in�ation:14

V ar(gapj) = c � (ln�� ln��j)2 (4)

where

c =
N � (N � 1) � (N + 1)

12
> 0

depends positively on the degree of price stickiness N > 1:
An important insight developed in this paper is the fact that the

relationship between suboptimal in�ation and price distortion in equa-
tion (4) can actually be estimated using micro price data because (i) the
product-speci�c optimal in�ation rate ��j is identi�ed by the time trend
in the sticky relative price, see �gure 1, and (ii) price distortions, i.e.,
the gaps between the actual and the �exible price, are identi�ed by the
residuals of a regression of actual prices on a time trend, as illustrated in
�gure 1. Thus micro price data su¢ ces to test whether price distortions
vary with suboptimal in�ation rates, i.e., whether c > 0, as predicted by
sticky price theory.
While property (ii) fails to be true when the �exible price also de-

pends on unobserved idiosyncratic shocks, we show in the next section
14See appendix A for a proof.
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Figure 1: Relative price trends and price gaps

that the presence of such shocks only requires adding a constant to equa-
tion (4). This holds true even when considering more plausible pricing
setting frictions, such as Calvo or menu-cost frictions.
Interestingly, using the absolute size of price changes as a measure

of relative price distortion can lead to misleading conclusions about the
relationship between relative price distortions and suboptimal in�ation.
The absolute size of price changes may respond to in�ation in a setting
where price distortions fail to do so and it may fail to respond to in�ation
in a setting where relative price distortions do indeed respond.
To see the �rst point, consider the example discussed above. The ab-

solute size of log nominal price changes per unit of time is simply a func-
tion of price stickiness and suboptimal in�ation and equal toN �

���� ��j ��.
In the limit where prices become fully �exible (N ! 1), the absolute size
of nominal price changes is thus given by

���� ��j �� and varies one-to-one
with the gap between actual and optimal in�ation. The absolute size of
price changes thus suggests a relationship between suboptimal in�ation
and relative price distortions, even in a setting where prices are fully
�exible and price distortions absent.15

This contrasts with the detrended residuals u proposed in �gure 1:

15This argument holds not only in the cross-section of goods, but equally applies
in the time dimension when considering the e¤ects of a change in the steady-state
in�ation rate � for the price distortions present at the level of some product with
optimal rate ��j .
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in the limit with �exible prices, relative prices follow the dotted lines in
the �gure, so that the residuals u are all equal to zero. Their variance
will thus not covary with suboptimal in�ation in the cross-section of
products. In fact, for the limit N ! 1, the coe¢ cient c in equation (4)
converges to zero: one arrives at the correct conclusion that suboptimal
in�ation does not lead to relative price distortions.
For the case with sticky prices, the absolute size of price changes may

actually fail to respond at all to changes in suboptimal in�ation, even
in a setting where price distortions do change with suboptimal in�a-
tion. Appendix presents an example with sticky prices and idiosyncratic
shocks where this is the case and where the detrended residual variance,
V ar(uj), again accurately capture how relative price distortions vary
with suboptimal in�ation.

3 In�ation and Price Distortions: Theory

This section uses sticky price theory to derive a regression equation that
allows identifying the marginal e¤ect of suboptimal in�ation on price
distortions using micro price data. The regression approach turns out
to be independent (to a second-order approximation) of whether price
adjustment frictions are of a time-dependent or state-dependent nature
and can be directly applied to micro price data. An attractive feature
of our approach is that it does not require imposing any assumptions on
the behavior of the cross-sectional distribution of �exible prices.
We will consider the price setting problem of a �rm facing a demand

structure that closely matches the implicit demand structure underlying
the way how the U.K. O¢ ce of National Statistics (ONS) aggregates
prices across products. In particular, aggregate consumption Ct is made
up of Z di¤erent expenditure items (in the language of the ONS), where
an expenditure item z 2 f1; :::; Zg is a narrow product category, e.g.,
"Flatscreen TV, 30-inch display" or "CD-player, portable". Expendi-
ture items contains a large range of individual products j 2 [0; 1] with
item-level consumption Czt being given by a Dixit-Stiglitz aggregate of
individual products j,

Czt =

�Z 1

0

C
��1
�

jzt dj
� �

��1

; (5)

where Cjzt denotes the consumed physical units of product j in item z
in period t and � > 1 the elasticity of substitution between products
within the item. Aggregate consumption is given by

Ct =
ZY
z=1

(Czt)
 z ; (6)
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where  z � 0 denotes the (ONS) expenditure weight for item z, withPZ
z=1  z = 1. With this setup, demand for product j in item z is given

by

Cjzt =  z

�
Pjzt
Pzt

��� �
Pzt
Pt

��1
Ct; (7)

where the item price level is de�ned as Pzt =
�R 1

0
P 1��jzt dj

� 1
1��

and the

aggregate price level is de�ned as Pt =
YZ

z=1

�
Pzt
 z

� z
.

Individual products are produced using a constant returns-to-scale
production function

Yjzt =
Azt

GjztXjzt

Ljzt; (8)

where for simplicity Ljzt denotes labor input and Azt the level of produc-
tivity common to all producers of products in item z at time t.16 Gjzt

is a product-speci�c factor capturing idiosyncratic productivity compo-
nents that are deterministic from the perspective of the �rm, while Xjzt

is a stochastic idiosyncratic productivity component. In equilibrium,
the quantity of products consumed Cjzt must be equal to the quantity
produced Yjzt.
Firms can freely adjust inputs but face frictions for adjusting prices.

Section 3.1 considers time-dependent price-setting frictions, while section
3.2 presents the case with state-dependent pricing frictions.17

3.1 Time-Dependent Price Setting Frictions
The price setting problem. Consider some product j which is a
physical object or service sold in a speci�c location over time. Otherwise
identical objects or services that are sold in di¤erent locations are treated
as di¤erent products in our approach. The same holds true whenever an
existing product gets substituted by a new product.
Let pjzt � Pjzt=Pzt denote the relative price charged for product j,

where Pjzt denotes the nominal product price and Pzt the price index
for products in expenditure item z. Similarly, let p�jzt denote the �exible
relative price, i.e., the price the �rm would like to charge for product j
in period t in the absence of price setting frictions. The �exible price

16The setup can be generalized to include also capital in production, but this will
not provide any additional insights as long as one has constant returns to scale jointly
in all inputs.
17Deriving analytic results for a uni�ed setup with time and state-dependent ad-

justment frictions (Calvo plus) is analytically di¢ cult, as both price setting frictions
require imposing slightly di¤erent assumptions for the shock process Xjzt.
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can di¤er from the (socially) e¢ cient relative price.18 Given the demand
structure introduced above, appendix D.1 derives the following second-
order approximation to the nonlinear optimal price setting problem with
Calvo price adjustment frictions:

max
ln pjzt

�Et
1X
i=0

(�z�)
i
�
ln pjzt � i ln�z � ln p�jzt+i

�2
; (9)

where the parameter � 2 (0; 1) denotes the �rm�s discount factor, �z 2
(0; 1) the Calvo probability that the price cannot be adjusted in the
period, and �z the gross in�ation rate in this item. The �rm�s relative
price in period t + i is given by ln pjzt � i ln�z, which shows that the
reset price ln pjzt chosen by the �rm gets eroded over time by in�ation,
as long as prices fail to adjust. Deviations of the �rm�s relative from its
�exible optimal price ln p�jzt+i give rise to pro�t losses that are quadratic
in the size of the deviation.

The dynamics of the �exible price. A key object of interest in
problem (9) is the �exible relative price p�jzt. This price is observed
by the �rm but not by the econometrician. We consider the following
general stochastic process:

ln p�jzt = ln p
�
jz � t � ln��jz + lnxjzt: (10)

The term ln p�jz is an unobserved product �xed-e¤ect that is drawn at the
time of product entry from some arbitrary and potentially time-varying
distribution. It is a stand-in for unobserved location-speci�c e¤ects such
as di¤erence in the level of marginal costs, wages, rents, service or quality
components of the product. It also captures the presence of product and
location-speci�c �exible price mark-ups.
The variable ��jz in equation (10) captures a product-speci�c time

trend in the relative price and also denotes the product-speci�c optimal
in�ation rate, as discussed in section 2. It is drawn at the time of product
entry from an arbitrary distribution that may also depend on time. The
trend in relative prices may re�ect a product-speci�c rate of productivity
progress, induced for instance by learning-by-doing e¤ects, or product-
speci�c marginal cost trends induced by trends in wages or rents that
are speci�c to the particular location where the product is sold. It is
well-known that the strength of these e¤ects varies across products19 and

18This may be due the presence of product-speci�c monopoly mark-ups. In the
special case, where desired monopoly mark-ups are identical across products or simply
absent, the frictionless relative price is equal to the e¢ cient relative price.
19Adam and Weber (2022) document this for the U.K and Adam, Gautier, Santoro

and Weber (2022) for France, Germany and Italy.
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we will exploit the variation in ��jz below to identify the distortionary
e¤ects of in�ation. We consider a linear time trend in relative prices
because the relative price dynamics of newly introduced products are
well-approximated by a linear trend.20 Yet, in our empirical analysis we
shall also consider nonlinear time trends.
Finally, there is an idiosyncratic stochastic component lnxjzt in equa-

tion (10), which captures idiosyncratic �uctuations induced by changes
in productivity or service components at the product level. The absence
of a common component in these shocks is justi�ed on the grounds that
the left-hand side of equation (10) features the log relative price, thus
absorbs common components in the nominal price (at the level of a
narrowly-de�ned expenditure category). The stochastic process govern-
ing these idiosyncratic components is assumed to be the same for all
products within a narrowly-de�ned expenditure category and satis�es
the following restriction:

Assumption 1: Idiosyncratic shocks lnxjzt are stationary and Markov.

Assumption 1 e¤ectively rules out that idiosyncratic shocks lnxjzt
follow a random walk. This seems innocuous because our data strongly
reject a random walk in lnxjzt, as shown in appendix C.21 We can thus
normalize idiosyncratic shocks so that E[lnxjzt] = 0.
Note that the cross-sectional distribution of �exible prices in expen-

diture category z is allowed to vary over time in important ways, even
when abstracting from idiosyncratic shocks: (i) for a given set of prod-
ucts, heterogeneity in the relative price trends ��jz induces changes in the
cross-sectional distribution of the �exible relative prices; (ii) as products
exit and enter the market, newly entering products may have di¤erent
product-speci�c intercepts p�jz and time trends �

�
jz than exiting prod-

ucts. Since the parameters (p�jz;�
�
jz) of newly incoming products are

drawn from arbitrary time-varying distributions, the setup imposes no
restrictions on the evolution of the cross-sectional distribution of �exible
relative prices over time.

The optimal reset price. Considering the limit � ! 1, the optimal
reset price ln poptjzt solving problem (9) is given by22

ln poptjzt = (ln p
�
jzt � lnxjzt) +

�
�z

1� �z

�
(ln�z � ln��jz) + f(xjzt); (11)

20See �gure A.XI in the November 2018 working paper version of Argente and Yeh
(2022), which depicts the relative price dynamics of newly introduced products using
scanner data.
21This �nding does not depend on assuming Calvo frictions.
22See appendix D.1 for a derivation.
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where

f(xjzt) � (1� �z)Et

1X
i=0

�iz lnxjzt+i: (12)

The �rst term on the r.h.s. of equation (11), ln p�jzt� lnxjzt, captures the
deterministic component of the �exible price (10). The second term cap-
tures the e¤ects induced by deviations of actual in�ation ln�z from the
product-speci�c optimal in�ation rate ln��jz. The last term in equation
(11) captures e¤ects due to the presence of time-varying idiosyncratic
components. Equation (12) shows that it is the expected value of the
idiosyncratic shock over the lifetime of the price that matters for this
component.
Only the second term on the r.h.s. of equation (11) depends on

in�ation. If actual in�ation exceeds optimal in�ation (ln�z > ln��jz),
then the reset price gets pushed up to compensate for the suboptimally
high rate of future erosion of the relative price during periods in which
the price does not adjust. The opposite is true if actual in�ation falls
short of optimal in�ation (ln�z < ln��jz).
Importantly, the optimal reset price ln poptjzt is equal to the expected

value of the �exible price over the expected lifetime of the price. There-
fore, an initial period in which relative prices lie above (below) the �ex-
ible price is followed - in expectation - by a period in which the relative
price falls short (exceeds) of the �exible price. This explains how -
according to the theory - deviations of in�ation from its optimal level
induce additional dispersion of prices around the �exible level. This ef-
fect is stronger if prices are more sticky: for a given deviation of in�ation
from its optimal level, reset prices react by more, the higher is the degree
of price stickiness (�z).

The dynamics of the actual relative price. While equation (11)
determines the optimal reset price in periods where prices adjust, the dy-
namics of the actual relative price for product j in expenditure category
z are given by

ln pjzt = �jzt(ln pjzt�1 � ln�z) + (1� �jzt) ln p
opt
jzt; (13)

where �jzt 2 f0; 1g is an iid random variable capturing periods with
price adjustment (�jzt = 0 with probability 1 � �z) and no-adjustment
(�jzt = 1 with probability �z). In periods in which the price does not
adjust, the relative price falls with in�ation.
It also follows from equation (13) that the actual relative price in-

herits the product-speci�c time trend present in the optimal price poptjzt,
which in inherits the trend from the �exible price p�jzt; see equation (11).
We show next that the variability of the actual price ln pjzt around this
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trend is a function of (i) the deviation of in�ation from its optimal level,
and (ii) the idiosyncratic shocks lnxjzt. This insight turns out to be
key for identifying the marginal e¤ects of suboptimal in�ation on price
distortions.

The �rst-stage regression. The �rst step in estimating the marginal
e¤ect of in�ation on price distortions consists of running OLS regressions
of the form

ln pjzt = ln ajz � (ln bjz) � t+ ujzt; (14)

which regress the relative product price on a product-speci�c intercept
and time trend. To simplify the exposition, we abstract from small
sample issues and focus on population regressions.23 Regression (14) is
of interest for two reasons. First, the coe¢ cient estimates deliver24

[ln ajz ! ln p�jz

[ln bjz ! ln��jz; (15)

which shows that the regression allows recovering the deterministic com-
ponents of the �exible relative price, i.e., the intercept term p�jz and the
product-speci�c optimal in�ation rate ��jz. Since the actual relative
price follows - in terms of its level and time trend - these deterministic
dynamics, the e¤ects of price distortions must be contained in the resid-
uals of regression (14). In fact, these residuals are the second reason
why regression (14) is of interest. They are asymptotically given by25

ujzt = �jzt(ujzt�1�(ln�z�ln��jz))+(1��jzt)(f(xjzt)+
�z

1� �z
(ln�z�ln��jz))

(16)
where �jzt = 0 captures periods in which the price gets adjusted and
�jzt = 1 captures periods without adjustment, and where f(xjzt) is de-
�ned in equation (12). We next discuss the properties of the the regres-
sion residuals (16).

The level of price distortions is not identi�ed. Due to price stick-
iness (�z > 0), the regression residuals ujzt in (16) fail to be very in-
formative about the idiosyncratic shocks, as previously emphasized by
Nakamura, Steinsson, Sun and Villar (2018). The underlying intuition
is straightforward: in periods where prices do not get adjusted, they
reveal no new information about idiosyncratic shocks; and in periods,
where prices get adjusted, their adjustment gives considerable weight

23Small sample e¤ects are discussed in detail in appendix F.
24See appendix D.3 for a formal derivation.
25See appendix D.4 for a derivation.
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to expected future values of the idiosyncratic shock, particularly when
prices are sticky, see equation (12).
Due to the in�uence of expected future shock values, the information

that becomes available upon a price adjustment, i.e. the term f(xjzt)
de�ned in equation (12), fails to identify the underlying process of idio-
syncratic shocks lnxjzt. Appendix B proves the following result:

Proposition 1 In the presence of price stickiness, observed prices ln pjzt
fail to identify the process for idiosyncratic shocks lnxjzt. Consider, for
example, a stationary discrete N-state Markov process for f(xjzt). It can
be generated either by a stationary Markov processes for lnxjzt with N
states or an in�nite number of di¤erent Markov processes with M � N
states, where M is arbitrary and where M � N states in the M-state
process are not states in the N-state process.

Intuitively, di¤erent fundamental processes for lnxjzt give rise to
identical processes for f(xjzt), because they imply the same conditional
expectations in equation (12). Since the process for lnxjzt cannot be
identi�ed from observed prices, it is impossible to estimate �price dis-
tortions�, i.e., the gap between the actual and �exible price. This may
explain why the literature has to date not come up with an estimate of
how price distortions responds to (suboptimal) in�ation.
It is worth emphasizing that the result in proposition 1 applies more

generally to the case where lnxjzt is non-stationary but still contains
some stationary component, e.g., when lnxjzt is the sum of a ran-
dom walk process ln yjzt plus an independent stationary Markov process
ln zjzt. We then have f(lnxjzt) = ln yjzt + f(ln zjzt), so that the process
ln zjzt and thus lnxjzt can again not be identi�ed, even if the process for
ln yjzt could be perfectly recovered from the data.
One way to deal with the identi�cation problem is to bring in addi-

tional information. This is the strategy pursued in Eichenbaum, Jaimovich
and Rebelo (2011) who exploit information on marginal costs in super-
markets to identify price distortions (but do not analyze how they de-
pend on in�ation). Yet, information on marginal costs is only rarely
available.
An alternative approach to handle the identi�cation problem is to

impose additional identi�cation assumptions. This is the approach pur-
sued in Baley and Blanco (2021) and Alvarez, Lippi and Oskolkov (2022),
who show that the distribution of price distortions can be recovered from
observed price changes, whenever lnxjzt is a pure random walk, i.e., does
not contain stationary shock components. With a random walk, we have
f(xjzt) = lnxjzt, so that the size of innovations between price reset times
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identi�es the innovation variance of the random walk. Yet, the hypoth-
esis of a pure random walk in lnxjzt is strongly rejected in our data, as
we show in appendix C.
We now show that it is simply not necessary to identify the level of

price distortions to estimate the marginal e¤ects of suboptimal in�ation
on price distortions. We discuss this point in the next subsection.

Second-stage regression: the marginal e¤ect of suboptimal in-
�ation. While the level of price distortions cannot be identi�ed from
observed prices, the theory predicts that the marginal e¤ect of subop-
timal in�ation on price dispersion can be identi�ed. In fact, equation
(11) highlights that any non-zero gap ln�z � ln��jz generates front-
loading of prices upon price adjustment times, as captured by the term
�z
1��z (ln�z � ln�

�
jz). Likewise, during non-adjustment periods, a gap

between actual and optimal in�ation leads to a drift in the gap between
actual and �exible relative prices. Both of these features contribute to
increasing the variance of the regression ujzt in the �rst-stage regression
(16).
Therefore, the variance of �rst-stage residuals satis�es the following

relationship:26

Proposition 2 The variance of the �rst-stage residual in equation (14)
is given by

V ar(ujzt) = vz + cz � (ln�z � ln��jz)2; (17)

where the intercept

vz � V ar

 
(1� �z)Et

1X
i=0

�iz lnxjzt+i

!
(18)

is a function of the idiosyncratic shock process lnxjzt and the price stick-
iness parameter �z, and

cz �
�z

(1� �z)2
: (19)

The intercept term vz in equation (17) contains both e¢ cient price
components, e.g., the presence of idiosyncratic fundamental shocks, and
price distortions that arise due to price stickiness, see equation (18).
In particular, price stickiness causes the loading on the current idiosyn-
cratic shocks to be too low relative to the �exible price case. Without
additional information, it is impossible to further decompose to what ex-
tent vz re�ects e¢ cient or ine¢ cient forces, which is precisely the feature

26See appendix D.4 for a derivation.
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preventing identi�cation of the level of price distortions from observed
actual prices. The second term on the r.h.s. of equation (17) captures
the e¤ects of suboptimal in�ation on price distortions. According to the
theory, the coe¢ cient cz is an increasing function of the degree of the
Calvo price stickiness parameter �z.
Equation (17) is a second-stage regression equation and a key equa-

tion we shall exploit in the present paper. It uses the residual variance
from the �rst-stage equation (14) as left-hand side variable, and the gap
between the (item-level) in�ation rate �z and the product-speci�c opti-
mal in�ation ��jz as right-hand side variable, where �

�
jz is also identi�ed

by the �rst-stage regression, see equation (15). Equation (17) implies
that the marginal e¤ect of suboptimal in�ation on price distortions can
be estimated using a cross-section of products for which price stickiness
and the process driving idiosyncratic shocks are the same. (A more gen-
eral estimation approach allowing for heterogeneous price stickiness and
heterogenous idiosyncratic shock processes is derived in section 6).
Appendix F describes in detail the two stage estimation approach

that allows estimating the coe¢ cient cz. It shows that the second-stage
estimate for cz is biased towards zero, due to the presence of �rst-stage
estimation error. The second-stage estimate of cz thus provide a lower
bound of the true marginal e¤ect of suboptimal in�ation on price distor-
tions. Since we are interested in rejecting the null hypothesis of in�ation
not creating price distortions (H0 : cz = 0), this works against our main
�nding.
The next section brie�y shows that the results derived thus far are

not speci�c to the case with Calvo frictions, but also apply in a setting
with menu-cost frictions.

3.2 State-Dependent Price Setting Frictions
We now present a model with state-dependent pricing. To be able to
get closed-form solutions, we consider a continuous-time setup and a
slightly more restrictive process for the idiosyncratic shocks. Within
this setup, we derive continuous-time analogue to proposition 2. The
�rm�s objective (9) becomes:

max
f�jzi;� ln pjzig1i=1

�E
"Z 1

t

e��(s�t)
�
ln pjzt+s � ln p�jzt+s

�2
ds+ �z

1X
i=1

e��(�jzi�t)

#
(20)

The parameter � > 0 is the discount rate, �jzi are the random adjustment
times and �z is the cost paid at the times of adjustment. As with time-
dependent frictions, the �rm�s relative price in period �jzi+s is given by
ln pjz�jzi � s ln�z between adjustment periods, re�ecting relative price

18



erosion due to in�ation.
The �exible relative price ln p�jzt follows a continuous-time analogue

of (10) with an additional restriction on the idiosyncratic process lnxjzt,
namely that it assumes values from a �nite grid flnx1z; : : : ; lnxNzg and
switches from grid point i to grid point j with Poisson intensity �Xizj.

27

Appendix E shows that under � ! 0 and for su¢ ciently small ad-
justment cost �z;28 the OLS regression (14) recovers the exact same
coe¢ cients as in the time-dependent model. Furthermore, the variance
of residuals depends on product-speci�c suboptimal in�ation:

V ar(ujzt) = V ar(lnxz)+c
MC
z �(ln�z� ln��jz)2+O((ln�z=��jz)4); (21)

where the intercept is again a function of the idiosyncratic shock process,
the quadratic term depends on suboptimal in�ation, andO((ln�z=��jz)

4)
denotes a fourth order approximation error. The coe¢ cient cMC

z is now
a function of the shock process parameters �Xiz =

PN
j 6=i �

X
izj:

cMC
z � E

"
1

(�Xiz)
2

#
:

If �Xiz is constant across states, then

cMC
z =

1

�2z
(22)

where �z is equal to the adjustment frequency (again up to a fourth
order approximation error O(( ln�z=��jz)

4)) and thus can be directly
estimated from the data. The coe¢ cient cMC

z di¤ers slightly from the
one in the discrete time setup with Calvo friction, see equation (19), for
which �z = 1 � �z. This is so because multiple price adjustments can
happen per unit of time under continuous time modeling. Notice also
that the coe¢ cient cMC

z does not depend on the menu cost �z, under the
maintained assumption that menu costs are small enough. Di¤erences in
�z have only fourth order e¤ects in equation (21). This is the reason why
equation (21) now holds only up to a fourth-order approximation error,
while it was exact in the Calvo setup (given the quadratic approximation
to the �rm objective), see equation (17).
Perhaps surprisingly, the results obtained from the state-dependent

model are (to the consider order of approximation) virtually the same
as for the time-dependent model.
27The restriction is very mild because we do not impose any assumption on the

switching intensities. Even though we are ruling out all processes with continuous
paths, we can still approximate them well with a su¢ ciently �ne grid.
28Note that we do not consider a limiting case �z ! 0, instead our result holds for

all �z � �� for some �� > 0.
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4 Micro Price Data and Empirical Product De�n-
ition

In our empirical analysis, we use the micro price data underlying the
o¢ cial U.K. consumer price index (CPI). The advantage of using CPI
micro price data is that it covers a wide range of consumer expenditures.
Moreover, the UK CPI data display quite strong relative price trends and
signi�cant variation of these trends across products.29 This is essential
for our identi�cation approach, which relies on cross-product variation
in relative price trends.30

We consider about 20 years of micro price data (February 1996 to
December 2016), which is obtained from the O¢ ce of National Statis-
tics (ONS). The data are monthly and classi�ed into narrowly de�ned
expenditure items (e.g., �at panel TV 33inch, men�s shoes trainers, veg-
etarian main course, etc.). Given the sample selection described further
below, we consider 1071 di¤erent expenditure items and 15.5 million
price observations over the sample period.
A product within an item is a sequence of price observations for a

particular object or service sold in a particular store. Otherwise identical
objects or services that are sold in di¤erent locations will thus be treated
as di¤erent products in our empirical approach. The same holds true
when a product in a speci�c location and expenditure item gets substi-
tuted by a new product: so-called �comparable�and �non-comparable�
substitutions will be treated as separate products. This allows us to ac-
count for location and product speci�c components in the most �exible
way.
We then estimate the �rst-stage equation (14) for every product in

the sample and estimate the second-stage equation (17) at the level of
the expenditure item z = 1; ::::1071, considering all products j belonging
to the item, i.e., we estimate

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz (23)

where dV ar(ujzt) is the variance of �rst-stage residuals of product j in
item z and \ln�z=��jz the corresponding �rst-stage estimate of the gap
between the item-level in�ation rate and product-speci�c optimal in�a-

29See Adam andWeber (2022) who estimate the optimal aggregate in�ation rate.for
the U.K. from relative price trends.
30For these reasons, micro price data is more attractive for our analysis than su-

permarket scanner data, which covers fewer product categories and also contains
many categories, e.g., food, for which relative price trends tend to be less strongly
pronounced.
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Total number of price quotes used 15.4 million

mean median min max
Number of products per item 726 560 50 3,201
Number of price quotes per item 14,415 10,763 407 73,313

Table 1: Basic product and price statistics

tion.31 Estimation of equation (23) delivers 1071 estimates cz, one for
each expenditure item. We focus in our analysis on the item-level rather
than on the aggregate level because doing so increases the chances that
our two key identifying assumptions (identical degrees of price rigidity
& identical stochastic processes driving idiosyncratic shocks) are satis-
�ed. These assumptions will be relaxed in section 6, where we consider
a more demanding estimation approach.
The data methodology follows the one used in Adam and Weber

(2022), who provide further details. Starting from the raw micro price
data, we delete products with duplicate price observations in a given
month32 and also delete all price observations �agged by ONS as �in-
valid.�Furthermore, we split observed price trajectories for ONS product
identi�ers, whenever ONS indicates a change in the underlying product,
i.e., a comparable or non-comparable product substitution, and when-
ever price quotes are missing for two months or more. This conservative
splitting approach insures that we do not lump together products that
might in fact be di¤erent. It leads to a re�ned product de�nition that
we use to compute relative prices by de�ating nominal product prices
with a quality-adjusted item price index.
We only include expenditure items for which the item price index,

computed from our micro price data, replicates the o¢ cial item price
index provided by ONS su¢ ciently well. This leads to a selection of
1093 expenditure items from the 1233 contained in the raw data. Fur-
thermore, we only consider products with a minimum length of six price
observations after eliminating sales prices from the sample.33 We ac-
count for outliers by eliminating the 5% of products with the highest
values for dV ar(ujzt) and for ( \ln�z=��jz)2 within each expenditure item.

31See appendix F for details of the estimation approach, including arguents showing
why two-stage estimation approach only biases the coe¢ cient cz towards zero, i.e.,
against �nding a role for suboptimal in�ation on ine¢ cient price dispersion.
32Duplicate price quotes can arise because the U.K. O¢ ce of National Statistics

(ONS) does not disclose all available locational information underlying the data, so
that in rare cases we cannot uniquely identify the product price.
33We identify sales prices using the sales �ag recorded by the ONS price collectors.
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Figure 2: Descriptive statistics: �rst-stage regression

We then consider all expenditure items containing at least 50 products.34

This leads us to the 1071 expenditure items that we use in our empirical
analysis.35 Table 1 reports basic statistics on the number of products
and price observations per item. Given our approach, the average num-
ber of price observations per product is equal to 20 monthly observations
and the average number of price changes per products is equal to 2.

4.1 Descriptive Statistics of the Regression Inputs
This section presents key descriptive statistics about the variables enter-
ing the �rst and second-stage regression equations. Since we run these
regressions for more than one thousand expenditure items, we report
the distribution of key moments of the variables of interest in the cross-
section of items.
The left column in �gure 2 depicts the distribution of the mean and

standard deviation of the length of product life. For most items, the
mean product length ranges between 10 and 30 months, which is long
enough to estimate an intercept and slope parameter in our �rst-stage.

34We also eliminate expenditure items for which the estimated residual variances
are zero for all products. The latter occurs when prices never adjust within an item,
which is the case for less than a handful of items capturing administered prices.
35Not all these items are present throughout the sample period, as expenditure

items get added and removed. For the average year, we have 503 expenditure items.
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Figure 3: Descriptive statistics: second-stage regression

The bottom left panel in �gure 2 highlights that there is a considerable
amount of variation in the length of product lives within each item. We
exploit this feature below to present estimates that are based on products
whose price can be observed for at least 12 or 25 months (instead of 6
in our baseline) .
The top right panel in �gure 2 reports the distribution of the meanR2

values of the �rst-stage regression (61) across items. For most items, the
intercept and time trend tend to capture on average between 30% and
50% of the observed variation in relative prices. The remainder of the
variation goes into the regression residual, the variance of which enters
our second-stage regression. The bottom right panel in �gure 2 depicts
the distribution of the mean autocorrelation of these residuals. The
autocorrelation is signi�cantly below one, showing that the assumption
of a random walk is implausible given our data.36

The top left panel of �gure 3 reports the mean standard deviation
of the regression residual across items.37 For most items, the average
standard deviation ranges between 2% and 4%. The standard deviation
of the standard deviation of residuals is shown in the bottom left panel

36See appendix C for formal tests of the random walk hypothesis, which are based
on price observations form price adjustment periods.
37We report moments of the non-squared variables entering the second-stage re-

gression to increase readability of the �gures.
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Figure 4: Baseline results from estimating equation (23)

of �gure 3. It highlights that there is a considerable amount of variation
in the left-hand side variable of our second-stage regression, which is
desirable.
The top right panel in �gure 3 depicts the distribution of item-level

means of the suboptimal in�ation rate.38 For the vast majority of items,
the average suboptimal in�ation rate lies between �0:5% per month.
The lower right panel in �gure 3 shows the within-item standard devia-
tion of suboptimal in�ation. The cross-product variation is signi�cant,
with a standard deviation ranging between 1/3 and 2/3 of a percent on
a monthly basis in most items. This shows that our second-stage right-
hand side variable also displays a considerable amount of variation.

5 Price Distortions at the Product Level: Empiri-
cal Results

This section reports our estimates of the coe¢ cient cz in equation (23),
which captures how suboptimal in�ation distorts relative prices. To in-
crease chances that our key identifying assumptions (identical degrees of
price rigidity and identical stochastic processes for idiosyncratic distur-
bances) are satis�ed, the estimation is carried out separately for each of
the 1071 U.K. expenditure items in our sample. Section 6 presents an
alternative estimation approach that allows relaxing these assumptions.
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5.1 Baseline Results
Figure 4 presents our baseline estimation outcome. The left panel de-
picts the distributions of the estimated coe¢ cients cz; obtained from
estimating equation (23) for each expenditure category z. We �nd that
97% of the estimated coe¢ cients are positive, in line with the predictions
of sticky price theories. The right panel in �gure 4 depicts the distrib-
ution of t-statistics: 94% of the estimates have a t-statistic larger than
two, 82% a t-statistic larger than �ve, and only 1% of the coe¢ cients
have a t -statistic below minus two. Figure 4 thus provides overwhelm-
ing support for the notion that suboptimal in�ation gives rise to price
distortions at the product level. Row 1 in table 2 reports further details
of the regression outcome.
Interestingly, the median adjusted R2 value of the second-stage re-

gression (23) is 15%. Suboptimal in�ation is thus not only statistically
signi�cant but also explains a sizable part of the cross-product variance
of �rst-stage residuals within each item.39 This is the case despite the
fact that �rst-stage estimation error likely contributes to unexplained
variance on the left-hand side of the second-stage regression (23).
The point estimates for cz are not only positive and statistically

signi�cant, but also quantitatively large: the average point estimate is
close to 12. It implies that a monthly in�ation rate that lies 1% above (or
below) its optimal level40 increases the standard deviation of �rst-stage
residuals by 3.5 percentage points.41

Since �rst-stage estimation error causes the second-stage estimates
of cz to be biased towards zero, we refrain here from a further quan-
titative interpretation of the point estimates. Section 7 will assess the
quantitative importance of relative price distortions using directly the
(unbiased) �rst-stage residuals.
Sticky price theories suggest that the coe¢ cient cz is determined by

the adjustment rate for prices, see equations (19) and (22). We can thus
compute the price adjustment rate implied by any given coe¢ cient esti-
mate and see how it covaries (in the cross-section of items) with the ac-
tual price adjustment rate measured directly from price data. Inverting
equation (19) to solve for the regression-implied share of non-adjusting

38See appendix H for information on the cross-sectional distribution of the product-
speci�c optimal in�ation rate ��jz.
39Recall that item-speci�c constants do not contribute to the R2 values of the

second-stage regressions (23).
40The 1% number corresponds roughly to a 2 standard deviation variation for the

typical item, as the standard deviation of suboptimal in�ation ranges between 1/3%
and 2/3% per month for most items, see the lower right panel in �gure 3.
41The predicted increase in the variance is 0:12% = 12 � (0:01)2 and the reported

3.5% number is the square root of 0.12%.
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Figure 5: Observed versus regression-implied price stickiness (�z)

products �z, we obtain:42

�z =
1 + 2cz �

p
1 + 4cz

2cz

Figure 5 presents a scatter plot with the regression-implied �z (x-axis)
and the share of non-adjusters �z measured directly from the data (y-
axis). The two measures display a strongly positive correlation equal to
+0:5. This shows that price distortions are larger for items featuring
lower price-adjustment rates, as predicted by sticky price theory. How-
ever, the vast majority of items lie above the 45-degree line depicted in
�gure 5, while theory predicts the two measures to align along this line.
A downward bias in the regression-implied value for �z can arise from
downward bias in our estimated coe¢ cients cz, which emerges due to
�rst-stage estimation error, see appendix F.
Overall, our baseline results provide strong support for the notion

that suboptimal in�ation distorts relative prices. The next section ex-
plores the robustness of this �nding.

42We perform the inversion only for items with strictly positive estimated cz, which
is true for 97% of items. The other root of the polynomial is larger than one and can
be ruled out. In the discrete-time setup, the adjustment rate is equal to 1� �z. For
the continuous-time setup, we can recover the adjustment rate as �z = � ln�z and
obtain very similar results.
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Figure 6: Robustness to adding a linear term (equation (24), estimates
for cz are reported in table 2)

5.2 Robustness of Baseline Approach
We now explore the robustness of our baseline results. The outcomes
of all robustness exercises are summarized in table 2, which also reports
the baseline outcome.

Adding Linear Terms. Sticky price theories predict that only the
squared deviation of in�ation from its optimal level should explain the
variance of �rst-stage regression residuals. In particular, the linear gap
between actual and optimal in�ation should have a zero coe¢ cient when
added to the right-hand side of equation (23). Once can test this overi-
dentifying restriction and run regressions of the form

dV ar(ujzt) = vz + vlz � \ln�z=��jz + cz � ( \ln�z=��jz)
2 + "jzt; (24)

to check whether the coe¢ cients vlz are indeed approximately equal to
zero and whether the estimates for cz remain una¤ected by the presence
of the linear term.
Figure 6 reports the distribution of the estimated vlz (left panel) and

the associated distribution of t-statistics (right panel). In line with sticky
price theory, the estimates for vlz are tightly centered around zero and
often statistically insigni�cant. Row 2 in table 2 shows that estimates
for cz are hardly a¤ected by the presence of a linear term, again in line
with what sticky price theory suggests.

In�ation versus Suboptimal In�ation as Regressor. It turns out
to be important for our empirical results that the right-hand side of
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equation (23) features the squared value of suboptimal in�ation rather
than simply the squared value of in�ation. To illustrate this point, let
[ln�z(j) denotes the average item-level in�ation rate prevailing over the
lifetime of product j and consider the following alternative formulation
of the second-stage regressiondV ar(ujzt) = vz + cz � ([ln�z(j))2 + "jz; (25)

which counterfactually assumes that the optimal in�ation rate equals
zero for all products.
Row 3 in table 2 shows that outcomes di¤er radically from the base-

line: (i) about half of the point estimates for cz are then positive with
the other half being negative; (ii) 60% of the coe¢ cients are statistically
insigni�cant, and (iii) the R2 value of the regression drops almost to
zero.
This shows that one would wrongly conclude that in�ation is not

associated with price distortions, if one assumes product-speci�c opti-
mal in�ation to be equal to zero, as suggested by textbook sticky price
models. This �nding also highlights that the baseline �ndings are pre-
dominantly due to di¤erences in the product-speci�c optimal in�ation
rate ��jz in the cross-section of products j within an item z.

Positive versus Negative Deviations from Optimal In�ation.
We now explore whether the direction of the deviation from optimal
in�ation makes a di¤erence for observed price distortions. In particular,
when ln�z=��jz < 0, then nominal prices have to fall to keep relative
prices at their desired level, while nominal price have to increase when
ln�z=�

�
jz > 0. If price rigidities depend on the direction of the price

adjustment, then positive versus negative deviations from the optimal
in�ation rate generate price distortions of di¤erent strength. We can
test whether this is the case by estimating the baseline equation (23)
using coe¢ cients that depend on the sign of the deviation:dV ar(ujzt) = vz+

�
c+z � If \ln�z=��jz>0g

+ c�z � If \ln�z=��jz<0g

�
�( \ln�z=��jz)

2 +"jzt;

where Ifxg is an indicator function that is equal to 1 if x is true and zero
otherwise.
Row 4 in table 2 shows that one obtains similar outcomes in terms of

the share of positive point estimates and for the statistical signi�cance of
the estimates, independently of the sign of the deviation. Yet, the mag-
nitude of the two coe¢ cients di¤ers notably: the mean and median esti-
mate for c+ is signi�cantly smaller than the corresponding numbers for
c�. Price distortions are thus smaller when �rms have to increase prices
to counteract the e¤ects of suboptimal in�ation. This suggests that
downward rigidity of prices is somewhat stronger than upward rigidity.
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Reducing First-Stage Estimation Error. One possible concern
with the baseline estimation approach is that �rst-stage estimation er-
rors are large and might lead to substantial attenuation in the second
stage or perhaps even to spurious results. We address these concerns
by selecting products for which estimation errors are likely going to be
smaller. We do so in two ways.
First, we select products with a higher minimum number of price ob-

servations, i.e., 12 or 24 monthly price observations instead of 6 observa-
tions in the baseline approach. This allows for a more reliable estimation
of the optimal in�ation trend ��jz and the rate of suboptimal in�ation.
The regression outcomes are reported in rows 5 and 6 in table 2. While
results barely change in terms of the share of positive coe¢ cients cz and
their statistical signi�cance, the magnitudes of the mean and median
estimate increases considerably relative to the baseline. This suggests
that �rst-stage estimation error indeed causes a considerable downward
bias in the second stage estimates for cz.
In a second approach, we use the number of nominal price changes

a selection criterion for including products in the regressions. The idea
behind this approach is that we would like to exclude products with
only few price changes, so as to avoid that the variation of residuals
in the cross-section of products is purely driven by whether or not a
price change is observed over the product lifetime. To this end, we
perform the second-stage regression using only products with 2 or more
price changes and a regression using only products with 4 or more price
changes. Rows 7 and 8 in table 2 show that one obtains again a very
large number of positive point estimates and high statistical signi�cance
levels, albeit less strongly than in the baseline. Also, the R2 value of
regression falls to about one half or one-third of the baseline level and
the magnitudes of coe¢ cient estimates decline relative to the baseline.
Despite this, support for the notion that suboptimal in�ation distorts
relative prices remains very strong.

Including Sales Prices. Our baseline estimation removes all sales
prices from the sample, mainly because the underlying sticky price theo-
ries typically do not model sales. Row 9 in table 2 shows that our results
are robust to including sales prices into the estimation.

Nonlinear Time Trends/Testing for Breaks in Time Trends.
Our baseline approach allows for a linear time trend in relative prices
in the �rst-stage regression equation (14). Since the presence of nonlin-
ear time trends may be source of concern, we recompute the �rst-stage
residuals allowing also a quadratic time trend and then use the resulting
residuals in our second-stage regression (23). Row 10 in table 2 reports
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the regression outcomes. We obtain again a very high number of positive
point estimates and very high levels of statistical signi�cance.
An alternative approach to deal with potential non-linearities in rel-

ative price trends is to test for trend stability. To this end, we run a
Chow test for trend stability in the �rst stage regression, using the �rst
and second half of product life. We exclude in the second stage all prod-
ucts with p-value for the null hypothesis of no trend break below 10%
or 20% .43 The estimation outcomes are reported in rows 11 and 12 of
table 2and hardly change compared to the baseline.

6 Exploiting Within-Product Variation

This section explores an alternative estimation strategy that allows to
signi�cantly relax key identifying assumptions underpinning the base-
line estimation approach. The strategy consists of exploiting within-
product variation and can deal with settings in which idiosyncratic shock
processes and price rigidities both di¤er across products within the same
expenditure item. It thus addresses key concerns one might have with
the baseline approach but comes at the cost of increased second-stage
attenuation bias.
The key idea underlying the alternative approach consists of splitting

the sample life of products into two equally long subsamples and to ex-
ploit variation in the in�ation rate over time across the two subsamples.
Speci�cally, let ln�jz1 � ln��jz denote the suboptimal in�ation rate of
product j in item z in the �rst half of product life and ln�jz2 � ln��jz
the suboptimal rate in the second half.44

Consider �rst the case with Calvo frictions: equation (17) then ap-
plies separately in the �rst and in the second half life of each product.45

This allows taking - for each product j in item z - the time di¤erences
across the product half lives, which delivers

V ar1(ujzt)� V ar2(ujzt)

= cz((ln�jz1 � ln��jz)2 � (ln�jz2 � ln��jz)2); (26)

where V ar1(ujzt) and V ar2(ujzt) denote the residual variances in the
�rst and second half of the product lifetime, respectively.46 The key
43As is well-known, the Chow test is oversized in small samples (Candelon and

Lütkepohl (2001)), i.e., it rejects the null hypothesis of no-trend-break too often in
small samples when the null hypothesis is true. This is not a problem here, as it only
increases the strictness of selecting products featuring for a constant trend.
44The suboptimal rates can be estimated using equation (62) in appendix F sepa-

rately for the �rst and second half of product lifetime.
45This assumes that the change in in�ation are not anticipated, which is the case

whenever changes in in�ation are unpredictable.
46These are estimated using the same regression as in the baseline approach.
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feature of equation (26) is that it eliminates the constant present in the
baseline regression speci�cation (17). This allows testing whether the
coe¢ cient cz = �z= (1� �z)

2 in equation (26) is positive without re-
quiring that idiosyncratic shock processes are identical across products.
Moreover, when the Calvo adjustment frequencies �jz 2 [0; 1] also vary
across products within the same expenditure item, then the OLS esti-
mate bcz of the coe¢ cient cz in equation (26) will recover the average
price distortion across products, i.e.,

E [bcz] = E

"
�zj

(1� �zj)
2

#

provided the product-speci�c coe¢ cients �jz= (1� �jz)
2 display condi-

tional mean independence from the regressor in (26).47 Under this con-
dition, one can allow for product-speci�c idiosyncratic shock processes
and product-speci�c price stickiness, but still test whether (on average
across products within an item) suboptimal in�ation distorts relative
prices.
The within-product estimation approach generalizes the baseline ap-

proach, but the second-stage (26) will likely feature stronger right-hand
side measurement error: one now has to estimate (in the �rst stage) how
suboptimal in�ation changes over the product life, rather than just the
level of suboptimal in�ation. One can thus expect increased second-stage
attenuation bias in the estimated coe¢ cient cz.
Next, consider the case with menu cost frictions, for which similar

arguments apply. Taking di¤erences across the �rst and second half
of product life using equation (21), one obtains (up to a second-order
approximation) again equation (26), but with the regression coe¢ cient
now given by cz = E[1=

�
�Xiz
�2
], where �Xiz is the switching intensity

in the i-th idiosyncratic state of the idiosyncratic shock process. The
regression coe¢ cient is now independent of the menu-cost parameter
�, so that the estimation approach (26) remains valid in a menu-cost
setting in the presence of product-speci�c menu-costs.48 If the expected
switching intensities E[1=

�
�Xiz
�2
(j)] also di¤er across products j within

the same item, but display conditional-mean independence from the
regressor in equation (26), then OLS estimation of equation (26) again

47See appendix G for a proof and further details.
48Heterogeneity in adjustment costs has only fourth order e¤ects on the variance

of �rst-stage residuals. This is also true in the baseline approach with menu cost
frictions.
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Figure 7: Aggregate cross-sectional price dispersion and in�ation

recovers the average distortion coe¢ cient

E [bcz] = E

"
1

(�Xiz(j))
2

#
:

As with Calvo frictions, one can thus test whether suboptimal in�ation
distorts relative prices without having to assume that products have iden-
tical menu costs and identical processes governing idiosyncratic shocks.
And as with Calvo frictions, the test requires checking whether cz in
equation (26) is positive.
Row 13 in table 2 reports the outcomes from estimating equation

(26). It shows that results are even stronger than in the baseline case:
99% of the estimated coe¢ cients are now positive and the share of sig-
ni�cantly positive coe¢ cients is also higher than in the baseline. Yet,
the point estimates are now considerably smaller, which is likely due to
increased attenuation bias.
To document that these results do not emerge because there is a

price change in one product half-life but not in the other half life, rows
14 and 15 in table 2 repeat the within-estimation approach using only
products that have at least 1 or at least 2 nominal price changes per
half life. One then still obtains very strong support for the notion that
suboptimal in�ation is associated with relative price distortions.
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7 Understanding Cross-Sectional Price Dispersion

The analysis focused thus far on price distortions over time at the level
of individual products. This section shifts focus and considers the cross-
sectional dispersion of prices at a given point in time and its comovement
with in�ation over time.
The top panel in �gure 7 depicts an aggregate measure of cross-

sectional price dispersion. The aggregate measure is constructed by com-
puting �rst the cross-sectional variance of relative prices, V arj(ln pjzt),
for each item z and in each year. Item-level variances are then aggre-
gated across items using expenditure weights. The �gure shows that the
cross-sectional dispersion of prices has increased by more then 50% over
the sample period. At the same time, aggregate in�ation, depicted in
the bottom panel of �gure 7, displays no clear time trend.
At �rst glance, this suggests that in�ation is not associated with

price dispersion in the cross-section of products. Yet, this conclusion
turns out to be wrong: we show that the increase in cross-sectional price
dispersion over time, depicted in the top panel of �gure 7, is due to an
increase in the dispersion of �exible prices over time, which masks an un-
derlying positive relationship between in�ation and cross-sectional price
distortions. Higher in�ation is thus associated in the data with higher
cross-sectional price distortions, even though it displays no relationship
with cross-sectional price dispersion over time.
Section 7.1 shows how one can decompose cross-sectional price dis-

persion into a component capturing identi�able components of the �ex-
ible price distribution and a remainder, whose variation over time iden-
ti�es variation in price distortions over time. Section 7.2 uses this result
to analyze (i) the relationship between cross-sectional price distortions
and in�ation at the item level and (ii) the relationship between aggre-
gate in�ation and an expenditure-weighted average of item-level cross-
sectional price distortions. Section 7.3 documents that the increase in
cross-sectional price dispersion is almost fully accounted by an increase
in the dispersion of �exible prices. It also derives quantitative bounds
on the amount of cross-sectional price distortion generated by in�ation
over the sample period.

7.1 Decomposing Cross-Sectional Price Dispersion
From the sticky price theories analyzed in section 3, it follows that the
price of product j in expenditure category z evolves over time according
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to49

ln pjzt = ln p
�
jz � ln��jz � t+ ujzt; (27)

where the residuals ujzt have mean zero, are independent across j and
z, and have variance over time equal to

V ar(ujzt) = vz + cz � (ln�z � ln��jz)2: (28)

We are now interested in decomposing the cross-sectional variance of
prices, denoted by V arj(ln pjzt), of the products j present at some time
t in some item z. In particular, we would like to evaluate how this
measure of cross-sectional price dispersion depends on the item-level
in�ation rate �z.
Suppose there is a unit mass of products j in item z and that each

month a share of products randomly exits the sample and gets replaced
by newly sampled products. In general, newly sampled products may
have di¤erent characteristics than the products that leave the sample,
so that the distribution of product characteristics fp�jz;��jzg may change
over time.50

Appendix H shows that time variation in the cross-sectional distrib-
ution of optimal in�ation rates f��jzg is minor. This allows restricting
consideration to a setting with a time-invariant cross-sectional distri-
bution of optimal in�ation rates. Speci�cally, we assume that upon
product entry, the optimal in�ation rate ��jz is an i.i.d. draw from
f��1z ;��2z ; :::;��Iz g, where ��iz is chosen with probability mi

z � 0 for
i = 1; :::; I and

P
im

i
z = 1.

In contrast, the distribution of estimated intercepts fp�jzg strongly
moves with time in the data. To account for this, we allow for arbi-
trary time variation in the cross-sectional distribution of intercepts for
newly incoming products.51 Given this setup, we derive the following
decomposition result:52

Proposition 3 Let V arj(�) denote the variance in the cross-section of
products j. The cross-sectional variance of relative prices in expenditure

49See equation (53) in appendix D.3 for the case with Calvo frictions and equation
(54) in appendix E for the case with menu costs.
50We assume that upon the time of entry, the residual ujzt is drawn from the

stationary residual distribution for products with characteristics
�
p�jz;�

�
jz

�
. This

is justi�ed by the fact that newly sampled products in our data typically do not
represent truly new products, instead products that are newly sampled by the O¢ ce
of National Statistics.
51The covariance between the distribution of intercepts fp�jzg and optimal in�ation

rates f��jzg is also left unrestricted.
52See appendix I for the proof.
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category z at time t is then given by

V arj(ln pjzt) = V arj(ln p�jz � ln��jz � t) + V arj(ujzt); (29)

where
V arj(ujzt) = vz + cz � Ej[(ln�z � ln��jz)2]: (30)

Equation (29) decomposes the cross-sectional price dispersion into
two components. The �rst component, V arj(ln p�jz � ln��jz � t), captures
identi�able elements of the �exible price distribution that are determin-
istic from the viewpoint of an individual product j. We can identify
this component using our �rst stage estimates of (ajz; bjz) from equation
(14). The second component in equation (29), V arj(ujzt), is given by
(30) and depends on the constant vz, which captures variation induced by
stochastic components of the �exible price, and cz �Ej[(ln�z� ln��jz)2],
which captures price distortions induced by in�ation.53

The decomposition in proposition 3 holds at each point in time in a
setting where steady-state in�ation �z is constant. Yet, the decomposi-
tion also applies in a setting where in�ation is slowly changing over time.
For instance, suppose that in�ation changes from year to year according
to a random walk, with in�ation being equal to �zt in year t. Price set-
ters then expect future in�ation to be equal to the current in�ation rate
�zt, so that our steady-state pricing results continue to apply. And since
the vast majority of prices have adjusted over the course of a year, the
cross-sectional dispersion of prices at the end of each year will depend
largely only on the in�ation rate �zt prevailing during year t. Equation
(30) thus provides a theory-implied relationship linking (yearly) in�a-
tion rates �zt to the cross-sectional distribution of �rst-stage residuals
V arj(ujzt) at the end of the year.
Depending on the distribution of optimal in�ation rates, an increase

in �zt can lead to either an increase or a decrease in price distortions: if
average optimal in�ation rate (Ej[��jz]) lies below actual in�ation, then
price distortions are predicted to increase with in�ation. The opposite is
true if the average optimal in�ation rate lies above actual in�ation. Using
our our �rst-stage residuals, we can estimate V arj(ujzt) as V arj(bujzt)
and test whether the predicted relationship with in�ation is actually
present in the data.54 We investigate this issue in the next section.

53In the absence of price stickiness, we have cz = 0 so that price dispersion does
not depend on in�ation.
54The estimated �rst-stage residuals bujzt are unbiased but contaminated with mea-

surement error. To the extent that measurement error does not vary over time,
V arj(bujzt) will correctly capture the time variation of V arj(ujzt).
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Figure 8: Correlation between in�ation and price distortions at the item
level

7.2 In�ation and Cross-Sectional Price Distortions
over Time

The present section investigates the comovement between in�ation and
cross-sectional price distortions over time. It considers �rst comovement
at the level of expenditure items and then comovement at the aggregate
level, i.e., for the expenditure-weighted average across items.

7.2.1 Item Level Results

This section test whether the correlation over time between the item-level
in�ation rate �zt and the cross-sectional price distortion, as measured
by V arj(bujzt), behaves in line with the predictions of proposition 3
To test this prediction, we compute the correlation between �zt and

V arj(bujzt) over time, using all items z for which we have at least three
years of data.55 The top panel in �gure 8 depicts the resulting distribu-
tion of correlations across items, using all correlations with a p-value less
or equal to 10%. The bottom panel depicts the distribution of p-values.56

Figure 8 shows that there are signi�cantly positive and signi�cantly neg-
ative correlations, but more positive than negative ones.57

Proposition 3 implies that positive (negative) correlations emerge
whenever optimal average in�ation (Ej[��jz]) lies above the average ac-

55This is the case for 696 expenditure items.
56206 of the 696 correlations have p-values smaller than 10%.
57This result is robust to choosing tighter p-values, e.g., a value of 5%; or to

considering all correlations, independently of their p-value.
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Figure 9: The relationship between average optimal minus actual in�a-
tion (y-axis) and the correlation between in�ation and cross-sectional
price distortions (x-axis)

tual in�ation rate in the item. Figure 9 shows that this is indeed the
case: it depicts the outcome of a regression of the gap between optimal
and actual in�ation on the correlation and its square. The regression line
behaves in line with the predictions of proposition 3. This is particularly
true for the statistically signi�cant parts of the regression line.58

7.2.2 The Expenditure-Weighted Average Item

We now consider an economy-wide measure of cross-sectional price dis-
tortions and its comovement with aggregate in�ation. In particular,
we aggregate the cross-sectional item-level variances V arj(bujzt), consid-
ered in the previous section, across items using item-level expenditure
weights. According to equation (30), time-variation in this measure re-
�ects time variation in cross-sectional price distortions.
Figure 10 depicts the resulting aggregate cross-sectional distortion

measure together with the aggregate in�ation rate.59 Unlike aggregate
price dispersion, which is trending upward, see �gure 7, aggregate price
distortions do not show much of a time trend. In addition, aggregate

58This continues to be true when restricting consideration to a linear regression or
when including a third order term into the regression. The coe¢ cient on the third
order term is not statistically sign�cant.
59Note that aggregate in�ation is also an expenditure-weighted average of item-

level in�ation rates. Figure 10 displays annual dispersion and annual in�ation to
remove within-year seasonalities in price dispersion and in�ation. Both measures are
computed as a 12 month average of monthly dispersion and monthly year-over-year
in�ation rate.
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Figure 10: Aggregate in�ation and aggregate cross-sectional price dis-
tortions

price distortions covary positively with aggregate in�ation: the correla-
tion between both measures is equal to +0:67 and is signi�cant at the
1% level. This shows that higher aggregate in�ation rates are associated
with larger amounts of cross-sectional price distortions in the data.
Importantly, this result is not driven by outliers in the distribution of

�rst-stage residuals. For instance, results are similar when removing the
2.5% highest and 2.5% lowest residuals in each item before computing the
variance of �rst-stage residuals. Likewise, computing instead a robust
dispersion measure leads to very similar outcomes.60

Proposition 3 predicts that the positive correlation between aggregate
in�ation and cross-sectional price distortions is driven by products for
which the optimal in�ation rate ��jz lies below the actual in�ation rate.
This theoretical prediction can again be tested. To do so, we group in-
dividual products according to their optimal in�ation rate. Speci�cally,
we consider the 1/3 of products with the highest and the 1/3 of products
with the lowest optimal in�ation rate in each expenditure item and then
recompute price distortions for these two sub-groups.61

The top group of products has an (unweighted) average optimal in-
�ation rate that varies between +2:75% and +5:0% over time, which
roughly covers the range in which actual in�ation moves. The bottom
group, however, has a deeply negative optimal in�ation rate that ranges

60Following Nakamura et al. (2018), we computed the interquartile range (IQR)
of �rst-stage residuals at the level of each expenditure item and then use the
expenditure-weighted median to aggregate across items. This leads to very simi-
lar conclusions.
61We split products within each expenditure item, rather splitting products across

all items combined, to avoid that results are driven by compositional e¤ects. As
is well-known, the average optimal in�ation rates varies systematically in the cross
section of items.
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Figure 11: Overall versus �exible cross-sectional price dispersion (various
identi�ed components)

between �6% and �9% over time. According to the theory, this group
should display a strong positive correlation between price distortions and
in�ation over time. In contrast, the top group should display no or only
a weak correlation with in�ation.
This is indeed what we �nd: for the top group, the correlation be-

tween in�ation and price distortions is weaker (+0:38) and only mar-
ginally signi�cant (p-value of 0:09); for the bottom group, the correlation
is strongly positive (+0:69) and highly signi�cant (p-value of 0:001). In
line with sticky price theory, the positive correlation between in�ation
and ine¢ cient price dispersion at the aggregate level is thus driven by
products with optimal in�ation rates that lie below actual in�ation.

7.3 Bounds on Price Distortions and Changes in
the Dispersion of Flexible Prices

This section derives upper and lower bounds on the amount of relative
price distortions due to in�ation over the sample period and discusses
the drivers of the upward trend in aggregate price dispersion in the top
panel of �gure 7.
Proposition 3 implies that the (aggregated) variance of �rst stage

residuals represents an upper bound on the amount of price distortions
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that is due to in�ation.62 The upper bound of the variance reached in
�gure 10 is approximately 2:5 �10�3. Therefore, absent any �exible price
dispersion, price distortions gives rise to a standard deviation of prices
of at most

p
2:5 � 10�3 = 5% . While this is quantitatively large, price

distortions account only for about 1% of aggregate price dispersion.
A lower bound on the maximum contribution of in�ation to price

distortions over the sample period is given by the min-max range of
the variance of �rst-stage residuals, as the time-varying component is
- according to the theory - solely due to in�ation. This range is ap-
proximately equal to 1:5 � 10�3 in �gure 10 and implies (in the absence
of �exible price dispersion) that in�ation would induce variation in the
standard deviation of prices of up to

p
1:5 � 10�3 = 3:87% over time.

Again, this appears sizable in absolute terms.
Aggregate price dispersion, however, is overwhelmingly driven by

price dispersion that is also present under �exible prices. Figure 11 de-
picts the aggregate price dispersion, previously shown in the top panel
of �gure 7), together with the dispersion of the identi�able components
of the �exible price dispersion (the expenditure-weighted item level vari-
ances V arj(ln p�jz � ln��jz � t) from proposition 3).
Figure 11 shows that the identi�able component of �exible price dis-

persion accounts for the vast majority of aggregate price dispersion and
also closely tracks it over time. Since time variation in the distribution
of optimal in�ation rates (ln��jz) is very limited, virtually all time-series
variation is due to time-series variation in the cross-sectional dispersion
of the intercepts (ln p�jz).

63

This shows that time series variation in aggregate price dispersion
is to a large extent driven by time series variation in �exible price dis-
persion, which strongly rises over time. The increase in �exible price
dispersion may re�ect a number of economic forces, such as a widening
cross-sectional distribution of mark-ups, productivities, or unobserved
product qualities/variety. The large increase in �exible price dispersion
over time is also the predominant reason why aggregate in�ation fails to
covary with aggregate price dispersion over time, see �gure 7.

8 Conclusions

In summary, our research derives three key insights:

1. We establish a robust link between deviations of in�ation from its
62This is so because the intercept vz � 0 in equation (30) is not due to in�ation.
63To make comparisons meaningful over time, �gure 11 reports the dispersion

coming from intercepts using the normalized intercepts ln p�jz ���jz � t0jz, where t0jz is
the time period in which the product �rst enters the sample.
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product-speci�c optimal level and an increase in price distortions
at the product level.

2. At the aggregate level, we �nd a positive association between vari-
ations in aggregate in�ation and cross-sectional price distortion,
which is mainly driven by products with optimal rates of in�ation
below actual in�ation.

3. The dynamics of aggregate cross-sectional price dispersion over
time are largely driven by identi�able components of the �exible
price dispersion. This suggests that factors beyond in�ation are
the main driver of the dynamics in aggregate price dispersion.

Collectively, these �ndings o¤er substantial empirical support for the
theoretical foundations of sticky price models and the monetary policy
implications they engender.
In future research, we intend to explore the relationship between

price distortions and demand misallocation. This requires the observa-
tion of product quantities alongside prices, which is feasible only for a
narrower range of products. Yet, it holds signi�cant implications for
understanding the real implications of suboptimal in�ation.
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A Details of the Introductory Model with Taylor
Frictions

Consider the Taylor (1979) model as outlined in Section 2. The �rm�s
objective is as follows:

max
ln pjt

�
N�1X
i=0

�
ln pjt+i � ln p�jt+i

�2
= max

ln pjt
�

N�1X
i=0

�
ln pjt � ln p�jt � i ln(�=��j)

�2
The �rst order condition yields:

ln poptjt = ln p
�
jt +

N � 1
2

ln(�=��j)

If an adjustment happens in period t, then for all 0 � i < N :

ln pjt+i = ln p
opt
jt � i ln� = ln p�jt +

N � 1
2

ln(�=��j)� i ln�

Since the �ex price is given by ln p�jt � i ln��j , relative price distortions
are:

ujt+i =

�
N � 1
2

� i

�
ln(�=��j)

Summing squared distortions over all 0 � i < N :

V ar(uj) =
N�1X
i=0

u2jt+i = (ln�� ln��j)2
N�1X
i=0

�
N � 1
2

� i

�2
=
N(N � 1)(N + 1)

12
(ln�� ln��j)2

Note that adjustment size is given by:

lnP opt
jt � lnPjt�1 = ln p

opt
jt � ln pjt�1 + ln�

= ln poptjt � ln p
opt
jt�N + (N � 1) ln� + ln�

= N(ln�� ln��j)

A.1 Absolute Price Changes May Miss Price Dis-
tortions

Suppose now that frictionless price ln p�jt has an additional idiosyncratic
component xjt that follows a two-state Markov chain (xjt 2 f��x; �xg; �x >
0) and switches states with probability one at the times of price adjust-
ment and with probability zero otherwise:

ln p�jt = ln p
�
j � t ln��j + xjt
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Since the value of xjt does not change during a price spell, it is straight-
forward to verify that, as before:

ln poptjt = ln p
�
jt +

N � 1
2

ln(�=��j)

ujt+i =

�
N � 1
2

� i

�
ln(�=��j)

V ar(uj) =
N(N � 1)(N + 1)

12
(ln�� ln��j)2

Conditional on xjt, the size of adjustment becomes:

lnP opt
jt � lnPjt�1 = ln p

opt
jt � ln pjt�1 + ln�

= ln poptjt � ln p
opt
jt�N + (N � 1) ln� + ln�

= N(ln�� ln��j) + 2xjt

The average absolute adjustment size is then:

E
�
j lnP opt

jt � lnPjt�1j
�
=
1

2

�
jN ln

�
�=��j

�
+ 2�xj+ jN ln

�
�=��j

�
� 2�xj

�
Suppose that N ln

�
�=��j

�
2 (�2�x; 2�x). Then:

E
�
j lnP opt

jt � lnPjt�1j
�
=
1

2

��
N ln

�
�=��j

�
+ 2�x

�
�
�
N ln

�
�=��j

�
� 2�x

��
= 2�x

Therefore, as long as N ln
�
�=��j

�
2 (�2�x; 2�x), suboptimal in�ation has

no e¤ect on the average absolute size of adjustments, while still a¤ecting
price distortions.

B Proof of Proposition 1

In this section we prove that it is impossible to recover the price gap dis-
tribution if shocks are stationary. To lighten notation in this appendix,
we drop the z subscript referring to the expenditure category. Suppose
an econometrician observes the in�nite path of actual prices ln pjt and
it is known that this path is generated under the time-dependent fric-
tion and stationary shocks lnxjt. The econometrician can recover the N
values of the vector f � [f1; : : : ; fN ]0 of f(xjt) as de�ned in (12):

f(xjt) � (1� �)Et

1X
i=0

(�)i lnxjt+i:
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In addition, the econometrician can recover the N�N transition matrix
�f :

�f =

264�
f
11 � � � �

f
1N

...
. . .

...
�fN1 � � � �

f
NN

375 ;
where �fij is the probability of observing fj in the subsequent period,
conditional on observing fi in the previous period.64 From the de�nition
of f(xjt) it follows that:

f = (1� �)lnx+ ��xf

where lnx is the state vector of the process lnxjt and �x is its transition
matrix. Setting �x = �f and solving the above equation for lnx �
[lnx1; : : : ; lnxN ] provides a candidate for the process lnxjt that leads to
the observed process f(xjt). However, as we show below, this candidate
solution is not unique and the observed N -state process of f(xjt) can be
equally supported by an (N+1)-state process ln ~xjt, de�ned on the grid
ln ~x � [ln ~x1; : : : ; ln ~xN ; ln ~xN+1] with (N+1)�(N+1) transition matrix
~�x. Such a process would lead to an (N+1)-state process of ~f(xjt), with
~fi = fi for all i < N and ~fN = ~fN+1 = fN , making ~f(xjt) and f(xjt)
observationally equivalent, provided the transition probabilities of ~�x

imply �f . To construct such a process, set ln ~xi = lnxi for all i < N ,
ln ~xN = ln xN�" and ln ~xN+1 = ln xN +" for a su¢ ciently small " > 0.65
We now construct the transition matrix ~�x in the following way:

~�x =

26666664
�x11 �x12 : : : �x1(N�1) �x1N=2 �x1N=2
...

. . .
...

...
...

�x(N�1)1 �
x
(N�1)2 : : : �

x
(N�1)(N�1) �

x
(N�1)N=2�

x
(N�1)N=2

~�xN1 �xN2 : : : �xN(N�1)
~�xN

~�xN
~�x(N+1)1 �xN2 : : : �x(N+1)(N�1)

~�xN+1
~�xN+1

37777775
All elements in black are borrowed directly from the �x matrix, whereas
elements in red are to be solved for.66 The �rst (N�1) rows of ~�x ensure
64This can be achieved by conditioning on price spells of length one.
65One requirement for " is that ln ~xN and ln ~xN+1 do not coincide with existing

values of lnxi. A stricter condition on the size of " is introduced below.
66We order states such that �xN1 > 0 and �xNN > 0. This is without loss of

generality since lnxjt is a stochastic process, implying that there exists a state i such
that for at least two states j1 and j2, �xij1 > 0 and �

x
ij2
> 0.
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that for all i < N :

~fi = (1� �) ln ~xi + �
N+1X
j=1

~�xij
~fj

= (1� �) ln xi + �
N�1X
j=1

�xijfj +

�
�xiN
2
+
�xiN
2

�
fN = fi

We now have to set the elements in red (~�xN1, ~�
x
N , ~�

x
(N+1)1, ~�

x
N+1) such

that ~fN = ~fN+1 = fN . For i = N it requires:

~fN = (1� �)(lnxN � ") + �~�xN1f1 + �
N�1X
j=2

�xNjfj + 2
~�xNfN

= fN � (1� �)"+ �(~�xN1 � �xN1)f1 + �(2~�xN � �xNN)fN
!
= fN

Denote
PN�1

j=2 �
x
Nj � �, then it must be the case that ~�xN1+�+2~�

x
N = 1

to ensure that ~�x is a proper transition matrix. The same applies to the
elements of �x: �xN1 + � + �xNN = 1. Substituting ~�

x
N and �

x
NN in the

above equation and rearranging terms yields:

~�xN1 = �xN1 +
1� �

�

"

f1 � fN

For i = N + 1, a similar line of arguments leads to:

~�x(N+1)1 = �xN1 �
1� �

�

"

f1 � fN

and the remaining elements ~�xN and ~�
x
N+1 can then be recovered using the

fact that all rows of ~�x sum up to one. " must be small enough to ensure
that ~�xN1, ~�

x
N , ~�

x
(N+1)1 and ~�

x
N+1 are all 2 [0; 1]. Such " always exists since

we have ordered the states to ensure �xN1 > 0 and �
x
NN > 0 and there are

in�nitely many of them. It remains to show that transition probabilities
in ~�x imply �f . This holds trivially for all transitions between states
fi and fj such that i; j < N . It is also true for transitions from fi to
fN when i < N since the probability of transiting from fi to fN is then
equal to �xiN

2
+

�xiN
2
= �xiN . Finally, note that states lnxN and lnxN+1

have the same unconditional probability,67 and therefore the probability
of moving from fN to fi is equal to 1

2

�
~�xNi +

~�x(N+1)i

�
= �xNi for all

67The unconditional probability satis�es p = (~�x)0p, and the last two columns of
~�x are identical, implying identical values of pN and pN+1.
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i < N . This implies that the probability of staying in fN is also the
same as in the original process (�xNN).
Therefore, we have constructed anN+1-state process ln ~xjt that leads

to the same process f(xjt) as the N -state process lnxjt. By induction
this step can be repeated arbitrary many times.

C Testing for a RandomWalk in Idiosyncratic Shocks

This appendix shows that our data strongly rejects the presence of a
pure random walk in lnxjzt. One can test for a random walk in lnxjzt
by exploiting the fact that the optimal reset price upon price adjustment
involves a constant gap relative to the �exible price, whenever lnxjzt is
a random walk. This holds true with Calvo frictions, see equation (11),
but also for the case with menu cost frictions.
Consider the times tn (n = 1; 2; :::Njz) during which the price of

some product j in expenditure item z adjusts. Given the constant gap
property, we have

ln poptjztn+1
� ln poptjztn

= � ln��jz � (tn+1 � tn) + ln ejzn+1 (31)

where
ln ejzn+1 � lnxjztn+1 � lnxjztn :

With a random walk in lnx, the residuals ln e are uncorrelated over time
and have adjustment-time-dependent variance (tn+1 � tn)�

2
z , where �

2
z

denotes the innovation variance in the random walk in expenditure item
z. These two properties can be tested.
To test for the adjustment-time-dependent variance, we use all ob-

servations (tn+1 � tn; ejzn+1) within some item z to run the regression

(ln ejzn+1)
2 = az + bz(tn+1 � tn) (32)

and check whether bz = �2z > 0 as predicted by the random walk. Figure
12 reports the distribution of the estimated bz and the associated t-
statistics using all products with Njz > 3. It shows that the random
walk hypothesis bz > 0 is strongly rejected by the data.
Second, we can also test if the residuals ln e in (31) are uncorrelated

over time. To do so, we re-scale residuals according to (ln ejzn+1) =
p
tn+1 � tn

to make them homoskedastic under the null hypothesis of a randomwalk.
We then compute the autocorrelations [Corrz = dCovz=dV arz of these re-
scaled residuals within each item z, using the variance and covariance
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Figure 12: Random walk test, equation (32)

estimates for all products with Njz > 3 :

dV arz =Pj

0B@ Njz � 2P
k (Nkz � 2)

PNjz
n=2

�
ln ejznp
tn�tn�1

�2
Njz � 2

1CA
dCovz =Pj

 
Njz � 3P
k (Nkz � 3)

PNjz�1
n=2

ln ejznp
tn�tn�1

ln ejzn+1p
tn+1�tn

Njz � 3

!

The left panel in �gure 13 depicts the estimated autocorrelations across
items. Almost all of the estimates are negative, and most of them siz-
ably so, which is inconsistent with lnxjzt following a random walk. The
right panel in the �gure reports the bootstrapped p-values for the au-
tocorrelation being weakly larger than zero, as implied by the random
walk, and shows that these values are very low.
We then repeat the analysis when exogenously imposing ��jz = 0

for all products in the �rst-stage regression. This is motivated by the
possibility that the estimated time trends ��jz could be purely spurious
in the presence of a random walk in lnxjzt. While the estimated coe¢ -
cients bz in (32) are then symmetrically centered around zero (but still
not predominantly positive), the evidence on the auto-correlation of the
residuals remains almost identical to the one shown in �gure 13 for the
case with an estimated time trend ��jz in the �rst-stage regression.
Based on these �ndings, we conclude that unobserved shocks in our

data do not follow a pure random walk.
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Figure 13: Autocorrelation of residuals and bootstrapped p-values (ran-
dom walk implies autocorrelation of zero)

D Details of the Calvo Model

D.1 Firm problem
The price-setting problem of �rm j in item z in price-adjustment period
t consists of choosing a nominal price Pjzt that maximizes the expected
discounted sum of pro�ts,

max
Pjzt

Et

1X
i=0

�iz

t;t+i
Pt+i

�
(1 + �)Pjzt �

Wt+i

Azt+i
Gjzt+iXjzt+i

�
Yjzt+i (33)

s:t: Yjzt+i =  z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
Yt+i; (34)

where 
t;t+i denotes the stochastic discount factor of the representative
household, Yjzt output of product j in item z, andWt+iGjzt+iXjzt+i=Azt+i
the �rm�s nominal marginal costs, with �rm productivity given byAzt+i=(Gjzt+iXjzt+i),
as in equation (8), and the nominal wage given by Wt+i. The parameter
� is a sales subsidy (tax if negative). Maximization is subject to equa-
tion (34), which is derived from the cost-minimizing household demand
function (7) using market clearing conditions.

D.1.1 Balanced growth path

We approximate the pro�t maximization problem (33) around a deter-
ministic balanced growth path of the economy, in which aggregate and
item-level output and consumption grow at constant rates, aggregate
and item-level in�ation rates are constant, and in which the amount of
labor Lezt allocated to production in item z is also constant over time.
All idiosyncratic shocks continue operate, i.e., there is product entry
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and exit and idiosyncratic shocks move the product�s optimal relative
price over time. Without loss of generality, we consider the e¢ cient
deterministic balanced growth path.
Within each item z, the e¢ cient allocation of labor across products

j maximizes the item-level output in equation (5) subject to the pro-
duction function (8) and the feasibility constraint that Lezt =

R
Lejzt dj.

This implies that the e¢ cient level of output in item z is

Y e
zt =

Azt
�e
zt

Lezt; (35)

where the productivity parameter 1=�e
zt in the e¢ cient allocation is

given by

1=�e
zt �

�Z 1

0

(1=(GjztXjzt))
��1 dj

� 1
��1

: (36)

We consider a balanced growth path in which 1=�e
zt = 1=�e

z, so that
equation (35) implies that item-level productivity is given by68

�ezt � Azt=�
e
z: (37)

Using equation (6), aggregate productivity �et of the economy is given
by69

�et �
ZY
z=1

(�ezt)
 z : (38)

Equation (37) and the previous equations imply that the steady-state
growth rate of aggregate output and consumption along the balanced
growth path, e � �et=�et�1, is given by

e =
ZY
z=1

a zz (39)

where az denotes the steady-state growth rate of item-level productivity
Azt. From equation (37), we also obtain that the steady-state growth
rate of item-level output and consumption, ez � �ezt=�ezt�1, is given by

ez = az:

68It is straightforward to accommodate also a trend in 1=�ezt in the balanced
growth path, but this does not yield any additional insights.
69To see why, substitute equilibrium output for equilibrium consumption in equa-

tion (6) and detrend all output variables in the resulting equation by their growth
trends. This yields

Y et
�et

=

"QZ
z=1(�

e
zt)

 z

�et

#
ZY
z=1

�
Y ezt
�ezt

� z
;

so that the aggregate growth trend is given by equation (38).
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D.1.2 Detrended �rm problem

With growth-consistent preferences that exhibit constant relative risk
aversion, the one-period household discount factor is given by 
 =
! (e)�� < 1, where � denotes relative risk aversion and ! is the rate of
time preference. Using this expression, the �rm problem (33)-(34) along
the balance growth path can be written as

�etEt

1X
i=0

�
�z!(

e)1��
�i �
(1 + �)

Pjzt
Pt+i

� Wt+iGjzt+iXjzt+i

Pt+iAzt+i

�
 z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
y;

where y = Yt+i=�
e
t+i denotes detrended output. Furthermore, using

equation (37) to substitute for Azt+i in the previous equation, augment-
ing the wage rate by the aggregate growth trend �et+i and denoting the
detrended real wage by w = Wt

Pt�et
, we obtain

�etEt

1X
i=0

�
�z!(

e)1��
�i �
(1 + �)

Pjzt
Pt+i

� w
Gjzt+iXjzt+i

�e
z

�et+i
�ezt+i

�
 z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
y:

Augmenting the relative product price Pjzt=Pt+i in the previous equation
by the item price level and rearranging yields

�etEt

1X
i=0

�
�z!(

e)1��
�i "

 z(1 + �)
Pjzt
Pzt+i

� w
Gjzt+iXjzt+i

�e
z

(
 z

�
Pzt+i�

e
zt+i

Pt+i�et+i

��1)#�
Pjzt
Pzt+i

���
y:

To show that the term in curly brackets in the previous equation is con-
stant along the balanced growth path, we divide each output variable in
the demand for item-level output, Yzt =  z(Pzt=Pt)

�1Yt, by its respective
growth trend. This yields

yz
y
=  z

�
Pzt�

e
zt

Pt�et

��1
: (40)

Shifting this equation forward and substituting it into the �rm objective
yields

�etEt

1X
i=0

�
�z!(

e)1��
�i �

 z(1 + �)
Pjzt
Pzt

��iz � w

�e
z

yz
y
Gjzt+iXjzt+i

��
Pjzt
Pzt

��iz

���
y;

(41)
where we denote the steady-state in�ation rate in item z by

�z = Pzt=Pzt�1:

To rewrite the �rm objective (41) in terms of the relative prices and
marginal costs, we de�ne the relative reset price pjzt � Pjzt=Pzt, which
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is the nominal price of product j in period t over the item price level
in the same period, and the relative price epjzt+i � pjzt�

�i
z , which is the

nominal reset price in t over the item price level in t+ i. We also de�ne
real marginal costs in units of the good produced in item z according to

mcjzt �
Wt

Pzt

GjztXjzt

Azt
:

Augmenting this de�nition by Pt�et and using equation (37) to substitute
for Azt yields

mcjzt =
Wt

Pt�et

GjztXjzt

�e
z

�
Pzt�

e
zt

Pt�et

��1
;

and using equation (40) to substitute for the last term on the right hand
side in the previous equation shows that marginal costs can be expressed
as

 zmcjzt =
w

�e
z

yz
y
GjztXjzt: (42)

Substituting the previous equation and the de�nition of the relative priceepjzt+i into the �rm objective in equation (41) yields, after dropping the
pre-multiplying constant  z�et :

Et

1X
i=0

�
�z!(

e)1��
�i
[(1 + �)epjzt+i �mcjzt+i] (epjzt+i)�� y: (43)

D.2 Quadratic approximation of the �rm objective
To simplify notation, we drop the item-level subscript z in the remainder
of the appendix. The �rm objective (43), that we seek to quadratically
approximate, can then be written as

Et

1X
i=0

(�! (e)1��)i [(1 + �)epjt+i �mcjt+i] (epjt+i)�� y (44)

where it is understood that �; epjt+i and mcjt+i are item speci�c objects.
From equation (42) follows that

lnmcjt = lnmcj � (ln��j) � t+ lnxjt: (45)

where mcj = 1
 z

w
�ez

yz
y
Gjzt0, with Gjzt0 denoting the product-speci�c pro-

ductivity level at the time of product entry t0; ln��j = lnGjzt=Gjzt�1
is the deterministic constant growth rate of product-speci�c productiv-
ity and lnxjt = lnXjzt denotes the stationary stochastic idiosyncratic
component of productivity. The values for mcj and ��j are drawn at the
time of product entry from potentially time-varying distributions.
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By equation (44), the objective for period t+ i is given by

Djt+i =
�
(1 + �)eln epjt+i � elnmcjt+i

� �
eln epjt+i��� y: (46)

We approximate this objective to second order in the variables ln epjt+i
and lnmcjt+i around the deterministic paths of the �exible price and
marginal costs, respectively. The deterministic path of the �exible price
is equal to

#mcdetjt+i

where mcdetjt denotes the deterministic path of marginal costs which is
equal to the value of marginal costs mcjt imposing xjt = 1, and # =
�
��1

1
1+�

denotes the �exible-price markup.
The second-order Taylor approximation of equation (46) yields

Djt+i =
�
y#��

�
e(1��) lnmc

det
jt+i
�
� �(ln epjt+i � ln(#mcdetjt+i))

2

+ 2�(ln epjt+i � ln(#mcdetjt+i))(lnmcjt+i � lnmcdett+i)
�
+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcdetjt+i)� (lnmcjt+i � lnmcdett+i)

�2
+ t.i.p.+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcjt+i)�2 + t.i.p.+O(3);

(47)

where t.i.p. collects terms independent of policy and it follows from equa-
tion (45) that mcdetjt+i = mcje

�(ln��j )(t+i). Thus, we rewrite the Taylor
approximation coe¢ cient in the previous equation according to

��y#��
�
mcje

�(ln��j )(t+i)
�1��

= ��y#��mc1��j (��j)
(��1)(t+i):

We can now express the expected discounted sum of period pro�ts in
equation (44) accurate to second order according to

��y#��mc1��j (��j)
(��1)tEt

1X
i=0

(�! (e)1�� (��j)
��1)i

�
ln epjt+i�ln(#mcjt+i)�2+t.i.p.+O(3)

which is proportional to

�Et
1X
i=0

(��j)
i
�
ln pjt � i ln�� ln(p�jt+i)

�2
+ t.i.p.+O(3) (48)

after substituting epjt+i = pjt�
�i and denoting the �rm discount factor

by �j = ! (e)1�� (��j)
��1 and de�ning

p�jt+i = #mcjt+i
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which implies using equation (45)

p�jt = p�je
�(ln��j )txjt;

which is equal to (10) for p�j = #mcj. While p�jt denotes the �rm�s �exible
price, the ratio of two �rms��exible prices is equal to the e¢ cient relative
price for these �rms, whenever price mark-ups are constant across �rms
and time. In this special case, p�jt denotes also the e¢ cient relative price.
We can then express the �exible price in period t+ i as

p�jt+i = p�jte
�(ln��j )ixjt+ix

�1
jt :

and substitute into equation (48), which delivers

max
ln pjt

�Et
1X
i=0

(��j)
i
�
ln pjt � i ln(�=��j)� ln p�jt � lnxjt+i + lnxjt

�2
:

(49)
The �rst-order condition is given by

0 = �2Et
1X
i=0

(��j)
i
�
ln poptjt � i ln(�=��j)� ln p�jt � lnxjt+i + lnxjt

�
;

which implies that the optimal price is given by

ln poptjt = ln p
�
jt�lnxjt+

�
��j

1� ��j

�
ln(�=��j)+Et(1���j)

1X
i=0

(��j)
i lnxjt+i

(50)
since

P1
i=0(��j)

ii =
P1

i=1(��j)
ii =

��j
(1���j)2 with ��j < 1. For the limit

�j ! 1, this reduces to equation (11).

D.3 Asymptotics of the �rst-stage regression
To simplify notation, we drop the item-level subscript z in the remainder
of this appendix. Starting with equation (13), we substitute ln poptjt using
equation (11) and also use (10) to obtain

ln pjt = �jt(ln pjt�1�ln�)+(1��jt)
�
ln p�j � t ln��j +

�

1� �
ln(�=��j) + f(xjt)

�
;

(51)
where f(xjt) is de�ned in equation (12).
To derive the OLS estimates of the parameters in equation (14), we

rearrange equation (51) to

ln pjt + t ln��j = �jt(ln pjt�1 + (t� 1) ln��j � ln(�=��j)) (52)

+ (1� �jt)

�
ln p�j +

�

1� �
ln(�=��j) + f(xjt)

�
:
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Computing the unconditional expectation yields

E[ln pjt + t ln��j ] = �E[ln pjt�1 + (t� 1) ln��j ]� � ln(�=��j)

+ (1� �)

�
ln p�j +

�

1� �
ln(�=��j)

�
;

using independence of �jt and E[f(xjt)] = 0. Given stationarity of the
detrended relative price ln pjt + t ln��j , the previous equation yields

E[ln pjt + t ln��j ] = ln p
�
j ;

or
ln pjt = ln p

�
j � t ln��j + ujt; (53)

where ujt denotes an expectation error with zero mean. This shows that
for regression (14) we get

dln aj ! ln p�jdln bj ! ln��j ;

as the number of price observations becomes large.

D.4 Proof of proposition 2
This appendix derives equations (16) and (17) in the main text. To
simplify notation, we drop the item-level subscript z in the remainder
of the appendix. We substitute equation (53) into equation (52), which
yields directly yields equation (16). Squaring equation (16), taking un-
conditional expectations, and using independence of �jt yields

E[u2jt] = E[�2jt]E[(ujt�1�ln(�=��j))2]+E[(1��jt)2]E
��
f(xjt)+

�

1� �
ln(�=��j)

�2�
;

where we also used E[(1 � �jt)�jt] = 0. We can rewrite the previous
equation using E[�2t ] = � and E[(1 � �t)

2] = 1 � �, completing the
squares to obtain

E[u2jt] = �E[u2jt�1 + ln(�=�
�
j)
2 � 2ujt�1 ln(�=��j)]

+ (1� �)E
�
f(xjt)

2 +

�
�

1� �
ln(�=��j)

�2
+ 2f(xjt)

�

1� �
ln(�=��j)

�
:

Recognizing that the expectation of the cross terms in the previous equa-
tion are zero because E[ujt] = 0 and E[f(xjt)] = 0 yields

E[u2jt] = �E[u2jt�1]+� ln(�=�
�
j)
2+(1��)E[f(xjt)2]+(1��)

�
�

1� �
ln(�=��j)

�2
:
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Using E[u2jt] = E[u2jt�1] and simplifying terms yields

E[u2jt] = E[f(xjt)
2] +

�

(1� �)2
(ln�� ln��j)2:

Recognizing that V ar[ujt] = E[u2jt], as E[ujt] = 0; and V ar[f(xjt)] =
E[f(xjt)

2], as E[f(xjt)] = 0, delivers equation (17).

E Details of the State-Dependent Model

To simplify notation, we drop the item-level subscript z in the remainder
of the appendix.

E.1 Setup and OLS regression
Let zjt = ln pjt � ln p�jt be the deviation of the current relative price of
product j from the �exible price optimum. Then in between adjustments
zjt follows:

dzjt = d ln pjt � d ln p�jt = � (ln�� ln��j)| {z }
�j

dt� d lnxjt

d lnxjt =
NX
i=1

(lnxi � lnxjt)dJ it (lnxjt)

where dJ it (lnxjt) is a Poisson jump process with intensity dependent on
the current state lnxjt. Since ln pjt = ln p�jt + zjt, it follows that:

ln pjt = ln p
�
j + lnxjt � t ln��j + zjt (54)

E
�
ln pjt + t ln��j

�
= ln p�j + E[lnxjt]| {z }

=0

+E[zjt]

And thus the estimates of OLS regression (14) converge to

dln aj ! ln p�jdln bj ! ln��j ;

if E[zjt] = 0, which is true in the limiting case as � ! 0, as shown
below.70 Furthermore, residuals and their variance can be written as:

ujt = ln pjt � ln p�j + t ln��j = zjt + lnxjt

V ar(ujt) = E[z2jt] + 2E[zjt lnxjt] + V ar(lnxjt) (55)

70While this result is shown formally under the assumption of su¢ ciently small
�, it holds more generally. As � ! 0, the �rms�value until adjustment becomes
the negative expected squared deviation of price gaps from zero, maximizing which
requires setting the expected price gap to zero.
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E.2 Solution
The �rm�s objective is to maximize its value from equation (20), given
by:

V (z; xi) = max
f�i;�z�ig

1
i=1

�E
"Z 1

0

e��tz2t dt+ �

1X
i=1

e���i

����� z0 = z; x0 = xi

#
The �rm�s policy consists of a collection of inaction region boundaries

fz(xi); z(xi)g and reset price gaps ẑ(xi), for all i 2 N . The HJB equation
for the inaction region is given by:

�V (z; xi) = �z2 � �@zV (z; xi)

+

NX
j 6=i

�Xij
�
V (z � (lnxj � lnxi); xj)� V (z; xi)

�
The optimal policy satis�es the usual smooth pasting and optimality
conditions: @zV (ẑ(xi); xi) = @zV (z(xi); xi) = @zV (z(xi); xi) = 0 and
V (z(xi); xi) = V (z(xi); xi) = V (ẑ(xi); xi)��. De�ne v(z; xi) = V (z; xi)�
V (ẑ(x1); x1). Then:

�v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij
�
v(z � (lnxj � lnxi); xj)� v(z; xi)

�
� �V (ẑ(x1); x1)

with @zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0 and v(z(xi); xi) =
v(z(xi); xi) = v(ẑ(xi); xi)� �. We now take the limit as �! 0.

Proposition 4 As � ! 0, the scaled value function �V (z; x) at any
state fz; xg converges to a constant: lim

�!0
�V (z; x) = A 2 R 8z; x.

All proofs are provided in section E.3. By Proposition 4, lim
�!0

�v(z; xi) =

0 and lim
�!0

�V (ẑ(x1); x1) = A, so that:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+

NX
j 6=i

�Xij v(z � (lnxj � lnxi); xj)� A

where �Xi =
PN

j 6=i �
X
ij = ��Xii is the intensity with which lnxt is exiting

state i. Evaluate the above expression at z = ẑ(x1); xi = x1 to obtain:

A = � (ẑ(x1))2 +
NX
j 6=1

�X1jv(ẑ(x1)� (lnxj � lnx1); xj)
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Lemma 5 There exists � > 0 such that �rms �nd it optimal to adjust
after every change in x for all � < �.

Suppose that � is small enough in the sense of Lemma 5. Then �rms
�nd it optimal to adjust whenever idiosyncratic state x changes its value.
The HJB equation becomes:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij v(ẑ(xj); xj)� �Xi �� A

with

A = � (ẑ(x1))2 +
NX
j 6=i

�X1jv(ẑ(xj); xj)

and value function satis�es:

v(z; xi) = Cv
i e
��iz � z2

�Xi
+

2z

�i�Xi
� 2

�2i�
X
i

+
Ci
�Xi

Ci =
NX
j 6=i

�Xij v(ẑ(xj); xj)� �Xi �� A

@zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0

v(ẑ(xi); xi)� � = v(z(xi); xi) = v(z(xi); xi)

with �i =
�Xi
�
. As long as state x remains unchanged, price gaps evolve

deterministically with drift ��. It thus su¢ ces to solve for the reset
price gap and only one boundary of the inaction region. From now on,
we consider � > 0 and solve for ẑ(xi) and z(xi) since the upper boundary
of the inaction region is irrelevant. Because of symmetry properties of
the model, it is straightforward to then recover the solution and all
statistics for � < 0. To ease notation, let ẑ(xi) = ẑi and z(xi) = zi.

Lemma 6 Suppose � > 0. Then for each state xi, optimal policy is
determined by the following two conditions:

z2i � ẑ2i = �Xi � (56)

e�iẑi(1� �iẑi) = e�izi(1� �izi) (57)

where �i =
�Xi
�
.
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Conditional on state xi, the price gap distribution satis�es:

�Xi fi(z) = �@zfi(z)Z ẑi

zi

fi(z)dz = 1

and is thus given by:

fi(z) =
�ie

�iz

e�iẑi � e�izi

It follows that:

E[zjxi] =
Z ẑi

zi

zfi(z)dz = 0

E[z] = 0

E[z2jxi] =
Z ẑi

zi

z2fi(z)dz =
ẑi + zi
�i

� ẑizi (58)

E[z2] = Ex

�
ẑi + zi
�i

� ẑizi

�
(59)

where Ex[�] is the expectation with respect to stationary distribution of
x.

Proposition 7 For � close to zero, E[z2] = E

�
1

(�Xi )
2

�
�2 +O(4).

Finally, note that E[zx] = E
�
xiE[zjxi]

�
= 0 and the main object

of interest �the variance of residuals from the OLS regression (14) �is
given by:

V ar(ujt) = V ar(lnxjt) + E

"
1

(�Xi )
2

#
�2j +O(4)

= V ar(lnxjt) + E

"
1

(�Xi )
2

#
(ln�� ln��j)2 +O(4)

E.3 Proofs
Proof of Proposition 4. The proof here extends Lemma 3 in Online
Appendix of Alvarez et al. (2019) to a setting with two state variables.
Let V (z; x; �) be the value function in state fz; xg under discount rate
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�. We can write �V (z; x; �) as follows:

�V (z; x; �) = �E
�
�

Z �N

0

e��tz2t dt

�
� �E

"
�

NX
i=1

e���i

#

��E
"Z 1

0

e��(�N+t)z2�N+tdt+ �

1X
i=1

e���N+i

#
| {z }

�E[e���N V (z�N ;x�N ;�)]

where �N is the N -th adjustment and all expectation operators are
conditional on z0 = z; x0 = x. Subtract �E [e���NV (z; x; �)] from both
sides and divide by (1� E [e���N ]) to obtain:

�V (z; x; �) = � �

1� E [e���N ]
E

�Z �N

0

e��tz2t dt

�
� ��

1� E [e���N ]
E

"
NX
i=1

e���i

#
�

1� E [e���N ]
E
�
e���N (V (z�N ; x�N ; �)� V (z; x; �))

�
Take the limit as �! 0. Note that �

1�E[e���N ]
! 1

E[�N ]
and thus:

lim
�!0

�V (z; x; �) = � 1

E [�N ]
E

�Z �N

0

z2t dt

�
� �N

E [�N ]
1

E [�N ]
lim
�!0

E [V (z�N ; x�N ; �)� V (z; x; �)]

By Lemma 8, jV (z�N ; x�N ; �) � V (z; x; �)j � C 2 R for all � > 0 and
thus this also holds in the limit as � ! 0. As we take the limit with
N !1, the �rst term converges to the unconditional expected squared
gap E[z2], the second term converges to adjustment frequency �a times
adjustment cost �, and the third term vanishes as E [�N ] ! 1. Thus
lim
�!0

�V (z; x; �) = �E[z2]� ��a � A for all z; x.

Lemma 8 There exists C 2 R such that for any � > 0 and any z; x; z0; x0,
jV (z; x)� V (z0; x0)j � C.

Proof. First, we show that �V (z; xi) is bounded from below. To see
that, recall that V (z; xi) is achieved under the optimal adjustment policy,
meaning that the value of any feasible policy is weakly lower. Consider
the following policy: the �rm adjusts its price gap whenever it is hit by
a Poisson x shock. In addition, it also adjusts at random times with
Poisson intensity �i, which is speci�c to each state xi. These intensities
satisfy the following condition: �Xi + �i = maxi �

X
i � �, such that in
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every state xi �rms adjust with equal intensity �. Since adjustments
occur exogenously, �rms only choose the reset price gap ẑi to maximize
expected pro�ts until the next adjustment:

max
ẑi

E

�
�
Z �

0

e��tz2t

����z0 = ẑi

�
= max

ẑi
E

�
�
Z 1

0

e�(�+�)tz2t

����z0 = ẑi

�
Because in between adjustments price gaps drift deterministically (zt =
ẑi � �t) and adjustment intensities are equalized across states, optimal
reset price gap does not depend on x and satis�es FOC:Z 1

0

e�(�+�)t(ẑ � �t) = 0 =) ẑ =
�

�+ �

Denote by ~V (z; x) the value function under this policy. Since @z ~V (ẑ; xi) =
0, evaluating the HJB equation at ẑ yields:

� ~V (ẑ; xi) = �ẑ2 + �i

�
~V (ẑ; xi)� �� ~V (ẑ; xi)

�
+

NX
j 6=i

�Xij

�
~V (ẑ; xj)� �� ~V (ẑ; xi)

�
= �ẑ2 +

NX
j 6=i

�Xij

�
~V (ẑ; xj)� ~V (ẑ; xi)

�
� �

 
�i +

NX
j 6=i

�Xij

!
| {z }

=�

It is straightforward to show that ~V (ẑ; xi) = ~V (ẑ; xj) for all i and j.
Assume the opposite and let v = maxi ~V (ẑ; xi) and v = mini ~V (ẑ; xi).
Then:

�v = �ẑ2 +
NX

j 6=i(v)

�Xi(v)j

�
~V (ẑ; xj)� v

�
| {z }

�0

���

� �ẑ2 +
NX

j 6=i(v)

�Xi(v)j

�
~V (ẑ; xj)� v

�
| {z }

�0

��� = �v

Meaning v = v. As a result, � ~V (ẑ; xi) = �ẑ2 � �� = � �2

(�+�)2
� �� �

��2

�2
� �� for any � > 0. Thus for the true value function evaluated

at the true optimal reset price gap ẑ(xi) it holds that �V (ẑ(xi); xi) �
� ~V (ẑ; xi) � ��2

�2
� �� for all � > 0.

Consider now the true value function V (z; xi) and pick i such that
V (ẑ(xi); xi) = maxj V (ẑ(xj); xj). The HJB equation for this value func-
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tion satis�es:

��
2

�2
� �� � �V (ẑ(xi); xi) = � (ẑ(xi))2| {z }

�0

�� @zV (ẑ(xi); xi)| {z }
=0

+

NX
j 6=i

�Xij

0B@V (ẑ(xi)�(lnxj�lnxi); xj)| {z }
�V (ẑ(xj);xj)

�V (ẑ(xi); xi)

1CA
�

NX
j 6=i

�Xij (V (ẑ(xj); xj)� V (ẑ(xi); xi))| {z }
�0

� 0

It follows that whenever �Xij > 0:�
��

2

�2
� ��

�
=�Xij � V (ẑ(xj); xj)� V (ẑ(xi); xi) � 0

For the states j where �Xij = 0 we can bound the di¤erence V (ẑ(xj); xj)�
V (ẑ(xi); xi) iteratively because the network of xi is connected (every two
states are connected by some path). In addition, for any z; xi:

V (ẑ(xi); xi)� � � V (z; xi) � V (ẑ(xi); xi)

Therefore there existsC 2 R such that for all � > 0, jV (z; x)�V (z0; x0)j �
C for all z; x; z0; x0.
Proof of Lemma 5. Consider a model M in which �rms are forced to
adjust after every change in x, but can also adjust at other times and
choose the boundaries of inaction regions and reset price gaps. Suppose
we now allow the �rms to adjust whenever they �nd it to be optimal.
They will adjust their policies fz(xi); ẑ(xi); z(xi)gNi=1 only if changes in
x keep price gaps within the bounds of inaction regions. Otherwise the
optimal policy in modelM and in the model of interest coincide, meaning
that �rms �nd it optimal to adjust after every change in x. To see that,
compare the HJB equations in the original model (�rst line) and model
M (second line):

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij v(z � (lnxj � lnxi); xj)� A

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij (v(ẑ(xj); xj)� �)� A
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If upon the change in x, z � (lnxj � lnxi) 62 [z(xj); z(xj)], then v(z �
(lnxj � lnxi); xj) = v(ẑ(xj); xj) � � and the value functions in the
two models coincide. Therefore, � is such that minij j lnxi � lnxjj =
maxi z(xi)�mini z(xi) in model M . Such � > 0 always exists since for
all i lim

�!0
z(xi) = lim

�!0
z(xi) = 0.

Proof of Lemma 6. From @zv(ẑi; xi) = 0 and @zv(zi; xi) = 0 it follows:

��iCv
i e
��iẑi � 2ẑi

�Xi
+

2

�i�Xi
= 0 = ��iCv

i e
��izi � 2zi

�Xi
+

2

�i�Xi

��iCv
i �

2ẑie
�iẑi

�Xi
+
2e�iẑi

�i�Xi
= 0 = ��iCv

i �
2zie

�izi

�Xi
+
2e�izi

�i�Xi
e�iẑi(1� �iẑi) = e�izi(1� �izi)

Similarly:

��iCv
i e
��iẑi � 2ẑi

�Xi
+

2

�i�Xi
= ��iCv

i e
��izi � 2zi

�Xi
+

2

�i�Xi

Cv
i e
��iẑi +

2ẑi
�i�Xi

= Cv
i e
��izi +

2zi
�i�Xi

Cv
i e

�i(zi�ẑi) = Cv
i + e�izi

2(zi � ẑi)

�i�Xi
(60)

From v(ẑi; xi)� � = v(zi; xi) it follows:

Cv
i e
��iẑi � ẑ2i

�Xi
+

2ẑi
�i�Xi

� � = Cv
i e
��izi � z2i

�Xi
+

2zi
�i�Xi

Cv
i e

�i(zi�ẑi) + e�izi
�
2(ẑi � zi)

�i�Xi
+
z2i � ẑ2i
�Xi

� �

�
= Cv

i

z2i � ẑ2i = �Xi �

where the last line follows from (60).

Lemma 9 For every state xi, ẑi @ẑi@� = zi
@zi
@�
= E[z2jxi]

�
.

Proof. The �rst equality follows directly from the �rst order derivative
of equilibrium condition (56) with respect to �. For the second equality,
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di¤erentiate equilibrium condition (57) and collect terms:

e�iẑi
�
@ẑi
@�

� ẑi
�

�
ẑi = e�izi

�
@zi
@�

� zi
�

�
zi

(1� �izi)

�
@ẑi
@�

� ẑi
�

�
ẑi = (1� �iẑi)

�
@zi
@�

� zi
�

�
zi

zi
@zi
@�
(�iẑi � �izi) =

ẑ2i (1� �izi)� z2i (1� �iẑi)

�

zi
@zi
@�

=
1

�

ẑ2i � z2i � �iẑizi(ẑi � zi)

�i(ẑi � zi)

=
1

�

�
ẑi + zi
�i

� ẑizi

�
=
E[z2jxi]

�

where the second line uses (57) and the third line uses ẑi @ẑi@� = zi
@zi
@�
.

Lemma 10 As �! 0, ẑi ! 0, zi ! �
p
�Xi � and E[z

2]! 0.

Proof. Combine equilibrium conditions (56) and (57) to obtain:�
�+ �Xi

q
�Xi �+ ẑ2i

�
| {z }

>0

=
�
�� �Xi ẑi

�
e
�Xi
�

�
ẑi+
p
�Xi �+ẑ

2
i

�| {z }
>0

Since the LHS is always positive, and so is the exponent on the RHS,
lim
�!0

ẑi = 0. It then follows from (56) that lim
�!0

zi = �
p
�Xi � and from

(59) that lim
�!0

E[z2] = 0.

Proof of Proposition 7. From Lemmas 9 and 10, and equation (58)
it follows that:

z0i �
@zi
@�

=
1

�Xi
+
�ẑi � �Xi ẑizi

��Xi zi

lim
�!0

z0i =
1

�Xi
� lim

�!0

ẑi
�
=

1

�Xi
� lim

�!0
ẑ0i

At the same time, by Lemma 9: ẑi =
ziz

0
i

ẑ0i
, and by Lemma 10: lim

�!0
z0i
ẑ0i
= 0.

It then follows that:

O(1) =
z0i
ẑ0i
=

1
�Xi
� ẑ0i +O(1)

ẑ0i
=
1 +O(1)

�Xi ẑ
0
i

� 1

And therefore lim
�!0

ẑ0i =
1
�Xi
. From (56) it follows that lim

�!0
z0i = 0 and

from (59) that lim
�!0

@E[z2]
@�

= 0. If ẑi is twice di¤erentiable at � = 0, then
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due to anti-symmetry (ẑi(�) = �ẑi(��)), ẑ00i (0) = 0. It follows that
ẑ0i =

1
�Xi
+O(2) and ẑi =

�
�Xi
+O(3). Using Lemma 9 we obtain that:

E[z2] = E

"
1

(�Xi )
2

#
�2 +O(4)

Lemma 11 Suppose �Xi = � for all i. Then, as � ! 0, adjustment
frequency �a = �+O(4).

Proof. Since �Xi = �, we can omit the i index. The expected stopping
time �(z) solves the following ODE: ��(z) = 1��@z�(z), together with
boundary condition �(z) = 0, and is given by �(z) = 1

�

�
1� e�(z�ẑ)

�
. It

follows from Lemma 6 and equation (59) that:

�a �
1

�(ẑ)
=
1

�

�
z2 � E[z2]

�
Lemma 10 implies that as �! 0, �a ! �. Furthermore:

@�a
@�

=
1

�

�
2z
@z

@�
� @E[z2]

@�

�
=
1

�

�
2
E[z2]

�
� 2 �

�2
+O(3)

�
= O(3)

where the last line follows from Lemma 9 and Proposition 7. Therefore,
�a = �+O(4).

F Details of the Regression Approach

This section discusses econometric details associated with estimating our
key equation (17), which relates price distortions to suboptimal in�ation
at the product level. In our baseline empirical approach, we estimate
equation (17) at the level of �nely disaggregated expenditure items, ex-
ploiting variation across products within the item. Our sample contains
more than 1000 expenditure items, so that obtain a large number of
estimates of the coe¢ cient of interest c in equation (17).
We use a two-step estimation approach, because neither the left-

hand side variable nor the right hand-side variables in equation (17) can
be directly observed. This section presents this approach and discusses
how �rst-stage estimation errors a¤ect second-stage regression outcomes.
In particular, it shows that �rst-stage error biases the estimates of the
coe¢ cient c towards zero, i.e., towards �nding no marginal e¤ect of
suboptimal in�ation on price distortions.
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Our �rst-stage estimation consists of a seemingly unrelated regression
(SUR) system that contains two equations. The left-hand side variable
in equation (17) can be estimated using the residuals of relative-price
regressions of the form

ln pjzt = ln ajz � (ln bjz) � t+ ujzt (61)

where j denotes the product and z 2 f1; :::Zg the expenditure item
under consideration, with Z being the total number of expenditure items
in our sample.71

Estimation of the right-hand side variables in equation (17) would
require estimating the average in�ation rate, ln�z, and the product spe-
ci�c optimal in�ation rate, ln��jz. Having two �rst-stage estimates on
the right-hand side of equation (17) is, however, unattractive on econo-
metric grounds.72 A more parsimonious way to proceed is to estimate
instead directly the gap between the item-level and product-speci�c op-
timal in�ation rate (ln�z=��jz) in the �rst stage. This can be achieved
by adding the price level equation

lnPt = lnP0 + ln� � t

to equation (10). Adding the item-level subindex z, we obtain for every
product another �rst-stage regression of the form

lnPjzt = lneajz + �ln�z=��jz� � t+ eujzt (62)

where Pjzt denotes the nominal product price. Equation (62) shows that
the time trend in the nominal price of the product directly identi�es
the gap between item-level in�ation and the product-speci�c optimal
in�ation rate. Equations (61) and (62) jointly make up our �rst-stage
seemingly unrelated regression (SUR) system.
Since the SUR system (61)-(62 does not feature exclusion restrictions,

OLS estimation is identical to GLS estimation, despite the presence of
correlated residuals. OLS estimation delivers an unbiased estimate of
the gap ln�z=��jz and an unbiased estimate of the residual variance of
interest, dV ar(ujzt) = 1

Tjz � 2
X
t

(bujzt)2 ;
where Tjz denotes the number of price observations for product j in item
z.
71To simplify notation, the previous sections have suppressed the item index z.
72It requires discussing, amongst other things, the covariance in the estimation

errors of these two right-hand side variables.
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The �rst-stage estimates for each product j within expenditure item
z can then be used to estimate the second-stage equation

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz (63)

using OLS estimation. This delivers an estimate of cz for each each
expenditure item z = 1; : : : ; Z. The error term "jz in equation (63)
absorbs measurement error of the left-hand side variable, as discussed
below, as well as the higher-order approximation errors implied by menu-
cost models, see equation (21).

While the �rst-stage estimates dV ar(ujzt) and \ln�z=��jz are unbiased,
they are contaminated by sampling error. Sampling error is an important
concern because the product price time series underlying the �rst-stage
system can be relatively short. Fortunately, the e¤ect of the �rst-stage
sampling error consists solely of biasing the estimate of cz towards zero,
as we now show next.
To illustrate this point, we assume that the �rst-stage residuals are

normally distributed. (The more general case with non-normal errors
is discussed in appendix F.1 below.) When estimating the SUR sys-

tem (61)-(62), the estimation error in \ln�z=��jz is orthogonal to the
estimation error in the residuals fbujztg, by construction of the OLS es-
timate. With normality, both estimation errors are also independent of
each other. Therefore, the estimation error in dV ar(ujzt) on the l.h.s. of
equation (63) is independent of the estimation error in ( \ln�z=��jz)2 on
the r.h.s. of the equation, because both variables are nonlinear transfor-
mations of independent random variables.
First-stage estimation error on the l.h.s. of equation (63) thus takes

the form of classical measurement error: it does not generate any bias
in the second-stage estimates of cz, instead gets absorbed by the regres-
sion residual "jz. However, �rst-stage estimation error in ( \ln�z=��jz)2
biases the second-stage estimate of cz towards zero. This is so because
measurement error in ( \ln�z=��jz)2 generates a classic attenuation e¤ect.
In addition, estimation error in \ln�z=��jz raises the expected value of
( \ln�z=��jz)2, which generates a further bias towards zero.
Our second-stage estimates for cz thus provides a lower bound of the

true marginal e¤ect of suboptimal in�ation on price distortions. Since we
are interested in rejecting the null hypothesis of in�ation not creating
price distortions , H0 : cz = 0, the bias is working against our main
�nding.
Finally, to insure that our results are not driven by outliers, e.g.,

ones associated with errors in price collection, we eliminate within each
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Figure 14: Skewness and kurtosis of the �rst-stage regression residuals

expenditure item all products falling into the top 5% of the distribution
of residual variances dV ar(ujzt) and the top 5% of estimated in�ation

gaps ( \ln�z=��jz)2 when running our second-stage regression.

F.1 General Case with Non-Normal First-Stage Resid-
uals

Figure 14 reports the skewness and kurtosis of the �rst-stage regres-
sion residuals of equation (61) (left-hand side panels) and equation (62)
(right-hand side panels) across the considered expenditure items.73 The
top panels show that skewness is centered around zero and relatively
tightly so, in line with the zero skewness of the normal distribution. For
kurtosis, shown in the lower panels of �gure 14, the situation looks dif-
ferent. Kurtosis values often lie above the value of 3 implied by a normal
distribution.
We now show that quite similar arguments as for the normal case

apply to our second-stage estimates of cz when �rst-stage residuals fail to
be normal. In fact, to insure that there is at most a downward bias in the
second-stage estimate of cz; it is su¢ cient to insure that the estimation
error in the l.h.s. variable dV ar(ujzt) in equation (63) is orthogonal to
73The measures use outlier trimmed residuals by considering the 2.5%-97.5% quan-

tile of the residual distribution.

69



(rather than independent of) the estimation error in the r.h.s. regressor

( \ln�z=��jz)2.
Recall that the errors in ( \ln�z=��jz) and fbujztg are orthogonal by

construction. A violation of orthogonality between ( \ln�z=��jz)2 anddV ar(ujzt) can thus only arise because these variables are nonlinear rather
than linear functions of \ln�z=��jz and fbujztg, respectively. This illus-
trates that violations of orthogonality conditions are somewhat unlikely
to emerge on a priori grounds, even in the absence of normality.
We show below that orthogonality of the estimation errors in ( \ln�z=��jz)2

and dV ar(ujzt) holds whenever the residuals satisfy
Cov[

�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
; (1; 0)0u0Mu(1; 0)jX] = 0; (64)

where

X 0 �
�
1 1 1 : : :
0 1 2 : : :

�
(65)

is the matrix of �rst-stage regressors and M the matrix de�ned in (66)
below. Condition (64) is a condition on the true residuals u, which is
satis�ed in the special case with normal errors. Condition (64) holds
by construction when replacing the true residuals u by the estimated
OLS or GLS residuals bu, thus cannot be tested empirically using the
regression residuals.74

To understand why condition (64) insures that the same outcome is
obtained as with normality, consider our �rst-stage regression system,
which takes the form of a seemingly unrelated regression (SUR) system:

Y|{z}
Tx2

= X|{z}
Tx2

�|{z}
2x2

+ u|{z}
Tx2

,

where X denotes the (deterministic) regressors de�ned in (65) and Y
the stacked vector of the left-hand side variables (pjzt; Pjzt) in equations

74Using the notation introduced below, this follows from the fact that�
X 0V �1X

��1
X 0V �1bu

=
�
X 0V �1X

��1
X 0V (I �X

�
X 0V �1X

��1
X 0V �1)Y

= 0:
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(61) and (62). Letting ut denote the residuals at date t and u the stacked
residual vector, we have E[ut] = 0 and

V ar(ut) =

�
v211 v12
v12 v

2
22

�
:

Since the SUR system does not feature exclusions restrictions, OLS es-
timation is identical to GLS estimation. In particular, the OLS/GLS
estimate b� of � is given by

b� � (X 0X)
�1
X 0Y

and the regression residuals by

bu|{z}
Tx2

=MY =Mu where M � (I �X (X 0X)
�1
X 0) (66)

We have

E[bu0bujX] = E[ u0|{z}
2xT

M 0M| {z }
TxT

u|{z}
Tx2

jX]

= E[ u0|{z}
2xT

M|{z}
TxT

u|{z}
Tx2

jX]

= tr(M)E[u0ujX]

=
1

T � 2

�
v211 v12
v12 v

2
22

�
;

An unbiased estimate of the residual variance v211 is thus given by

cv211 � (1; 0)0bu0bu(1; 0)
T � 2 : (67)

The estimation errors in the variables used in the second-stage regression,

i.e., of
�
(0; 1)

�b� � �
�
(0; 1)0

�2
and

�cv211 � v211

�
, are orthogonal if and

only if

E[

��
(0; 1)

�b� � �
�
(0; 1)0

�2��cv211 � v211

�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0bu0bu(1; 0)
T � 2 � v211

�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0u0u(1; 0)
T � 2 � v211

�
jX] !

= 0

The last equality holds if and only if
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E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2 (1; 0)0u0Mu(1; 0)

T � 2 jX]

= E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
v211jX];

which is the case if and only if condition 64 holds, as E[ (1;0)
0uM 0Mu(1;0)
tr(M 0M)

] =

v211:

G Details of the Within Product Regression Ap-
proach

The within product regression (26) takes the form

Y = cz �X (68)

where Y is a Nx1 vector of consisting of V ar(u1jz)� V ar(u2jz) for j =
1; :::; N , X a vector consisting of

�
ln�jz1 � ln��jz

�2��ln�jz2 � ln��jz�2
for j = 1; ::; N and cz is a scalar. The true relationship between Y and
X is given by

Y = CX + ";

where Y and X are random variables and

C =

0B@c1z 0 0

0
. . . 0

0 0 cNz

1CA
is a diagonal coe¢ cient matrix of random coe¢ cients satisfying the con-
ditional mean independence assumption E[CjX] = E[C] = c�INxN , with
the scalar c denoting the expected value of the true coe¢ cient. The
residual vector " a Nx1 vector of (higher-order approximation) residuals
satisfying E["jX] = 0. The OLS estimate of cz in equation (68) is given
by bcz = (X 0X)

�1
X 0Y

and its expectations satis�es under the stated assumptions

E[bcz] = E[(X 0X)
�1
X 0Y ]

= E[E[(X 0X)
�1
X 0 (CX + ") jX]]

= E[(X 0X)
�1
X 0E[CjX]| {z }

=cI

X] + (X 0X)
�1
X 0E["jX]| {z }

=0

]

= E[(X 0X)
�1
X 0X]c

= c;

as claimed in the main text.
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Figure 15: Distribution of product-speci�c optimal in�ation rates ��jz in
1996-2000 versus 2012-2016 (monthly rates, unweighted)

H Cross Sectional Distribution of Product-Speci�c
Optimal In�ation Rates over Time

Figure 15 depicts the cross-sectional distribution of product-speci�c op-
timal in�ation rates ��jz across all products and all items in the �rst and
last �ve years in of our sample (1996-2000 and 2012- 2016). It shows
that this distribution is remarkably stable over time.

I Proof of Proposition 3

From equation (27) we get

V arj (ln pjzt) = V arj
�
ln p�jz � ln��jz � t

�
+ V arj (ujzt)

+ Covj(ln p�jz; ujzt)

� t � Covj(ln��jz; ujzt):
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We next show that Covj(ln p�jz; ujzt) = Covj(ln��jz; ujzt) = 0 :

Covj(ln p�jz; ujzt) = Ej[ln p�jzujzt]� Ej[ln p�jz]E
j[ujzt]| {z }
=0

= Ej[Ej[ln p�jzujztjp�jz]]
= Ej[ln p�jzE

j[ujztjp�jz]| {z }
=0

]

= 0:

Similarly:

Covj(ln��jz; ujzt) = Ej[ln��jzujzt]� Ej[ln��jz]E
j[ujzt]| {z }
=0

= Ej[Ej[ln��jzujztj��jz]]
= Ej[ln��jzE

j[ujztj��jz]| {z }
=0

]

= 0:

It thus only remains to compute the cross-sectional variance of residuals,
V arj(ujzt). These residuals are described by a mixture distribution in
which one �rst draws the relative price trend ��(i)z with probability mzi.
Subsequently, we draw corresponding residuals ujzt. Since the residuals
are independent across j, the cross-variance of residuals for any given
�
�(i)
z is equal to their variance over time, as given in equation (28).
Therefore, the variance of the mixture distribution is given by equation
(30).
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