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This paper provides first and second-order approximation methods for the solution of
non-linear dynamic stochastic models in which the exogenous state variables follow
conditionally linear stochastic processes displaying time-varying risk. The first-order
approximation is consistent with a conditionally linear model in which risk is still time-
varying but has no distinct role – separated from the primitive stochastic disturbances – in
influencing the endogenous variables. The second-order approximation of the solution,
instead, is sufficient to get this role. Moreover, risk premia, evaluated using only a first-
order approximation of the solution, will be also time varying.
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1. Introduction

In the last decade, there has been an increasing interest among researchers and policymakers in developing dynamic
general equilibrium models to study business cycle properties of macroeconomic variables and to conduct policy analysis.
This research agenda has been accompanied by parallel developments in solution methods and estimation techniques
aimed at handling different challenges that richer models pose to economists. For example, second-order approximation
techniques have been proposed by Schmitt-Grohé and Uribe (2004) and Benigno and Woodford (2012) to address welfare
comparisons across policy regimes while Bayesian analysis has been developed for estimating dynamic general equilibrium
models (An and Schorfheide, 2007).

In this work, we propose a solution method for non-linear dynamic stochastic models in which the exogenous stochastic
processes display time-varying risk. While the use of models with time-varying risk is quite popular in finance, only
recently there has been considerable attention on the role and the effects that risk or uncertainty and their variations over
time have on macroeconomic variables.1 Our solution method is based on appropriately defined first and second-order
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approximations of the equilibrium conditions which can be effective in studying how time-variation in the exogenous risk
influences the equilibrium allocation in standard macroeconomic models. This is in contrast with other solution methods,
recently proposed, relying on third-order approximations as in Fernandez-Villaverde et al. (2011a,b).2

We consider a class of non-linear dynamic stochastic models in which the exogenous state variables follow conditionally
linear stochastic processes where either variances or standard deviations of the primitive shocks are time-varying and
modelled through stochastic linear processes. We show that a first-order approximation of the solution can be consistent
with a conditionally linear solution in which the process for the exogenous state variables is not approximated and still
displays time-varying volatility. Indeed, whether the exogenous state process is approximated or not does not affect the
other coefficients of the linear approximation nor the dimension of the relevant endogenous state variables.3

There are three clear advantages of following a conditionally linear approximation instead of a fully linear approximation.
First, the approximated linear solution would still display a role for time-varying risk in affecting the evolution of the
endogenous variables of the model.4 However, this is not a “distinct and direct” role, since we cannot disentangle the
primitive shocks from the shocks to their variance or standard deviation: if shocks are zero, risk does not directly influence
the endogenous variables. Second, the fact that stochastic volatility enters the first-order approximation, although not
disjointly, has important implications also for higher-order approximations. In particular, we show that a second-order
approximation of the policy rules is sufficient to imply a “distinct and direct” role for time-varying volatility in affecting the
endogenous variables, whereas with other approaches a more computationally demanding third-order approximation is
needed. Third, within a second-order approximation of the model, a conditionally linear approximation, where volatility is
still time-varying, can be sufficient to characterize time variation in covariances and therefore in risk premia, whereas a
standard linear approximation would only deliver constant risk premia.

Our approach is related to Justiniano and Primiceri (2008) since their partially nonlinear approximation, at the level of the
first-order approximation of the solution, is consistent with our proposed conditionally linear approximation when the
exogenous state variables follow conditionally linear processes. We also provide a second-order approximation of the solution to
characterize a distinct role for exogenous risk in affecting the endogenous variables. In particular we consider two models of
time-varying volatility, one with a stochastic linear process for the standard deviation of the primitive shocks and another with a
linear process for the variance.5 The latter model is indeed also more parsimonious in the second-order approximation.

Under these two alternative classes of processes for the standard deviation or the variance, our contribution can be also
read as a generalization of the second-order approximation methods of Schmitt-Grohé and Uribe (2004), Kim et al. (2008)
and Gomme and Klein (2011) to the case in which the exogenous state variables follow heteroskedastic processes. Under
more general approaches to model time-varying exogenous uncertainty, recent works by Fernandez-Villaverde et al. (2011a,
b) have provided approximation methods relying on third-order approximations to capture the role of exogenous time-
varying uncertainty on the endogenous variables. We compare the results between our approach and theirs, using models in
which time-varying exogenous uncertainty falls under the two classes of processes considered in this work. In general, our
second-order approximation is a better approximation than a standard second-order approximation. Moreover, the direct
relationship between variation in exogenous uncertainty and endogenous variables that we find with our method is the
same as the one that can be obtained through a standard third-order approximation.

Finally, there are other contributions which have characterized how time-varying risk affects endogenous variables. But
in these cases, as in Rudebusch and Swanson (2012), exogenous state variables follow homoskedastic processes as in
Schmitt-Grohé and Uribe (2004) and time-varying endogenous (not exogenous) risk affects the endogenous variables only
in a third-order approximation. Amisano and Tristani (2009) is instead a more related work since they analyze models
where volatility is subject to discrete switching-regime changes and show that the time-varying volatility can affect the
second-order approximation.

The structure of this work is the following. Section 2 present a simple example in which the main idea is conveyed and
compared with the standard approximation method. Section 3 presents first and second-order approximations in a model in
which the exogenous state variables have time-varying linear process for the conditional variance. Section 4 applies our
methods to the benchmark neoclassical growth model and evaluate its accuracy. Section 5 concludes.
2. A simple example

Before presenting our solution method in a general form, we write down a simple example to show how it works also
in comparison with the standard approximation theory discussed in the literature (Fernandez-Villaverde et al. 2011a,b).
(footnote continued)
(2011a) show how changes in the volatility of the foreign real interest rate are an important mechanism in explaining the behavior of output, consumption
and investment in emerging market economies.

2 Bloom et al. (2009), following Krusell and Smith (1998), use instead a value function iteration approach which is more computationally demanding
and difficult to implement even in small scale dynamic general equilibrium models.

3 We follow here the insights of Justiniano and Primiceri (2008) which indeed define a partially nonlinear approximation.
4 This role has been particular relevant for Justiniano and Primiceri (2008) to deliver a model that can be estimated parsimoniously in order to

investigate which sources of risk have contributed the most to the fall in macroeconomic volatility associated with the US Great Moderation.
5 Justiniano and Primiceri (2008) model the log of the standard deviation as a stochastic linear process.
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To illustrate it in a sharp way, we consider the simplest asset-price model implied by a one-good endowment economy in a
representative-agent utility-maximizing framework. In this model the real interest rate, Rt , is determined by the standard
Euler Equation:

1¼ βRtEt
Ctþ1

Ct

� �−γ� �
ð1Þ

where Et is the rational expectations operator; β, with 0oβo1, is the subjective discount factor; Ct is consumption and γ
measures risk aversion, with γ40. In equilibrium, the growth rate of the logarithm of consumption is equal to the growth
rate of the logarithm of output. Here we assume that the log-output growth follows the process:

xtþ1 ¼ ctþ1−ct ¼ ρðct−cÞ þ utϵc;tþ1 ð2Þ
where z≡log Z for every variable Z; c is the deterministic level of log consumption; ρ is such that ρ≤0; ϵc;tþ1 is a white-noise
process. Time-varying uncertainty is modelled with a process for the conditional variance of xtþ1, denoted by u2

t , which
follows:

u2
t ¼ ð1−λÞu2 þ λu2

t−1 þ s2vϵv;tþ1 ð3Þ
where u2 is the steady-state level of the variance; λ is such that 0oλo1; the shock ϵv;tþ1 is a white-noise process and sv40
is a scalar. A linear specification, as in (3), is critical for applying our method. Later we extend the analysis also to a linear
process for the standard deviation.

We note that the process (2) is linear in the composite shock ξtþ1≡utϵc;tþ1 and its conditional expectation is also linear. In
fact

Etxtþ1 ¼ ρðct−cÞ
Given (2) and (3), the real interest rate is determined in equilibrium through (1).

Under the assumption of a log-normal distribution of the primitive shocks, there is a closed-form solution. Defining
rt ¼ ln Rt þ ln β, we get

rt ¼ γEtxtþ1−
ρ2

2
Vartxtþ1

which can be expressed as a function of the state variables using (2) and (3)

rt ¼ ργðct−cÞ−
γ2

2
u2
t :

In this solution the real rate is a function of the two state variables of the model and in particular of the time-varying
variance of the shock.

Log-normality is critical to obtain a closed-form solution. But, in general, closed-form solutions are not available and
approximation methods can be used. These methods require the shocks ϵc;tþ1 and ϵu;tþ1 to be appropriately bounded in
probability or to have bounded support.

The deterministic steady state around which the approximation is taken follows when s¼ 0 and u ¼ 0, implying
rt ¼ r ¼ 0 and ct ¼ c. This is the common starting point for both the method presented in the literature and our approach.

Under the standard approximation theory discussed in the literature, a first-order approximation of Eq. (1) around the
deterministic steady state implies

rt ¼ γEtxtþ1 þOð∥rt∥2; ∥xt∥2; ∥rtxt∥Þ; ð4Þ
where the term Oð�Þ collects the remainders of the approximation which are at least of a second order in the norms of the
variables in the expansion.

Moreover, as discussed among others by Fernandez-Villaverde et al. (2011a,b), a first-order approximation of the process
(2) is also taken

xtþ1 ¼ ctþ1−ct ¼ ρðct−cÞ þ uϵc;tþ1 þOð∥utϵc;tþ1∥Þ; ð5Þ
where indeed the composite term utϵc;tþ1 is approximated. Using the above process into (4), one obtains the first-order
approximated solution for the real rate

rt ¼ ργðct−cÞ þOð∥rt∥2; ∥xt∥2; ∥rtxt∥; ∥utϵc;tþ1∥Þ: ð6Þ
Our method relies on the same first-order approximation (4) but, as a difference, it does not approximate the process (2)
since it takes into account that the latter is already linear in the composite shock ξtþ1 ¼ utϵc;tþ1, and that moreover it is a
conditionally-linear process. Indeed, when we use (2) into (4), the real rate will be the same function of the state as in (6).

In a first-order approximation, endogenous variables are the same linear function of the state variables under both
methods. But there are three important differences: (1) our first-order approximation is not in the class of linear
approximations but in the class of conditionally linear approximations; (2) under the standard method the primitive shocks
are homoskedastic while under our method, since both (2) and (3) hold, they will be heteroskedastic; (3) under the standard
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approach, the remainder will be of order at least

Oð∥uϵc;tþ1∥2; ∥utϵc;tþ1∥Þ ¼Oðu2∥ϵc;tþ1∥2; ∥ξtþ1∥Þ;
while under our approach they will be of order at least Oð∥ξtþ1∥2Þ.

Finally, note that under both methods the impulse response of the real rate with respect to a shock to the variance, ϵu;tþ1,
is zero. Therefore there is not a distinct and direct role for time-varying volatility in affecting the endogenous variables of
the model.

We now consider the second-order approximation of (1) which implies, under both methods, that

rt ¼ γEtxtþ1−
γ2

2
Vartxtþ1 þOð∥rt∥3; ∥xt∥3; ∥r2t xt∥;…Þ: ð7Þ

Under the standard approach, as in Fernandez-Villaverde et al. (2011a,b), a second-order approximation of (2) is also
taken, which in this case recovers the original process for xtþ1

xtþ1 ¼ ρðct−cÞ þ uϵc;tþ1 þ ðut−uÞϵc;tþ1

¼ ρðct−cÞ þ utϵc;tþ1: ð8Þ
At this stage both methods are consistent with (7), (2) and (3).
However, the differences arise when we express rt as a function of the state variables. Under the standard approach we

obtain:

rt ¼ ργðct−cÞ−
γ2

2
u2 þOð∥rt∥3; ∥xt∥3; ∥r2t xt∥;…Þ ð9Þ

since to evaluate the variance one has to use the first-order approximation of the process (2), i.e. Eq. (5).
Under our approach, coherently with our first-order approximation, the process (2) can be used and the solution will be

of the form:

rt ¼ ργðct−cÞ−
γ2

2
u2
t þOð∥rt∥3; ∥xt∥3; ∥r2t xt∥;…Þ ð10Þ

where the remainder will be at least of order Oð∥ξtþ1∥3Þ. Under the standard approach, instead, the remainder will be of
order at least Oð∥ξtþ1∥2;u

3∥ϵc;tþ1∥3Þ.
The important result is that now our second-order approximation displays a distinct role for volatility in influencing the

real interest rate, similar to the log-normal exact solution, whereas under the standard approach the impulse response
function to a volatility shock is still zero. To get a distinct role for volatility in affecting the real interest rate, under the
standard method, a third-order approximation of (1) is needed:

rt ¼ γEtxtþ1−
γ2

2
Vartxtþ1 þ

γ3

6
Etx3tþ1−

γ3

2
Etxtþ1Etx2tþ1 þ

γ3

3
ðEtxtþ1Þ3 þOð∥ � ∥4Þ: ð11Þ

A third-order approximation of (8) would still deliver (8) and therefore be consistent with (2). According to this process,
it follows that

Etxtþ1 ¼ ρðct−cÞ

Etx2tþ1 ¼ ρ2ðct−cÞ2 þ u2

Etx3tþ1 ¼ ρ3ðct−cÞ3 þ 3ρðct−cÞu2:

Substituting the previous expressions into (11), we obtain that the third-order terms cancel-out so that (11) can be
rewritten as

rt ¼ γEtxtþ1−
γ2

2
Vartxtþ1 þOð∥ � ∥4Þ:

However, now, the variance Vartxtþ1 can be evaluated using the second-order approximation of the process (2), i.e. the
process itself. Therefore, the real rate can be expressed as a function of the state variables as follows:

rt ¼ ργðct−cÞ− γ2

2
u2
t þOð∥ � ∥4Þ; ð12Þ

where now time-varying volatility has a distinct role in affecting the real rate.
Some observations follow from this example. By comparing the standard approximation method with ours, we note that

our first-order approximation is in general a better approximation than a standard first-order approximation. In this special
case, our second-order approximation method delivers the same solution as the standard third-order approximation and, as
such, it is clearly better than the standard second-order approximation, since its third-order approximation is at least an
improvement upon it.

With more general models, it is not necessarily the case that our second-order approximation coincides with the
standard third-order approximation, but it will be the case that our first and second-order approximations are better
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approximations than their standard counterparts. Moreover, even under more general models, it will always be the case that
the impulse responses of the endogenous variables with respect to the shock to volatility coincide using our second-order
approximation method and a standard third-order approximation.

3. The general model

We consider the following general model which encompasses a wide variety of dynamic stochastic models:

Etff ðytþ1; xtþ1; yt ; xtÞg ¼ 0; ð13Þ
where Etf�g denotes the mathematical expectations operator conditional on the information available at date t and f ð�Þ is a
vector, of size n, of functions. The vector yt , of non-predetermined variables, is of size ny � 1 while the vector xt of state
variables is of size nx � 1, with ny þ nx ¼ n. In particular, the vector xt can be partitioned into a vector of endogenous state
variables kt and a vector of exogenous predetermined variables zt of size nz � 1, as follows:

xt ¼
kt
zt

" #
:

The vector zt follows the exogenous stochastic process given by

ztþ1 ¼ Λzzt þ Zξtþ1 ð14Þ
where Z and Λz are matrices of order nz � nz. The vector ξtþ1 is also of dimension nz � 1 and is given by

ξtþ1 ¼Utεz;tþ1 ð15Þ
where εz;tþ1 is a nz � 1 vector of innovations, which are assumed to have a bounded support and to be independently and
identically distributed with mean zero and variance/covariance matrix Iz, where Iz is an identity matrix of dimension nz � nz;
Ut is a diagonal matrix of dimension nz � nz whose elements on the main diagonal are collected into vector ut, of dimension
nz � 1.

Our solution method applies to two alternative ways of modelling time-varying volatility. Under the first class, u2
t , the

vector containing the squared value of each element of ut, follows the process:

u2
tþ1 ¼ s2z ðIz−ΛuÞu2 þ Λuu2

t þ s2vVεv;tþ1 ð16Þ
where u is a vector of dimension nz � 1 with u2 being a vector of the same dimensionwhose elements are each the square of
the respective element of u; V and Λu are matrices of order nz � nz, εv;tþ1 is a vector of innovation of dimension nz � 1 which
are assumed to have a bounded support and to be independently and identically distributed with mean zero and variance/
covariance matrix Iz; sv and sz are scalars with sv; sz≥0. We further assume that the initial condition on u2

t is such that
u2
t0−1 ¼ s2z u

2.
Under the second class of processes considered in this work, we assume that ut follows the exogenous stochastic linear

process given by

utþ1 ¼ szðIz−ΛuÞu þ Λuut þ svVεv;tþ1 ð17Þ
where V and Λu are matrices of order nz � nz, εv;tþ1 is a nz � 1 vector of innovations which again are assumed to have a
bounded support and to be independently and identically distributed with mean zero and variance/covariance matrix Iz; u is
a vector of dimension nz � 1 while sz and sv are scalars with sz, sv≥0. The initial condition on the process for ut is such that
ut0−1 ¼ szu.

Given Eqs. (15) and (16) or (17), the model generalizes the framework of Schmitt-Grohé and Uribe (2004) to a case in
which the volatility is time varying and stochastic. In particular, the process for the exogenous state variable (14) is
conditionally linear where each element of the vector ut captures the conditional standard deviation of each element of the
stochastic disturbance ξtþ1; such variances or standard deviations are allowed to vary over time in a stochastic way
following the autoregressive process described by Eq. (16) or (17). The model boils down to the framework of Schmitt-Grohé
and Uribe (2004) under the assumptions sv ¼ 0 and ui ¼ 1 for all i¼ 1;…;nz, since in this case:

ξtþ1 ¼ szεz;tþ1:

We make three important remarks on the above structure which are important to define the class of models of interest in
this work. First: the vector ut is not a distinct argument of the set of equilibrium conditions (13) with respect to what is
already captured by the state vector xt . Second: accordingly, Eq. (16) or (17) are kept separate from the equilibrium
conditions that constitute the model, and therefore are not included in Eq. (13).6 Third: the vector of exogenous state
variables zt follows a conditionally linear process given by (14).

The restrictions due to modelling time-varying volatility as in (16) or (17) limits the generality of our solution method.
However, on the other side, the modelling of exogenous time-varying volatility as in our analysis is quite common in the
finance literature (see for example Engle, 2001; Bansal and Yaron, 2004). Moreover, the model described in (13) is quite
6 These remarks are further clarified by the application of Section 4 (see Eq. (41) and footnote 12).



G. Benigno et al. / Journal of Economic Dynamics & Control 37 (2013) 1231–12471236
general. For more general class of processes modelling time-varying volatility, standard perturbation approaches can be
used.7

3.1. Solution

Given the above defined model and structure of the stochastic processes, a solution of (13) takes the form:

yt ¼ gðxt ;ut ; sz; svÞ ð18Þ

xtþ1 ¼ hðxt ;ut ; sz; svÞ þ hξξtþ1 ð19Þ
for generic functions gð�Þ and hð�Þ where hξ is a known nx � nz matrix:

hξ≡
0
Z

� �
:

We are interested in a second-order approximation of (18) and (19) around a deterministic steady state in which
sz ¼ sv ¼ 0 and ut ¼ szu ¼ 0. In this deterministic steady state xt ¼ x and yt ¼ y satisfy

y ¼ gðx;0;0;0Þ
x ¼ hðx;0;0;0Þ

or, equivalently

f ðy; x; y; xÞ ¼ 0:

The key insight of our approximation method is that hξ is a known matrix and that the solution given by (18) and (19) is
already linear in the combined shock ξtþ1. Our approximation strategy is to seek approximations for the unknown functions
gð�Þ and hð�Þ but not for the term hξξtþ1 — which is instead perfectly known — in a way that the first and second-order
approximations will be still linear in the joint disturbance hξξtþ1.

In what follows, we present our method for the case in which the variance of the stochastic disturbance follows the linear
process (16). We leave to the appendix the case in which the standard deviation of the exogenous disturbances is linear,
as in (17).

3.2. First-order approximation

First, we characterize a first-order approximation of (18) and (19) in which we approximate to a first order the functions
gð�Þ and hð�Þ while we keep the linearity of the solution with respect to the composite shock ξtþ1. This first-order
approximation belongs to the class of conditionally linear approximations. We guess and verify that this approximation
takes the form:

~yt ¼ gx ~xt ð20Þ

~xtþ1 ¼ hx ~xt þ hξξtþ1 ð21Þ
where ~yt≡yt−y, ~xt≡xt−x and gx and hx are the Jacobian matrices of the functions gð�Þ and hð�Þwith respect to x, of size ny � nx

and nx � nx, respectively, and evaluated at the steady state. To verify this guess, we take a first-order approximation of (13),
obtaining

Df ŷ � Et ~ytþ1 þ Df x̂ � Et ~xtþ1 þ Df y � ~yt þ Df x � ~xt ¼ 0 ð22Þ
where Df ŷ , Df x̂ , Df y, and Df x are matrices containing the respective gradients of the vector of functions f ð�Þ taken with
respect to the arguments of the function and evaluated at the above-defined steady state. In particular hats denote the
gradient with respect to time t þ 1 vectors: ŷ stands for ytþ1 and x̂ for xtþ1. It is important to note that the first-order
approximation described in (22) is the same as under other approaches.

To verify our guess, we plug (20) and (21) into (22) noting that Etξtþ1 ¼ 0. It follows that the matrices gx and hx have to
satisfy the following set of n� nx conditions:

Df ŷgxhx þ Df ygx þ Df x̂hx þ Df x ¼ 0: ð23Þ
The above set of conditions can be solved using standard algorithms. Indeed, it corresponds to that of Schmitt-Grohé and
Uribe (2004) in the case in which the volatility is non stochastic: the matrices gx and hx are the same as in their framework.
7 Fernandez-Villaverde et al. (2011a,b) and Justiniano and Primiceri (2008) model a linear process for the log of the standard deviations to assure that
variances remain always positive. This is not necessary in our case since we are assuming a bounded support for the shock εv;t which is needed anyway, for
the goodness of the approximation. Given that out of the steady state sz is positive, it is always possible to find an appropriate lower bound on εv;t such that
ut remains bounded above zero.
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However, the overall solution given by (20) and (21) does not correspond to their solution since the driving stochastic
disturbance is still a non-linear process, which is described by (15). In particular, (20), (21) together with (15) and (17)
represent the best conditionally linear solution of (22) given that the exogenous state variables follow (14)–(17) and given
that the vector ut does not enter the set of Eq. (13) nor their arguments. Notice first that (22) just imposes restrictions on the
linear approximations of the functions gð�Þ and hð�Þ of (18) and (19). Since Etξtþ1 ¼ 0, the approximations (20) and (21) are
conditionally linear. Moreover since hξ is known, the best approximation of the term hξξtþ1, in Eq. (19), is just the term itself,
which is what appears in (21).

In the standard perturbation approach, as in Fernandez-Villaverde et al. (2011a,b), the term ξtþ1 is also linearized and
therefore a linear approximation of the exogenous state variables takes the form:

~xtþ1 ¼ hx ~xt þ hξUszεz;tþ1; ð24Þ
in which U is the diagonal matrix containing the vector u on its diagonal. Solution (24) is now in the form of a linear
multivariate autoregressive process, but it is not the best conditionally linear approximation of (19). In our approximation
(20) and (21) together with (15) and the linear process (17) are all that is needed to characterize the conditionally linear
approximation. In Fernandez-Villaverde et al. (2011a,b), it suffices instead to consider (20), (21) and (24) where time-varying
volatility does not play any role.8

We will show that there are several advantages implied by our conditionally linear approximation. In our case, for
example, first-order approximations will retain a role for stochastic volatility, as in Justiniano and Primiceri (2008), although
not a distinct role, since risk enters only jointly with the structural shock. In contrast, the first-order approximation of
Fernandez-Villaverde et al. (2011a,b) will lose any role for time-varying risk. Importantly, this difference between our and
their linear approximation will be also reflected in the second-order approximation and especially in the role that time-
varying volatility plays in it. A further advantage of our approach, indeed, is that time-varying volatility will play a “distinct
and direct” role in a second-order approximation whereas in Fernandez-Villaverde et al. (2011a,b) a third-order
approximation is needed. With “distinct and direct” role, we mean that the impulse response functions of the variables
of interest with respect to the primitive volatility shock εv;tþ1 can be in general different from zero.9 As a consequence, a very
appealing implication of our method is that risk premia evaluated using first-order approximations will be time-varying, in
contrast to the constant risk premia implied by the framework of Fernandez-Villaverde et al. (2011a,b). In their context,
higher-order approximations would be needed to characterize time-varying risk premia.

We conclude this section by noting that a complete linear approximation to (18) and (19) can be represented as

~yt ¼ gx ~xt þ guut þ gzsz þ gvsv

~xtþ1 ¼ hx ~xt þ huut þ hzsz þ hvsv þ hξξtþ1:

However, plugging the above equations into (22) shows that gu, gz, gv, hu, hz, hv are all zero matrices.

3.3. Second-order approximation

In this section, we characterize a second-order approximation of the solutions (18) and (19). We guess and verify that it
takes the form:

~yt ¼ gx ~xt þ
1
2
ðIy⊗ ~x′tÞgxx ~xt þ

1
2
guuu

2
t þ

1
2
gzzs

2
z ; ð25Þ

~xtþ1 ¼ hx ~xt þ 1
2
ðIx⊗ ~x′tÞhxx ~xt þ 1

2
huuu2

t þ
1
2
hzzs2z þ hξξtþ1; ð26Þ

where ⊗ denotes the Kronecker product, and gxx, guu, gzz, hxx, huu, hzz are conformable matrices, corresponding to the
Magnus-Neudecker Hessian matrices of functions g and h with respect to the arguments in the indexes.10 Specifically, gxx is
defined as

gxx ¼
∂2gðx;u; sz; svÞ

∂x∂x′
¼Dx g½ðDxgðx;0;0;0ÞÞ′�;

evaluated at the steady state, and consists of ny vertically stacked symmetric nx � nx matrices (gxx is therefore of size

ny � nx � nx). The matrix hxx is of size nx � nx � nx, hzz and gzz are of size ny � 1 and nx � 1, respectively, while guu and huu are
matrices of order ny � nz and nx � nz, respectively.11
8 See Justiniano and Primiceri (2008) for further arguments to justify what they call a “partially nonlinear” approximation in the same model of
Fernandez-Villaverde et al. (2011a,b).

9 Accordingly, since in our first-order approximation there is no distinct role for volatility in affecting the endogenous variables, the impulse response
of any variable with respect to a volatility shock is always zero.

10 See Magnus and Neudecker (1999). Table 1 in Appendix presents the dimensions of all the matrices involved in the first and second-order
approximations.

11 Notice that the expansion with respect to s2v is zero up to second-order terms.
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To evaluate this guess, we take a second-order approximation of (13), to get

0¼ Et Df
i
ŷ � ~ytþ1 þ Df

i
x̂ � ~xtþ1 þ Df

i
y � ~yt þ Df

i
x � ~xt þ

1
2
~y′tþ1 � Df

i
ŷŷ � ~ytþ1

�

þ ~x′tþ1 � Df
i
ŷx̂ � ~ytþ1 þ ~y′t � Df

i
ŷy � ~ytþ1 þ ~x′t � Df

i
ŷx � ~ytþ1

þ1
2
~x′tþ1 � Df

i
x̂x̂ � ~xtþ1 þ ~y′t � Df

i
x̂y � ~xtþ1 þ ~x′t � Df

i
x̂x � ~xtþ1

þ1
2
~y′t � Df

i
yy � ~yt þ ~x′t � Df

i
yx � ~yt þ

1
2
~x′t � Df

i
xx � ~xt

�
; ð27Þ

for each i¼ 1;…;n and where fi denotes the i-component of the vector f. This can be written in a more compact form as

0¼ Et Df

~ytþ1

~xtþ1

~yt

~xt

2
6664

3
7775þ 1

2

In⊗ ~ytþ1

In⊗ ~xtþ1

In⊗ ~yt

In⊗ ~xt

2
6664

3
7775′Hf

~ytþ1

~xtþ1

~yt

~xt

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
; ð28Þ

where Df ≡½Df ŷ Df x̂ Df y Df x� denotes the n� 2n Jacobian matrix of function f, and Hf the corresponding 2n2 � 2nMagnus–
Neudecker Hessian matrix, evaluated at the steady state:

Hf ¼D vec½ðDf Þ′�:
We now evaluate the second-order expansion (28), using Eqs. (20) and (21) to evaluate the second-order terms, taking

into account (16), and the second-order guess solutions (25) and (26) to evaluate the first-order terms, taking moreover into
account the restrictions implied by (23).

We obtain:

0¼ 1
2
EtfDf ŷ ½ðgx⊗ ~x′tÞhxx ~xt þ gxhuuu2

t þ gxhzzs2z þ gzzs
2
z

þ½Iy⊗ðhx ~xt þ hξξtþ1Þ′�gxxðhx ~xt þ hξξtþ1Þ þ s2z guuðIz−ΛuÞu2 þ guuΛuu2
t �

þDf x̂ ½ðIx⊗ ~x′tÞhxxxt þ huuu2
t þ hzzs2z � þ Df y½ðIy⊗ ~x′tÞgxxxt þ guuu

2
t þ gzzs

2
z �

þ½In⊗ðgxhx ~xt þ gxhξξtþ1Þ′�Hf ŷ � ~wtþ1 þ ½In⊗ðhx ~xt þ hξξtþ1Þ′�Hf x̂ � ~wtþ1

þðIn⊗ ~x′tg ′xÞHf y � ~wtþ1 þ ðIn⊗ ~x′tÞHf x � ~wtþ1g; ð29Þ

where ~wtþ1≡½ ~y′tþ1 ~x′tþ1 ~y′t ~x′t �′ is a 2n� 1 vector and Hf ŷ , Hf x̂ , Hf y, and Hf x are the Magnus-Neudecker Hessian matrices
of the vector of functions f ð�Þ taken with respect to the arguments of the function and evaluated at the above-defined steady
state, such that

Hf ¼

Hf ŷ

Hf x̂
Hf y

Hf x

2
666664

3
777775:

Specifically, Hf ŷ is defined as

Hf ŷ ¼D vec½ðDf ŷ Þ′�;

and analogously for the other terms. Moreover, Eqs. (20) and (21) imply

~wtþ1 ¼Mx ~xt þMξξtþ1; ð30Þ
where Mx and Mξ are matrices of order 2n� nx and 2n� nz, respectively, defined by

Mx≡

gxhx

hx

gx

Ix

2
66664

3
77775; Mξ≡

gxhξ

hξ

0ðny�nzÞ
0ðnx�nzÞ

2
66664

3
77775: ð31Þ

From Eq. (58), and using (30), we can collect the quadratic terms in the vector ~xt , to obtain

0¼ 1
2
EtfðDf ŷ � gx⊗ ~x′tÞhxx ~xt þ ðDf ŷ⊗ ~x′th′xÞgxxhx ~xt þ ðDf x̂⊗ ~x′tÞhxxxt

þðDf y⊗ ~x′tÞgxxxt þ ðIn⊗ ~x′th′xg ′xÞHf ŷ �Mx ~xt þ ðIn⊗ ~x′th′xÞHf x̂ �Mx ~xt

þðIn⊗ ~x′tg ′xÞHf y �Mx ~xt þ ðIn⊗ ~x′tÞHf x �Mx ~xtg: ð32Þ
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Following Gomme and Klein (2011), given a generic n �m�m matrix A consisting of n square matrices Ai stacked vertically,
with i¼ 1;…;n, we define trmðAÞ as the n� 1 vector of traces of the n matrices Ai:

trmðAÞ ¼ ½trðA1Þ trðA2Þ … trðAnÞ�′:
We can use the above operator to show that moment condition (32) implies the following set of n � nx � nx equations:

0¼ ðDf ŷ � gx⊗IxÞhxx þ ðDf ŷ⊗h′xÞgxxhx þ ðDf x̂⊗IxÞhxx

þðDf y⊗IxÞgxx þ ðIn⊗h′xg ′xÞHf ŷ �Mx þ ðIn⊗h′xÞHf x̂ �Mx

þðIn⊗g ′xÞHf y �Mx þ Hf x �Mx; ð33Þ

which can be solved for the unknown matrices gxx and hxx, given hx, gx, Df and Hf .
We can collect the remaining terms:

0¼ EtfDf ŷ ½gxhuuu2
t þ gxhzzs2z þ gzzs

2
z þ ðIy⊗ξ′tþ1h′ξÞgxxhξξtþ1

þs2z guuðIz−ΛuÞu2 þ guuΛuu2
t � þ Df x̂ ½huuu2

t þ hzzs2z � þ Df y½guuu
2
t þ gzzs

2
z �

þðIn⊗ξ′tþ1h′ξg ′xÞHf ŷ �Mξξtþ1 þ ðIn⊗ξ′tþ1h′ξÞHf x̂ �Mξξtþ1g: ð34Þ

Given a generic n �m�m matrix A consisting of n square matrices Ai stacked vertically, with i¼ 1;…;n, we define dgvðAÞ
as the m�n matrix that stacks horizontally the main diagonals of each of the m�m matrices Ai:

dgvðAÞ ¼ ½diagvðA1Þ diagvðA2Þ … diagvðAnÞ�;
where diagvðAiÞ is an m� 1 vector collecting the elements on the main diagonal of Ai. We can use the above operator,
together with the matrix trace operator defined above, to show, for generic and conformable matrices A and B:

EtfðI⊗ξ′tþ1A′ÞBAξtþ1g ¼ Etftrm½ðI⊗ξ′tþ1A′ÞBAξtþ1�g
¼ trm½ðI⊗A′ÞBAEtfξtþ1ξ′tþ1g� ¼ trm½ðI⊗A′ÞBAUtU′t � ¼ dgv½ðI⊗A′ÞBA�′u2

t :

Using the above to express the quadratic terms in ξtþ1 in Eq. (58) in terms of u2
t , we collect the latter to obtain the

following system of n� nz conditions:

0¼ ðDf ŷ � gx þ Df x̂ Þhuu þ Df ŷ � guuΛu þ Df y � guu

þdgv½ðDf ŷ⊗h′ξÞgxxhξ þ ðIn⊗h′ξg ′xÞHf ŷ �Mξ þ ðIn⊗h′ξÞHf x̂ �Mξ�′; ð35Þ

which can be solved for matrices huu and guu.
Finally, we can collect the terms in s2z from Eq. (58), to show that matrices hzz and gzz solve the following system of n� 1

equations:

0¼ ðDf ŷgx þ Df x̂ Þhzz þ ðDf ŷ þ Df yÞgzz þ Df ŷguuðIz−ΛuÞu2: ð36Þ

4. Application: the neoclassical growth model

To apply our method to a simple example, we consider the standard neoclassical growth model, as in Schmitt-Grohé and
Uribe (2004). We denote consumption with Ct and the capital stock at the beginning of period t with Kt. The parameters
β; δ; γ and α represent (respectively) the subjective discount factor, the depreciation rate of capital, relative risk aversion and
the return to scale of capital in the production function. The equilibrium conditions of the model are given by

Ktþ1−eatKα
t−ð1−δÞKt þ Ct ¼ 0 ð37Þ

Et β½αeatþ1Kα−1
tþ1 þ ð1−δÞ� Ctþ1

Ct

� �−γ� �
−1¼ 0 ð38Þ

atþ1 ¼ ρat þ utεa;tþ1 ð39Þ
∀t≥0, given K0 and a0 ¼ 0; where at denotes the log of the productivity shock. In particular, the innovation εa;tþ1 to the log-
productivity process (39) is identically and independently distributed process with mean zero and unitary variance; ut

captures the time-varying conditional standard deviation of atþ1 and ρ is a parameter, with 0≤ρo1. We model the square of
ut, i.e. the conditional variance of atþ1, as an exogenous stochastic linear process:

u2
tþ1 ¼ ð1−λÞs2au2 þ λu2

t þ s2vεv;tþ1 ð40Þ
with initial condition u2

0 ¼ s2au
2 where λ is a coefficient such that 0≤λo1, while sa and sv are non-negative scalars; u is a

positive parameter and the innovation εa;tþ1 is identically and independently distributed process with mean zero and
unitary variance. Notice that since Etðutεa;tþ1Þ ¼ 0, the log-productivity process (39) is a conditionally linear stochastic
process.
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We can cast this model in the general notation of Section 2. Defining ct≡ln Ct , kt≡ln Kt , we can write yt ¼ ½ct � and
xt ¼ ½kt ; at � and therefore12

Etff ðytþ1; yt ; xtþ1; xtÞg ¼ Et

β½αeatþ1þðα−1Þktþ1 þ ð1−δÞ�e−γctþ1−e−γct

ektþ1−eatþαkt−ð1−δÞekt þ ect

atþ1−ρat

2
64

3
75¼ 0: ð41Þ

According to (18) and (19), a solution to (41) takes the form:

ct ¼ gðkt ; at ;ut ; sa; svÞ ð42Þ

ktþ1 ¼ hðkt ; at ;ut;sa;svÞ ð43Þ

atþ1 ¼ ρat þ ξtþ1

with ξtþ1≡utεa;tþ1 and where the square of ut follows (40).
In the non-stochastic steady-state, in which sa ¼ sv ¼ 0 and f ðy; y; x; xÞ ¼ 0, the following system is used to solve

for K and C :

δK−K
α þ C ¼ 0;

β½αK α−1 þ ð1−δÞ� ¼ 1:

Using the calibration of Schmitt-Grohé and Uribe (2004), i.e. β¼ 0:95, δ¼ 1, α¼ 0:3, ρ¼ 0, γ ¼ 2, we obtain:

K ¼ 0:1664; C ¼ 0:4175:

According to (20) and (21), a first-order approximation of (42) and (43) takes the form:

~ct ¼ gk ~kt þ gaat ð44Þ

~ktþ1 ¼ hk
~kt þ haat ð45Þ

where we have defined ~ct≡ln Ct−ln C , ~k≡ln Kt−ln K and the coefficients gk, ga, hk and ha coincide with those of
Schmitt-Grohé and Uribe (2004):

gk ¼ 0:2525; ga ¼ 0:8417
hk ¼ 0:4191; ha ¼ 1:3970:

However, there is an important difference between our approximation and that of Schmitt-Grohé and Uribe (2004). In
our case, at follows the conditionally linear and heteroskedastic process (39), in which the conditional variance is modelled
as in (40). In their framework, instead, shocks are homoskedastic and at follows the following linear process:

atþ1 ¼ ρat þ sauεa;tþ1: ð46Þ
In Fernandez-Villaverde et al. (2011a,b) the original stochastic process for the exogenous state variables is heteroskedastic,
but a linear approximation of this process would be consistent with (46) in which risk is no longer time-varying. Instead, in
our first-order approximation stochastic volatility still matters and will be particularly relevant when estimating the model.

However, as mentioned in Section 3.2, in our first-order approximation risk does not play a “distinct and direct” role. To
see this point, we discuss the impulse response functions. Defining the impulse response of a generic variable xt at time t þ j
with respect to the shock εt as

IðxtþjjεtÞ ¼
∂ðEtxtþj−Et−1xtþjÞ

∂εt
;

we obtain that the impulse response with respect to the shock εa;t is given by

Ið~ctþjjεa;tÞ ¼ gkIð ~ktþjjεa;tÞ þ gaIðatþjjεa;tÞ

Ið ~ktþjþ1jεa;tÞ ¼ hkIð ~ktþjjεa;tÞ þ haIðatþjjεa;tÞ
for each j≥0 with Ið ~kt jεa;tÞ ¼ 0 where

Iðatþjþ1jεa;tÞ ¼ ρIðatþjjεa;tÞ
for each j≥0 and

Iðat jεa;tÞ ¼ sau:
12 Notice that ut does not enter system (41), and, accordingly, neither does Eq. (40), as remarked in Section 3.
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The impulse response with respect to the shock εa;t will not be affected by the fact that shocks are heteroskedastic or not and
therefore will coincide with those of Schmitt-Grohé and Uribe (2004). However, even if we compute the impulse response
with respect to risk, i.e. with respect to the shock εv;t , this will be zero at all times: Ið~ctþjjεv;tÞ ¼ 0 and Ið ~ktþjjεv;tÞ ¼ 0 for each
j≥0. Therefore risk will not play a distinct and separate role in affecting the variables of interest even in our first-order
approximation. To get this role, we need to go to a second-order approximation.

Following (25) and (26), the second-order approximation will be of the form:

~ct ¼ gk ~kt þ gaat þ
1
2
guuu

2
t þ

1
2
gkk ~k

2
t þ

1
2
gaaa

2
t þ gkaat ~kt þ 1

2
gsss

2
a

~ktþ1 ¼ hk ~kt þ haat þ
1
2
huuu2

t þ
1
2
hkk ~k

2
t þ

1
2
haaa2t þ hkaat ~kt þ

1
2
hsss2a

where again at follows (39) and u2
t follows (40). To compute the numerical values for the remaining coefficients, we consider

the calibration adopted by Schmitt-Grohé and Uribe (2004) for the structural parameters, and sa ¼ sv ¼ u ¼ 1 and λ¼ 0:5 for
the parameters entering Eq. (40) and governing the dynamics of stochastic volatility. This calibration implies

guu ¼−0:1444; gkk ¼ −0:0051; gaa ¼−0:0569; gka ¼ −0:0171; gss ¼ −0:0478;
huu ¼ 0:3622; hkk ¼−0:0070; haa ¼ −0:0778; hka ¼−0:0233; hss ¼ 0:1199:

It is also clear that second-order-approximation impulse response function with respect to the shock εa;t will not be affected
by the fact that shocks are heteroskedastic or not and therefore will correspond to those of Schmitt-Grohé and Uribe (2004).
Instead, now there is a distinct role for risk to affect the variables of interest. Indeed, the impulse responses with respect to
the shock εv;t will be of the form:

Ið~ctþjjεv;tÞ ¼ gkIð ~ktþjjεv;tÞ þ guuIðu2
tþjjεv;tÞ

Ið ~ktþjþ1jεv;tÞ ¼ hkIð ~ktþjjεv;tÞ þ huuIðu2
tþjjεv;tÞ

for each j≥0 with Ið ~kt jεv;tÞ ¼ 0 where

Iðu2
tþ1þjjεv;tÞ ¼ λIðu2

tþjjεv;tÞ

for each j≥0 and

Iðu2
t jεv;tÞ ¼ s2v :

Obviously, in Schmitt-Grohé and Uribe (2004) there is no role at all for time-varying volatility while in Fernandez-Villaverde
et al. (2011a,b) there will not be a distinct role and therefore impulse responses with respect to εv;t will be zero. To get this
role, they have to go to higher-order approximations.

In Fig. 1 we show the impulse response of consumption and capital to 1% change in risk to productivity shock. The impact
response of consumption and investment depends on the relative strength of two opposite forces. On the one hand, higher
volatility tends to increase the supply of saving for future production and therefore for precautionary reasons.13 On the other
hand, higher volatility increases the expected excess return on capital reducing its appeal as an asset to accumulate. Under
our parametrization, in particular with δ¼ 1, the precautionary-saving effect dominates and on impact consumption
decreases while investment rises.14 In the following periods because of capital accumulation, production and consumption
increase above their steady state levels as long as agents still accumulate capital above steady state.

As we have already discussed, another important advantage of our approach with respect to Schmitt-Grohé and Uribe
(2004) and Fernandez-Villaverde et al. (2011a,b) is that risk-premia evaluated using first-order approximation will be time-
varying. To see this, let rtþ1 be the risk-free real rate, and define rk;tþ1 as the return on capital from period t to period t þ 1:

rk;tþ1 ¼ αeatþ1þðα−1Þktþ1 þ ð1−δÞ:
Using the above, we can show that in a second-order approximation the expected excess return of capital is given by

Etð~rk;tþ1−~rtþ1Þ þ
1
2
vartð~rk;tþ1Þ ¼ γ covtð~rk;tþ1;Δ~ctþ1Þ

where ~rk;tþ1 and ~rtþ1 denote the log deviation from steady state of the real return on capital and the risk-free rate,
respectively. The right-hand side measures the risk premium which is time varying

covtð~rk;tþ1;Δ~ctþ1Þ ¼ ϕ covtðatþ1 þ ðα−1Þ ~ktþ1; gk ~ktþ1 þ gaatþ1Þ
¼ ϕfEt ½gaa2tþ1 þ ððα−1Þga þ gkÞ ~ktþ1atþ1 þ ðα−1Þgk ~k

2
tþ1�

−Et ½atþ1 þ ðα−1Þ ~ktþ1�Et ½gk ~ktþ1 þ gaatþ1�g ¼ ϕgau
2
t

13 This channel is stronger when the depreciation is larger, and is clearly dominant with full depreciation.
14 When γ ¼ δ¼ 1, saving is always a constant fraction of income and therefore risk does not have a distinct role.



Fig. 1. Dynamic response of consumption and capital to a 1% innovation to the variance of productivity shocks. Percentage points.
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depending on the time-variation of the variance u2
t , where ϕ≡1−βð1−δÞ. In Schmitt-Grohé and Uribe (2004) and Fernandez-

Villaverde et al. (2011a,b), this risk premium, computed using a first-order approximation, will be constant.
4.1. Evaluating the accuracy of the approximation.

In this section we evaluate the accuracy of our conditionally linear approximation and compare it with the standard
approach.15 We do this under two perspectives: by using the implied impulse-response functions and Euler Equation Errors.

We first show the implications of the two approaches for the implied impulse-response functions. We showed in Section
2 that, for the simple example explored therein, a second-order approximation based on our method delivers the same
solution as a third-order approximation based on the standard approach, and therefore identical impulse-response
functions. For the case of the neoclassical growth model analyzed in this Section, however, the approximated solutions
are different, between our second-order approximation and the standard third-order one, as the latter would feature
additional cubic terms like ~k

3
t , a

3
t and the related cross products. However, as discussed already in Section 2, in this case

(as in the general case) the key implication of our method is that the impulse-response functions to a volatility shock that
are implied by our second-order approximation are the same as those implied by the standard third-order approximation.
This is shown in Fig. 2, which displays on the left-hand panel the IRF to a 1% volatility shock implied by the standard third-
order approximation, and on the right-hand panel the same IRF implied by our second-order approximation (replicating the
one displayed in Fig. 1). The two IRFs are identical.

A second way to evaluate the accuracy of a given approximation method is to compare the approximated policy functions
with the true ones. For an asset pricing model admitting closed-form solutions, Collard and Juillard (2001) perform the
accuracy check by measuring the average deviation of the approximated decision rules from the true ones directly. When
the true policy functions are not available, as in our application, an indirect way to compare decision rules is proposed by
Judd (1992), and relies upon the use of Euler Equations to measure the intertemporal error that agents would make when
using the approximated decision rules instead of the true ones when forming expectations.16

In particular, given the Euler Equation (38), we can check the accuracy of the approximation by computing the residual
implied by this equilibrium condition, which would be zero if evaluated using the true decision rules, when evaluated using
the approximated policy functions instead. This residual should in principle be lower when the order of approximation is
higher. To have a scale-free measure easily interpretable from an economic point of view, Judd (1992) suggests to normalize
15 To compute third-order approximated solutions to the neoclassical growth model, we use the MATLAB codes used and discussed in Andreasen
(2010)—publicly available at http://sites.google.com/site/mandreasendk/home-1.

16 See, among others, Aruoba et al. (2006) for an extensive use of this approach to compare alternative solution methods for a prototypical
DSGE model.

http://sites.google.com/site/mandreasendk/home-1


Fig. 2. Dynamic response of consumption and capital to a 1% innovation to the variance of productivity shocks. Percentage points. Left Panel: Third-Order
Approximation (TOA), Standard Approach. Right Panel: Second-Order Approximation (SOA), Conditionally-Linear Approach.
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such residual by the level of current consumption, and compute the log10:

EEEðkt ; at ;ut ; sa;svÞ ¼ log10 1−
ðβEtfC−γ

tþ1½αeatþ1Kα−1
tþ1 þ ð1−δÞ�gÞ−1=γ
Ct

" #
: ð47Þ

The above residual is evaluated using alternative approximations of the policy functions (42) and (43) and Eq. (39) in the
place of Ct ;Ctþ1;Ktþ1 and atþ1. The economic interpretation is simple: a EEE¼−6 would mean that if agents form
expectations using the approximated policy functions, instead of the true ones, they would make an intertemporal error of
1 $ for every 106 $ worth of consumption.

Notice that the conditional expectation in Eq. (47) deals with two different kinds of uncertainty: the uncertainty about
the future level of productivity, affecting the future return to capital and parameterized by sa, and the uncertainty about the
future volatility of productivity, affecting the future level of consumption, and parameterized by sv. In order to evaluate the
impact of these two kinds of uncertainty on the accuracy of the approximation, Fig. 3 displays two sets of EEE: the ones on
the top panels are evaluated with respect to both uncertainties, i.e. with the conditional expectation computed with respect
to the joint distribution of εa;tþ1 and εv;tþ1; the residuals in the bottom panels, instead, are evaluated only with respect the
uncertainty about the conditional variance, by setting the level shock at its unconditional mean ðεa;tþ1 ¼ 0Þ and computing
the conditional expectation only with respect to the distribution of εv;tþ1. The values for sa and sv are calibrated at .007 and
.00175, respectively: the former is the familiar standard deviation usually reported for the Solow Residual for the US
economy, and the latter implies substantial fluctuations in volatility while still ensuring positive realizations for the
variances, given the linear process (40).17 The integral involved by the conditional expectationwas evaluated using 20-nodes
Gauss–Hermite quadratures (two-dimensional for the top panels and one-dimensional for the bottom ones).

Each panel reports the Euler Equation residuals for different initial levels of capital Kt. The panels on the left reports EEE
evaluated using a standard perturbation approach, up to third order, while the panels on the right display the EEE evaluated
using our method.

The top-left panel shows the familiar result that higher-order approximations under the standard approach improve
upon lower-order ones, implying smaller approximation errors.18 When the stock of capital is around its steady-state level,
the Euler Equation Error associated with a second-order approximation under the standard approach is about −9.5, while
the one associated with a third-order approximation reaches about −11.
17 See Fernandez-Villaverde and Rubio-Ramirez (2011b) for an analogous calibration.
18 Notice that the specific calibration that we study, and in particular full depreciation ðδ¼ 1Þ, implies that the residual from the log-linear

approximation is independent of the current level of capital, as the Euler Equation (38) is exactly log-linear under certainty equivalence. This further
implies that sufficiently far away from the steady state the log-linear approximation is actually better than the second-order and eventually also the third-
order approximations.



Fig. 3. Euler Equation Errors. FOA: First-Order Approximation. SOA: Second-Order Approximation. TOA: Third-Order Approximation. Top panels: level
shocks only. Bottom panels: volatility shocks only. Left panels: standard perturbation approach. Right panels: Our method. Steady-State capital is about
0.1664.
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The top-right panel shows the main implication of our conditionally linear approach: the Euler Equation residuals
associated with first- and second-order approximations are essentially the same as those obtained under the standard
approach. In particular, our second-order approximation does not perform worse than its counterpart under the standard
approach and even marginally improves upon it around the steady-state level of capital, reaching a lowest value of about
−10.6. The bottom panels, which perform the same computations with respect to the distribution of the volatility shock
only, deliver the same result.19 These results confirm the analytical findings discussed in the simple example of Section 2.

This analysis shows that a second-order approximation under our method, which is at least as accurate as a standard
second-order approximation (as shown by Fig. 3), has the important advantage, over a standard second-order approxima-
tion, of displaying a “distinct and direct” role of stochastic volatility, which can be obtained under the standard approach
only by going to a third-order approximation (as shown in Fig. 2).
5. Conclusion

Recent models used in macroeconomics examine the role of stochastic volatility for the equilibrium allocation. To solve
these models, researchers have appealed to global solutions or high-order approximation techniques. Global-solution
techniques suffer from the ‘curse of dimensionality’, since the number of state variables limits their computational
efficiency. Commonly used approximation techniques require third-order expansion of the equilibrium conditions in order
to display a distinct role for stochastic volatility.

In this paper, we propose a first and second-order approximation method to study the role of time-varying exogenous
risk in discrete-time dynamic stochastic models which encompass standard dynamic general equilibrium models with
rational expectations. In our framework, an important assumption is that the exogenous state variables follow a
conditionally linear stochastic process in which either the variance or the standard deviation of the primitive shocks are
modelled through a stochastic linear process. In this way, we generalize the framework and the method developed by
Schmitt-Grohé and Uribe (2004), Kim et al. (2008) and Gomme and Klein (2011) to the case in which the exogenous state
variables follow an heteroskedastic process.
19 The residuals associated with a first-order approximation are again independent of the level of capital and constant at a level of about −12.5, for both
the standard and our methods. They are not shown in the figure for the sake of readability.



Table 1
Matrices used in the derivations.

Symbol Description Dimension

n Number of all variables: n¼ ny þ nx 1
ny Number of non-predetermined variables 1
nx Number of predetermined variables 1
nz Number of exogenous state variables 1

Df Jacobian matrix of function f n� 2 � n
Df ŷ Jacobian matrix of function f with respect to ytþ1 n� ny

Df x̂ Jacobian matrix of function f with respect to xtþ1 n� nx

Df y Jacobian matrix of function f with respect to yt n� ny

Df x Jacobian matrix of function f with respect to xt n� nx

Hf Magnus-Neudecker Hessian matrix of function f 2 � n2 � 2 � n
Hf ŷ MN Hessian matrix with respect to ytþ1 n � ny � 2 � n
Hf x̂ MN Hessian matrix with respect to xtþ1 n � nx � 2 � n
Hf y MN Hessian matrix with respect to yt n � ny � 2 � n
Hf x MN Hessian matrix with respect to xt n � nx � 2 � n
gx First-order coefficient matrix, xt on yt ny � nx

gxx Second-order coefficient matrix, xt on yt ny � nx � nx

guu Second-order coefficient matrix, u2
t on yt (specif. I) ny � nz

guu Second-order coefficient matrix, ut on yt (specif. II) ny � nz � nz

gzz Second-order coefficient matrix, sz on yt ny � 1
gvv Second-order coefficient matrix, sv on yt (specif. II) ny � 1
gzu Second-order coefficient matrix, szut on yt (specif. II) ny � nz

hx First-order coefficient matrix, xt on xtþ1 nx � nx

hxx Second-order coefficient matrix, xt on xtþ1 nx � nx � nx

huu Second-order coefficient matrix, u2
t on xtþ1 (specif. I) nx � nz

huu Second-order coefficient matrix, ut on xtþ1 (specif. II) nx � nz � nz

hzz Second-order coefficient matrix, sz on xtþ1 nx � 1

hvv Second-order coefficient matrix, sv on xtþ1 (specif. II) nx � 1

hzu Second-order coefficient matrix, szut on xtþ1 (specif. II) nx � nz

Note: Specification I: linear process for u2
t . Specification II: linear process for ut.
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The main contribution of our paper is to show that first and second-order approximations of the solution are
sufficient to capture most of the relevant elements needed to study the impact of exogenous uncertainty in standard
macroeconomic models. There a7re three main advantages of following our method. First, a first-order approximation
falls in the broader class of conditionally linear approximations displaying a role for time-varying volatility, although
not a distinct one. Second, given that a first-order approximation retains a role for stochastic volatility, the second-
order approximation of the solution implies that the time-varying volatility of primitive shocks can directly affect the
endogenous variables. Third, it follows from the previous results that risk-premia evaluated using first-order
approximations will be time-varying. All these advantages translate into a more parsimonious model that is more
easily tractable for estimation purposes.

In addition to characterizing the second-order approximation of the solution when shocks are conditionally linear, the
paper offers a set of MATLAB codes designed to compute the coefficients of the first and second-order approximations and
provides a simple example to illustrate the applicability of the method.20 In fact, our method can be applied easily to several
macroeconomic models ranging from real business cycle models, to monetary models and also to asset-pricing or finance
models. In Benigno et al. (2012), we employ this method to analyze how risk and monetary policy interact to determine
prices, exchange rates and asset prices in an open-economy model.
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Appendix

In this Appendix we present our second-order approximation method under the assumption that time-varying volatility
is modelled with the process (17). It is straightforward to show that a first-order approximation of this model is identical to
that of Section 3.2 in the main text except that now (17) replaces (16).

Instead of Eqs. (25) and (26), a second order approximation will be of the form:

~yt ¼ gx ~xt þ
1
2
ðIy⊗ ~x′tÞgxx ~xt þ

1
2
ðIy⊗u′tÞguuut þ

1
2
gvvs

2
v þ

1
2
gzzs

2
z þ gzuszut ð48Þ

~xtþ1 ¼ hx ~xt þ 1
2
ðIx⊗ ~x′tÞhxx ~xt þ 1

2
ðIx⊗u′tÞhuuut þ 1

2
hvvs2v þ

1
2
hzzs2z þ hzuszut þ hξξtþ1 ð49Þ

where Iy and Ix are identity matrices of order ny � ny and nx � nx, respectively, and gxx, guu, gzz, gvv, gzu, hxx, huu, hzz, hvv, hzu

are conformable matrices, corresponding to the Magnus-Neudecker Hessian matrices of functions g and h with respect to
the arguments in the indexes.

To evaluate this guess, we take a second-order approximation of (13), to get

0¼ EtfDf
i
ŷ � ~ytþ1 þ Df

i
x̂ � ~xtþ1 þ Df

i
y � ~yt þ Df

i
x � ~xt þ

1
2
~y′tþ1 � Df

i
ŷŷ � ~ytþ1

þ ~x′tþ1 � Df
i
ŷx̂ � ~ytþ1 þ ~y′t � Df

i
ŷy � ~ytþ1 þ ~x′t � Df

i
ŷx � ~ytþ1

þ1
2
~x′tþ1 � Df

i
x̂x̂ � ~xtþ1 þ ~y′t � Df

i
x̂y � ~xtþ1 þ ~x′t � Df

i
x̂x � ~xtþ1

þ1
2
~y′t � Df

i
yy � ~yt þ ~x′t � Df

i
yx � ~yt þ

1
2
~x′t � Df

i
xx � ~xtg; ð50Þ

for each i¼ 1;…;n and where fi denotes the i-component of the vector f.
We use Eqs. (20) and (21) into (28) to evaluate the second-order terms and (48) and (49) to evaluate the first-order

terms, taking into account the restrictions (23).
Making use of Etξtþ1 ¼ 0, we obtain:

0¼ 1
2
EtfDf ŷ ½ðgx⊗ ~x′tÞhxx ~xt þ ðgx⊗u′tÞhuuut þ gxhzzs2z þ gxhvvs2v þ 2gxhzuszut

þðIy⊗u′tþ1Þguuutþ1 þ ½Iy⊗ðhx ~xt þ hξξtþ1Þ′�gxxðhx ~xt þ hξξtþ1Þ þ gzzs
2
z

þgvvs
2
v þ 2gzuszutþ1� þ Df x̂ ½ðIx⊗ ~x′tÞhxxxt þ ðIx⊗u′tÞhuuut þ hzzs2z

þhvvs2v þ 2hzuszut � þ Df y½ðIy⊗ ~x′tÞgxxxt þ ðIy⊗u′tÞguuut þ gzzs
2
z

þgvvs
2
v þ 2gzuszut � þ ½In⊗ðgxhx ~xt þ gxhξξtþ1Þ′�Hf ŷ � ~wtþ1

þ½In⊗ðhx ~xt þ hξξtþ1Þ′�Hf x̂ � ~wtþ1 þ ðIn⊗ ~x′tg ′xÞHf y � ~wtþ1

þðIn⊗ ~x′tÞHf x � ~wtþ1g: ð51Þ
Note, first, that the matrices hxx and gxx solve the same set of equations as in (33).
We can then collect the remaining terms and obtain:

0¼ 1
2
EtfDf ŷ ½ðgx⊗u′tÞhuuut þ gxhzzs2z þ gxhvvs2v þ 2gxhzuszut þ ðIy⊗u′tþ1Þguuutþ1

þðIy⊗ξ′tþ1h′ξÞgxxhξξtþ1 þ gzzs
2
z þ gvvs

2
v þ 2gzuszutþ1�

þDf x̂ ½ðIx⊗u′tÞhuuut þ hzzs2z þ hvvs2v þ 2hzuszut �
þDf y½ðIy⊗u′tÞguuut þ gzzs

2
z þ gvvs

2
v þ 2gzuszut �

þðIn⊗ξ′tþ1h′ξg ′xÞHf ŷ �Mξξtþ1 þ ðIn⊗ξ′tþ1h′ξÞHf x̂ �Mξξtþ1g: ð52Þ

Recall that for generic and conformable matrices A and B:

EtfðI⊗ξ′tþ1A′ÞBAξtþ1g ¼ Etftrm½ðI⊗ξ′tþ1A′ÞBAξtþ1�g
¼ trm½ðI⊗A′ÞBAEtfξtþ1ξ′tþ1g� ¼ trm½ðI⊗A′ÞBAUtU′t �;

where “trm” is the matrix trace operator defined earlier, and in the last equality we used Etðξtþ1ξ′tþ1Þ ¼UtU′t , as implied by
Eq. (15).

Given a generic square matrix A, of order m, we define diagm(A) as the diagonal matrix whose main diagonal is that of
matrix A. Given a generic n �m�m matrix B consisting of n square matrices Bi stacked vertically, with i¼ 1;…;n, we define
dgmðBÞ as the n �m�m matrix that stacks vertically the m�m diagonal matrices diagmðBiÞ:

dgmðBÞ ¼ ½diagmðB1Þ diagmðB2Þ … diagmðBnÞ�′:
Moreover, since Ut is a diagonal matrix whose vector on the main diagonal is ut, the following also holds

trm½ðI⊗A′ÞBAUtU′t � ¼ trmfdgm½ðI⊗A′ÞBA� � utu′tg;
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from which we can conclude:
EtfðI⊗ξ′tþ1A′ÞBAξtþ1g ¼ trmfdgm½ðI⊗A′ÞBA� � utu′tg: ð53Þ

Recall the definition of the process for the standard deviations:
utþ1 ¼ szðIz−ΛuÞu þ Λuut þ svVεv;tþ1:

We can use the above definition to write the quadratic term in utþ1 in Eq. (52) as:

EtfðDf ŷ⊗u′tþ1Þguuutþ1g ¼ Etfs2z ½Df ŷ⊗u′ðIz−ΛuÞ′�guuðIz−ΛuÞu
þðDf ŷ⊗u′tΛ′uÞguuΛuut þ s2v ðDf ŷ⊗ε′v;tþ1V ′ÞguuVεv;tþ1

þ2sz½Df ŷ⊗u′ðIz−ΛuÞ′�guuΛuutg: ð54Þ

Using the above to collect all second-order terms in ut from Eq. (52), considering Eq. (53) and exploiting the operators
“trm” and “dgm”, we obtain the following system of n � nz � nz equations:

0¼ ðDf ŷ � gx⊗IzÞhuu þ ðDf ŷ⊗Λ′uÞguuΛu

þðDf x̂⊗IzÞhuu þ ðDf y⊗IzÞguu þ dgm½ðDf ŷ⊗h′ξÞgxxhξ

þðIn⊗h′ξg ′xÞHf ŷ �Mξ þ ðIn⊗h′ξÞHf x̂ �Mξ�; ð55Þ

which can be solved for matrices guu and huu, given hx, gx, hxx, gxx, Df and Hf . Notice that huu and guu will therefore consist
of nx and ny, respectively, vertically stacked matrices of dimensions nz � nz which will be diagonal matrices.

We can further collect terms in szut from Eq. (52), considering Eq. (54) and using the trm operator, to obtain a set of
n� nz equations:

0¼ ðDf ŷ � gx þ Df x̂ Þhzu þ Df ŷ � gzuΛu þ Df y � gzu

þ½Df ŷ⊗u′ðIz−ΛuÞ′�guuΛu; ð56Þ

which can be solved for the unknown matrices gzu and hzu, given gx, guu, and Df .
Similarly, we can collect the terms in s2z obtaining a set of n� 1 equations

0¼ ðDf ŷ � gx þ Df x̂ Þhzz þ ðDf ŷ þ Df yÞgzz

þ2Df ŷ � gzuðIz−ΛuÞu þ ½Df ŷ⊗u′ðIz−ΛuÞ′�guuðIz−ΛuÞu; ð57Þ

which can be solved for gzz and hzz, given gx, gzu, guu, and Df .
Finally, we can collect the terms in s2v obtaining a set of n� 1 equations:

0¼ ðDf ŷ � gx þ Df x̂ Þhvv þ ðDf ŷ þ Df yÞgvv þ trm½ðDf ŷ⊗V ′ÞguuV �; ð58Þ

which deliver gvv and hvv, given gx, guu, and Df .
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