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Abstract

This paper studies the optimality of pooling and tranching for a privately informed secu-

rity originator facing buyers endowed with market power (perhaps due to liquidity shortages).

Contrary to the standard result that pooling and tranching are optimal practices, we find that

selling assets separately may be preferred by originators as it weakens buyers’ incentives to in-

efficiently screen them. Our results can shed light on observed time-variation in the practice of

pooling and tranching in financial markets, in particular, the dramatic decline in the size of the

ABS market following the most recent financial crisis.
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1 Introduction

Following the most recent financial crisis, origination volume of asset-backed securities (ABS)

dropped dramatically and remained far below pre-crisis levels — in 2015, issuance volume of ABS

in the U.S. was 60% lower than it was in 2006. In contrast, the total issuance volume in fixed

income markets was 3% higher in 2015 than in 2006.1 At the same time, market participants and

banks have been pointing to decreased liquidity across various markets, assigning blame to lower

inventories and new regulations affecting financial institutions.2 Since a large theoretical literature

supports the conventional wisdom that pooling and tranching are efficient in the presence of asym-

metric information (see, e.g., Farhi and Tirole 2015, among many others),3 the dramatic decline in

the size of the ABS market might warrant further explanation.

This paper studies the optimality of pooling and tranching under asymmetric information when

security originators face a market where liquidity or capital is scarce and buyers endowed with such

liquidity or capital have market power. In our model, an issuer possesses private information about

the quality of multiple assets he wishes to sell, which creates an adverse selection problem. Our

setup captures two key features of over-the-counter (OTC) markets, where structured products are

typically originated and traded. First, OTC trading is often highly concentrated,4 implying that

liquidity shocks affecting a few players can give rise to liquidity shortages and thereby concentrate

market power in the hands of a few institutions. This environment deviates from the settings typ-

ically considered in the existing literature on pooling and tranching, where buyers are competitive

and deep-pocketed. Second, agents settle deals tête-à-tête in these markets and do not disclose all

transactions and balance sheet positions. The resulting opacity limits the issuer’s ability to commit

to retaining net-exposures to the risks of the underlying assets, as side-transactions possibly in-

volving derivatives are always possible. To capture this friction, we consider an environment where

1The issuance volume of CDOs in 2015 was 80% lower than in 2006, according to the Securities Industry and
Financial Markets Association, http://www.sifma.org/research/statistics.aspx.

2 For example, Jamie Dimon notes in the letter to shareholders dated April 8, 2014: “There already is far less
liquidity in the general marketplace... The likely explanation for the lower depth in almost all bond markets is that
inventories of market-makers’ positions are dramatically lower than in the past... Inventories are lower - not because
of one new rule but because of the multiple new rules that affect market-making, including far higher capital and
liquidity requirements and the pending implementation of the Volcker Rule.

3Farhi and Tirole (2015) argue that one of the two “central and recurring insights of the literature” is that “...
tranching is optimal. The creation of debt-like securities alleviates buyer concerns about the seller’s ability to foist
a lemon, and seller concerns about the seller’s curse. It further minimizes incentives for information acquisition.
Tranching thus boosts liquidity, the value of assets and welfare.”

4See Cetorelli et al. (2007), Atkeson, Eisfeldt, and Weill (2012), Li and Schürhoff (2014), Begenau, Piazzesi, and
Schneider (2015), Hendershott et al. (2015), Di Maggio, Kermani, and Song (2017), and Siriwardane (2017).
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signaling through retention is infeasible.5 In this setting we find that — counter to the conventional

wisdom — the separate sale of assets may be optimal, both socially and privately. In particular,

when buyers with market power are expected to screen the privately informed issuer, he might

find it optimal to separately sell several imperfectly correlated risky assets and reduce the extent

to which he is being screened, thereby sustaining greater trading volume and improving the social

efficiency of trade.

The existing literature on security design has already identified circumstances under which, in

“centralized” markets, an issuer may prefer not to pool assets. However, our paper is the first to

show that liquidity shortages among major institutions participating in OTC markets might be an

important driver of the observed dramatic declines in ABS issuances, concurrent with an increase

in the volume of assets sold separately. DeMarzo (2005) uses the signaling through retention model

of DeMarzo and Duffie (1999) with price-taking (i.e., competitive) buyers to show that pooling

assets of different qualities decreases profits for the issuer since profits are a convex function of

quality. By pooling assets the issuer loses the ability to signal assets’ idiosyncratic quality to the

market, resulting in lower profits. Yet, DeMarzo (2005) shows that pooling and issuing debt on

a pool is optimal due to risk diversification, a channel that dominates the former channel and

allows to reduce residual risks as well as the information sensitivity of the security being issued. In

contrast to DeMarzo (2005) whose setup can be thought of as a centralized market where (price-

taking) buyers compete for the asset, we model an issuer who cannot credibly signal the quality

of her assets and who faces a buyer endowed with market power, as is more natural in opaque

over-the-counter markets.

The closest setup to ours is that of Biais and Mariotti (2005), who build a model where the

security design stage is followed by a stage where either the issuer or the prospective buyer chooses

a mechanism (i.e., a price-quantity menu) for selling the designed security. The paper shows that in

both cases issuers with low quality securities participate in the market, whereas high quality issuers

might not (despite the gains to trade). In particular, when the buyer chooses the mechanism, he

effectively screens the issuer, trading off higher volume with lower issuer participation. In contrast,

when the issuer chooses the mechanism, the setup is equivalent to one with multiple competitive

buyers. Biais and Mariotti (2005) show that issuing debt on a risky asset is optimal in both cases,

since the debt contract’s low information sensitivity helps to avoid market exclusion. However,

5Leland and Pyle (1977) and DeMarzo and Duffie (1999) highlight how adverse selection problems can be alleviated
when issuers can credibly signal the quality of their securities by retaining some fraction of the assets. See also
Williams (2016) and Hartman-Glaser (2017).
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Biais and Mariotti (2005) do not consider the situation where the issuer may want to sell separately

multiple assets and thus do not speak to the optimality of pooling and tranching.

Axelson (2007) studies a security design problem with multiple assets where the designed se-

curity is (centrally) traded through a uniform price auction among several informed buyers. In

contrast to our setting, buyers have superior information relative to the issuer and prices are deter-

mined by the marginal bidder who is indifferent between buying the asset or not. The uninformed

issuer then aims to minimize underpricing associated with a standard winner’s curse. Axelson

(2007) finds that pooling several assets and issuing debt on these assets is optimal for the issuer

when competition among buyers is low or when the signal distribution is continuous, whereas sell-

ing assets separately is preferred when competition is high and the signal distribution is discrete,

contrasting with our results. The latter result arises in the uniform price auction setting because

for a given number of buyers the probability that the pivotal bidder has the highest possible signal

when a single asset is sold is higher than the probability that the pivotal bidder has the highest

possible signal when a pool of assets is sold. From a social perspective, pooling is not harmful in

Axelson (2007) since social surplus is merely redistributed to the buy side, as high quality pools are

simply traded at a discount. In contrast, in our model, high quality pools may not be traded at all

in equilibrium (due to the buyer’s optimal screening strategy), thereby preventing the realization

of gains to trade and lowering the efficiency of trade.

Another paper studying the decision to pool assets is Farhi and Tirole (2015), who study

whether an issuer bargaining with a single buyer prefers to sell the asset as a whole or separate the

information sensitive part of the asset from the riskless part. The main focus of their paper is to

study how this choice affects information acquisition by both parties. As an extension, Farhi and

Tirole (2015) consider splitting an asset viewed as a bundle of an information sensitive part and a

riskless part into smaller bundles. Yet, they assume that the information sensitive securities issued

on these smaller bundles are all perfectly correlated, as they are fractions of the same risky asset.

In contrast, our paper considers the decision to pool different risky assets when assets are less than

perfectly correlated.

In the next section, we describe the environment of our model. In Section 3, we study a simple

case where the originator must decide whether to issue a security on a pool of two assets with

binomially distributed payoffs or issue one security for each asset. We show how the presence of

a buyer with market power changes the optimal security design relative to a benchmark case with

competitive buyers. We generalize our main results by allowing for continuous payoff distribu-
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tions in Section 4. Finally, Section 5 discusses the robustness of our results in several alternative

environments and the last section concludes.

2 Model

Suppose an issuer has n ≥ 2 assets to sell, each with future payoff Xi for i ∈ {1, 2, ..., n}. We

consider the security design problem where the issuer must decide whether to offer the n assets

separately or bundle some of them together and offer either an equity or a debt stake on the pool.

As is standard in the security design literature (see, e.g., Biais and Mariotti 2005), we assume that

the issuer does not possess private information at the security design stage, which helps to capture

the above-discussed notion that signaling through retention is often infeasible in opaque markets.

Yet, the issuer finds out the future realizations of X1, . . . , Xn before trading occurs and is thereby

informed about the value of the security he is offering for sale.

We consider two opposite scenarios to highlight the importance of market power in the decision

to pool or not the assets. As argued above, changes in market power may be interpreted as

resulting, for example, from liquidity shortages. In the first, benchmark case, we assume several

deep-pocketed competitive buyers. If multiple buyers offer an identical price that is accepted by

the issuer, the asset is randomly allocated among these highest bidders. This competitive case can

be interpreted as one where there is excess liquidity in the market. In the second case, we assume

the presence of only one buyer with sufficient liquidity to purchase the securities that are up for

sale.6 In both cases, buyers do not know the realizations of Xi before trade occurs, but they know

the composition of the pool, that is, which random payoffs Xi are bundled together, and the type

of security issued.

As is common in the security design literature, we assume that trade creates a surplus since

the issuer is impatient or faces liquidity needs, which is modeled through a lower discount factor

(δ < 1) for the issuer than for the buyer(s) (whose discount factor is normalized at 1). Thus, the

issuer’s reservation value for a security with future payoff v is δv, in case he is unable to sell it,

while the buyers’ valuation is v. The timing of the game goes as follows. First, the issuer chooses

the number of assets to bundle in a pool, as well as a security type. Second, the issuer becomes

informed about the realizations of each Xi. Third, the buyer(s) offer(s) their price(s) to the issuer

6We show in Appendix B that this second case is equivalent to one with multiple homogenous buyers that face
position limits (e.g., due to capital requirements) constraining total demand to be marginally below the total supply
of assets for sale.

5



in a take-it-or-leave manner. Fourth, the issuer decides whether or not to accept these offer(s).

Finally, the payoffs are realized.

3 Two assets with binomially distributed payoffs

To simplify the exposition of our main results, we first study optimal security design assuming

that each Xi is binomially distributed: each asset i produces a payoff Xi = ϕiσ where ϕi is an

independent random variable that takes the value 1 with probability (1 − qi) and the value 0

otherwise. If the issuer bundles the first k assets together the total payoff from the pool is given

by vk ≡ ϕ1σ + · · · + ϕkσ. If the issuer decides to sell equity on this pool of k assets, the payoff is

thus simply vk. In contrast, if he decides to issue debt with a face value of Dσ, the payoff from

this security becomes vDk ≡ min{vk, Dσ}.

In this section, we further simplify the intuition by focusing on the case where there are only

two assets to sell (we relax the n = 2 assumption and the discrete distribution assumption in later

sections). To emphasize how the solution to the security design problem differs based on buyers’

market power we solve for the issuer’s problem in two separate cases — we first consider a market

with competitive buyers and then switch our focus to a market with a monopolistic buyer. We end

the section with a numerical example that further highlights the differences between the two cases.

3.1 Competitive (deep-pocketed) buyers

An issuer has two assets he wants to sell in a market populated with several identical unconstrained

prospective buyers. First, we derive the quoted price and the ex-ante profits of each agent if the

issuer offers a security with an arbitrary payoff v. Since buyers are effectively competing in quotes

à la Bertrand, the issuer is then able to extract all the trade surplus. Accordingly, all buyers offer

a price p equal to their valuation of the issued security, which is equal to the conditional expected

value of its payoff:

p = E[v|δv ≤ p], (1)

where {δv ≤ p} is the event that the offer is accepted (i.e., the offered price is higher than the reser-

vation value of an accepting issuer type). The buyers’ ex-ante profit at this price is characterized as

B(p) = 0 while the issuer’s ex-ante profit is characterized as S(p) = (1− δ) Pr(δv ≤ p)E[v|δv ≤ p],

which is also equal to the realized social surplus.

In order to solve for the issuer’s optimal security, we compare the case where he does not pool
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the assets and instead sells them separately to the case where he pools the assets before selling

them.

Selling assets separately. Suppose the issuer designs two securities, each associated with only

one asset offering a payoff vi1 = ϕiσ. In response to this decision, buyers might offer two types of

prices in exchange for security i: (a) if all buyers offer pi1 < δσ, trade happens only when vi1 = 0,

and (b) if at least one of the buyers offers pi1 ≥ δσ, trade always happens. As shown above, the

buyers’ possible price offers and the associated profits depend on Pr(δvi1 ≤ pi1) and E[vi1|δvi1 ≤ pi1],

which in this case simplify to:

pi1 ≥ δσ 0 ≤ pi1 < δσ

Pr(δvi1 ≤ pi1) 1 qi
E[vi1|δvi1 ≤ pi1] (1− qi)σ 0

In equilibrium, competition drives each buyer to offer to pay the highest possible price pi1 =

(1− qi)σ whenever this price is sufficiently large for all issuer types to accept it:

(1− qi)σ ≥ δσ ⇔ δ ≤ δi1 ≡ 1− qi. (2)

This higher price is thus offered whenever the gains from trade 1− δ are high enough, or whenever

the asset is of relatively good quality in expectation, that is, whenever qi, the probability of a low

realized payoff, is low.

We define δi1 as the threshold on the discount factor δ below which a security that only includes

asset i is sold to competitive buyers at the high price pi1 = (1 − qi)σ. When δ < δi1 for i = 1, 2

the issuer can sell each of the two assets at high prices and collect a total expected profit of

(1− δ)(1− q1)σ+ (1− δ)(1− q2)σ = (1− δ)(2− q1− q2)σ, which is the sum of the profits from the

individual sales. The issuer’s profit for other regions of δ can be derived analogously.

When the two assets are traded separately, the issuer might prefer to use a debt security instead

of an equity security on any of the two pools. It is, however, easy to show that issuing debt with

face value Dσ where D ∈ (0, 1) is suboptimal in this simple case.7 With binary payoffs (which we

will relax later), the issuer selling an equity security on one asset does not do better by selling a

debt security on that same asset.

7If that were the case, buyers would offer a price of δDσ in exchange for the asset i whenever (1− qi)Dσ ≥ δDσ.
This condition would not depend on D since the level of E[vD1 |δvD1 ≤ pD1 ] would change with D proportionally. Given
that the issuer’s profit would then increase in D, for any δ satisfying this condition, the optimal face value of the
debt would be σ, that is, D = 1, which is identical to issuing equity on the asset.
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Selling a pool of two assets. Having solved for the profits of an issuer trying to sell the two

assets separately, we now consider the case where the issuer pools the two assets together and sells

an equity claim whose payoff is v2 = ϕ1σ+ϕ2σ. Since v2 now has three possible realizations, buyers

might now offer three types of prices p2 in exchange for the pool: (a) if p2 < δσ, trade happens

only when v2 = 0, (b) if δσ ≤ p2 < 2δσ, trade happens only when v2 ∈ {0, σ}, and (c) if p2 ≥ 2δσ,

trade always happens, that is, when v2 ∈ {0, σ, 2σ}. The values of Pr(δv2 ≤ p2) and E[v2|δv2 ≤ p2]

are summarized in the following table for each scenario:

p2 ≥ 2δσ δσ ≤ p2 < 2δσ 0 ≤ p2 < δσ

Pr(δv2 ≤ p2) 1 1− (1− q1)(1− q2) q1q2

E[v2|δv2 ≤ p2] (2− q1 − q2)σ (1−q1)q2+(1−q2)q1
1−(1−q1)(1−q2) σ 0

In equilibrium, competition drives each buyer to offer to pay the highest possible price p2 =

(2− q1− q2)σ whenever this price is sufficiently large for all issuer types to participate in the trade:

(2− q1 − q2)σ ≥ 2δσ ⇔ δ ≤ δ22 ≡
2− q1 − q2

2
. (3)

We define δ22 as the threshold on the discount factor δ below which a security that includes both

assets is sold to competitive buyers at the highest price p2 = (2−q1−q2)σ. More generally, we define

δkj as the threshold on the discount factor δ below which trade of a pool of k-assets occurs with

the j+1 lowest issuer types participating (accounting for the lowest type with a zero paying asset).

Specifically, if condition (3) is violated, buyers quote the intermediate price p2 = (1−q1)q2+(1−q2)q1
1−(1−q1)(1−q2) σ

whenever it is high enough to convince an issuer whose security is worth v2 ∈ {0, σ} to participate

in the trade:
(1− q1)q2 + (1− q2)q1

1− (1− q1)(1− q2)
σ ≥ δσ ⇔ δ ≤ δ21 ≡

q1 + q2 − 2q1q2

q1 + q2 − q1q2
. (4)

Note that since buyers are competitive in the current setting, the highest possible price is quoted

whenever both conditions for high (3) and intermediate (4) prices hold simultaneously. The intuition

behind these inequalities is similar to that in the case with pools of one asset. Higher gains to trade,

consistent with a lower issuer discount factor δ, lead to higher participation. Moreover, it can be

shown that the second threshold is higher than the first one, meaning that lower gains to trade are

needed to sustain trade at lower prices. Note also that the threshold δ22 for a pool of two assets is

the average of the two thresholds δi1 when assets are sold separately. (When q1 = q2 this threshold

is equal to the threshold for the sale of one asset.) As a result, there is no region of δ for which the
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separate sale of two assets leads to high prices being offered while pooling does not.

Finally, we consider the benefits of designing a debt security on the pool of assets. As pointed

out, for example, by DeMarzo (2005) and Dang, Gorton, and Holmstrom (2015), debt securities

have lower information sensitivity than equity securities, and might reduce the inefficiencies of

trade associated with asymmetric information. If the issuer designs a debt security on the pool

of two assets with a face value of Dσ, he knows that the price offered by the competitive buyers

will be equal to the expected value of the security, conditional on the possible valuations of the

participating issuers. Since a debt issuer values the pool of assets δv2, he is willing to sell the debt

security on the pool at a given price pD2 and retain the residual claim worth δ(v2 −min{v2, Dσ})

to him only if:

pD2 + δ(v2 −min{v2, Dσ}) ≥ δv2. (5)

The price offered by competitive buyers is thus the highest price that satisfies: pD2 = E[vD2 |δvD2 ≤

pD2 ], where vD2 ≡ min{v2, Dσ}. Moreover, since debt is equivalent to equity whenever v2 is below

Dσ, we focus on situations where issuing a debt security differs from issuing an equity stake, taking

into consideration the buyers’ price offer. Thus, we look for cases where pD2 = E[vD2 |δvD2 ≤ pD2 ] ≥

δDσ. The expected value of the debt security, as a function of D, is summarized in the following

table:

D ∈ (1, 2] D ∈ (0, 1]

E[vD2 |δvD2 ≤ pD2 ] (1− q1)(1− q2)(D − 1)σ + (1− q1q2)σ (1− q1q2)Dσ

As in the case with assets being separately sold, issuing a debt security with a face value of

D ∈ (0, 1) is suboptimal. In contrast, issuing a debt security with a face value of σ is sustainable

(i.e., even higher-valuation issuers are willing to sell the security at the equilibrium price) whenever

δ ≤ δ20 ≡ 1−q1q2 which is higher than δ21. In fact, setting D = 1 is optimal when δ = δ20. Similarly,

if δ ∈ [δ22, δ20), the optimal D ∈ (1, 2] decreases with δ and makes the highest participating issuer

indifferent between collecting pD2 and getting the reservation value:

(1− q1)(1− q2)(D − 1)σ + (1− q1q2)σ = δDσ. (6)

The optimal face value is then given by:

D =
q1 + q2 − 2q1q2

δ − (1− q1)(1− q2)
. (7)
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Issuing the optimal debt security thus expands the region of δ where trade is possible and for

some parameter values it makes the issuer, who extracts the full surplus from trade when facing

competitive buyers, strictly better off.

Optimal security design. We have shown above that, when buyers are competitive, the region

of δ that sustains efficient trade is expanded by pooling the two assets together whenever q1 6= q2

(since mini{δi1} < δ22). Moreover, in cases where efficient trade is impossible to sustain, pooling the

two assets and issuing debt on that pool is preferred by the issuer (and socially optimal) whenever

δ ≤ δ20. When δ is greater than δ20 however, trade does not occur in equilibrium whether the issuer

designs debt or equity securities. We will revisit these regions through a simple example once we

have covered the case with a monopolistic buyer.

3.2 Buyer with market power

We now show how the issuer’s optimal decision to pool assets changes when market power shifts

to the demand side of the market. Suppose that only one buyer with a discount factor of 1 has

enough capital to purchase the assets for sale. Since this buyer does not face competition, his price

offer to the issuer corresponds to a take-it-or-leave-it offer, allowing him to screen the issuer based

on his private information.

If the issuer is selling a security with future payoff v and the buyer offers p for the security, the

buyer’s ex-ante profit is equal to:

B(p) = Pr(δv ≤ p)(E[v|δv ≤ p]− p), (8)

where {δv ≤ p} is the event that the offer is accepted. Unlike in the competitive case where

buyers get zero profit, the buyer can now use his market power to maximize his expected profit. In

equilibrium, he quotes a price that is lower than the security’s expected payoff conditional on the

event that the offer is accepted and he thus makes a positive profit. Similarly, the issuer’s profit is:

S(p) = Pr(δv ≤ p)(p− δ E[v|δv ≤ p]), (9)

which accounts for the fact that if the issuer retains the security, its future payoff is discounted by

δ to reflect his relative impatience. Finally, the total gains from trade are the sum of both agents’

profits and are equal to (1 − δ) Pr(δv ≤ p)E[v|δv ≤ p]. Even though the buy side has the full
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market power, the total surplus is split between the buyer and the issuer, since the issuer collects

rents associated with his private information.

Selling asset separately. If the issuer sells the two assets separately, the buyer chooses between

offering the lowest quotes that result in different levels of issuer type participation: pi1 ∈ {0, δσ}.

Using the derivations above we can calculate the probability that trade is accepted and the ex-ante

expected profits for both agents from trading each asset i:

pi1 = δσ pi1 = 0

Pr(δvi1 ≤ pi1) 1 qi
B(pi1) (1− qi)σ − δσ 0
S(pi1) δqiσ 0

We use the same notation for thresholds on δ as above, but use a macron to indicate the case

where the buyer has market power. The buyer prefers to quote the high price pi1 = δσ whenever:

(1− qi)σ − δσ ≥ 0⇔ δ ≤ δ̄i1 ≡ 1− qi. (10)

Intuitively, screening the issuer by offering him a low price is suboptimal when the gains from trade

are large and when losing a fraction of the market is costly. When designing a security, the issuer

would like to avoid being screened, as his profit increases with the price, i.e., S(δσ) > S(0). Note

that for the separate sale of each asset the thresholds with competitive buyers (see condition (2))

and with a monopolistic buyer (see condition (10)) are identical. Finally, for the same reasons as

above, issuing a debt security rather than an equity security on a pool of one asset with binomial

payoffs is suboptimal for the issuer.

Selling a pool of two assets. When the issuer sells equity on a pool of two assets, the pooled

security’s payoff v2 has three possible realizations and the buyer chooses among quoting three

possible prices: p2 ∈ {0, δσ, 2δσ}. The probability that trade is accepted and the ex-ante expected

profits for both agents are summarized in the following table:

p2 = 2δσ p2 = δσ p2 = 0

Pr(δv2 ≤ p2) 1 1− (1− q1)(1− q2) q1q2

B(p2) (2− q1 − q2)σ − 2δσ (q1 + q2 − 2q1q2)σ − (q1 + q2 − q1q2)δσ 0
S(p2) (q1 + q2)δσ q1q2δσ 0
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The buyer offers to pay the high price p2 = 2δσ whenever:

(2−q1−q2)σ−2δσ ≥ (q1+q2−2q1q2)σ−(q1+q2−q1q2)δσ ⇔ δ ≤ δ̄22 ≡
2(1− q1 − q2 + q1q2)

2− q1 − q2 + q1q2
. (11)

Otherwise, he offers to pay the intermediate price p2 = δσ whenever:

(q1 + q2 − 2q1q2)σ − (q1 + q2 − q1q2)δσ ≥ 0⇔ δ ≤ δ̄21 ≡
q1 + q2 − 2q1q2

q1 + q2 − q1q2
. (12)

Finally, if both of these conditions are violated, the buyer finds it optimal to offer a price of zero.

The intuition for the inequalities follows the same logic as before. Screening the issuer is

suboptimla when the gains from trade are high. Higher gains to trade represented by a lower

discount factor for the issuer are thus needed to sustain trade at a higher price. As a result, the

second threshold δ̄21 is higher than the first δ̄22. Again, the issuer prefers to avoid being screened

as his profits are increasing in the offered price: S(2δσ) > S(δσ) > S(0).

Unlike when assets are sold separately, the first threshold δ̄22 (see condition (11)) with a mo-

nopolistic buyer differs from the first threshold δ22 (see condition (3)) with competitive buyers. In

particular, δ̄22 is lower than δ22, and when q1 = q2 = q the threshold δ̄22 is lower than the threshold

δ̄1 for the sale of one asset in (see condition (10)). These inequalities imply that there is a region of

δ where the separate sale of assets is more profitable than the sale of an equity claim on the pool.

We now allow the issuer to offer a debt security on the pool of two assets with a face value

of Dσ. Since debt is equivalent to equity whenever v2 is below Dσ, we focus on situations where

issuing a debt security differs from issuing an equity stake. Thus, we look for cases where the buyer

finds it optimal to quote a price pD2 = δDσ. The issuer’s and buyer’s ex-ante expected profits when

pD2 = δDσ are summarized in the following table:

D ∈ (1, 2] & pD2 = δDσ D ∈ (0, 1] & pD2 = δDσ

B(pD2 ) (1− q1)(1− q2)(D − 1)σ + (1− q1q2)σ − δDσ (1− q1q2)Dσ − δDσ
S(pD2 ) q1q2δσ + (1− (1− q1)(1− q2))δ(D − 1)σ q1q2δDσ

For the same reason as in the case with separate asset sales, the debt security with a face value

of D ∈ (0, 1) is never optimal. Issuing debt with a face value of σ is, however, sustainable whenever

δ ≤ δ̄20 ≡ 1− q1q2, just like with competitive buyers. In fact, setting D = 1 is again optimal when

δ = δ̄20. Similarly, if δ ∈ [δ̄21, δ̄20), the optimal D makes the buyer indifferent between collecting
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B(Dσ) and B(0). The optimal face value must thus be equal to:

D =
q1 + q2 − 2q1q2

δ − (1− q1)(1− q2)
. (13)

Analogously, if δ ∈ [δ̄22, δ̄21), the optimal d makes the buyer indifferent between collecting

B(Dσ) and B(σ) and must therefore satisfy:

D =
1− (1− q1)(1− q2)δ

δ − (1− q1)(1− q2)
. (14)

As with competitive buyers, the debt security allows to improve the issuer’s profits from issuing

a security on the pool of assets.

Optimal security design. The main difference with the earlier analysis of the competitive buyer

case is that pooling might not be optimal in a market where buyers have market power to screen

the issuer. This result is associated with the presence of a region δ ∈ [δ̄22,min{δ̄1
1 , δ̄

2
1}] where the

separate sale of assets leads to efficient trade whereas selling equity on a pool of assets leads to

the issuer being screened by the buyer. To further illustrate this result we provide the following

numerical example.

3.3 Simple numerical example

Suppose the issuer has two assets of the same quality q1 = q2 = 1
2 . With competitive buyers, we

obtain δ1 = δ22 = 1
2 , δ21 = 2

3 , and δ20 = 3
4 . These quantities imply that if the issuer sells the two

assets separately his total ex-ante profit from both sales is:

2S =


(1− δ)σ, if δ ∈ (−∞, 1

2 ]

0, if δ ∈ (1
2 ,+∞).

(15)

If instead he chooses to sell an equity claim on a pool of two assets his profit is:

S =


(1− δ)σ, if δ ∈ (−∞, 1

2 ]

1
2(1− δ)σ, if δ ∈ (1

2 ,
2
3 ]

0, if δ ∈ (2
3 ,+∞).

(16)
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The issuer is therefore indifferent between the two types of security when δ ∈ (−∞, 1
2 ] or δ ∈

(2
3 ,+∞) if he’s facing competitive buyers. However, he strictly prefers pooling when δ ∈ (1

2 ,
2
3 ].

Moreover, by designing an optimal debt security on the pool of two assets his profit becomes:

S =


(1− δ)σ, if δ ∈ (−∞, 1

2 ]

(3
4 + 1

4
3−4δ
4δ−1)(1− δ)σ, if δ ∈ (1

2 ,
3
4 ]

0, if δ ∈ (3
4 ,+∞).

(17)

For any δ the issuer’s profit with the optimal debt security on the pool dominates his profit from

selling assets separately, or from issuing an equity claim on the pool. Panel (a) in Figure 1 identifies

the region of δ where issuing debt on the pool is strictly more profitable than the separate sale of

the two assets with competitive buyers.

δ 

δ 

(a) Competitive buyers

δ 

δ 

(b) Monopolistic buyer

Figure 1: For the parameter region highlighted in green issuing a debt claim on the pool of assets is optimal.
The region highlighted in red indicates parameterizations where the separate sale of assets is optimal. In
the other regions the issuer is indifferent between the two options.

With a monopolistic buyer, we obtain δ̄1 = 1
2 , δ̄22 = 2

5 , δ̄21 = 2
3 , and δ̄20 = 3

4 . If the issuer tries

to sell the two assets separately, his total ex-ante profit is:

2S =


δσ, if δ ∈ (−∞, 1

2 ]

0, if δ ∈ (1
2 ,+∞).

(18)

If, instead, he tries to sell an equity claim on a pool of two assets, his ex-ante profit becomes:

S =


δσ, if δ ∈ (−∞, 2

5 ]

1
4δσ, if δ ∈ (2

5 ,
2
3 ]

0, if δ ∈ (2
3 ,+∞).

(19)
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Finally, if he issues an optimal debt security on the pool of two assets, his profit becomes:

S =



δσ, if δ ∈ (−∞, 2
5 ]

(1
4 + 3

4
1−δ
4δ−1)δσ, if δ ∈ (2

5 ,
2
3 ]

(1
4 + 3

4
3−4δ
4δ−1)δσ, if δ ∈ (2

3 ,
3
4 ]

0, if δ ∈ (3
4 ,+∞).

(20)

The issuer’s profit can increase by issuing the optimal debt security on the pool of assets rather

than issuing equity. However, unlike with competitive buyers, there is now a region δ ∈ (2
5 ,

1
2 ] where

the issuer is strictly better off by sidestepping pooling and instead selling assets separately. When

the buyer has market power, the threshold for the unscreened sale of a pool of two assets (i.e., δ̄22)

is lower than the thresholds for the unscreened sale of individual assets (i.e., δ̄i1). Even though the

debt security dominates the equity security when pooling the assets, the issuer is unable to unload

all his exposure to the assets and has to retain some in the form of a call option. Panel (b) in

Figure 1 identifies the region of δ where selling assets separately is more profitable than issuing

debt on the pool of assets.

The intuition behind these results can be explained by analyzing how pooling affects the distri-

bution of a security’s payoff (which we further discuss in the next section). Suppose the issuer tries

to sell the two assets separately. Since assets are independent and have the same quality, the quoted

prices and outcomes in the two trades are the same. For the buyers this situation is effectively the

same as if the issuer offered only one asset with twice the payoff: 2v1. The distribution of potential

payoffs on such asset is given by:

2v1 = 0 2v1 = σ 2v1 = 2σ

Pr 1/2 0 1/2.

The shape of the distribution is identical to the one corresponding to the individual asset. However,

the shape of the distribution changes when assets are pooled. The distribution of the pool is given

by:

v2 = 0 v2 = σ v2 = 2σ

Pr 1/4 1/2 1/4

Although the means of the two distributions are the same, the right tail of the second distribution

is thinner. When buyers are competitive and deep-pocketed the efficiency of trade solely depends
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on the mean of distribution and thus pooling does not affect the optimal decision of the issuer.

Yet, when buyers have market power, there is a trade off between prices and expected volume.

The thickness of the right tail affects the cost of market exclusion. As a result, pooling assets

incentivizes the buyer to screen out the high issuer types and is thus detrimental to the issuer.

4 Two assets with continuously distributed payoffs

In this section, we show that the main insights presented above do not change when assets’ payoffs

are continuously distributed. Moreover, the case with continuously distributed payoffs allows to

further emphasize the role played by the shape of the distribution in the optimal screening behavior

by a buyer endowed with market power and how the issuer can preempt this screening through

optimal security design.

We first examine the optimal pricing decisions by a monopolistic buyer who is offered an equity

or a debt security with arbitrary payoffs. Next, we establish some properties of the payoff distri-

bution for a pool of two assets. Finally, we compare the issuer’s profits from designing debt and

equity securities on separate assets and on a pool of assets.

4.1 Buyer’s optimal pricing of arbitrary securities

Suppose first that the seller issues an equity security producing a future random payoff v, with

a cumulative distribution function F (v) and a positive density f(v) everywhere on its domain

v ∈ [0, v̄]. We assume that the distribution is well-behaved, in line with the literature, and satisfies

the following assumption:

Assumption 1. The function

h(v) ≡ v f(v)

F (v)
(21)

is monotonically decreasing on the support of the distribution [0, v̄].

As in the discrete case, if the buyer offers a price p in exchange for the equity stake on that

asset, the buyer’s profit is given by:

B(p) = Pr(δv ≤ p)(E[v|δv ≤ p]− p). (22)
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Specifically, any issuer who knows that the security will pay out at most p/δ accepts the offer while

any issuer who knows that the asset will pay out more than p/δ rejects the offer (i.e., gets screened

out). We can rewrite the buyer’s profit function as:

B(p) =

∫ p/δ

0
(v − p)f(v)dv. (23)

Under the regularity condition assumed above, we can solve the buyer’s profit maximization problem

using its first-order condition. The optimal pricing threshold, or marginal issuer type, v∗ is then

characterized by:

(1− δ)v∗f(v∗)− δF (v∗) = 0. (24)

When choosing v∗, the buyer tradeoffs the benefits of convincing more buyer types to participate

in the trade and the losses associated with reducing the price collected by the participating issuer

types. The seller’s profit at the optimal screening price p = δv∗ is equal to:

S(δv∗) = Pr(v ≤ v∗)(δv∗ − δ E[v|v ≤ v∗])

= δv∗F (v∗)− δ
∫ v∗

0
vf(v)dv

= δ

∫ v∗

0
(v∗ − v)f(v)dv (25)

which is increasing in v∗.

Now, suppose instead that the seller issues a debt security with a face value D. The payoff of

the security is now given by vD = min{v,D}. Thus, an issuer can at most give the buyer a payoff of

D and thereby accepts with probability one any price weakly higher than δD. The buyer’s pricing

decision is thus equivalent to what he would face if the issuer with v ∈ [D, v̄] were replaced by

a positive mass of size Pr(v ≥ D) whose valuation is equal to δD. If the buyer were to find it

optimal to offer a price below δD, this positive mass of high issuer type would reject the offer and

we would be back to a situation consistent with the issuance of equity. In other words, trading

debt is equivalent to trading equity whenever the buyer quotes a price p < δD.

Moreover, it is never optimal for the issuer to pick D < v∗, since it would imply that the issuer

collects a lower payoff from selling the debt security than from selling an equity security. When

trying to buy a debt security with face value D > v∗, the buyer is now comparing the strategy of

offering the high price δD to the strategy of offering the optimal equity price δv∗. In the former
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case where p = δD, the buyer’s profit is:

BD(δD) = Pr(vD ≤ D)(E[vD|vD ≤ D]− δD)

=

∫ D

0
(v − δD)f(v)dv + (1− F (D))(1− δ)D. (26)

Consider now the issuer’s choice of a face value D. If the buyer offers the high price δD the

issuer earns no profit whenever v ≥ D. However, whenever D > v∗ an issuer who learns that

v ∈ (v∗, D) collects a positive profit, in contrast with the zero profit associated with an equity

security over that region of v. As a result, the issuer collects a higher expected profit from issuing

a debt security that is not screened by the buyer than from issuing an equity security. Formally,

the issuer’s profit when offered a price p = δD is:

SD(δD) = Pr(vD ≤ D)(δD − δ E[vD|vD ≤ D])

= δDF (D)− δ
∫ D

0
vf(v)dv

= δ

∫ D

0
(D − v)f(v)dv

= S(δD), (27)

which is increasing in D.

Given that the buyer is more likely to screen for higher values of D, it is optimal for the issuer

to choose the highest D for which the buyer offers a price δD. This condition implies that at the

optimal D the buyer is indifferent between quoting p = δD and p = δv∗:

BD(δD) = B(δv∗). (28)

By continuity of BD(p), it is straightforward to show that the optimal D is strictly greater than

v∗. The issuer is thus strictly better off by issuing the optimal debt security than by issuing an

equity security (i.e., S(δD) > S(δv∗) since S′(·) > 0 and D > v∗).

4.2 Issuer’s decision to pool assets

Using the derivations above for arbitrary payoff distributions, we can now compare the issuer’s

profit functions when he pools the two assets and when he does not. But first, we must state a few

properties of the payoff distributions that will simplify the analysis.
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When considering the separate sale of two assets, it is useful to establish the following result:

Lemma 1. The sale of two separate securities, each issued on an asset producing a random payoff

Xi distributed according to a c.d.f. F (x) that satisfies Assumption 1, is equivalent from all traders’

perspective to the sale of the same type of security issued on an asset producing a random payoff

2Xi with c.d.f. F2(x) = F (x2 ).

While selling two different securities, one issued on asset 1 and the other issued on asset 2, is

equivalent to selling one security issued on two times asset 1, when X1 and X2 are i.i.d., selling

a security issued on both securities leads to different incentives to screen for the buyer. Thus,

the issuer’s decision to pool or not the two assets is identical to the decision of selling securities

associated with payoffs of X1 +X2 or 2Xi, respectively. This comparison is convenient since both

2Xi and X1 +X2 are distributed on the same interval x ∈ [0, 2x̄] and the difference in the optimal

trading decisions of the issuer and the buyer will come from the difference in the shapes of the two

distributions.

The following results will be useful in this comparison:

Lemma 2. The distribution of payoff X1 +X2, where X1 and X2 are i.i.d. random variables with

c.d.f. F (x), second-order stochastically dominates the distribution of 2Xi and has thinner tails.

These distributional properties foreshadow that the incentives to screen the issuer of a security

on a pool of two assets will be stronger than if the issuer were instead selling the two assets

separately. As we will show, it is sometimes the case that separate securities can be sold in a

socially efficient manner while a pool of the same assets is sold at a screening, less efficient price.

Useful to our analysis below is the fact that the second-order stochastic dominance can charac-

terized by the following inequality:

∫ x

0
[F2(y)− Fp(y)]dy ≥ 0 (29)

for any x in the support [0, 2x̄]. The maximum of this difference is reached at some point x = x′

where F2(x′) = Fp(x
′), meaning that F2(x) > Fp(x) for x ∈ (0, x′) while F2(x) < Fp(x) for

x ∈ (x′, 2x̄). Furthermore, if both random variables Xi are symmetrically distributed around x̄,

then it must be that x′ = x̄.
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4.3 Comparing payoffs from equity securities

Although we showed above that when trading with a monopolistic buyer the issuer is strictly better

off designing a debt security on an asset than an equity security, we start by comparing the issuer’s

profits from issuing separate equity securities for each asset and from issuing one equity security on

a pool of assets. This exercise will highlight the intuition that pooling assets increase the buyer’s

incentives to screen the issuer and can thereby be detrimental to an issuer facing a buyer with

market power. Once that intuition is covered, we will introduce the design of the optimal debt

security and show that our intuition also holds there.

Recall that an optimal pricing threshold x∗ = p
δ is characterized by the first-order condition of

the buyer’s profit maximization problem, which can be written using equations (21) and (24) as:

1

h(x∗)
=

(1− δ)
δ

, (30)

and define a function k(x) ≡ 1
h(x) . The regularity condition in Assumption 1 states that this

function monotonically increases on the support [0, 2x̄]. Since the function k(x) measures the

buyer’s incentives to screen the issuer by offering a lower price, it is useful to examine its properties

for the distributions 2Xi and X1 +X2. While all the main results we derive below are analytical,

we use plot in Figure 2 a numerical example for the functions kp(x) and k2(x), which respectively

capture the buyer’s incentives to lower the price below p = δx when the security is issued on a pool

of two assets or when separate securities are issued for each asset.

From Lemma 2, we know that the payoff distribution for the pooled security has thinner tails,

which also means that Fp(x) > F2(x) and fp(x) < f2(x) as x → 2x̄. This in turn implies that

kp(x) > k2(x) as x → 2x̄ and the buyer has stronger incentives to screen the issuer by offering

a price lower than p = 2δx̄.8 More generally, if the monotonically increasing functions kp(x) and

k2(x) intersect only once at some x = x′ and the random variables Xi both follow an identical

symmetric distribution, then x′ > x̄ as kp(x̄) < k2(x̄). We denote by δ′ the unique value of δ such

that kp(x
′) = k2(x′) = 1−δ′

δ′ .

For low values of the discount factor, δ < δ′, the optimal marginal issuer the buyer targets has a

lower valuation x∗ when trying to purchase a pool with payoff X1+X2 than when trying to purchase

the two assets separately: x∗p < x∗2. However, for high values of the discount factor, δ ∈ (δ′, 1
1+k2(0)),

the order of the screening thresholds is reversed: x∗p > x∗2. Lastly, if δ ∈ [ 1
1+k2(0) ,

1
1+kp(0)) the assets

8Throughout the section, the subscripts p and 2 correspond to the distributions Fp(x) and F2(x) respectively.
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Figure 2: This figure plots the functions kp(x) for a pool of assets (red), k2(x) for separate sales (blue), and
a level 1−δ

δ (green). The parameterization assumes that Xi for i = 1, 2 are independent, uniform random
variables on [0, 1], δ′ = 0.53, and x̄ = 2.

cannot be sold separately, as the issuer is completely screened out by the buyer, but pooled security

is only partially screened and some gains from trade are realized.

Finally, having established the inequalities in screening thresholds x∗ for an equity security with

a payoff 2Xi and for an equity security with a payoff X1 + X2, we can now compare the issuer’s

expected profits in the two cases.

Integrating by parts, the issuer’s profit from being offered a price δx can be simplified to:

S(δx) = δ

∫ x

0
(x− y)f(y)dy = δ(x− y)F (y)|x0 + δ

∫ x

0
F (y)dy = δ

∫ x

0
F (y)dy. (31)

Since X1 +X2 second-order stochastically dominates 2Xi for any x ∈ [0, 2x̄], we know that:

S2(δx)− Sp(δx) = δ

∫ x

0
[F2(y)− Fp(y)]dy ≥ 0, (32)

which means, if the buyer were to offer the same price p = δx regardless of the security, the issuer

would have strictly higher profits by selling separately the two assets than by selling them as part

of a pool. However, as we know, the buyer optimally offers different prices in the two cases. We

however know that whenever the discount factor is small enough, i.e., δ ∈ (0, δ′), the buyer tries to

screen the issuer more aggressively if he is selling a pool of assets than two separate assets: x∗2 > x∗p.

Given that the issuer’s profit is an increasing function of the offered price, the following inequality

must hold: S2(δx∗2) > S2(δx∗p). Therefore, for δ ∈ (0, δ′) the issuer is better off selling a different

21



equity security for each asset than selling one equity security on the pool of assets.

4.4 Comparing payoffs from debt securities

As shown in subsection 4.1, an issuer is always able to design a debt security that generates a

higher expected profit than a comparable equity security. In this subsection, we will show that

when δ is sufficiently low and the payoff distribution F (x) is symmetric, the issuer is better off

selling separate debt securities on each asset than selling a debt security on the pool of assets. In

other words, when the buyer is endowed with market power, pooling assets may be suboptimal,

even if debt securities are allowed. We focus on the case where δ ∈ (0, δ′) and the buyer’s screening

behavior was more aggressive for pooled securities than non-pooled securities in the scenario with

equity securities only.

It has already been established that the issuer’s profit from selling a debt security is given by

the same function as in the equity case:

S(δD) = δ

∫ D

0
(D − v)f(v)dv. (33)

Therefore, if we can show that the optimal face value of debt when the payoff is 2Xi is higher than

the optimal face value of debt when the payoff is X1 +X2, i.e., D2 > Dp, then the same argument

as in the equity case above can be carried out when debt securities are allowed.

The analysis will prove that D2 > Dp for δ close to zero — the issuer thereby being better off

issuing separate debt securities for each asset than one debt security on the pool of assets. Recall

that the issuer chooses the optimal D such that the buyer’s profit from buying the debt security

without screening, at a price δD, is the same as his optimal profit from buying an equity security.

Using our earlier notation, the optimal face values D2 and Dp are determined by BD
2 (δD2) =

B2(δx∗2) and BD
p (δDp) = Bp(δx

∗
p). While again our main results are derived analytically below, we

plot in Figure 3 the relevant payoff functions associated with a simple numerical example.

To compare the relative positions of D2 and Dp, we must first study the relative positions of

the functions BD
2 (δD) and BD

p (δD) and the levels B2(δx∗2) and Bp(δx
∗
p). We can establish that

B2(δx∗2) < Bp(δx
∗
p). Integrating by parts, the buyers’s profit from buying an equity security at a
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Figure 3: This figure plots the buyer’s profit functions for an equity security B(δx) (dashed) and for a
debt security BD(δD) (solid), each drawn for the two cases: selling a pool of assets (red) and separately
selling the two assets (blue). It also plots the buyer’s maximum profit levels B2(δx∗2) and Bp(δx

∗
p) for equity

(green), and the optimal values for Dp and D2 (black). The parameterization assumes that Xi for i = 1, 2
are independent, uniform random variables on [0, 1], δ = 0.25, and x̄ = 2.

price δx can be simplified to:

B(δx) =

∫ x

0
(y − δx)f(y)dy

= (y − δx)F (y)|x0 −
∫ x

0
F (y)dy

= (1− δ)xF (x)−
∫ x

0
F (y)dy. (34)

Therefore, for x > x̄ the second-order stochastic dominance of Fp(x) implies that Fp(x) ≥ F2(x)

and that:

Bp(δx)−B2(δx) = (1− δ)x(Fp(x)− F2(x)) +

∫ x

0
[F2(y)− Fp(y)]dy ≥ 0. (35)

Geometrically, the function Bp(δx) lies above the function B2(δx) for any x > x̄ and the maximum

of the former function must therefore be higher than the maximum of the latter function. The

buyer’s profit at the optimal equity screening threshold of X1 + X2 is strictly higher than the
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buyer’s profit at the optimal equity screening threshold of 2Xi:

Bp(δx
∗
p) > B2(δx∗2). (36)

We can similarly establish that the function BD
p (δD) lies above the function BD

2 (δD). Indeed,

the buyer’s profit from buying debt with the face value D at a price δD is:

BD(δD) = B(δD) + (1− δ)(1− F (d))d = (1− δ)d−
∫ x

0
F (y)dy. (37)

Using the second-order stochastic dominance of Fp(·), we know that the function BD
p (δD) lies above

the function BD
2 (δD) for any D ∈ (0, 2x̄). Additionally, at the right tail of the distribution (as

x = 2x̄), all the four profit functions have the same value:

Bp(δ2x̄) = B2(δ2x̄) = BD
p (δ2x̄) = BD

2 (δ2x̄) = 2E[Xi]− δ2x̄ = x̄(1− 2δ). (38)

Having determined the relative positions of the functions BD
2 (δD) and BD

p (δD) and the levels

B2(δx∗2) and Bp(δx
∗
p), we now identify the relative positions of D2 and Dp. Since the function

BD
p (δD) lies above the function BD

2 (δD) for any D, the former must cross both levels B2(δx∗2) and

Bp(δx
∗
p) closer to the right boundary 2x̄ than the latter. However, the main question is whether

it crosses the higher level Bp(δx
∗
p), the point Dp, further from 2x̄ than BD

2 (δD) crosses the lower

level B2(δx∗2), the point D2.

Going back to our last numerical example, Figure 4 zooms in on the region of interest. It can

be seen that the profit functions BD
2 (δD) and BD

p (δD) as well as their slopes are close near the

right tail, 2x̄. The derivative of the buyer’s profit function which determines the slope is:

[BD(δD)]′ = 1− δ − F (D). (39)

Hence, the slopes of functions BD
2 and BD

p are indeed the same at the right tail 2x̄ where both

F2(2x̄) = Fp(2x̄) = 1.

Denote as D′ the face value of debt for which BD
p (δD′) = B2(δx∗2). By the properties of the

profit functions established above, D′ > D2 and D′ > Dp. Thus, to match up D2 and Dp we can

compare D′ −D2 and D′ −Dp.
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Figure 4: This figure plots the buyer’s profit functions for an equity security B(δx) (dashed) and for a
debt security BD(δD) (solid), each drawn for the two cases: selling a pool of assets (red) and separately
selling the two assets (blue). It also plots the buyer’s maximum profit levels B2(δx∗2) and Bp(δx

∗
p) for equity

(green), and the optimal values for Dp and D2 (black). The parameterization assumes that Xi for i = 1, 2
are independent, uniform random variables on [0, 1], δ = 0.25, and x̄ = 2.

Up to a linear approximation, these differences are each given by:

D′ −Dp ≈
Bp(δx

∗
p)−B2(δx∗2)

−[BD
p (δD′)]′

. (40)

D′ −D2 ≈ (2x̄−D2)− (2x̄−D′) =
B2(δx∗2)−B2(δ2x̄)

−[BD
2 (δD2)]′

− B2(δx∗2)−B2(δ2x̄)

−[BD
p (δD′)]′

. (41)

Finally, Dp < D2 whenever D′ −Dp > D′ −D2 which, substituting the formulas from the above,

is expanded to:

Bp(δx
∗
p)−B2(δx∗2)

−[BD
p (δD′)]′

>
B2(δx∗2)−B2(δ2x̄)

−[BD
p (δD2)]′

− B2(δx∗2)−B2(δ2x̄)

−[BD
p (δD′)]′

, (42)

which is equivalent to:

Bp(δx
∗
p)−B2(δx∗2)

B2(δx∗2)−B2(δ2x̄)
>
−[BD

p (δD′)]′

−[BD
2 (δD2)]′

− 1 =
δ − 1 + Fp(D2)

δ − 1 + F2(D′)
− 1 =

Fp(D
′)− F2(D2)

δ − 1 + F2(D2)
. (43)

This shows that Dp < D2 whenever either Bp(δx
∗
p)−B2(δx∗2) is high, B2(δx∗2)−B2(δ2x̄) is low, or
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Fp(D
′)− F2(D2) is low.

Lastly we show that condition (43) is satisfied for δ close to zero. For low values of the discount

factor δ → 0 the buyer almost does not screen and x∗2 → 2x̄ and x∗p → 2x̄. Therefore, both

differences B2(δx∗2) − B2(δ2x̄) → 0 and Bp(δx
∗
p) − B2(δx∗2) → 0. However, because of the thinner

tails of X1+X2, x∗p approaches the right tail 2x̄ at a slower rate than x∗2. Hence, Bp(δx
∗
p)−B2(δx∗2) >

B2(δx∗2)−B2(δ2x̄) ≈ 0. At the same time, D2 → 2x̄ and D′ → 2x̄ when δ → 0 and an application

of the L′Hôpital’s rule to the right-hand side of condition (43) yields:

Fp(D
′)− F2(D2)

δ − 1 + F2(D2)

∣∣∣∣
δ→0

≈ fp(2x̄)− f2(2x̄)

1 + f2(2x̄)
= 0. (44)

Summing up the above analysis, the condition is satisfied for δ → 0 and therefore by monotonicity

in some interval around zero, i.e. for δ ∈ (0, δ̄) with δ̄ > 0.

Thus, in this interval where δ is small, the optimal face value of debt for an asset with payoff

2Xi is higher than the optimal face value of debt for an asset with payoff X1 + X2. Therefore,

employing the argument from the beginning of this section, the optimal debt security issued on a

pool of two assets yields a lower profit compared to the profit obtained from selling two optimal

debt securities issued on each asset. Equivalently, the issuer is strictly better off selling debt on

separate assets than on the pool of assets. Given the analysis from subsection 4.1, the former option

also dominates selling equity on any of these portfolios.

5 Discussion

In this section we argue that the main result holds under various alternative scenarios. First, we

separately consider scenarios where there are more than 2 assets, where the scarcity of liquidity is

modeled differently with multiple constrained buyers instead of one monopolistic buyer, and where

the issuer could signal asset quality. Finally, we highlight the possibility of adding a time dimension

to the setup.

More than two assets. Throughout the paper, we have analyzed the decision of an issuer to pool

two assets and issue a security on this pool. Our main result that pooling assets can be suboptimal

when facing a buyer with market power, however, extends to cases with more than two assets. The

limiting case with n → +∞ assets provides a clear intuition for why that is. Suppose the issuer

has access to an infinite number of assets indexed by i. Each asset i produces a payoff that is
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independently distributed. If the issuer faces a group of competitive buyers, pooling all these assets

into one security guaranteed, by the law of large numbers, to always deliver its expected payoff, say

µ, is optimal, as all buyers offer a price µ and the issuer extracts the full surplus (1−δ)µ. Now if the

issuer instead faces a monopolistic buyer and were to pool all the assets into one security guaranteed

to deliver a payoff µ, the monopolistic buyer would find it optimal to offer a price δµ, which would

leave the issuer with no surplus. Pooling an infinite number of assets leads to non-existent tails in

the distribution of payoffs (i.e., payoff realizations always equal their expectation) and leaves the

issuer with no information rents. The issuer can therefore do better by separately selling a subset of

these assets such that he is not fully screened out and is able to extract some rents, consistent with

the above analysis for n = 2 assets. (See Appendix B for a formal extension of our model to the

case with n > 2 assets producing identically distributed payoffs that follow a binomial distribution.)

Constrained buyers. The main result of the paper that the pooling might be suboptimal com-

pared to separate sales is derived in the model with one deep-pocketed buyer endowed with full

market power. The characteristics of a market with liquidity shortages are, however, consistent

with this setup. Specifically, we show in Appendix B that the main result holds in an extended

model containing several buyers who have position limits which might be due to scarce market

liquidity. Buyers with position limits cannot compete aggressively and thereby quote prices similar

to the monopolist buyer prices. Because of this the issuer prefers the same securities as in the

baseline model and might find pooling suboptimal.

In particular, we consider two extensions of the model with different types of constraints. In the

first extension, deep-pocketed buyers are limited by the number of risk units they can take in their

inventory. We show that when the total number of risk units demanded is lower than the number

of supplied units the constrained buyers quote the same prices as a monopolist buyer would. In

the second extension, buyers have limited wealth to post quotes and acquire assets. We show that

under this scenario, if the buyers’ wealth is sufficiently constrained, the sale of a security on a pool

might be inefficient and separate sales are preferred by the issuer.

Signaling through retention. In the case of competing buyers, allowing the issuer to signal the

quality of the assets through partial retention would yield results consistent with DeMarzo (2005)

— issuers with assets of higher quality would retain a higher fraction of the issue. Signaling would

allow the high type issuers to separate themselves from the low types and would resolve the lemons
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problem for high values of δ. In contrast, when facing a buyer with market power, the issuer can be

made worse off by signaling the quality of his assets. Since the buyer has all bargaining power once

he knows the issuer type he is able to extract all the surplus from trade and leave the issuer with

zero profit. In this case the issuer’s profit with fully revealing retention policies is weakly worse

than his profit without any signaling through retention. (See Glode, Opp, and Zhang (2018) for

related arguments.)

Alternative interpretation. The model assumes that the cash flows of different assets occur at

the same time and we study whether pooling such assets is optimal for the issuer. However, the

model allows an alternative interpretation where a time dimension is added to the assets’ payoffs.

Suppose the issuer has an asset that pays cash flows in different time periods. To map this situation

to our model each particular cash flow can be viewed as an asset from our setup, while the asset

itself can be considered as a pool of such cash flows. For such a mapping, we would also need to

assume that the issuer is better informed than the buyers about all future cash flows. The question

would be then whether it is optimal for the issuer to sell the asset as it is, pooling all cash flows

across time, or to separate them and sell, for example, cash flows occurring earlier separately from

those occurring at later time periods. The prediction of the model is that when the demand side

has market power we should see more separation across the time dimension of cash flows.

6 Conclusion

This paper studies the optimality of pooling and tranching under asymmetric information when

security originators face a market where liquidity is scarce and buyers endowed with such liquidity

may have market power. Contrary to the standard result that pooling and tranching are optimal

practices, we find that selling assets separately may be preferred by originators to avoid being

inefficiently screened by buyers. While our results suggest that the dramatic decline of the ABS

market post crisis may represent an efficient response by originators to changes in liquidity and

market power in OTC markets, it also highlights the potential welfare implications of liquidity

constraints imposed on financial institutions in the new market environment.
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Appendix A Proofs of Lemmas

Proof of Lemma 1: Recall that if F (x) and f(x) are the c.d.f. and the p.d.f. of a random variable

X then a random variable 2X has a c.d.f. F2(x) = F (x2 ) and a p.d.f. f2(x) =
f(x

2
)

2 .

Using this property we analyze a sale of equity issued on an asset paying 2X. Since the regularity

condition in Assumption 1 is also satisfied by the distribution F2(x), the optimal screening threshold

x∗2 is given by the FOC of the buyer’s profit maximization problem:

(1− δ)x∗2f2(x∗2) = δF2(x∗2). (A1)

Substituting in the above the p.d.f. and the c.d.f. of the random variable X we obtain:

(1− δ)x∗2f(x∗2/2)/2 = δF (x∗2/2). (A2)

This is the FOC of the buyer’s optimization problem if the underlying asset is X, (24), with

x∗ = x∗2/2. Therefore, the optimal equity screening threshold for an asset 2X is twice as large as

the optimal equity screening threshold for an asset X, x∗2 = 2x∗.

Analogous steps can be taken in the case of a debt issued on an asset 2X to find that the

optimal debt level D2 is twice as large as the optimal debt level for a debt issued on an asset X,

D2 = 2D.

Furthermore, given the established properties, the issuer’s profit from selling a security issued

on an asset 2X is twice as large as that from a sale of the same security issued on an asset X:

S(δ2y) = δ

∫ 2y

0
(2y − x)f2(x)dx =

∫ y

0
(2y − 2x)f2(2x)d(2x) =

= 2δ

∫ y

0
(y − x)f1(x)dx = 2S(δy).

(A3)

Similarly, the buyer’s profit is twice as large as that from buying a security issued on an asset with

payoff X.

Therefore, from the issuer’s and the buyer’s perspectives two separate sales of an asset with

random payoff X is the same as a sale of one asset with random payoff 2X.

Proof of Lemma 2: Denote as Fp(x) and fp(x) the c.d.f. and a p.d.f. of a random variable

X1 + X2. Since X1 and X2 are independent and both have a density function f(x) the function
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fp(x) is, by definition, the convolution of the two functions f(x) and f(x) and is given by:

fp(x) =

∫ +∞

−∞
f(x− y)f(y)dy =

∫ x̄

0
f(x− y)f(y)dy. (A4)

This can be further reduced, since f(x) ≥ 0 on x ∈ [0, x̄], to obtain

fp(x) =


∫ x

0 f(x− y)f(y)dy, if 0 ≤ x ≤ x̄∫ x̄
x−x̄ f(x− y)f(y)dy, if x̄ < x ≤ 2x̄.

(A5)

To see that the distribution of X1 + X2 has substantially thinner tails than the distribution

2X consider the shape of its density function fp(x) close to zero, its left tail. From equation (A5)

fp(0) = 0 even if f2(0) = f(0)
2 might not be equal to zero.

Turning back to the left tail of the distribution X1 +X2, the first two derivatives of its density

fp(x) are

f ′p(x) = f(0)f(x) +

∫ x

0
f ′(x− y)f(y)dy, (A6)

f ′′p (x) = f(0)f ′(x) + f ′(0)f(x) +

∫ x

0
f ′′(x− y)f(y)dy. (A7)

Hence, their values at the left boundary are f ′p(0) = f2(0) and f ′′p (0) = 2f(0)f ′(0). Thus, it is

possible that f ′p(0) = f ′′p (0) = 0 when f2(0) = f(0)
2 = 0 even if f ′2(0) = f ′(0)

4 and f ′′2 (0) = f ′′(0)
8

might not be equal to zero. Since the same results can be obtained for the right tail it follows that

the distribution of X1 +X2 has smoother, thinner tails than the distribution of 2Xi.

Another way to see this fact is to notice that 2Xi is a mean preserving spread of X1 + X2.

Indeed, the former can be written as the sum of the latter and X1 −X2:

2X1 = X1 +X2 + (X1 −X2), (A8)

and X1 −X2 has conditional expected value of zero

E[X1 −X2|X1 +X2] = E[X1|X1 +X2]− E[X2|X1 +X2]
a.s.
= 0. (A9)

Therefore, the distribution of X1 + X2 second-order stochastically dominates the distribution of

2Xi.
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Appendix B Extensions to the baseline model

B.1 The case with n > 2 assets and binomially distributed payoffs

This section generalizes our results to pools of k ≤ n assets.

B.1.1 Competitive (deep-pocketed) buyers

In this subsection, we consider a market with competitive buyers. Suppose first that the issuer

offers an equity claim on a pool of k assets and there are several competitive unconstrained buyers.

Again, any buyer quotes the price pk = E[vk|vk ≤ mσ] when it is higher than the reservation value

of the highest participating issuer: mδσ. Writing out the conditional expectation, this is equivalent

to requiring that: ∑m
i=0 Pr(vk = iσ)(iσ)∑m
i=0 Pr(vk = iσ)

≥ mδσ. (B1)

As before, these inequalities allow us to characterize the thresholds for the discount factor δ at

which trade at prices E(vk|vk ≤ mσ) is possible:

δkm ≡
∑m

i=0 Pr(vk = iσ)i

m
∑m

i=0 Pr(vk = iσ)
. (B2)

Whenever δ is higher than the threshold δkm, it means that the gains to trade are too low to sustain

trade at a price E[vk|vk ≤ mσ]. Specifically, the upper bound on δ, which corresponds to the lowest

gains from trade where trade is efficient can be written as:

δkk ≡ δk ≡
E[vk]

k
. (B3)

Later, we will obtain analogous thresholds for a market with a monopolistic buyer and show how

they differ in the two cases and how they can be used to find the solution to the issuer’s problem.

As before, the issuer can improve his profits by issuing debt instead of equity on a pool of k

assets. If the face value is Dσ with D ∈ (m − 1,m] then the offered price which is equal to the

expected security payoff, assuming that all issuer types participate in the trade, is:

pk = E[vDk |vk ≤ Dσ] =
m−1∑
i=0

Pr(vk = iσ)(iσ) +
k∑

i=m

Pr(vk = iσ)Dσ. (B4)

Setting D ∈ (0, 1) is however never optimal. An optimal level of D = 1 can be sustained when δ
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reaches its highest bound where any trade is possible in equilibrium:

δk0 ≡
k∑
i=1

Pr(vk = iσ) = 1− Pr(vk = 0). (B5)

As δ decreases within the interval [δk, δk0) the optimal level of face value Dσ rises and the

issuer’s profit increases. In that region, the issuer’s profit is higher than the proceeds from selling

an equity stake on the pool. Unlike with an equity stake, there is no exclusion with the optimal

debt security and all issuer types participate in the trade, although the higher types have to retain

some exposure to the payoff in the form of a call option.

The analysis of the optimal decision to pool is analytically involved if we consider it for general

levels of δ. Instead we focus below on the region of δ where efficient trade is possible and pooling

is optimal (i.e., below the highest bound δk). Any asset or pool of assets can be characterized by

this bound. The higher δk the larger the region where there is efficient trade. Note also that with

competitive buyers δk depends only on the mean of distribution of vk but not on the shape of its

density. To see what implications this property has on the decision to pool we consider adding one

asset to an already existing pool.

Adding an asset to the pool. Suppose the issuer hesitates between selling a pool of k − 1

assets and selling a pool of k assets. The bounds allowing for efficient trade with the two candidate

securities are related as follows:

δk =
E[vk]

k
=
k − 1

k
δk−1 +

1

k
δk1 . (B6)

The bound on the larger pool is the weighted average of the bounds for efficient trade of the existing

pool δk−1 and the additional asset δk1 . If the issuer adds an asset with the same mean payoff as

the existing pool, the bound for the efficient trade of the pool does not change, as δk = δk−1. In

particular, if the issuer pools assets with the same mean payoff, which might be less than perfectly

correlated, δk is constant for all k. This means that pooling such assets when buyers are competitive

does not harm trade efficiency, in a sense that the region of δ where trade is efficient does not change

as k increases. If δ ≤ δ1 the decision to pool is optimal and remains so as long as the issuer adds

assets to the pool without changing the mean payoff. This is in sharp contrast to the case with a

monopolistic buyer, as we will see later.

If the additional asset added to the existing pool of assets has higher mean payoff than the
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average payoff of the assets already in the pool the bound increases. This means that the region of

efficient trade and optimal pooling expands. To be more precise, if δ1 > δk−1 then δk ∈ (δk−1, δ1).

If δ ∈ (δk−1, δk) the decision to add this asset to the existing pool is optimal since otherwise the

trade would involve the sale of the optimal debt security on the existing pool, as δ > δk−1, and the

efficient sale of the additional asset, as δ < δ1. Pooling the additional asset increases the issuer’s

profit because he is able to sell all assets and does not require to use a debt security (which would

result in the issuer retaining a call option).

The opposite is, however, true if the asset being added has a lower mean than the average asset

payoff of the existing pool. If δ1 < δk−1 then δk ∈ (δ1, δk−1). The benefit of pooling in this case

is that it allows to sell the additional asset, which could not be sold separately. If δ ∈ (δ1, δk) it

is the only change in the issuer’s payoff and it leads to an increase in the issuer’s profit. However,

if δ ∈ (δk, δk−1), the impact of pooling on the issuer’s profit is ambiguous, since in this region the

issuer has to use the optimal debt security and retains some cash flows in the form of a call option.

B.1.2 Buyer with market power

Turning to the market where one buyer has market power, we derive analogous thresholds for the

discount factor δ and determine how they change if some assets are added to the existing pool.

Suppose first that the issuer offers an equity claim on the pool of k assets for sale and the buyer

quotes pk = mδσ, for 0 ≤ m ≤ k. According to condition (8), the buyer’s ex-ante profit can be

written as:

B(mδσ) = Pr(vk ≤ mσ)(E[vk|vk ≤ mσ]−mδσ)

=
m∑
i=0

Pr(vk = iσ)(iσ −mδσ). (B7)

Similarly, employing (9), the ex-ante profit to the issuer is:

S(mδσ) = Pr(vk ≤ mσ)(mδσ − δ E[vk|vk ≤ mσ])

=
m∑
i=0

Pr(vk = iσ)(mδσ − iδσ). (B8)

Again, the issuer’s profit increases with m, meaning that the issuer prefers to avoid being screened

and to receive the highest possible offer: pk = kδσ.

The buyer prefers a quote of mδσ to a quote of (m−1)δσ whenever B(mδσ)−B((m−1)δσ) ≥ 0.
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From equation (B7), this condition is equivalent to:

0 ≤
m∑
i=0

Pr(vk = iσ)(iσ −mδσ)−
m−1∑
i=0

Pr(vk = iσ)(iσ − (m− 1)δσ)

= Pr(vk = mσ)(mσ −mδσ)−
m−1∑
i=0

Pr(vk = iσ)δσ

= Pr(vk = mσ)m(1− δ)σ − Pr(vk ≤ (m− 1)σ)δσ. (B9)

Again, the above inequality can be written as a threshold on the discount factor:

δ ≤ δ̄km ≡
mPr(vk = mσ)

Pr(vk ≤ (m− 1)σ) +mPr(vk = mσ)
. (B10)

The buyer prefers to quote the highest quote pk = kδσ whenever B(mδσ)−B((m−1)δσ) ≥ 0 for

∀m ∈ {1, . . . , k}. For tractability, we restrict our attention to distributions for which mPr(vk=mσ)
Pr(vk≤(m−1)σ)

monotonically declines with m, resulting into decreasing δ̄km.9

Therefore, the m inequalities reduce to one condition B(kσ)−B((k−1)σ) ≥ 0 which, according

to equation (9), can be written as:

δ ≤ δ̄kk ≡ δ̄k ≡
kPr(vk = kσ)

1 + (k − 1) Pr(vk = kσ)
. (B11)

This is the highest value of δ for which screening is not profitable and trade can thus be efficient.

Before conducting an analysis on how the thresholds change with the size of the pool, we consider

issuing debt on the pool. Debt can improve the issuer’s ex-ante profits whenever an equity claim

on the same pool would end up being screened by the issuer. For a face value of debt Dσ, the

whole issue is sold when the buyer offers pDk = Dδσ as every issuer type values the issue at most

at Dδσ. If the buyer instead makes a lower offer, the outcome becomes equivalent to the screened

sale of equity with higher issuer types refusing to trade. If D ∈ (m− 1,m] for 0 ≤ m ≤ k and the

buyer offers Dδσ then his ex-ante profit is:

B(Dδσ) = Pr(vDk ≤ Dσ)(E[vDk |vDk ≤ Dσ]−Dδσ)

=
m−1∑
i=0

Pr(vk = iσ)(iσ) +
k∑

i=m

Pr(vk = iσ)(Dσ)−Dδσ, (B12)

9This restriction is satisfied, for example, if qi = 1/2 for all assets but can be violated for some different qi.
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while the issuer’s profit is:

S(Dδσ) = Pr(vDk ≤ Dσ)(Dδσ − δ E[vDk |vDk ≤ Dσ])

= δ

m−1∑
i=0

Pr(vk = iσ)(Dσ − iσ). (B13)

Note that the issuer prefers to sell debt with higher face value d. As before, a debt security with

D ∈ (0, 1) is suboptimal. Moreover, the boundary above which no trade occurs (i.e., δ̄k0) is the

same as with competitive buyers.

For any other δ ∈ [δ̄k, δ̄k0) the optimal level of the face value of debt D ∈ (1, k] increases as δ

decreases. In particular, if δ ∈ (δ̄k(m+1), δ̄km] the optimal value of d makes the buyer indifferent

between the two options: (i) not screening, paying δDσ for the debt security, and receiving a profit

of B(Dδσ), and (ii) optimally screening, offering a price of δmσ, and receiving a profit of B(mδσ).

It can be shown that the optimal face value d > m and the condition B(Dδσ) = B(mδσ) pins down

its level. Moreover if m = k − 1, i.e. δ ∈ (δ̄kk, δ̄k(k−1)], the optimal D ∈ (k − 1, k) = (m,m + 1).

However, if m < k − 1 it might be the case that d > m+ 1.

As with competitive buyers, we will now focus on the region of δ where efficient trade is possible

and pooling is optimal (i.e., below the highest bound δ̄k). Any asset or pool of assets can be

characterized by this bound. The higher δ̄k the more likely it is that there is trade without screening.

Note also that unlike with competitive buyers, δ̄k depends on the shape of the distribution of vk, in

particular, on its density in the tail. To see how this property changes the optimal decision to pool

relative to a market with competitive buyers we consider the same application as in the previous

section, namely the addition of one asset to an existing pool.

Adding an asset to the pool. Suppose the issuer hesitates between selling a pool of k− 1 assets

and selling a pool of k assets. The first pool is characterized by a threshold δ̄k−1 and the larger

pool is characterized by δ̄k. Using definition in (B11), we can identify conditions when δ̄k−1 < δ̄k

in the following way:

(k − 1) Pr(vk−1 = (k − 1)σ)

1 + (k − 2)Pr(vk−1 = (k − 1)σ)
<

kPr(vk = kσ)

1 + (k − 1) Pr(vk = kσ)
(B14)

⇔ (k − 1) Pr(vk−1 = (k − 1)σ) + Pr(vk = kσ) Pr(vk−1 = (k − 1)σ) < kPr(vk = kσ).
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Since Pr(vk−1 = (k − 1)σ) = Pr(vk = kσ) + Pr(vk−1 = (k − 1)σ, ϕk = 0), the above becomes:

(k − 1) Pr(vk−1 = (k − 1)σ, ϕk = 0) < Pr(vk = kσ)(1− Pr(vk−1 = (k − 1)σ)) (B15)

⇔ (k − 1)
Pr(vk−1 = (k − 1)σ, ϕk = 0)

Pr(vk = kσ)(1− Pr(vk−1 = (k − 1)σ))
< 1. (B16)

If this condition is satisfied, we know that the threshold for the pool with the additional asset

to be traded efficiently (i.e., δ̄k) is higher than the threshold for the existing pool to be traded

efficiently (i.e., δ̄k−1). Intuitively, adding one more asset to the existing pool of assets is beneficial,

in terms of reducing the region with screening, whenever assets in the current pool are relatively bad,

1−Pr(vk−1 = (k− 1)σ) is high, or the additional asset σϕk is relatively good,
Pr(vk−1=(k−1)σ,ϕk=0)

Pr(vk=kσ)

is low.

B.1.3 Simple parametric example

We illustrate our general result with the following example where assets have the same quality ex

ante: ϕi ∼ Ber(1− q). Then condition (B16) simplifies to:

(k − 1)
q(1− q)k−1

(1− q)k(1− (1− q)k−1)
< 1. (B17)

Using a Taylor series expansion this expression reduces to:

(k − 1)
q

(1− q)
< 1− (1− (k − 1)q) (B18)

⇔ 1

1− q
< 1. (B19)

This inequality never holds and adding one more asset to the pool reduces the region of efficient

trade, as the corresponding threshold decreases, δ̄k < δ̄k−1. This is in sharp contrast with the

case of competitive buyers where even pooling assets with the same mean is harmless in terms of

efficiency. Since with a monopolistic buyer the threshold δ̄k decreases with k the issuer might prefer

to avoid creating one large pool of assets and might instead want to create several smaller pools

to sell them separately. For example, if δ ∈ (δ̄k, δ̄k/2] the issuer can increase his ex-ante profits by

selling two same-size parts of one large pool separately. Since the large pool is screened by the

buyer, the issuer has to use the optimal debt security and has to retain some exposure. In contrast,
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the separate sales of each part are not screened and using equity securities on the smaller pools

allows the issuer to sell all assets. Figure 5 illustrates this situation.

δ 

δ 

δ 

Figure 5: In the parameter region highlighted in red the separate sale of the two halves of the pool is
strictly more profitable than the sale of the debt on the pool.

Moreover, the threshold for the resulting pool may be lower not only in the special case with

independent identical assets. Suppose the issuer has two assets which can be sold separately. If sold

separately, these assets are characterized then by δ̄1
1 and δ̄2

1 but as a pool they are characterized by

δ̄2. If δ̄1
1 < δ̄2 there is a region of gains from trade where a sale of individual asset is screened while

a sale of a pool is not. According to (B11), δ̄1
1 < δ̄2 implies:

Pr(v1 = σ)

1 + (1− 1) Pr(v1 = σ)
<

2 Pr(v2 = 2σ)

1 + (2− 1) Pr(v2 = 2σ)
, (B20)

or equivalently,

Pr(v1 = σ)− 2 Pr(v2 = 2σ) + Pr(v2 = 2σ) Pr(v1 = σ) < 0. (B21)

The above condition holds for the general case and allows for arbitrary correlations between the

two assets. However, to illustrate the point, we can assume that assets ϕi are independent. Then

(B21) reduces to 1− 2(1− q2) + (1− q1)(1− q2) < 0 or

q2

1− q2
< q1. (B22)

The threshold for the resulting pool δ̄2 is higher than the threshold for the first asset δ̄1
1 = 1 − q1

when q1 is sufficiently high, while q2 is relatively low which means that the first asset should be

“bad” while the second added asset should be “good.” Note that in a market with a monopolistic

buyer the required quality of a “good” asset should be higher than in a market with competitive

buyers where the condition was that the first asset’s mean is lower than that of the second asset

q2 < q1. With the monopolistic buyer, it is not enough to add an asset that is simply better, this

asset needs to be sufficiently better. As a result, if the two added assets are similar in quality, that

is, they do not differ much in the means, the threshold for the pool is lower than both thresholds

for the individual assets and consequently there is a region δ ∈ [δ̄2,min{δ̄1
1 , δ̄

2
1}] where pooling is
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not optimal and the separate sale of the assets strictly dominates the sale of equity or debt on the

pool.

B.2 Buyers with constraint on risk units

We consider an extension of the model with a finite number of buyers who are constrained by their

position limits. In this section, the position limit is a constraint on the number of risk units a buyer

can take where a risk unit is defined as any security with a maximum cash flow of 1. We suppose

that the total position limit across all buyers is less than or equal to the total supply offered by the

issuer. We show that in this case the issuer’s optimal decision to pool assets is similar to the case

of one buyer.

Instead of one monopolistic buyer, we now assume that there are two deep-pocketed buyers,

each with a discount factor of 1, who have position limits of one risk unit each. Therefore, the

two buyers cannot buy more than two risk units in total. The seller, as before, has two assets

with binomial cash flows. This implies that two risk units can be sold by either selling two assets

separately or by selling two identical halves — shares of a pool of the two assets. We also assume

that buyers submit quotes for both risk units and the seller picks up the best quotes. If the two

buyers submit the same quote for a unit the seller allocates it to one of them randomly with equal

probabilities.

If the assets are ex-ante identical the seller must choose between offering each asset separately

or two halves of a pool containing both assets. In this case each unit is sold separately as if to

a monopolistic buyer since it is not optimal for one buyer to undercut the other buyer. Offering

slightly higher price than monopolistic for any unit would only result in a trade of this unit, one

of the two identical units that could have been obtained by quoting monopolistic price. Formally,

there are several equilibria with the buyers quoting monopolistic price for one or both units which

differ only in outcomes of buyer-unit matches.

If the seller has more than two assets there are more than two risk units. Thus, some of them

are retained while the pricing of the two sold units is the same as above. Therefore, when the total

number of risk units demanded is lower than the supplied one the constrained buyers quote the

same prices as the monopolist buyer would. Thus, the optimal pooling decision of the issuer does

not change compared to the case of one buyer with full market power.

Assets of different quality. If the assets are ex-ante different a new situation arises when the
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issuer decides to sell assets separately. Now, the risk units are different and the asset with a better

quality (i.e., higher expected cash flow) is not priced as in the monopolistic buyer case. Assume

the contrary, then by offering slightly higher price than the monopolistic price, a buyer can get the

better asset which results into higher profits than the purchase of the lower quality asset for the

monopolist price. The last result is due to the fact that the monopolist buyer profits are higher

for the the higher quality asset. The buyers keep increasing bids for the higher quality asset until

the profit obtained from its purchase is equal to the monopolist buyer’s profit from the purchase

of the lower quality asset. Therefore, the separate sale of assets of different quality to constrained

buyers increases the issuer’s profits compared to the monopolist buyer case. Consequently, if the

separate sale is preferred by the issuer facing a monopolist buyer it is also preferred when facing

buyers with position limits.

Formally, suppose as before that asset payoffs are vi1 = ϕiσ where ϕi ∼ Ber(1− qi) for i = 1, 2.

Then in the monopolist buyer case an asset i is traded if δ ≤ 1− qi and the profits of the seller and

the buyer are

Si(pi) = qipi = qiδσ (B23)

Bi(pi) = (1− qi)σ − pi = (1− qi)σ − δσ (B24)

where pi = δσ is the efficient price. Assume that q1 < q2 and both assets can be traded efficiently,

i.e. δ < 1 − q2, then B1(p1) > B2(p2). If the seller allocates the better quality asset first without

considering the quotes for another asset any equilibrium must satisfy the following two properties.

First, the profit obtained from the lower quality asset is equal to the monopolist case profit as it

can be guaranteed by quoting monopolist price for this asset and zero for the first asset. Second,

the buyers’ profits obtained from the two assets are equal since otherwise a buyer would either

withdraw from competition for the first asset or slightly undercut the competitor. Therefore, the

competition for the high quality asset in the case of the two constrained buyers increases the price

p̃1 offered for this asset until B1(p̃1) = B2(p2) or

(1− q1)σ − p̃1 = (1− q2)σ − p2. (B25)

Consequently, the price offered for this asset is p̃1 = δσ + (q2 − q1)σ while the total profit of the

seller is

S = δ(q1 + q2)σ + (q2 − q1)σ. (B26)
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The last term is the increase in the issuer’s profits compared to the monopolistic buyer case.

If only the high quality asset can be traded, i.e., 1 − q2 < δ < 1 − q1, the situation becomes

equivalent to the case of competitive buyers and one asset. Therefore, the quoted price is p1 =

(1− q1)σ, the buyers’ profits are B = 0 while the seller’s profit is S = (1− δ)(1− q1)σ. Finally, if

1− q1 < δ no asset is traded.

The analysis illustrates another reason why the separate sale of assets might be beneficial

to the issuer in the presence of several buyers with position limits on risk units. If assets are

of different quality buyers compete for the assets of higher quality to fill their limits and that

increases the issuer’s profits compared to the monopolistic buyer case. In contrast, when the issuer

sells homogeneous shares on the pool of the assets buyers with position limits do not compete and

quote the monopolist buyer prices. Therefore, the region where the separate sale is preferred by

the issuer is larger in the case of several constrained buyers compared to the case of a single buyer

with full market power. In the former case this region is δ ∈ [0,min{δ̄1
1 , δ̄

2
1}] while in the later case

it is δ ∈ [δ̄22,min{δ̄1
1 , δ̄

2
1}].

B.3 Buyers with constraint on wealth

In this section, we consider the same extension of the model with two constrained buyers except

that now the constraint is in terms of a buyer’s wealth w. This constraint limits a buyer’s quotes

as we assume that their sum cannot be greater than his wealth w.10 Suppose the seller has two

identical assets characterized by the parameter q and creates two risk units as before, by either

selling them separately or selling two identical shares issued on the pool of the two assets. We

focus on the interval for the discount factor δ where in the monopolistic buyer case the assets can

be traded efficiently separately but the efficient trade breaks down when they are sold in a pool,

∆ = [δ̄22, δ̄
1
1 ].

Selling separately. First, we analyze the case where the assets are sold separately. In region

∆, the monopolist buyer quotes the efficient price δσ for each asset. Offering any price below this

price results in a negative profit since such offer is rejected by the seller with positive cash flows.

Therefore, if a buyer’s wealth is constrained as: δσ ≤ w < 2δσ, each buyer quotes δσ for one of

the assets and the outcome is the same as in the case of the risk unit constrained buyers. If a

10The constraint can be motivated by a requirement to post a collateral for a quote. Such constraint might also
result from a model with a large punishment imposed on a buyer who cannot fulfill his quotes.
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buyer’s wealth is higher, 2δσ ≤ w ≤ 2(1 − q)σ, they compete for the assets and bid half of their

wealth, w
2 , for each asset while the profits are non-negative. There is no profitable deviation since

undercutting on one asset results in a surrender of the other asset. The expected profit from each

asset is then given by Bi = 1
2((1 − q)σ − w

2 ). Thus, when assets are sold separately and a buyer’s

wealth is in the region δσ ≤ w < 2δσ the quoted price is the same as in the monopolist buyer case

and assets are sold efficiently.

Pooling. Now we consider the case when assets are pooled. From the baseline model we know

that in the monopolist buyer case the profit from quoting a price p ≥ 2δσ is B2(p) = 2(1− q)σ− p,

the profit from quoting a price δσ ≤ p < 2δσ is B1(p) = 2(q− q2)σ− (2q− q2)p and the profit from

quoting any price below δσ is negative since it is rejected by any seller with a positive cashflow.

Consequently, in ∆ the monopolist buyer quotes the inefficient, low price δσ for the pool since the

profit from quoting the efficient price 2δσ is lower, B1(δσ) > B2(2δσ). It can also be noted that if

the monopolist buyer is offered one of the two identical halves of the pool he simply quotes half of

his optimal price for the whole pool.

Therefore in ∆, if 1
2δσ ≤ w < δσ the two buyers quote 1

2δσ for different units and the outcome

is the same as in the case of the monopolistic buyer. If w ≥ δσ instead the buyers must compete

for the units. If the buyers’ wealth w is slightly higher than δσ they bid half of their wealth, w
2 ,

for each unit. This is the equilibrium for δσ ≤ w ≤ p0 where p0 is given by B1(p0) = B2(2δσ), the

inefficient low price that yields to the monopolist buyer the same profit as the efficient price. The

expected profit from each unit is then equal to Bi = 1
2((q − q2)σ − (2q − q2)w2 ). As above, there is

no profitable deviation since undercutting on one asset results in a surrender of the other asset.

Due to the discrete nature of the assets’ cash flows there is no equilibrium for the values of

wealth in the region p0 < w < p0
2 + δσ as a buyer has always an option to quote the price δσ. If

p0
2 + δσ ≤ w < 2δσ the buyers quote a high price δσ for one unit, each buyer for different unit, and

a low price w − δσ for another. Compared to the previous region, there is enough wealth to both

win one unit by quoting the price δσ and to deter deviations by the other buyer. In the equilibrium

both units are sold efficiently. Finally, if 2δσ ≤ w ≤ 2(1− q)σ the buyers quote half of their wealth,

w
2 , for each unit while the profits are non-negative. The expected profit from each unit is then

given by Bi = 1
2((1− q)σ − w

2 ).

Overall, comparing the outcomes in the cases of the separate sales and the pooling, when δ ∈ ∆

and δσ ≤ w < 2δσ, we can see that separate sales yield efficient outcomes while the sale in the
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pooling case is inefficient when δσ ≤ w < p0
2 + δσ. Therefore, the main conclusion that the

pooling might be inefficient compared to the separate sales holds if the buyers’ wealth is sufficiently

constrained.
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