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Abstract

A Government wishes to smooth financial expenses and can issue fixed-coupon bonds
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faces income, interest-rate, and liquidity risk. It acknowledges its own temptation to de-
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1 Introduction

The treasury of any government or big corporation faces a large-stakes problem: to design
a strategy for its debt-maturity profile. Economics guides that design through a number of
theories. Although each theory brings a different insight, all of them develop the same cal-
isthenics: all theories assume an economic environment and solve its corresponding optimal
debt-maturity profile. The hope is that the exercise translates into a policy principle. This pa-
per is a new take on that classic exercise.

The paper makes two innovations. The first innovation is conceptual. The paper puts forth
the importance of liquidity frictions: the notion that an abrupt adjustment of the debt of a given
maturity, can saturate the market for that maturity. The consequent price impact is a common
consideration by practitioners, but has been neglected by normative theory.1 The second inno-
vation is technical. The debt-management problem has been studied under a rich set of shocks,
but in contexts where issuances are restricted. The restrictions on the issuances are typically
two: first, on the number of maturities allowed—typically two—and, second, on the types of
bonds considered—typically consols of exponential maturity. By contrast, in practice, Govern-
ments issue in many maturities and consols are rarity. This study takes a different route. Here,
shocks occur only once, but the Government can issue bonds among a continuum of maturities
and of with any arbitrary cash-flow. The model is highly tractable and easy to compute. The
paper exploits this characterization to draw new policy principles.

Let us delve into the details. The environment is the following: an impatient Government
in a small-open economy chooses the issuance or (re)purchase of bonds among a continuum
of maturities. The financial counterparts are international investors. The Government’s objec-
tive is to smooth expenditures given a revenue path—or, its dual, to smooth financial expenses
given an expenditure path. Several features complicate this Government’s choice. First, a liq-
uidity friction produces price impact. Second, the Government faces three sources of risk: (i)
income-risk as revenues are risky, (ii) interest-rate risk as interest rates can change unexpectedly,
and (iii) liquidity risk as prices can suddenly become more elastic. A final complication is a
temptation to default.

A general principle emerges from the analysis. Whether there is risk or default in the model,
simply changes the details. The principle is that the problem can be studied as if the Govern-
ment delegates the issuance problem to a continuum of subordinate traders. In this fictitious

1There is however, a broad literature on asset pricing that considers liquidity frictions. Recent micro-
foundations of the price impact of issuance of different maturity is found Vayanos and Vila (2009). This model
is rooted in an earlier tradition that dates back at least to Culbertson (1957) and Modigliani and Sutch (1966); for a
classic application to debt management see Modigliani and Sutch (1967). Greenwood and Vayanos (2014) test the
implications of a version of the preferred habitat theory of the interest rates, finding that the supply of bonds is
a predictor of the interest rates the government pays. Ours is the first to bring those idease into an optimization
problem and explain how that shapes the optimal distribution of debt. He and Milbradt (2014) considers xxx,
Kozlowski et al. (2017), xxxx.
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delegation, each trader manages the issuance of bonds of a single maturity. To do so, each
trader computes an internal valuation of the bond that he manages. To compute that valuation,
traders use a common discount determined by the Government. The trader then compares his
valuation to the market price of that bond, which typically differ. The optimal issuance follows
a simple rule:

∆% issuance/GDP = liquidity coefficient · ∆% value gap.

The rule states that, in a given period, the optimal issuances of a bond of a given maturity (rela-
tive to GDP) should equal the product of a value gap and a liquidity coefficient. The value gap
is the difference between the market price and the internal valuation of a bond, as a percentage
of market price. When there is a positive value gap, a trader would otherwise want to issue as
much debt as possible, because the market price is higher than the perceived cost. There is a
force that contains that desire: the liquidity impact. This force appears as a coefficient in the
simple rule. This coefficient be estimated from measures of bond market turn-over rates and in-
termediation spreads. The higher the liquidity coefficient, the greater the issuances. As we add
risk, or default, the principle remains the same, and the effects only appear in the valuations.

For this delegation approach to deliver the Government’s optimal debt issuance, the Govern-
ment must assign the correct discount factor. This discount factor solves a fixed-point problem
in the path of expenditures: An inputed expenditure path maps into a Government discount
factor. This discount factor, delivers a path for debt through the issuance rule. Ultimately,
the path for debt produces a new expenditure path. In the optimal solution, both expenditure
paths must coincide. This fixed point problem can be solved through an efficient algorithm and
allows the study of rich transitional dynamics.

The paper analyzes the Government’s problem under perfect foresight first. Then, it presents
the case with risk, and finally the case with default. The Government’s problem under perfect
foresight already reveals important policy lessons. Without risk, the simple principle highlighs
a trade off between consumption smoothing and liquidity smoothing. At steady state, this
trade-off produces an optimal policy that tilts the issuance profile towards longer maturities.
This is because the value-gap is higher for bonds of higher maturity. Although the Government
prefers higher maturity bonds, it issues bonds of all maturities because all maturities have posi-
tive value gaps. In practice we indeed observe issuances at all maturities, and this is something
that practitioners refer to as "completing the curve.” In reaction to unexpected shocks, expendi-
ture smoothing is limited liquidity smoothing. For example, in response to a low-interest rate
episode the Government should issue more debt at all maturities, but tilts the profile towards
longer maturities. This prescription is attenuated by a low liquidity coefficient. Another lesson
is that with fixed-coupon debt and low liquidity coefficients, unexpected income shocks lead to
issuance cycles. The period of those approximately equal to the longest maturity available. An
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application of this perfect-foresight model is to compare, quantitatively, if models with consols
and fixed-coupon bonds produce different debt levels. This exercise is important because this
is the first time we test if the ubiquitous use of consols in models produces a bias in quantitative
results.

When we turn to the second layer of complexity, risk, we learn that the only change in our
issuance principle appears as a tile in the trader’s valuations. With risk, each valuation features
an additional penalty captured by a ratio of post- to pre-shock marginal utilities. Shocks that
induce a drop in consumption are a force that shrinks all issuances. The ratio of marginal
utilities, then governs the effect on the maturity profile. We exploit the model with risk to
study to compare a hedging with a limited number of issuances versus a model high liquidity
costs.

The final layer of complexity, default, alters valuations and prices because it produces an
endogenous risk-premium. The effect of the risk premium is to close the valuation gap. This
close-up mechanically lowers issuances at all maturities. However, the force tilts the maturity
distribution towards shorter maturities, to the point that an impatient Government can end up
accumulating short-term assets. This result is reminiscent of the finding in Aguiar et al. (2016),
but here the force is not the debt dilution. Instead, the force that appears here is simply that
default makes internal valuations and market prices more similar to each other. We connect
with the literature in the next section, before proceeding to the analysis.

Literature Review

Debt management problems are classic problems. They appear in different subfields of
economics; in public finance, international finance, household finance and corporate finance.
Naturally, our paper relates to studies in each of these areas.

In public finance, debt management is linked to optimal taxation. A first result in Barro
(1979) established that with lump-sum transfers, the timing of taxes and debt is irrelvant given
an expenditure path. Lucas and Stokey (1983) studied a version of that problem with distor-
tionary taxes and found that a govenment would wan’t to structure its debt to smooth dis-
tortionary taxes. The desire to smooth distortionary taxes motivates the study introuduce an
expenditure-smoothing motive as appears in our study. That classic literature was silent about
the optimal-maturity choice of debt, because it assumed that the Government had access to a
complete set of Arrow securities. The connection between those problems and maturity man-
agement was made by Angeletos (2002) and Buera and Nicolini (2004). Both papers obtained
conditions under which a complete markets allocation could be implemented with a discrete
number of bonds of different maturity. Buera and Nicolini (2004) showed that the optimal ma-
turity management under complete markets would create unrealistic debt flows. Our paper
connects with that literature because the presence of liquidity costs limit the desire to use ma-
turity as insurance mechanisms. We also explain how in a small-open economy, those market-
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completion conditions only hold for interest-rate shocks and derive a similar condition for the
continuum of bonds. One direction in which the debt-management problem has been extended
is to cases where the Government lacks commitment. That case was studied by Aiyagari et al.
(2002).

Debt management issues are an recurrent theme in international finance. The focus of that
literature has been to analyze how debt manangement is influenced by the possibility of default.
Two seminal contributions are Eaton and Gersovitz (1981); Cole and Kehoe (2000) which stud-
ied dynamic models endogenous sovereing default episodes and self-fullfilling crises.2 Both
papers were silent about maturity. In a three-period environment Bulow and Rogoff (1988)
allerted that countries would prefer to issue short-term debt because long-term debt can be
dilluted once it is issued. In quantitative models, maturity management were introduced re-
cently by Hatchondo and Martinez (2009); Chatterjee and Eyigungor (2012); Arellano and Ra-
manarayanan (2012) and Arellano and Ramanarayanan (2012). Hatchondo et al. (2016), for ex-
ample, studies debt dilution in a model of long-term debt and finds that a substantial amount of
spreads is due to debt dilution. Bianchi et al. (2012) study a model where the Government can
issue long-term liabilities and hold short-term assets. More recently Aguiar et al. (2016) found
a stronger version of the Bulow and Rogoff insight: when there is only default risk, they found
that once long-term debt is issued it should only be let to expire, and the Government should
only adjust the short-term debt. Bocola and Dovis (2016), build on Cole and Kehoe (2000), and
studies the response of the maturity structure with respect to fundamental and self-fulfilling
debt crises. They use that model to gauge whether countries perceive the possibility of self-
fulfilling crises. For a recent review of the sovereign debt literature see Aguiar and Amador
(2013). Broner et al. (2013) study a group of emerging economies and find that the average
maturity decreases during recessions.

We also connect with maturity management in corporate finance studies. The seminal con-
tribution in this area is Leland and Toft (1996). Chen et al. (2012) studies optimal debt maturity
in the presence of debt dilution and liquidity costs. Our introduction of liquidity costs is similar
to theirs. A number of other studies have modeled a price impact of issuances. The preferred
habitat theory of the interest rates dates back at least to Culbertson (1957) and Modigliani and
Sutch (1966); for a classic application to debt management see Modigliani and Sutch (1967). A
recent micro-foundation of price impact for each maturity is in Vayanos and Vila (2009). Green-
wood and Vayanos (2014) test the implications of a version of the preferred habitat theory of
the interest rates, finding that the supply of bonds is a predictor of the interest rates the govern-
ment pays. Krishnamurthy and Vissing-Jorgensen (2012) document that changes in the supply
of Treasury securities have an impact over a variety of spreads.

On the technical front, there are a number of recent papers that study infinite-dimensional
2 Quantitative implementations of those models appear in Aguiar and Gopinath (2006) and Arellano (2008).
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control problems. For a general treatment of mean-field games see Bensoussan et al. (2016). Lu-
cas Jr and Moll (2014) study a problem with heterogeneous agents that allocate time between
production and technology generation. Nuño and Moll (2015) study optimal policy under in-
complete markets and a continuum of agents. Nuño and Thomas (2016) study optimal mone-
tary policy with and without commitment in a model with incomplete markets. Our paper also
develops similaar tools to study an infinite-dimensional control problem with another form of
limited commitment: the possibility of default.3

2 The General Model

We begin with the exhibition of the most general environment first, to give the reader an idea
of the challenge that lies ahead. When we move to the characterization, we firs analyze the
problem under perfect foresight, then add risk and then add default.

Environment. We consider a continuous-time open economy. There is a single, freely-
traded consumption good. The economy features a benevolent Government that trades a con-
tinuum of bonds of different maturity. Bonds are issued to foreign investors. The Government
can default and is excluded from markets thereafter.

Exogenous Processes. There are four exogenous processes that induce a different sources
of risk. The exogenous state, X(t), is the vector of the four exogenous processes: y(t) ×
ya(t)×r̄(t)×λ̄(t). Each element x(t) ∈ X(t) is a mean-reverting process with Poisson jumps,
and thus is right-continuous.4 In particular, each x (t) follows a mean-reverting process along
its continuous path:

ẋ(t) = −αx(x(t)− xss)

where αx captures the speed of reversion to the mean and xss a the steady-state value. Each
process is affected by a common Poisson event with arrival rate φ. If the Poisson event occurs,
at time t, x (t−) is immediately reset to some new x (t+) ∼ Fx(·|X(t−)) andFX, is the joint
distribution of the vector X (t). We explain each process:

a. y(t) the Government revenues and captures income risk.

b. r̄(t) is international short-term rate and captures interest-rate risk.

c. λ̄(t) is a liquidity cost coefficient and captures liquidity risk.

3In addition, note that the concept of finite-dimensional Markov Perfect Stackelberg Equilibria has been studied
both in continuous and discrete time. See for example Başar and Olsder (1998). An example in Economics of
Markov Stackelberg equilibrium is Klein et al. (2008).

4The stochastic process is defined on a filtered probability space
(
Ω,F , {Ft}t≥0 , P

)
.
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d. yD the Government revenues if the Government has defaulted in the past.5

Government. Preferences over expenditure paths c (t) are given by

V0 =
∫ ∞

0
e−ρtU (c (t)) dt,

where ρ ∈ (0, 1) is the discount factor and U (·) is an increasing and concave utility.6

The Government trades the continuum of bonds with foreign investors. Bonds differ in
their time-to-maturity τ ∈ (0, T]. Here, T is the maximum maturity available—T is exogenous.
Each bond pays a coupon δ per instant of time, prior to maturity, an 1 good when the principal
matures—τ = 0. The outstanding stock of bonds owed by the Government at time t with a
time-to-maturity τ is f (τ, t). We call f (τ, t) the debt profile. The law of motion f (τ, t) is given
by the following Kolmogorov-Forward equation

∂ f
∂t

= ι (τ, t) +
∂ f
∂τ

. (2.1)

The intuition behind the equation is that, for a maturity τ and time t, the change in the mass of
bonds of that maturity, ∂ f /∂t, equals the issuance at that maturity, ι (τ, t), plus the netflow of
pre-existing bonds ∂ f /∂τ —there’s mass outflow towards less maturities and an inflow from
the mass at higher maturities.7

Issuances, ι (τ, t), are chosen from a space of functions I : [0, T]× (0, ∞) → R that meets
some technical conditions.8 By construction, f (T+, t) = f (0−, t) = 0. Finally, f0 (τ) is the initial
stock of of debt of maturity τ so f (τ, 0) = f0 (τ). The Government’s budget constraint is:

c (t) = y (t)− f (0, t) +
∫ T

0
[q (τ, t, ι) ι (τ, t)− δ f (τ, t)] dτ. (2.2)

Here f (0, t) is the principal repayment, δ
∫ T

0 f dτ are coupon payments and
∫ T

0 qιdτ the funds
received from debt issuances at all maturities. Finally, q (τ, t, ι) is the issuance price of bond
vintage of maturity τ at date t.

5This process captures the incentives to default as in Arellano (2008) or in Aguiar et al. (2016).
6This inpretation follows a public finance view. The curvature in expenditures follows from welfare losses from

distortionary taxes. In international finance, the interpretation is that the Government controls national savings
and consumption U (c (t)) is the household’s utility.

7A derivation from it’s discrete time analogue is presented in Appendix xxx. The solution to this equation is:

f (τ, t) =
∫ min{T,τ+t}

τ
ι(t + τ − s, s)ds + I[T > t + τ] · f (τ + t, 0),

and can be shown via the method of characteristics.
8In particular I =L2 ([0, T]× (0, ∞)) is the space of functions on [0, T]× (0, ∞) with a square that is Lebesgue-

integrable.
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The Government can decide to default. If the Government defaults, it gets a present utility:

VD = Et

[∫ ∞

t
e−ρ(s−t)U

(
yD (t)

)
ds
]

. (2.3)

Obviously, VD is a stochastic process fully determined yD. Default is an absorbing state. Prior
to a default, the generic Goverment problem (GP) at t is:

Problem 1 The GP is:

V([ f (·, t)] , Xt) = max
{ι(·)}∈I

Et

[∫ t+τD

t
e−ρ(s−t)U (c (s)) ds + e−ρτD

VD(Xt)

]
(2.4)

subject to the law of motion of debt (2.1) and the budget constraint (2.2).

Here V(Xt, [ f (·, t)]) is the optimal value functional, which maps a debt profile f (·, t) at time
t into a real numbers. The term τD is the default time.9 The default time is the first time when the
value of default is higher than the value prior to default τD ≡ min

{
τ, VD(Xt) > V(Xt, [ f (·, t)])

}
.

International Investors. The Government sells bonds to competitive risk-neutral interna-
tional investors at the issuance price q (τ, t, ι). This issuance price has two separate components,
a market price and a liquidity cost:

q (τ, t, ι) = ψ(τ, t) + λ (τ, t, ι) .

The first component, ψ(τ, t), is the market price of the domestic bond. This market price ψ(τ, t)
is has the form:

ψ(τ, t) = Et

I[τ<τD]e
−
∫ t+τ

t r̄(u)du︸ ︷︷ ︸
Principal

+
∫ t+min{τD,τ}

t
e−
∫ s

t r̄(u)duδds︸ ︷︷ ︸
Coupon Payments

 . (2.5)

This equation discounts coupons at an interantional rate interest-rate r(t) and accounts for a
possible default. To explain the discounting, consider the simpler case when τD is large. The
equation becomes:

ψ(τ, t) = Et

[
e−
∫ t+τ

t r̄(u)du + δ
∫ t+τ

t
e−
∫ s+τ

t r̄(u)duds
]

. (2.6)

Under this equation, the coupons and principal with the stochastic short-term rate r̄(t). Bonds
thus satisfy a non-arbitrage condition.

The second component in the issuance price, λ (τ, t, ι), represents a liquidity cost associated

9 The latter is a stopping time with respect to the filtration {Ft}.
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with issuing—or purchasing— ι bonds of maturity τ at date t. The liquidity cost λ is convex in
ι and the idea is that it captures multiple forces. The next section, presents a microfoundation
for this cost.10

Definition 1 (Equilibrium) We study a Markov Equilibrium with state variable f (τ, t); it is defined
as follows. A Markov equilibrium is a value functional V [ f (·, t)] , a issuance policy ι (τ, t, f ) , bond
prices q (τ, t, ι, f ) , a stock of debt f (τ, t) and a consumption path c (t) such that: 1) Given c (t) ,
q (τ, t, ι f ) and f (τ, t) the value functional satisfies government problem (2.4) and the optimal control
is ; 2) Given ι (τ, t, f ) the debt stock f (τ, t) evolves according to the KPE equation (2.1); 3) Given
ι (τ, t, f ) , q (τ, t, ι, f ), f (τ, t) and c (t) the budget constraint (2.2) of the government is satisfied.

For the rest of the paper, we adopt a particular notation.
Notation. When we refer to deterministic steady-state, we suppress the time subscripts and

denote the steady state values with the sub-index ss. We denote asymptotic values as t → ∞
with the sub-index ∞. For example, when the exogenous variables, income, liquidity costs and
rates are at steady state we denote them by: y(t) = yss, χ (τ, t) = χss (τ)and r̄ (t) = r̄ss.

So far, we left a liquidity cost function as general as we can. Next, we present a micro-
foundation before we proceed to the analysis.

2.1 A Model of Liquidity Costs

In this section we present a microfoundation for the liquidity cost function. The building block
is a wholesale-retail model of the bond market. We assume that at each date t, the Government
auctions ι (τ, t) bonds of the maturity τ. The size of this auction, corresponds to the control
variable in the problem of the previous section GP.11 We assume that the participants in that
auction are a continuum of investment bankers (henceforth, bankers). Bankers buy large stocks
of bonds in the auction (the wholesale market), and then offload their inventories of bonds to
international investors (investors) in a secondary (retail) market. The international investors
have a discount factor equal to r̄(t), which we introduced earlier. Liquidating the bond in-
ventories takes time, as we explain next.12 International investors are risk-neutral and have a
discount factor equal to r̄(t), the international short-term rate. Thus each investor is willing
to pay ψ(τ, t) for each bond. Bankers, on the other hand, have a higher cost of capital which
equals r̄(t) + η.13 In the retail market, bankers are continuously contacted by international in-

10Note that the fact that the bond obtains q(τ, t, ι) < ψ(τ, t) does not mean that there is an arbitrage.
11One alternative way to provide a micro-foundation is found is the preferred habitat model of Vayanos and

Vila (2009).
12Implicity, we assume free entry into the auction, but than only investment bankers can participate. There is

a continuum of bankers but the vintage is assigned to small number. This is effectively as assuming that bankers
participate in only one auction.

13One interpretation is that bankers fund the purchase promising a bond of identical payoff structure with short-
term rate r̄(t) + η. Another is that bankers have holding costs.
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vestors. In particular, there is a constant flow of contacts µyss per unit of time.14 Each contact
results in an attempt to purchase bonds. We assume that each investor buys an infinitesimal
amount of bonds from the investment bank. This implies that in an interval ∆t the total amount
of debt sold is µyss∆t. Upon a contact, we assume that bankers extract all the surplus from the
international investors.15

The key friction in this microfoundation is that it takes time for investment banks to liqui-
date their bond portfolios. The larger the auction size, the longer teh average time to sell each
bond. Because investment banks have higher discount factors, a bigger issuance depresses the
price towards a price that discounts the bond using r̄(t) + η, instead of r̄(t). As the size of the
auction vanishes, the opposite occurs: the price converges to ψ(τ, t), the price obtained using
r̄(t) as a discount.

We present the solution to the auction price in more detail in Appendix A. Although there
we present an exact solution to this price, the following first-order approximation yields a con-
venient functional form for the liquidity-cost function.

Proposition 1 (Approximation to the Liquidity Cost Function)

A first-order Taylor expansion around ι = 0 yields a linear auction price:

q(ι, τ, t) ' ψ(τ, t)− 1
2

η

µyss
ψ(τ, t)ι.

Thus, the approximate liquidity cost function is λ̄ = η/µyss and χ (τ, t) = ψ(τ, t).

The calculations are also found in Appendix A. The main takeaway is that for small is-
suances relative to the order flow, the liquidity cost function is approximately proportional to
the spread and inversely related to the order flows. The formula is remarkably parsimonious.
Both spreads and order flows are objects we use in a further calibration.

Discussion. An important assumption is that there are no congestion externalities. This
means that the contact rate is independent of the outstanding amount of bonds of a given ma-
turity. For example, a banker that participated in the 10 year auction 5 years ago, is effectively
selling a 5 year bond. Our assumption is that the banker’s contact rate is independent of how
many 5 year bonds are being issued now, or are outstanding. If the Government is part of a
much larger international bonds market, or if the Government issues

14That is, we assume that the flow of customers is proportional to the size of the country.
15 As a side note, the if ι < 0, the government issues assets. The model be entirely reversed as saying that the

banker sells the bond to the country, and then the banker closes the position lending at higher rates.
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3 Perfect Foresight

We begin with the study of the problem of the Government that faces a deterministic path for
r̄(t) and output y(t), and is given an initial condition f0 (τ). For now, the Government has no
option to default—yD

t = 0. This perfect-foresight environment is instructive to understand the
richer versions with risk and default, but it is also interesting in its own right.

In this perfect-foresight case, we can characterize the steady-state debt distribution by an-
alytic expressions. We also characterize transitional dynamics as a fix point problem in the
expenditure path. We present application in the end of the section.

3.1 Perfect Foresight Problem and its Necessary Conditions

In the deterministic problem, the price of a bond by the international investor is given by:

ψ(τ, t) = e−
∫ t+τ

t r̄(u)du + δ
∫ t+τ

t
e−
∫ s

t r̄(u)duds. (3.1)

This price, has a PDE representation:

r̄ (t)ψ(τ, t) = δ +
∂v
∂t
− ∂v

∂τ

with boundary conditions ψ(0, t) = 1.16

The Government, solves a perfect-foresight problem (PF):

Problem 2 (Perfect Foresight) The PF problem is:

V [ f ] = max
{ι(·)}∈I

E0

[∫ ∞

0
e−ρ(s−t)U (c (s)) ds

]
(3.2)

subject to the law of motion of debt (2.1), the budget constraint (2.2), an initial condition f 0, and debt
prices (3.1).

Although the PF problem is a special case of the problem with risk of the next section,
we solve the two problems through different techniques. We solve the PF problem adapting
optimal-control techniques. For that, we set an infinite-dimensional Lagrangian. The problem
with risk is solved through dynamic programming, which involves exploiting some results
from functional analysis. These two proofs, allow us to make a transparent connection between
the infinite-dimensional Lagrange multipliers and the derivative of the value functional in the
dynamic program. The problem with default uses a mix of both techniques.

16The solution can be recovered easily via the method of characteristics or as an immediate application of the
Feynman-Kac formula. The PDE for the bond, has the form of a Hamilton-Jacobi-Bellman equation without a
choice variable.
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The problem’s Lagrangian is:

L [ι, f ] =
∫ ∞

0
e−ρtU

(
y (t)− f (0, t) +

∫ T

0
[q (t, τ, ι) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+
∫ ∞

0

∫ T

0
e−ρt j (τ, t)

(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,

where we substituted out consumption in the objective of PF using the budget constraint.17

Since the Lagrange multipliers multiply objects equal to zero, maximizing the Lagrangian amounts
to maximizing the objective, just as in standard control. The necessary conditions can be ob-
tained by a classic variational argument: the condition that at the optimum, the optimal is-
suance and debt paths cannot be improved. Taking an infinitesimal variation over the control ι

cannot produce an increase in the Lagrangian, no improvement holds if and only if:

U′ (c)
(

q (t, τ, ι) +
∂q
∂ι

ι (τ, t)
)

︸ ︷︷ ︸
Marginal Benefit

= −j (τ, t)︸ ︷︷ ︸
Marginal Cost

.

This necessary condition is intuitive: the issuance (or buyback) of debt of a given τ and t, pro-
duces a marginal cost and a marginal benefit. Both margins must be equated. The marginal
benefit is the marginal utility obtained from the increase in expenditures. The marginal in-
crease in expenditures is the price, q (t, τ, ι), minus the price impact of the issuance, ∂q

∂ι ι (τ, t).
The marginal cost of the issuance is summarized by the Lagrange multiplier−j (τ, t). This mul-
tiplier is in fact, the present value of the debt payments associated with that maturity and time.
Hence, the multiplier captures all forward-looking information.

The forward-looking information encoded in the Lagrange multiplier comes out to surface
when we derive the second necessary condition, a second step in the proof. At an optimal
path, we should also be unable to improve the Lagrangian with a variation to the stock of debt.
Thus, any perturbation around f (τ, t) must produce a zero value change. We show that the
solution cannot be improved as long as the Lagrange multipliers j satisfy the following partial-
differential equation (PDE):

ρj (τ, t) = −U′ (c (t)) δ +
∂j
∂t
− ∂j

∂τ
, τ ∈ (0, T], (3.3)

with terminal condition: j (0, t) = −U′ (c (t)).
Each Lagrange multiplier is forward-looking because it takes the form of a continuous-time

present-value formula. The first term, is a flow, the dis-utility−U′ (c (t)) δ. The second term,

17The differences with a standard control problem is that the state variable is a distribution, not a vector. Thus,
at each point in time, there is a continuum of Lagrange multipliers (Lagrangians) and not a vector of co-states. We
interpret these Lagrangians as having two dimensions: one for time and one for maturity.
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∂j/∂t, captures the change in flow utility. The third term, ∂j/∂τ captures that the bond matures
with time.18 For interpretation purposes, it is convenient to convert the multiplier j (τ, t) from
utiles into a cost in consumption units. For that, define:

v (τ, t) ≡ −j (τ, t) /U′ (c (t)) .

We refer to this object as the internal valuation of the (τ, t) debt.
With this definition, we re-express the first-order condition as

∂q
∂ι

ι (τ, t) + q (t, τ, ι) = v (τ, t) , (3.4)

and (3.3), into a PDE for the internal valuation:

r (t) v (τ, t) = δ +
∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T), (3.5)

with terminal condition v (0, t) = 1 and where r (t) is given by:

r (t) ≡ ρ− U′′ (c (t)) c(t)
U′ (c (t))

·
.
c(t)
c(t)

. (3.6)

Note that r (t) is the classic formula for an instantaneous discount factor. We observe the re-
markable connection the internal valuations and the market-price equations. Both the internal
valuation and the price of the bond, are a net-present value of the cash-flow of each bond. The
only difference in the discounting. The optimal issuances given by (3.4), depend on the spread
among both valuations—q is a function of ψ.

Delegation. The characterization above allows us to interpret the optimal issuance policy
through a delegation: the Government has a discount factor. Then, the Government designates
a continuum of traders, one for each τ, to value its debt with his discount factor and find v. Each
trader then issues debt according to (3.4). Of course, the discount factor of the Government
must be internally consistent with the consumption path produced his traders issuances. This
decentralization makes the interpretations of the solutions transparent, especially when we
exploit the functional form for λ of the previous section.

Summary Proposition. The following proposition summarizes the discussion into a full
characterization of the problem’s solution:

18Note that the PDE for j is the analog of the ODE of the Lagrange multiplier when the Lagrange multiplier is
unidimensional. In this case, for example if the government only had access to an instantaneous bond, the PDE
for the Lagrange multiplier would be given by ρj (t) = −δU′ (c (t)) + ∂j

∂t .
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Proposition 2 (Necessary conditions of the PF problem) If a solution to PF exists, then:

v (τ, t) = e−
∫ t+τ

t r(u)du + δ
∫ t+τ

t
e−
∫ s

t r(u)duds. (3.7)

The optimal issuance ι (τ, t) is given by the condition (3.4). The evolution of the debt mass can be
recovered from the law of motion for debt, (2.1), given the initial condition f (·, 0). Finally, c(t) and r(t)
must be consistent with the budget constraint (2.2).

Proof. See Appendix C.1.

The following section uses the same approach to characterize a useful benchmark, a version
of the model without liquidity costs.

3.2 Maturity Management without Liquidity Costs

It is insightful to characterize the solution without liquidity frictions. This section verifies the
known result that without risk, maturity is indeterminate. Surprisingly, in a subsequent sec-
tion, we demonstrate that optimal maturity profile is, by the contrary, determinate as liquidity
frictions approach zero. Thus, there’s a discontinuity at the limit that we study here.

Consider λ (ι, τ, t) = 0. The necessary conditions are still those of the previous section.
Hence, (3.4) still holds but with ∂q

∂ι = 0. This implies that issuances are unbounded, unless
v (τ, t) = ψ (t, τ) . If we combine this information with the fact that (3.7) is also a necessary
condition, we conclude that it must be that r̄(t) = r (t). These simple observations are enough
to characterize the solution without liquidity frictions.

Proposition 3 (Optimal Policy with Liquid Debt) Assume that λ (ι, τ, t) = 0. Define the aggregate
stock debt stock of debt, b(t), by:

b(t) ≡ −
∫ T

0
ψ (τ, t) f (τ, t) dτ, ∀t ≥ 0. (3.8)

If a solution exists, then consumption growth satisfies the following ODE:

r̄(t) ≡ ρ− U′′ (c (t)) c(t)
U′ (c (t))

.
c(t)
c(t)

,

with an integral condition:

b(0) =
∫ ∞

0
exp

(
−
∫ s

0
r̄(t)du

)
(y(s)− c(s)) ds.
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Any solution ι(τ, t) consistent with (2.1), (3.8) and

ḃ(t) = r̄(t)b(t) + y(t)− c(t), for t > 0, (3.9)

is an optimal solution.

Proof. See Appendix C.2.

This solution is also the solution of a standard consumption-savings problem with a single
instantaneous bond with initial condition b(0). The result can be anticipated because all bonds
are redundant: the yield curve is arbitrage free so there is no way to structure debt to reduce the
cash-flow payments given an initial inflow.19 Next, we characterize the dynamics in presence
of liquidity costs and how the portfolio is determinate even as liquidity frictions vanish.

3.3 Characterization

Proposition 2 characterizes the solution to the PF problem, but it does not present an explicit
formula. For that purpose, we use CRRA utility with coefficient σ and adopt the functional
form of the liquidity costs in Prosposition 1. With CRRA utility, r(t) = ρ + σċ(t)/c(t). The
optimal-issuance condition (3.4) translates into:

ι(τ, t) =
1
λ̄

ψ(τ, t)− v(τ, t)
ψ(τ, t)

(3.10)

This is the simple rule discussed in the Introduction. As we explained, the spread ψ(τ, t) −
v(τ, t) is a like an arbitrage available to the fictitious traders. Liquidity costs, contain the desire
to issue bonds when the spread is positive. Naturally, issuances fall with a higher λ̄. The
parameter space can be divided into two regions where the dynamics of the solution differ
depending on λ̄. We explain this property next.

Asymptotic Behavior. When the international rate is at steady state, the price function is
independent of time:

ψss(τ) = δ
1− e−r̄τ

r̄
+ e−r̄τ, (3.11)

where for δ = r̄ss yields a price ψ(τ) = 1. To set ideas, we let δ = r̄ss.

Proposition 4 Consider a steady state for the exogenous variables. Then, there exists a steady state
in problem PF if and only if λ̄ > λ̄o for some λ̄o. If instead, λ̄ ≤ λ̄o, there is no steady state, but
r (t)→ r∞

(
λ̄
)

. The assymptotic discount factor r∞
(
λ̄
)
, is increasing and continuous in λ̄ with bounds

19For that reason, we obtain the discount factor of the Government must equal the international rate. Obviously,
the discount factor determines consumption growth, and consumption determines the aggregate stock of debt,
although not the composition.
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r∞
(
λ̄o
)
= ρ and r∞ (0) = r̄ss. Consumption decreases asymptotically at an exponential rate r̄ss − ρ.

The asymptotic distribution of debt is obtained from r∞
(
λ̄
)

. as the planner’s discount factor.

Proof. See Appendix C.3.

A more detailed version of this Proposition 4 is found in Appendix C.3. This detailed version
includes a formula for λ̄o and for the asymptotic values of the variables in problem PF. In the
case where liquidity costs are high, i.e. when λ̄ > λ̄o, the steady state has an analytic expression.
Let’s begin with this case. Proposition 4 establishes that there’s a steady state. Consequently,
rss = ρ, because consumption doesn’t grow in a steady state. With a constant discount factor,
steady state valuations satisfy:

vss(τ) = −
(

δ
1− e−ρτ

ρ
+ e−ρτ

)
, (3.12)

which is the same formula as (3.11), but using ρ instead of r̄. Then, the issuances at steady state,
ιss (τ) follow from (3.10), and the debt outstanding is given by fss(τ) =

∫ T
τ ιss(s)ds. These are

all paper and pencil formulas.

Figure 3.1 displays a typical steady state when λ̄ > λ̄o and ρ > r̄. The key object is the dis-
tance between ψss(τ) and vss(τ) because this spread governs the optimal issuance policy. The
figure displays higher issuances at longer maturities. The reason is that the differences in val-
uations are higher for longer maturities, because the gap in discount rates gets compounded
for longer horizons. The distribution of debt, takes the opposite shape. With standard debt,
when issuances at steady state are positives for all maturities, there is always a bigger stock of
short-term debt, simply because of accounting: maturing long-term debt becomes short term
debt but not the other way around. This is obvious from the expression for fss(τ), but is a
phenomenon, that does not appear if the Government were to issue consols. In addition, as we
increase the spread (ρ− r̄), the maturity profile shifts towards longer maturities and the overall
stock of debt increases.20

20We can also conclude that when ρ = r̄, steady state debt is zero for all maturities. In a consumption-savings
problem with liquidity costs, the stock of debt at steady state is determined by the initial conditions. The result
also allow us to There is a threshold value, precisely λ̄o, such that the steady-state level of debt consistent with this
solution is zero. At the point where λ̄ crosses the threshold value, the nature of the solution changes.
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Figure 3.1: The figure describes the steady state values of debt, issuances, maturity distribution
and the wedges in valuations.

Let’s now turn to the opposite case. Proposition 4 states that when λ̄ ≤ λ̄o and ρ > r̄, there
is no steady state. However, the asymptotic behavior of the economy can be characterized. As
liquidity coefficient λ̄ crosses the threshold value, the nature of the solution begins to look closer
the solution without liquidity costs. Without liquidity costs, ρ > r̄, consumption converges to
zero at an exponential rate determined by the spread ρ > r̄. A similar result holds here, except
that an asymptotic discount factor lower than ρ emerges, and is a function of λ̄. This discount
factor r∞

(
λ̄
)

decreases once liquidity crosses the threshold r∞ (0) = r̄. Figure 3.2 compares the
asymptotic behavior of the solution, as we vary λ̄. We also observe how consumption and the
discount factor converge to zero and r̄, as liquidity falls. Naturally, issuances and debt, increase
as liquidity costs fall. In fact, we can characterize the solution as λ̄→ 0.
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Figure 3.2: The figure describes the asymptotic behavior for multiple λ̄ values.

Limiting Distribution as Liquidity Costs Vanish. The limiting behavior as liquidity costs
vanish is established in the following proposition:

Proposition 5 In the limit as liquidity costs vanish, λ̄→ 0, the optimal issuance is

ι∗∞ (τ) = lim
λ̄→0

ι∞(τ, r∞(λ̄)) =
1 + [−1 + (r̄/δ− 1) r̄τ] e−r̄τ

1 + [−1 + (r̄/δ− 1) r̄T] e−r̄T
χ (T)
χ (τ)

κ,

where constant κ > 0 is such that

y− f ∗∞(0) +
∫ T

0
[ι∗∞ (τ)ψ(τ)− δ f ∗∞(τ)] dτ = 0,

and f∞(τ) =
∫ T

τ ι∗∞ (s) ds.

Proof. See Appendix C.4.
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Proposition 5 gives us the distribution of maturity as the liquidity cost parameter vanishes.
As discussed, this result differs from the case where liquidity costs are actually zero because in
that case, this distribution is undetermined. Thus, there is a discontinuity at the perfectly liquid
limit, since for any arbitrarily small cost, the distribution is determined. Vanishing liquidity
costs can be employed as a selection device in order to break the indeterminacy problem. Notice
how the limiting distribution is only a function of the bond parameters (δ, T), the riskless rate r̄
and the income y.

Transitions. A transition to a steady state (or an asymptotic limit) is a fixed point problem
in c (t) . A given c (t) taken as an input, will a discount factor. The discount factor produces
valuations that determine issuance rates ι (τ, t). A family of issuance rates produces a family
of debt distributions indexed by time, and the budget constraint produces a consumption path,
c (t). A transition is a fixed point where the input and output are identical. Appendix E presents
the numerical algorithm we use throughout the paper to construct transitions.

The Dual. The solution to the PF is also the solution to a cost minimization problem: given a
desired consumption path c(t), minimize the net-present value of resources financial expenses.
Mathematically, the dual problem (DP) is given by:

Problem 3 (Dual Problem) The DP is:

min
{ι(τ,t)}∈I

∫ ∞

0
e−
∫ t

0 r(s)ds
(

f (0, t) +
∫ T

0
δ f (τ, t) dτ −

∫ T

0
q(τ, t, ι)ι(τ, t)dτ

)
dt

where r(t) is given by (3.6), and the minimization is subject to the law of motion of debt (2.1), an initial
condition f (·, 0), and debt prices (3.1).

In the problem, the Government’s time discount is given by the consumption path. The
object in parenthesis are the (net of inflow) financial expenses. We have the following result:

Proposition 6 Suppose that for a given income path y(t) and initial debt f0 the solution to PF is
{c∗(t), ι∗(τ, t)}. Then, {ι∗(τ, t)} solves DP given the path c∗(t) and an initial debt f0. The solution to
DP satisfies the budget constraint (2.2) given y(t).

Proof. See Appendix D.

The Proposition establishes that the (DP) problem can be thought of as a cost minimization
problem that includes the price impact. In practice, treasury departments in charge of debt
management have the objective in their mandates.
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3.4 Applications of the PF Model

Calibration. We provide a calibration in all of the applications. We set xxx. All quantities
are expressed in percentage of the steady state output (that is equal to 1). In steady state, the
country devotes 6 percent of GDP to debt service; 4.4 percent of GDP to the payment of bond
principals and 1.6 percent of GDP to coupon payments. Liquidity costs, that in the current
calibration are 0.3 percent of GDP, that is, about 5% of total financial expenses. New debt
issuance’s are also 4.4. of GDP, since at steady state, they compensate for the payment of the
principal. Consumption is 97.6 percent of GDP.

Debt Management after Unexpected Shocks

Coming back to the solution of P1 in this section we want to illustrate numerically two
main forces that drive the solution: consumption smoothing versus the smoothing of adjust-
ment costs. We study a permanent and unexpected shocks to output and the interest rate that
revert to steady state These transitional dynamics teach us new lessons: issuance cycles and
consumption vs. price smoothing.

Unexpected Output Shock. In Figures 3.3 and 3.4 we analyze the response of issuances, con-
sumption and total debt from a shock to output of 5% that reverts to steady state. The main
take out is that to smooth the shock the government increases issuances on impact, and this will
generate a wave of payments concentrated in T years. Upon impact, we observe two things.
We see an immediate increase of issuances and a pronounced increase on impact of the internal
discount factor. The liquidity cost prevents a perfect smoothing of consumption. This is why
the internal discount factors jump. Also, there is a cycle of payments. As the initial vintage
of borrowings matures, and it is particularly pronounced for long-term bonds, consumption
growth slows down, but then accelerates again as the wave passes. This is an interesting phe-
nomenon because it suggests that in presence of liquidity costs, we should expect waves of debt
refinancing.
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Figure 3.3: The figure describes the response of the government discount factor, issuances,
consumption, and total debt, from an unexpected shock to output of 5%.
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Figure 3.4: The figure describes the response of the government discount factor, issuances,
consumption, and total debt, from an unexpected shock to output of 5% when T=30 years.

Unexpected Interest Rate Shock. In Figures 3.6 and 3.7 we analyze the response of issuances,
consumption and total debt from a shock to the interest rate, that goes to zero, and returns to
steady state. We compare the responses when σ = 2 and σ = 0. When the IES is not infinite,
the model shows that when rates are unusually low, the country increases it’s borrowing. This
is captured by a spike in consumption beyond it’s steady state level. Then, as rates begin to
increase, the issuance rate declines. Eventually, there’s a period low consumption were debt
is being repaid. The reason for this repayment phase is the liquidity cost. As rates return to
normality, while the stock is higher due to the past issuances, the country is making higher
interest and principal payments, which take consumption to a lower level than at steady state.
As the debt is repaid and issues return to steady state, consumption converges back to steady
state. Turning on a consumption smoothing motive tampers this effect. There’s a trade-off
between exploiting the low interest rate environment and smoothing consumption.
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Figure 3.5: The figure describes the response of the yield curve to a shock in the short rate.
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Figure 3.6: The figure describes the response of the government discount factor, issuances,
consumption, and total debt, from an unexpected shock to the short interest rate.
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Figure 3.7: The figure describes the response of the government discount factor, issuances,
consumption, and total debt, from an unexpected shock to the short interest rate that reverts to
the long run mean for the case in which the households are risk neutral.

Consols vs. Standard Debt

Our next application is to compare the value of a Government that issues standard debt and
one that only issues consols. In particular, we now study an alternative version of the (DP) with
consols. Appendix xxx, contains the details. To connect both models, we establish a one-to-one
map from each maturity τ to a consol. In particular, we define m = 1

τ to be the decaying rate
of a consol associated with a given τ. Thus, we have a continuum of consols m ∈ [ 1

T , ∞). Each
consol pays a constant coupon rate z = r̄ss. Then the mass of consols of maturity m satisfies the
following Kolmogorov-Forward equation,

∂ f
∂t

= ι(m, t)−m f (m, t).
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In addition the budget constraint satisfies:

c (t) = y (t) +
∫ ∞

1/T
[q(m, t, ι)ι(m, t)− (m + z) f (m, t)] dm.

and the price of debt of debt is given by:

ψ(m, t) = (m + z)
∫ ∞

t
exp

{
−
∫ s

t
(r(u) + m) du

}
ds.

The solution method is exactly the same, except that now, the valuations:

(r (t) + m) v (m, t) = −(m + z) +
∂v
∂t

, if m ∈ [
1
T

, ∞).

After we construct the solution to the valuations, we follow the same algorithm to construct
a solution. Namely, ι (τ, t) is given by the analogue of condition (3.4) where v (m, t) replaces
v (τ, t).

[TBC. Proposition that establishes desirability of Consols.]

4 Maturity-Debt Management under Risk

So far, we studied debt-management under perfect foresight. This section presents a charac-
terization that allows the study of the influence of risk, for a limited form of risk. The goal
is to understand how the anticipation of shocks affects the shape of the optimal debt profile.
We continue to abstract from default and study only output, liquidity, and interest-rate risks.
Towards that goal, we assume that the vector of those exogenous variables, X (t), follows a
deterministic path until the arrival of a one-time-and-for-all Poisson shock. The arrival of the
Poisson shock has intensity φ. Upon the arrival of the shock at a time denoted byto, nature
draws a new state, X (to), that possibly alters one or more of the exogenous variables. This new
state is drawn from X (to) ∼ FX (·; X (to

−)) ,where to
−is the left limit.21 After the jump in the

states, X (t) follows a deterministic path back to (a possibly new) steady state.
Obviously, there is risk in this economy before the shock, but after the shock the economy

becomes the perfect-foresight economy of the previous section. Hence, we divide the analysis
into a pre- and post-shock dynamics. We adopt the following convention to distinguish pre-
from the post- shock variables: for any variable w that follows a path w(t) , we define by ŵ(t),
t < to, the value before the arrival of the shock and simply byw(t), t ≥ to, as the value after the
shock arrival, once the economy becomes a perfect foresight economy as in the previous section.
We denote by EX

t a conditional expectation under the distribution FX (·; X (to
−)). Finally, we

21We assume that X (t) is càdlàg, that is, everywhere right-continuous and has left limits everywhere.
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denote by Et as the expectation under the distribution of arrivals of the Poisson event.
Problem with Risk. With the notation in hand, we are ready to study the problem under

risk as PR and it is given by:

Problem 4 (Problem with Risk) The PR problem is

V̂ [ f (·, t) , X (t)] = max
{ι̂(·)}∈I

Et

[∫ to

t
e−ρ(s−t)U (ĉ (s)) ds + e−ρ(to−t)EX

to [V [ f (·, to) , X (to)]]

]
.

The maximization is subject to the law of motion of debt (2.1), the budget constraint (2.2), an initial
condition f (·, 0) = f0, and debt prices given by (3.1).

Following our notation, EX
t [V [ f (·, to) , X (to)]] is the expected jump in the value functional,

conditional on a jump and the current state X.

4.1 Characterization

To characterize the solution, we follow a Dynamic Programming approach and employ results
from functional analysis. These results, allow us to derive the analogue of a Hamilton-Jacobi-
Bellman (HJB) equation for the case where the state variable is the distribution of debt:

Problem 5 (Hamilton-Jacobi-Bellman Equation) The PR problem has a HJB representation given by:

ρV̂ [ f (·, t) , X (t)] = max
{ι̂(·,t)}

U (ĉ (t)) +
∫ T

0

δV̂
δ f

∂ f (·, t)
∂t

dτ . . . (4.1)

+φ
(

EX
t [V [ f (·, t) , X (t)]]− V̂ [ f (·, t) , X (t)]

)
(4.2)

subject to (2.1), (2.2), and (3.1).

Other than the integral term, this equation is identical to a standard HJB equation. The
integral term is the infinite-dimensional analogue of the sum of the individual derivatives that
would appear in an HJB equation with finite states.22 Here, the value is not a value function,
but a value functional, so the term δV̂

δ f represents a Gâteaux derivative, the derivative of the
value function with respect to the debt distribution. Results from functional analysis, allow us
to obtain this representation and are found in Appendix C.5. As in a standard, HJB equation,
this problem features a first-order condition with respect to the issuances. In the case of a
continuum of controls, it is obtained by taking a Gâteaux derivative of the value with respect
to ι, and point-wise equalizing the result to zero:

U ′ (c)
(

∂q̂
∂ι̂

ι̂ (τ, t) + q̂ (τ, t, ι)

)
= − ̂ (τ, t) ,

22For example, of in an HJB with two state variables the the sum of two partial derivatives would emerge.
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where we define ̂ (τ, t) ≡ δV̂
δ f . Note the resemblances with the Lagrange multiplier of the PF

problem.
Also, akin to a standard HJB equation, this continuous control version has an analogue to

an Envelope Theorem. Taking the Gateaux derivative of the value function, we derive a law of
motion for ̂ (τ, t):

ρ̂ (τ, t) = −δU ′ (ĉ (t)) + ∂̂

∂t
− ∂̂

∂τ
+ φ

(
EX

t [j (τ, t)]− ̂ (τ, t)
)

, τ ∈ (0, T] (4.3)

̂ (0, t) = −U ′ (ĉ (t)) .

Here EX
t [j (τ, t)] is the expected value of the Lagrange multiplier associated with the τ-debt of

a PF problem with initial condition { f (·, to) , X (t+)}. The expectation is taken over the state
variable X (t+) and is conditioned on X (t−). We can define the debt valuations as we do under
perfect foresight:

v̂ (τ, t) = − ̂ (τ, t) /U ′ (ĉ (t)) ,

and thus we have an analogue of the first-order condition (3.4), but that considers risk:

∂q̂
∂ι̂

ι̂ (τ, t) + q̂ (t, τ, ι) = v̂ (τ, t) . (4.4)

We now establish the following summarizing proposition for the version with risk.

Proposition 7 If a solution to PR exists, then valuations23 are:

v̂ (τ, t) = e−
∫ t+τ

t (r̂(u)+φ)du +
∫ t+τ

t

(
δ + v (τ − s, t + s)

U ′ (c (t + s))
U ′ (ĉ (t + s))

)
e−
∫ s

t (r̂(u)+φ)duds. (4.5)

The optimal issuance ι̂ (τ, t) is again given by (4.4). Finally, ĉ(t) and r̂ (t) must be consistent with the
budget constraint (2.2).

Proof. See Appendix C.5.

23Their PDE representation is:

r̂ (t) v̂ (τ, t) = δ +
∂v̂
∂t
− ∂v̂

∂τ
+ φEX

t

[
v (τ, t)

U ′ (c (t))
U ′ (ĉ (t)) − v̂ (τ, t)

]
, τ ∈ (0, T],

v̂ (0, t) = 1, τ = 0,
lim
t→∞

e−ρtv̂ (τ, t) = 0.
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The proposition is very similar to the case studied under perfect foresight. However, valua-
tions feature a correction for risk given by:

φEX
t

[
v (τ, t)

U ′ (c (t))
U ′ (ĉ (t)) − v̂ (τ, t)

]
.

This term is akin to the correction in any valuation that features a Poisson jump. The expression
simply captures an ”exchange rate” between states. The internal valuation, after the shock,
v (τ, t), is measured in goods after the arrival of the shock. The ratio of marginal utilities tells
us how how goods are relatively valued in terms of utilities, before vis-a-vis after the shock.
Note that if a shock produces a decline in consumption, this ratio is greater than one. This
means that fixing a given maturity, debt will priced more highly. In such a case, not only does
the Government value the coupon stream, but increases the valuation of the coupon stream.
This extra kick in the valuations affect bonds of different maturity deferentially, as we illustrate
next.

Although Proposition 7 characterizes the solution to PR, computing its solution involves
solving for a fixed point in a a family of distributions. This is because, for each t before the
the arrival of the Poisson shock, will be associated with a consumption jump from ĉ (t) to c (t).
That jump is a function of the distribution f (·, to) . However, that possible jump affects the
choice of ιthrough its influence in valuations. Thus, a solution is a fixed point in a family of
debt distributions. To this date, it is unfeasible without an approximation algorithm. This is
a problem to the case with already with absorbent shocks, as in this section, so the problem
escalates in the presence of multiple shocks.24 The subsequent section presents a methodology
to deal with this issue: the study of what we label, the computation of a property: the risky
steady state. Before we proceed, we describe the solution to the problem with liquidity costs
and complete markets.

4.2 Maturity and Risk Management without Liquidity Costs

We now review a version of the model with risk without liquidity costs. This section helps us
clarify the the extent of insurance to different shocks that the available sets of maturities allow
the Government to achieve. Thus, we consider again the extreme where λ (ι, τ, t) = 0. The
necessary conditions of this fully liquid problem are identical to those when there are liquidity
costs. This implies that issuances are unbounded, unless v (τ, t) = ψ (t, τ) . Furthermore, since
the PDE (3.7) is also a necessary condition, it must be that the Government’s discount factor
coincide with the international rate, r̄(t) = r (t). These observations are enough to characterize

24 An analogous challenge appears in models of incomplete markets which is why the literature uses the ap-
proximation in Krusell and Smith (1998). Unfortunately, in our problem, that approximation is not good, because
being a linear a approximation, it neglects dealing with risks, precisely the problem we are trying to solve.
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the optimal maturity-management at the fully liquid limit.

Proposition 8 Any solution {ι(τ, t), ĉ (t)} to consistent with (2.1), (3.8)

(
ρ− U

′′ (ĉ (t))
U ′ (ĉ (t))

dĉ
dt

)
ψ̂ (τ, t) = δ +

∂ψ̂

∂t
− ∂ψ̂

∂τ
+ θ

(
EX

t

[
U ′ (c (t))
U ′ (ĉ (t))ψ (τ, t)

]
− ψ̂ (τ, t)

)
(4.6)

which should be satisfied for any (τ, t) in the domain.

Below we discuss some particular cases.
Lack of Insurance. Consider the case of an income shock, that is, the only variable that

changes with the shock is y(t). In this case bond prices do not change, ψ (τ, t) = ψ̂ (τ, t), then,
the only possible outcome is to have:

r(t) =
(

ρ− U
′′ (ĉ (t))
U ′ (ĉ (t))

dĉ
dt

)
= r̄(t) + θ

(
EX

t

[
U ′ (c (t))
U ′ (ĉ (t))

]
− 1
)

.

With lack of insurance, the smalle economy can in fact reach a risky steady state with positive
consumption. [TBC]

Complete Markets Allocation. Consider now a shock to interest rate r̄(t). In this case bond
prices change with the arrival shock. If we combine again equations (4.6) and (??) yields

r(t) =
(

ρ− U
′′ (ĉ (t))
U ′ (ĉ (t))

dĉ
dt

)
= r̄(t) + θEX

t

[(
U ′ (c (t))
U ′ (ĉ (t)) − 1

)
ψ (τ, t)
ψ̂ (τ, t)

]
. (4.7)

If there is no jump in consumption once the shock arrives, ĉ (t) = c (t) , the solution to this
equation yields r(t) = r̄(t). This implies that [TBC].

Imperfect Insurance. Equation (4.7) also has a solution with ĉ (t) c (t) provided that

EX
t

[(
U ′ (c (t))
U ′ (ĉ (t)) − 1

)
ψ (τ, t)

]
= 0.

For instance, in the case that r̄(t) remains constant after the shock, this equations results in

∫ (U ′ (c (t))
U ′ (ĉ (t)) − 1

)
(1− e−xτ)

x
dFx(x) = 0.

Notice that this equation should be zero for any time and maturity. Since the solution must be
true for any τ and there are τ bonds, there’s a one-to-one map form the number of conditions
to the number of unknowns. [TBC]
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4.3 Risky Steady State

As discussed above, the calculation of a solution requires a fixed point in a family of functions.
Instead of taking a numerical approach, we analyze a risky steady state. Our concept is similar
to the one used by Coeurdacier et al. (2011). In our context, a risky steady state (RSS) is defined
is a point where the economy is expected to converge when shocks are expected permanently,
but when they have not yet materialized. We can solve this case because it no longer involves
a solution in a fixed

Risky Steady State. We will characterize debt, issuances and consumption, for the case in
which the economy is waiting for the shock but the shock has not arrived yet; that is, in histories
where the shock has not occurred yet and the economy already converged to a steady state. In
this case the solution of the system is composed of the following equations:

Proposition 9 Valuations at a risky steady state are given by:

v̂rss (τ) =
∫ τ

0
e−(rrss+θ)(τ−s)

(
δ + θEX

rss

[
U ′ (crss)

U ′ (ĉrss)
vrss (s)

])
ds, for τ ∈ (0, T]

The optimal issuance ι̂ (τ, t) is again obtained by (4.4). The evolution of debt is obtained from, (2.1),
and given by the initial condition f (·, 0). Finally, ĉ(t) and r̂ (t) must be consistent with the budget
constraint (2.2).

Proof. Immediately from 7.

Discussion. The solution takes this form because the presence of risk at the steady state
produces a term that alters the valuations:

ρ = δ− ∂v
∂τ

+ θEX
rss

[
vrss (τ)

U ′ (crss)

U ′ (ĉrss)
− v̂rss (τ)

]
, for τ ∈ (0, T]

v̂rss (0) = 1 if τ = 0.

The extra term is vrss (τ)
U ′(crss)
U ′(ĉrss)

which captures valuations from pre to post shocks. Again, the
ratio of marginal utilities, acts like an exchange rate across states. The advantage of the risky
steady state is that it provides a closed form solution.

4.4 Applications of the Model with Risk

The Influence of Risk
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Next, we present two numerical exercises for the general case. In the first exercises, output
is expected to drop by 5% on impact, and then a recovery back to steady state.

Expecting a 5% y(t) drop. First, we compare the risky steady state (red), with the steady
state (blue). There are two patterns to be dissected from Figures 4.1 and 4.2. On one hand, the
presence of income risk produces an overall decline in issuances and debt outstanding of all
maturities. On the other hand, we see a relative decline in shorter maturities. The reason for
the decline in overall borrowing is the presence of risk, which captured by the ratio of marginal
utilities present in the valuation formulas. This ratio tells us how costly an outflow of payments
is once the shock is realized. This penalizes all bonds, and in the valuation equations the effect
is analogous to an expected increase in coupon payouts. The second observation is that the
decline is more pronounced on short term assets. It’s better to explain the logic in the next
exercise.
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Figure 4.1: Response, in the risky steady state, of the maturity distribution, total debt, issuances,
and valuations to an expected 10 percent drop in output that reverts to steady state exponen-
tially.
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Figure 4.2: Dynamics total debt, issuances, consumption and the internal rate after a 10 percent
shock in output that reverts to the long run mean exponentially.

Shock 4% to 8% on impact. In this experiment, depicted in Figures 4.3 and 4.4, we present
an expected shock where short term rates are expected to increase suddenly, to 8%. This is a
rate above the discount factor of the small economy. As in the previous exercise, the effect of
this source of risk is to shrink the issuances at all maturities. However, the exercise results in
a more extreme reversal of positions. For very short-term bonds, the country actually begins
buying back and eventually accumulating short term bonds. This means that the way the coun-
try reacts to risk is by issuing long-term debt but holding short term assets. Again, all of the
logic is captured by the valuation equations. A long-term bond will be long lived. With a high
probability, it will experience a cycle that begins with a positive spread between r(t) and r̄(t),
but then, when the shock is realized, with a converse relationship. When international rates are
high, the country is worse off by holding those assets, because paying out coupons when dis-
counts are high is not desirable. However, there are two other phases where the country spread
is positive. This makes long-term debt desirable, despite the fact that with a high probability
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there will be a period where the debt will be particularly costly because marginal utility is high.
The principle, on the other hand, will be likely to be repaid once marginal utility is close to
steady state again.

Short-term debt is different. Before the shock is realized, the short-term bond yields a benefit
because rrss − r̄ss > 0. However, being a short-term bond, it is likely to experience a period of
high internal discounting. The chances of entering this period are the same as for the long-
term bond. However, the short bond doesn’t have the length to cover the reversal of the cycle.
Furthermore, it’s principle is likely to be paid in periods of high marginal utility. This makes
the short-term bond be valuable as an asset.

Both exercises have the same forces behind. However, the calibration of interest-rate risks
are strong enough to reverse the positions.
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Figure 4.3: Response, in the risky steady state, of the maturity distribution, total debt, issuances,
and valuations to an expected permanent increase in the short rate.
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Figure 4.4: Dynamics total debt, issuances, consumption and the internal rate to an expected
permanent increase in the short rate.

Limited Issuances

We adapt the model to allow for issuances only at a limited set of maturities. In this case:

ι(τ, t) =


ψ(τ,t)+v(τ,t)

λ̄
for τ ∈ [τ1, τ2, ..., τN]

0 for τ /∈ [τ1, τ2, ..., τN]
.

We obtain the following figure plots the solution for this case.
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Figure 4.5: The figure describes steady state in a model with limited issuances.

5 The Option to Default

In this section we study how the option to default alters the optimal maturity profile. The nature
of the problem changes because, now, bond prices depend on Government actions, and vice
versa. Furthermore, it now matters if the Government can commit to a debt issuance program
or not. We proceeds as follows. We first describe the solution to the Government’s problem
when the option to default occurs only once and at known date. This solution is interesting on
it’s own, but it is instructive to solve the case where the actual date is unknown. We use this
intuition to solve the problem with a random arrival date of a default event. In both cases, we
solve the problem with and without commitment.

Default. As in the rest of the paper, we maintain the assumption that jumps in the ex-
ogenous states occur once. We also maintain the pre- and post-shock notation of the previous
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section. For each yD, we obtain a value-upon default VD with an induced distribution Φ(·). Re-
call from the introductory section that τD is the time of default. We first consider the case where
the only shock that can arrive is the default shock, and keep constant the value of the other
parameters: X (t) = X. An extension to the general case, which we use in the applications, is
immediate, but more intense in notation.

The price is ψ(τ, t) is given by (2.5). The Government solves::

Problem 6 The problem with default (PD) is

V̂ [ f (·, t)] = max
{ĉ(t),ι(·,t)}t≥0

Et

[∫ t+τD

t
e−ρ(s−t)U (ĉ (s)) ds + e−ρτD

VD

]
, (5.1)

subject to the law of motion of debt (2.1), the budget constraint (2.2), and the prices (2.5).

The expectation in the problem is with respect to the
{

τD, VD}. We study four variations
of this problem that differ in assumptions about commitment and the occurrence of default
events:

For the occurrence of default events, we consider to possible cases:

• Fixed Default Date (FD): The default option is known to occur only by date t̃ and occurs
with probability θ. In this case, τD = t̃ or ∞.

• Random Default Date (RD): the default option occurs with Poisson distribution with co-
efficient θ.

For the assumption of commitment:

• With Commitment (WC): we assume that the Government can commit to an issuance path
from time zero. It cannot commit to repay it’s debt upon the default option arrives.

• No Commitment (NC): we assume that the Government cannot commit to an issuance
path neither to repay it’s debt upon the default option arrives.

We begin with the problems with a fixed date.

5.1 Characterization

The Problem with Default on a Fixed Date with Commitment (PDFDWC). Consider that at
date t̃ the Government has a probability probability θ of a new draw of a default value. If
the default event occurs, the new draw is taken from Φ. The Government’s default decision
is immediate. It defaults if the value of the outside option is V [ f (·, t̃)]. As in all previous
instances, the optimal policy is characterized by solving for the formula for valuations, except
that now, valuations have an interesting interaction term.
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Proposition 10 (Necessary conditions of the PDFDWC problem) If a solution to PDFDWC exists,
then:

v̂ (τ, t) = e−
∫ t+τ

t r(u)du + δ
∫ t+τ

t
e−
∫ s

t r(u)duds if t + τ < t̃. (5.2)

and if τ + t ≥ t̃,

v̂ (τ, t) = δ
∫ t̃

t
e−
∫ s

t r(u)duds + e−
∫ t̃

t r(u)duv̂ (τ − (t̃− t) , t̃)

+e−
∫ t̃

t r(u)du (a (τ, t) + b (τ, t)) · U
′ (c (t̃))
U ′ (ĉ (t̃))

v (τ − (t̃− t) , t̃) ,

where the terminal value is:

v̂ (τ, t̃) = (1− θ (1−Φ (V [ f (·, t̃)])))
U ′ (c (t̃))
U ′ (ĉ (t̃))

v (τ, t̃) , for τ ∈(0, T],

and the after t price impact is:

a (τ, t) =
1
λ̄

θΦ′ (V [ f (·, t̃))])U ′ (ĉ (t̃)) . . .∫ t̃

t
e
∫ t̃

s r(u)du
∫ T

0
e−
∫ t̃

s r̄(u)duψ (τ, t̃)
(

1− v̂ (τ + t̃− s, s)
ψ (τ + t̃− s, s)

)
dτds,

and the before t price impact is:

b (τ, t) =
1
λ̄

θΦ′ (V [ f (·, t̃))])U ′ (ĉ (t̃)) . . .∫ t

max{t̃−(T−τ),0}
e
∫ t̃

s r(u)du
∫ T

0
e−
∫ t̃

s r̄(u)duψ (τ, t̃)
(

1− v̂ (τ + t̃− s, s)
ψ (τ + t̃− s, s)

)
dτds.

The optimal issuance ι (τ, t) is given by the condition (3.4). The evolution of the debt mass can be
recovered from the law of motion for debt, (2.1), given the initial condition f (·, 0). Finally, c(t) and r(t)
must be consistent with the budget constraint (2.2).

The valuations are broken into two regions. When t + τ < t̃ a bond vintage will expire
before the default period. Thus, the vintage will not influence the probability of default, at least
directly. It may affect the probability of default indirectly, but the Envelope Theorem ensures
that the indirect effect is not present in the valuations. Furthermore, the valuation is as in the
standard case because the bond will be paid in full.

The interesting region is for the vintages such that τ + t ≥ t̃. These are bonds that expire af-
ter t̃, have an influence on default decisions, and carry a default-option premium. The valuation
of the bond is such that the coupons before t̃ is given by three terms. The term δ

∫ t̃
t e−

∫ s
t r(u)duds
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is the present value of coupons. The term e−
∫ t̃

t r(u)duv̂ (τ − (t̃− t) , t̃) is the present value of the
valuation of the bond at the date of the default. The valuation term v̂ (τ − (t̃− t) , t̃) has the
following interpretation. The indexes the remaining maturity of the vintage at the time of the
default option. The value itself has several components. The probability that the bond is repaid
is:

1− θ + θ (V [ f (·, t̃)]) ,

Since the bond has no value in the complement probability, this probability multiplies,

U ′ (c (t̃))
U ′ (ĉ (t̃))

v (τ, t̃)

which is the value of the bond times the exchange-rate between pre- and post-shock consump-
tion. Note that a similar term also appears in the valuation of the bond by the international
investor, but there is no risk-correction given the risk-neutrality assumption.

The more interesting are the terms a (τ, t) and b (τ, t), which captures the spill-over of de-
fault probabilities on other bond vintages. Both terms capture the same effect, and their dis-
tinction is only the effects on bonds after t (in the case of a (t)) and before t (in the case of b (t)).
The term

θΦ′ (V [ f (·, t̃))])U ′ (ĉ (t̃)) ,

is the marginal change in the probability of default at the terminal date, in terms of goods at
time t̃. At any date prior to ˙̃t, the influence on the of default at t̃ on the current price is:

∂ψ (τ + t̃− s, s̃)
∂ψ (τ, t̃)

= e−
∫ t̃

s r̄(u)duψ (τ, t̃) .

This is because the price of each bond will be the present value of dividends plus the present
value of the price at the default date. Multiplying this expression by the marginal change in
the default probability yields the change in the price at any date. Now, in the Government’s
problem, the change in the price affects the value of issuances at a given date, which is why
each price is multiplied by the corresponding issuance:

1
λ̄

(
1− v̂ (τ + t̃− s, s)

ψ (τ + t̃− s, s)

)
Finally, the terms: ∫ t̃

t
e
∫ t̃

s r(u)duds adn
∫ t̃

max{t̃−(T−τ),0}
e
∫ t̃

s r(u)duds

transform each change in the revenues at any period, into a goods of date t̃. The discount

e−
∫ t̃

t r(u)du in front of the expression brings it back to time t and multiplication by v̂ (τ − (t̃− t) , t̃)
measures the change in the value the period of default.
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The Problem with Default on a Fixed Date without Commitment (PDFDNC). Without
commitment, the Government

Proposition 11 (Necessary conditions of the PDFDNC problem) If a solution to PDFDNC v̂ (τ, t̃) is
given by the same expression as in the case with commitment (PDFDWC). However, b (t) = 0 whereas
the terms v̂ (τ, t̃) and a (τ, t) satisfy the same functional equations.

Valuations at a risky steady state with default are:
The Problem with Default on a Rando Date without Commitment (PDRDNC). Consider

now the case of the problem where default opportunities can arrive at any date with Poisson
intensity θ.

Proposition 12 (Necessary conditions of the PDRDWC) If a solution to PDRDWC with commitment
exists, then:

ṽ (τ, t) = δ
∫ τ

t
e−
∫ s

t (r(u)+θ)duds + e−
∫ t+τ

t (r(u)+θ)du + π (τ, t) + ã (τ, t) + b̃ (τ, t)

where π̃ (τ, t) is a risk-premium:

π (τ, t) = θ
∫ t+τ

t
e−
∫ s

t (r(u)+θ)du (1−Φ (V [ f (·, s)]))
U ′ (c (s))
U ′ (ĉ (s))v (τ + s− t, s) ds, for τ ∈(0, T],

and b̃ (τ, t) are the before-issuance increases in funding costs:

b̃ (τ, t) =
θ

λ̄
U ′ (ĉ (t))

∫ t

max{t−T,0}
e
∫ t

s r(u)du
∫ T

0

(
1− ṽ (ζ, s)

ψ (ζ, s)

)
∂ψ (ζ, s)
∂ f (τ, t)

dζds

and ã (τ, t) are the after-issuance increase in funding costs:

ã (τ, t) =
θ

λ̄
U ′ (ĉ (t))

∫ t+τ

t
e
∫ t

s r(u)du
∫ T

0

(
1− ṽ (ζ, s)

ψ (ζ, s)

)
∂ψ (ζ, s)
∂ f (τ, t)

dζds

where

∂ψ̃ (ζ, s)
∂ f (τ, t)

=
∫ t+τ

t
I[s+ζ>z]e

−
∫ z

s (r̄(u)+θ)duΦ′ (V [ f (·, z))])ψ (ζ − z, s + z)
U ′ (c (z))
U ′ (ĉ (z))v (τ − z, t + z) dz.

The optimal issuance ι (τ, t) is given by the condition (3.4). The evolution of the debt mass can be
recovered from the law of motion for debt, (2.1), given the initial condition f (·, 0). Finally, c(t) and r(t)
must be consistent with the budget constraint (2.2).

Proof. See Appendix C.5.
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The Proposition states that in a risky steady state, prices and valuations the same formulas
as in all previous cases. Two things change. Both the international rate and the Government’s
discount factor are now adjusted for by a risk premium. The risk premium captures the chances
that a default event occurs and that the bond is repaid. The flows are θ and θ̄ capture how,
if a default option occurs but is not triggered, valuations are altered. We now move to two
additional applications.

The Problem with Default on a Fixed Date without Commitment (PDRDNC). Without
commitment, the Government valuations are given by a similar equation that doesn’t look
backwards.

Proposition 13 (Necessary conditions of the PDRDNC problem) If a solution to PDRDNC v̂ (τ, t̃) is
given by the same expression as in the case with commitment (PDRDWC). However, b (t) = 0 whereas
the terms v̂ (τ, t̃) and a (τ, t) satisfy the same functional equations.

5.2 Transitions in the models with Fixed Default Dates

5.3 The Risky Steady States of the models with Random Default Dates

5.4 Applications

6 Conclusions

This paper developed the techniques to study a consumption-savings problem when the control
variable is a distribution over a set of bonds of different maturity. Central to the environment
is the presence of a price impact on each bond. Throughout the paper, we demonstrated how
these features, alter common results found in the literature.
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A Microfoundation of the Liquidity Costs

Here we describe the microfoundation in more detail...
Consider a bond issuance of ι(τ, t) at time t of maturity τ.

A.1 Matching Probabilities

Define s as the time since the beginning of the auction. The time to maturity by s isτ′ = τ − s
the corresponding maturity. The outstanding amount of bonds in hands of the banker by time
s after the issuance of the bond is:

I (s; ι(τ, t)) = max(ι(τ, t)− µ · s, 0).

Clearly, the bond inventory is exhausted by time s̄ = ι(τ, t)/µ. Per instant of time, the intensity
at which bonds are sold is:

γ (s; τ, t) =
µyss

I (s; ι(τ, t))
=

1
s̄− s

for s ∈ [0, min{τ, s̄})

The probability is defined only between [0, min{τ, s̄}) because after the bond matures or after
the stock is exhausted, there is no selling probability.

A.2 Valuation for Bankers and Investors

Investor’s Valuation. The valuation of the bond by investors is

ψ(t,τ)(τ′, s) = ψ(τ − s, t + s)

identical to the price equation in the body of the paper. Hence, the price equation satisfies the
PDE we have studied so far:

r̄(t + s)ψ(t,τ)(τ′, s) = δ− ∂ψ(t,τ)

∂τ′
+

∂ψ(t,τ)

∂t
.

with the terminal condition of ψ(t,τ)(0, s) = 1.
Banker’s Valuation. Now consider the valuation of the cash-flows of the bond from the

perspective of the banker q(t,τ)(τ′, s). By analogy, it must satisfy

(r̄(t + s) + η)q(t,τ)(τ′, s) = δ− ∂q(t,τ)

∂τ′
+

∂q(t,τ)

∂t
+ γ(s)

(
ψ(t,τ)(τ′, s)− q(t,τ)(τ′, s)

)
. (A.1)

This expression takes this form because the banker extracts surplus when it matches. Before
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match, it earns the flow utility, but upon a match, it’s value jumps toψ(t,τ)− q(t,τ). This jump ar-
rives with endogenous intensity γ (s). The complication with this PDE is its terminal condition.
If s̄ ≤ τ, its terminal condition is given by q(t,τ)(τ′, s̄) = ψ(t,τ)(τ′, s̄). If s̄ > τ, the corresponding
terminal condition is q(t,τ)(0, s) = 1, since by the expiration date, it is paid the principal equal
to 1.

Competitive Auction Price. The date of the auction s = 0,τ′ = τ the banker will pay its
expected valuation and hence the bond price demand faced by the Government is:

q(ι, τ, t) ≡ q(t,τ)(τ, 0).

This is because, there is free entry by investment banks into the auction.
Earlier we expressed q(ι, τ, t) as q(ι, τ, t) = ψ(τ, t) − λ(ι, τ, t). Thus, λ(ι, τ, t) = ψ(τ, t) −

q(ι, τ, t), is the object we are trying to find. To find that expression, we employ the following
calculations.

A.3 The Exact Solution

Next, we solve of the liquidity cost λ(ι, τ, t). To do that, we first solve for the PDE for q. We
have the following result:

Problem 7 The solution to q(ι, τ, t) falls in one of two cases:
Case 1. If s̄ ≤ τ, then

q(ι, τ, t) =

∫ s̄
0 (δ(s̄− v) + ψ(τ − v, t + v)) exp

(
−
∫ v

0 r(t + u) + ηdu
)

dv
s̄

.

Case 2. s̄ > τ

q(ι, τ, t) =
∫ τ

0

(
δ(s̄− v) + ψ(τ − v, t + v)

s̄

)
exp

(
−
∫ s

0
r(t + u) + ηdu

)
dv

+
(s̄− τ)

s̄
exp

(
−
∫ τ

0
r(t + u) + η)du

)
.

Proof. We solve the PDE for q depending on the corresponding case for it’s terminal condition.
Case 1. Consider the first case. The general solution to the PDE equation for q(t,τ)(τ′, s) is,

∫ s̄−s

0
(δ + γ(s + v)ψ(τ − v, t + v)) exp

(
−
∫ v

0
(r(t + u) + η + γ(u)) du

)
dv + (A.2)

exp
(
−
∫ s̄−s

0
(r(t + u) + η + γ(u)) du

)
ψ(τ′ − (s̄− s), t + s̄).
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This can be checked by taking partial derivatives with respect to time and maturity and ap-
plying Leibnitz’s rule.25 Consider the exponentials that appear in both terms. These can be
decomposed into:

exp
(
−
∫ v

0
r(t + u) + ηdu

)
exp

(
−
∫ v

0
γ(u)du

)
.

Then, by definition of γ we have:

exp
(
−
∫ v

0
γ(u)du

)
= exp

(
−
∫ v

0

1
s̄− u

du
)
= exp (ln(s̄− v)− ln(s̄)) =

(s̄− v)
s̄

.

Thus, (A.2) can be expressed as:

q(t,τ)(τ′, s) =
∫ s̄−s

0

(s̄− v)
s̄

(δ + γ(s + v)ψ(τ − v, t + v)) exp
(
−
∫ v

0
(r(t + u) + η) du

)
dv

+ exp
(
−
∫ s̄−s

0
(r(t + u) + η) du

)
s
s̄

ψ(τ′ − (s̄− s), t + s̄).

When we evaluate this expression at s = 0, τ′ = τ we have that q(ι, τ, t) ≡ q(t,τ)(τ, 0) and
thus equals:

∫ s̄

0

(
δ +

(s̄− v)
ψ(τ − v, t + v)

)
(s̄− v)

s̄
exp

(
−
∫ v

0
r(t + u) + ηdu

)
dv. (A.3)

After we replace γ(v) = 1
s̄−v we obtain:

q(ι, τ, t) =
∫ s̄

0

(
δ +

ψ(τ − v, t + v)
s̄− v

)
(s̄− v)

s̄
exp

(
−
∫ v

0
r(t + u) + ηdu

)
dv.

Rearranging terms gives the expression in the Proposition above.
Case 2. The proof in the second case runs parallel. The general solution to the PDE equation

in this case is,

q(t,τ)(τ′, s) =
∫ τ′

0
(δ + γ(s + v)ψ(τ − v, t + v)) exp

(
−
∫ v

0
(r(t + u) + η + γ(u)) du

)
dv

+ exp
(
−
∫ τ′

0
(r(t + u) + η + γ(u)) du

)
,

25Notice that we have directly replaced the value ψ(t,τ)(τ′, s) = ψ(τ − s, t + s).
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When we evaluate this expression at s = 0, τ′ = τ :

q(ι, τ, t) =
∫ τ

0

(
δ(s̄− v) + ψ(τ − v, t + v)

s̄

)
exp

(
−
∫ s

0
r(t + u) + ηdu

)
dv

+
(s̄− τ)

s̄
exp

(
−
∫ τ

0
r(t + u) + η)du

)
.

A.4 Limit Behavior of q(ι, τ, t)

Price with Zero Issuances. Consider the limit ι(τ, t) −→ 0 for any τ > 0. Then, s̄ −→ 0. The
relevant price equation is

lim
ι(τ,t)−→0

q(ι, τ, t) = lim
s̄−→0

∫ s̄
0 (δ(s̄− s) + ψ(τ − s, t + s)) exp

(
−
∫ s

0 r(t + u) + ηdu
)

ds
s̄

.

Now, both the numerator and the denominator, approach zero as we take the limits. Hence,
by L’Hôpital’s rule, the limit price is the limit of the ratio of derivatives. The derivative of the
numerator is obtained via Leibnitz’s rule and thus,

lim
ι(τ,t)−→0

q(ι, τ, t) = lim
s̄−→0

(δ(s̄− s) + ψ(τ − s, t + s)) exp
(
−
∫ s

0 r(t + u) + ηdu
)
|s=s̄

1

= lim
s̄−→0

ψ(τ − s̄, t + s̄) exp
(
−
∫ s̄

0
r(t + u) + ηdu

)
= ψ(τ, t).

The limit as orders reach infinity are, µ −→ ∞, then same limit property holds:

lim
µ−→∞

q(ι, τ, t) = ψ(τ, t).

Limit with Zero Orders. Consider the limit with zero orders, µ −→ 0. Then, for any finite
τ > 0, s̄ −→ ∞. Thus,

lim
µ−→0

q(ι, τ, t) = lim
s̄−→∞

∫ τ

0

(
δ(s̄− s) + ψ(τ − s, t + s)

s̄

)
exp

(
−
∫ s

0
r(t + u) + ηdu

)
ds

+ lim
s̄−→∞

(s̄− τ)

s̄
exp

(
−
∫ τ

0
r(t + u) + η)du

)
.

=
∫ τ

0
δ exp

(
−
∫ s

0
r(t + u) + ηdu

)
ds + exp

(
−
∫ τ

0
r(t + u) + η)du

)
.

This is the banker’s valuation of a bond held until maturity, which we denote ψ̃(τ, t).
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A.5 Linear Approximation to q(ι, τ, t)

In this section we proceed towards obtaining a linear approximation of q(ι, τ, t). First observe
that by definition of s̄, we have by the chain rule that:

∂q(ι, τ, t)
∂ι

=
∂q(ι, τ, t)

∂s̄
1
µ

.

Derivative q(ι, τ, t) with respect to ι. Consider the PDE corresponding to Case 1. The
derivative of the price function with respect to s̄ is given by

∂q(ι, τ, t)
∂s̄

=
∂

∂s̄

(∫ s̄
0 (δ(s̄− s) + ψ(τ − s, t + s)) exp

(
−
∫ s

0 r(t + u) + ηdu
)

ds
s̄

)

=
ψ(τ − s̄, t + s̄) exp

(
−
∫ s̄

0 (r(t + u) + η)du
)

s̄
− q(ι, τ, t)

s̄
.

Now consider the value of the derivative evaluated at zero ∂q(ι, τ, t)/∂ι|ι=0. Note the limits of
the three terms in the numerator are:

lim
s̄−→0

∫ s̄

0
δ exp

(
−
∫ s

0
r(t + u) + ηdu

)
ds = 0,

lim
s̄−→0

ψ(τ − s̄, t + s̄)) exp
(
−
∫ s̄

0
r(t + u) + ηdu

)
= ψ(τ, t),

lim
s̄−→0

q(ι, τ, t) = −ψ(τ, t),

respectively. Hence, the numerator converges to zero, as does the denominator of s̄. We employ
L’Hôspital’s rule to obtain the derivative of interest. The derivative of the denominator is 1.
Thus, we need to obtain the value of the following limit:

lim
s̄−→0

∂

∂s̄

(∫ s̄

0
δ exp

(
−
∫ s

0
r(t + u) + ηdu

)
ds + ψ(τ − s̄, t + s̄)) exp

(
−
∫ s̄

0
r(t + u) + ηdu

))
. . .− q(ι, τ, t).

Consider the limit of the derivative of the first two terms. Applying Leibnitz’s rule and passing
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the derivative inside the integral:

lim
s̄−→0

δ exp
(
−
∫ s̄

0
r(t + u) + ηdu

)
exp

(
−
∫ s̄

0
r(t + u) + ηdu

)
+ . . .

lim
s̄−→0

(
− ∂

∂τ
ψ(τ − s̄, t + s̄) +

∂

∂t
ψ(τ − s̄, t + s̄)− (r(t + s̄) + η)ψ(τ − s̄, t + s̄)

)
. . .

exp
(
−
∫ s̄

0
r(t + u) + ηdu

)
.

Taking limits s̄ −→ 0 we obtain

δ− ∂

∂τ
ψ(τ, t) +

∂

∂t
ψ(τ, t)− (r(t) + η)ψ(τ, t) = r(t)ψ(τ, t)− (r(t) + η)ψ(τ, t)

= −ηψ(τ, t),

where the first equality used the PDE of bond prices.
The limit of the second term is given by,

∂q(ι, τ, t)
∂s̄

|s̄=0 = µyss
∂q(ι, τ, t)

∂ι
|ι=0.

Hence, back into the L’Hôspital limit, we have that,

∂q(ι, τ, t)
∂ι

|ι=0 =
−ηψ(τ, t)− µyss

∂q(ι,τ,t)
∂ῑ |ι=0

µyss
.

Rearranging terms, we conclude with the term

∂q(ι, τ, t)
∂ι

|ι=0 = −ηψ(τ, t)
2µyss

.

First-Order Expansion. A first-order Taylor expansion around small emissions yields:

q(ι, τ, t) ' q(ι, τ, t)|ι=0 +
∂q(ι, τ, t)

∂ι
|ι=0ι.

With this, we show that λ̄ = −η/2µyss and χ (τ, t) = ψ(τ, t). This proves Proposition 1.
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B Discrete Commitment Problem

Define ∆ as an arbitrary time step. A Poisson event that changes X (t)—including the option
to default— ocurrs at the end (t, t + ∆] with probability P(∆)—the discrete analogue of the
Poisson event. This implies that the riskless-bond price within that intervale solves:

ψ(τ, t) =
∫ t+min(∆,τ)

t
e−r̄(s−t)δds + I[τ≤∆]e

−r̄τ

+ I[∆<τ]e
−r̄∆

[
P(∆)EX

t [Φ (V [ f (·, t + ∆, X (t))])ψ(τ, t + ∆)]

+(1− P(∆))ψ(τ, t + ∆)] (B.1)

The first two terms are deterministic because there are no shocks in that time frame. Applying
the Feynman-Kac formula produces a modified PDE for the bond pricing equation (B.1):

r̄ψ(τ, t) = δ +
∂ψ

∂t
− ∂ψ

∂τ
, if τ ∈ (0, T) (B.2)

ψ(0, t) = 1, if τ = 0,

ψ(τ, t + ∆) = P(∆)EX
t
[
Φ
(
V̂ [ f (·, t + ∆, X (t))]

)
ψ(τ, t + ∆)

]
+ (1− P(∆))ψ(τ, t + ∆), τ ∈ (0, T)

Let the expected value upon default be given by:

Γ (V [ f (·, t + ∆, X (t))]) = EX
t

[
VD|VD > V [ f (·, t + ∆, X (t))]

]
.

The solution to the PD problem is the Markov-Perfect Stackelberg Equilibrium defined as the
limit as ∆→ 0 of the family of ∆-PD problem’s.

With some abuse of notation define V (t) ≡ V [ f (·, t) , X (t)] and V̂ (t) ≡ V̂ [ f (·, t) , X (t)] is the
aggregate value functional of the problem, which depends on time through its dependence on
the distribution.

We now define the Government problem in that interval:

Problem 8 The ∆-PD problem is given by:

V̂ [ f (·, t) , X (t)] = max
{ι(·)}∈I

∫ t+∆

t
e−ρ(s−t)U (c (s)) ds

+ e−ρ∆ [P(∆) [Γ (V (t + ∆)) + V (t + ∆)Φ (V (t + ∆))]

+(1− P(∆))V̂ (t + ∆)
]

(B.3)
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subject to the law of motion of debt (2.1), the budget constraint (2.2) and the bond pricing equation (B.2).

The ∆-PD problem is defined over arbitrary finite-length interval (t, t+∆]. Default may only
happen at the end of the interval provided that Poisson jump arrived P(∆). If the option indeed
arrives, the continuation value is Γ (V (t + ∆)) + V (t + ∆) (t + ∆)Φ (V (t + ∆)) . The first term
isΓ (V (t + ∆)) is the expected value of a default option, which is of course, excecuted only if
the values of default exceed V(t + ∆). In turn, V (t + ∆) (t + ∆)Φ (V (t + ∆)) is the probability
that the option is not executed times the value of the deterministic problem. If the option has
not arrived, the value is V̂ (t + ∆).
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C Proofs

C.1 Proof of Proposition 2

First we construct a Lagrangian on the space of functionsg such that are square-intergrable,∥∥e−ρt/2g (τ, t)
∥∥2

< ∞. The Lagrangian, after replacing c(t) from the budget constraint, is:

L [ι, f ] =
∫ ∞

0
e−ρtU

(
y (t)− f (0, t) +

∫ T

0
[q (t, τ, ι) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+
∫ ∞

0

∫ T

0
e−ρt j (τ, t)

(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,

where j (τ, t) is the Lagrange multiplier associated to the law of motion of debt.
We consider a perturbation h (τ, t) , e−ρth ∈ L2 ([0, T]× [0, ∞)), around the optimal solution.

Since the initial distribution f0 is given, any feasible perturbation must have h (τ, 0) = 0. In
addition, we know that f (T, t) = 0 because f (T+, t) = 0 (by construction) and issuances are
infinitesimal. Thus, any admisible variation must feature h (T, t) = 0.

At an optimal solution f , the Lagrangian must satisfyL [ι, f ] ≥ L [ι, f + αh] for any pertur-
bation h(τ, t). Taking derivative with respecto to α —i.e., computing the Gâteaux derivative,
for any suitable h (τ, t) we obtain:

∂

∂�L [ι, f + αh]
∣∣∣∣
α=0

=
∫ ∞

0
e−ρtU′ (c)

[
−h (0, t)−

∫ T

0
δh (τ, t) dτ

]
dt

−
∫ ∞

0

∫ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt

+
∫ ∞

0

∫ T

0
e−ρt ∂h

∂τ
j (τ, t) dτdt.

We employ intergration by parts to show that:to note that:

∫ ∞

0
e−ρt

∫ T

0

∂h
∂τ

j (τ, t) dτdt =
∫ ∞

0
e−ρt[h (T, t) j (T, t)− h (0, t) j (0, t) dt−

∫ T

0
h(τ, t)

∂j
∂τ

dτ]dt,

and
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∫ ∞

0

∫ T

0
e−ρt ∂h

∂t
j (τ, t) dτdt =

∫ T

0

∫ ∞

0
e−ρt ∂h

∂t
j (τ, t) dtdτ

=
∫ T

0

(
lim
s→∞

e−ρs[h (τ, s) j (τ, s)]− h (τ, 0) j (τ, 0)
)

dτ

−
∫ T

0

∫ ∞

0
e−ρt

(
∂j (τ, t)

∂t
− ρj (τ, t)

)
h(τ, t)dtdτ

=
∫ T

0

(
lim
s→∞

e−ρs[h (τ, s) j (τ, s)]− h (τ, 0) j (τ, 0)
)

dτ −∫ ∞

0
e−ρt

∫ T

0

(
∂j (τ, t)

∂t
− ρj (τ, t)

)
h(τ, t)dτdt.

Replacing these calculations in the Lagrangian, and equating it to zero, yields:

0 =
∫ ∞

0
e−ρtU′ (c)

[
−h (0, t)−

∫ T

0
δh (τ, t) dτ

]
dt

+
∫ ∞

0

∫ T

0
e−ρt

(
−ρj− ∂j

∂τ
+

∂j
∂t

)
h (τ, t) dτdt

+
∫ ∞

0
e−ρt (h (T, t) j (T, t)− h (0, t) j (0, t)) dt

−
∫ ∞

0
lim
s→∞

e−ρsh (τ, s) j (τ, s) dτ.

We rearrange terms to obtain:

0 = −
∫ ∞

0
e−ρt [U′ (c)− j (0, t)

]
h (0, t) dt

+
∫ ∞

0

∫ T

0
e−ρt

(
−ρj−U′ (c) δ− ∂j

∂τ
+

∂j
∂t

)
h (τ, t) dτdt

−
∫ ∞

0
e−ρt (h (T, t) j (T, t)) dt

−
∫ ∞

0
lim
s→∞

e−ρsh (τ, s) j (τ, s) dτ.

Since, h (T, t) = 0 is a condition for an admisible control, then, the term is zero. Since the
condition is required for any control, then all terms multiplying the non-zero terms in h(τ, t) =
0. This yields a system of necessary conditions for the Lagrangian multipliers.

ρj (τ, t) = −δU′ (c (t)) +
∂j
∂t
− ∂j

∂τ
, if τ ∈ (0, T] (C.1)

j (0, t) = −U′ (c (t)) , if τ = 0,

lim
t→∞

e−ρt j (τ, t) = 0.
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Next, we perturb the control. We proceed in a similar fashion :

∂
∂αL [ι + αh, , f ]

∣∣∣
α=0

=
∫ ∞

0
e−ρtU′ (c)

[∫ T

0

(
∂q
∂ι

ι (τ, t) + q (t, τ, ι, f )
)

h (τ, t) dτ

]
dt

+
∫ ∞

0

∫ T

0
e−ρth (τ, t) j (τ, t) dτdt.

Collecting terms and setting the Lagrangian to zero, we obtain:

∫ ∞

0

∫ T

0
e−ρt

(
j (τ, t) + U′ (c)

[(
∂q
∂ι

ι (τ, t) + q (t, τ, ι, f )
)

h (τ, t) dτ

])
dt.

Thus, setting the term in parenthesis to zero, amounts to setting:

U′ (c)
(

∂q
∂ι

ι (τ, t) + q (t, τ, ι, f )
)
= −j (τ, t) .

Next, we define the Lagrangian multiplier in terms of goods:

v (τ, t) = −j (τ, t) /U′ (c (t)) . (C.2)

Taking the derivative of v (τ, t) with respect to t and τ we can express the necessary conditions
in terms of v. In particular, we transform the PDE equation (D.1) into the summary equations
in the Propositions. That is:

(
ρ− U′′ (c (t))

U′ (c (t))
c (t)

ċ(t)
c (t)

)
v (τ, t) = δ +

∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, ∞),

v (0, t) = 1, if τ = 0,

lim
t→∞

e−ρtv (τ, t) = 0,

and the first-order condition, (C.2), is

∂q
∂ι

ι (τ, t) + q (t, τ, ι, f ) = v (τ, t) .

C.2 Proof of Proposition 3

The first part of the proof is just a direct consequence of the first-order condition v (τ, t) =

−ψ (τ, t). Bond prices are given by (3.1) while the Government valuations still given by (3.7).
Since both equations must be equal in a bounded solution, we conclude that

r̄ (t) = r(t) = ρ− U
′′ (c (t))
U ′ (c (t))

dc
dt

,
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must describe the dynamics of consumption.
The second part of the proof derives the law of motion of b(t). First we take the derivative

with respect to time at both sides of definition (3.8):

ḃ (t) = −
∫ T

0
(ψt(τ, t) f (τ, t) + ψ(τ, t) ft (τ, t))dτ.

Next, we substitute out for ι (τ, t) from (??) using (??) to express the budget constraint in terms
of f .

c (t) = y (t)− f (0, t) +
∫ T

0
ψ(τ, t)

(
∂ f
∂t
− ∂ f

∂τ

)
− δ f (τ, t) dτ. (C.3)

Next, apply integration by parts to the following expression:

∫ T

0
ψ(τ, t)

∂ f
∂τ

dτ = ψ(T, t) f (T, t)− ψ(0, t) f (0, t)−
∫ T

0
ψτ(τ, t) f (τ, t) dτ.

Observe that f (T, t) = 0 as long as the solution is smooth. Also, recall that by construction
ψ(0, t) = 1. Hence:

∫ T

0
ψ(τ, t)

∂ f
∂τ

dτ = − f (0, t)−
∫ T

0
ψτ(τ, t) f (τ, t) dτ.

The next step uses (??) and substitutes ψτ(τ, t) out of the expression above. We obtain:

∫ T

0
ψ(τ, t)

∂ f
∂τ

dτ = − f (0, t)−
∫ T

0
(δ + ψt(τ, t)− r(t)ψ(τ, t)) f (τ, t) dτ.

We substitute this expression into (C.3), and thus:

c(t) =y (t)− f (0, t) +
∫ T

0
ψ(τ, t)

∂ f
∂t
− δ f (τ, t) dτ...

− (− f (0, t)−
∫ T

0
(δ + ψt(τ, t)− r(t)ψ(τ, t)) f (τ, t) dτ)

=y (t) +
∫ T

0
ψ(τ, t) ft (τ, t) + ψt(τ, t) f (τ, t) dτ −

∫ T

0
r̄(t)ψ(τ, t) f (τ, t) .

Rearraging terms and employing the defintions above, we obtain:

ḃ (t) = y (t)− c(t) + r̄(t)b(t),

as desired.
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C.3 Proof of Proposition 3

Here we proof a more detailed version of Propositions 3. The full proposition is:

Proposition 14 Consider a steady state for the exogenous variables. Then, there exists a steady state
in problem PF if and only if λ̄ > λ̄o for some λ̄o. If instead, λ̄ ≤ λ̄o, there is no steady state but
consumption evolves asymptotically. In particular, the assymptotic behavior of the PF problem is:

Case 1 (High Liquidity Costs). For liquidity costs above the threshold valueλ̄ > λ̄o, variables
converge to a steady state characterized by the following system:

ċss

css
= 0

rss = 0

vss(τ) =
δ

ρ
(1− e−ρτ) + e−ρτ

ιss(τ) =
ψ(τ)− vss(τ)

λ̄χ (τ)

fss(τ) =
∫ T

τ
ιss(s)ds

css = y− fss(0) +
∫ T

0

[
ιss(τ)ψ(τ)−

λ̄χ (τ)

2
ιss(τ)

2 − δ fss(τ)

]
dτ. (C.4)

Case 2 (Low Liquidity Costs). For liquidity costs below the threshold value 0 < λ̄ ≤ λ̄o, variables
converge assymptotically to:

limT→∞
c(T)
c(t)

= e−
(ρ−r∞(λ̄))(T−t)

σ

v∞(τ, r∞(λ̄)) = −δ(1− e−r∞(λ̄)τ) + e−r∞(λ̄)τ

ι∞(τ, r∞(λ̄)) =
ψ(τ)− v∞(τ, r∞(λ̄))

λ̄χ (τ)

f∞(τ, , r∞(λ̄)) =
∫ T

τ
ι∞(s, r∞(λ̄))ds

and r∞(λ̄) satisfies r̄ ≤ r∞(λ̄) < ρ and solves:

c∞ = 0

= yss − f∞(0, , r∞(λ̄)) +
∫ T

0

[
ι∞(τ, r∞(λ̄))ψ(τ)− λ̄χ (τ, t)

2
ι∞(τ, r∞(λ̄))2 − δ f∞(τ, r∞(λ̄))

]
dτ.

Threshold. The threshold λ̄o solves |css|λ̄=λ̄o
= 0 in (C.4) and limλ̄→λ̄0

r∞(λ̄) = ρ.

First observe that as λ̄→ ∞, the optimal issuance policy (3.10) approaches ι(τ, t) = 0. Thus,
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for that limit, css = y > 0 and fss(τ) = 0. Next, consider the system in Case 1 of ??.

ιss(τ) =
ψ(τ)− vss(τ)

λ̄χ (τ)
, (C.5)

vss(τ) =
δ

ρ
(1− e−ρτ) + e−ρτ (C.6)

fss(τ) =
∫ T

τ
ιss(s)ds (C.7)

css = yss − fss(0) +
∫ T

0

[
ψss(τ)ιss(τ)−

λ̄χ (τ)

2
ιss(τ)

2 − δ fss(τ)

]
. (C.8)

The system is conitunuous in λ̄ and by continuity there exists a solution to css > 0, ιss > 0 and
fss > 0 — as long as ρ > r then vss(τ) > ψ(τ), and then thusċ(t) = 0 we have

rss ≡ r(t) = ρ.

Next, we proof that css decreases with λ̄ decreases. Observe that, steady state internal valua-
tions vss(τ) in (C.6) and bond prices ψ(τ) are independent of λ̄. As steady state debt issuances
ιss(τ) (C.5) are a monotonously decreasing function of λ̄:

∂ιss (τ)

∂λ̄
= − 1

λ
ιss (τ) < 0,

then the total amount of debt at each maturity fss(τ) in (C.7) is also decreasing with λ̄:

∂ fss (τ)

∂λ̄
== − 1

λ
fss (τ) < 0.

If we take derivatives with respect to λ̄ in the budget constraint (C.8) to obtain

∂css

∂λ̄
=

∂ fss (0)
∂λ̄

+
∫ T

0

[
ψ(τ)

∂ιss (τ)

∂λ̄
− χ (τ)

2
ιss(τ)

2 − λ̄χ (τ) ιss (τ)
∂ιss (τ)

∂λ̄
− δ

∂ fss (τ)

∂λ̄

]
dτ

= − 1
λ

fss (0)−
1
λ

∫ T

0

[
ψ(τ)ιss (τ) + λ

χ (τ)

2
ιss(τ)

2 − λχ (τ) ιss (τ)
2 − δ fss (τ)

]
dτ

= − 1
λ

css < 0.

Third, observe that ιss (τ) can be made arbitrarilly large by increasing λ̄. Thus, there exist a
value of λ̄ ≥ 0 such that css = 0 in the system above. We denote this value by λ̄0. For λ̄ ≤ λ̄0, if a
steady state exists, it would imply css < 0, outside of the range of admissible values. Therefore,
there is no steady state in this case.

Assume the economy grows asymptotically at rate g∞
(
λ̄
)
≡ limt→∞

1
c(t)

dc
dt . If g∞

(
λ̄
)
>

0 then consumption would grow to infinity, which violates the budget constraint. Thus, if
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there exists an assymptotic the growth rate, it is negative: g∞
(
λ̄
)
< 0. If we define r∞

(
λ̄
)
≡(

ρ + γg∞
(
λ̄
))

< ρ, the growth rate of the economy can be expressed as

g∞
(
λ̄
)
= −

(
ρ− r∞

(
λ̄
))

γ
.

When this is the case, the assymptotic valuation is

v∞
(
τ, r∞

(
λ̄
))

=
δ
(

1− e−r∞(λ̄)τ
)

r∞
(
λ̄
) + e−r∞(λ̄)τ.

To obtain the discount factor bounts, observe that if
∣∣v∞

(
τ, r∞

(
λ̄
))∣∣ ≤ ψ (τ) the optimal is-

suance is non-negative. Otherwise issuances would be negative at all maturities and the coun-
try would be an asymptotic net debt holder. This cannot an optimal solution as this implies
that consumption can be increased just by reducing the amount of foreign assets. Therefore,
r∞
(
λ̄
)
≥ r̄.

C.4 Proof of Proposition 5

Consider the following limit:

ι∗∞(τ) = lim
λ̄→0

ι∞(τ, r∞(λ̄)) = lim
λ̄→0

ψ(τ)− v∞(τ, r∞(λ̄))

λ̄χ (τ)

= lim
λ̄→0

1
λ̄χ (τ)

δ (1− e−r̄τ)

r̄
−

δ
(

1− e−r∞(λ̄)τ
)

r
+ e−r̄τ − e−r∞(λ̄)τ

 .

This is a limit of the form 0
0 as limλ̄→0 r∞(λ̄) = r̄. We do not have an expression for r∞(λ̄), so

we cannot apply L’Hôpital’s rule directly. Instead, we compute the following limit:

lim
λ̄→0

ι∞(τ, r∞(λ̄))

ι∞(T, r∞(λ̄))
= lim

r∞(λ̄)→r̄

δ(1−e−r̄τ)
r̄ − δ(1−e−r∞(λ̄)τ)

r + e−r̄τ − e−r∞(λ̄)τ

δ(1−e−r̄T)
r̄ − δ(1−e−r∞(λ̄)T)

r + e−r̄T − e−r∞(λ̄)T

χ (T)
χ (τ)

,

which also has a limit of the form 0
0 . Now we can apply L’Hôpital’s. We obtain:

lim
λ̄→0

ι∞(τ, r∞(λ̄))

ι∞(T, r∞(λ̄))
=

−δr̄τe−r̄τ+δ(1−e−r̄τ)
r̄2 + τe−r̄τ

−δr̄Te−r̄T+δ(1−e−r̄T)
r̄2 + Te−rT

χ (T)
χ (τ)

=
1 + [−1 + (r̄/δ− 1) r̄τ] e−r̄τ

1 + [−1 + (r̄/δ− 1) r̄T] e−r̄T
χ (T)
χ (τ)

.

If we define κ ≡ limλ̄→0 ι∞(T, r∞(λ̄)) and thuslimλ̄→0 ι∞(τ, r∞(λ̄)) = 1+[−1+(r̄/δ−1)r̄τ]e−r̄τ

1+[−1+(r̄/δ−1)r̄T]e−r̄T
χ(T)
χ(τ)

κ.
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The value ofκthen must be consistent with zero consumption:

y− f ∗∞(0) +
∫ T

0
[ι∗∞ (τ)ψ(τ)− δ f ∗∞(τ)] dτ = 0,

for f∞(τ) =
∫ T

τ ι∗∞ (s) ds.
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C.5 Proof of Proposition 7

To compute the dynamics of ι [ f (·, t) , X (t)] we employ dynamic programming. The value
functional before the shock arrives is

V̂ [ f (·, t) , X (t)] = max
{ι̂(·)}∈I

Et

[∫ to

t
e−ρ(s−t)U (ĉ (s)) ds + e−ρ(to−t)EX

to [V [ f (·, to) , X (to)]]

]
.

If we are explicit about the arrival time distribution of the shock, the value function can be
expressed as:

V̂ [ f (·, t) , X (t)] = max
{ι̂(·)}∈I

∫ ∞

t
e−ρ(s−t)

[
e−φ(s−t)U (ĉ (s)) +

(
1− e−φ(s−t)

)
EX

s [V [ f (·, s) , X (s)]]
]

ds.

Note that e−φ(s−t) is the probability that the shock arrives later that times conditional on not
having arrived at time t. If we apply Bellman’s Principle of Optimality, for an arbitrary t′ > t,
the value functional can be expressed recursively through:

V̂ [ f (·, t) , X (t)] = max
{ι̂(·)}∈I

∫ t′

t
e−ρ(s−t)

[
e−φ(s−t)U (ĉ (s)) +

(
1− e−φ(s−t)

)
EX

s [V [ f (·, s) , X (s)]]
]

ds

+e−ρ(t′−t)
[
e−φ(t′−t)V̂

[
f
(
·, t′
)

, X
(
t′
)]

+
(

1− e−φ(t′−t)
)

EX
t′
[
V
[

f
(
·, t′
)

, X
(
t′
)]]]

.

Then we take the derivative with respect to t′on both sides, and then the limit t′ → t:

0 = max
{ι(·)}∈I

U (ĉ (t))− (ρ + φ)V̂ [ f (·, t) , X (t)]

+
1
dt

dV̂ [ f (·, t) , X (t)] + (−ρ + (ρ + φ))EX
t [V [ f (·, t) , X (t)]] .

Rearranging terms we arrive at:

ρV̂ [ f (·, t) , X (t)] = max
{ι(·)}∈I

U (ĉ (t)) +
1
dt

dV̂ [ f (·, t) , X (t)] (C.9)

+ φ
[
EX

t [V [ f (·, t) , X (t)]]− V̂ [ f (·, t) , X (t)]
]

. (C.10)

We work with the HJB (C.9) in the space of functions L2 ([0, T) . In order to compute the deriva-
tive 1

dt dV̂ [ f (·, t) , X (t)] we need to be able to compute the Gâteaux derivative of V with respect
to f in an arbitrary direction h (τ, t) ∈ L2 ([0, T]). Notice the abuse of notation as t is now an
index identifying the point in time at which the HJB (C.9) is evaluated. If V̂ is Fréchet derivable
with respect to f then the Gâteaux derivative is a linear functional on h. The Riesz Represen-
tation Theorem allows us to represent any linear functional as an inner product and hence the
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Gâteaux derivative with respect to f :

∂

∂α
V̂ [ f (·, t) + αh, X(t)]

∣∣∣∣
α=0

=
∫ T

0

δV̂
δ f

h (τ, t) dτ (C.11)

where δV̂
δ f (τ, t, , X (t)) ∈ L2 ([0, T]× [0, ∞)×R)is a function. Applying the definition of deriva-

tive and the chain rule, the derivative 1
dt dV̂ [ f (·, t) , X (t)]can be expressed as

1
dt

dV̂ [ f (·, t) , X(t)] =
∂

∂α
V̂
[

f (·, t) + α
∂ f (·, t)

∂t
, X(t)

]∣∣∣∣
α=0

+
∂V̂
∂X

dX
dt

,

Combining this expression with the previous result, we obtain

1
dt

dV̂ [ f (·, t) , X(t)] =
∫ T

0

δV̂
δ f

∂ f (·, t)
∂t

dτ +
∂V̂
∂X

dX
dt

.

The HJB (C.9) can thus be expressed as

ρV̂ [ f (·, t) , X (t)] = max
{ι(·)}∈I

U (ĉ (t)) +
∫ T

0

δV̂
δ f

∂ f (·, t)
∂t

dτ +
∂V̂
∂X

dX
dt

(C.12)

+φ
[
EX

t [V [ f (·, t) , X (t)]]− V̂ [ f (·, t) , X (t)]
]

(C.13)

= max
ι(·,t)
U
(

y (t)− f (0, t) +
∫ T

0
[q̂ (τ, t, ι̂) ι̂ (τ, t)− δ f (τ, t)] dτ

)
+
∫ T

0

δV̂
δ f

(
ι̂ (τ, t) +

∂ f
∂τ

)
dτ +

∂V̂
∂X

dX
dt

+φ
[
EX

t [V [ f (·, t) , X (t)]]− V̂ [ f (·, t) , X (t)]
]

. (C.14)

where we substituted consumption out using the budget constraint and used the KFE to sub-
stitute out ∂ f /∂t. The first-order condition with respect to ι̂(τ, t) can be obtained by computing
the Gâteaux derivative in (C.12) with respect to the control:

0 =
∂

∂α
U
(

y (t)− f (0, t) +
∫ T

0
[q̂ (τ, t, ι̂(τ, t) + αh(τ, t)) (ι̂(τ, t) + αh(τ, t))− δ f (τ, t)] dτ

)∣∣∣∣
α=0

+
∂

∂α

∫ T

0

δV̂
δ f

(
ι̂(τ, t) + αh(τ, t) +

∂ f
∂τ

)
dτ

∣∣∣∣
α=0

,

and

0 = U ′ (ĉ (t))
[∫ T

0

(
∂q̂
∂ι̂

ι̂ (τ, t) + q̂ (τ, t, ι)

)
h (τ, t) dτ

]
dt

+
∫ T

0

δV̂
δ f

h (τ, t) dτ.
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Because, the Gâteaux derivative should be zero for any direction h (τ, t) ∈ L2 ([0, T]), the first-
order condition is equivalent to:

U ′ (ĉ (t))
(

∂q̂
∂ι̂

ι̂ (τ, t) + q̂ (τ, t, ι)

)
= −δV̂

δ f
(τ, t, X(t)) .

If we define

ĵ (τ, t) ≡ δV̂
δ f

(τ, t, X(t)) . (C.15)

Then the first-order condition results

U ′ (ĉ (t))
(

∂q̂
∂ι

ι̂ (τ, t) + q̂ (τ, t, ι)

)
= − ĵ (τ, t) . (C.16)

Next, we compute Gâteaux derivatives with respect to f in the HJB equation (C.12) applying
the Envelope Theorem:

ρ
∂

∂α
V̂ [ f (·, t) + αh (·, t) , X (t)]

∣∣∣∣
α=0

=

+
∂

∂α
U
(

y (t)− ( f (0, t) + αh (0, t)) +
∫ T

0
[qι̂− δ ( f + αh)] dτ

)∣∣∣∣
α=0

+
∂

∂α

∫ T

0

δV̂
δ ( f + αh)

(
ι̂ +

∂ ( f + αh)
∂τ

)
dτ

∣∣∣∣
α=0

+
∂

∂α

∂V̂
∂X

[ f (·, t) + αh (·, t) , X (t)]
∣∣∣∣
α=0

dX
dt

+φ
∂

∂α

[
EX

t [V [ f + αh, X (t)]]− V̂ [ f + αh, X (t)]
]∣∣∣∣

α=0
.

Applying the Riesz Representation Theorem, we can express the Gâteaux derivatives as

∂

∂α
V̂ [ f (·, t) + αh, X(t)]

∣∣∣∣
α=0

=
∫ T

0

δV̂
δ f

h (τ, t) dτ,

∫ T

0

∂

∂α

δV̂ [ f (τ′, t) + αh (τ′, t) , X(t)]
δ f (τ, t)

∣∣∣∣
α=0

(
ι̂ +

∂ f
∂τ

)
dτ =∫ T

0

[∫ T

0

δ2V̂
δ f 2

(
τ, τ′, t, X(t)

)
h
(
τ′, t

)
dτ′
] (

ι̂ (τ, t) +
∂ f
∂τ

(τ, t)
)

dτ,

∫ T

0

δV̂
δ f

∂

∂α

(
ι̂ +

∂ ( f + αh)
∂τ

)∣∣∣∣
α=0

dτ =
∫ T

0

δV̂
δ f

∂h
∂τ

(τ, t) dτ,
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∂

∂α

∂V̂
∂X

[ f (·, t) + αh (·, t) , X (t)]
∣∣∣∣
α=0

=
∫ T

0

∂

∂X

(
δV̂
δ f

)
h (τ, t) dτ,

∂

∂α

[
EX

t [V [ f + αh, X (t)]]− V̂ [ f + αh, X (t)]
]∣∣∣∣

α=0
=
∫ T

0

(
EX

t

[
δV
δ f

]
− δV̂

δ f

)
h (τ, t) dτ.

The term
∫ T

0
δ2V
δ f 2 (τ, τ′, t, X(t)) h (τ′, t) dτ′ is the second Gâteaux derivative of V. There is a map-

ping between this term and ∂ ĵ
∂t , where ĵ has been defined in (C.15):

∂ ĵ
∂t

=
∂

∂t
δV̂
δ f

=
∂

∂α

δV̂
δ f

[
f (·, t) + α

∂ f (·, t)
∂t

, X(t)
]∣∣∣∣

α=0
+

∂

∂X

(
δV̂
δ f

)
dX
dt

=
∫ T

0

δ2V̂
δ f 2

∂ f
∂t

dτ ++
∂ ĵ
∂X

dX
dt

=
∫ T

0

δ2V̂
δ f 2

(
ι̂ (τ, t) +

∂ f
∂τ

(τ, t)
)

dτ +
∂ ĵ
∂X

dX
dt

.

Collecting terms and replacing δV̂
δ f by ĵ, the derivative with respect to f results in:

ρ
∫ T

0
ĵ (τ, t) h (τ, t) dτ = U ′ (ĉ (t))

[
−h (0, t)−

∫ T

0
δh (τ, t) dτ

]
+

∫ T

0

(
∂ ĵ
∂t

+ ĵ (τ, t)
∂h
∂τ

)
dτ

+ φ
∫ T

0

(
EX

t

[
δV
δ f

]
− ĵ (τ, t)

)
h (τ, t) dτ.

Defining ĵ (τ, t, X(t)) ≡ δV
δ f (τ, t, X(t)) and integrating by parts we obtain

ρ
∫ T

0
ĵ (τ, t) h (τ, t) dτ = U ′ (ĉ (t))

[
−h (0, t)−

∫ T

0
δh (τ, t) dτ

]
+

∫ T

0

(
∂ ĵ
∂t
− ∂ ĵ

∂τ

)
h (τ, t) dτ + ĵ (T, t) h (T, t)− ĵ (0, t))h (0, t)

+ φ
∫ T

0

(
EX

t [j (τ, t)]− ĵ (τ, t)
)

h (τ, t) dτ.

Because, f (T, t) = 0 then the directions h are forced to have h (T, t) = 0. As the Gâteaux
derivative should be zero for any direction h (τ, t):
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ρ ĵ (τ, t) = −δ U ′ (ĉ (t)) + ∂ ĵ
∂t
− ∂ ĵ

∂τ
+ φ

(
EX

t [j (τ, t)]− ĵ (τ, t)
)

, if τ ∈ (0, T] (C.17)

ĵ (0, t) = −U ′ (ĉ (t)) , if τ = 0.

Finally, if we define the variables

v (τ, t) = −j (τ, t) /U ′ (c (t)) ,

v̂ (τ, t) = − ̂ (τ, t) /U ′ (ĉ (t)) ,

the PDE equation (C.17) results in(
ρ− U

′′ (ĉ (t))
U ′ (ĉ (t))

dĉ
dt

)
v̂ (τ, t) = δ+

∂v̂
∂t
− ∂v̂

∂τ
+ φ

(
U ′ (ĉ (t))
U ′ (ĉ (t))EX

t [v (τ, t)]− v̂ (τ, t)
)

, if τ ∈ (0, ∞),

v̂ (0, t) = 1, if τ = 0,

and the first-order condition is

∂q̂
∂ι̂

ι̂ (τ, t) + q̂ (τ, t, ι̂) = v̂ (τ, t) .
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A. Proof of Proposition ??

The proof has three steps. We first solve the problem where the Government commits to a debt
schedule and cannot default within a ∆ time interval. In that sense, we solve a problem with
commitment within an arbitrary interval (t, t + ∆]. Then we take the limit as ∆→ 0. Finally we
employ dynamic programming to obtain the value of the value functional V [ f (·, t)].

Before any further steps, we recall that the Gâteaux derivative of the value functions before
and after the default event arrives, can be expressed as we did in equation (C.11) in the proof
of the model with risk,

∂

∂α
V [ f (·, t) + αh (·, t)]|α=0 =

∫ T

0

δV
δ f

(τ, t) h (τ, t) dτ, (C.18)

∂

∂α
V̂ [ f (·, t) + αh (·, t)]

∣∣
α=0 =

∫ T

0

δV̂
δ f

(τ, t) h (τ, t) dτ, (C.19)

where
{

δV̂
δ f (τ, t) , δV̂

δ f (τ, t)
}
∈ L2 ([0, T]× [0, ∞)) . We employ these expressions multiple times

in the steps that follow.

Step 1. Withing Commitment Interval Problem

Assume first that the time interval [0, ∞) is divided in subintervals [0, ∆]∪ (∆, 2∆]∪ (2∆, 3∆]∪
... Shocks arrive at the beginning of each interval —except at time t = 0. Default can be trig-
gered only at the instant when the shock arrives.

The probability of receiving the shock within an interval (t, t + ∆] conditional on not hav-
ing received it in the past is

(
1− e−φ∆) . The expected value functional is Γ

(
V̂ [ f (·, t + ∆)]

)
+

V [ f (·, t + ∆)]Φ
(
V̂ [ f (·, t + ∆)]

)
. The first term is the portion corresponding to default states

Γ
(
V̂ [ f (·, t + ∆)]

)
. The second, the portion corresponding to no default, V [ f (·, t + ∆)].

The Government solves a commitment problem within each subinterval. The solution pro-
cedure to the discrete commitment problem follows the same lines as in the perfect foresight
case, because there are no shocks within the interval. The Lagrangian is:

L
[
ι, f , ψ̂

]
=

∫ t+∆

t
e−ρ(s−t)U (c (t)) ds

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) ĵ (τ, s)

(
−∂ f

∂s
+ ι (τ, s) +

∂ f
∂τ

)
dτds

+
∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s)

(
−r̄ψ̂(τ, s) + δ +

∂ψ̂

∂s
− ∂ψ̂

∂τ

)
dτds

+ e−ρ∆
(

1− e−φ∆
) [

Γ
(
V̂ [ f (·, t + ∆)]

)
+ V [ f (·, t + ∆)]Φ

(
V̂ [ f (·, t + ∆)]

)]
+ e−ρ∆e−φ∆V̂ [ f (·, t + ∆)] .

Here ĵ (τ, t) and µ (τ, t) are the Lagrange multipliers associated with the law of motion of debt
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(2.1), as before, and with the bond price equation (??). Note that the only difference is that
the Government carries the law of motion for prices as a constraint. The reason is that the
Government knows that by controlling the state, it influences the chances of default, and thus,
influences prices. This happens through the terminal condition,

ψ̂ (τ, t + ∆) =
[(

1− e−θ∆
)

Φ
(
V̂ [ f (·, t + ∆)]

)
+ e−θ∆

]
ψ (τ, t + ∆) , (C.20)

ψ̂ (0, s) = 1.

The terminal condition reflects that after a the arrival of a default option the bond price is zero
if default occurs or the perfect foresight price ψ (τ, t), if default does not occur.

As an intermediate step, integrate by parts the terms that involve time or maturity deriva-
tives of f and ψ̂. We otain the following terms:

−
∫ t+∆

t

∫ T

0
e−ρ(s−t) ∂ f

∂s
ĵ (τ, s) dτds = −

∫ T

0
e−ρ∆ f (τ, t + ∆) ĵ (τ, t + ∆) dτ (C.21)

+
∫ T

0
f (τ, t) ĵ (τ, t) dτ

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) f (τ, s)

(
∂ ĵ(τ, s)

∂s
− ρ ĵ(τ, s)

)
dτds.

For this we exchanged the limits of integration, integrated by parts with respect to time, and
reversed the order of limits again. We proceed in the same way with the following term:

∫ t+∆

t

∫ T

0

∂ f
∂τ

ĵ (τ, s) dτds =
∫ t+∆

t
e−ρ(s−t) f (T, s) ĵ (T, s) ds (C.22)

−
∫ t+∆

t
e−ρ(s−t) f (0, s) ĵ (0, s) ds

−
∫ t+∆

t

∫ T

0
e−ρ(s−t) f (τ, s)

∂ ĵ(τ, s)
∂τ

dτds.

For the price Lagrange multipliers we have:

∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s)

∂ψ̂

∂s
dτds =

∫ T

0

[
e−ρ∆µ (τ, t + ∆) ψ̂ (τ, t + ∆)

]
dτ (C.23)

−
∫ T

0
µ (τ, t) ψ̂ (τ, t) dτ

−
∫ t+∆

t

∫ T

0
e−ρtψ̂ (τ, s)

(
∂µ (τ, s)

∂s
− ρµ (τ, s)

)
dτds,
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and

−
∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s)

(
∂ψ̂

∂τ

)
dτds = −

∫ t+∆

t
e−ρ(s−t)µ (T, s) ψ̂ (T, s) (C.24)

+ e−ρtµ (0, s) ψ̂ (0, s)

+
∫ t+∆

t

∫ T

0
e−ρtψ̂ (τ, s)

∂µ

∂τ
dτds.

These 12 terms appear in two of the integrals. Hence, we expand the Langrangean and use the
expressions to later on connect terms. We also, use the terminal conditions for prices and mass
of debt are f (T, s) = 0.

We substitute both (C.21-C.24) and the terminal conditions into the Lagrangian :
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L
[
ι, f , ψ̂

]
=

∫ t+∆

t
e−ρ(s−t)U (c (t)) ds

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) ĵ (τ, s) ι (τ, s) dτds

+
∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s) (δ− r̄ψ(τ, s)) dτds

−
∫ T

0
e−ρ∆ f (τ, t + ∆) ĵ (τ, t + ∆) dτ

+
∫ T

0
f (τ, t) ĵ (τ, t) dτ

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) f (τ, s)

(
∂ ĵ(τ, s)

∂s
− ρ ĵ(τ, s)

)
dsdτ

+
∫ t+∆

t
e−ρ(s−t) f (T, s) ĵ (T, s) ds

−
∫ t+∆

t
e−ρ(s−t) f (0, s) ĵ (0, s) ds

−
∫ t+∆

t

∫ T

0
e−ρ(s−t) f (τ, s)

∂ ĵ(τ, s)
∂τ

dτds

+
∫ T

0
e−ρ∆µ (τ, t + ∆)

[(
1− e−φ∆

)
Φ
(
V̂ [ f (·, t + ∆)]

)
+ e−φ∆

]
ψ (τ, t + ∆) dτ

−
∫ T

0
µ (τ, t) ψ̂ (τ, t) dτ

−
∫ t+∆

t

∫ T

0
e−ρtψ̂ (τ, s)

(
∂µ (τ, s)

∂s
− ρµ (τ, s)

)
dτds

−
∫ t+∆

t
e−ρ(s−t)µ (T, s) ψ̂ (T, s) ds

+
∫ t+∆

t
e−ρtµ (0, s) ds

+
∫ t+∆

t

∫ T

0
e−ρtψ̂ (τ, s)

∂µ

∂τ
dτds.

+ e−ρ∆
(

1− e−φ∆
) [

Γ
(
V̂ [ f (·, s + ∆)]

)
+ V [ f (·, t + ∆)]Φ

(
V̂ [ f (·, t + ∆)]

)]
+ e−ρ∆e−φ∆V̂ [ f (·, t + ∆)] .

Next, we compute the Gâteaux derivatives with respect to each of the three arguments of the
value function at a time.

Gâteaux derivative of the issuances. First, we consider a perturbation around issuances:
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∂

∂α
L
[
ι(τ, t) + αh(τ, s), f , ψ̂

]∣∣
α=0

=
∂

∂α

[∫ t+∆

t
e−ρ(s−t)U

(
ĉ(t) +

∫ T

0

(
ψ̂(τ, s) + λ (τ, ι)

)
αh(τ, s))dτ

)
ds

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) ĵ (τ, s) (ι (τ, s) + αh(τ, s))dτds

]∣∣∣∣∣
α=0

.

Note that we ommited the terms in the Lagrangean where the perturbation does not appear.
Passing limits inside the integrals to compute derivatives we obtain:

∫ t+∆

t
e−ρ(s−t)

∫ T

0
(U ′ (ĉ(t))

(
ψ̂(τ, s) + λ (τ, ι)

)
+ ĵ (τ, s))h(τ, s))dτds.

The Gâteaux derivative should be zero for any suitable h (τ, t). Thus, we obtain the first-order
condition, that we obtain in the previous problems:

U ′ (ĉ(t))
(

∂q
∂ι

ι (τ, t) + q (τ, ι, f )
)
= − ĵ (τ, t) . (C.25)

or more conveniently:

ι (τ, t) =
−
(
q (τ, ι, f ) + ĵ (τ, t)

)
/U ′ (ĉ(t))

∂q
∂ι

Gâteaux derivative of the debt density. Since the distribution at the beginning of the in-
terval f (τ, t) is given, any feasible perturbation must feature h (τ, t) = 0 for any τ ∈ [0, T].
In addition, we know that h (T, s) = 0, and s ∈ (t, t + ∆], because f (T, s) = 0. The Gâteaux
derivative of the Lagrangian with respect to the debt density is:
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∂

∂α
L
[
ι, f (τ, t) + αh(τ, t), ψ̂

]∣∣
α=0

=
∂

∂α

[∫ t+∆

t
e−ρ(s−t)U

(
ĉ(t)− h (0, s)− δ

∫ T

0

(
ψ̂(τ, s) + λ (τ, ι)

)
αh (τ, s) dτ

)
ds

−
∫ T

0
e−ρ∆ ( f (τ, t + ∆) + αh (τ, t + ∆)) ĵ (τ, t + ∆) dτ

+
∫ T

0
( f (τ, t) + αh (τ, t)) ĵ (τ, t) dτ

+
∫ t+∆

t

∫ T

0
e−ρ(s−t) ( f (τ, s) + αh(τ, s))

(
∂ ĵ(τ, s)

∂s
− ρ ĵ(τ, s)

)
dsdτ

+
∫ t+∆

t
e−ρ(s−t) ( f (T, s) + αh (T, s)) ĵ (T, s) ds

−
∫ t+∆

t
e−ρ(s−t) ( f (0, s) + αh (0, s)) ĵ (0, s) ds

−
∫ t+∆

t

∫ T

0
e−ρ(s−t) ( f (τ, s) + αh(τ, s))

∂ ĵ(τ, s)
∂τ

dτds

+
∫ T

0
e−ρ∆µ (τ, t + ∆)

[(
1− e−φ∆

)
Φ
(
V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

)
+ e−φ∆

]
ψ (τ, t) dτ

+e−ρ∆
(

1− e−φ∆
)

Γ
(
V̂ [ f (·, s + ∆) + αh(τ, t + ∆)]

)
+e−ρ∆

(
1− e−φ∆

)
V [ f (·, t + ∆) + αh(τ, t + ∆)]Φ

(
V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

)
+e−ρ∆e−φ∆V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

∣∣∣∣∣
α=0

.

If we evaluate the functional derivatives, the right-hands side becomes:
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−
∫ t+∆

t
e−ρ(s−t)U (ĉ (s))

(
h (0, s) + δ

∫ T

0
h (τ, s) dτ

)
ds

−
∫ T

0
e−ρ∆h (τ, t + ∆) ĵ (τ, t + ∆) dτ

+
∫ T

0
h (τ, t) ĵ (τ, t) dτ

+
∫ t+∆

t

∫ T

0
e−ρ(s−t)h(τ, s)

(
∂ ĵ(τ, s)

∂s
− ρ ĵ(τ, s)

)
dsdτ

+
∫ t+∆

t
e−ρ(s−t)h (T, s) ĵ (T, s) ds

−
∫ t+∆

t
e−ρ(s−t)h (0, s) ĵ (0, s) ds

−
∫ t+∆

t

∫ T

0
e−ρ(s−t)h(τ, s)

∂ ĵ(τ, s)
∂τ

dτds

+A + B + C + D.

Where,

A =
∫ T

0
e−ρ∆µ (τ, t + ∆)

[(
1− e−φ∆

) ∂

∂α
Φ
(
V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

)∣∣∣∣∣
α=0

]
ψ (τ, t + ∆) dτ

B =e−ρ∆
(

1− e−φ∆
) ∂

∂α

[
Γ
(
V̂ [ f (·, s + ∆) + αh(τ, t + ∆)]

)]∣∣∣∣∣
α=0

C =e−ρ∆
(

1− e−φ∆
) ∂

∂α

[
V [ f (·, t + ∆) + αh(τ, t + ∆)]Φ

(
V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

)]∣∣∣∣∣
α=0

D =
∂

∂α
e−ρ∆e−φ∆V̂ [ f (·, t + ∆) + αh(τ, t + ∆)]

∣∣∣∣∣
α=0

.

If we collact terms, and use h (τ, t) = h (T, s) = 0, and the derivative of the The Gâteaux
derivative of the Lagrangian is then:
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−
∫ t+∆

t
e−ρ(s−t) (U (ĉ (s)) + ĵ (0, s)

)
h (0, s)

+
∫ t+∆

t

∫ T

0
e−ρ(s−t)h(τ, s)

(
∂ ĵ(τ, s)

∂s
− ∂ ĵ(τ, s)

∂τ
− ρ ĵ(τ, s)− δU ′ (ĉ (s))

)
dsdτ (C.26)

−
∫ T

0
e−ρ∆ ĵ (τ, t + ∆) h (τ, t + ∆) dτ

+A + B + C + D.

Next, we calculate the terms {A, B, C, D} using the expressions for the Gâteaux derivatives,
equations (C.18,C.19). We begin with the term A:

∫ T

0
e−ρ∆µ (τ, t + ∆)

[(
1− e−φ∆

)
Φ′
(
V̂ [ f (·, t + ∆))]

) ∫ T

0

δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′
]

ψ (τ, t + ∆) dτ,

and after we exchange the order of integration, we obtain:

A =

[∫ T

0
e−ρ∆a (t, ∆)

δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′
]

.

for

a (t, ∆) =
(

1− e−φ∆
)

Φ′
(
V̂ [ f (·, t + ∆))]

) ∫ T

0
µ (τ, t + ∆)ψ (τ, t + ∆) dτ.

For the second term, B, we have:

e−ρ∆
(

1− e−φ∆
) [

Γ′
(
V̂ [ f (·, s + ∆)]

) ∫ T

0

δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′
]

and observing that Γ′
(
V̂ [ f (·, s + ∆)]

)
= −V̂ [ f (·, s + ∆)]Φ′

(
V̂ [ f (·, t + ∆)]

)
, we end with:

B = −e−ρ∆
(

1− e−θ∆
) [

V̂ [ f (·, s + ∆)]Φ′
(
V̂ [ f (·, t + ∆)]

) δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′
]

For the third term, C, we have

C =
∫ T

0

δV
δ f
(
τ′, t

)
h
(
τ′, t + ∆

)
dτ′Φ

(
V̂ [ f (·, t + ∆)]

)
+ V [ f (·, t + ∆)] . . .

Φ′
(
V̂ [ f (·, t + ∆)]

) ∫ T

0

δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′.

We combine both conditions to obtain:
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B + C =
∫ T

0
e−ρ∆b1 (t, ∆)

δV̂
δ f

(τ, t) h (τ, t + ∆) dτ . . .

+
∫ T

0
e−ρ∆b2 (t, ∆)

δV
δ f

(τ, t) h (τ, t + ∆) dτ

where

b1 (t, ∆) =
(

1− e−φ∆
) ((

V [ f (·, t + ∆)]− V̂ [ f (·, s + ∆)]
)

Φ′
(
V̂ [ f (·, t + ∆)]

))
and

b2 (t, ∆) =
(

1− e−φ∆
)

Φ
(
V̂ [ f (·, t + ∆)]

)
.

The final term in the construction, D, is given by:

∫ T

0
e−ρ∆d (t, ∆)

δV̂
δ f
(
τ′, t + ∆

)
h
(
τ′, t + ∆

)
dτ′,

where
d (t, ∆) = e−φ∆.

Notice that the terms that multiply h (τ, t + ∆) in the Gâteaux derivative of the Lagrangian,
(C.26), is:

−
∫ T

0
e−ρ∆ ĵ (τ, t + ∆) h (τ, t + ∆) dτ + A + B + C + D =

− e−ρ∆
∫ T

0

(
ĵ (τ, t + ∆) + a (t, ∆)

δV̂
δ f
(
τ′, t + ∆

)
+ b1 (t, ∆)

δV̂
δ f
(
τ′, t

)
+ b2 (t, ∆)

δV
δ f
(
τ′, t

)
+ e−θ∆

)
h (τ, t + ∆) dτ

The value of the Gâteaux derivative of the Lagrangian, (C.26), for any perturbation, must be
zero. Thus, again a necessary condition is to have all terms that multiply any entry of h (τ, t)
by zero.

Thus, we summarize the necessary conditions into:

ρ ĵ (τ, s) = −δU ′ (ĉ (s)) + ∂ ĵ
∂s
− ∂ ĵ

∂τ
, for τ ∈ (0, T] (C.27)

ĵ (0, s) = −U ′ (ĉ (s)) , for τ = 0,

ĵ (τ, t + ∆) = (a (t, ∆) + b1 (t, ∆) + d (t, ∆))
δV̂
δ f

(τ, t + ∆) + b2 (t, ∆)
δV
δ f

(τ, t) = ĵ (τ, t + ∆) , for τ ∈(0,T],(C.28)
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where

a (t, ∆) =
(

1− e−φ∆
)

Φ′
(
V̂ [ f (·, t + ∆))]

) ∫ T

0
µ (τ, t + ∆)ψ (τ, t + ∆) dτ.

b1 (t, ∆) =
(

1− e−φ∆
) ((

V [ f (·, t + ∆)]− V̂ [ f (·, s + ∆)]
)

Φ′
(
V̂ [ f (·, t + ∆)]

))
b2 (t, ∆) =

(
1− e−φ∆

)
Φ
(
V̂ [ f (·, t + ∆)]

)
d (t, ∆) = e−φ∆.

Gâteaux derivative of the bond price. A final calculation, requires us to compute the
Gâteaux derivatives with respect to the evolution of the price ψ :

∂

∂α
L
[
ι, f , ψ̂(τ, t) + αh(τ, t)

]∣∣
α=0

=
∂

∂α

[∫ t+∆

t
e−ρ(s−t)U

(
ĉ (t) + α

∫ T

0
ι (τ, s) h (τ, s) dτ

)
ds

+
∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s)

(
δ− r̄

(
ψ̂(τ, s) + αh (τ, s)

))
dτds

−
∫ T

0
µ (τ, t)

(
ψ̂ (τ, t) + αh (τ, t)

)
dτ

−
∫ t+∆

t

∫ T

0
e−ρt (ψ̂ (τ, s) + αh (τ, s)

) (∂µ (τ, s)
∂s

− ρµ (τ, s)
)

dτds

−
∫ t+∆

t
e−ρ(s−t)µ (T, s)

(
ψ̂ (T, s) + αh (T, s)

)
ds

+
∫ t+∆

t
e−ρtµ (0, s) ds

+
∫ t+∆

t

∫ T

0
e−ρt (ψ̂ (τ, s) + αh (t, s)

) ∂µ

∂τ
dτds

]∣∣∣∣
α=0

.

Note that the perturbation is only around ψ̂ (τ, s) and not ψ (τ, t + ∆), the terminal price af-
ter default, which is given. Since at maturity, bonds have a value of 1, µ (0, s) = 0 for the
Lagrangian to reprsent the value.

Then, we evaluate the Gâteaux derivatives and obtain:
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∂

∂α
L
[
ι, f , ψ̂(τ, t) + αh(τ, t)

]∣∣
α=0

=

[∫ t+∆

t

∫ T

0
e−ρ(s−t)U ′ (ĉ (t)) ι (τ, s) h (τ, s) dτds

−
∫ t+∆

t

∫ T

0
e−ρ(t−s)µ (τ, s) r̄h (τ, s) dτds

−
∫ T

0
µ (τ, t) h (τ, t) dτ

−
∫ t+∆

t

∫ T

0
e−ρt

(
∂µ (τ, s)

∂s
− ρµ (τ, s)

)
h (τ, s) dτds

−
∫ t+∆

t
e−ρ(s−t)µ (T, s) h (T, s) ds

+
∫ t+∆

t

∫ T

0
e−ρt (h (τ, s))

∂µ

∂τ
dτds

∣∣∣∣
α=0

.

Again, as the Gâteaux derivative should be zero for any suitable h (τ, t), the optimality condi-
tion is:

(r̄− ρ) µ (τ, s) = U ′ (ĉ (t)) ι (τ, s) +
∂µ

∂τ
− ∂µ

∂s
, if τ ∈ (0, T), s ∈ (t, t + ∆)

µ (T, s) = 0, if τ = T, s ∈ (t, t + ∆) (C.29)

µ (τ, t) = 0, if τ ∈ (0, T).

Step 2. ∆ −→ 0 Limit

We express the HJB equation (??) as

ĵ (τ, t) =
∫ t+∆

t
e−ρ(t−s) {U ′ (ĉ (s)) (−δ)

}
ds (C.30)

+ e−ρ∆Et

[
δV̂
δ f

(τ, t + ∆)
]

. (C.31)

j (0, s) = −U ′ (c (s)) , if τ = 0,

where the term δV̂
δ f (τ, t + ∆) depends on the arrival of a shock with probability

(
1− e−θ∆) that

decreases the value by(V [ f (τ, t + ∆)]− V̂ [ f (τ, t + ∆)]
)

Φ′
(
V̂ [ f (τ, t + ∆)]

)
+ Φ

(
V̂ [ f (·, t + ∆)]

) δV
δ f
δV̂
δ f

+ φ
(
V̂ [ f (·, t + ∆)]

) ∫ T

0
e−ρ∆µ (τ, t + ∆)ψ (τ,+∆) dτ

 .

We take the limit as ∆ → 0. In this case, the Lagrange multiplier µ (τ, t) collapses to zero

77



given (??):
µ (τ, t) = 0, for all τ ∈ (0, T], t ∈ (0, ∞), (C.32)

reflecting the lack of commitment over finite intervals.
Conditional on no shock arrival, the limit case ∆→ 0 in equation (??) results in

ĵ (τ, t) =
δV̂
δ f

(τ, t) , for all τ ∈ (0, T], t ∈ (0, ∞). (C.33)

Taking into account (C.32) and (C.33), the limit as ∆→ 0 of equation (C.30) can be expressed
as an HJB of the form

ρ ĵ (τ, t) = U ′ (ĉ (t)) (−δ) +
∂ ĵ
∂t
− ∂ ĵ

∂τ
+ θ

[
Φ
(
V̂ [ f (·, t)]

) j (τ, t)
ĵ (τ, t)

+
(
V [ f (·, t)]− V̂ [ f (·, t)]

)
φ
(
V̂ [ f (·, t)]

)
− 1
]

ĵ (τ, t) , if τ ∈ (0, T]

ĵ (0, t) = −U ′ (c (t)) , if τ = 0.

Defining the variable
v̂ (τ, t) = − ĵ (τ, t) /U ′ (ĉ (t)) ,

the HJB results in(
ρ− U

′′ (ĉ (t))
U ′ (ĉ (t))

dĉ
dt

)
v̂ (τ, t) = δ +

∂v̂
∂t
− ∂v̂

∂τ
− φ

[
Φ
(
V̂ [ f (·, t)]

) v (τ, t)
v̂ (τ, t)

U ′ (c (t))
U ′ (ĉ (t)) +

(
V [ f (·, t)]− V̂ [ f (·, t)]

)
Φ′
(
V̂ [ f (·, t)]

)
− 1
]

v̂ (τ, t) , if τ ∈ (0, T],

v̂ (0, t) = 1, if τ = 0.

and the first order condition is

∂q
∂ι

ι (τ, t) + q (t, τ, ι) = v̂ (τ, t) .

Step 3. HJB Equation

The last step is to construct the aggregate HJB in order to obtain the value of V̂ [ f (·, t)] . The
idea is to compute the derivative with respect to t + ∆ in the dynamic programming equation
and then to take the limit as ∆→ 0 :

ρV̂ [ f (·, t)] = U (ĉ (t)) +
∫ T

0

δV̂
δ f

∂ f
∂t

dτ

+φ
{

Γ
(
V̂ [ f (·, t)]

)
+ Φ

(
V̂ [ f (·, t)]

)
V [ f (·, t)]− V̂ [ f (·, t)]

}
,
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or equivalently

ρV̂ [ f (·, t)] = U (ĉ (t)) +
∫ T

0
U ′ (ĉ (t)) v̂ (τ, t)

∂ f
∂t

dτ

+φ
{

Γ
(
V̂ [ f (·, t)]

)
+ Φ

(
V̂ [ f (·, t)]

)
V [ f (·, t)]− V̂ [ f (·, t)]

}
.
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D Appendix: Duality

The Primal. Given a path of resources y(t), the problem is:

V [ f (·, 0)] = max
{ι(τ,t),c(t)}t∈[0,∞),τ∈[0,T]

∫ ∞

t
e−ρ(s−t)u(c(s))ds s.t.

c (t) = y (t)− f (0, t) +
∫ T

0
[q (τ, t, ι) ι(τ, t)− δ f (τ, t)] dτ

∂ f
∂t

= ι(τ, t) +
∂ f
∂τ

; f (τ, 0) = f0(τ)

Definition 1. Given a path of income {y(t)} and initial debt f0 a solution to P1 is a path of
consumption c(t) and debt issuances ι(τ, t) such that 1) the budget constraint holds for every
t 2) the evolution of debt satisfies the KFE 3) the no ponzi condition holds, there is not other
path of consumption and debt issuances {c̃, ι̃} that is feasible and yields strictly higher utility
at zero.

Let j(τ, t) be the lagrange multiplier associated with the KFE. It measures the change magi-
nal utility of issuing more debt.

Proposition 1. If a solution to P1 with e−ρt f , e−ρtι ∈ L2 ([0, T]× [0, ∞)),e−ρtc ∈ L2[0, ∞), given by
{ι(τ, t), c(t)}∞

t=0 exists, it satisfies the PDE

ρj (τ, t) =
∂q
∂ f

ι− δ +
∂j
∂t
− ∂j

∂τ
, if τ ∈ (0, T]

j (0, t) = −u′(c(t)),

lim
t→∞

e−ρt j (τ, t) = 0

where v (τ, t) is the marginal value of a unit of debt with time-to-maturity τ, the interest rate r (t) is
given by r (t) = ρ− U′′(c(t))

U′(c(t))

.
c(t)
c(t) and e−ρtv ∈ L2 ([0, T]× [0, ∞)); the optimal issuance ι (τ, t) is given

by (
∂q
∂ι

ι (τ, t) + q (t, τ, ι)

)
u′(c(t)) = −j (τ, t)

The Dual. This problem finds the lowest cost of achieving a particular path of consumption
with the lowest amount of resources. Given a desired path of consumption c(t) the objective is
to minimize the resources needed to achieve that path. More precisely, P2 is given by:

D [ f (·, 0)] = min
{ι(τ,t),yt}t=τ∈[0,∞),τ∈[0,T]

∫ ∞

0
e−
∫ t

0 r(s)dsytdt s.t.

c (t) = y (t)− f (0, t) +
∫ T

0
[q(τ, t, ι)ι(τ, t)− δ f (τ, t)] dτ
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∂ f
∂t

= ι(τ, t) +
∂ f
∂τ

; f (τ, 0) = f0(τ)

r(t) = ρ + σ
ċ(t)
c(t)

Definition 2. Given a path of consumption {c(t)} and initial debt f0 a solution to P2 is a path
of income y(t) and debt issuances ι(τ, t) such that 1) the budget constraint holds for every t 2)
the evolution of debt satisfies the KFE 3) the no ponzi condition holds, there is not other path
of consumption and debt issuances {ỹ, ι̃} that is feasible and has lower resources associated.

Let v (τ, t) be the Lagrange multiplier associated with KFE. it measure marginal resources
needed if a unit of debt is issued. The necessary conditions are the following:

Proposition 2. If a solution to P2 with e−ρt f , e−ρtι ∈ L2 ([0, T]× [0, ∞)),e−ρtc ∈ L2[0, ∞), given by
{ι(τ, t), c(t)}∞

t=0 exists, it satisfies the PDE

r (t) v (τ, t) =
∂q
∂ f

ι− δ +
∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T]

v (0, t) = −1,

lim
t→∞

e−ρtv (τ, t) = 0

where v (τ, t) is the marginal value of a unit of debt with time-to-maturity τ, the interest rate r (t) is
given by r (t) = ρ− U′′(c(t))

U′(c(t))

.
c(t)
c(t) and e−ρtv ∈ L2 ([0, T]× [0, ∞)); the optimal issuance ι (τ, t) is given

by
∂q
∂ι

ι (τ, t) + q (t, τ, ι) = −v (τ, t)

Proof. See below. .

The Connection.

Corollary 1. Suppose that for a given income path y(t) and initial debt f0 the solution to P1 is
c∗(t), ι∗(τ, t), j∗(τ, t). Then, y(t), ι∗(τ, t), j∗(τ,t)

u′(c(t)) solves P2 given the path c∗(t).

D.1 Proof of Proposition

First we construct a Lagrangian in the space of functions g such that
∥∥e−ρt/2g (τ, t)

∥∥
L2 < ∞.

The Lagrangian is

L (ι, f ) =
∫ ∞

0
e−r(t)t

(
c (t) + f (0, t)−

∫ T

0
[q (t, τ, ι, f ) ι (τ, t)− δ f (τ, t)] dτ

)
dt

+
∫ ∞

0

∫ T

0
e−r(t)tv (τ, t)

(
−∂ f

∂t
+ ι (τ, t) +

∂ f
∂τ

)
dτdt,
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where j (τ, t) is the Lagrange multiplier associated to the law of motion of debt. Taking Gateaux
derivatives, for any suitable h (τ, t) such that e−ρth ∈ L2 ([0, T]× [0, ∞)) :

lim
α→0

∂

∂α
L (ι, f + αh) =

∫ ∞

0
e−r(t)t

[
h (0, t)−

∫ T

0

(
∂q
∂ f

ι (τ, t)− δ

)
h (τ, t) dτ

]
dt

+
∫ ∞

0

∫ T

0
e−r(t)t ∂h

∂t
v (τ, t) dτdt

−
∫ ∞

0

∫ T

0
e−r(t)t ∂h

∂τ
v (τ, t) dτdt,

The last two terms can be integrated by parts

−
∫ T

0

∂h
∂τ

v (τ, t) dτ = − h (T, t) v (T, t) + h (0, t) v (0, t) +
∫ T

0
h

∂v
∂τ

dτ,

+
∫ ∞

0
e−r(t)t ∂h

∂t
v (τ, t) dt = lim

s→∞
e−r(t)sh (τ, s) v (τ, s)− h (τ, 0) v (τ, 0)−

∫ ∞

0
e−r(t)th(τ, t)

(
∂v
∂t
− r(t)v

)
dτ.

As the initial distribution f0 is given the value of h (τ, 0) = 0. The Gateaux derivative should
be zero for any suitable h (τ, t)

0 =
∫ ∞

0
e−r(t)t

[
+h (0, t)−

∫ (
∂q
∂τ

ι (τ, t)− δ

)
h (τ, t) dτ

]
dτ

−
∫ ∞

0

∫ T

0
e−r(t)t

(
−r(t)v− ∂v

∂τ
+

∂v
∂t

)
h (τ, t) dτdt

−
∫ ∞

0
e−ρt (h (T, t) v (T, t)− h (0, t) v (0, t)) dt

+
∫ ∞

0
lim
s→∞

e−ρsh (τ, s) v (τ, s) dτ.

Therefore, as f (T+, t) = 0 then h (T, t) = 0 and we have

r(t)v (τ, t) =

(
∂q
∂ f

ι− δ

)
+

∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T] (D.1)

v (0, t) = −1, if τ = 0,

lim
t→∞

e−r(t)tv (τ, t) = 0.

Proceeding similarly in the case of ι

lim
α→0

∂

∂α
L (ι + αh, f ) =

∫ ∞

0
e−r(t)t

[
−
∫ T

0

(
∂q
∂ι

ι (τ, t) + q (t, τ, ι, f )
)

h (τ, t) dτ

]
dt

−
∫ ∞

0

∫ T

0
e−r(t)th (τ, t) v (τ, t) dτdt,
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and hence (
∂q
∂ι

ι (τ, t) + q (t, τ, ι, f )
)
= −v (τ, t) .

The PDE equation (D.1) results in

r(t)v (τ, t) =
∂q
∂ f

ι− δ +
∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, ∞),

v (0, t) = −1, if τ = 0,

lim
t→∞

e−r(t)tv (τ, t) = 0,

and the first order condition is

∂q
∂ι

ι (τ, t) + q (t, τ, ι, f ) = −v (τ, t) .
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E Computational Method Deterministic Dynamics

We describe the numerical algorithm used to jointly solve for the equilibrium value function,
v (τ, t), bond price, q (t, τ, ι) , consumption c(t), issuance ι (τ, t) and density f (τ, t) . The equi-
librium is characterized by the HJB equation

r (t) v (τ, t) = −δ +
∂v
∂t
− ∂v

∂τ
, if τ ∈ (0, T] (E.1)

v (0, t) = −1, if τ = 0, (E.2)

where the interest rate r (t) is given by:

r (t) = ρ +
γ

c (t)
dc
dt

, (E.3)

where γ is the risk coefficient in U (c) := c1−γ−1
1−γ . The optimal issuance ι (τ, t) is given by

ι =
1
λ̄

(
δ (1− e−r̄τ)

r̄
+ e−r̄τ + v (τ, t)

)
. (E.4)

The law of motion of the density of maturities is given by the Kolmogorov Forward equation

∂ f
∂t

= ι (τ, t) +
∂ f
∂τ

, (E.5)

and consumption by the budget constraint

c (t) = ȳ− f (0, t) +
∫ T

0

[(
δ (1− e−r̄τ)

r̄
+ e−r̄τ − 1

2
λ̄ι (τ, t)

)
ι (τ, t)− δ f (τ, t)

]
dτ. (E.6)

The parameters are T, δ, ȳ, γ, λ̄, ρ and r̄ = ρ. The initial distribution is f (τ, 0) = f0 (τ) . The
algorithm proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation The HJB equation (E.1) is solved
using an upwind finite difference scheme similar to Achdou et al. (2014). We approximate the
value function v (τ) on a finite grid with step ∆τ : τ ∈ {τ1, ..., τI}, where τi = τi−1 + ∆τ =

τ1 + (i− 1)∆τ for 2 ≤ i ≤ I. The bounds are τ1 = ∆τ and τI = T, such that ∆τ = T/I. We
use the notation vi := v(τi), and similarly for the policy function ιi,. Notice first that the HJB
equation involves first derivatives of the value function. At each point of the grid, the first
derivative can be approximated with a forward or a backward approximation. In an upwind
scheme, the choice of forward or backward derivative depends on the sign of the drift function
for the state variable. As in our case, the drift is always negative, we employ a backward
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approximation in state:
∂v(τi)

∂τ
≈ vi − vi−1

∆τ
. (E.7)

The HJB equation is approximated by the following upwind scheme,

ρvi = −δ +
vi−1

∆τ
− vi

∆τ
,

with terminal condition v0 = v(0) = −1. This can be written in matrix notation as

ρv = u + Av,

where

A =
1

∆τ



−1 0 0 0 · · · 0
1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
... . . . . . . . . . . . . . . .

0 0 · · · 1 −1 0
0 0 · · · 0 1 −1


, v =



v1

v2

v3
...

vI−1

vI


(E.8)

u =



−δ− 1/∆τ

−δ

−δ
...
−δ

−δ


.

The solution is given by

v = (ρI−A)−1 u. (E.9)

Most computer software packages, such as Matlab, include efficient routines to handle sparse
matrices such as A.

To analyze the transitional dynamics, define tmax as the time interval considered, which
should be large enough to ensure a converge to the stationary distribution and time is dis-
cretized as tn = tn−1 + ∆t, in intervals of length

∆t =
tmax

N − 1
,

where N is a constant. We use now the notation vn
i := v(τi, tn). The value function at tmax is the

stationary solution computed in (E.9) that we denote as vN.26 We choose a forward approxima-

26You may begin directly by employing the analytical solution from equation (??) as vN .
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tion in time. The dynamic HJB (E.1) can thus be expressed

rnvn = u + Avn +

(
vn+1 − vn)

∆t
,

where rn := r (tn). By defining Bn =
(

1
∆t + rn

)
I−A and dn+1 = u + vn+1

∆t , we have

vn = (Bn)−1 dn+1, (E.10)

which can be solved backwards from n = N − 1 until n = 1.
The optimal issuance is given by

ιni =
1
λ̄
(ψi + vn

i ) ,

where

ψi =
δ (1− e−ρτi)

ρ
+ e−ρτi .

Step 2: Solution to the Kolmogorov Forward equation Analogously, the KFE equation (2.1)
can be approximated as

f n
i − f n−1

i
∆t

= ιni +
f n
i+1 − f n

i
∆τ

,

where we have employed the notation f n
i := f (τi, tn). This can be written in matrix notation as:

fn − fn−1

∆t
= ´n + ATfn, (E.11)

where AT is the transpose of A and

fn =



f n
1

f n
2
...

f n
I−1

f n
I


.

Given f0, the discretized approximation to the initial distribution f0(τ), we can solve the KF
equation forward as

fn =
(

I−∆tAT
)−1

(´n∆t + fn−1) , n = 1, .., N. (E.12)
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Step 3: Computation of consumption The discretized budget constraint (??) can be expressed
as

cn = ȳ− f n−1
1 ∆τ +

I

∑
i=1

[(
ψi −

1
2

λ̄ιni

)
ιni − δ f n

i

]
∆τ, n = 1, .., N.

Compute

rn = ρ +
γ

cn
cn+1 − cn

∆t
, n = 1, .., N − 1.

Complete algorithm The algorithm proceeds as follows. First guess an initial path for con-
sumption, for example cn = ȳ, for n = 1, .., N. Set k = 1;

Step 1: HJB. Given ck−1 solve the HJB and obtain ι.

Step 2: KF. Given ι solve the KF equation with initial distribution f0 and obtain the distribution
f .

Step 3: Consumption. Given ι and f compute consumption c. If ‖c− ck−1‖ = ∑N
n=1

∣∣cn − cn
k−1

∣∣ <
ε then stop. Otherwise compute

ck = ωc + (1−ω) ck−1, λ ∈ (0, 1) ,

set k := k + 1 and return to step 1.
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