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We establish a link between the approaches proposed by Oster (2019) and Pei, Pischke, and Schwandt
(2019) which contribute to the development of inferential procedures for causal effects in the challenging
and empirically relevant situation where the unknown data-generation process is not included in the set of
models considered by the investigator. We use the general misspecification framework recently proposed
by De Luca, Magnus, and Peracchi (2018) to analyze and understand the implications of the restrictions
imposed by the two approaches.

1. INTRODUCTION

The papers by Oster (2019) (henceforth Oster) and Pei,
Pischke, and Schwandt (2019) (henceforth PPS) contribute to
the development of methods of inference about causal effects
in the challenging and empirically relevant situation where the
unknown data-generation process (DGP) is not included in the
set of regression models considered by the investigator.

Building on Altonji, Elder, and Taber (2005), Oster analyzes
the link between omitted variable bias in estimating a causal
effect of interest and coefficient stability, defined as the change
in the inconsistency of the OLS estimate of the causal effect
when imperfect controls are added to an initial model. By
inconsistency of an estimator θ̂ of a target parameter θ we mean
the difference plim(θ̂ − θ), which need not coincide with the
asymptotic bias of θ̂ , that is, the nonzero mean of the limiting
normal distribution of the rescaled difference

√
n(θ̂ − θ),

provided this distribution exists (see, e.g., Lehmann and Casella
1998, sec. 6.2). PPS instead analyze the power properties of
two alternative strategies for testing the consistency of the
OLS estimator of the causal effect when the controls in the
intermediate model are subject to measurement error. The two
papers are in fact closely related, as they involve comparing
the bias or the sampling variance of OLS estimators from
misspecified models with different sets of regressors. The gen-
eral misspecification framework recently proposed by De Luca,
Magnus, and Peracchi (2018) (henceforth DMP) is therefore

particularly suited to analyze and understand the restrictions
imposed by the two papers.

Our comments are organized as follows. Section 2 presents
the general misspecification framework developed in DMP.
Section 3 discusses some results on inconsistencies and regres-
sion R2 that are important for Oster’s paper. Section 4 draws
some implications of these results for empirical strategies.
Section 5 discusses some results on testing strategies that
are important for PPS’s paper. Finally, Section 6 offers some
conclusions. Proofs are collected in the Appendix.

2. A GENERAL MISSPECIFICATION FRAMEWORK

Oster and PPS focus on the case in which there is a single
regressor of interest, so we consider the following simplified
version of the DGP proposed in DMP

y = β1x1 + β ′
2X2 + ξ + ε, (1)

where x1 is an observable scalar treatment, X2 is a set of k2
observable controls, β1 and β2 are unknown parameters, ξ is
an unobservable specification error capturing, for example, the
contributions of omitted variables or measurement errors, and ε
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is an unobservable regression error satisfying E(ε|x1, X2, ξ) =
0. We assume, without loss of generality, that all variables are
centered to have mean zero. We also assume that (x1, X2, ξ)

have positive definite second moment matrix

� =
⎡
⎢⎣ σ 2

1 σ ′
21 σ1ξ

σ21 �22 σ2ξ

σ1ξ σ ′
2ξ σ 2

ξ

⎤
⎥⎦ .

When k2 = 1, we write x2 instead of X2 and σ 2
2 instead of

�22. The parameter of interest is the scalar β1 which, under our
assumptions, is interpreted as the causal effect of x1 on y. If
ξ were observable, then β1 could be estimated unbiasedly by
an OLS regression of y on x1, X2, and ξ . The key statistical
problem is that ξ is not observable.

Given a random sample from (1), we consider two alterna-
tive estimators of β1: the restricted OLS estimator β̂1r from
the short regression of y on x1, with probability limit denoted
by β1r, and the unrestricted OLS estimator β̂1u from the
intermediate regression of y on x1 and X2, with probability limit
denoted by β1u. From DMP, the inconsistencies of these two
estimators are

b1r = β1r−β1 = τ1+ψ ′(β2+τ2), b1u = β1u−β1 = τ1, (2)

where ψ = σ21/σ
2
1 contains the population coefficients in

the linear projection of X2 on x1 (or “balancing regression,”
using the terminology of PPS), τ1 = σ 11σ1ξ − ψ ′�22σ2ξ and

τ2 = �22(σ2ξ − σ1ξψ) are the population coefficients in the

linear projection of ξ on x1 and X2, σ 11 = 1/σ 2
1 + ψ ′�22ψ ,

and �22 = (�22 − σ21σ
′
21/σ

2
1 )−1. Notice that while the

inconsistency of the unrestricted OLS estimator of β1 from
the intermediate regression is equal to τ1, the inconsistency of
the unrestricted OLS estimator of β2 from the same regression
is equal to τ2. The expression for b1r in (2) generalizes the
classical omitted variables bias formula to settings where the
intermediate regression is smaller than the unknown DGP.
Since the DGP (1) encompasses a variety of misspecification
problems, the expressions for b1r and b1u are completely
general and can easily be extended to the case when x1 contains
more than one regressor. An immediate implication of (2) is
that b1r − b1u = β1r − β1u = ψ ′(β2 + τ2), which shows that
the strategy of evaluating coefficient stability by augmenting
the short regression with an additional set of regressors is only
informative about the sign and magnitude of the difference of
the inconsistencies, not about the sign and magnitude of the two
inconsistencies separately. In fact, depending on the conditions
discussed in DMP, the difference b1r−b1u can be large or small,
positive or negative. Thus, the two estimators may differ by
little even when their inconsistencies are large. Furthermore,
lack of coefficient stability may arise when the inconsistencies
of the two estimators have opposite signs and |b1u| > |b1r|.

Sharper results may be obtained if stronger assumptions are
imposed but, according to the Law of Decreasing Credibility
(Manski 2003), the credibility of inference decreases with the
strength of the assumptions maintained. Thus, in the next three
sections, we focus on the additional assumptions employed by
Oster and PPS to obtain their results.

3. INCONSISTENCIES AND REGRESSION
R-SQUARES

Oster writes her model as Y = βX + 
 ′ωo + W2 + ε, where
X is an observable scalar treatment, ωo is a set of observable
controls, β and 
 are unknown parameters, and W2 and ε are
unobservable random terms. This is the same as model (1) with
y = Y , β1x1 = βX, β ′

2X2 = 
 ′ωo, and ξ = W2. It is useful
to define the linear combination η = β ′

2X2 of the available
controls, the vector μ of coefficients in the linear projection of
x1 on X2, and the additional set of population second moments
σ 2

η = var(η) = β ′
2�22β2, σ1η = cov(x1, η) = σ ′

21β2, and
σηξ = cov(η, ξ) = β ′

2σ2ξ . As in Oster, we describe the
link between x1, ξ and η through the “proportional selection
relationship”

σ1ξ

σ 2
ξ

= ϕ
σ1η

σ 2
η

, (3)

for some value of the proportionality coefficient ϕ.
Oster’s contribution is to provide various characterizations

of the inconsistency b1u = β1u − β1 of the unrestricted OLS
estimator of β1. Although these characterizations do not come
for free, they have attracted considerable interest because of
their simplicity and their possible use for sensitivity analysis
or for deriving bias-corrected estimators of β1. Her first main
result (Proposition 1) is an explicit representation of b1u based
on the following set of assumptions:

Assumption A. The covariance σ1η between x1 and η is
nonzero.

Assumption B. The controls in X2 are uncorrelated with the
specification error ξ .

Assumption C. The controls in X2 are mutually uncorrelated.

Assumption D (Equal selection relationship). The relation-
ship (3) holds with ϕ = 1.

Assumption E. The elements of β2 = (β21, . . . , β2k2)
′ are

proportional to the elements of μ = (μ1, . . . , μk2)
′.

Assumption A is fundamental but never formally stated in
Oster’s paper. Assumption C helps simplify the proofs but, as
shown below, is unnecessary. Assumption D is the same as
Oster’s Assumption 1. Assumption E corresponds to Oster’s
Assumption 2 but our formulation is slightly different to guar-
antee that the assumption also holds when there is only one
control. This is a strong assumption and Oster points out that
“with multiple controls it is very unlikely to hold except in
pathological cases” (p. 6). As for Assumption B, Oster admits
that it is controversial because “somewhat at odds with the
intuition that the observables and the unobservables are related”
(p. 6). In fact, when imposed jointly with Assumptions A and D,
it implies that (i) b1r and b1u are proportional to each other,
(ii) σ1η, b1r, and b1u have the same sign, and (iii) σ1η and
β1r − β1u = b1r − b1u have the same sign. The first two results
follow from (2) after imposing the restrictions σ2ξ = 0 and

σ1ξ = σ 2
ξ σ1η/σ

2
η , while the third follows from our Corollary 1.
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Under Assumptions A–E, Oster’s Proposition 1 shows that

b1u = (β1r − β1u)
R2

max − R2
u

R2
u − R2

r
, (4)

where R2
max is the unknown population R2 from the DGP (1),

while R2
r and R2

u are the population R2 from, respectively, the
short regression of y on x1 and the intermediate regression
of y on x1 and X2. An important implication of (4) is that
(β1u − β1)/(β1r − β1u) = (R2

max − R2
u)/(R

2
u − R2

r ), that is,
“the ratio of the movement in coefficients is equal to the ratio
of the movement in R-squared” (Oster, p. 7). Since β̂1r − β̂1u
is consistent for β1r − β1u, another implication of (4) for
the special case when R2

max is known, is the following bias-
corrected estimator of β1

β̃1 = β̂1u − (β̂1r − β̂1u)
R2

max − R2
u

R2
u − R2

r
.

This second result may help explain the appeal of Proposi-
tion 1 among practitioners despite the warning that “[g]iven
the restrictiveness of the assumptions [. . . ] it is not appropriate
to suggest that researchers use this as an estimator directly”
(Oster, p. 7).

To appreciate why Assumptions A–E are restrictive, notice
that, under the plausible assumption that R2

max > R2
u > R2

r , (4)
implies that b1u has the same sign as β1r − β1u. As stressed
by Holly (1982) this is not generally true. Further, since β1r −
β1u = b1r − b1u, we also have

b1r

b1u
= 1 + R2

u − R2
r

R2
max − R2

u
> 1.

In other words, Assumptions A–E together amount to assuming
that adding the controls in X2 decreases the bias in estimating
β1 or, in the terminology of DMP, that X2 is a balanced addition.
As stressed by DMP, this is also not generally true.

If Assumptions D and E are relaxed, then Oster’s second
main result (Proposition 2) shows that b1u is a root of the cubic
equation

a3z3 + a2z2 + a1z + a0 = 0, (5)

with real coefficients

a0 = ϕσ 2
1 σ 2

y (R2
max − R2

u)(β1r − β1u),

a1 = ϕ(σ 2
1 − σ 2

ν )σ 2
y (R2

max − R2
u)

−σ 2
ν

(
σ 2

y (R2
u − R2

r ) + σ 2
1 (β1r − β1u)

2
)

,

a2 = (ϕ − 2)σ 2
1 (β1r − β1u)σ

2
ν ,

a3 = (ϕ − 1)(σ 2
1 − σ 2

ν )σ 2
ν ,

where σ 2
y and σ 2

ν = σ 2
1 − σ ′

21�
−1
22 σ21 are the population

variances of y and ν = x1 − μ′X2, respectively. If only
Assumption E is relaxed, then a3 = 0 and Proposition 2 implies
that b1r is a root of the quadratic equation

a2z2 + a1z + a0 = 0. (6)

Notice that, while (5) admits either one or three real roots, (6)
always admits two real roots of opposite sign.

The more general Proposition 2 confirms that the incon-
sistency of the unrestricted OLS estimator depends on the
differences β1r − β1u, R2

max − R2
u, and R2

u − R2
r , but no longer

provides an explicit representation. Further, when Equations (5)
or (6) admit multiple roots, it is unclear how to select one.
To obtain a unique root of (6), Oster introduces an additional
assumption (Assumption 3, p. 8):

Assumption F. The covariance σ1η between x1 and η has the
same sign as the covariance between x1 and η∗ = β ′

2uX2, where
β2u is the vector of coefficients on X2 in the linear projection of
y on x1 and X2.

To gain intuition about this assumption, Oster offers the
following interpretation: “[e]ffectively, this assumes that the
bias from the unobservables is not so large that it biases the
direction of the covariance between the observable index and
the treatment” (p. 8). Notice, however, that η∗ = β ′

2uX2 =
(β2 + τ2)

′X2. Hence, from (2),

cov(x1, η∗) = cov(x1, (β2 + τ2)
′X2) = σ ′

21(β2 + τ2)

= σ 2
1 ψ ′(β2 + τ2) = σ 2

1 (β1r − β1u).

This shows that Assumption F is equivalent to the assumption
that σ1η and β1r − β1u have the same sign which, as already
mentioned, is an implication of Assumptions A, B, and D. Thus,
Assumption F is in fact redundant.

We stress the fact that restricting σ1η and β1r − β1u =
b1r − b1u to have the same sign allows one to select a unique
root of the quadratic equation (6). As with the explicit solution
(4), the selected root depends on the implicit assumption that
augmenting the short regression with X2 always decreases the
bias in estimating β1. If this assumption is incorrect, one may
select the wrong root even when the values of ϕ and R2

max are
known, as illustrated in Section 4.

The next theorem completely summarizes the relationships
between b1u, β1r − β1u, R2

max − R2
u, and R2

u − R2
r implied by

Assumptions A and B:

Theorem 1. If Assumptions A and B hold, then

β1r − β1u = σ1η − (σ 2
1 − σ 2

ν )b1u

σ 2
1

,

σ 2
y (R2

u − R2
r ) = σ 2

η + σ 2
ν b2

1u − 1

σ 2
1

(σ1η + σ 2
ν b1u)

2,

ϕσ 2
y (R2

max − R2
u) =

(
σ 2

η

σ1η

− ϕb1u

)
σ 2

ν b1u.

If k2 > 1, then b1u is a root of the cubic equation (5). If k2 = 1,
then b1u is a root of the quadratic equation c2z2 + c1z + c0 =
0 with real coefficients c0 = −ϕσ 2

21σ
2
2 σ 2

y (R2
max − R2

u), c1 =
σ 2

1 σ 2
2 (σ 2

1 σ 2
2 −σ 2

21)(β1r−β1u), and c2 = (1−ϕ)σ 2
21(σ

2
1 σ 2

2 −σ 2
21).

Theorem 1 corrects a small error in the third equation of
the system on p. 7 of Oster’s paper and delivers the same
conclusions of her Proposition 2 without assuming that the
controls are mutually uncorrelated. In Oster’s notation, the

corrected equation is (Rmax − R̃)σ̂yy
p→ �

(
σ 2

1 τx

δσ1X
− �τx

)
.
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The link between this theorem and Oster’s Proposition 1 is
made clear by the next corollary:

Corollary 1. If Assumptions A, B, and D hold, then

(β1r − β1u)
R2

max − R2
u

R2
u − R2

r
= z′�z

z′�z
b1u,

where z = β2 −�−1
22 σ21b1u, � = (σ 2

1 −σ ′
21�

−1
22 σ21)�22β2σ

′
21,

and � = β ′
2σ21[σ 2

1 �22 − σ21σ
′
21]. The relationship (4) holds if

and only if Assumption E also holds.

The ratios (R2
max − R2

u)/(R
2
u − R2

r ) and (z′�z)/(z′�z) are
positive under general conditions, so this corollary also shows
that β1r −β1u and b1u have the same sign. Notice that Assump-
tion E is trivially satisfied when k2 = 1 but, as already argued,
is unlikely to hold when k2 > 1. When k2 = 1 but Assump-
tion D does not hold, another corollary of Theorem 1 is the
following:

Corollary 2. When k2 = 1 and ϕ �= 1, define

ϕ∗
1 = 1 −

√
1 + 1

ρ2
21

R2
u − R2

r

R2
max − R2

u
,

ϕ∗
2 = 1 +

√
1 + 1

ρ2
21

R2
u − R2

r

R2
max − R2

u
,

with ρ21 = σ21/(σ1σ2). Then the quadratic equation c2z2 +
c1z+ c0 = 0 admits two distinct real roots if ϕ∗

1 < ϕ < ϕ∗
2 , one

real root if ϕ = ϕ∗
1 or ϕ = ϕ∗

2 , and no real root otherwise.

4. IMPLICATIONS FOR EMPIRICAL STRATEGIES

Based on Proposition 2, Oster discusses three possible
strategies: (i) find the value of β1 for given values of ϕ and
R2

max; (ii) find the value of ϕ for given values of β1 and R2
max;

(iii) find the value of R2
max for given values of β1 and ϕ. These

three strategies are easily implemented using Oster’s Stata rou-
tine psacal but require Assumptions A and B to characterize
the inconsistency of the unrestricted estimator of β1 as a root
of the cubic equation (5). Notice that the coefficients in this
equation can all be estimated consistently provided ϕ and R2

max
are known or can be estimated consistently.

Strategy (i) may be used to derive a bias-corrected estimate
of β1 given knowledge of ϕ and R2

max or, alternatively, to obtain
bounds on β1 given bounds on ϕ and R2

max. In either case one
needs a unique value of β1 for any choice of ϕ and R2

max. With
multiple roots (ϕ �= 1), Oster’s Stata routine selects the root
closest to the unrestricted OLS estimate β̂1u and results in b1u

having the same sign as β̂1r −β̂1u. This creates two issues. First,
when no root satisfies the sign condition on b1u, it is not clear
how the routine selects the solution for β1. Second, when one
or more root satisfies the sign condition, the root closest to β̂1u
is not necessarily the correct solution.

To illustrate, we present an example where Assumptions A
and B hold but Assumption D does not. Suppose that y = z1 +
z2 − z3 + z4 + ε, where the zj’s are jointly normal (Gaussian)

Table 1. OLS estimates of the coefficients in the DGP, the intermediate
and the short regressions from a pseudo-random sample of 100,000
observations

σ1ξ
= σ14 = −0.40 σ1ξ

= σ14 = 0.80

Variable DGP Interm. Short DGP Interm. Short

z1 1.001 0.519 1.247 1.003 1.963 2.445
z2 1.007 1.149 1.007 0.725
z3 −0.994 −1.104 −0.994 −0.775
z4 0.998 0.995

R2 0.833 0.698 0.260 0.881 0.854 0.715
ϕ −1.538 3.077

with mean zero and second moment matrix

� = var

⎛
⎜⎜⎝

z1
z2
z3
z4

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

1 0.35 −0.30 σ14
0.35 1 −0.25 0

−0.30 −0.25 1 0
σ14 0 0 1

⎤
⎥⎥⎦ ,

and ε ∼ N(0, 1) independently of the zj’s. We set x1 = z1,
X2 = (z2, z3), and ξ = z4, and consider two cases that differ by
the value of σ1ξ = σ14, namely σ14 = −0.40 and σ14 = 0.80.
Table 1 shows, for each case, the OLS estimates of the true
DGP, the intermediate regression of y on x1 and X2, and the
short regression of y on x1 from a pseudo-random sample
of 100,000 observations. Notice that adding X2 to the short
regression lowers the size of the bias in estimating β1 in the
second case (σ1ξ = 0.80) but not in the first (σ1ξ = −0.40).
Of course, the investigator does not know this because ξ is
unobservable.

In the first case, employing Oster’s Stata routine with the
true values of ϕ and R2

max gives three possible bias-corrected

estimates of β1: β̂
(1)
1 = 4.797, β̂

(2)
1 = 1.000, and β̂

(3)
1 =

1.747. Although the second is equal to the true value, the
routine selects the first because none of the β̂

(j)
1 satisfies the

sign condition on b1u. The selected estimate is clearly severely
upward biased. The interval [0.509, 4.798] for β1 implied by
the restrictions −1.60 ≤ ϕ ≤ 0 and R2

max = 0.85 contains the
true value of β1 but is not sharp. Notice, however, that all the

β̂
(j)
1 fall in the region where |b1r/b1u| < 1 so, in this case, one

knows for sure that β̂1r has less bias than β̂1u.

In the second case, Oster’s Stata routine gives β̂
(1)
1 = 1.563,

β̂
(2)
1 = 0.979, and β̂

(3)
1 = 4.825. The first two values now

satisfy the sign condition on b1u. Although the second value
is closer to the true value, the routine again selects the first
because it is the closer to β̂1u = 1.963. The selected estimate
is still upward biased but now the interval [1.963, 4.824] for β1
implied by the restrictions 0 ≤ ϕ ≤ 3.10 and R2

max = 0.90 no
longer contains the true value of β1.

As for strategies (ii) and (iii), note that fixing the value of
β1 for given values of β1r and β1u is equivalent to fixing the
values of b1r and b1u. Under Assumptions A and B, this allows
one to identify σ1ξ and σ1η, and therefore also σ 2

η from the

second equation in Theorem 1. By restricting either R2
max or

ϕ, one can then identify σ 2
ξ . Thus, under Assumptions A and B,
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strategies (ii) and (iii) amount to imposing arbitrary restrictions
on all the unidentified model parameters. The results obtained
are also sensitive to the choice of R2

max for strategy (ii) and ϕ

for strategy (iii).

5. TESTING STRATEGIES

PPS consider the model y = β ls+γ ′x+e, where s is a scalar
treatment, β l is the causal effect of interest, x = δs + u is a
vector of unobservable controls, and u and e are random errors.
This is a special case of model (1) where β1x1 = β ls, X2 =
xm = x+m is a vector of observable error-ridden controls, β2 =
0, ξ = γ ′x is the specification error, and ε = e. The assumption
of classical measurement error gives a balancing regression of
the form xm = δs + u + m, with u and m uncorrelated with s,
and therefore ψ = δ. When k2 = 1, PPS also consider a mean-
reverting measurement error model resulting in a balancing
regression of the form xm = (1 + κ)δs + (1 + κ)u + μ,
where −1 < κ < 0 and s, u and μ are uncorrelated with each
other. In this case, the coefficient of the balancing regression is
ψ = (1 + κ)δ.

The main contribution of PPS is to compare the power
properties of two alternative strategies for testing whether the
restricted OLS estimator is consistent: a classical F-test of
significance of the population coefficient ψ = σ21/σ

2
1 in the

balancing regression and a Hausman-type test based on the
difference β1r − β1u = b1r − b1u = ψ ′(β2 + τ2) between
the restricted and the unrestricted OLS estimators of β1. PPS
refer to these tests as the balancing test (BT) and the coefficient
comparison test (CCT), respectively. Their results show that, if
the intermediate regression is misspecified (i.e., γ �= 0), then
BT is generally more powerful than CCT because measure-
ment error is comparatively less harmful when mismeasured
variables are employed as outcome variables in the balancing
regression rather than as additional controls in the intermediate
regression.

This insight reinforces our key point that adding controls
to the short regression does not necessarily improve the esti-
mates of the causal effect of interest. While DMP and Oster
are mainly concerned with the statistical properties of the
restricted and unrestricted OLS estimators of β1, PPS focus
on the implications of using the available controls for testing
purposes. However, these two approaches are closely related
through the relationship between mean squared error (MSE)
comparisons and testing strategies. It is well-known that if we
delete a single control from a correctly specified model, then
MSE(β̂1r) ≤ MSE(β̂1u) if and only if the t-statistic on the
coefficient of the deleted control is smaller than one in absolute
value. Similar results extend to the case of multiple controls,
where MSE comparisons depend crucially on the noncentrality
parameter in the distribution of either the classical F-statistic
or the Hausman-type statistic used for testing the hypothesis
H0 : β2 = 0 in the intermediate regression (Toro-Vizcarrondo
and Wallace 1968; Holly 1982). Additional results on MSE
comparisons for the case when the intermediate regression is
subject to specification errors can be found in Appendix A of
DMP.

We now use the general framework in DMP to provide more
insight into the restrictions required for the validity of BT and
CCT. It follows immediately from (2) that BT and CCT provide
tests of the null hypothesis of interest, namely

H0 : b1r = τ1 + ψ ′(β2 + τ2) = 0, (7)

only if suitable restrictions are placed on τ1. BT is concerned
with the null hypothesis H0 : ψ = 0. Writing τ1 = σ1ξ /σ

2
1 −

ψ ′τ2, we see that this is equivalent to (7) if and only if there
exists a k2-vector ω �= −β2 such that σ1ξ = σ ′

21ω, so that

b1u = τ1 = ψ ′(ω − τ2), b1r = ψ ′(β2 + ω). (8)

CCT is instead concerned with the null hypothesis H0 : ψ ′(β2+
τ2) = 0, which is equivalent to (7) if and only if there exist a
scalar a �= −1 such that

b1u = τ1 = aψ ′(β2 + τ2), b1r = (1 + a)ψ ′(β2 + τ2). (9)

For example, when k2 = 1 and measurement error is classical,
we have ψ = δ, τ1 = δγ θ , and τ2 = (1 − θ)γ , with θ =
σ 2

m/(σ 2
m + σ 2

u ). In this case, (8) and (9) hold when ω = γ �= 0
and a = θ/(1 − θ) > 0, but this model is known to be
restrictive because it implies that b1r/b1u = 1/θ > 1. Similar
considerations apply to the mean-reverting measurement error
model, where

ψ = (1 + κ)δ, τ1 = δγ
θ

(1 + κ)2(1 − θ) + θ
,

τ2 = γ

1 + κ

[
1 − θ

(1 + κ)2(1 − θ) + θ

]
,

with θ = σ 2
μ/(σ 2

μ + σ 2
u ). Here, the restrictions (8) and (9) hold

when ω = γ /(1+κ) �= 0 and a = θ/[(1+κ)2(1−θ)] > 0, but
this implies that b1r/b1u = 1+(1+κ)2(1−θ)/θ > 1. Like PPS,
we stress that this result is special and does not extend to more
realistic settings in which s and m are correlated (Frost 1979), or
s is also measured with error (Barnow 1976). Also notice that,
if there are multiple controls subject to measurement error (i.e.,
k2 > 1), then the condition b1r/b1u > 1 need not hold (Garber
and Klepper 1980). Although theoretical power comparisons
for the case of multiple controls are still lacking, the Monte
Carlo simulations in PPS provide convincing evidence in favor
of the BT strategy.

As mentioned by PPS, pretesting may have nontrivial effects
on the statistical properties of these tests. Strategies for address-
ing this issue, such as post-model-selection inference (see, e.g.,
Berk et al. 2013; Leeb, Pötscher, and Ewald 2015) and model-
averaging estimation under a misspecified model space (see,
e.g., Zhang et al. 2016; Ando and Li 2017), deserve careful
attention.

6. CONCLUSIONS

Oster’s Proposition 1 delivers a very sharp result but requires
strong assumptions and knowledge of the key parameter R2

max.
Her Proposition 2, as reformulated in our Theorem 1, weakens
some of these assumptions but requires knowledge of both R2

max
and the additional parameter ϕ. Despite the strong assump-
tions, her characterization of the bias of the unrestricted OLS
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estimator as a root of a cubic equation is useful but, when
this equation has three roots, it is unclear which to select. Our
paper does not solve this problem, nor it offers other ways of
correcting for bias, but we hope it helps clarify the nature of
Oster’s assumptions and properly evaluate the results of her
Stata routine. Finally, the two testing strategies in PPS also
require restrictions, but in this case the assumptions are fewer
and more transparent, which makes it easier for practitioners to
check whether they are indeed satisfied.

APPENDIX

Proof of Theorem 1. Assumption A and B imply the equation sys-
tem

σ 2
1 (β1r − β1u) =

[
β2 − �−1

22 σ21b1u

]′
σ21, (A1)

σ 2
y (R2

u − R2
r ) =

[
β2 − �−1

22 σ21b1u

]′
(A2)

×
[
�22 − 1

σ 2
1

σ21σ ′
21

]

×
[
β2 − �−1

22 σ21b1u

]
,

ϕσ 2
y (R2

max − R2
u)β ′

2σ21 = (σ 2
1 − σ ′

21�−1
22 σ21)

×
[
β2 − ϕ�−1

22 σ21b1u

]′

×�22β2b1u, (A3)

which in turns implies the equation system in the statement of the
theorem. When k2 > 1, we then obtain a cubic equation in b1u
following the argument in the proof of Oster’s Proposition 2. When
k2 = 1, Equation (A2) is redundant and the result follows by solving
for β2 and b1u the pair of Equations (A1) and (A3).

Proof of Corollary 1. The first result follows from (A1) and (A2)

by setting ϕ = 1. To proof the second result, define p = �
1/2
22 β2, q =

�
−1/2
22 σ21, and τ = b1u, so that �

1/2
22 z = p − τq, �

−1/2
22 ��

−1/2
22 =

(σ 2
1 −q′q)pq′, and �

−1/2
22 ��

−1/2
22 = (p′q)(σ 2

1 I −qq′). It then follows
that

z′�z = (σ 2
1 − q′q)(p − τq)′pq′(p − τq)

= (σ 2
1 − q′q)

[
τ2(p′q)(q′q) − τ((p′p)(q′q)

+(p′q)2) + (p′p)(p′q)
]

and

z′�z = (p′q)(p − τq)′(σ 2
1 I − qq′)(p − τq)

= (σ 2
1 − q′q)(τ2(p′q)(q′q) − 2τ(p′q)2

+(p′p)(p′q)) + (p′q)((p′p)(q′q) − (p′q)2).

Hence, z′�z = z′�z if and only if

0 = (σ 2
1 − q′q)

[
τ2(p′q)(q′q) − τ((p′p)(q′q) + (p′q)2) + (p′p)(p′q)

]
−(σ 2

1 − q′q)
[
τ2(p′q)(q′q) − 2τ(p′q)2 + (p′p)(p′q)

]
−

[
(p′q)((p′p)(q′q) − (p′q)2)

]
= −

[
(p′p)(q′q) − (p′q)2

] [
(σ 2

1 − q′q)τ + (p′q)
]

.

Under Assumption A, the second term is always different from zero.
Thus, z′�z = z′�z if and only if p and q are proportional to each other,
that is β2 is proportional to μ = �−1

22 σ21.

Proof of Corollary 2. The result follows by solving for ϕ the equa-
tion

0 = (σ 2
1 σ 2

2 − σ 2
21)

σ 4
1

σ 4
21

(β1r − β1u)2 + 4ϕ(1 − ϕ)
σ 2

y (R2
max − R2

u)

σ 2
2

,

and then using the fact that, from (A1) and (A2), σ 2
y (R2

u − R2
r )/(β1r −

β1u)2 = σ 2
1 (σ 2

1 σ 2
2 − σ 2

21)/σ 2
21.
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