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Abstract

This paper provides a framework for studying identification in a network formation model. Network

formation is modelled as a static game with complete information and pure strategy equilibrium. Links

have directions. Payoffs depend on some players’ characteristics partially observed by the researcher

and on an externality, or spillover effect (hereafter SE), that goes beyond direct connections - i.e.,

player i’s payoff from forming a link with player j monotonically depends on the number of additional

players creating a link with j. This implies that parameters in players’ payoffs are partially identified

without further assumptions on equilibrium selection. The set of admissible parameter values (sharp

identified set) is derived. Even if restrictions are added, conducting inference on the sharp identified

set is prohibitively complex when there are four or more players. To attenuate the computational

difficulties, the focus is on a larger set of parameter values (outer set) obtained by bounding the

empirical probability of any network section being the unique equilibrium, and the probability of such

a network section being a possible equilibrium, in a local game of the network formation game. The

suggested outer set shows advantages over other outer sets in the literature (Tamer, 2003; Ciliberto

and Tamer, 2009; Sheng, 2014), in terms of computational tractability and width. A 95% confidence

region for the characterised outer set is computed using data on board interlocks between Italian firms.

Results reveal that SE has a positive sign, i.e., firm i’s payoff from forming a board interlock with rival

j increases with the number of additional competing firms creating a board interlock with j. In view

of the co-optation theory in corporate governance, this seems to support the idea according to which

the higher the number of competitors with a director sitting on j’s board, the stronger their capacity

to influence j’s decisions and align them with the group’s interests.
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1 Introduction

There is a successful literature studying the impact of networks on outcomes, such as technology

adoption, smoking behaviour, labour outcomes, academic achievement, and firms’ spending for

research (e.g., Bandiera and Rasul, 2006; Nakajima, 2007; Bayer, Ross, and Topa, 2008; Graham,

2008; Calvó-Armengol, Patacchini and Zenou, 2009; Conley and Udry, 2010; Sacerdote, 2010;

Helmers, Patnam and Rau, 2015). This literature imposes network exogeneity or uses instru-

ments to control for network endogeneity. Therefore, it does not help understanding why certain

networks emerge and how to design policies affecting the structure of networks. An estimable

model of network formation can allow these questions to be answered by learning about agents’

preferences for links through data. Hence, the present work provides a framework for studying

identification in a network formation model and applies the proposed methodology to data on

board interlocks between Italian firms.

Network formation is modelled as a static game with complete information and pure strategy

equilibrium. Links formed by players have directions. Payoffs depend on some players’ charac-

teristics partially observed by the researcher and on an externality, or spillover effect (hereafter

SE), that goes beyond direct connections - i.e., player i’s payoff from forming a link with player j

monotonically depends on the number of additional players creating a link with j. The spillover

effect SE appears in models of formation of board interlocks between rival firms as a consequence

of firms’ monitoring incentives towards competitors, as explained below in detail. It also charac-

terises models of formation of friendship networks, trust networks, and advice networks among

individuals, where the number of additional individuals creating a link with individual j may

respectively proxy j’s social popularity or free time, j’s trustworthiness, and j’s competence or

availability.

Identifying the spillover effect SE and other parameters shaping players’ preferences is not

easy because the presence of the spillover effect SE causes the network formation game to ad-

mit multiple equilibria, which in turn complicate identification unless assumptions are imposed

regarding how players select the outcome observed in the data from the equilibrium set (here-

after selection mechanism). However, as the selection mechanism is unknown by the researcher

and economic theory provides no guidance on its form, exploiting any restriction on it without

good prior evidence may be problematic. Hence, the present work designs a framework to study

identification remaining agnostic as to equilibrium selection.

The identification arguments are as follows. Existence of an equilibrium is shown by decom-
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posing the network formation game into smaller (local) games and by establishing equilibrium

existence in each local game using Tarski’s fixed point theorem and a result from the entry game

in Berry (1992)1. Equilibrium uniqueness is not guaranteed; i.e., there is more than one mapping

from parameters and observed and unobserved exogenous variables, to endogenous variables. As

the selection mechanism is unknown by the researcher and economic theory provides no guid-

ance regarding its form, any assumption on it may be inappropriate and could bias estimates.

Therefore, the econometric analysis proceeds by leaving the selection mechanism totally unre-

stricted, as seen in the most recent empirical literature on entry games (Tamer, 2003; Ciliberto

and Tamer 2009 - hereafter CT; Aradillas-Lopez and Rosen, 2014). This in turn implies that

the model is only partially identified; i.e., there may be more than one parameter value able to

generate the empirical probability distribution of observables for some data generating process

consistent with the model’s assumptions. In the language of Beresteanu, Molchanov and Molinari

(2011) (hereafter BMM) and Chesher and Rosen (2012), this set of admissible parameter values

is denominated the sharp identified set.

Following Berry and Tamer (2006), the sharp identified set for this model can be expressed

as the set of parameter values for which one can find a selection mechanism that, combined with

the model, delivers the empirical joint probability distribution of observables. However, this

representation does not facilitate inference because it involves the selection mechanism which,

as totally unrestricted, is a function representing an infinite dimensional nuisance parameter.

BMM (2011) offer a powerful alternative by showing that the sharp identified set in some classes

of models can be characterised as the set of parameter values satisfying a finite number of

inequalities that do not contain the selection mechanism. Hence, after showing that under

general assumptions this model belongs to the class of models analysed by BMM (2011), the

sharp identified set is derived following their approach under increasingly restrictive assumptions

on the distribution of unobservables. As assumptions become more restrictive, a significant

number of inequalities are redundant and, hence, can be deleted. Even so, conducting inference

on the sharp identified set remains prohibitively complex when there are four or more players

because it requires verification of a huge number of inequalities.

These computational difficulties can be attenuated by considering a subset of inequalities. In

the language of BMM (2011), a subset of inequalities defines an outer set, i.e., a set containing the

sharp identified set. This paper proposes a novel outer set obtained by bounding the empirical
1See the part of Result at p.894 in Berry (1992) concerning equilibrium existence in an entry game with

negative competitive effects.
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probability of any network section composed by all nodes and the links pointing to a node between

the probability of such a network section being the unique equilibrium, and the probability of

such a network section being a possible equilibrium, in a local game of the network formation

game.

The considered outer set brings computational advantages. Specifically, inequalities defining

the proposed outer set contain complicated multi-dimensional integrals that must be computed

during the inference procedure for each value of parameters and exogenous observables. Compu-

tation can be done via simulation (McFadden, 1989; Pakes and Pollard, 1989) which, in principle,

generates a demanding routine. However, simplifications relying on Tarski’s fixed point theorem

and a result from the entry game in Berry (1992)2 can significantly speed up the whole process.

Overall, Monte Carlo experiments reveal that conducting inference on the characterised outer

set is computationally feasible with relatively limited computational resources when the number

of players is equal to or smaller than 20. Moreover, if one is willing to impose exchangeability

across unobservables, several inequalities are redundant and, hence, can be deleted, allowing

further computational gains.

Lastly, the suggested outer set is compared with other outer sets in the literature (Tamer,

2003; CT, 2009; Sheng, 2014) and it is shown to offer advantages in terms of computational

tractability and/or width under different sets of assumptions.

In the second part of the paper the proposed methodology is illustrated in action using data on

board interlocks between Italian firms. To provide more detail on the context, most organisations

are governed by a board of directors composed of executive and non-executive members. The

former lead the decision-making process at the firm, and the latter are involved in the monitoring

and advising of executives to make sure that they stay aligned with shareholders’ interests.

Directors can be members of other firms’ boards. The term board interlock (or interlocking

directorate) refers to any situation in which two firms share one or more directors (Allen, 1974).

Moreover, a board interlock is horizontal when linked firms are competitors (Carrington, 1981).

The existence of horizontal board interlocks is a phenomenon that exists in several countries.

Deeply analysed by corporate governance experts, it has also drawn the attention of economists as

it raises serious antitrust concerns. In fact, horizontal board interlocks may be formed by firms

to monitor rivals’ decisions with the aim of enforcing potentially non-competitive agreements

(Carrington, 1981; Bianco and Pagnoni, 1997; Leslie, 2004; OECD, 2008; Gabrielsen, Hjelmeng,
2See the part of Result at p.894 in Berry (1992) claiming that every equilibrium in an entry game with negative

competitive effects is characterised by the same number of firms entering the market.
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and Sørgard, 2011). At the same time, horizontal board interlocks may be used by firms to

expand competencies by exchanging advise and expertise (Mace, 1971; Koenig and Goegel, 1981;

Mizruchi and Stearns, 1994; Mizruchi, 1996).

Legislation on horizontal board interlocks is not uniform across countries. For example, in the

U.S., horizontal board interlocks that meet certain jurisdictional thresholds are illegal under the

Clayton Act of 1914 and subsequent ancillary legislation. By contrast, European countries do not

impose any clear and general prohibition on horizontal board interlocks and mainly address them

by applying domestic competition rules. As such decentralised patchwork legislation is likely to

be chaotic, European institutions are discussing the possibility of harmonising regulations on

horizontal board interlocks. Within this context, the policy debate on firms’ incentives for

participating in horizontal board interlocks is intense due to the crucial need to understand their

impact on market structures. The empirical application in the present work contributes to this

policy debate.

Specifically, firms are assumed to play the network formation game to create horizontal board

interlocks with the purpose of monitoring and advising each other. Payoffs are modelled as

functions of some firms’ characteristics partially observed by the researcher and of the spillover

effect SE - i.e., firm i’s payoff from forming a board interlock with competitor j monotonically

depends on the number of additional rival firms creating a board interlock with j3.

The presence of the spillover effect SE is suggested by the co-optation theory in corporate

governance (Selznick, 1949; Thompson and McEwen, 1958; Pfeffer and Salancik, 1978; Palmer,

1983; Mizruchi, 1996), according to which board interlocks reflect attempts by organisations to

co-opt (monitor, anticipate, restrain) sources of environmental uncertainty stemming from the

potentially disruptive unilateral actions of other corporations. For example, horizontal board
3For simplicity of exposition, this introduction omits any explanation on why horizontal board interlocks can

be represented as directed links. As discussed in Section 5, the empirical application focuses on primary horizontal

board interlocks. A primary horizontal board interlock arises when two competing firms share a director holding

an executive role at at least one of two firms involved (Stokman, Van Der Knoop and Wasseur, 1988). The choice

to concentrate on primary horizontal board interlocks is motivated by the fact that primary horizontal board

interlocks, by involving individuals appointed with executive duties, are more likely to represent the long-term

economic and institutional relations between firms (Mizruchi and Bunting, 1981; Stokman and Wasseur, 1985;

Stokman, Van Der Knoop and Wasseur, 1988). Now consider two rival firms i and j that share a director who has

an executive role at i and a non-executive role at j. In such a case, the corporate governance literature (Palmer,

1983; Richardson, 1987; Koenig and Goegel, 1981; Mizruchi and Stearn, 1994) suggests that i can monitor and

advise j, but the converse does not hold. This creates asymmetries in i, j’s payoffs when playing the network

formation game and justifies links’ directions.
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interlocks may help companies to strengthen possibly collusive behaviours by monitoring each

other’s decisions. One may then conclude that the higher the number of competitors with a

director sitting on j’s board, the stronger their capacity to influence j’s decisions and align these

with the group’s interests (positive spillover effect SE). On the other hand, the micro-economic

theory suggests that, if horizontal board interlocks are formed by firms to enforce a cartel, then

the higher the number of competitors with a director sitting on j’s board, the lower the gains

when pre-empting deviations by j from the collusive agreement (negative spillover effect SE).

Hence, including the spillover effect SE in firms’ payoffs (without restricting its sign), allows to

understand which view is supported by the empirical evidence, when firms’ heterogeneity is also

considered.

A 95% confidence region for the proposed outer set is constructed following the method of

Andrews and Soares (2010) (hereafter AS) and using a sample of Italian joint stock companies

belonging to a cross-section of industries in 2010. Among the results, the confidence interval

for the spillover effect SE, obtained via projection, has a positive sign; i.e., firm i’s payoff from

forming a board interlock with rival j increases with the number of additional competing firms

creating a board interlock with j.

The rest of the paper is organised as follows. Section 2 contains a summary of the literature.

Section 3 illustrates the model. Sections 4 discusses identification. Section 5 presents the empir-

ical application. Section 6 provides some conclusions and directions for future research. Proofs

of results are in Appendix C.

2 Related literature

This section contains a discussion of the relevant literature. Readers familiar with it may safely

skip the section.

A summary of the literature on identification and estimation of network formation models is

provided first. Detailed reviews are in Graham (2015) and de Paula (2015).

Among network formation models, random graph models are characterised by a focus on

the probability distribution of the graph as the direct object of interest. Examples include the

Erdós and Rényi model that imposes a uniform probability on the class of graphs with a given

number of nodes and edges (Erdós and Rényi, 1959; 1960; Zheng, Salganik and Gelman, 2006;

Hong and Xu, 2014), the Poisson random graph model that assumes independent and identical

probability of link formation for each pair of nodes (Gilbert, 1959; Erdós and Rényi, 1960),
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models in which nodes are born sequentially and meet existing vertices according to random

meetings and network-based meetings (Price, 1976; Watts and Strogatz, 1998; Barabási and

Albert, 1999; Kleinber, et al., 1999; Watts, 1999; Pennock, et al., 2002; Newman, 2003; Vázquez,

2003; Jackson and Rogers, 2007; Clauset, Shalizi and Newman, 2009; Jackson, 2009; Kolaczyk,

2009), static models that include dependencies in link formation into the probability function,

such as probabilistic graphical models (Frank and Strauss, 1986; Koller and Friedman, 2009) and

exponential random graph models (Bollobás, 2001; Robins, Pattison, Kalish and Lusher, 2007;

Jackson, 2009; Kolaczyk, 2009).

Even if random graph models can reproduce relatively well the main characteristics of real

world networks, they are usually lacking micro-fundation, essential for counterfactual analysis.

Conversely, in strategic models of network formation, agents form links according to specific rules

(decisions can be made simultaneously or sequentially, unilaterally or bilaterally; information can

be complete or incomplete), an explicit equilibrium concept (e.g., pure strategy Nash equilibrium,

Nash stability4, pairwise stability5, pure strategy pairwise Nash equilibrium6, etc.), and a payoff

structure depending on some features of the network.

Among strategic models of network formation, iterative network formation models (Currarini,

Jackson and Pin, 2009; Christakis, et al., 2010; Badev, 2014; Mele, 2015) are models in which,

at each iteration of a meeting protocol, a pair of agents is randomly drawn and determines the

formation, maintenance or dissolution of a link according to a payoff structure. Conversely, in

static games of network formation, as the one considered in the present work, agents simulta-

neously choose the desired links. The key challenge of static games of network formation is the

possible multiplicity of equilibria for a given value of payoff-relevant variables and parameters.

When data are composed of a large number of relatively small networks, it is possible to leave

unrestricted the selection mechanism to avoid imposing additional assumptions that could bias

estimates, as seen in the most recent empirical literature on entry games (Tamer, 2003; CT,

2009; de Paula, 2013; Aradillas-Lopez and Rosen, 2014). Consequently, the model may be only

partially identified. After having derived the sharp identified set (BMM, 2011; Galichon and

Herny, 2011; Chesher and Rosen, 2012; Molchanov and Molinari, 2014), techniques for the esti-

mation of partially identified models can be implemented (if unconditional moment inequalities:

Chernozhukov, Hong, and Tamer, 2007; Beresteanu and Molinari, 2008; Romano and Shaikh,

2008; 2010; Rosen, 2008; Stoye, 2009; AS, 2010; Bugni, 2010; Canay, 2010; Romano, Shaikh, and
4Myerson (1991).
5Jackson and Wolinski (1996).
6Jackson and Wolinski (1996); Calvó-Armengol (2004).
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Wolf, 2014; Bugni, Canay and Shi, 2015; Kaido, Molinari and Stoye, 2015; Pakes, et al., 2015;

if conditional moment inequalities: Chetverikov, 2012; Andrews and Shi, 2013; Chernozhukov,

Lee, and Rosen, 2013; Lee, Song, and Whang, 2013; 2014; Amstrong, 2014).

However, inference with multiple equilibria becomes computationally very intensive as the

number of players increases because of the proliferation of possible networks. These computa-

tional difficulties can be attenuated by considering an outer set, as proposed by Sheng (2014)

and in this paper, or exploring features of the model, e.g., supermodularity as in Miyauchi (2014)

and Boucher (2016). In comparison with Sheng (2014), while Sheng focuses on undirected links

and uses pairwise stability as solution concept, the present work features directed links and pure

strategy equilibria. Sheng characterises an outer set by decomposing the network formation

game into local games. A similar strategy is followed in this paper but different local games are

considered so that the proposed outer sets are not equivalent. Lastly, Section 4.8 shows that,

under some assumptions, the outer set designed here is contained in the outer set obtained by

applying the strategy outlined by Sheng to this setting, as the second outer set ignores important

interdependencies across players’ decisions when links have directions.

Finally, Boucher and Mourifié (2015), Leung (2015a; 2015b), de Paula, Richards-Shubik and

Tamer (2015) and Menzel (2016) develop econometric analysis when the researcher has access to

only one or few large networks.

In view of the final empirical application, the existing literature on board interlocks is now

summarised. Board interlocks arise for several reasons. According to the inter-organizational

linkage perspective (Palmer, 1983; Ornstein, 1984; Zajac, 1988), companies are entities that pos-

sess interests. In pursuit of these interests, they form links with other firms with the main purpose

of exchanging information. Board interlocks are considered relations between firms and directors

are seen as agents of these relations. In this scenario, board interlocks may reflect attempts

by organisations to co-opt (monitor, anticipate, restrain) sources of environmental uncertainty

stemming from the potentially disruptive unilateral actions of other corporations (Selznick, 1949;

Thompson and McEwen, 1958; Pfeffer and Salancik, 1978; Palmer, 1983; Mizruchi, 1996). Re-

duced uncertainty comes at a cost because a company’s action must now reflect the co-opted

group’s influence (Selznick, 1949; Pfeffer and Salancik, 1978; Aldrich, 1979; Stiglitz, 1985; Bear-

den, 1986; Eisenhardt, 1989). For example, horizontal board interlocks may help companies

to strengthen possibly collusive behaviours by monitoring and influencing each other’s decisions

(Carrington, 1981; Mizruchi, 1996; Bianco and Pagnoni, 1997; Leslie, 2004; Carbonai and Di Bar-

tolomeo, 2006; Gabrielsen, Hjelmeng, and Sørgard, 2011; Di Bartolomeo and Canofari, 2015). At
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the same time, board interlocks may be a way to expand competencies by exchanging advice and

expertise (Mace, 1971; Koenig and Goegel, 1981; Mizruchi and Stearns, 1994; Mizruchi, 1996).

Several authors have attempted to empirically investigate the co-opting role of board inter-

locks by estimating the correlation between a firm’s profitability and size, and the intensity of

board interlocks. One of the underlying ideas is that, if board interlocks arise to co-opt sources

of environmental uncertainty, then larger and more profitable corporations should have more

board interlocks because they represent a major source of uncertainty for other companies. Al-

though evidence for a positive association between a firm’s profitability and intensity of board

interlocking is mixed (Bunting, 1976; Pennings, 1980; Carrington, 1981; Burt, 1983; Meeusen

and Cuyvers, 1985; Kaplan and Reishus, 1990; Khwaja, Mian and Qamar, 2011), many studies

confirm a positive relation between a firm’s size and intensity of board interlocking (Dooley,

1969; Pfeffer, 1972; Allen, 1974; Mizruchi and Stearns, 1988; Booth and Deli, 1996). In line with

this part of the literature, the final empirical application considers firms’ size and profitability

as exogenous characteristics affecting companies’ decisions on horizontal board interlocks.

Conversely, according to the class alliance view (Palmer, 1983; Ornstein, 1984; Zajac, 1988;

Mizruchi, 1996), directors are actors who possess interests and companies are agents of these

actors. In pursuit of their interests, directors form relationships with other peers and board

interlocks represent one way of doing it.

As clarified in Section 5, the empirical application in this paper adopts the inter-organizational

linkage perspective. This modelling choice is suggested by the Italian legal framework, stating

that a director needs her board’s approval to join the board of a competing firm (Article 2390

of the Italian Civil Code). Similar provisions are laid down in most European countries.

3 The network formation game

Useful tools of network theory In order to facilitate the illustration of the network formation

game, useful tools of network theory are introduced. A directed network of size N can be

graphically represented as a collection of N nodes (or vertices), some of them connected by links

(or edges) with directions. Nodes are labelled by the integers in NN := {1, 2, ..., N}. A link

from node i to node j is denominated link ij. The collection of links from node i to other nodes

constitutes node i’s outgoing links. Vice versa, the collection of links from any other node to

node i represents node i’s incoming links. Alternatively, a directed network of size N can be
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expressed as an N ×N matrix G with ijth component

Gij :=

1 if link ij exists

0 otherwise

Hence, G is a zero-diagonal matrix and it can be asymmetric. As an example, Figure 1 reports

a directed network of size 3.

Consider a group of 3 ≤ N < ∞ players, labelled with the integers in NN := {1, 2, ..., N}

and assume that each player i ∈ NN controls node i. In the network formation game players,

endowed with some preferences for links that are shared knowledge, simultaneously decide which

links to form according to certain payoffs and equilibrium concept.

Unilateral versus bilateral network formation games The formation of link ij is uni-

lateral when it requires the consent of player i only, as in the case of advice networks, trust

networks, and, sometimes, friendship networks7. The formation of link ij is bilateral when it

requires the consent of both players i and j, as in the case of board interlocks.

In what follows, for simplicity of exposition, identification results are illustrated for the uni-

lateral case. Section 4.9 discusses how to obtain analogous results for the bilateral case. All

proofs in the Appendix are presented, when necessary, for both cases.

Players’ preferences for links Players’ preferences for links depend on characteristics that

are partially observed by the researcher. For any i, j ∈ NN with i 6= j, let Xi and εij denote,

respectively, a K × 1 vector of observed (to the researcher) characteristics of player i, and the

unobserved (to the researcher) heterogeneity of player i affecting its preference for link ij. Let

X be an N ×K matrix collecting Xi ∀i ∈ NN , and εi· be an (N − 1) × 1 vector collecting εij

∀j 6= i ∈ NN . Lastly, let ε be an N(N − 1)× 1 vector collecting εi· ∀i ∈ NN .

Players have complete information on their preferences for links. This assumption is based

on the idea that observed networks are realisations of a long-run equilibrium. When players

are individuals, complete information is postulated also in Sheng (2014) and Miyauchi (2014).

When players are firms, as in the empirical application, such a restriction mimics the complete

information assumption often imposed in the empirical literature on entry games (Bresnahan and
7Unilateralism of decisions in case of friendship networks is controversial. Some empirical papers consider

friendship formation as a bilateral process (Christakis, et al., 2010; Miyauchi, 2014). Others (Badev, 2014; Mele,

2015) interpret friendships as model relationships rather than symmetric human ties and describe friendship

formation as a unilateral process.
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Reiss, 1991; Berry, 1992; Jia, 2008; CT, 2009; Bajari, Hong and Ryan, 2010; Aradillas-Lopez

and Rosen, 2014; Fox and Lazzati, 2016)

Players’ choices For any i ∈ NN , let Gi· be an (N −1)×1 vector collecting Gij ∀j 6= i ∈ NN .

A pure strategy vector of player i is Gi· ∈ {0, 1}N−1 ∀i ∈ NN and a pure strategy profile of the

game is G ∈ GN .

Players’ payoffs Let G−{·i} denote the matrix G with ith column deleted. Each player

i ∈ NN gets a payoff

Ui(G−{·i},X, εi·; θu) :=

N∑
j=1

Gij ×
[
z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εij

]
(3.1)

where z(·;β) is any function of Xi and Xj known up to a vector of parameters β, v(·; δ) is any

function monotone in
∑N
k 6=iGkj and known up to a vector of parameters δ, θu := (β, δ) ∈ Θu ⊆

Rdβ+dδ , with dβ and dδ denoting the dimensions of β and δ.

It should be noticed that the derivative of the function v(·; δ) with respect to
∑N
k 6=iGkj

delivers the spillover effect SE illustrated in Section 1. Moreover, Ui(·; θu) is additively separable

over player i’s outgoing links (hereafter additive separability). Additive separability is a common

assumption in empirical models of formation of social networks (Badev, 2014; Sheng, 2014; Mele,

2014; Miyauchi, 2014; Leung, 2015). When players are firms, as in the empirical application,

additive separability mimics the additive separability over multi-market entry decisions in the

empirical literature on entry games (see references above).

All results up to Section B, included, also hold if one imposes label-specific functions and

parameters, provided that the monotone functions {vi(·; δi)}∀i∈NN are restricted to have the

same slope’s sign across i. However, it seems natural to proceed with functions and parameters

independent of players’ labels, as the data generating process that will be illustrated in Assump-

tion 1 assumes that players’ identities or roles vary across replications of the network formation

game, in accordance with the data used for the empirical application.

Equilibrium Agents play pure strategy Nash equilibrium (hereafter PSNE). Let G−{i·,·i} be

the matrix G with ith row and column deleted and G−{·i} = (Gi·,G−{i·,·i}).

Definition 1 (PSNE of the network formation game). G is a PSNE of the network formation

game if

Ui(Gi·,G−{i·,·i},X, εi·; θu) ≥ Ui(G̃i·,G−{i·,·i},X, εi·; θu)
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∀G̃i· 6= Gi· ∈ {0, 1}N−1 and ∀i ∈ NN .

Lastly, by exploiting the additive separability of Ui(·; θu), Lemma 1 maintains that the in-

equalities in Definition 1 simplify to a system of N(N − 1) equations whose solution is a PSNE

of the network formation game. This characterisation is used to show existence of a PSNE

equilibrium (Lemma 4).

Lemma 1 (Characterisation of a PSNE of the network formation game). G is a PSNE of the

network formation game if and only if

Gij = 1{z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εij ≥ 0} ∀i, j ∈ NN , i 6= j

4 Identification

Let θ0 ∈ Θ denote the unknown population value of θu ∈ Θu and of potential parameters

entering the joint distribution of unobservables. This section discusses identification of θ0. In fact,

interdependence of decisions caused by the function v(·; δ) precludes using results for multivariate

discrete choice models.

Developing identification arguments firstly requires investigating whether a PSNE of the

network formation game exists and whether the network formation game admits multiple PSNE.

This is carried out in Sections 4.1 and 4.2.

4.1 Existence of a PSPNE of the network formation game

This section proves that the network formation game has a PSNE for every value of payoff-

relevant variables and parameters.

If the function v(·; δ) was assumed monotone increasing, then existence of a PSNE would

be guaranteed by Tarski’s fixed point theorem. As the function v(·; δ) is imposed generically

monotone, existence of a PSNE is not straightforward and has to be shown.

Equilibrium existence is established as follows. Firstly, the network formation game is decom-

posed in N small (local) games such that the network formation game has an equilibrium if and

only if each local game has an equilibrium. Secondly, existence of an equilibrium in each local

game is proved by using Tarski’s fixed point theorem and the constructive proof in Berry (1992)

that shows equilibrium existence in an entry game with negative competitive effects8. Hence, a

PSNE of the network formation game exists.
8See Result at p.894 in Berry (1992).
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Describing a local game To give more details on the considered local games, some definitions

are first introduced. For any j ∈ NN , the network portion collecting all nodes and the links

pointing to node j is denominated section j. Alternatively, the section j of a network G can

be expressed as an (N − 1) × 1 vector G·j collecting Gij ∀j 6= i ∈ NN . For example, Figure 2

reports the section 2 of the network in Figure 1.

For any j ∈ NN , the local game considered is denominated the section j game. In the section

j game players other than player j simultaneously announce whether they want to form a link

pointing to j. Hence, the section j game can be thought of as an entry game. A pure strategy

of agent i is Gij ∈ {0, 1} ∀i ∈ N·j,N and a pure strategy profile of the game is G·j ∈ {0, 1}N−1,

where N·j,N := {1, ..., j−1, j+1, ..., N}. Each agent i ∈ N·j,N gets a payoff Gij×
[
z(Xi, Xj ;β)+

v(
∑N
k 6=iGkj ; δ) + εij

]
. Agents play PSNE.

Definition 2 (PSNE of the section j game). G·j is a PSNE of the section j game if

Gij = 1{z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εij ≥ 0} ∀i ∈ N·j,N . (4.1)

Existence statements It can be seen that the payoff of any player within the section j game

depends exclusively on G·j , ∀j ∈ NN . Combining this with the fact that the collection of sets

of pure strategy profiles of the section j game ∀j ∈ NN constitutes an N -partition of the set of

pure strategy profiles of the network formation game allows to shows that

Lemma 2 (Decomposing the network formation game). G is a PSNE of the network formation

game if and only if G·j is a PSNE of the section j game ∀j ∈ NN .

Moreover, using Tarski’s fixed point theorem when v(·; δ) is monotone increasing and the con-

structive proof in Berry (1992) that shows equilibrium existence in an entry game with negative

competitive effects when v(·; δ) is monotone decreasing, it can be proved that

Lemma 3 (Existence of a PSNE of the section j game). There exists a PSNE of the section j

game ∀j ∈ NN .

Hence, by Lemmas 2 and 3,

Lemma 4 (Existence of a PSNE of the network formation game). There exists a PSNE of the

network formation game.

13



4.2 Multiplicity of PSNE of the network formation game

The network formation game admits multiple equilibria for some values of payoff-relevant vari-

ables and parameters. This means that values of observed and unobserved exogenous variables

do not uniquely pin down the value of endogenous variables, or, equivalently, there is no unique

mapping from parameters and observed and unobserved exogenous variables, to endogenous vari-

ables. Moreover, by running simulations, it can be seen that the equilibrium set may contain

outcomes with a diametrically opposite economic meaning, as the empty network and the fully

connected network.

As the selection mechanism is unobserved by the researcher and economic theory provides

no guidance regarding its form, any assumption on it may be inappropriate and could bias

estimates. Therefore, the econometric analysis proceeds by leaving the selection mechanism

totally unrestricted, as seen in the most recent empirical literature on entry games (Tamer, 2003;

CT, 2009; Aradillas-Lopez and Rosen, 2014).

This implies that θ0 ∈ Θ is only partially identified, i.e. there may be more than one

parameter value able to generate the empirical probability distribution of observables for some

data generating process consistent with the model’s assumptions. Nevertheless, the model can

still be able to deliver useful information provided that set estimates or confidence regions are

sufficiently tight (de Paula, 2013; Ho and Rosen, 2015).

In more detail, in principle one may want to achieve point identification of θ0 by imposing

additional direct or indirect assumptions on the selection mechanism. For instance, one might

restrict the function v(·; δ) to be monotone decreasing. This would imply that the section j

game has a unique number of players linking to player j for any j ∈ NN , mimicking the result in

Berry (1992) claiming that every equilibrium in an entry game with negative competitive effects

is characterised by the same number of firms entering the market9. Consequently, θ0 may be

point identified by considering that number as the equilibrium outcome of interest. However,

such a restriction could bias results unless the researcher has a strong prior supporting it.

In the same spirit, another possibility might be assuming that the outcome observed by the

researcher is chosen by players at random from the equilibrium set (Bjorn and Vuong, 1984;

Kooreman, 1994). However, such a strategy would hardly be justifiable within this framework

and may produce biased empirical results.

Alternatively, one could re-design the network formation game as an iterative network forma-
9See Result at p.894 in Berry (1992).
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tion model, where, at each iteration of a meeting protocol, a pair of players is drawn uniformly

at random and determines the formation, maintenance or dissolution of a link (Currarini, Jack-

son and Pin, 2009; Christakis, et al., 2010; Badev, 2014; Mele, 2015). However, a potentially

unattractive feature of this approach is that the realised sequence of meetings is contained in the

set of equilibria predicted by the underlying static game, acting as an indirect restriction on the

selection mechanism that may bias estimates.

A fourth option could be assigning a parametric form to the selection mechanism, as in the

entry game of Bajari, Hong and Ryan (2010). However, when applied to this framework, such a

strategy could bias empirical results because economic theory provides no guidance on the form

of the selection mechanism.

Given the inappropriateness of those four approaches, remaining agnostic as to equilibrium

selection offers an alternative. The present work adopts this last strategy and discusses partial

identification of θ0 ∈ Θ in what follows.

4.3 Overview of partial identification results

In the language of BMM (2011) and Chesher and Rosen (2012), the set of parameter values

generating the empirical probability distribution of observables for some data generating process

consistent with the model’s assumptions is denominated the sharp identified set and indicated

by Θ?.

Following Berry and Tamer (2006), Θ? can be expressed as the set of parameter values for

which one can find a selection mechanism that, combined with the model, delivers the empirical

joint probability distribution of observables. However, this representation does not facilitate

inference because it involves the selection mechanism which, as totally unrestricted, is a function

representing an infinite dimensional nuisance parameter. BMM (2011) offer a powerful alternative

by showing that the sharp identified set in some classes of models can be characterised as the set

of parameter values satisfying a finite number of inequalities that do not contain the selection

mechanism. Hence, after showing that under general assumptions (Assumption 1) this model

belongs to the class of models analysed by BMM (2011), Θ? is characterised in Section 4.5

following their approach10.

Nevertheless, conducting inference on Θ? is prohibitively complex, as it requires checking a
10Following BMM (2011), Θ? is characterised in Section 4.5 by using random sets defined in the space of

observables. One could also proceed with random sets defined in the space of unobservables (Chesher and Rosen,

2012).
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huge number of inequalities. For example, with four players, one would need to verify 24096 − 2

inequalities for each value of parameters and exogenous observables, which is a number greater

than the quantity of atoms in the universe. Furthermore, in the data used for the empirical

application some industries host up to 15 firms.

In order to reduce the number of inequalities, one can attempt to impose stronger assumptions

on the distribution of unobservables, such as exchangeability (Assumption 2) and independence

(Assumption 3). As assumptions become more restrictive, it can be shown that a significant

number of inequalities are redundant, and, therefore, can be deleted (Lemmas 5 and 6). Even

so, conducting inference on the sharp identified set remains prohibitively complex when there

are four or more players.

An alternative strategy to attenuate these computational difficulties is considering a subset

of inequalities. In the language of BMM (2011), a subset of inequalities defines an outer set,

i.e., a set containing the sharp identified set. This paper proposes an outer set, Θo, collecting

the parameter values such that the empirical probability of each realisation of G·j is between

the probability of such a realisation being the unique equilibrium of the section j game and the

probability of such a realisation being a possible equilibrium of the section j game, conditional

on X, ∀j ∈ NN .

The suggested outer set brings computational advantages. Specifically, inequalities defining

Θo contain complicated multi-dimensional integrals that are the probability that g·j is the unique

PSNE of the section j game and the probability that g·j is a possible PSNE of the section j game,

for any realisation g·j of G·j . These integrals must be computed during the inference procedure

for each value of parameters and exogenous observables. Computation can be done via the

simple frequency simulator proposed by McFadden, (1989) and Pakes and Pollard (1989). In

principle, one would need to draw several values of unobservables and verify whether each of

all possible 2N−1 realisations of G·j is a PSNE of the section j game for every drawn value,

generating a demanding routine when N is not small. However, by applying Tarski’s fixed point

theorem when a parameter value is such that the section j game is supermodular, or mimicking

for the section j game the result in Berry (1992) claiming that every equilibrium in an entry

game with negative competitive effects is characterised by the same number of firms entering

the market11 in the opposite case, the amount of realisations of G·j to check for every drawn

value of unobservables may be substantially reduced, speeding up the whole process. Overall,

Monte Carlo experiments reveal that conducting inference on Θo is computationally feasible with
11See Result at p.894 in Berry (1992).
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relatively limited computational resources when the number of players is equal to or smaller than

20.

Furthermore, by adding exchangeability across unobservables (Assumption 2), it can be shown

that focusing on the section j game for a j ∈ NN (instead of ∀j ∈ NN ) delivers an outer

set equivalent to Θo, and the inequalities involving realisations of (G·j ,X) identical up to a

permutation of labels other than label j are equivalent and, hence, can be deleted, allowing

further computational gains.

Θo is compared with other outer sets in the literature. Specifically, Tamer (2003) and CT

(2009) illustrate a static entry game with complete information and construct an outer set collect-

ing the parameter values such that the empirical probability of each realisation of endogenous

variables is between the probability of such a realisation being the unique equilibrium of the

entry game and the probability of such a realisation being a possible equilibrium of the entry

game, conditional on players’ observed characteristics. Thus, one can characterise an outer set,

Θo
CT , collecting the parameter values such that the empirical probability of each realisation of

G is between the probability of such a realisation being the unique equilibrium of the network

formation game and the probability of such a realisation being a possible equilibrium of the

network formation game, conditional on X. However, computational gains may be insufficient

because conducting inference on Θo
CT requires checking 2× 2N(N−1) inequalities12 for each value

of parameters and exogenous observables. For example, with 15 players as in the data used for

the empirical application, one would need to verify 3.291 × 1063 inequalities for each value of

parameters and exogenous observables. Instead, under general assumptions (Assumption 1), Θo

brings greater computational advantages by requiring verification of 2N × 2N−1 inequalities13,

for each value of parameters and exogenous observables, with savings, with respect to Θo
CT , of a

factor depending on 1
N 2(N−1)2 . In terms of width, it can be shown that Θo

CT ⊆ Θo under general

assumptions (Assumption 1) and Θo = Θo
CT when some independence across unobservables is

imposed (Assumption 3).

Alternatively, Sheng (2014) considers a game of formation of an undirected networks14 and

designs an outer set collecting the parameter values such that the empirical probability of each

realisation of a subnetwork15 is between the probability of such a realisation being the unique
12In fact, G has 2N(N−1) possible realisations and, for each realisation, 2 inequalities should be checked.
13In fact, G·j has 2N−1 possible realisations and, for each realisation, 2 inequalities should be checked.
14A network is undirected when links have no direction.
15Consider a network characterised by a set of nodes, NN , and a set of links, E. A subnetwork is defined by

a subset of vertices, ÑN ⊆ NN , and a subset of links, Ẽ ⊆ E, such that Ẽ contains all links in E connecting any
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equilibrium of the subnetwork game16 and the probability of such a realisation being a possible

equilibrium of the subnetwork game, conditional on X, for every subnetwork of size equal to

or smaller than α, with 2 ≤ α ≤ N . α is set by the researcher according to the available

computational resources. Let Θo
S be the outer set obtained by applying Sheng’s strategy to the

network formation game considered in this paper. It can be noticed that if α = N then one goes

back to Θo
CT because there exists only one subnetwork of sizeN , that is the whole network. If α <

N , then it can be shown that Θo ⊆ Θo
S when some independence across unobservables is imposed

(Assumption 3). From a computational point of view, when α << N , conducting inference on Θo
S

could be computationally easier than conducting inference on Θo but set estimates or confidence

regions might not be sufficiently tight, because several interdependencies across players’ decisions

may be ignored.

4.4 Assumptions

This section illustrates the assumptions used, in different combinations, for claiming next results.

Assumption 1 (Data generating process). The data generating process is as follows:

(i) M groups of agents are randomly selected from an infinite population of groups

(ii) For each group m ∈ {1, ...,M}

• An integer Nm is drawn from N \ {1, 2}.

• Nm agents are randomly selected and labelled 1, 2, ..., Nm. Each agent i ∈ NNm is

endowed with some characteristics Xi,m, εi·,m
17.

• Agents play the network formation game. When the model predicts a non-singleton set

of PSNE, players choose one element of it. The researcher only knows which element

players have selected and, crucially, does not recognise whether an observed PSNE has

been picked by players from a singleton or a non-singleton set of PSNE.

(iii) A sample of i.i.d. observations {Nm,XNm ,GNm}Mm=1 is collected, where the subscript

Nm highlights the dependence of matrix size on Nm. The sampling scheme is designed

two nodes in ÑN . The size of such a subnetwork is |ÑN |.
16Given a subnetwork, the subnetwork game is intended as the static game with complete information under-

lying the formation of the subnetwork.
17By construction these characteristics are i.i.d. across i.
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such that the probability distribution of GNm conditional on Nm,XNm is identified ∀m ∈

{1, ...,M}18.

In order to simplify the exposition and without loss of generality, the entire identification analysis

in the remaining of Section 4 is made assuming that Nm is a degenerate random variable equal to

n, and it holds ∀n ∈ N\{1, 2}. Moreover, the subscript n is left out from random matrices/vectors

whose size depends on n and from their realisations. Also the subscript m is deleted to clean up

the notation.

(iv) Conditional on X, ε is continuously distributed on Rn(n−1) with cdf denoted by FX(·; θε)

and known up to θε ∈ Θε ⊆ Rdε . This implies that, conditional on X, ε·j , which is a

(n − 1) × 1 vector collecting εij ∀i ∈ N·j,n, is continuously distributed on Rn−1 with cdf

denoted by F̃·j,X(·; θε) and known up to θε ∈ Θε ⊆ Rdε ∀j ∈ Nn.

(v) All random variables are defined on the probability space (Ω,F ,P).

(vi) Θ := (Θu∪Θε) 3 θ := (θ′u θ
′
ε)
′ is compact. θ0 := (θ′u,0 θ

′
ε,0)′ ∈ Θ is the unknown population

value of θ.

Assumption 2 (Exchangeability). Conditional on X, {εij}∀i,j∈N ,i6=j are exchangeable across

ij.

Assumption 3 (Independence). Conditional on X, {ε·j}∀j∈Nn are independently distributed

across j.

Discussion on anonymity in Assumption 1 In accordance with the data used for the

empirical application, the data generating process assumes that players’ identities or roles vary

across networks, meaning that labels are assigned arbitrarily. It naturally follows that payoffs

do not depend on players’ labels, i.e., they are anonymous (hereafter anonymity). Consequently,

equilibrium sets and selection mechanisms do not depend on players’ labels.

All results in the remaining of Section 4, with the exclusion of Lemma 6, also hold if the

data generating process assigns specific identities or roles to players. When the data generating

process assigns specific identities or roles to players, Lemma 6 holds if one additionally restricts

the selection mechanism not to depend on labels.
18Also a time/space stationary sampling scheme is sufficient to identify the probability distribution of GNm

conditional onNm andXNm ∀m ∈ {1, ...,M}. Epstein, Kaido and Seo (2015) discuss inference without restricting

the data generating process.
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Discussion on Assumption 1 (iv) Imposing ε continuously distributed on Rn(n−1) is a

technical assumption allowing to apply the results in BMM (2011) to characterise Θ?. Assuming

that the conditional probability distribution of ε is known up to a vector of parameters makes

the model fully parametric with the exception of the selection mechanism. Whether and how it

is possible to relax the parametric structure is a complicated question left to future research.

Discussion on Assumptions 2 and 3 Assumption 2 holds if εij = αi + ξij , where {αi}i∈Nn
are i.i.d. across i, {ξij}∀i,j∈Nn,i6=j are i.i.d. across ij, and αi is independent of ξkh ∀i, k, h ∈ Nn
with i 6= k 6= h. Assumption 2 holds if εij = βj + ξij , where {βj}j∈Nn are i.i.d. across j,

{ξij}∀i,j∈Nn,i6=j are i.i.d. across ij, and βj is independent of ξkh ∀i, k, h ∈ Nn with i 6= k 6= h.

Assumption 2 holds if εij = αi + βj + ξij , where {αi}i∈Nn are i.i.d. across i, {βj}j∈Nn are

i.i.d. across j, {ξij}∀i,j∈Nn,i6=j are i.i.d. across ij, and αi, βj , ξkh are independent of each other

∀i, j, k, h ∈ Nn with i 6= j 6= k 6= h. Lastly, Assumption 2 holds if {εij}∀i,j∈Nn,i6=j are i.i.d.

across ij.

For any j ∈ Nn, Assumption 3 allows εij to be correlated (not necessarily linearly) with εkj

∀k, i ∈ Nn with k 6= i 6= j. However, for any i ∈ Nn, it does not allow εij to be correlated with

εik ∀k ∈ Nn with k 6= i. Lastly, Assumption 3 holds if {εij}∀i,j∈Nn,i6=j are i.i.d. across ij.

Assumptions 2 and 3 hold together if εij = βj + ξij , where {βj}j∈Nn are i.i.d. across j,

{ξij}∀i,j∈Nn,i6=j are i.i.d. across ij, and βj is independent of ξkh ∀i, k, h ∈ Nn, i, k, h ∈ Nn with

i 6= k 6= h.

Additional notation Let Gn be the support of G, with |Gn| = 2n(n−1). Let Xn be the support

of X.

Let g and x denote, respectively, a realisation of G and a realisation of X. For any j ∈ Nn,

let g·j and K·j denote, respectively, a realisation of G·j and a collection of realisations of G·j .

Let KR denote the family of compact subsets of the set R. Let ∆d−1 indicate the unit simplex

in Rd and V(∆d−1) the collection of its vertices.

Let ϕ : Nn → Nn be a bijective function representing a permutation of labels. For any

j ∈ Nn, g·j ∈ {0, 1}n−1 and permutation of labels ϕ, let gϕ·ϕ(j) be the realisation of G·j obtained

by applying ϕ to g·j . For any j ∈ Nn, K·j ∈ K{0,1}n−1 and permutation of labels ϕ, let Kϕ
·ϕ(j)

be the collection of realisations of G·j obtained by applying ϕ to each element of K·j . For any

x ∈ Xn and permutation of labels ϕ, let xϕ be the realisation of X obtained by applying ϕ to

x. Examples of gϕ·ϕ(j),x
ϕ are in Appendix D.1.
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4.5 The sharp identified set under Assumption 1

In this section the sharp identified set, Θ?, is characterised under Assumption 1, following BMM

(2011).

Arguments are articulated in three parts. Firstly, under Assumption 1, Θ? can be represented

as the set of parameter values such that the empirical conditional probability distribution of G

is included in the collection of conditional probability distributions of G predicted by the model.

Indeed, for each parameter value, the model predicts a collection of conditional probability dis-

tributions because the selection mechanism is left unspecified. Secondly, such a collection can be

conveniently expressed as the conditional expectation of an appropriately defined random closed

set (conditional Aumann expectation). Thirdly, checking the inclusion condition is equivalent

to verifying a finite number of inequalities that involve every compact subset of Gn and do not

contain the selection mechanism (Artstein’s inequalities for G).

Formal arguments Let AGn ⊂ KGn be the collection of compact subsets of Gn obtained by

taking the Cartesian product of all possible ordered n-tuples with repetition from K{0,1}n−1
19.

Given θ ∈ Θ, consider the map Sθu(X, ε) : Ω→ AGn such that Sθu(X(ω), ε(ω)) is the set of

PSNE of the network formation game, for any ω ∈ Ω. Following Proposition 3.1 in BMM (2011),

under Assumption 1 Sθu(X, ε) is a random closed set almost surely non-empty. Sθu(X, ε) takes

values in AGn by Lemma 2 according to which the set of PSNE of the network formation game

is the Cartesian product of the set of PSNE of the section j game across j ∈ Nn.

Consider the random matrixGθu : Ω→ Gn such thatGθu(ω) reveals the equilibrium selected

by players from Sθu(X(ω), ε(ω)), for any ω ∈ Ω. Gθu is such that Gθu(ω) ∈ Sθu(X(ω), ε(ω))

∀ω ∈ Ω a.s., and, for this reason, it is called a selection of Sθu(X, ε). When ω ∈ Ω is such that

Sθu(X(ω), ε(ω)) is non-singleton, different selections are possible.

Information contained in Sθu(X, ε) can be represented in a more convenient way by intro-

ducing another random closed set. Given Gθu , let QGθu : Ω → V(∆2n(n−1)−1) be a 2n(n−1) × 1

random vector such that the ith element of QGθu (ω) is equal to 1 if Gθu(ω) is equal to the ith

element of Gn, for any ω ∈ Ω.

Let AV(∆2n(n−1)−1)
⊂ KV(∆2n(n−1)−1)

be the collection of compact subsets of V(∆2n(n−1)−1)

obtained by taking the Cartesian product of all possible ordered n-tuples with repetition from

KV(∆2n(n−1)−1)
.

19AGn has cardinality (22
n−1 − 1)n < |KGn | = 22

n(n−1) − 1. Appendix D.2 explains how to construct AGn .
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Consider the map Qθu(X, ε) → AV(∆2n(n−1)−1)
such that Qθu(X(ω), ε(ω)) collects QGθu (ω)

for any possible selection Gθu of Sθu(X, ε), for any ω ∈ Ω. Following BMM (2011), under

Assumption 1 Qθu(X, ε) is a random closed set almost surely non-empty20. Moreover, QGθu is

such that QGθu (ω) ∈ Qθu(X(ω), ε(ω)) ∀ω ∈ Ω a.s., and, for this reason, it is called a selection

of Qθu(X, ε).

Consider the conditional expectation of QGθu , Eθε(QGθu |X = x). It turns out that this is

the conditional probability distribution of G predicted by the model given θ ∈ Θ. Thus, the

conditional expectation of Qθu(X, ε) can be thought of as the set of conditional expectations

of all its selections and it represents the collection of conditional probability distributions of G

predicted by the model given θ ∈ Θ.

More formally, based on the fact that Qθu(X, ε) is integrably bounded21,

Eθε(Qθu(X, ε)|X = x) :=
{
Eθε(QGθu |X = x)|QGθu ∈ Sel(Qθu(x, ε))

}
(4.2)

is known as the conditional Aumann expectation of Qθu(X, ε). By Theorem D.1 in BMM (2011),

under Assumption 1 the conditional Aumann expectation of Qθu(X, ε) is a non-empty, closed

and convex subset of ∆2n(n−1)−1 with finitely many extreme points, for any x ∈ Xn a.s.

If the model is correctly specified, then the empirical conditional probability distribution of

G should be contained in the collection of conditional probability distributions of G predicted

by the model given θ0 ∈ Θ, i.e.

P(G|X = x) ∈ Eθε,0(Qθu,0(X, ε)|X = x), ∀x ∈ Xn a.s.

where P(G|X = x) is a 2n(n−1) × 1 vector denoting the empirical probability distribution of G

conditional on x, identified under Assumption 1.

Hence, following BMM (2011), Θ? under Assumption 1 can be written as

Θ? :=
{
θ ∈ Θ|P(G|X = x) ∈ Eθε(Qθu(X, ε)|X = x), ∀x ∈ Xn a.s.

}
(4.3)

Furthermore, by Theorem D.2 in BMM (2011), under Assumption 1 (4.3) is equivalent to

Θ? =
{
θ ∈ Θ|P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ KGn , ∀x ∈ Xn a.s.

}
(4.4)

where TSθu (X,ε)|X=x : KGn → [0, 1] is known as the capacity functional of Sθu(X, ε) conditional

on x, and it is prescribed by TSθu (X,ε)|X=x(K) := P(Sθu(X, ε)∩K 6= ∅|X = x) for anyK ∈ KGn .
20This is due to Qθu (X, ε) being given by a continuous map applied to Sθu (X, ε).
21In fact, Qθu (X, ε) is almost surely non-empty and sup{||QG|| s.t. G ∈ Sel(Qθu (X, ε))} is integrable.
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Each inequality in (4.4) is known as Artstein’s inequality. Notice that, despite Sθu(X, ε)

takes values in AGn ⊂ KGn , Artstein’s inequality should be verified ∀K ∈ KGn . Lastly, this

characterisation of Θ? contains 22n(n−1) − 2 inequalities ∀θ ∈ Θ and ∀x ∈ Xn.

4.6 The sharp identified set under Assumptions 1, 3

Conducting inference on Θ? as characterised in (4.4) is prohibitively complex, as it requires

checking a huge number of inequalities. For example, with four players, one would need to verify

24096−2 inequalities ∀θ ∈ Θ and ∀x ∈ Xn, which is a number greater than the quantity of atoms

in the universe. Furthermore, in the data used for the empirical application some industries host

up to 15 firms.

In order to reduce the number of inequalities, one can impose stronger assumptions on the

distribution of unobservables. This section investigates whether, by introducing Assumption 3,

Θ? can be characterised by fewer inequalities than in (4.4).

Arguments are articulated as follows. By construction of AGn , for any K ∈ AGn , there exists

n sets, K·1 ∈ K{0,1}n−1 , ..., K·n ∈ K{0,1}n−1 , such that their Cartesian product deliversK. Hence,

given θ ∈ Θ, one may think that checking Artstein’s inequality for G involving K is equivalent

to checking Artstein’s inequality for G·j involving K·j ∀j ∈ Nn. It turns out that this is true

under Assumptions 1 and 3. Indeed, by Assumptions 1 and 3 combined with Lemma 2, Artstein’s

inequality for G involving K ∈ AGn is equal to the product across j ∈ Nn of Artstein’s inequality

for G·j involving K·j ∈ K{0,1}n−1 . As all terms are between 0 and 1, if Artstein’s inequality for

G·j involving K·j is satisfied ∀j ∈ Nn, then, by taking the product across j, Artstein’s inequality

for G involving K is verified too. Thus, Θ? can be characterised by fewer inequalities than in

(4.4) as the cardinality of K{0,1}n−1 is smaller than the cardinality of KGn22.

Formal arguments Given θ ∈ Θ, consider the map Sθu,·j(X, ε·j) : Ω → K{0,1}n−1 such

that Sθu,·j(X(ω), ε·j(ω)) is the set of PSNE of the section j game, for any ω ∈ Ω. Following

Proposition 3.1 in BMM (2011), under Assumption 1 Sθu,·j(X, ε·j) is a random closed set almost

surely non-empty.

Consider the random vector Gθu,·j : Ω→ {0, 1}n−1 such that Gθu,·j(ω) reveals the equilibrium

selected by players from Sθu,·j(X(ω), ε·j(ω)), for any ω ∈ Ω. Gθu,·j is such that Gθu,·j(ω) ∈

Sθu,·j(X(ω), ε·j(ω)) ∀ω ∈ Ω a.s., and, for this reason, it is called a selection of Sθu,·j(X, ε·j).

When ω ∈ Ω is such that Sθu,·j(X(ω), ε·j(ω)) is non-singleton, different selections are possible.

22Specifically, one can save (22
n−1 − 1)n − n(22

n−1 − 2)− 1 inequalities ∀θ ∈ Θ and ∀x ∈ Xn.
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Let K�Gn := KGn \ AGn , i.e., K�Gn is the collection of sets not included in AGn obtained by

taking the union of elements of AGn . Let P(G·j |X = x) be a 2n−1 × 1 vector denoting the

empirical probability distribution of G·j conditional on x, identified under Assumption 1.

Consider the set

Θ?? :=
{
θ ∈ Θ|P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j) ∀K·j ∈ K{0,1}n−1 , ∀j ∈ Nn and

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ K�Gn , ∀x ∈ Xn a.s.
}

(4.5)

where TSθu,·j(X,ε·j)|X=x : K{0,1}n−1 → [0, 1] is known as the capacity functional of Sθu,·j(X, ε·j)

conditioned on x, and it is prescribed by TSθu,·j(X,ε·j)|X=x(K·j) := P(Sθu,·j(X, ε·j) ∩ K·j 6=

∅|X = x), for any K·j ∈ K{0,1}n−1 .

Lemma 5 (Sharp identification set under Assumptions 1, 3). (i) Under Assumption 1, Θ?? ⊇ Θ?.

(ii) Under Assumptions 1 and 3, Θ?? = Θ?.

4.7 The sharp identified set under Assumptions 1, 2, 3

This section investigates whether, by introducing Assumption 2, Θ? can be characterised by

fewer inequalities than in (4.5).

Arguments are articulated as follows. Exploiting anonymity of the data generating process

and Assumption 2 allows to show that Artstein’s inequalities for G·j are identical to Artstein’s

inequalities for G·h, by applying all possible permutations of labels ϕ such that ϕ(j) = h,

for any h 6= j ∈ Nn. Thus, if Assumption 3 is additionally imposed, it follows that, when

characterising Θ?, it is sufficient to consider Artstein’s inequalities for G·j for a j ∈ Nn, instead

of ∀j ∈ Nn23. Moreover, via the same strategy, it is proved that Artstein’s inequalities for G·j ,

involving elements of K{0,1}n−1 and realisations of X equivalent up to a permutation of labels

other than label j, are identical.

Formal arguments For any j ∈ Nn, consider the set

Θ??
·j :=

{
θ ∈ Θ|P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j) ∀K·j ∈ K{0,1}n−1 and

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ K�Gn , ∀x ∈ Xn a.s.
}

(4.6)

By construction, Θ?? ⊆ Θ??
·j ∀j ∈ Nn. Moreover, it is possible to show that

23By doing so, one can save additional (22
n−1 − 1)n − 22

n−1
+ 1 inequalities ∀θ ∈ Θ and ∀x ∈ Xn.
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Lemma 6 (Sharp identification set under Assumptions 1, 2, 3). (i) Under Assumptions 1 and 2,

Θ??
·1 = Θ??

·2 = ... = Θ??
·n = Θ??. (ii) Under Assumptions 1, 2 and 3, Θ??

·1 = Θ??
·2 = ... = Θ??

·n =

Θ?? = Θ?. (iii) Under Assumptions 1 and 2, ∀ permutation of labels ϕ such that ϕ(j) = j,

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j)

is equivalent to

P(G·j ∈ Kϕ
·j |X = xϕ) ≤ TSθu,·j(X,ε·j)|X=xϕ(Kϕ

·j)

∀K·j ∈ K{0,1}n−1 , ∀x ∈ Xn a.s. and ∀j ∈ Nn, allowing to drop some redundant inequalities from

(4.6).

4.8 An outer set

Sections 4.6 and 4.7 show that, as assumptions on unobservables become more restrictive, Θ? can

be characterised by fewer inequalities. Even so, conducting inference on Θ? remains prohibitively

complex when there are four or more players. For example, with four players and imposing

Assumption 3, one would need to verify 24096− 4, 228, 249, 610 inequalities ∀θ ∈ Θ and ∀x ∈ Xn,

which is a number still greater than the quantity of atoms in the universe.

An alternative strategy to attenuate these computational difficulties is considering a subset

of inequalities. In the language of BMM (2011), a subset of inequalities defines an outer set,

i.e., a set containing Θ?. This section proposes an outer set, Θo, collecting the parameter values

such that the empirical probability of each realisation of G·j is between the probability of such

a realisation being the unique equilibrium of the section j game and the probability of such a

realisation being a possible equilibrium of the section j game, conditional on X, ∀j ∈ NN .

Formal arguments Consider Artstein’s inequalities for G·j involving the compact sets {g·j}

and {0, 1}n−1 \ {g·j} ∀g·j ∈ {0, 1}n−1 and ∀j ∈ Nn. Let

Θo :=
{
θ ∈ Θ|P(G·j ∈ {0, 1}n−1 \ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x({0, 1}n−1 \ {g·j})

P(G·j ∈ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x{g·j}) ∀g·j ∈ {0, 1}n−1, ∀j ∈ Nn, ∀x ∈ Xn a.s.
}

(4.7)

It can be observed that, for any g·j ∈ {0, 1}n−1 and for any j ∈ Nn,

P(G·j ∈ {0, 1}n−1 \ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x({0, 1}n−1 \ {g·j})

is equivalent to

P(G·j = g·j |X = x) ≥
∫
e·j∈R(n−1) s.t. Sθu,·j(x,e·j)={g·j}

dF̃·j,x(e·j ; θε) (4.8)
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and

P(G·j ∈ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x({g·j})

is equivalent to

P(G·j = g·j |X = x) ≤
∫
e·j∈R(n−1) s.t. g·j∈Sθu,·j(x,e·j)

dF̃·j,x(e·j ; θε) (4.9)

where the first multi-dimensional integral is the probability that g·j is the unique PSNE of the

section j game and the second multi-dimensional integral is the probability that g·j is a PSNE

of the section j game.

Moreover, under Assumption 1,Θo ⊇ Θ?. In fact, Θo ⊇ Θ?? by construction, and Θ?? ⊇ Θ?

by Lemma 5.

Computational gains Conducting inference on Θo requires verifying 2n× 2n−1 inequalities,

∀θ ∈ Θ and ∀x ∈ Xn. In turn, this involves the computation of the multi-dimensional integrals

(4.8) and (4.9) which can be done via the simple frequency simulator proposed by McFadden

(1989) and Pakes and Pollard (1989). In principle, one would need to draw several values of

unobservables and verify whether each of all possible 2n−1 realisations of G·j is a PSNE of the

section j game for every drawn value and ∀j ∈ Nn, generating a demanding routine when n is

not small. However, exploiting some properties of the set of PSNE of the section j game for any

j ∈ Nn speeds up the whole process.

Specifically, when during the inference procedure a candidate parameter value is such that

v(·; δ) is monotone increasing, Tarski’s fixed point theorem guarantees existence of a greatest

and lowest fixed points. These two fixed points can be quickly obtained by implementing the

algorithm in Jia (2008). It follows that one only has to check whether each realisation of G·j

lying between the greatest and lowest fixed points is a PSNE of the section j game.

Instead, when during the inference procedure a candidate a parameter value is such that

v(·; δ) is monotone decreasing, the result in Berry (1992) claiming that every equilibrium in

an entry game with negative competitive effects is characterised by the same number of firms

entering the market24 can be applied to the section j game to show that all PSNE of the section

j game feature the same number, n∗j , of players linking to player j25. n∗j can be quickly obtained

by implementing the constructive algorithm used to prove existence of a PSNE of the section j

game when v(·; δ) is monotone decreasing26. Thus, one only has to check whether each realisation
24See Result at p.894 in Berry (1992).
25See the end of the proof of Lemma 3 in Appendix C.
26See the proof of Lemma 3 in Appendix C.
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of G·j characterised by n∗j players linking to player j is a PSNE of the section j game, for a total

of (n−1)!
n∗
j !(n−1−n∗

j )! < 2n−1 realisations.

Overall, Monte Carlo experiments reveal that conducting inference on Θo is computationally

feasible with relatively limited computational resources when the number of players is equal to

or smaller than 20.

In addition, by introducing Assumption 2, statements (i) and (iii) of Lemma 6 imply that some

inequalities in (4.7) are redundant and, hence, can be deleted, allowing further computational

gains. Specifically, for any j ∈ Nn, let

Θo
·j :=

{
θ ∈ Θ|P(G·j ∈ {0, 1}n−1 \ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x({0, 1}n−1 \ {g·j})

P(G·j ∈ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x{g·j}) ∀g·j ∈ {0, 1}n−1, ∀x ∈ Xn a.s.
}

(4.10)

By construction, Θo ⊆ Θo
·j ∀j ∈ Nn. Moreover,

Implications of Lemma 6 Under Assumptions 1 and 2, (i) Θo
·1 = Θo

·2 = ... = Θo
·n = Θo. (ii)

∀ permutation of labels ϕ such that ϕ(j) = j,P(G·j ∈ {0, 1}n−1 \ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x({0, 1}n−1 \ {g·j})

P(G·j ∈ {g·j}|X = x) ≤ TSθu,·j(X,ε·j)|X=x{g·j})

is equivalent toP(G·j ∈ {0, 1}n−1 \ {gϕ·j}|X = xϕ) ≤ TSθu,·j(X,ε·j)|X=xϕ({0, 1}n−1 \ {gϕ·j})

P(G·j ∈ {gϕ·j}|X = xϕ) ≤ TSθu,·j(X,ε·j)|X=xϕ{gϕ·j})

∀g·j ∈ {0, 1}n−1, ∀x ∈ Xn a.s. and ∀j ∈ Nn.

Comparison with other outer sets in the literature Tamer (2003) and CT (2009) illus-

trate a static entry game with complete information and construct an outer set collecting the

parameter values such that the empirical probability of each realisation of endogenous variables is

between the probability of such a realisation being the unique equilibrium of the entry game and

the probability of such a realisation being a possible equilibrium of the entry game, conditional

on players’ observed characteristics. Thus, one can characterise an outer set, Θo
CT , collecting

the parameter values such that the empirical probability of each realisation of G is between the

probability of such a realisation being the unique equilibrium of the network formation game
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and the probability of such a realisation being a possible equilibrium of the network formation

game, conditional on X.

More formally, consider Artstein’s inequalities for G involving K := {g} and K := Gn \ {g}

∀g ∈ Gn. Let

Θo
CT :=

{
θ ∈ Θ|P(G ∈ Gn \ {g}|X = x) ≤ TSθu (X,ε)|X=x(Gn \ {g})

P(G ∈ {g}|X = x) ≤ TSθu (X,ε)|X=x{g}) ∀g ∈ Gn, ∀x ∈ Xn a.s.
} (4.11)

As for Θo, the two Artstein’s inequalities above can be rewritten by using the probability that g

is the unique PSNE of the network formation game and the probability that g is a PSNE of the

network formation game. Moreover, by (4.4), Θo
CT ⊇ Θ?.

Computational gains brought by Θo
CT may be insufficient because conducting inference on

Θo
CT requires checking 2 × 2n(n−1) inequalities ∀θ ∈ Θ and ∀x ∈ Xn. For example, with 15

players, as in the data used for the empirical application, one would need to verify 3.291× 1063

inequalities ∀θ ∈ Θ and ∀x ∈ Xn. Instead, Θo brings greater computational gains by requiring

verification of 2n × 2n−1 inequalities, ∀θ ∈ Θ and ∀x ∈ Xn, with savings, with respect to Θo
CT ,

of a factor depending on 1
n2(n−1)2 . In terms of width, under Assumption 1 Θo ⊇ Θo

CT . This

follows from statement (i) of Lemma 5 combined with the fact that {g} ∈ AGn for any g ∈ Gn.

Moreover, under Assumptions 1 and 3, Θo = Θo
CT . This follows from statement (ii) of Lemma 5

combined with the fact that {g} ∈ AGn for any g ∈ Gn.

Alternatively, Sheng (2014) designs an outer set collecting the parameter values such that

the empirical probability of each realisation of a subnetwork is between the probability of such

a realisation being the unique equilibrium of the subnetwork game and the probability of such

a realisation being a possible equilibrium of the subnetwork game, conditional on X, for every

subnetwork of size equal to or smaller than α, with 2 ≤ α ≤ n. α is set by the researcher according

to the available computational resources. Let Θo
S be the outer set obtained by applying Sheng’s

strategy to this setting. It can be noticed that if α = n then one goes back to Θo
CT because

there exists only one subnetwork of size n, that is the whole network. If α < n, then Θo ⊆ Θo
S

under Assumptions 1 and 3. Indeed, Θo
S ⊇ Θo

CT under Assumption 127 and Θo = Θo
CT under

Assumptions 1 and 3. From a computational point of view, when α << n, conducting inference

on Θo
S could be computationally easier than conducting inference on Θo but set estimates or

confidence regions might not be sufficiently tight, because important interdependencies across

players’ decisions may be ignored.
27This follows from the fact that if a network is a PSNE, then each of its subnetworks of size equal to or smaller

than α is a PSNE, but the converse is not necessarily true.
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4.9 Extensions to the bilateral case

The formation of link ij is unilateral when it requires the consent of player i only, as in the

case of advice networks, trust networks, and, sometimes, friendship networks. The formation

of link ij is bilateral when it requires the consent of both players i and j, as in the case of

board interlocks. For simplicity of exposition, econometric results have been illustrated for the

unilateral case. This section discusses how to obtain analogous results for the bilateral case.

4.9.1 The bilateral network formation game

In the bilateral network formation game, players, endowed with some preferences for links that

are shared knowledge, simultaneously announce desired incoming and outgoing links according

to certain payoffs and equilibrium concept, and only mutually announced links are formed.

Players’ preferences for links Players’ preferences for links depend on characteristics that

are partially observed by the researcher. For any i, j ∈ NN with i 6= j, let Xi and εiij denote,

respectively, a K × 1 vector of observed (to the researcher) characteristics of player i, and the

unobserved (to the researcher) heterogeneity of player i affecting its preference for link ij. Let

X be an N ×K matrix collecting Xi ∀i ∈ NN , and εi be a 2(N −1)×1 vector collecting (εiij , ε
i
ji)

∀j 6= i ∈ NN . Let ε·j be a 2(N−1)×1 vector collecting εij ∀i 6= j. Lastly, let ε be a 2N(N−1)×1

vector collecting εi ∀i ∈ NN .

Players’ choices For any i ∈ NN , let siij be a scalar equal to 1 if player i is willing to form

link ij and 0 otherwise. Let si be a 2(N − 1) × 1 vector collecting siij and siji ∀j 6= i ∈ NN .

Lastly, let s be a 2N(N − 1)× 1 vector collecting si ∀i ∈ NN .

In the bilateral network formation game, a pure strategy vector of player i is si ∈ {0, 1}2(N−1)

∀i ∈ NN and a pure strategy profile of the game is s ∈ {0, 1}2N(N−1). Mutual consent is needed

to form links, i.e., Gij = siijs
j
ij ∀i, j ∈ NN , i 6= j but severing a link can be done unilaterally.

Players’ payoffs Each player i ∈ NN gets a payoff

Ui(G,X, εi; θu) :=

N∑
j=1

Gij ×
[
z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εiij

]

+

N∑
j=1

Gji ×
[
b(Xi, Xj ; γ) + εiji

] (4.12)
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where z(·;β) and b(·; γ) are any functions of Xi and Xj known up to vectors of parameters β

and γ, v(·; δ) is any function monotone in
∑N
k 6=iGkj and known up to a vector of parameters δ,

θu := (β, γ, δ) ∈ Θu ⊆ Rdβ+dγ+dδ , with dβ , dγ and dδ denoting the dimensions of β, γ and δ.

Differently from the unilateral case, the utility function (4.12) includes also the payoff that

player i gets from her incoming connections. Similarly to the unilateral case, the utility function

(4.12) is additively separable over player i’s incoming and outgoing links.

Equilibrium Agents play pure strategy pairwise Nash equilibrium (hereafter PSPNE). The

resulting network is a pure strategy pairwise Nash stable (hereafter PSPNS) network (Jackson

and Wolinsky, 1996; Calvó-Armengol, 2004; Bloch and Jackson, 2006; Goyal and Joshi, 2006;

Calvó-Armengol and Ilkiliç, 2009).

Definitions are now given. Let G’s dependence on s be denoted by G(s). When Gij(s) = 0,

let G(s) + ij denote the matrix G(s) with Gij = 1 added. Moreover, let s−i be the vector s

without si and s = (si, s−i).

Definition 3 (PSPNS network). A pure strategy profile s is a PSPNE of the bilateral network

formation game if

1. It is robust to unilateral multi-link deletion, i.e.,

Ui(G(s),X, εi; θu) ≥ Ui(G(si�, s
−i),X, εi; θu)

∀si� 6= si ∈ {0, 1}2(N−1) and ∀i ∈ NN .

2. It is robust to bilateral one-link addition, i.e., there does not exist a pair of players (i, j) ∈

NN such that

Ui(G(s) + ij,X, εi; θu) ≥ Ui(G(s),X, εi; θu)

and

Uj(G(s) + ij,X, εj ; θu) ≥ Uj(G(s),X, εj ; θu)

with strict inequality for at least one of the two players.

G is a PSPNS network if there exists a PSPNE s of the bilateral network formation game such

that G = G(s).

Alternative equilibrium concepts adopted in bilateral network formation games are pairwise

stability (Jackson and Wolinsky, 1996) and Nash stability (Myerson, 1991). Pairwise stable

networks are robust to unilateral one-link deletion and bilateral one-link formation. Pairwise
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stability is an equilibrium notion independent of any network formation procedure and has

nice computational properties. However, it only considers very simple deviations and, hence, it

may be too tolerant in classifying a network as stable, especially when there are few players.

On the other hand, Nash stable networks are constructed by letting players announce desired

outgoing and incoming links, according to the pure strategy Nash equilibrium, and, then, forming

mutually beneficial links. Using the pure strategy Nash equilibrium in a bilateral game induces

coordination problems because link creation requires the consent of the two involved parties.

This causes the game displaying a multiplicity of Nash stable networks, always including the

empty network, as playing zero is weakly optimal even when forming a link would be profitable

to both players. In order to solve this issue, PSPNE allows players to coordinate their decisions

and, by not leaving aside any reciprocally beneficial link, it refines the set of stable networks. In

particular, the set of PSPNS networks is the intersection of the set of Nash stable networks and

the set of pairwise stable networks. Lastly, within this model, the set of PSPNS networks and

the set of pairwise stable networks coincide, by the additively separability of the utility function

(4.12) over player i’s incoming and outgoing links (Gilles and Sarangi, 2005).

Finally, by exploiting the additively separability of the utility function (4.12) over player i’s

incoming and outgoing links, Lemma 7 maintains that the inequalities in Definition 3 simplify

to a system of N(N − 1) equations whose solution is a PSPNS network.

Lemma 7 (Characterisation of a PSPNS network). G is a PSPNS network if and only if

Gij = 1{z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εiij ≥ 0}1{b(Xi, Xj ; γ) + εjij ≥ 0} ∀i, j ∈ NN , i 6= j

4.9.2 Identification results

As for the unilateral case, the bilateral network formation game has at least one PSPNS network.

Equilibrium existence can be show following the steps illustrated for the unilateral case in Section

4, after having adapted the constructive proof in Berry (1992) to a bilateral game setting. Details

are in Appendix A.

As for the unilateral case, the bilateral network formation game admits multiple equilibria for

some values of payoff-relevant variables and parameters. Moreover, by running simulations, it can

be seen that the equilibrium set may contain outcomes with a diametrically opposite economic

meaning, as the empty network and the fully connected network. Identification results when the

selection mechanism is left unrestricted are identical to those illustrated for the unilateral case

in Section 4 after having appropriately replaced equilibrium concepts.
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5 Empirical application

5.1 Preliminaries

In this section the proposed methodology is illustrated in action by conducting inference on the

outer set Θo using data on horizontal board interlocks between Italian firms. Specifically, it is

assumed that firms play the bilateral network formation game illustrated in Section 4.9 to form

horizontal board interlocks with the purpose of monitoring and advising each other. As mentioned

in Section 2, the assumption that firms, and not directors, are the board interlock decision-makers

is based on the inter-organisational linkage perspective in the corporate governance literature

(Palmer, 1983; Ornstein, 1984; Zajac, 1988). This modelling choice is legitimated by the Italian

legal framework, which states that a director needs her board’ approval to join the board of a

competing firm (Article 2390 of the Italian Civil Code). Similar provisions are laid down in most

European countries.

The empirical application focuses on primary horizontal board interlocks. A primary hori-

zontal board interlock arises when two firms share a director who holds an executive position

at at least one of two companies involved (Stokman, Van Der Knoop and Wasseur, 1988). In-

deed, primary horizontal board interlocks, by involving individuals appointed with executive

duties, are more likely to represent the long-term economic and institutional relations between

firms (Mizruchi and Bunting, 1981; Stokman and Wasseur, 1985; Stokman, Van Der Knoop and

Wasseur, 1988).

Firms’ choices on primary horizontal board interlocks are represented as a directed network

of size N where link ij exists if firm j appoints as director at least one of firm i’s executive board

members, for any i, j ∈ NN with i 6= j. As an example, Figure 3 reports a directed network of

size 4, which represents the primary horizontal board interlocks in an industry composed by four

firms. For each node i, firm i’s board composition is indicated by two sets of letters. Each letter

represents an individual. The first set of letters is the set of executive directors. The second set

of letters is the set of non-executive members.

Firms’ payoffs are modelled according to (4.12). Following the corporate governance lit-

erature on board interlocks, when Gij = 1 firm i can monitor and advise firm j. Hence,[
z(Xi, Xj ;β) + v(

∑N
k 6=iGkj ; δ) + εiij

]
is the payoff that firm i gets from monitoring and ad-

vising firm j. Conversely, when Gji = 1 firm i is monitored and advised by firm j. Thus,[
b(Xi, Xj ; γ) + εjji

]
is the payoff that firm i gets from being monitored and advised by firm j.

Payoffs from incoming and outgoing links are asymmetric: when Gij = 1 and Gji = 0, it is
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assumed that, while firm i can monitor firm j’s decision-making process, the converse is not

true, because although firm i’s executive director may fulfil a number of functions that are useful

to firm j, his primary employment and loyalty is normally with and to firm i (Palmer, 1983;

Richardson, 1987). Similarly, advice flows exclusively from firm i to firm j (Koenig and Goegel,

1981; Mizruchi and Stearn, 1994). These asymmetries justify links’ directions.

As explained in Section 1, the presence of the spillover effect SE is suggested by the co-

optation theory in corporate governance (Selznick, 1949; Thompson and McEwen, 1958; Pfeffer

and Salancik, 1978; Palmer, 1983; Mizruchi, 1996), according to which board interlocks reflect

attempts by organisations to co-opt (monitor, anticipate, restrain) sources of environmental

uncertainty stemming from the potentially disruptive unilateral actions of other corporations.

For example, horizontal board interlocks may help companies to strengthen possibly collusive

behaviours by monitoring each other’s decisions. One may then conclude that the higher the

number of competitors with an executive director sitting on j’s board, the stronger their capacity

to influence j’s decisions and align these with the group’s interests (positive spillover effect SE).

On the other hand, the micro-economic theory suggests that, if horizontal board interlocks are

formed by firms to enforce a cartel, then the higher the number of competitors with an executive

director sitting on j’s board, the lower the gains when pre-empting deviations by j from the

collusive agreement (negative spillover effect SE). Hence, including the spillover effect SE in

firms’ payoffs (without restricting its sign), allows to understand which view is supported by the

empirical evidence, when firms’ heterogeneity is also considered.

The additively separability over firm i’s incoming and outgoing links mimicks the additive sep-

arability over multi-market entry decisions in the empirical literature on entry games (Bresnahan

and Reiss, 1991; Berry, 1992; Jia, 2008; CT, 2009; Bajari, Hong and Ryan, 2010; Aradillas-Lopez

and Rosen, 2014; Fox and Lazzati, 2016).

Lastly, principal-agent issues are not considered, i.e., it is assumed that executive directors’

actions are always in line with their company’s will.

In the following, a 95% confidence region for the outer set Θo is constructed by applying

the method of AS (2010) outlined in Appendix B28 and using using data on primary horizontal

board interlocks between Italian joint stock companies belonging to a cross-section of industries

in 2010.
28Given that the number of moment inequalities is larger than the number of industries in the data, inference

under alternative methods, such as Bugni, Caner, Kock, and Lahiri (2016) and Chernozhukov, Chetverikov, and

Kato (2016), is currently in progress.
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5.2 The Italian context

Board interlocks in Italy Italy represents an ideal environment to conduct the empirical

application. Indeed, board interlocks have been an important feature of Italian capitalism since

the end of the nineteenth century (Ciocca, 2007). For example, Luzzatto Fegiz (1928), using

data for 1923, highlights the importance of the exchange of executives as a way to create re-

lationships between companies to reduce competition. Rinaldi and Vasta (2005) illustrate how

board interlocks playes a crucial role in guaranteeing the stability of the system after the second

World War, when, in order to reach a balanced coexistence between state-owned enterprises and

private firms, they are used to consolidate and defend controlling positions in the main Italian

private companies, together with pyramidal groups, cross participations, non-voting shares and

statutory regulations aimed at discouraging takeovers. Bianco and Pagnoni (1997), Barbi (2000)

and Bianchi, et al. (2005) explicitly identify the widespread recurse to board interlocks with

possible consequences in terms of collusion and restriction to competition as a characteristic of

the Italian industrial system since the 1950s. In a comparative study, Santella, et al (2009) high-

light that Italy, similarly to France and Germany and differently from the UK, is characterised

by a high number of companies linked to each other through shared directors. Finally, many

takeover attempts on the Italian Stock Exchange cannot be fully understood if the presence of

board interlocks among listed firms is neglected (Bertoni and Randone, 2006).

The evolution in the structure of board interlocks between Italian firms is analysed by several

authors. For example, Vasta and Baccini (1997) find that the structure of board interlocks be-

tween Italian firms across 1911, 1927 and 1936 is overall stable. Rinaldi and Vasta (2005; 2012)

highlight that, while around 1960 Italian corporate networks are highly cohesive, between 1972

and 1983 a sharp decrease in their cohesion degree is registered. Focusing on more recent years,

Santella, Drago and Polo (2009) observe that the structure of board interlocks among Italian

companies is remarkably stable between 1998 and 2006 with very few exits or entries. Similar

conclusions are reached by Bellenzier and Grassi (2014) for the period 1998-2011. Stability is

also revealed by the small variation observed in some network measures (averaged over indus-

tries) during 2005-2010 for the analysed data (Table 3). Overall this legitimates the complete

information assumption.

The Italian regulatory framework on horizontal board interlocks The Italian regula-

tory framework on horizontal board interlocks fits with the model’s assumptions. In fact, while

horizontal board interlocks that meet certain jurisdictional thresholds are illegal in U.S. under

34



the Clayton Act of 1914 and subsequent ancillary legislation, in Italy there is no clear and general

prohibition on horizontal board interlocks, i.e., a breaking of competition law or of regulation on

conflict of interests has to be proved and cannot be presumed. The only exception is Law No.

214 of 2011, which forbids board interlocks with companies or groups operating in the banking,

insurance and financial services sectors. This law does not affect the present analysis as it entered

into force in 2011.

The population of joint stock companies in Italy The empirical application considers a

sample of Italian joint stock companies (Societá per Azioni, Societá in Accomandita per Azioni)

because these represent the largest Italian firms on which the anti trust authority’s attention

is focused. For clarification, joint stock companies are business entities where shareholders’

liability is limited to the nominal value of held shares. A joint stock company is not necessarily

listed. Figure 4 reports the number of Italian joint stock companies and the number of Italian

limited companies (also including joint stock companies) during 2007-2012. Figure 5 shows the

percentage of Italian join-stock companies per macro-sector according to the Istat29 census of

2011.

5.3 Data

Sources of data The sources of data are the Registro Imprese and the Cerved databases whose

access has been provided by the Bank of Italy.

The Registro Imprese is a database in which all Italian companies are required to enrol

through the Chamber of Commerce in their province and is the primary source of certification of

their constituent data. It offers detailed and updated information on individual firms (e.g., legal

status, year of registration, composition of corporate bodies, geographical location, principle line

of activity) and on important changes related to their existence (e.g., termination, liquidation,

bankruptcy, mergers and acquisitions).

The Cerved database contains information useful for measuring the credit risk of Italian

limited companies and, among other information, provides their balance sheet details.

Sample of Italian joint stock companies Italian legislation offers several ways to structure

the governance of a joint stock company. The analysed sample is composed of the Italian joint

stock companies in 2010 governed under the Articles 2380/2409-septies of the Italian Civil Code,
29Istat is the Italian National Institute for Statistics.
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which outline a legal framework in line with the model’s assumptions. More details are in

Appendix D.8.

Including in the analysed sample Italian joint stock companies with governance structures

different from those outlined above is a delicate task, currently in progress, that requires careful

investigation of the power relations among different corporate bodies.

Information collected for each firm in the sample The composition of firms’ boards

together with the role of each director (simple director or Amministratore Delegato) is extracted

from the Registro Imprese database.

Industries are constructing considering firms’ principal lines of activity provided by the

ATECO 2002 code and extracted from the Registro Imprese database. The ATECO 2002 code is

similar to the SIC code in the UK and U.S.30. It is an alpha-numeric code with varying degrees

of detail - the letters indicate the macroeconomic sector while the numbers represent sub-sectors.

It is developed in five levels: sections (letter), subsections (two letters, optional), divisions (2

digits), groups (3 digits), classes (4 digits) and categories (5 digits)31,32.

In line with the empirical literature on board interlocks (among others Dooley, 1969; Pfeffer,

1972; Allen, 1974; Bunting, 1976; Pennings, 1980; Carrington, 1981), firms’ dimensions and prof-

itabilities are set as exogenous variables influencing firms’ decisions to form primary horizontal

board interlocks.
30Other empirical studies on board interlocks identifying industries using the SIC code include Burt (1978),

Burt, Christman and Kilburn (1980), Pennings (1980), Carrington (1981), Zajac (1988) and Mizruchi and Stearns

(1994).
31For example:

• A: Agriculture, hunting and fishing

• 01: Agriculture, hunting and related service activities

• 01.1: Crops

• 01.11: Growing of cereals and other arable crops

• 01.11.1: Growing of cereals (rice included)

• 01.11.2: Growing of oil seeds

• ...

32In 2008 the ATECO 2002 code has been replaced by the ATECO 2007 code. However, this paper exploits the

information on firms’ principal line of activity provided by the ATECO 2002 code as data quality is remarkably

higher for the year 2010 on which the present analysis is focused. Lastly, the structure of the ATECO 2007

maintains the same general characteristics of the structure of the ATECO 2002 code.
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As per Dooley (1969), Allen (1974) and Mizruchi and Stearns (1988; 1994), a firm’s dimension

is measured using total assets (hereafter TA)33, extracted from the Cerved database. As per

Baysinger and Butler (1985) and Fligstein and Brantley (1992), a firm’s profitability is measured

using return on equity (hereafter ROE)34, extracted from the Cerved database. Lastly, in order

to apply the inference method proposed by AS (2010) as discussed in Appendix B, TA and ROE

are discretised into ten separate bins, according to their 10, 20, ..., 90th quantiles. Consequently,

TA and ROE take values in {1, 2, ..., 10}. Additional data cleaning steps are covered in Appendix

D.9.

Descriptive statistics for the sample Some descriptive statistics for industry size, TA and

ROE are in Table 1. The total number of firms is 2599, the total number of industries is 386.

Some descriptive statistics for the most relevant network measures are in Table 2. The

definitions of the considered network measures are in Appendix D.10. Overall, the constructed

networks look disconnected with several isolated nodes.

5.4 A linear model specification

Identification results discussed in Section 4 hold for any form of the functions z(·;β), b(·; γ) and

v(·; δ) entering firms’ payoffs provided that the function v(·; δ) is monotone, and for any form of

the probability distribution of unobservables. However, constructing a confidence region for the

outer set Θo requires their specification.

As a first step, linear forms are assigned to to the functions z(·;β), b(·; γ) and v(·; δ) and

independence across unobservables is imposed. Specifically,

Gij = 1{β0 + β1(TAj − TAi)+β2(ROEj −ROEi) + δ
∑
k 6=i

Gkj + εiij ≥ 0}×

1{γ0 + γ1(TAj − TAi) + γ2(ROEj −ROEi) + εjij ≥ 0}
(5.1)

33Pfeffer (1972) measures a firm’s size using total sales. Booth and Deli (1996) propose the natural log of the

sum of the market value of the firm equity plus the book value of preferred stock. An interesting discussion on

how to measure firm’s size is in Shalit and Sankar (1977).
34Alternative measures of a firm profitability include: price-cost margins (Collins and Preston, 1969; Carring-

ton, 1981); market value, price-earnings ratio and debt-equity ratio (Fligstein and Brantley, 1992); return on sales

(Mizruchi and Stearns, 1988; Fligstein and Brantley, 1992); return on assets (Richardson, 1987; Mizruchi and

Stearns, 1988; Fligstein and Brantley, 1992); return on shareholders’ investment and net interest on assets (Bern-

stein, 1978; Pennings, 1980; Richardson, 1987); dividend cuts (Kaplan and Reishus, 1990); return on invested

capital (Bunting, 1976); average Tobin’s q (Hermalin and Weisbach, 1991).
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∀i, j ∈ N , i 6= j. {εij}i,j∈N ,i6=j are assumed i.i.d. across ij with εij distributed as N(02, I2),

where 02 is a 2×1 zero vector and I2 is the 2×2 identity matrix. According to this specification,

the spillover effect SE defined in Section 1 corresponds to the parameter δ.

Results Table 4 reports the hypercube that contains the 95% confidence region for each pa-

rameter value in Θo. Consider first the sign of various effects as measured by projections of this

hypercube. The projection for the parameter δ, corresponding to the spillover effect SE defined

in Section 1, is [2.129, 20.909]. Results on SE have a positive sign, i.e., all else equal, firm i’s

payoff from having an executive director sitting on rival j’s board increases with the number

of additional competing firms having an executive director sitting on j’s board. In view of the

co-optation theory in corporate governance, this outcome seems to support the idea according

to which the higher the number of competitors with an executive director sitting on j’s board,

the stronger their capacity to influence j’s decisions and align them with the group’s interests.

The projections for the parameters β1 and β2 are, respectively, [0.022, 8.381] and [0.012, 7.486]

and indicate that, all else equal, firm i prefers its executives sitting on firm j’s board when j is

larger and more profitable than i. Again, in view of the co-optation theory, it may be that firms

prefer their executives sitting on the board of larger and more profitable competitors because

these represent a major source of uncertainty which should be monitored. Moreover, this result

is in line with other empirical studies in the literature reporting a positive relation between a

firm’s size and profitability, and the intensity of board interlocking (e.g., Dooley, 1969; Allen,

1974; Bunting; 1976).

Conversely, the projections for the parameters γ1 and γ2 are, respectively, [−4.327, − 0.004]

and [−9.655, − 0.016] and indicate that, all else equal, firm j prefers appointing as directors

executives of firm i when firm j is smaller and less profitable than i. Indeed, it may be that

smaller and less profitable firms are not considered capable of offering valuable advice.

Firms’ payoff functions do not have unit of measure and, therefore, there is no direct inter-

pretation for coefficients’ magnitudes. One idea to discuss magnitudes is considering the ratio

between the change induced by a given unit increase in one variable relative to the change induced

by a one unit increase in a reference variable. Let the reference variable be (TAj−TAi). Results

reveal that, within each industry, all else equal, the positive effect on firm i’s payoff from link ij

(uiij for simplicity) of a one-bin increase in (ROEj − ROEi) is between 0.007 and 22.127 times

the positive effect on uiij of a one-bin increase in (TAj − TAi). Moreover, within each industry,

all else equal, the positive effect on uiij of a one unit increase in
∑
k 6=iGkj is between 0.255 and
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roughly 480 times the positive effect of uiij a one-bin increase in (TAj − TAi). Lastly, within

each industry, all else equal, the negative effect on firm j’s payoff from link ij (ujij for simplicity)

of a one-bin increase in (ROEj −ROEi) is between 0.041 and 323.851 times the negative effect

on ujij of a one-bin increase in (TAj − TAi).

5.5 An alternative model specification

Firms’ preferences for heterogeneity in size and profitability may be non-linear. In order to

capture some non-linearities, one can consider an alternative model specification assigning non-

linear forms to the functions z(·;β) and b(·; γ) and see whether results are still informative

and in line with those obtained under (5.1). In particular, a model specification where the terms

(TAj−TAi) and (ROEj−ROEi) in (5.1) are replaced by several indicator functions is considered

Gij =1{β0 + β11{−9 ≤ TAj − TAi ≤ −5}+ β21{−4 ≤ TAj − TAi ≤ 0}+ β31{1 ≤ TAj − TAi ≤ 5}+

+ β41{−9 ≤ ROEj −ROEi ≤ −5}+ β51{−4 ≤ ROEj −ROEi ≤ 0}+ β61{1 ≤ ROEj −ROEi ≤ 5}+

+ δ
∑
k 6=i

Gkj + εiij ≥ 0}×

1{γ0 + γ11{−9 ≤ TAj − TAi ≤ −5}+ γ21{−4 ≤ TAj − TAi ≤ 0}+ γ31{1 ≤ TAj − TAi ≤ 5}+

+ γ41{−9 ≤ ROEj −ROEi ≤ −5}+ γ51{−4 ≤ ROEj −ROEi ≤ 0}+ γ61{1 ≤ ROEj −ROEi ≤ 5}+

+ εjij ≥ 0}
(5.2)

∀i, j ∈ N , i 6= j. As before, {εij}i,j∈N ,i6=j are assumed i.i.d. across ij with εij distributed as

N(02, I2) as above.

Results Table 5 reports the hypercube that contains the 95% confidence region for each θ ∈ Θo.

Consider first the sign of various effects as measured by projections of this hypercube. The

projection for the parameter δ is [31.523, 35.902] and has a positive sign as for specification

(5.1). Regarding indicator functions, the base group is TAj − TAi and ROEj − ROEi both

between 6 and 9. It represents the case in which firm j is significantly larger and more profitable

than firm i. Table 6 reports confidence intervals for sum of pairs of parameters via projections

relative to other combinations of realisations of TAj − TAi and ROEj − ROEi. Overall, the

base group is always favoured by firm i, i.e., firm i prefers its executives sitting on firm j’s board

when firm j is significantly larger and more profitable than firm i. An exception is represented by

the projection for β2 + β6 that includes both positive and negative values. This means that the
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corresponding indicator functions may have a positive or a negative effect on payoffs. Conversely,

the base group is never favoured by firm j, i.e., firm j prefers its executives sitting on firm j’s

board when firm j is not significantly larger and more profitable than firm i. An exception is

when TAj − TAi is between −9 and −5 and ROEj − ROEi is between −4 and 0, which is less

favoured by firm j than the base group, possibly because firm j sees itself excessively vulnerable

and exposed in front of firm i. Moreover, the projections for γ1 + γ4 and γ2 + γ5 include both

positive and negative values. Hence, it can be concluded that results on signs under (5.2) confirm

and enrich those obtained under (5.1) revealing important non-linearities in firms preferences for

heterogeneity in size and profitability.

Regarding magnitudes, ratios between the change induced by a given unit increase in one

variable relative to the change induced by a one unit increase in a reference variable may be

less meaningful than for specification (5.1) because regressors are binary. Moreover, reporting

marginal effects on the probability distribution of G of changes in exogenous variables does not

help as G can take too many values. An alternative option is finding how bounds on density,

average degree, percentage of isolated nodes and number of links vary as a consequence of changes

in exogenous variables. Various experiments are possible. As an example, Table 7 reports the

outcome of the following procedure: for each industry and value of parameters in the 95%

confidence region, the discretised amount of total assets of the smallest firms is equalised to the

discretised amount of total assets of the biggest firms, hence reducing size heterogeneity within

industries; several realisations of unobserved exogenous variables are drawn; for each drawn

realisation, PSPNS networks are determined; the density, the average degree, the percentage of

isolated nodes and the total number of links in each PSPNS network are computed, and their

minimum and maximum value across PSPNS networks are recorded; bounds are averaged across

drawn realisations and industriess; finally, the smallest lower bound and largest upper bound

across values of parameters are reported in the second and third columns of Table 7. The same

experiment is repeated keeping the observed values of total assets within each industry and

results are reported in the fourth and sixth columns of Table 7. Lastly, observed empirical values

are in the fifth column of Table 7. As a consequence of the simulated shift, the upper bound

on density, average degree and number of links increases. The lower bound on the percentage of

isolated nodes decreases. Hence, by reducing heterogeneity in firms’ size, networks can have on

average less isolated nodes but can become more disconnected.

Lastly, checking the robustness of the positiveness of the spillover effect SE by introducing

correlations across unobservables is left to future research.
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6 Conclusions

This paper provides a framework for studying identification in a network formation model. Net-

work formation is modelled as a static game with complete information and pure strategy equilib-

rium. Links have directions. Payoffs depend on some players’ characteristics partially observed

by the researcher and on the spillover effect SE. The proposed methodology relies on partial

identification arguments because the network formation game admits multiple equilibria, and

equilibrium selection is left unrestricted to avoid inappropriate assumptions that could bias esti-

mates. The designed methodology is illustrated in action using data on primary horizontal board

interlocks between Italian firms.

There are some avenues of future research. Specifically, there could be other relevant spillover

effects affecting players’ payoffs. For example, player i’s payoff from forming a link with player j

may also depend on the number of common connections shared by i and j. In this spirit, it may be

worth enriching players’ payoffs by introducing additional externalities and investigating whether

the identification results proposed here can be extended to such more complicated settings.

Another direction could be to examine how the identification analysis changes if we allow for the

possibility of missing data within each network. For example, one may wonder how much larger

bounds on parameters would be if data were obtained by randomly drawing some players from

the original set of players and considering only the links between them. Indeed, at the expense

of reducing the informativeness of the final results, such a strategy would attenuate further the

computational burden of inference by reducing the size of networks. In other cases, part of the

information on links or players could be missing, but not at random, and it would be interesting

to understand how to adjust bounds on parameters accordingly. Lastly, with respect to the

board interlock application, it would be interesting to refine the model by including directors’

compensation and moral hazard issues - for example, following Gayle, Golan and Miller (2015)

- as these aspects may be important for a better understanding of firms’ incentives behind the

formation of board interlocks.
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Table 1: Descriptive statistics for the firms’ exogenous variables.

Mean St.dev Min Max [0.25; 0.50; 0.75] Skewness Kurtosis Number of firms Number of industries

N [6.733] [3.483] 3 15 [4; 6; 9] 0.812 2.645 2599 386

TA (×106 AC) 117.281 1, 567.453 0.067 73, 916.239 [6.998; 15.653; 39.984] 41.471 1, 903.552 X X

ROE (%) 1.266 24.589 −128.410 69.820 [−2.382; 2.360; 11.402] −1.600 9.071 X X

Table 2: Descriptive statistics for some network measures. Definitions are in Appendix D.10.

Mean St.dev Min Max [0.25; 0.50; 0.75] quantiles Skewness Kurtosis

Density 0.005 0.026 0 0.333 [0; 0; 0] 8.462 88.322

Average degree [0.023] [0.096] 0 1 [0; 0; 0] 5.905 45.181

% Isolated nodes 97.666 8.758 33.333 100 [100; 100; 100] −4.299 22.587

Number of links [0.163] [0.617] 0 6 [0; 0; 0] 4.859 32.750
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Table 3: Some network measures averaged over industries across the years 2005-2010. Definitions are in Appendix D.10.

Year Density Average degree % Isolated nodes Number of links

2005 0.006 [0.025] 97.604 [0.167]

2006 0.007 [0.023] 97.64 [0.135]

2007 0.009 [0.028] 96.974 [0.159]

2008 0.006 [0.028] 97.027 [0.208]

2009 0.005 [0.027] 97.666 [0.208]

2010 0.005 [0.023] 97.666 [0.163]

Table 4: Projections of the 95% confidence region for each θ ∈ Θo according to specification (5.1).

β0 [−15.399, − 0.783]

β1 [0.022, 8.381]

β2 [0.012, 7.486]

δ [2.129, 20.909]

γ0 [−0.469, 37.490]

γ1 [−4.327, − 0.004]

γ2 [−9.655, − 0.016]
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Table 5: Projections of the 95% confidence region for each θ ∈ Θo according to specification

(5.2).

β0 [−7.120, − 3.431]

β1 [−2.006× 103, − 1.998× 103]

β2 [6.977, 12.562]

β3 [0.202, 2.629]

β4 [−23.251, − 15.473]

β5 [−25.678, − 22.059]

β6 [−14.954, − 9.652]

δ [31.523, 35.902]

γ0 [0.845, 2.679]

γ1 [−12.762, − 7.030]

γ2 [−7.958, − 4.965]

γ3 [−0.723, 1.785]

γ4 [7.290, 11.360]

γ5 [4.584, 7.291]

γ6 [13.156, 16.360]
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Table 6: Projections of sums for interpreting signs according to specification (5.2).

β1 + β4 [−2.029× 103, − 2.013× 103]

β1 + β5 [−2.029× 103, − 2.022× 103]

β1 + β6 [−2.017× 103, − 2.010× 103]

β2 + β4 [−14.348, − 5.527]

β2 + β5 [−17.541, − 10.957]

β2 + β6 [−6.401, 1.372]

β3 + β4 [−22.973, − 14.692]

β3 + β5 [−25.097, − 20.983]

β3 + β6 [−14.112, − 7.810]

γ1 + γ4 [−3.776, 1.016]

γ1 + γ5 [−6.954, − 2.445]

γ1 + γ6 [2.224, 8.544]

γ2 + γ4 [1.266, 5.295]

γ2 + γ5 [−1.449, 0.111]

γ2 + γ6 [7.057, 10.608]

γ3 + γ4 [7.096, 13.145]

γ3 + γ5 [4.403, 7.670]

γ3 + γ6 [13.162, 17.150]
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Table 7: Bounds of some network measures according to specification (5.2) when the following experiment is run: within each industry,

the amount of total assets of the smallest firms is equalised to the amount of total assets of the biggest firms.

New New Old Empirical Old

lower bound upper bound lower bound average upper bound

Density 0 0.800 0 0.005 0.886

Average Degree 0 [4.640] 0 [0.022] [5.153]

% Isolated nodes 0.063 100 0.139 97.666 100

Number of links 0 [41.096] 0 [0.163] [45.808]
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Figure 1: Example of a simple and directed network of size 3, with G =


0 1 1

1 0 0

0 0 0

.

Figure 2: The section 2 of the network in Figure 1, with G·2 =

1

0

.

Figure 3: Example of a directed network of size 4 representing the primary horizontal board

interlocks in an industry composed by four firms. For each node i ∈ {1, 2, 3, 4}, firm i’s board

composition is indicated by two set of letters. Each letter represents an individual. The first set

of letters is the set of executive directors. The second set of letters is the set of non-executive

members.
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Figure 4: Number of Italian joint stock companies and number of Italian limited companies (also

including joint stock companies) during 2007-2012.
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Figure 5: Percentage of Italian join-stock companies per macro-sector according to the Istat cen-

sus of 2011, where: 1 denotes Manufacturing (in particular of Machinery, Metals and Textiles); 2

denotes Wholesale and Retail trade, and Repair of Motor Vehicles and Motorcycles (in particular

Wholesale of Households Goods and Sale of Motor Vehicles); 3 denotes Real Estate Activities;

4 denotes Financial and Insurance Activities; 5 denotes Construction; 6 denotes Professional,

Scientific and Technical Activities; 7 denotes Transportation and Storage; 8 denotes Information

and Communication; 9 denotes Administrative and Support Service Activities; 10 denotes Water

Supply: Sewerage, Waste Management and Remediation Activities; 11 denotes Accommodation

and Food Services Activities; 12 denotes Electricity, Gas, Steam and Air Conditioning Supply; 13

denotes Human Health and Social Work Activities; 14 denotes Arts, Entertainment and Recre-

ation; 15 denotes Other Service Activities; 16 denotes Mining, Quarrying; 17 denotes Education;

18 denotes Agricolture, Forestry, Fishing.
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A Existence of a PSPNS network in the bilateral case

Existence of a PSPNS network can be shown following the strategy adopted for the unilateral

case. Specifically, for any j ∈ NN , the local game considered is denominated the bilateral section

j game. In the bilateral section j game players other than player j simultaneously announce

whether they want to form a link pointing to j, j replies and only mutually beneficial links are

created.

More formally, let sj·j be an (N−1)×1 vector collecting sjij ∀i ∈ N·j,N and let s·j ∈ {0, 1}2(N−1)

be a 2(N−1)×1 vector collecting siij ∀i ∈ N·j,N and sj·j . A pure strategy of player i is siij ∈ {0, 1}

∀i ∈ N·j,N , a pure strategy vector of player j is sj·j ∈ {0, 1}N−1, and a pure strategy profile of the

game is s·j ∈ {0, 1}2(N−1). Mutual consent is needed to form links, i.e., Gij = siijs
j
ij ∀i ∈ N·j,N .

Each player i ∈ N·j,N gets a payoff Gij ×
[
z(Xi, Xj ;β) + v(

∑N
k 6=iGkj ; δ) + εiij

]
. Player j gets a

payoff
∑N
i=1Gij ×

[
b(Xi, Xj ; γ) + εjij

]
. Agents play PSPNE. The resulting section j is a PSPNS

section j. The definitions of a PSPNE of the bilateral section j game and a PSPNS section j are

now given. Let the dependence of G·j on s·j be denoted by G·j(s·j).

Definition A.1 (PSPNS section j). A pure strategy profile s·j is a PSPNE of the section j

game if link ij is beneficial to player i, i.e.,

siij = 1{z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj(s
(j)); δ) + εiij ≥ 0}

and link ij is beneficial to player j, i.e.,

sjij = 1{b(Xi, Xj ; γ) + εjij ≥ 0}

∀i ∈ N·j,N . G·j is a PSPNS section j if there exists a PSPNE s·j of the section j game such that

G·j = G·j(s·j), i.e.,

Gij = 1{z(Xi, Xj ;β) + v(

N∑
k 6=i

Gkj ; δ) + εiij ≥ 0}1{b(Xi, Xj ; γ) + εjij ≥ 0} ∀i ∈ N·j,N

Existence statements As for the unilateral case, it can be seen that the payoff of any player

within the bilateral section j game depends exclusively G·j , for any j ∈ NN . Combining this

with the fact that the collection of sets of pure strategy profiles of the bilateral section j game

∀j ∈ NN constitutes an N -partition of the set of pure strategy profiles of the bilateral network

formation game allows to show that
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Lemma A.1 (Decomposing the bilateral network formation game). G is a PSPNS network if

and only if G·j is a PSPNS section j ∀j ∈ NN .

Moreover, using Tarski’s fixed point theorem when v(·; δ) is monotone increasing and a bi-

lateral game reinterpretation of the constructive proof in Berry (1992) that shows equilibrium

existence in an entry game with negative competitive effects35,36 when v(·; δ) is monotone de-

creasing, it can be proved that

Lemma A.2 (Existence of a PSPNS section j). There exists a PSPNS section j ∀j ∈ NN .

Hence, by Lemmas A.1 and A.2,

Lemma A.3 (Existence of a PSPNS network). There exists a PSPNS network.

Proofs of Lemmas A.1, A.2, and A.3 are in Appendix C.

B Inference on Θo

This section discusses inference on the outer set Θo following the method of AS (2010).

In order to obtain unconditional moment inequalities as required by AS (2010), the observed

characteristics of players are supposed to be discrete. Hence, Θo can be rewritten as

Θo =
{
θ ∈ Θ|H l

g·j ,x(θ) ≤ P(G·j = g·j ,X = x) ≤ Hu
g·j ,x(θ)

∀g·j ∈ {0, 1}n−1, ∀j ∈ Nn, ∀x ∈ Xn, ∀n ∈ N \ {1, 2}
}

(B.1)

where

H l
g·j ,x(θ) :=

∫
e·j∈R(n−1) s.t. S·j,θu (x,e·j)={g·j}

dF̃·j,x(e·j ; θε)P(X = x) (B.2)

and

Hu
g·j ,x(θ) :=

∫
e·j∈R(n−1) s.t. g·j∈S·j,θu (x,e·j)

dF̃·j,x(e·j ; θε)P(X = x) (B.3)

A preliminary step needed to conduct inference on Θo is estimation of P(G·j = g·j ,X = x) ∀g·j ∈

{0, 1}n−1, ∀j ∈ Nn, ∀x ∈ Xn and ∀n ∈ N \ {1, 2}. Moreover, the inference algorithm requires

computation of H l
g·j ,x(θ) and Hu

g·j ,x(θ) ∀g·j ∈ {0, 1}n−1, ∀j ∈ Nn, ∀x ∈ Xn, ∀n ∈ N \ {1, 2} and

∀θ ∈ Θ.
35See Result at p.894 in Berry (1992).
36The proof in the Appendix explains how to adapt the constructive algorithm in Berry (1992) to the bilateral

network formation game.
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Estimating P(G·j = g·j ,X = x), for example via a frequency estimator, is complicated by the

fact that players’ identities or roles vary across networks and players’ observed characteristics

have discrete support. Indeed, within each network, there may be observationally identical

players which could be labelled arbitrarily by the researcher, hence producing different estimates

of P(G·j = g·j ,X = x). A similar problem arises when computing H l
g·j ,x(θ) and Hu

g·j ,x(θ). To

solve this issue the present work adopts the strategy proposed by Sheng (2014) that relies on

Assumptions 1 and 2.

Before illustrating the strategy, it is noticed that under Assumptions 1 and 2, Θo = Θo
·j

(implication (i) of Lemma 6) and some inequalities defining Θo
·j are redundant and, hence, can

be deleted (implication (ii) of Lemma 6), for any j ∈ Nn and for any n ∈ N \ {1, 2}. Thus, under

Assumptions 1 and 2, conducting inference on Θo is equivalent to conducting inference on

Θo
·3 =

{
θ ∈ Θ|H l

g·3,x(θ) ≤ P(G·3 = g·3,X = x) ≤ Hu
g·3,x(θ) ∀(g·3,x) ∈ Wn, ∀n ∈ N \ {1, 2}

}
(B.4)

where the subscript j is fixed to 3 without loss of generality to guarantee that j is contained in

Nn ∀n ∈ N \ {1, 2}, and Wn ⊆ {0, 1}n−1×Xn denotes the collection of realisations of (G·3,X)

left over after having deleted those generating redundant inequalities according to implication

(ii) of Lemma 637.

Let Cg·3,x ⊂ {0, 1}n−1×Xn be the collection of realisations of (G·3,X) giving rise to in-

equalities identical to the inequalities involving (g·3,x) according to implication (ii) of Lemma

638. Sheng (2014) observes that, under Assumptions 1 and 2, (B.4) can be rewritten as

Θo
·3 =

{
θ ∈ Θ|H l

Cg·3,x
(θ) ≤ P((G·3,X) ∈ Cg·3,x) ≤ Hu

Cg·3,x
(θ) ∀(g·3,x) ∈ Wn, ∀n ∈ N \ {1, 2}

}
(B.5)

where H l
Cg·3,x

(θ) is the probability that every PSNE of the section 3 game combined with X

falls in Cg·3,x and Hu
Cg·3,x

(θ) is the probability that at least one PSNE of the section 3 game

combined with X falls in Cg·3,x, given θ ∈ Θ. A proof of the equivalence between (B.4) and

(B.5) is in Appendix C.

It can be noticed that (B.5) is a convenient way of rewriting Θo
·3 as estimates of P((G·3,X) ∈

Cg·3,x) do not depend on how players are labelled by the researcher. Similarly, the computation

of H l
Cg·3,x

(θ) and Hu
Cg·3,x

(θ) is not affected by assigned labels.

37Appendix D.3 illustrates an algorithm to construct Wn when Xn is finite. It should be noticed that the set

Wn is not unique because one is free to keep any of the realisations of (G·3,X) producing identical inequalities.
38In network theory, all realisations of (G·3,X) in Cg·3,x are called isomorphic and Cg·3,x is an equivalence

class for (G·3,X).
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Let P̂Cg·3,x denote an unbiased estimator of P((G·3,X) ∈ Cg·3,x)39. By unbiasedness of

P̂Cg·3,x ,

Θo
·3 =

{
θ ∈ Θ|E(P̂Cg·3,x −H

l
Cg·3,x

(θ)) ≥ 0, E(Hu
Cg·3,x

(θ)− P̂Cg·3,x) ≥ 0 ∀(g·3,x) ∈ Wn, ∀n ∈ N \ {1, 2}
}

(B.6)

Reintroducing the subscript m and collecting the lhs of all inequalities in E(bm(θ)),

Θo
·3 =

{
θ ∈ Θ|E(bm(θ)) ≥ 0

}
(B.7)

Let b̄M (θ) := 1
M

∑M
m=1 bm(θ) and b̄k,M (θ) denote its kth element. Let

SM (θ) :=
∑
k

(
min

{√Mb̄k,M (θ)

σ̃k,M
, 0
})2

where σ̃k,M is a consistent estimator of the asymptotic standard deviation of
√
Mb̄k,M (θ). A

1− α confidence region for each θ ∈ Θo
·3 is

CSM :=
{
θ ∈ Θ such that SM (θ) ≤ ĉM,1−α(θ)

}
(B.8)

where ĉM,1−α(θ) is an estimate of the 1 − α quantile of the asymptotic probability distribution

of SM (θ), obtainable following the bootstrap procedure with hard threshold of AS (2010). More

details on the construction of SM (θ) and ĉM,1−α(θ) are in Appendix D.6.

C Proofs

Proof of Lemma 1 (Lemma 7). Let G−{ij,·i} be the matrix G with ith row and ijth element

deleted, and G−{·i} = (Gij ,G−{ij,·i}).

Notice thatGij×
[
z(Xi, Xj ;β)+v(

∑N
k 6=iGkj ; δ)+εij

]
≥ G̃ij×

[
z(Xi, Xj ;β)+v(

∑N
k 6=iGkj ; δ)+εij

]
is equivalent to U(Gij ,G−{ij,·i}, X, εi·; θu) ≥ U(G̃ij ,G−{ij,·i}, X, εi·; θu) for G̃ij 6= Gij ∈ {0, 1},

∀i, j ∈ NN , i 6= j.

It is firstly proved that ifG is a PSNE of the network formation game, then U(Gij ,G−{ij,·i}, X, εi·; θu) ≥

U(G̃ij ,G−{ij,·i}, X, εi·; θu) for G̃ij 6= Gij ∈ {0, 1}, ∀i, j ∈ NN , i 6= j. Consider players i and j.

Let Gi·−{ij} be the vector Gi· with ijth element removed. With some abuse of notation, let Gi· =

(Gij , Gi·−{ij}). By setting G̃i· = (G̃ij , Gi·−{ij}) with G̃ij 6= Gij in U(Gi·,G−{i·,·i},X, εi·; θu) ≥

U(G̃i·,G−{i·,·i},X, εi·; θu), it follows that U(Gij ,G−{ij,·i}, X, εi·; θu) ≥ U(G̃ij ,G−{ij,·i}, X, εi·; θu)

and this is verified ∀i, j ∈ NN , i 6= j.
39Appendix D.4 describes a procedure to estimate P((G·3,X) ∈ Cg·3,x). Appendix D.5 describes a procedure

to compute Hl
Cg·3,x

(θ) and Hu
Cg·3,x

(θ).
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Conversely, it is proved that if U(Gij ,G−{ij,·i}, X, εi·; θu) ≥ U(G̃ij ,G−{ij,·i}, X, εi·; θu) for

G̃ij 6= Gij ∈ {0, 1}, ∀i, j ∈ NN , i 6= j, then G is a PSNE of the network formation game. Con-

sider player i. From (3.1), if U(Gij ,G−{ij,·i}, X, εi·; θu) ≥ U(G̃ij ,G−{ij,·i}, X, εi·; θu), then,

by additive separability of U(·; θu), U(Gi·,G−{i·,·i},X, εi·; θu) ≥ U(G̃i·,G−{i·,·i},X, εi·; θu)

∀G̃i· 6= Gi· ∈ {0, 1}N−1 and this is verified ∀i ∈ NN .

Lemma 7 can be shown analogously after having replaced PSNE with PSPNE.

Theorem C.1 (Tarski’s fixed point theorem). Let F (x) be a monotone increasing function from

a non-empty complete lattice X into X. Then,

(i) the set of fixed points of F (x) in X is non-empty, where supx({x ∈ X,x ≤ F (x)}) and

infx({x ∈ X,x ≥ F (x)}) denote, respectively, the greatest and the least fixed points;

(ii) the set of fixed points of F (x) in X is a non-empty complete lattice.

Let hij(G) := 1{z(Xi, Xj ;β) + v(
∑N
k 6=iGkj ; δ) + εij ≥ 0} and

h(G) :=


0 h12(G) h13(G) ... h1N (G)

h21(G) 0 h23(G) ... h2N (G)
...

...
...

...
...
...

...

hN1(G) hN2(G) h23(G) ... 0


Hence, h : GN → GN . It is possible to show that the function h satisfies the sufficient conditions

of Theorem C.1 when v(
∑N
k 6=iGkj ; δ) is monotone increasing in

∑N
k 6=iGkj , meaning that the

network formation game has a PSNE when v(
∑N
k 6=iGkj ; δ) is monotone increasing in

∑N
k 6=iGkj .

Proof. Let the comparison between matrices be coordinate-wise, i.e. for any G,G′ ∈ GN

G ≥ G′ ⇔ Gij ≥ G′ij ∀i, j ∈ NN , i 6= j

Thus, G = G′ if and only if G ≥ G′ and G ≤ G′. Moreover, G and G′ are unordered if and only

if neitherG ≥ G′ norG ≤ G′. Therefore, GN is a lattice, i.e. a set with a partial order. As GN is

a finite lattice, it is complete. Furthermore, if v(
∑N
k 6=iGkj ; δ) is monotone increasing in

∑N
k 6=iGkj ,

then h is a monotone increasing function. In fact, consider two matricesG ≥ G′. Since Gij ≥ G′ij
i, j ∈ NN , i 6= j, then z(Xi, Xj ;β) + v(

∑N
k 6=iGkj ; δ) + εij ≥ z(Xi, Xj ;β) + v(

∑N
k 6=iGkj ; δ) + εij

i, j ∈ NN , i 6= j. Hence, h(G) ≥ h(G′) and the sufficient conditions of the theorem are

met, meaning that the network formation game has a PSNE when v(
∑N
k 6=iGkj ; δ) is monotone

increasing in
∑N
k 6=iGkj .
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Proof of Lemma 2 (Lemma A.1). It is firstly proved that if G is a PSNE of the network for-

mation game, then G·j is a PSNE of the section j game ∀j ∈ NN . By Lemma 1, if G is a

PSNE of the network formation game, then Gij = 1{z(Xi, Xj ;β) + v(
∑N
k 6=iGkj ; δ) + εij ≥ 0}

∀i, j ∈ NN , i 6= j. This set of conditions also includes the conditions defining G·j as a PSNE of

the section j game. Therefore, G·j is a PSNE of the section j game ∀j ∈ NN .

Conversely, it is proved that if G·j is a PSNE of the section j game ∀j ∈ NN , then G is a

PSNE of the network formation game. If G·j is a PSNE of the section j game, then, by Definition

2, Gij = 1{z(Xi, Xj ;β) + v(
∑N
k 6=iGkj ; δ) + εij ≥ 0} ∀i ∈ N·j,N . Based on the fact that this is

true ∀j ∈ NN , conditions of Lemma 1 are satisfied and G is a PSNE of the network formation

game.

Lemma A.1 can be shown analogously after having replaced PSNE with PSPNE.

Proof of Lemma 3 (Lemma A.2). It is firstly considered the case in which v(
∑N
k 6=iGkj ; δ) is

monotone increasing in
∑N
k 6=iGkj . By Theorem C.1, the network formation game has a PSNE.

By Lemma 2, if G is a PSNE of the network formation game, then G·j is a PSNE of the section

j game ∀j ∈ NN . Therefore, the section j game has a PSNE.

Now, the case in which v(
∑N
k 6=iGkj ; δ) is monotone decreasing in

∑N
k 6=iGkj is considered. In

what follows it is shown that a PSNE of the section j game can be constructed following proof

of Result in Berry (1992). Let Yij := z(Xi, Xj ;β) + εij . The elements {Yij}∀i∈N·j,N are ordered

from largest to smallest. Let k ∈ {1, ..., N − 1} denote the position of Yij in the ordered list and

let π be a function such that π(ij) = k, ∀i ∈ N·j,N . By replacing the subscript ij with k, the

ordered sequence is

Y1 ≥ Y2 ≥ ... ≥ Yk ≥ ... ≥ YN−1

Let Y0 := max
{
Y1,−v(−1; δ)

}
.

n∗ is defined as the largest element of the set of integers {0, 1, ... , k, ... , N − 1} satisfying

Yn∗ + v(n∗ − 1; δ) ≥ 0, i.e.

n∗ := max{k ∈ {0, ..., N − 1}|Yk + v(k − 1; δ) ≥ 0}

G·j is constructed by imposing Gij = 1 if π(ij) ≤ n∗ and Gij = 0 otherwise. One can see that

G·j is a PSNE of the section j game. In fact choosing n∗ according to the previous criterion
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means that
Y0 + v(−1; δ) ≥ 0 (a)

Y1 + v(0; δ) ≥ 0 (b)

...

Yn∗ + v(n∗ − 1; δ) ≥ 0 (c)

Yn∗+1 + v(n∗; δ) < 0 (d)

Yn∗+2 + v(n∗ + 1; δ) < 0 (e)

...

YN−1 + v(N − 2; δ) < 0 (f)

For G·j being a PSNE of the section j game, the following inequalities should be satisfied

Y1 + v(n∗ − 1; δ) ≥ 0 (g)

Y2 + v(n∗ − 1; δ) ≥ 0 (h)

...

Yn∗ + v(n∗ − 1; δ) ≥ 0 (i)

Yn∗+1 + v(n∗; δ) < 0 (l)

Yn∗+2 + v(n∗; δ) < 0 (m)

...

YN−1 + v(n∗; δ) < 0 (n)

By observing that inequalities (g), (h), ... ,(i) are implied by inequality (c) and all other in-

equalities follow from inequality (d), it can be concluded that G·j is a PSNE of the section j

game.

Following the proof of Result in Berry (1992), one can also show by contradiction that all

PSNE of the section j game are characterised by n∗ players linking to firm j. In fact, suppose

there is some equilibrium with k∗ > n∗ edges. Given the definition of equilibrium with k∗ links,

it should be Yk∗ + v(k∗ − 1; δ) ≥ 0 which contradicts the definition of n∗. Similarly, for k∗ < n∗.

Lemma A.2 can be shown analogously after having replaced PSNE with PSPNE and imposed

Yij :=

z(Xi, Xj ;β) + ηiij if b(Xi, Xj ; γ) + ηjij ≥ 0

−∞ otherwise
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Proof of Lemma 4 (Lemma A.3). By Lemma 3, there exists a PSNE of the section j game

∀j ∈ NN . By Lemma 2, if G·j is a PSNE of the section j game ∀j ∈ NN , then G is a PSNE of

the network formation game. Thus, the network formation game has a PSNE.

Lemma A.3 can be shown analogously after having replaced PSNE with PSPNE.

Proof of Lemma 5. It is firstly shown that, under Assumption 1, Θ?? ⊇ Θ?. Specifically, it is

proved that, ∀θ ∈ Θ, if

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ KGn , ∀x ∈ Xn a.s. (C.1)

then

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j) ∀K·j ∈ K{0,1}n−1 , ∀j ∈ Nn and

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ K�Gn , ∀x ∈ Xn a.s.
(C.2)

This is equivalent to show that, ∀θ ∈ Θ, if

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K) ∀K ∈ AGn , ∀x ∈ Xn a.s. (C.3)

then

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j) ∀K·j ∈ K{0,1}n−1 , ∀j ∈ Nn, ∀x ∈ Xn a.s. (C.4)

Consider any θ ∈ Θ, j ∈ Nn and K·j ∈ K{0,1}n−1 . Take K ∈ AGn corresponding to

{0, 1}n−1×...×{0, 1}n−1︸ ︷︷ ︸
j−1 times

×K·j×{0, 1}n−1×...×{0, 1}n−1︸ ︷︷ ︸
n−j times

By (C.3),

P(G ∈ K|X = x) ≤ TSθu (X,ε)|X=x(K)

which is equivalent, by Lemma 2, to

P(G·1 ∈ {0, 1}n−1, ..., G·j−1 ∈ {0, 1}n−1, G·j ∈ K·j , G·j+1 ∈ {0, 1}n−1, ..., G·n ∈ {0, 1}n−1|X = x)

≤ P(Sθu,·1(X, ε·1) ∩ {0, 1}n−1 6= ∅, ...,Sθu,·j−1(X, ε·j−1) ∩ {0, 1}n−1 6= ∅,Sθu,·j(X, ε·j) ∩K·j 6= ∅,

Sθu,·j+1(X, ε·j+1) ∩ {0, 1}n−1 6= ∅, ...,Sθu,·n(X, ε·n) ∩ {0, 1}n−1 6= ∅|X = x)

which is equivalent to

P(G·j ∈ K·j |X = x) ≤ P(Sθu,·j(X, ε·j) ∩K·j 6= ∅|X = x)
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∀x ∈ Xn a.s. This holds ∀K·j ∈ K{0,1}n−1 , ∀j ∈ Nn and ∀θ ∈ Θ. By collecting all inequalities,

(C.4) is obtained.

Now it is shown that, under Assumptions 1 and 3, Θ?? = Θ?. As discussed above, if θ ∈ Θ?,

then θ ∈ Θ??. Hence, in what follows it is proved that if θ ∈ Θ??, then θ ∈ Θ?. This is equivalent

to show that, ∀θ ∈ Θ, (C.4) implies (C.3).

Consider any θ ∈ Θ and K ∈ AGn corresponding to K·1×...×K·n with K·j ∈ K{0,1}n−1

∀j ∈ Nn. By (C.4)
P(G·1 ∈ K·1|X = x) ≤ P(Sθu,·1(X, ε·1) ∩K·1 6= ∅|X = x)

...

P(G·n ∈ K·n|X = x) ≤ P(Sθu,·n(X, ε·n) ∩K·n 6= ∅|X = x)


∀x ∈ Xn a.s. By taking the product

n∏
j=1

P(G·j ∈ K·j |X = x) ≤
n∏
j=1

P(Sθu,·j(X, ε·j) ∩K·j 6= ∅|X = x) (C.5)

On the lhs
n∏
j=1

P(G·j ∈ K·j |X = x) =︸︷︷︸
Ass. 3

P(G·1 ∈ K·1, ..., G·j ∈ K·j |X = x) =︸︷︷︸
Lemma 2

P(G ∈ K|X = x)

(C.6)

On the rhs
n∏
j=1

P(Sθu,·j(X, ε·j) ∩K·j 6= ∅|X = x) =︸︷︷︸
Ass. 3

P(Sθu,·1(X, ε·1) ∩K·1 6= ∅, ...,Sθu,·n(X, ε·n) ∩K·n 6= ∅|X = x)

=︸︷︷︸
Lemma 2

P(Sθu(X, ε) ∩K 6= ∅|X = x)

(C.7)

Therefore, replacing (C.6) and (C.7) in (C.5),

P(G ∈ K|X = x) ≤ P(Sθu(X, ε) ∩K 6= ∅|X = x)

∀x ∈ Xn a.s. This holds ∀K ∈ AGn and ∀θ ∈ Θ. By collecting all inequalities, (C.3) is

obtained.

Proof of Lemma 6. It is shown that, under Assumptions 1 and 2, Θ?? = Θ??
·j ∀j ∈ Nn. It

can be seen that if θ ∈ Θ??, then θ ∈ Θ??
·j ∀j ∈ Nn. Hence, in what follows it is proved that,

∀j ∈ Nn, if θ ∈ Θ??
·j , then θ ∈ Θ??. This is equivalent to show that, ∀θ ∈ Θ and ∀j ∈ Nn, if

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j) ∀K·j ∈ K{0,1}n−1 , ∀x ∈ Xn a.s. (C.8)
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then

P(G·h ∈ K·h|X = x) ≤ TSθu,·h(X,ε·h)|X=x(K·h) ∀K·h ∈ K{0,1}n−1 , ∀h ∈ N·j,n, ∀x ∈ Xn a.s.

(C.9)

Consider any θ ∈ Θ, j ∈ Nn and K·j ∈ K{0,1}n−1 . Let ϕ be a permutation of labels such that

ϕ(j) 6= j. By Assumption 1, {Xi}i∈Nn are i.i.d. across i and, hence, exchangeable across i.

Assumption 2 implies that any finite subsequence of ε is exchangeable. Thus,

P(G·j ∈ K·j |X = x) =︸︷︷︸
Ass. 1, 2

P(G·ϕ(j) ∈ Kϕ
·ϕ(j)|X = xϕ) (C.10)

and

P(Sθu,·j(X, ε·j) ∩K·j 6= ∅|X = x) =︸︷︷︸
Ass. 1, 2

P(Sθu,·ϕ(j)(X, ε·ϕ(j)) ∩Kϕ
·ϕ(j) 6= ∅|X = xϕ) (C.11)

∀x ∈ Xn.

Therefore, combining (C.10) and (C.11), if

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j)

then

P(G·ϕ(j) ∈ Kϕ
·ϕ(j)|X = xϕ) ≤ TSθu,·ϕ(j)(X,ε·ϕ(j))|X=xϕ(Kϕ

·ϕ(j))

∀x ∈ Xn.

By repeating the procedure ∀K·j ∈ K{0,1}n−1 and ∀ permutation of labels ϕ such that ϕ(j) 6= j,

all inequalities in (C.9) are obtained.

In addition, from (C.10) and (C.11), for any permutation of labels ϕ such that ϕ(j) = j,

P(G·j ∈ K·j |X = x) ≤ TSθu,·j(X,ε·j)|X=x(K·j)

is equivalent to

P(G·j ∈ Kϕ
·j |X = xϕ) ≤ TSθu,·j(X,ε·j)|X=xϕ(Kϕ

·j)

∀x ∈ Xn a.s. Doing this ∀K·j ∈ K{0,1}n−1 and ∀ϕ such that ϕ(j) = j allows to drop some

redundant inequalities from (C.8).

These arguments hold ∀j ∈ Nn and ∀θ ∈ Θ.

Finally, adding Assumption 3, by statement (ii) of Lemma 5 Θ?? = Θ? and, hence, under

Assumptions 1, 2 and 3, Θ??
·1 = Θ??

·2 = ... = Θ??
·n = Θ?? = Θ?.
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Equivalence between (B.4) and (B.5) Under Assumptions 1 and 2,

P(G·i = g·i,X = x) = P(G·ϕ(i) = gϕ·ϕ(i),X = xϕ) (C.12)

∀ permutation of labels ϕ, ∀(g·i,x) ∈ {0, 1}n−1×Xn, ∀i ∈ N and ∀n ∈ N \ {1, 2}.

By (C.12) applied ∀ϕ such that ϕ(3) = 3,

P((G·3,X) ∈ Cg·3,x) = |Cg·3,x| × P(G·3 = g·3,X = x) (C.13)

In a similar way, H l
Cg·3,x

(θ) and Hu
Cg·3,x

(θ) can be shown being, respectively, equivalent to

|Cg·3,x| ×H l
g·3,x and |Cg·3,x| ×Hu

g·3,x.

Hence,{
θ ∈ Θ|H l

Cg·3,x
(θ) ≤ P((G·3,X) ∈ Cg·3,x) ≤ Hu

Cg·3,x
(θ) ∀(g·3,x) ∈ Wn, ∀n ∈ N \ {1, 2}

}
=︸︷︷︸

(C.13)

{
θ ∈ Θ||Cg·3,x| ×H l

g·3,x(θ) ≤ |Cg·3,x| × P(G·3 = g·3,X = x) ≤ |Cg·3,x| ×Hu
g·3,x(θ)

∀(g·3,x) ∈ Wn, ∀n ∈ N \ {1, 2}
}

= Θo
·3

D Additional discussion

D.1 Notation examples

Example 1 (gϕ·ϕ(j)). Let n := 4, j = 2, g·2 :=


g12

g32

g42

 :=


1

0

0

 and ϕ(1) = 2, ϕ(2) = 4,

ϕ(3) = 1, ϕ(4) = 3. Hence, gϕ·ϕ(2) = gϕ·4 :=


gϕ14

gϕ24

gϕ34

 :=


0

1

0



Example 2 (xϕ). Let n := 4, ϕ(1) = 2, ϕ(2) = 4, ϕ(3) = 1, ϕ(4) = 3 and x :=


x1

x2

x3

x4

 :=


4 5

6 7

8 9

10 11

. Hence, xϕ =


xϕ1

xϕ2

xϕ3

xϕ4

 :=


8 9

4 5

10 11

6 7


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D.2 Construction of AGn

Consider K·1 ∈ K{0,1}n−1 , ...,K·n ∈ K{0,1}n−1 . Construct BK·1,...,K·n :=×n

j=1
K·j , where×

denotes the Cartesian products of sets. Hence, BK·1,...,K·n is a collection of L := Πn
j=1|K·j | sets

and it can be written as {Bl}Ll=1. Any Bl ∈ BK·1,...,K·n is composed by n vectors of dimension

(n− 1)× 1. Hence, Bl := {bl,1, ..., bl,n} with bl,h := (b1l,h ... b
n−1
l,h )′ ∀h ∈ {1, ..., n}, ∀l ∈ {1, ..., L}.

Create the n× n matrix

Cl :=



0 b1l,2 b1l,3 ... b1l,n

b1l,1 0 b2l,3 ... b2l,n

b2l,1 b2l,2 0 ... b3l,n
...

...
...

...
...
...

...

bn−2
l,1 bn−2

l,2 bn−2
l,3 ... bn−1

l,n

bn−1
l,1 bn−1

l,2 bn−1
l,3 ... 0


∀l ∈ {1, ..., L}. Let A := {C1, ..., CL}. Repeat the procedure for all possible ordered n-tuples

with repetition of K{0,1}n−1 and denominate the family of sets A’s as AGn . Notice that |AGn | =

(22n−1 − 1)n < |KGn | = 22n(n−1) − 1.

For example, suppose n := 3. Hence,

{0, 1}2 := {

1

1

 ,

1

0

 ,

0

1

 ,

0

0

}
with |{0, 1}2| = 4,

K{0,1}2 :=
{
{

1

1

}, {
1

0

}, {
0

1

}, {
0

0

},
{

1

1

 ,

1

0

}, {
1

1

 ,

0

1

}, {
1

1

 ,

0

0

}, {
1

0

 ,

0

1

}, {
1

0

 ,

0

0

}, {
0

1

 ,

0

0

},
{

1

1

 ,

1

0

 ,

0

1

}, {
1

1

 ,

1

0

 ,

0

0

}, {
1

1

 ,

0

1

 ,

0

0

}, {
1

0

 ,

0

1

 ,

0

0

},
{

1

1

 ,

1

0

 ,

0

1

 ,

0

0

}}
with |K{0,1}2 | = 15 and

KGn :=
{
{


0 1 1

1 0 1

1 1 0

}, ...}
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with |KGn | = 264 − 1.
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Let K·1 := {

1

1

 ,

0

1

}, K·2 := {0, 1}2, K·3 := {0, 1}2. Hence,

BK·1,K·2,K·3 := {

1

1

 ,

0

1

}×{0, 1}2×{0, 1}2
= {

1

1

 ,

0

1

}×{
1

1

 ,

1

0

 ,

0

1

 ,

0

0

}×{
1

1

 ,

1

0

 ,

0

1

 ,

0

0

}
=
{
{

1

1

 ,

1

1

 ,

1

1

}, {
1

1

 ,

1

0

 ,

1

1

}, {
1

1

 ,

0

1

 ,

1

1

}, {
1

1

 ,

0

0

 ,

1

1

},
{

1

1

 ,

1

1

 ,

1

0

}, {
1

1

 ,

1

0

 ,

1

0

}, {
1

1

 ,

0

1

 ,

1

0

}, {
1

1

 ,

0

0

 ,

1

0

},
{

1

1

 ,

1

1

 ,

0

1

}, {
1

1

 ,

1

0

 ,

0

1

}, {
1

1

 ,

0

1

 ,

0

1

}, {
1

1

 ,

0

0

 ,

0

1

},
{

1

1

 ,

1

1

 ,

0

0

}, {
1

1

 ,

1

0

 ,

0

0

}, {
1

1

 ,

0

1

 ,

0

0

}, {
1

1

 ,

0

0

 ,

0

0

},
{

0

1

 ,

1

1

 ,

1

1

}, {
0

1

 ,

1

0

 ,

1

1

}, {
0

1

 ,

0

1

 ,

1

1

}, {
0

1

 ,

0

0

 ,

1

1

},
{

0

1

 ,

1

1

 ,

1

0

}, {
0

1

 ,

1

0

 ,

1

0

}, {
0

1

 ,

0

1

 ,

1

0

}, {
0

1

 ,

0

0

 ,

1

0

},
{

0

1

 ,

1

1

 ,

0

1

}, {
0

1

 ,

1

0

 ,

0

1

}, {
0

1

 ,

0

1

 ,

0

1

}, {
0

1

 ,

0

0

 ,

0

1

},
{

0

1

 ,

1

1

 ,

0

0

}, {
0

1

 ,

1

0

 ,

0

0

}, {
0

1

 ,

0

1

 ,

0

0

}, {
0

1

 ,

0

0

 ,

0

0

}}
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with cardinality L = 32. Therefore,

A := {


0 1 1

1 0 1

1 1 0

 ,


0 1 1

1 0 1

1 0 0

 ,


0 0 1

1 0 1

1 1 0

 ,


0 0 1

1 0 1

1 0 0

 ,


0 1 1

1 0 0

1 1 0

 ,


0 1 1

1 0 0

1 0 0

 ,


0 0 1

1 0 0

1 1 0

 ,


0 0 1

1 0 0

1 0 0

 ,


0 1 0

1 0 1

1 1 0

 ,


0 1 0

1 0 1

1 0 0

 ,


0 0 0

1 0 1

1 1 0

 ,


0 0 0

1 0 1

1 0 0

 ,


0 1 0

1 0 0

1 1 0

 ,


0 1 0

1 0 0

1 0 0

 ,


0 0 0

1 0 0

1 1 0

 ,


0 0 0

1 0 0

1 0 0

 ,


0 1 1

0 0 1

1 1 0

 ,


0 1 1

0 0 1

1 0 0

 ,


0 0 1

0 0 1

1 1 0

 ,


0 0 1

0 0 1

1 0 0

 ,


0 1 1

0 0 0

1 1 0

 ,


0 1 1

0 0 0

1 0 0

 ,


0 0 1

0 0 0

1 1 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 1 0

0 0 1

1 1 0

 ,


0 1 0

0 0 1

1 0 0

 ,


0 0 0

0 0 1

1 1 0

 ,


0 0 0

0 0 1

1 0 0

 ,


0 1 0

0 0 0

1 1 0

 ,


0 1 0

0 0 0

1 0 0

 ,


0 0 0

0 0 0

1 1 0

 ,


0 0 0

0 0 0

1 0 0

}
with |A| = L.

D.3 Construction of Wn

This section illustrates a way to construct the set Wn defined in Section B of the paper when

Xn is finite.

1. Rewrite each realisation of (g·3,x) ∈ {0, 1}n−1×Xn by listing
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(i) x3;

(ii) gi3 ∀i ∈ N·3,n such that gi3 := 1, disposing them with respect to xi in ascending

order; if there are i, k ∈ Nn, i 6= k such that gi3 = gk3 := 1 and xi = xk, any order is

allowed;

(iii) gi3 ∀i ∈ N·3,n such that gi3 := 0, disposing them with respect to xi in ascending

order; if there are i, k ∈ Nn, i 6= k such that gi3 = gk3 := 0 and xi = xk, any order is

allowed;

(iv) xi ∀i ∈ N·3,n according to the disposition of players adopted in the previous steps.

2. For each row that is repeated once or more, delete all duplications from the second.

3. Collect the saved rows and rearrange each of them in its original order.

As an example, assume n := 3, j = 3 and X3 := {1, 0}. The set {0, 1}2×X3 is reported in Table

D.1. The realisations of (G·3,X) giving rise to the same inequalities, according to implication (ii)

of Lemma 6 highlighted in Section 4.8 of the paper, have a symbol of the same colour together

with the appropriate permutation of labels ϕ. Table D.2 reports in blue the rows of Table D.1

reordered.
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Table D.1: Representation of {0, 1}2×X3.

G13 G23 X1 X2 X3 ϕ(1) ϕ(2) ϕ(3)

1 1 1 1 1

1 1 1 0 1

1 1 1 1 0

1 1 1 0 0

1 1 0 1 1 2 1 3

1 1 0 0 1

1 1 0 1 0

1 1 0 0 0

1 0 1 1 1

1 0 1 0 1

1 0 1 1 0

0 0 1 0 0

1 0 0 1 1

1 0 0 0 1

1 0 0 1 0

1 0 0 0 0

0 1 1 1 1 2 1 3

0 1 1 0 1 2 1 3

0 1 1 1 0 2 1 3

0 1 1 0 0 2 1 3

0 1 0 1 1 2 1 3

0 1 0 0 1 2 1 3

1 0 0 0 1 2 1 3

0 1 0 0 0 2 1 3

0 0 1 1 1

0 0 1 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 1 1 2 1 3

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0
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Table D.2: Reordering the rows of Table D.1.

G12 G32 X1 X2 X3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 0

1 1 1 0 1 0 1 1 1 1

1 1 1 0 0 0 1 1 1 0

1 1 0 1 1 1 1 1 1 0

1 1 0 1 0 1 1 1 0 0

1 1 0 0 1 0 1 1 1 0

1 1 0 0 0 0 1 1 0 0

1 0 1 1 1 1 1 0 1 1

1 0 1 1 0 1 1 0 1 0

1 0 1 0 1 0 1 0 1 1

1 0 1 0 0 0 1 0 1 0

1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 0 0

1 0 0 0 1 0 1 0 0 1

1 0 0 0 0 0 1 0 0 0

0 1 1 1 1 1 1 0 1 1

0 1 1 1 0 1 1 0 0 1

0 1 1 0 1 0 1 0 1 1

0 1 1 0 0 0 1 0 0 1

0 1 0 1 1 1 1 0 1 0

0 1 0 1 0 1 1 0 0 0

0 1 0 0 1 0 1 0 1 0

0 1 0 0 0 0 1 0 0 0

0 0 1 1 1 1 0 0 1 1

0 0 1 1 0 1 0 0 1 0

0 0 1 0 1 0 0 0 1 1

0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 1 0 0 1 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0
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Table D.3: Representation of W3.

G12 G32 X1 X2 X3

1 1 1 1 1

1 1 1 1 0

0 1 1 1 1

0 1 1 1 0

1 1 1 0 0

0 1 1 0 0

1 1 0 1 1

1 1 0 1 0

0 1 0 1 1

0 1 0 1 0

1 1 0 0 1

1 1 0 0 0

0 1 0 0 1

0 1 0 0 0

1 0 0 1 1

1 0 0 1 0

0 0 0 1 1

0 0 0 1 0

1 0 0 0 0

0 0 0 0 0

D.4 Computation of P̂Cg·3,x

Consider any i ∈ Nn and (g̃·i, x̃) ∈ {0, 1}n−1×Xn such that ∃ a permutation ϕ with ϕ(i) = 3

generating (g̃ϕ·ϕ(i), x̃
ϕ) = (g·3,x). By (C.12),

P(G·i = g̃·i,X = x̃) = P(G·3 = g·3,X = x) (D.1)

Consider Cg̃·i,x̃,n ⊆ {0, 1}n−1×Xn. By (C.12) applied ∀ϕ such that ϕ(i) = i,

P((G·i,X) ∈ Cg̃·i,x̃,n) = |Cg̃·i,x̃,n| × P(G·i = g̃·i,X = x̃) (D.2)

Hence,

P((G·i,X) ∈ Cg̃·i,x̃,n) =︸︷︷︸
(D.2)

|Cg̃·i,x̃,n| × P(G·i = g̃·i,X = x̃) =︸︷︷︸
(D.1)

|Cg̃·i,x̃,n| × P(G·3 = g·3,X = x)

=︸︷︷︸
|Cg̃·i,x̃,n|=|Cg·3,x|

|Cg·3,x| × P(G·3 = g·3,X = x) =︸︷︷︸
(C.13)

P((G·3,X) ∈ Cg·3,x)

(D.3)

Let

P̂Cg·3,x :=
1

n

n∑
i=1

1((G·i,X) ∈ Cg̃·i,x̃,n) (D.4)
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From (D.3), P̂Cg·3,x is an unbiased estimator for |Cg·3,x| × P(G·3 = g·3,X = x) = P((G·3,X) ∈

Cg·3,x) and does not depend on assigned labels.

An algorithm to compute P̂Cg·3,x is the following:

1. Rewrite (g·3,x) by listing

(i) x3;

(ii) gh3 ∀h ∈ N·3,n such that gh3 := 1, disposing them with respect to xh in ascending

order; if there are h, k ∈ Nn, h 6= k such that gh3 = gk3 := 1 and xh = xk, any order

is allowed;

(iii) gh3 ∀h ∈ N·3,n such that gh3 := 0, disposing them with respect to xh in ascending

order; if there are h, k ∈ Nn, h 6= k such that gh3 = gk3 := 0 and xh = xk, any order

is allowed;

(iv) xh ∀h ∈ N·3,n according to the disposition adopted in the previous steps.

2. Call A3 the obtained row of values.

3. ∀i ∈ Nn in the dataset, list

(i) xi;

(ii) ghi ∀h ∈ N·i,n such that ghi =: 1, disposing them with respect to xh in ascending

order; if there are h, k ∈ Nn, h 6= k such that ghi = gki := 1 and xh = xk, any order

is allowed;

(iii) ghi ∀h ∈ N·i,n such that ghi = 0, disposing them with respect to xh in ascending

order; if there are h, k ∈ Nn, h 6= k such that ghi = gki := 0 and xh = xk, any order

is allowed;

(iv) xh ∀h ∈ N·i,n according to the disposition adopted in the previous steps.

4. Call Ai the obtained row of values ∀i ∈ Nn.

Hence,

P̂Cg·3,x :=
1

n

n∑
i=1

1{Ai = A3}
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D.5 Computation of H l
Cg·3,x

(θ) and Hu
Cg·3,x

(θ)

The computation of H l
Cg·3,x

(θ) and Hu
Cg·3,x

(θ) can be done via the simple frequency simulator

proposed by McFadden (1989) and Pakes and Pollard (1989). Specifically, ∀i ∈ Nn, RM 40

realisations of ε·i are randomly drawn from its distribution. Let ε·i,r denote the random vector

for the rth draw ∀i ∈ Nn. Hence,

Ĥ l
Cg·3,x

(θ) :=
1

RM × n

RM∑
r=1

n∑
i=1

1(all outcomes of the section i game fall in Cg̃·i,x̃,n) (D.5)

and

Ĥ l
Cg·3,x

(θ) :=
1

RM × n

RT∑
r=1

n∑
i=1

1(at least one outcome of the section i game falls in Cg̃·i,x̃,n)

(D.6)

In the empirical application, RT = 100. In order to establish the value of the indicators function

the algorithm illustrated in Appendix D.4 can be employed.

D.6 Inference procedure

This section illustrates how to obtain the test statistic SM (θ) and the critical value ĉM,1−α(θ)

when constructing a 1− α confidence region for each θ ∈ Θo
·3 following AS (2010). After having

designed a grid of candidate parameter values41, for each θ in the grid:

(i) Compute bm(θ).

(ii) Compute b̄M (θ) := 1
M

∑M
m=1 bm(θ). Let b̄k,M (θ) denote its kth element and σ̃k,M a consis-

tent estimator of the asymptotic standard deviation of
√
Mb̄k,M (θ).

The computation of σ̃k,M is explained in what follows in more details under the i.i.d.

sampling scheme. Let

blCg·3,x,m(θ) := P̂Cg·3,x,m −H
l
Cg·3,x,m

(θ)

and

buCg·3,x,m(θ) := Hu
Cg·3,x,m

(θ)− P̂Cg·3,x,m
40The subscriptM reminds that R should increase to infinity with sample size to avoid not vanishing simulations

errors (CT, 2009).
41See Appendix D.7.
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It can be noticed that the asymptotic variances of
√
M
∑M
m=1 b

u
Cg·3,x,m

(θ) and
√
M
∑M
m=1 b

l
Cg·3,x,m

(θ)

coincide with the asymptotic variance of
√
M
∑M
m=1 P̂Cg·3,x,m, which, under the i.i.d. sam-

pling scheme, is equivalent to the variance of P̂Cg·3,x,m. Let

σ̂Cg·3,x,M :=

√√√√ 1

M

M∑
m=1

(P̂Cg·3,x,m −
1

M

M∑
m=1

P̂Cg·3,x,m)2

Let

σ̃Cg·3,x,M := max{τM , σ̂Cg·3,x,M}

where τM is a sequence of positive constants converging to zero as M goes to infinity at an

appropriate rate.

σ̃Cg·3,x,M is used as a consistent estimator of the asymptotic standard deviations of
√
M
∑M
m=1 b

u
Cg·3,x,m

(θ)

and
√
M
∑M
m=1 b

l
Cg·3,x,m

(θ) because σ̂Cg·3,x,M can be zero. This is undesirable as the test

statistic requires the division of
√
M 1

M

∑T
t=1 b

u
Cg·3,x,m

(θ) and
√
M 1

M

∑T
t=1 b

l
Cg·3,x,m

(θ) by

a consistent estimate of their asymptotic standard deviations.

The choice of the rate of convergence to zero of τM might affect the asymptotic power

properties of the GMS test. Further investigations are in progress. For the purposes of this

work, in order to set τM , several Monte Carlo simulations were performed comparing the

behaviour of the test statistic SM (θ0) as M → ∞ when θ0 is the true parameter vector,

τM = 1
M3 ,

1
M2 ,

1
M , logM

M , 1√
M
. τM = log(M)

M is proposed for use because it is the only value

among those examined that prevents SM (θ0) from blowing up as M → ∞ and correctly

allows its probability distribution function to shrink around zero as M →∞.

(iii) Compute the test statistic SM (θ) :=
∑
k

(
min

{√
Mb̄k,M (θ)
σ̃k,M

, 0
})2

.

(iv) For each k, compute ξk,M (θ) := 1√
log(M)

√
M

b̄k,t(θ)
σ̃k,M

.

(v) For each k, choose the hard threshold ζk,M (θ) :=

0 if ξk,M (θ) ≤ 1

∞ otherwise

(vi) Draw with replacement R bootstrap samples i.i.d. over r. In the empirical application,

R = 120.

(vii) For r = 1, ... , R

(a) Repeat steps (i) and (ii) and obtain b̄?k,M,r(θ) and σ̃?k,M,r for each k.
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(b) Compute LM,r(θ) :=
∑
k

(
min

{√
M(b̄?k,M,r(θ)−b̄k,M (θ))

σ̃?k,M,r
+ ζk,M (θ), 0

})2

.

(viii) Take the GMS critical value, ĉM,1−α(θ), as the (1− α) sample quantile of {LM,r(θ)}Rr=1.

(ix) Reject if SM (θ) > ĉM,1−α(θ).

Hence, the 1− α confidence region for each θ ∈ Θo
·3 is

CSM = {θ ∈ Θ such that SM (θ) ≤ ĉM,1−α(θ)}

D.7 Construction of the initial grid of parameters

One difficulty with conducting inference on sets is scanning over a multi-dimensional parameter

space. In practice, what the researcher can do is exploring the parameter space around the

global minimum of SM (θ) in some rational way. For the empirical application, the slice sampling

method of Neal (2003) used by Kline and Tamer (2016) was employed. The procedure is as

follows:

(i) List many starting values for θ, one of which has all entries equal to zero, others are

constructed using the results of simple probits.

(ii) From each starting value, minimise SM (θ) running a global optimisation algorithm in Mat-

lab; specifically, a pattern search algorithm (psearch) with different polling strategies and

a genetic algorithm (ga) were used.

(iii) Let s be the global minimum of SM (θ); s is not exactly zero because of the complex

numerical problem involved in the computation of SM (θ).

(iv) Save one vector of parameters solving SM (θ) = s and call it θs.

(v) Run the pre-implemented slice sampling routine in Matlab (slicesample) setting 1{SM (θ) =

s} as the un-normalized density and θs as the starting value; save the results of each iteration

in the course of the algorithm.

(vi) Look at the values that SM (θ) has taken over all the parameters used in the course of

the algorithm and draw a random sample of 500 points. This sample is the initial grid of

parameters.

To guarantee a better exploration of all relevant regions of the parameter space, steps (iv), (v)

and (vi) were repeated for each vector of parameters found in step (ii) and solving SM (θ) = s,
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and the grids obtained from step (vi) were merged. Moreover, robustness checks on the number

of random draws from the un-normalised density were conducted.

Alternative procedures are the simulated annealing method proposed by CT (2009) and the

differential evolution algorithm described by BMM (2011).

D.8 Legal framework for Italian joint-stock companies under the Ar-

ticles 2380/2409-septies of the Italian Civil Code

As to what concerns the present work: (i) management is the responsibility of a board of directors

(Consiglio di Amministrazione), whose size is freely chosen by shareholders; this legitimates

the lack of restrictions on boards’ sizes; (ii) directors are elected by the shareholders’ meeting

(Assemblea Ordinaria); hence, as the company’s will is identified with shareholders’ interests, it

is legitimate to suppose that the board’s will coincides with the firm’s will; (iii) the board of

directors can delegate its executive duties to one or more of its members; a delegatee is called

Amministratore Delegato42; the purpose of the mandate is to simplify the decision process43; if the

mandate is conferred, then delegators have monitoring and advising duties regarding delegatees’

conduct on the basis of the information received during board meetings; to that extent, delegatees

have to report to the board with a frequency determined by the company’s statute, and, in any

case, at least every six months; moreover, delegators can ask delegatees to provide the board

with any information related to the management of the company; this legitimates to distinguish

between executive and non-executive board members, hence conferring directionality to links and

justifying firms’ payoffs specified as (4.12).

D.9 Data construction and cleaning

In order to correctly extract and merge the information from the Registro Imprese, each firm

was uniquely identified by combining its (i) Chamber of Commerce’s province, (ii) R.E.A44 code

and (iii) tax code. The R.E.A. code is a number assigned to each company when enrolling at

the Registro Imprese. The tax code is a numeric code of 16 digits.

Each board member was uniquely identified by her tax code, which is an alphanumeric code
42An Amministratore Delegato is to an Italian joint stock company what a CEO is to a U.S. company.
43Various powers cannot be delegated, e.g., the issue of convertible bonds, the draft of the balance sheet, the

increase of share capital or its decrease because of losses, the draft of projects for merging or demerging. These

exceptions are not considered in the present analysis.
44R.E.A. stands for Repertorio Economico Amministrativo.

81



of 16 characters, similar to the Social Security Number in the United States or the National

Insurance Number in the United Kingdom.

In order to merge the information from the Registro Imprese with that from the Cerved

database, firms’ tax codes were used.

Moreover, sectors composed of 1 or 2 firms and the sector Holdings (ATECO 2002 code:

74.15.0) were dropped.

D.10 Definitions of some network measures

For the purpose of measuring the degree of cohesion, the density of a network G is the fraction

between the total number of links in the network and the total number of possible links∑
i,j∈NN ,i6=j Gij

N(N − 1)

with D ∈ [0, 1]. A higher density denotes tighter relations between firms. It can be observed that

in Table 2 the density of constructed networks varies between 0 and 0.333 and has an average

value across industries of 0.005. Another important network measure is the average degree of a

node which tells how many links a node has on average with other nodes

1

N

∑
i,j∈NN

Gij

It can be observed that in Table 2 the average degree of constructed networks varies between

0 and 1 and has an average value (approximated to the nearest integer) across industries of 0.

Such a low average value is in line with the low average density commented above. In the same

spirit, the percentage of isolated nodes of constructed networks, computed as

100× 1

N

∑
i∈NN

1{Gij = Gji = 0 ∀j 6= i ∈ NN}

varies between 33.333% and 100% with an average value across industries of 97.665%. Lastly,

the total number of links of constructed networks, computed as∑
i,j∈NN ,i6=j

Gij

varies between 0 and 6 with an average value (approximated to the nearest integer) across

industries of 0.
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