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Abstract

This paper endogenizes the spread of an infectious disease in a random match-
ing model with pairwise meetings, where economic and social gains arise explic-
itly from person-to-person contacts. When agents can decide whether to engage
in interactions, complementarities in the participation decisions of individuals
susceptible to contracting the disease generate a large multiplicity of equilibria
through adverse selection. The lower the participation of susceptible agents, the
higher the prevalence of infection in the pool of participants, further discour-
aging the participation of susceptible agents. I document a variety of infection
dynamics, including plateaus and multiple waves. Adverse selection leads to
too much isolation from susceptible agents, and in the calibrated version of the
model, the cost of forgone interactions offsets the welfare gains of flattening the
curve and mitigating the human toll. When agents cannot opt out of the market
but can instead choose whether to wear a mask, the equilibrium is unique. In the
calibrated model the human toll is lower than when considering the participation
margin, yet at a significantly smaller cost.
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1 Introduction
This paper investigates the transmission of an infectious disease in a random matching
model where economic and social gains from trade directly stem from person-to-person
contacts. In typical epidemiological models of disease transmission, infection dynamics
are mechanically driven by exogenous, reduced-form parameters meant to encompass
both the fundamentals of the disease and individuals’ behaviors. Modeling individuals
as rational and forward-looking agents, who face a trade-off between the benefits from
engaging in social interactions and the infection risk it carries, allows us to endogenize
the infection rate by letting agents’ behavior react over time as the epidemic develops.

I consider two response margins, both of which have been at the forefront of public
health recommendations since the onset of the COVID-19 pandemic: social engagement
and mask-wearing.1 Figure 1 shows that since the beginning of 2020, and throughout
the world, a significant share of individuals have taken action along both of those
margins. While policy mandates have certainly largely contributed to those reactions,
they do not account for all of it. For example, although Finland never required mask-
wearing in public, the right panel shows that by the end of September 2020, more than
20% of the Finns surveyed reported taking that precaution.2

The paper aims to answer the following questions. First, when and to which extent
do individuals modify their behaviors in response to the outbreak of a contagious
disease? Second, how are epidemic dynamics and economic outcomes impacted by
these rational changes in behavior? In particular, can the equilibrium path still be
precisely predicted, as is the case in epidemiological models that do not account for
endogenous changes in behaviors? Third, how do these dynamics and outcomes differ
when agents modulate the frequency of their social engagement relative to when they
modulate the precautions they take during social interactions?

To answer these questions, I build a model that retains a structure similar to that
of compartmental models of disease transmission, developed in the wake of Kermack
and McKendrick (1927). The population is divided into three groups respectively
labeled S, I, and R: susceptible individuals, who can contract the disease; infectious

1For example, in an interview with ABC News, Dr. Fauci, director of the National Institute of
Allergy and Infectious Diseases in the United States, stated that “[the] best way that you can avoid —
either acquiring or transmitting infection — is to avoid crowded places, to wear a mask whenever you’re
outside.” The Centers for Disease Control and Prevention (CDC) makes similar recommendations.

2Additional evidence can be found in Farboodi et al. (2020), who use data based on cellphone
tracking to show that everywhere across the United States individuals started to reduce their social
activity before any policy measures were enacted.
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Figure 1: Protective behaviors in a sample of countries during the COVID-19 pandemic.
Left Panel - Percentage of survey respondents who report avoiding crowded places.
Right panel - Percentage of survey respondents who report wearing a mask in public.
Source: YouGov.

individuals, who carry the disease and can transmit it; resistant individuals, who can
neither contract nor transmit the disease.

Agents get to engage in bilateral interactions with randomly-chosen partners. Each
interaction may or may not generate utility, reflecting the fact that some contacts may
not be desired. When a susceptible agent enters in contact with an infectious agent, the
former contracts the virus with some probability. The measure of infectious individuals
grows from the flow of previously-susceptible individuals newly infected, and shrinks
from the flow of individuals who recover from the disease. Infection dynamics are then
driven by the effective reproduction number: the number of susceptible individuals
expected to contract the disease from the same infectious agent while she is a carrier.

I first analyze equilibrium outcomes when agents are given the opportunity to
stay home instead of engaging in social and economic interactions. Second, I assume
that agents cannot opt out of the market but can wear a mask, which diminishes
the probability of contracting (or transmitting) the virus during social interactions.
The two decisions significantly differ in the trade-offs they imply: self-isolation offers
absolute safety, but comes at the relatively large opportunity cost of forgoing social
engagement; mask-wearing only offers a partial protection and carries an inconvenience
cost, but still allows the wearer to engage in social and economic activity.

Throughout the paper, I study two limiting cases regarding the status of agents who
recover from the disease. In a first specification, labeled SIS, it is assumed that agents
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do not gain immunity, so that they are again susceptible after they recover. Under this
assumption, the equilibrium reduces to a system of two ordinary differential equations
that can be analyzed with phase diagrams. A second specification where recovered
agents become resistant is also studied. This adds a third differential equation to the
model, which is then calibrated to US data and solved numerically.3

In terms of calibration, while I mostly follow the method developed by Farboodi et
al. (2020), I depart from them by making use of micro-founded data to calibrate two
important parameters: the meeting rate and the transmissibility of the virus during an
interaction. The former is calibrated using survey studies that document the number
of interpersonal contacts experienced by respondents on a daily basis. The latter is
calibrated following contact tracing studies, which track the contacts of individuals
who have tested positive to the virus, and record whether those contacts, who have
been asked to isolate, contracted the virus.

A first important result is that in a world where utility is directly derived from
contacts between individuals, there exist complementarities between the participation
decisions of susceptible agents. Since matching among agents is random, the risk of
infection in a given contact depends on the composition of the pool of participants.
More specifically, as infectious and resistant agents always participate, the probability
of a susceptible agent contracting the virus in a given contact decreases the more
susceptible peers participate. Equilibrium participation then becomes the outcome of
a game between susceptible agents, whereby multiple Nash equilibria may coexist. For
example, it could be rational for a susceptible individual to participate if all other
susceptible agents participate, and to stay home if all other susceptible agents stay
home. This gives rise to adverse selection: the fewer agents not carrying the virus
participate, the higher the prevalence of infection in the pool of participants (i.e., the
lower the “quality” of the pool), and the lower the net benefit of participating, which
further drives non-carriers out of the market and increases the prevalence of the disease
among participants.

The complementarities between the decisions of susceptible agents translate to a
multiplicity of equilibrium paths in both the SIS and SIR specifications as long as
the cost suffered by infected agents is in a medium range, a condition satisfied in the

3As of October 2020, while there is still disagreement regarding a definitive immunity in individuals
who have recovered from COVID-19, there exists a body of evidence pointing at temporary immunity
for the majority of cases. See references in https://www.nytimes.com/2020/08/16/health/coronavirus-
immunity-antibodies.html, retrived on October 5, 2020.
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calibrated model. I restrict my attention to classes of equilibria that satisfy some
specified coordination rules for each instant along the equilibrium path where multiple
Nash equilibria coexist.4 I first consider two extreme rules, where susceptible agents
either always coordinate to participate or to stay home whenever both could hold in
equilibrium. The paths obtained provide bounds to all other equilibrium paths in the
(S, I) phase plane. Following either rule, the infection curve is considerably flatter than
in the benchmark case with no behavioral response, where the infection curve reaches a
peak with around 40% of the population infected at the height of the epidemic. When
agents coordinate to go out and engage in interactions whenever possible, the measure
of infected agents never surpasses 7% of the population. At the other extreme, when
agents coordinate on staying home as much as possible, it never goes past 2%.

I then consider other coordination rules. One specifies that in the multiplicity
region, susceptible agents coordinate on going out with probability x ∈ (0, 1). The
lower x, the flatter the infection curve and the more delayed the development of the
epidemic. Another rule is based on the idea that individuals may be more likely to
coordinate on staying home when the epidemic seems more severe, so that coordination
is determined by comparing the number of active cases to a set threshold. Using this
rule, infection curves feature plateaus. The last rule I impose has to do with “isolation
fatigue.” After coordinating on the safe behavior of staying home for a long time,
susceptible agents may get fatigued and switch to coordinate on participating. This
coordination rule allows the equilibrium path to feature multiple waves of infections.
These results highlight that countries or regions with similar fundamentals can still
experience significantly different infection dynamics, driven by equilibrium beliefs.

Interestingly, across all equilibrium paths explored, as time goes to infinity, a rel-
atively similar measure of agents will have been infected—between 78% and 80% of
the population. In comparison, in the benchmark model, 96% of the population would
eventually have been infected. A policy implication is that the shape of the infection
curve is not necessarily, in itself, a good measure of how well a population is faring
in terms of long-term outcomes: widely different shapes could eventually lead to sim-
ilar steady states. Coordination is nevertheless extremely relevant when it comes to
welfare, as the economic and social costs of forgone social contacts vary largely across
equilibria.

When agents cannot opt out of the market but can decide to wear a mask, equilib-
4These can be seen as restricting agents’ beliefs.
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rium analysis is much simplified. First, infectious agents have no incentives to take this
costly precaution. Second, there are no complementarities (in a static sense) between
the decisions of different susceptible agents: taking as given the future course of the
epidemic, the net benefit of wearing a mask for a given susceptible agent is independent
of the behavior of other susceptible peers. As a result, the equilibrium is unique. In the
SIR simulations, the cost of wearing a mask is calibrated as a fixed percent of the util-
ity received by agents when they engage in interactions. For reasonable calibrations,
the equilibrium path is such that susceptible agents do wear a mask once the epidemic
has gained enough ground, and they stop doing so once it has sufficiently subsided. As
expected, the costlier the masks, the shorter the amount of time during which they are
worn. The infection curve is again considerably flattened, and a bit delayed.

Across all specifications, the number of active cases never gets past 12%. The
cumulative measure of agents that has been infected by the end of the epidemic remains
between 72% and 75% for the different cost specifications. In terms of welfare, the
mask-wearing margin yields better outcomes than the participation margin. Not only
is the long-run cumulative number of cases even lower than for the participation model,
the associated costs are extremely low. This translates to a total welfare loss between
5.7 and 6.1 trillion dollars for the model with mask-wearing, compared to 7.6 trillion
dollars in the benchmark with no behavior response.

Relation to the literature A large body of economic literature aimed at endo-
genizing the dynamics predicted by epidemiological models quickly developed in the
wake of the COVID-19 outbreak.5 This paper is most-closely related to a subset of
those papers, which endogenize individual-level participation in a SIR model, using
forward-looking rational agents who maximize their lifetime utility: Bethune and Ko-
rinek (2020), Farboodi et al. (2020), Garibaldi et al. (2020), McAdams (2020a), and
Toxvaerd (2020).6

In those five papers, and different from the present paper, an agent’s utility is not
directly derived from each social interaction but from her level of “social activity” (a
continuous variable). Additionally, in all but McAdams (2020a), that utility is inde-

5There did already exist a small economic literature related to infectious disease, spurred by the
HIV outbreak in the 1990s. McAdams (2020b) provides a comprehensive review of economic epidemi-
ology, with a focus on recent developments but also going back to those seminal papers.

6Note that Bethune et al. (2020) also studies an SIS specification. Other papers that endogenize
economic activity in a SIR model at a more aggregate level include for example Eichenbaum et al.
(2020) and Krueger et al. (2020).
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pendent of the “social activity” of other agents. The main implication is that there
are no complementarities between the participation decisions of different agents in the
economy, which are essential to generate the infection dynamics obtained in the present
paper. Indeed, in my paper, because utility stems from each individual contact, it in-
herently requires meeting other agents, and thus directly depends on the participation
of other agents. Similar complementarities are highlighted by McAdams (2020a), writ-
ten concurrently. In that paper, utility is specified as depending on the participation
of other agents in reduced form, with a utility function that increases in aggregate
participation. In other words, complementarities in participation decisions are directly
built in. Both models predict equilibrium multiplicity, and highlight the role of coor-
dination. What differs is that while McAdams focuses on the theory, I calibrate the
model and explore the form that multiplicity takes when applied to COVID-19 in the
US. I simulate paths at the two extremes of participation, when agents participate as
much and as least as possible, and quantify the corresponding range of human and
economic costs. I also explore additional coordination rules and show how they can
give rise to infection dynamics such as plateaus and multiples waves, which can be
observed in the data but are absent from Bethune and Korinek (2020) and Farboodi et
al. (2020), two models that are also calibrated to the COVID-19 epidemic in the US.

The information structure also differs across the aforementioned papers. In the first
two, it is assumed that agents do not know whether they are susceptible or infectious. In
Garibaldi et al. (2020) and Toxvaerd (2020), like in my paper, agents know their status.
In McAdams (2020a), agents who contract the virus originally do not know it, but may
eventually learn it. When applied to the COVID-19 pandemic, the latter specification
certainly seems the most appropriate, as 40% of infections are asymptomatic (Oran
et al., 2020). Due to the structure of my model, however, uncertainty would require
keeping track of the distribution of beliefs over time, depending on the exact history
of matches encountered, a challenging problem left for future work.

The second part of the paper focuses on mask-wearing, a decision absent from
the five papers mentioned above. This decision can be seen as a specific example of
behavioral reaction along a “vigilance” margin, which is for example present in Keppo
et al. (2020). Vigilance is costly, but decreases one’s risk of infection (as well as others’).
A major difference is that in Keppo et al. (2020), agents are partially myopic: they
maximize an objective function that only depends on the state of the epidemic at that
time. In the present paper, agents are perfectly forward-looking. Salanié and Treich
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(2020) combine the two margins studied in this paper, mask-wearing and isolation, and
focus on the impact of a mandatory policy related to mask-wearing on agents’ isolation
behavior, however in a static setting.

The adverse selection that occurs in the model with participation is similar to a
mechanism highlighted by Kremer et al. (1996) in the context of HIV, where participa-
tion decisions impact not only the number of matches but also the composition of the
pool: as more individuals choose abstinence, the prevalence of infection may increase.

The rest of the paper is organized as follows. Section 2 presents the model environ-
ment. Section 3 describes the infection dynamics predicted by standard SIS and SIR
models absent the participation and mask-wearing margins, thus serving as a bench-
mark against which to compare subsequent results: outcomes when adding the partic-
ipation margin, in Section 4, and outcomes when adding the mask-wearing margin, in
Section 5.

2 Environment
Time t is continuous and goes on forever. The economy is populated by a measure
P of infinitely-lived agents who discount the future at rate r > 0. At all points in
time, agents can choose to engage in a meeting process. Meetings, or “social contacts,”
are bilateral and occur at random with a Poisson arrival rate α(N), where N ≤ P

represents the measure of participating agents. When an agent enters in contact with
another agent, she enjoys y > 0 utils with probability p and 0 otherwise—not all
meetings may be desirable.7

We consider the existence of a virus that can spread in the population. Agents can
be in one of three states: susceptible, infected, or resistant.8 The measures of agents in
each state are respectively denoted S(t), I(t), and R(t), with S(0), I(0) and R(0) taken
as given. An agent’s state is private information, exclusively known by that agent.

Agents who participate to the meeting process can take a protective measure, in-
terpreted as wearing a mask, at a flow cost k > 0. The decision is made before any
contact is realized. Upon contact with an infectious agent j, a susceptible agent i be-
comes infectious with probability τ ij ∈ (0, 1), with {i, j} ∈ {m,n}2. The superscripts

7Garibaldi et al. (2020) highlight the existence of those “unintended contacts” and explain their
relation to the matching technology.

8In this model, being infected and infectious are strictly equivalent.
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denote whether each agent in the meeting is wearing a mask (m) or not (n). It is
assumed that τmm < τnm < τmn < τnn. While masks are most effective when both
agents wear them, the second best occurs when only the infected agent wears one.

Infectious agents, who recover at Poisson rate γ > 0, suffer a flow cost ψ > 0 as
long as they are infected. The flow cost of infection represents both the direct, physical
cost of being sick, and the indirect cost associated with the prospect of dying from the
disease.9

Throughout the paper, I study and compare two assumptions regarding the status
of agents who recover from the virus. In one case, it is assumed that they gain immunity
and become resistant, an absorbing state. In the other case, it is assumed that they
transition back to being susceptible. The first case will be referred to as the SIR model
and the second as the SIS model.

Preliminary results: equilibrium in a virus-free economy When I(t) = 0, the
population is free from the virus. In this case, there are no incentives to refrain from
participating in the meeting process, and no incentives to wear a mask during those
meetings. The lifetime discounted utility of an agent in state j, where j ∈ {S, I, R}, is
denoted Vj and is given by the Hamilton-Jacobi-Bellman (HJB) equation,

rVj(t) = α(P )ỹ + V̇j(t), (1)

where the dot represents a time derivative. Because the whole population participates
to the meeting process, N = P , and agents meet at Poisson arrival rate α(P ). Each
meeting provides an expected benefit of ỹ ≡ py utils. The equilibrium path is such
that V j is constant and equal to the present value of all future meetings, α(P )ỹ/r.

3 A quick primer on epidemiological models
It will be helpful to first review the dynamics of the model when neither the participa-
tion nor the mask-wearing decision are taken into account, which will later serve as a
benchmark. As such, the model looks like an off-the-shelves SIS/SIR model, where the
number of participants is equal to the population size, N = P , and the transmission
probability corresponds to that when neither agent wears a mask, τnn. At any point

9Note that death is not formally modeled otherwise. Agents always recover at time goes to infinity,
so that the population remains constant.
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in time, agents are either susceptible, infectious, or resistant, so that the following
identity must hold,

P = S + I +R, (2)

where, to simplify the exposition, I suppressed the explicit dependence of S, I and R

on time. The measure of infected agents evolves according to

İ = α(P )τnnS
I

P
− γI. (3)

The first term on the right-hand side corresponds to the inflow of susceptible agents
newly infected. S agents enters in contact with α(P ) other agents, a proportion I/P of
which is infected. For each of these contacts with infectious agents, the probability for
the susceptible agent to catch the virus is τnn. The second term on the right-hand side
corresponds to the outflow of previously-infected agents that recover. In a SIS model,
Ṙ = 0, so that R is constant. Assuming that the original stock of resistant individuals
is null, in the SIS specification, R = R(0) = 0. The law of motion for S is equal to the
negative of (3). In a SIR model, Ṙ = γI and Ṡ = −α(P )τnnSI/P .

We denote σ ≡ α(P )τnn/γ the basic reproduction number. This number is often
referred to as R0, but the notation σ is preferred here to avoid any confusion with
the initial measure of resistant agents, R(0). It corresponds to the number of people
that an infectious individual would be expected to infect before recovering, assuming
that the whole population is susceptible. It has to be distinguished from the effective
reproduction number, σe(t) ≡ σS(t)/P , a time-dependent variable which measures the
number of people an infected individual would be expected to infect given the actual
measure of susceptible agents in the population at time t.

Steady states In the SIS and SIR models, the system is at steady state when İ =

Ṡ = Ṙ = 0. Plugging İ = I = 0 into (3), we directly obtain that in the SIS model,
there always exists a virus-free steady state, with I∗ = 0, S∗ = P and R∗ = 0. There
also exists an endemic steady state, with I∗ > 0, as long as σ > 1. It is such that
I∗ = P [1− 1/σ] > 0, S∗ = P/σ and R∗ = 0. In this steady state, the flow of new
infections exactly offsets the flow of recovered agents at each instant. In other words,
in an endemic steady state, the effective reproduction number must be exactly equal
to one. Because the effective reproduction number is never greater than the basic
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Figure 2: Dynamics of the SIS and SIR model with no participation nor mask-wearing
decision, where σ ≡ α(P )τnn/γ > 1 is the basic reproduction number.

reproduction number, this requires the basic reproduction to be greater than one.10

In contrast, in the SIR model, there exists no endemic steady state. Intuitively,
the SIR system cannot be at steady state as long as I > 0, as there would be a
strictly positive increase in the measure of recovered individuals at each instant. As
a result, in the SIR model, steady state is only achieved when the virus has entirely
been eradicated, I∗ = 0.11 There exists a continuum of such virus-free steady states,
indexed by R∗ ∈ [0, P ], with S∗ = P − R∗. In sum, any combination of S∗ and I∗

adding up to the total population can be sustained as a steady state.

Dynamics The dynamics of the SIS and SIR systems can be represented in phase
diagrams. They are drawn in Figure 2 with S on the x-axis and I on the y-axis.

The left panel represents the dynamics under the SIS specification when σ > 1.
Because we assumed R = 0, the pair (I, S) must always be located on the hypotenuse
of the triangle. The number of infections increases (decreases) as long as the effective
reproduction rate number is greater (smaller) than one, or equivalently, S > (<)P/σ.
Once S reaches the threshold P/σ, the system has reached the endemic steady state.
As a result, when the endemic steady state exists, it is globally stable. Starting from
any arbitrarily low I(0), the infection grows until it reaches the steady state. When

10Mathematically, for σe = σS/P = 1 to hold given S/P ∈ [0, 1), we need σ > 1.
11This result can be overturned by introducing birth and death dynamics to the system, in which

case an endemic steady state can be sustained.
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the endemic steady state does not exist, i.e., when σ < 1, the effective reproduction
number is mechanically smaller than one, and the virus-free steady state is globally
stable. Starting from any I(0) the number of infections decreases until the virus is
eradicated.

The dynamics under the SIR specification are represented in the right panel. Whether
the measure of infected agents increases or decreases is still determined by the effective
reproduction number: I increases (decreases) when S > (<)P/σ. However, S can only
decrease, as contrary to the SIS model, there is no inflow of previously-infected suscep-
tible agents. As a result, the effective reproduction number is strictly decreasing over
time and must eventually drop below one regardless of its initial value. At this point,
we say that the population has reached “herd immunity,” i.e., there are not enough sus-
ceptible individuals left for each infected individual to infect more than one susceptible
agent before recovering. Starting from an arbitrarily low I(0) and along the hypotenuse
(R = 0), the initial effective reproduction number must be greater than one, so that the
stock of infected first increases. Once herd immunity has been reached, the measure of
infected agents then steadily decreases until the system reaches the (virus-free) steady
state. Steady states with S > P/σ are not locally stable, and therefore could never be
reached starting from any I(0) > 0, because the effective reproduction number as we
approach I = 0 would be greater than one. Equivalently, only steady states such that
R∗ ∈ [P (1 − 1/σ), P ] can be reached. Because R∗ indicates the aggregate measure of
agents that have been infected during the epidemic, it means that at the minimum, a
share (1 − 1/σ) of the population would be infected over the course of the epidemic.
Finally, it can be shown that R∗ and S∗ are uniquely determined by I(0). The higher
I(0), the higher R∗ and the lower S∗.

In the remaining of the paper, we relax the assumption that the whole population
seeks to engage in social interactions at all times and allow participants to wear masks,
so as to study the implications of those endogenous responses on both the dynamics of
the epidemic and long-run outcomes. We will focus on the parameter region such that
the basic reproduction number, σ, is greater than one: absent any behavioral response,
the virus would become endemic in the SIS model, and starting from low enough I(0),
there would be an epidemic in the SIR model.
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4 To go or not to go
In this section we focus on the participation decision of agents in the market. It is
assumed that there is no protective measure, i.e., agents do not wear masks, and we
let τ ≡ τnn to simplify the notation. We first set up the SIS model and derive a few
key analytical insights in Section 4.1, before moving on to the SIR model in Section
4.2. The SIR model is then calibrated and solved numerically in Sections 4.3 and 4.4.

4.1 SIS model

The HJB for an infectious agent is

rVI = α(N)ỹ − ψ + γ(VS − VI) + V̇I , (4)

where VI is the expected lifetime discounted utility of being infectious and VS that of
being susceptible. The first term makes use of the equilibrium result that infectious
agents would always choose to participate to the meeting process. While they could
choose to stay home, it would never be rational for them to do so, as it carries an
opportunity cost but no benefit.12 The cost of being infected is captured by the second
term, while the third term captures the potential upside of recovery. The HJB equation
for susceptible agents is

rVS = max

{
0, α(N)

[
ỹ + τ

I

N
(VI − VS)

]}
+ V̇S. (5)

The maximization represents the participation decision of the susceptible agent. She
can decide to stay home, in which case her utility is normalized to zero, or she can
decide to go out, in which case she gets utility from a fraction of the social contacts
she will encounter, but also faces the downside of potentially getting infected. Due
to random matching and full participation from infectious agents, the probability of
a partner being infectious is I/N . Conditional on meeting an infectious agent, the
probability of contracting the virus is τ .

12This would be different if preferences favored altruism, e.g., infected individuals could suffer a
cost from endangering or infecting susceptible individuals, or if infectious individuals did not know
their own state, in which case they may also fear getting infected. Additionally, for completeness,
note that it could in fact be rational for an infectious agent to stay home if all other agents stay home
as well. Going out would bring no benefit, so that the infectious agent would be indifferent. This is a
pure coordination problem and we will ignore this type of equilibrium in the remaining of the paper.
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Equations (5) and (4) can then be combined to obtain a single differential equation
in ω ≡ VS − VI ,

ω̇ = (r + γ)ω + α(Sp + I)min

{
ỹ, τ

I

N
ω

}
− ψ, (6)

where Sp denotes the measure of susceptible agents who participate. A second differ-
ential equation comes from the law of motion for the measure of infected individuals,

İ = α(N)τSp I

N
− γI. (7)

It is almost identical to (3), derived in the benchmark SIS model. The difference is
that is now depends on the measure of participating susceptible agents, Sp, rather than
the measure of susceptible agents, S (both directly and through N).

To close the model, we need to solve for the aggregate participation of susceptible
agents, Sp. To do so, we first solve for the participation decision problem of a single
susceptible agent, j. She engages in social interactions with probability aj, given by

aj


= 0 <

∈ [0, 1] if ỹ = τ I
N
ω,

= 1 >

(8)

where the aggregate participation of the whole population, N , is given by

N = Sp + Ip =

∫
i∈S

aidi+ I. (9)

To decide whether to participate, the susceptible agent compares the expected utility
from a social contact, ỹ, to the expected chance of receiving the virus multiplied by
the cost of getting infected, τ(I/N)ω. Because N = Sp + I, the chance of contracting
the virus during a social contact depends on the participation decision of all other
susceptible agents as well. Ceteris paribus, a higher number of susceptible agents
shifts the composition of the pool of participants in such a way that I/N decreases,
thereby reducing the riskiness of the pool and making any given interaction safer. In
other words, an increase in the number of susceptible agents participating, keeping
the number of infected participants the same, reduces the marginal cost of a contact
without impacting its marginal benefit. This generates complementarities between
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the participation decisions of susceptible agents: more participation from susceptible
agents encourages the participation of other susceptible agents. Note that this feedback
loop is independent of the assumptions made regarding the matching technology. In
particular, it does not require increasing returns to scale.

Solving for Sp for a given pair (I, ω) is now akin to solving a Nash equilibrium,
whereby the participation decision of each individual, driven by (8), must be the best
response given the participation decisions of all other individuals. There are two dom-
inance regions and one multiplicity region. When ỹ > τω, there exists a unique Nash
equilibrium, where all susceptible individuals participate, Sp(I, ω) = S. Intuitively, in
this region, the expected utility from any given social contact would be higher than
the expected cost of infection even if all participants were infectious, so that the only
possible equilibrium outcome is for everyone to participate. When ỹ < τ(I/P )ω, there
also exists a unique Nash equilibrium, although with no participation from susceptible
individuals, Sp(I, ω) = 0. In this region, the expected utility earned from a contact
would be lower than the expected cost of infection, even if everyone were to partic-
ipate, so that it can never be worth it for susceptible agents to participate. When
τ(I/P )ω ≤ ỹ ≤ τω, there exist multiple Nash equilibria: the two previous corner equi-
libria, as well as an equilibrium with partial participation, Sp(I, ω) = (τω/y − 1) I.
By construction, in the latter type of equilibrium, susceptible agents are indifferent
between staying in or going out.

Equilibrium definition An equilibrium consists in a list of time paths for the two
state variables {S(t), I(t)} and the two control variables {Sp(t), ω(t)}, such that (6)
and (7) are satisfied, where Sp is a Nash equilibrium consistent with the individual
participation decision rule given by (8) and (9), S(t) = P − I(t) and I(0) is given.

Steady states There always exists a virus-free steady state, where, by definition,
I∗ = 0 and S∗ = P . It features full participation, Sp∗ = N = S, and is therefore
identical to the virus-free steady state described in the benchmark SIS model. Because
the virus is eradicated, there is no risk in participating. As long as other people are
participating, it is therefore worthwhile to join.13 In this steady state, ω∗ = ψ/(r+ γ).

There may also exist endemic steady states, which require α(P )τSp∗/(Sp∗ + I∗) =

13As mentioned earlier, there could also be an equilibrium with no participation at all, Sp∗ = N∗ =
0, but that would purely due to a coordination problem, not to the virus. In this scenario, susceptible
agents would be indifferent between participating or not, so we assume that they do participate.
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Figure 3: Construction of the phase diagram in the SIS model with participation.

γ. Now denoting the basic reproduction number σp(Sp) ≡ α(SP + I)τ/γ and the
effective reproduction number σp

e(S
p) ≡ σp(SP )Sp/(Sp + I), this condition can be

rewritten as σp
e(S

p) = 1. As was the case for the standard SIS model, the effective
reproduction number must be equal to one for the system to be in a endemic steady
state. What differs is that the effective reproduction number is now a jump variable
and an increasing function of the participation of susceptible agents.

We obtain that Sp = 0 cannot hold in an endemic steady state, since the effec-
tive reproduction number would be equal to zero. An endemic steady state with full
participation, Sp∗ = S, implies S∗ = P/σ, I∗ = P (1 − 1/σ) and N∗ = P . This
steady state is identical to the endemic steady state in the standard SIS model.
Note that ω∗ = ψ/[r + α(P )τ ], so that this steady state exists as long as ỹ ≥
τ {1− γ/[α(P )τ ]}ψ/[r + α(P )τ ], i.e., the cost of infection ψ and the transmission
probability τ are not too high relative to the expected utility from a social contact,
ỹ. Finally, there may also exist an endemic steady state with partial participation,
Sp∗ = (τω∗/ỹ − 1)I∗, as long as the cost of infection, ψ, is not too high nor too low
(although it requires α′(.) > 0).

Dynamics We can now study the dynamics of the SIS model with participation in
a phase diagram. Figure 3 displays its construction, with I on the x-axis and ω on the
y-axis (the second state variable, S, can be obtained from the identity S + I = P ).

As depicted in the right panel, three regions can be delineated. In the blue region,
ỹ > τ(I/P )ω, so that there exists a Nash equilibrium with full participation. The
blue arrows in the left panel depict the direction of motion in that region under full
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Figure 4: Dynamics of the SIS model with participation for three levels of the flow cost
of infection, ψ. Left panel: low ψ. Middle panel: medium ψ. Right panel: high ψ.

participation, while the blue curves represent the isoclines, İ = 0 and ω̇ = 0. The
virus-free steady state, denoted by the blue dot on the y-axis, is unstable. This is
intuitive: with full participation, the model is akin to the standard SIS model, and we
saw that in a standard SIS model the virus-free steady state is unstable as long as the
basic reproduction number is greater than one, which we assume. The endemic steady
state, denoted by the blue circle at the intersection of the isoclines in the center of the
region, is saddle-path stable. The saddle path is represented by the dashed blue curve.

In the red region, ỹ < τω, so that there exists a Nash equilibrium with no par-
ticipation. The red arrows in the middle panel represent the direction of motion in
this region with no participation. Intuitively, without participation from susceptible
agents, the measure of infectious agents always decreases. The virus-free steady state,
represented by the red dot, is saddle-path stable. The saddle path is given by the dash
red curve.

In the purple region, located exactly where the blue and red regions overlap,
τ(I/P )ω ≤ ỹ ≤ τω, so that the two corner Nash equilibria coexist with the partial
participation equilibrium. In this region, the direction of motion therefore depends on
whether susceptible agents coordinate on full participation, no participation, or partial
participation.

To study equilibrium dynamics, we must combine the three graphs presented in
Figure 3. The regions in which isoclines intersect, which depends on parameter values,
will determine the set of equilibrium paths. Figure 4 displays the complete phase
diagrams for three different values of the flow cost of infection, ψ.
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As represented in the left panel, when the cost is low enough, the endemic steady
state features full participation and is the only stable steady state.14 The equilibrium
path is unique and follows the saddle path. Dynamics are then exactly identical to
those described under the benchmark model. Because getting sick only carries a small
cost, agents do not react by adjusting their participation margin despite having the
opportunity to do so.

When the cost of infection is in a medium range, as shown in the middle panel, both
an endemic steady state with full participation and a virus-free steady state may be
stable, depending on the coordination of susceptible agents. In this parameter region,
there exists a large multiplicity of equilibria. For example, agents can still coordinate on
participating throughout, in which case the dynamics are identical to those described
in the left panel. At the other extreme, susceptible agents can coordinate on staying
home as the number of infected asymptotically converges to zero. Agents can also
switch coordination along the way, in which case the equilibrium paths for S and I

may no longer be monotone.
Finally, when the cost of infection is very high, so that there does not exist an

endemic steady state with full participation anymore, the only stable steady state is
the virus-free steady state, as visible in the right panel.

Takeaways and discussion We can now highlight a few takeaways and discuss some
of the key underlying assumptions.

1) Endogenous, policy-free equilibrium lock-down. When the cost of infection is high
enough, the participation of susceptible individuals endogenously drops in equilibrium.
This can be interpreted as an endogenous lock-down, which does not stem from any
policy interaction but purely from individuals’ fear of being infected. Ignoring this
margin would then lead to overestimating the rate at which the virus is transmitted.
This echoes results from other papers that also add a participation margin to SIR/SIS
models, e.g. Bethune and Korinek (2020), Farboodi et al. (2020), Garibaldi et al.
(2020), McAdams (2020a), and Toxvaerd (2020).

2) Impact of individual behaviors on the effective reproduction number. In the standard
SIS model, the effective reproduction number is a state variable that evolves with the
measure of susceptible agents. When allowing for the participation margin, it becomes

14More precisely, this occurs as long as the intersection of the blue saddle path with the y-axis
occurs for ω ≤ ỹ/P .
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a jump variable that positively depends on the participation of susceptible individuals
through two channels. First, the participation margin impacts the composition of the
pool of agents an infectious individual is expected to meet: the lower the participation
of susceptible agents, the higher the chance of a random encounter leading to virus
transmission. Second, the participation of susceptible agents may also impact the
number of meetings if the matching technology does not feature constant returns to
scale, i.e., α′(.) ̸= 0. With increasing returns to scale, a drop in the participation
of susceptible agents leads to a smaller arrival rate of meetings, and therefore fewer
opportunities for the virus to be transmitted.

3) Complementarities in participation and social utility. The participation decisions
of susceptible agents are complementary to each other, a phenomenon that is absent
from Bethune and Korinek (2020), Farboodi et al. (2020), Garibaldi et al. (2020), and
Toxvaerd (2020). In those papers, an increase in the participation of other susceptible
agents is irrelevant for the participation decision of a susceptible agent. This difference
is rooted in the assumptions made regarding the way individuals receive “social utility.”
In the three papers just mentioned, social utility is not directly derived from individual
contacts, but more so derived from what could be interpreted as “time spent outside.”
Agents compare the utility from spending a given amount of time outside to the overall
probability of getting infected during that time. The former is independent of the
number of people outside. The latter increases in the participation of infectious agents,
but is independent of the participation of susceptible agents. In the present paper,
agents directly gain utility from each contact—contacts are exactly what provides
utility. Therefore, when susceptible agents decide whether to engage in those contacts
or to stay home, they compare the expected utility from each given contact to the
chance of being infected in each of those contacts. It seems that both specifications may
be appropriate for different real-world activities. The former seems to appropriately
describe activities such as walking one’s dog or going to the theater. The benefits from
engaging in those activities do not directly depend on meeting other individuals, but
the more people in the street or in the theater, the higher the chance of being infected.
Agents would always be at least weakly better off with less participation from other
agents. In contrast, the specification used in the present paper may be more appropriate
to describe gregarious behaviors that have been at the heart of the COVID-19 spread:
family and religious gatherings, parties, etc. In those events, utility directly comes
from meeting with people, so that there would be no benefit from engaging in those
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activities alone. When deciding whether to attend or not, one must compare the utility
from being around people to the chance of being infected.15

4) Equilibrium indeterminacy and variety of infection curve shapes. When the cost of
infection is not too high nor too low, the complementarities described above renders
the equilibrium indeterminate. Coordination then plays an important role both for
short-run dynamics and for long-run outcomes. In the short-run, because the coordi-
nation of susceptible agents can switch at any time when in the purple region, we can
observe a variety of infection curves, for example featuring one or several peaks, as the
number of infected may get up and down successively. This is very different than the
dynamics obtained in the typical SIS model, where the infection curve is always mono-
tone increasing or decreasing. In the long run, both the virus-free and the endemic
steady states may be reached. This highlights the role of norms, or coordination rules,
in the population.

5) Adverse selection and its welfare cost. As long as the cost of infection is not too low,
it is easy to see that optimally, a planner would like to quarantine the small measure
of infected individuals from the very beginning of the epidemic, and keep that rule
in force forever. Isolated infectious agents would gradually recover, such that in the
long run, only a very small measure of infected agents would remain infected and miss
out on trade. In equilibrium, if anything happens, it is the exact opposite: infected
agents always participate, and susceptible agents are forced to stay home. This is very
costly, since susceptible agents initially form the wide majority of the population, and
when they are confined, their measure only increases as infectious agents recover. This
outcome is especially unfortunate when it occurs in the region where a Nash equilibrium
with full participation could also occur, as it then resembles an extreme case of adverse
selection. While it would be rational for a susceptible agent to participate if all other
susceptible agents were also participating, as susceptible agents drop out, the risk of
infection grows relative to the benefit of going out, which encourages participants to
drop out further more. The equilibrium features a full unraveling, where only infectious
agents are left in the market. It is worth noting that even though as currently described,
this mechanism relies on the assumption that agents know their epidemiological status,
the emergence of adverse selection would robust to different information specifications,

15Note that complementarities in economic activity are also present in McAdams (2020a), where
aggregate activity is an argument of agents’ utility function. This can be seen as a reduced-form
representation of the meeting mechanism described in the present paper.
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as long as agents infrequently get informed about their status (through the development
of symptoms or through testing, for example).

4.2 SIR model

We now assume that infected agents who recover become permanently resistant. The
HJB equation for susceptible agents remains identical to (5). The HJB for infected
agents is similar to (4) with the third term replaced by γ(VR − VI), where VR is the
expected lifetime discounted utility of a resistant agent. The HJB for resistant agents
is

rVR = α(N)py + V̇R, (10)

where we anticipate the result that in equilibrium, resistant agents have no incentives
to stay out. We can easily show that VR − VI = V ∗

R − V ∗
I = ψ/(r + γ), which is then

used to again obtain a differential equation in ω,

ω̇ = rω + α(N)min

{
ỹ,
I

N
τω

}
− r

r + γ
ψ. (11)

The laws of motion for I is identical to (7) and the law of motion for R is given by

Ṙ = γI. (12)

Finally, the participation decision of a susceptible agent is still given by (8), where
N = Sp + I +R.

Equilibrium definition An equilibrium consists in a list of time paths for the three
state variables {I(t), R(t), S(t)} and the two control variables

{
SP (t), ω(t)

}
such that

(11), (7) and (12) are satisfied, where Sp is a Nash equilibrium consistent with the
individual participation decision rule given by (8) where N(t) = Sp(t) + I(t) + R(t),
S(t) = P − I(t)−R(t), R(0) and I(0) are given.

Steady states As was the case for the benchmark SIR model, any steady state must
be virus-free, since we would otherwise have İ > 0. Absent any infection risk, the
steady state participation of susceptible agents must be full, Sp∗ = S. This implies
ω∗ = ψ/(r + γ). There is a continuum of such steady states, indexed by S∗ ∈ [0, P ],
with R∗ = P − S∗, as in the standard SIR model. Contrary to the SIS specification,
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adding a participation margin does not impact the set of steady states in the SIR
model.
We now calibrate the model so as to study equilibrium dynamics.

4.3 Calibration

The SIR model is calibrated to the COVID-19 epidemic in the United States, at a
daily frequency. There are three types of parameters to be calibrated: epidemiological
parameters, that depend on the characteristics of the virus; parameters related to
the meeting and matching of agents; and parameters related to costs and preferences.
Calibrated values are summarized in Table 1.

Epidemiological parameters. The baseline probability of transmission of the virus
in a given contact between an infected and a susceptible agent, τ ≡ τnn, is calibrated
based on medical studies. A meta-analysis of 172 observational studies by Chu et al.
(2020) predicts an infection probability of 3% after a contact between two individuals
at a distance of three feet. Contact tracing studies in China by Bi et al. (2020)
and Luo et al. (2020) track the secondary infections stemming from contacts with
positive individuals, and respectively find infection probabilities of 6.6% and 3.7%. An
intermediate value of 5% is chosen for the calibration, so that τnn = 0.05. The recovery
parameter is calibrated following Farboodi and al. (2020), who assume an expected
recovery time of 7 days, implying that infectious agents recover at a Poisson arrival
rate of 1/7. While many patients take more than 7 days to recover, this value is closer
to the expected time during which infected agents can transmit the virus. Finally, to
match the model’s timeline to the real-world timeline, we need to calibrate time 0,
when the first infection occurs (i.e., I(0) = 1). We follow a study by Worobey et al.
(2020), who pin down the first case of coronavirus that eventually led to an outbreak
in the US to mid-February, and set t = 0 to February 14, 2020.16 For simplicity, it is
assumed that at this time, no one was resistant to the virus, so that R(0) = 0, and
S(0) = P − I(0).

Matching parameters The matching rate is assumed to be α(N) = αN , implying
that the flow number of meetings, αN2, displays increasing returns in the number of

16Robustness checks with a later start date, similar to that used in Farboodi et al. (2020), are
presented in Appendix B.
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participants. Population P is calibrated to the 2019 estimate of the US population
from the Census Bureau, around 328.24 million individuals. The matching parameter
α is calibrated to match the average number of in-person social contacts experienced
by individuals on a daily basis when there is no epidemic. A telephone survey of four
counties in North Carolina by DeStefano et al. (2011) reports an average of 10 contacts
per day. Feehan and Cobb (2019) survey Facebook users and find an average of 12
contacts per day. We pick the conservative value of 10, implying αP = 10.17

Costs and preferences The daily discount rate is calibrated to match an annual
discount rate of 5%, hence r = 0.05/365. The expected utility from a meeting, ỹ ≡ py

is normalized to 1. The cost of infection is calibrated relative to this unit utility,
following the method used in Farboodi et al. (2020). Because the expected cost of death
for an infected individual trumps all other costs associated with the infection, they
calibrate the cost of infection to reflect the cost of potentially losing one’s life. Formally,
ψ/(r + γ) = πν, where π is the infection fatality rate and ν the value of statistical
life. The left-hand side represents the discounted expected cost of the disease: infected
agents pay a flow cost ψ as long as they are sick. The infection fatality rate is calibrated
to 0.0062. To calibrate the value of statistical life, Farboodi et al. (2020) follow Hall
et al. (2020), who estimate that each remaining year of life is worth $270,000, and
that COVID-19 victims would on average expect 14.5 remaining years of life. This
implies ν = $3, 915, 000. To convert this value to utils, first note that it is equivalent
to say that individuals are willing to pay a lump sum of $3,915, or a daily stream of
$3,915r, to avoid a 0.1% probability of death. With a median yearly consumption of
$45,000 (Hall et al., 2020), this means that individuals would be indifferent between
a 0.1% probability of death and forgoing 3, 915r · 365 · 100/45, 000 = 0.435% of their
consumption, or

αP ỹ

r
− 0.001ν =

(1− 0.435/100)αP ỹ

r
. (13)

We can now solve for ν and obtain ν = 317, 550 utils, from which we get ψ = (r+γ)πν ≈
272.18 Note that the previous analysis implies an exchange rate between utils and

17This is also in line with studies run in Europe, e.g. Mossong et al. (2008) find a lower bound of
7.8 daily contacts in Germany and 19.8 daily contacts in Italy. In a similar study run in Hong-Kong,
Leung et al. (2017) find an average number of contacts of 8.

18This analysis implies that the entirety of an individual’s consumption requires person-to-person
contacts. Robustness checks where individuals still obtain some baseline utility when they stay home
are presented in Appendix B.
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Param. Definition Target/Sources Value
P Population US population 328.24M
α Matching parameter Average number of daily contacts 10/P
τ Baseline transmissibility Medical studies 0.05
γ Recovery rate 7 days of infection on average 0.14
ψ Cost of infection Expected cost of death 272
ỹ Individual benefit from interaction Normalisation 1
r Discount rate 5% yearly discount rate 0.05/365

t = 0 Initial infection date Epidemiological studies Feb. 14, 2020
σ Basic reproduction number Implied 3.5

$ per util Exchange rate Implied 12.33

Table 1: Calibrated parameters for the SIR model with participation.

dollars of 3, 915, 000/317, 550 = 12.33 dollars per util.
It is worth noting that Farboodi et al. (2020) and Bethune and Korinek (2020) use

different approaches than the present paper to calibrate the timeline and the infection
rate ατ . I explain those differences and explore the robustness of my results to those
different approaches in Appendix B.

4.4 Results and discussion

Due to the coordination problem among susceptible agents, there exists a large mul-
tiplicity of equilibria. I consider a subset of equilibria that obey some coordination
rules—more precisely, paths that exogenously dictates whether the susceptible popu-
lation coordinates in or out of the market for each instant where both can be Nash
equilibria. Key equilibrium results are described below. More detailed results are avail-
able in Table 2 in Appendix A. A description of the algorithm used to solve the model
can be found in Appendix C.

Randomized coordination rule I first focus on rules that specify that susceptible
agents coordinate to participate with probability x, where x ∈ {0, 0.1, 0.2, . . . , 1}. The
two extreme cases, x = 0 and x = 1, correspond to equilibria where susceptible agents
respectively always coordinate to stay home, and always coordinate to go out. Those
two equilibrium paths are represented in a phase diagram in the left panel of Figure 5
in blue and in red, alongside the path that would be observed in a standard SIR model
with no participation decision. Labeled “No behavioral response,” it is represented by
a dashed black line and will serve as a benchmark. Although uninformative about the
time dimension, this phase diagram is helpful to understand the relation between the
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Figure 5: Equilibrium paths of the SIR model with participation decision, under the
randomized coordination rule, represented in a phase plane. Left panel - Paths for the
two extremes cases: in blue, agents always coordinate to stay home (x = 0), in red,
agents always coordinate to go out (x = 1). The path with no participation decision,
in dashed black, is provided for comparison. Right panel - Paths for the two extreme
cases and intermediate cases. The graph is a magnified view of the bottom-right part
of the full-size graph.

two state variables S and I. Starting from the bottom right corner, with I(0) = 1 and
S(0) = 0, all three path originally feature an increase in the number of infected agents
(and thus, mechanically, a decrease in the number of susceptible agents).

While the benchmark path and the path with maximum participation (x = 1)
originally overlap, they diverge while I is still relatively low. In the benchmark case,
the number of infected agents only starts to go down once the herd immunity threshold
of S/P = γ/(ατP ) = 0.2857 has been reached. It then steadily declines and reaches the
virus-free steady state with S∗/P = 0.037. Adding a participation margin allows for
the number of infected agents to decrease much earlier, even when agents participate
as much as possible. The virus-free steady state is reached with S∗/P = 0.2061. In
other words, in this scenario, 79.39% of the population would have been infected by
the end of the epidemic, compared to 96.63% in the benchmark case. Now looking
at the other extreme case, where x = 0, we can observe slightly different dynamics.
First, the relation between S and I is very flat, so that the measure of infected agents
remains very low throughout the epidemic. However, it starts to declines for a lower
S than was the case with x = 1, and eventually converges towards a virus-free steady
state remarkably close to that resulting from the maximum equilibrium participation,
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Figure 6: Time paths of epidemiological measures for the SIR model with participation,
under the randomized coordination rule: susceptible agents coordinate to participate
with probability x, for x = 0 and x = 1. Note that 3 months lapse between each tick
on the x-axis, and that labels are plotted every 6 months.

with S∗/P = 0.2185, i.e., 78.15% of the population has been infected by the end of the
epidemic.

To understand how those dynamics play out over time and how they relate to the
participation decision, we can look at the four panels of time series in Figure 6. They
run from February 14, 2020, when the first case is assumed to occur, to February 14,
2026. From the top-right panel, which displays the share of population infected over
time, we can confirm that the addition of a participation margin allows to considerably
flatten the curve, even when x = 1. In this case, the peak of infections only slightly
goes over 6% over the population, against a peak at almost 40% of the population
for the benchmark case. When x = 0, the curve is even flatter, and the measure of
infectious agents remains below 2% of the population at all times.

The flattening of the curve is what allows for a much smaller number of individuals
to be infected over the course of the epidemic. This can be seen directly by looking at
the bottom-right panel, which shows the share of population recovered as a function
of time, since the share of population recovered as time goes to infinity must be equal
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to the share of population that has been infected in total. We can confirm that it is
considerably smaller when the participation margin is introduced.

The evolution of participation over time is displayed in the bottom-left panel. Be-
cause of the discrete nature of the algorithm used to solve the model, values for Sp

often jump between 0 and S when in the multiplicity region. As a result, participa-
tion is plotted as a rolling average with ten-day windows.19 In the equilibrium path
with the highest participation, x = 1, we can see that originally, all susceptible agents
participate. By mid-March, around one month after the first infection, participation
sharply drops. It reaches a low point at 30% of its regular level by mid-April. During
this time, the peak of the epidemic is reached, and the number of infections starts
declining. Participation then gets back up, and the economy reaches full participa-
tion again by September 2020. In the equilibrium path with the lowest participation,
x = 0, participation drops to zero from day one. It then climbs back to reach a bit less
than 30% of the baseline participation level by the beginning of March, and remains
stable at this level for many months. Only around May of 2024 does it start to slowly
increase again, the economy getting back to full participation by November 2025. As
a result, when the coordination rules is such that susceptible individuals stay home,
the epidemic is not only much flatter, it is considerably delayed. This is visible in the
top-right panel of Figure 6.

We now turn our attention to welfare measures. The expected human toll of the
epidemic is displayed in the left panel of Figure 7.20 As expected, because the coordi-
nation rule bears little impact on the total number of agents infected by the end of the
epidemic, its impact on the expected number of fatalities is also limited. The model
predicts around 1.6 million fatalities for both x = 0 and x = 1, compared with almost
2 million without the participation margin. However, whether agents coordinate in or
out does have a very large impact on the welfare costs of the epidemic, displayed in
the right panel of Figure 7. The total costs, represented by full lines, can be broken
down between the direct costs borne by infected agents and the opportunity costs due
to susceptible agents staying home. When agents coordinate on going out, x = 1, total

19This explains why interior values can be obtained even though, in each period, there is either full
or no participation.

20Even though the model does not feature deaths per se, in that the population always remains
constant, the cost of infection ψ takes into account the expected cost of death for infectious agents.
The expected number of fatalities is computed by multiplying the infection fatality rate, π, by the
number of recovered agents.
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Figure 7: Time paths of expected number of fatalities and cumulative welfare losses
for the SIR model with participation, under the randomized coordination rule: agents
coordinate to participate with probability x, for x = 0 and x = 1. Total welfare losses
correspond to the discounted cumulative sum of sickness costs borne by infected agents
and activity losses due to susceptible agents staying home. Note that 3 months lapse
between each tick on the x-axis, and that labels are plotted every 6 months.

costs amount to 8.3 trillions dollars, roughly 40% of US GDP.21 Three quarters of this
cost are due to sickness costs. When agents coordinate on staying in, x = 0, total costs
skyrocket to around 51 trillion dollars. While sickness costs are 1.5 trillion dollars lower
than when x = 1, 90% of of the total losses stem from the loss in activity. Recall that
in that scenario, the participation of susceptible agents drops to 30% of its usual level
for months on end. While this delays the epidemic, it does little to reduce the total
number of infections. As a result, the losses due to the reduction in activity trump
the gains in sickness costs by far, and the equilibrium with x = 0 is much worse, from
a welfare perspective, than the equilibrium with x = 1. Interestingly, the benchmark
path is even slightly better in terms of welfare than the equilibrium path with x = 1.
While sickness costs are only a bit larger, there is no activity loss whatsoever, leading
to a better net outcome. This is due to the adverse selection problem described earlier,
and further discussed in takeaway 5 at the end of the section.

Until now, we focused on the two extremes cases of the coordination rule, x = 0

and x = 1. We can now look at intermediate cases. Note that for those cases, the
realized equilibrium path depends on the random draws made over time. For this
reason, for each intermediate case, 50 simulations were run and then averaged. Going
back to a phase diagram representation on the right panel of Figure 5, we can see

21All welfare numbers are computed as the discounted sums of welfare losses from time 0.
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Figure 8: Time paths of share of infected population and share of susceptible population
participating, under the randomized coordination rule: agents coordinate to participate
with probability x, for x = 0, 0.1, ..., 1. Note that 3 months lapse between each tick on
the x-axis, and that labels are plotted every 6 months.

that intermediate cases populate the phase plane in between the two cases studied
earlier. Because all paths converge towards virus-free steady states very close to those
described for x = 0 and x = 1, we can already see that the long term epidemiological
outcomes will remain similar across those intermediates cases, with around 78% of the
population infected. Mechanically, the expected number of fatalities remains around
1.6 million across cases. Similarly, because those paths are “bound” by the two extreme
paths, welfare outcomes will lie in between the two welfare outcomes described earlier.

Figure 8 shows the particular shapes taken by the infection curves (in the left
panel), as well as the associated participation decisions (on the right panel), for all x.
As the probability of coordination to go out, x, decreases, the infection curve flattens
and shifts to the right. In terms of participation, for x ≤ 0.3, participation first starts
at 100x%, then increases to 30%, and finally gradually goes back up to 100% after
some time. The lower x, the longer the time during which participation remains at
30%. For x ≥ 0.4, participation starts at 100x%, drops below 40%, then gets back up
to 100% relatively quickly. The higher x, the earlier and the deeper the drop, and the
faster the recovery.

Alternative coordination rules While the probability-based coordination rule was
picked as a straightforward rule allowing to populate the phase diagram between the
two extreme rules of always or never coordinating to go out, an infinite number of
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Figure 9: Time paths of expected number of fatalities and cumulative welfare losses
for the SIR model with participation, under alternative coordination rules. Left panel
- Susceptible agents coordinate to participate as long as I < A, and coordinate on
staying in otherwise. Right panel - Susceptible agents coordinate to stay home as long
as t < T , and coordinate to participate afterwards (fatigue specification).

alternative rules could be used. I present two such rules in this section.
The first alternative rule assumes that agents coordinate on staying in or going out

depending on the measure of active infections cases, I. When this number is lower
than some threshold A, agents feel safe and coordinate out. When it is higher, agents
coordinate on staying home. Infections curves for A ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}% of
the population are displayed in the left panel of Figure 9. As expected, when A is high,
the infection curve resembles the one obtained when agents always coordinate to go
out. Indeed, in this case, the measure of infected agents never reaches the threshold, so
that the rule is never binding. In contrast, for low enough A, while the infection curve
initially follows that of the x = 1 scenario, the number of infections then perfectly
stabilizes once A active infections have been reached. Note that this does not mean
that susceptible agents entirely stop going out. In that case, the number of infections
would decline. Instead, susceptible agents go out exactly enough to maintain the
effective reproduction number at one. It then eventually decreases, except for very low
A. When the threshold is equal to 0.1% of the population, the number of infections
initially stabilizes, but infections start growing again after a few months.

29



The second alternative rule assumes that individuals initially coordinate on staying
home, which could be seen as the “good behavior” due to social norms, but eventually
get fatigued and coordinate on going out from time T onward Infection curves for
T ∈ {1, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33, 34, 35, 36} months are displayed in the right
panel of Figure 9. Up to T = 29 months, fatigue arising later and later only shifts the
infection curve to the right. For T = 30, that is, assuming that fatigue develops two
and half year into the epidemic, an interesting phenomenon occurs. The start of the
epidemic shifts back, in between the starts of the path with T = 15 and T = 20. Instead
of a sharp increase in the number of active cases, the curve is much flatter. While it
then resembles the curves observed earlier with low x, there are two big differences:
first, the epidemic is not as delayed; second, there can be a second wave of infections.
For example, for T = 30, while the number of infected individuals starts to go down
around January 2022, it goes up again, this time more steeply, roughly six months
later. While left for further exploration, it is easy to see that the existence of more
than two infection waves can easily be obtained as equilibrium outcomes, conditional
on picking the coordination rule appropriately.

Takeaways and discussion Key insights from the calibrated SIR model with par-
ticipation are summarized below.

1) Equilibrium indeterminacy and multiplicity of infection dynamics. The calibrated
model features an infinite number of equilibrium paths. The infection curve can be
single-peaked like in the standard SIR model, but can also feature several peaks or
even remain flat for some time. It can develop quickly, and disappear before the
end of 2020, or be delayed for months and even years. Those dynamics are driven
by the coordination of susceptible agents in the economy. While not explored in the
paper at the moment, it could be interesting to consider factors that could impact the
coordination of agents: country-wide experience with previous infectious disease and
associated norms, policy messages and recommendations, etc.

2) Endogenous flattening of the infection curve. The idea of “flattening the curve” has
consistently been put forward by policy makers during the COVID-19 pandemic, often
with two main justifications: first, it would help lessen the load on hospitals, thereby
increasing chances of recovery for infected individuals; second, it would help minimize
the number of victims until a vaccine is found. Neither of these two incentives is
present in the current model, since the recovery rate γ is independent of the number of
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infections, and the possibility of a vaccine is not modeled. Nevertheless, we can observe
a significant flattening of the curve across all of the examples presented, relative to the
infection curve in a world with no participation margin. Individuals’ expected cost of
infection provides them with incentives to stay home, which ends up diminishing the
death toll of the epidemic even in a world where herd immunity is the only way out.
It is interesting to note that due to the complementarities between the participation
decisions of susceptible agents, the endogenous “lock-down” can happen from the very
beginning of the outbreak (e.g., in the case with x = 0), when the number of infected
agents is still very low. This differs from Bethune and Korinek (2020), Farboodi et al.
(2020), Garibaldi et al. (2020), and Toxvaerd (2020), where behaviors only start to
change after the epidemic has gained more ground.

3) Participation and herd immunity. In a standard SIR model, the epidemic can
only start declining once the number of susceptible individuals is low enough, which
can be directly mapped to a minimum number of people having been infected and
having gained immunity. This herd immunity threshold is very high for COVID-19:
using the calibration presented in Section 4.3, we saw that it would require more than
71% of the population to have been infected for the outbreak to start declining. The
simulations presented above show that the epidemic can start to wane much before
that many people have been infected. For example, when x = 1, the number of
active cases starts to decline after only 2.8% of the population has been infected,
much before herd immunity has been achieved. It is sufficient for the participating
population to have reached herd immunity, a sort of qualified herd immunity. As long
as σp

e = α(Sp + I + R)τSp/(Sp + I + R) < 1, the measure of infected individuals
decreases. Because this is a jump variable, it cannot be mapped into a corresponding
measure of people having recovered, and it does not necessarily last forever (as visible
in Figure 9, where some equilibrium paths go down then up again). Eventually, the
entire population does gain herd immunity, and participation can get back to full
participation.22 Hence, while herd immunity is eventually reached by the population
in both the standard SIR model and the SIR model with participation, the important
difference is that in the latter model, the epidemic can start declining much before

22As I gets close to 0, all susceptible agents participate because the risk of infection is very small
compared to the benefits from interacting with resistant agents. As a result, the effective reproduction
number is greater than one when I is close to zero and S > P/σ. Thus, as was the case in the
benchmark SIR model, only steady states where S∗ ∈ [0, P/σ] can be reached, which implies that
there will always be at least a share (1− 1/σ) of the population eventually infected.
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the threshold has been reached, eventually leading to a much smaller number of total
infections.

4) Invariance of long-run epidemiological outcomes. One striking result is that despite
the large multiplicity of equilibria, long-run epidemiological outcomes do not differ very
much across those equilibrium paths. In all specifications reported in the analysis,
the steady-state number of resistant agents lies between 78% and 81%. This implies
that two regions with widely different infection curves may not necessarily be headed
towards widely different long-run outcomes, and that infection curves by themselves
may not be sufficient indicators of how well a region is doing.

5) Negative welfare outcomes. The issue of adverse selection was highlighted in section
4.1. Simulations with the SIR model confirm that it comes at a great cost. From the
point of view of society, diminishing participation is beneficial: it allows the number of
total infections to drop. However, in equilibrium, the drop of participation comes from
susceptible agents exclusively. It would be much better both for susceptible agents
and for society if infectious agents, who are the large minority, were the ones staying
home. Even in the case where agents participate as much as possible, the losses due
to missed interactions remain extremely large, and the gains due to fewer infections
are not sufficient to offset those losses. Equilibria that simply delay the epidemic, in
such a way that the infection curve is shifted to the right, are even worse. As discussed
in takeaway 4, while they feature a delayed epidemic, those equilibrium paths do not
come with significantly fewer infections, so that the diminished participation is a pure
loss for society. It is worth noting that this negative welfare result largely depends on
the way infections (and by proxy, deaths), are valued both privately and by society.
Robustness checks show that either increasing the private cost of infection by 50%, or
the social cost of infection by 45%, would make the equilibrium path with x = 1 reach
lower welfare losses than the benchmark path.

5 To mask or not to mask
We now consider a model where agents cannot opt out from social interactions, so that
N(t) = P , but can choose to wear a mask as a precaution. After solving for the equi-
librium analytically in a SIS specification, I set up, calibrate and solve numerically for
the SIR equilibrium outcomes. In a last part, the participation decision is reintroduced
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in order to shed light on the interaction between the two reaction margins.

5.1 SIS model

The HJB equation for an infected agent is similar to (4), derived in the participation
model, where we saw that infected agents have no incentives to restrict their partici-
pation. Likewise, in the SIR model with mask-wearing, infected agents prefer not to
wear masks. As a result, the only relevant transmission rates are τnn and τmn. The
second superscript being superfluous, notations for those two parameters are simplified
to τn and τm. The HJB equation for a susceptible agent is

rVS = α(P )ỹ +max

{
−k + τm

I

P
(VI − VS), τ

n I

P
(VI − VS)

}
+ V̇S. (14)

As in the benchmark model, the agent matches with other agents with a Poisson
arrival rate α(P ), in which case she can expect to earn ỹ utils. The second term of
the maximization represents the expected cost of social engagement when not wearing
a mask. In this case, neither she nor the infected trade partners she may meet wear
masks, and the probability of infection when in contact with an infectious agent is τn.
The first term in brackets represents the cost of social engagement when wearing a
mask. The agent would suffers a flow disutility k, but would contract the disease with
a smaller probability, τm < τn, in case of contact with an infectious agent.

Again, we can combine the two HJB equations to obtain one differential equation
in ω ≡ VS − VI ,

ω̇(t) = (r + γ)ω(t)− ψ +min

{
k + α(P )

I(t)

P
τmω(t), α(P )

I(t)

P
τnω(t)

}
. (15)

The measure of infected agents evolves according to the law of motion

İ = Smα(P )
I

P
τm + (S − Sm)α(P )

I

P
τn − γI, (16)

where Sm denotes the measure of susceptible agents who wear a mask. The first term
corresponds to the inflow of previously-susceptible agents who wore masks but still
contracted the virus. The second term corresponds to susceptible agents who did not
wear masks and got infected. The third term corresponds to previously-infected agents
who recovered (and become susceptible again).
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To close the model, we now need to solve for the measure of susceptible agents
wearing a mask. To decide whether to wear a mask, a susceptible agent weighs the
cost, k, against the benefit, α(P ) I

P
ω(τn − τm). We directly get that in aggregate, the

measure of susceptible agents who wear masks, Sm, is given by

Sm


= S <

∈ [0, S] if k = α(P )(τn − τm)Iω/P

= 0. >

(17)

Equilibrium definition An equilibrium consists in a list of time paths for the two
state variables {S(t), I(t)} and the two control variables {Sm(t), ω(t)}, such that (15)
and (16) are satisfied, where Sm is given by (17), S(t) = P − I(t), and I(0) is given.

Steady-states As in the benchmark and participation-based SIS models, an endemic
and a virus-free steady state coexist. The virus-free steady state is such that I∗ = 0,
S∗ = P , Sm = 0 and ω = ψ/(r+ γ). Absent any risk of infection, there is no incentive
for susceptible agents to be wearing masks.

In the endemic steady state, the distribution of infectious and susceptible agents
as well as the prevalence of masks depend on the magnitude of k relative to (τn− τm).
Let k ≡ [α(P )τm − γ](τn − τm)ψ/ {τm(r + γ) + τn[α(P )τm − γ]} and k̄ ≡ [α(P )τn −
γ](τn − τm)ψ/ {τn(r + γ) + τn[α(P )τn − γ]}. There are three cases.
When k ≥ k̄, I∗ = P (1 − 1/σ) ≡ I∗n, S∗ = P/σ, Sm∗

= 0 and w∗ = ψ/[r + α(P )τn].
Intuitively, if the cost of wearing a mask is high enough compared to the benefit, even
the endemic steady state features no mask-wearing. In that case, it is identical to the
endemic steady state from the benchmark SIS model.
When k < k, the endemic steady state is such that I∗ = P{1− γ/[α(P )τm]} ≡ I∗m <

I∗n, S∗ = Pγ/[α(P )τm], Sm∗ = S, and ω∗ = ψ/[r + α(P )τm]. For a low enough k, all
susceptible agents wear a mask in the endemic steady state. Recall that in an endemic
steady state, the effective reproduction number must be equal to one. For the two
steady states just described, it is given by σm

e = α(P )τ jS/(γP ), with j respectively
equal to n and m. Given τm < τn, masks wearing allows the endemic steady state to
occur with a lower proportion of infectious agents in the population.
Finally, when k ∈ (k, k̄), the endemic steady state is given by I∗ = P (r+γ)k/[α(P )(τn−
τm)ψ−τnk] ∈ (I∗m, I∗n), ω∗ = ψ/(r+γ)−kτn/[(r+γ)(τn−τm)]. We can show that I∗ is
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Figure 10: Dynamics of the SIS model with mask-wearing decision, as a function of
the flow cost of wearing a mask, k.

increasing in k, so that S∗ = P−I∗ is decreasing in k, and Sm∗
= (ατnS∗−γ)/(τn−τm)

is decreasing in k as well. The costlier masks, the smaller the prevalence of masks at
steady state, so that a higher proportion of the population must be infected.

Dynamics System dynamics can be analyzed with the help of the phase diagrams
displayed in Figure 10. The left panel represents the case when k < k, the middle panel
the case when k ∈ [k, k̄], and the right panel the case where k > k̄. Each diagram is
split into two zones by the mask-wearing indifference curve, plotted in black and given
by ω = Pk/[(τn − τm)I]. Above this curve, all susceptible agents wear masks. Below,
none do. Along the curve, when I goes to zero, ω goes to infinity. As a result, at the
limit, agents never wear masks because the cost is too high relative to the infrequent
benefit. Then, the reasoning explained in Section 3 applies: as long as the basic
reproduction number is greater than one, the measure of infected agents would always
increase when I is close to zero, making the virus-free steady state unstable. This
result is different than what had been obtained in the participation model. With the
participation margin, it was possible for susceptible agents to coordinate on staying
home even when I got close to zero because of the complementarities between their
individual decisions. Here, there is no such complementarities. A corollary is that
agents do not mask at the very onset of the epidemic either, when I is still low.
Instead, dynamics can be described as follows.

When k is high, starting from a low I(0), the unique equilibrium path is such that
ω(0) jumps onto the saddle path, represented by the black line with arrows, and the
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system remains on that path, with I growing and S going down, until it converges to
the endemic steady state represented by the blue dot. There is no mask-wearing at
any point in time. Thus, equilibrium dynamics are exactly identical to the equilibrium
dynamics from the standard SIS model. When k is in the middle range, agents initially
do not wear masks and the epidemic develops identically to the previous case, up until
reaching the indifference curve. At this point, a measure Sm∗ of the susceptible agents
start wearing a mask and the system is at steady state, represented by the black dot.
When k is low, there is still no mask wearing at the onset of the epidemic, which
initially develops no differently that when k is higher. However, agents eventually
become indifferent between wearing a mask or not and at this point, the system reaches
the saddle path that leads to the mask-wearing steady state (represented by the red
dot). On this saddle path, all agents wear masks. In all three cases, dynamics are
monotone in I, S and Sm.

5.2 SIR model

We now switch to the SIR specification, where infectious agents who recover become
permanently resistant. Very few modifications are required. The HJB for susceptible
agents remains identical to (14). The HJB for infectious agents also remains similar to
that from the SIS model, but the term (VS − VI) becomes (VR − VI). Finally, the HJB
for recovered agents is identical to the one derived for the SIR participation model,
(10), with N = P since resistant agents have no incentives to wear masks. We can
then obtain a differential equation in ω,

ω̇ = rω −min

{
k + α(P )τm

I

P
ω, α(P )τn

I

P
ω

}
− r

ψ

r + γ
. (18)

The law of motion is for I is given by (16), the low of motion for R by (12), and the
aggregate measure of mask wearers by (17).

Equilibrium definition An equilibrium consists in a list of time paths for the three
states variables {I(t), R(t), S(t)} and the two control variables {Sm(t), ω(t)} such that
(18), (16) and (12) are satisfied, where Sm is given by (17), S(t) = P − I(t) − R(t),
R(0) and I(0) are given.
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Steady-states Again, no different than standard SIR models, steady state requires
the economy to be virus-free, I = 0, and any S∗ ∈ [0, P ] and R∗ = P − S∗ constitute
a steady state of the system. We showed earlier that there is no mask-wearing when I
is low, so Sm∗ = 0.

We now calibrate the model in order to study its dynamics.

5.3 Calibration

Most parameters were already present in the model with participation, calibrated in
Section 4.3, and are kept identical. There are two additional parameters to calibrate:
the transmissibility of the virus in a contact where the susceptible agent wears a mask
while the infectious agent does not, τmn, and the cost of wearing a mask, k.

There is no general consensus regarding the efficacy of masks, which significantly
depends on the type of mask as well as the fit of the mask to the wearer. While it is
generally understood that masks are most efficient when they are worn by the source
of the virus (the infectious agents), several studies do suggest that masks also confer a
benefit to the wearer. For example, Li et al. (2020) claim that masks reduce the risk
of infection for the wearer between 40% to 70%. We pick an efficacy of 50%, so that
τmn = 0.5τnn = 0.025.

The cost of mask-wearing is calibrated using a heuristic approach driven by the idea
that mask-wearing is costly because of the physical inconvenience it imposes when going
out and engaging in social interactions—it may be harder to breathe or to communi-
cate, for example. We then assume that k is proportional to the utility received from
meetings. More specifically, k(N) = xαNỹ/100, i.e., agents suffer a disutility cost
equal to x% of their utility from having to wear a mask. We then pick x ∈ {1, 5, 10},
which corresponds to daily costs of around $1.23, $6.16 and $12.33 when participation
is full (averaging ten meetings per person per day). Those three values will be referred
to as low, medium, and high k thereafter.

5.4 Results and discussion

I now describe some key equilibrium results. More detailed results are available in
Table 3 in Appendix A. Contrary to the model with participation, there are no com-
plementarities between the mask-wearing decisions of agents, and the equilibrium is
unique.
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Figure 11: Equilibrium paths of the SIR model with mask-wearing decision, represented
in a phase plane. Left panel - Paths for the three levels of the mask-wearing cost: low
k in blue, medium k in green, and high k in red. The path with no mask-wearing
decision, in dashed black, is provided for comparison. Right panel - Magnified view of
the bottom-right of the graph displayed in the left panel.

The relationship between I and S is plotted in the phase planes displayed in Figure
11, for the three levels of k considered. The left panel shows the full graph, so that the
equilibrium paths can easily be compared with the equilibrium path obtained absent
the mask-wearing decision. We first notice that the paths do not differ much across
the three levels of k, and are difficult to distinguish one from another. While the
shape of the curve is roughly similar to that followed by the benchmark curve—it
first goes up then goes down with a slightly flatter slope, it is much flatter, from the
very beginning. As a result, the number of infected individuals is always lower (never
breaking past 12%), the peak of the epidemic is reached for a lower S, and in the
long-run, a considerably smaller number of individuals are infected.

One interesting feature to notice is that as I gets close to 0, the curve becomes
significantly flatter until it reaches the steady state. This certainly corresponds to a
shift back to no mask-wearing, which can be confirmed with the time plots. The right
panel is a magnified view of the left panel, zooming in on the bottom-right corner. It is
now easier to distinguish the three equilibrium paths. As expected, the lower the cost,
the lower the peak of infections, and the lower the number of cumulative infections in
the long run. More precisely, once at steady state, 72.51% of the population has been
infected when k is low, 73.87% when k is in the middle, and 74.90% when k is high.
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Figure 12: Time paths of epidemiological measures for the SIR model with mask-
wearing, for the three levels of the mask-wearing cost: low k in blue, medium k in
green, and high k in red. Note that 3 months lapse between each tick and label on the
x-axis.

Recall that absent any behavioral response, 96.63% of the population gets infected,
while in the equilibrium with participation, between 78.15% and 79.30% were.

We can now look at the dynamics of the epidemic on the four panels of Figure
12. From the top-right panel, we can see that not only is the infection curve flattened
when we allow for mask-wearing, but it is also delayed. The lower the cost of wearing
a mask, the greater the delay. In the benchmark scenario, the epidemic peaks around
mid-April. With high k, it peaks around the beginning of May, while with low k it
peaks around the end of May.

All of those differences can be explained by the time paths for the share of suscep-
tible individuals who wear a mask, displayed in the bottom left panel. Mask-wearing
does not occur in equilibrium either at the very beginning or the very end of the epi-
demic, when I is low and the chance of infection is too low to warrant bearing the
cost of mask-wearing. As I goes up, it eventually becomes rational to wear a mask
and as expected, this occurs first when k is low. At this point, susceptible individuals
sharply go from no mask-wearing to full mask-wearing, in the matter of less than two
weeks. This occurs in the second half of March 2020. All susceptible individuals then
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Figure 13: Time paths of expected number of fatalities and cumulative welfare losses
for the SIR model with mask-wearing, for the three levels of the mask-wearing cost:
low k in blue, medium k in green, and high k in red. Total welfare losses correspond
to the discounted cumulative sum of sickness costs borne by infected agents and the
mask-wearing costs borne by susceptible agents. Note that 3 months lapse between
each tick and label.

keep wearing their mask until I is back to being low enough, again in a relatively quick
fashion. This occurs at the end of July for the high k, during the first half of August
for the medium k, and at the beginning of September for the low k.

We can now turn to the long-term impact for society and look at the expected
number of fatalities as well as the welfare cost of the epidemic in the long-run. Those
are represented in Figure 13. Because the number of total infections is relatively similar
across all calibrations for k, the expected number of fatalities is relatively constant as
well. We can see on the left panel that this number is around 1.5 million. Not only is it
considerably smaller than the expected number of fatalities in the no-response scenario
(approximately 2 million), it is also smaller than the expected number of fatalities in
the model with the participation margin (approximately 1.6 million).

The right panel displays the discounted cumulative welfare losses. Those include
the sickness costs borne by infected agents, and the mask-wearing costs borne by sus-
ceptible agents. While in the participation decision model, the welfare gains obtained
thanks to the drop in infections and fatalities due to susceptible agents staying home
were more than offset by the cost of foregone economic and social activity, the con-
clusion is much rosier here. Compared to the benchmark model, the economy goes
from a cumulative loss of 7.6 trillion dollars in the benchmark case to between 5.7 and
6.1 trillion dollars when masks are introduced. Notably, the lower the cost of masks,
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Figure 14: Time paths of epidemiological measures for the SIR model with mask-
wearing and participation, assuming a medium cost for mask-wearing and coordination
on participating (x=1). Note that 3 months lapse between each tick and label on the
x-axis.

the smaller the welfare loss, even though the losses due to the costs of wearing masks
are negligible compared to the losses due to the costs of sickness (between 0.62% to
3.65%).

5.5 The relation between masks and participation

The possibility for agents to opt out of the market and stay home is now reintroduced
in addition to the option to wear a mask, which revives the multiplicity of equilibria.
As an illustration, I focus on equilibria where susceptible agents always coordinate
on participating when multiple Nash equilibria exist (x = 1). The cost of masks is
calibrated to the intermediate value.

The time paths for epidemiological outcomes are represented in Figure 14. The
middle panel displays the infection curve. The equilibrium path with both the mask
and the participation margins is displayed in blue, and can be compared with the paths
obtained when considering only masks (in red) or only participation (in green). We
first notice that the infection curve is in between the two other curves. At its peak,
active cases represent around 6.5% of the population, which is significantly lower than
for the mask-only case, but a bit higher than the participation-only case. From the
right panel, we can see that in the long run, the cumulative measure of agents that has
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Figure 15: Time paths of participation and mask-wearing responses for the SIR model
with mask-wearing and participation, assuming a medium cost for mask-wearing and
coordination on participating (x=1). Note that 3 months lapse between each tick and
label on the x-axis.

been infected is very similar when considering the two margins as when considering
masks only, even though in the short run, the curve is steeper when only considering
masks.

Figure 15 provides some additional insights. The left panel represents the share
of susceptible agents who participate. As expected, adding the mask margin dampens
the reaction along the participation margin. Susceptible agents start to reduce their
participation approximately two to three weeks later, and go back to full participation
more than a month earlier. Additionally, the level of participation does not drop as
much. At its lowest, it reaches around 67% of full participation, compared to 30%
without the mask margin.

The right panel represents the share of participating susceptible agents who wear
a mask, contrasting the equilibrium path when only the mask margin is active to
that when the two margins are active. While the two paths originally overlap, they
start to diverge just before August. At this point, susceptible agents entirely stop
wearing masks when this is the only margin considered. On the other hand, when
participation is also considered, mask-wearing continues at 100% for a few additional
weeks, then declines steadily, but slowly, only reaching 0% around February of 2022. A
key takeaway is that, maybe surprisingly, adding the participation margin reinforces the
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mask response. The intuition is that the mask margin is only effective for participating
agents. If fewer agents participate, for a given share of mask wearers, infections are
not as frequent, and immunity builds more slowly. In response, it becomes rational to
keep wearing masks for a long time, as the number of active cases slowly vanishes.

6 Conclusion
This paper contrasted the impact of two response margins usually absent from epidemi-
ological models of virus transmission—participation and mask-wearing—on infection
dynamics and long-run outcomes in an economy where individuals gain utility from
person-to-person social contacts. Rational agents and their decision making are em-
bedded into a typical model of disease transmission in a micro-founded fashion, making
use of search-and-matching methods to model interactions at a granular level.

When considering whether to participate in the matching process, individuals must
weigh the risk of infection in each interaction with the benefits from that interaction.
The more susceptible peers participate, the less risky the pool of participants, the
smaller the risk of infection in a given interaction, and thus the higher the incentives for
other susceptible agents to participate. These complementarities generate a continuum
of equilibria and a rich set of dynamics, e.g. there can be multiple waves of infections,
even absent any policy intervention. Another implication of the complementarities is
that equilibria feature adverse selection, whereby susceptible agents leave the market
while infectious agents stay, which comes at a very large welfare cost in the calibrated
version of the model.

Predictions are markedly different when allowing agents to take precautions rather
than to withdraw from the market. The equilibrium is unique, and infection dynamics
are single-peaked. Mask-wearing being very efficient relative to its cost, both the
human toll and welfare outcomes are considerably better under this specification than
under the participation specification.

When both margins are considered simultaneously, a notable interplay arises. On
one hand, the option to wear a mask reduces incentives to stay home, and dampens
the drop in participation compared to a model with only a participation margin. On
the other hand, the option to stay home makes the adoption of masks last longer, as a
reduction in participation means that fewer people get exposed to the virus, and herd
immunity builds more slowly.
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There are many interesting avenues for further research. One could explore the
impact of different policies on behaviors, in particular when taking the two response
margins into consideration. For example, could a mask mandate lead to undesirable
outcomes by increasing the participation of agents? Another path would be to expand
the model to multiple regions, e.g., with different densities, so as to investigate cross-
regional contagion dynamics and policies such as border closures.
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Appendix A - Results tables

R∗/P (%) Deaths (M) Max I/P (%) Peak date Min Sp/S (%) End date
Benchmark

96.63 1.9665 35.73 12-Apr-20 - 11-Sep-20
x Probability-based rule
0 78.15 1.5903 1.66 21-Feb-25 0.00 23-Jan-27

0.1 78.15 1.5904 1.65 8-Dec-24 9.83 13-Nov-26
0.2 78.15 1.5904 1.64 18-Aug-24 19.24 24-Jul-26
0.3 78.15 1.5903 1.57 7-Jul-23 29.34 19-Jun-25
0.4 78.15 1.5903 3.70 27-Dec-20 38.77 18-Nov-22
0.5 78.14 1.5903 5.44 31-Jul-20 34.87 2-Jun-22
0.6 78.14 1.5903 5.70 7-Jun-20 32.91 30-Mar-22
0.7 78.14 1.5903 5.88 9-May-20 31.77 21-Feb-22
0.8 78.15 1.5903 5.97 22-Apr-20 31.37 29-Jan-22
0.9 78.37 1.5948 6.14 10-Apr-20 30.86 28-Dec-21

1 79.39 1.6157 6.53 2-Apr-20 30.40 22-Oct-21
T Fatigue rule (months)
1 79.39 1.6157 6.53 16-Apr-20 0 5-Nov-21
5 79.39 1.6157 6.50 11-Aug-20 0 2-Mar-22

10 79.39 1.6157 6.51 4-Jan-21 0 26-Jul-22
15 79.39 1.6157 6.52 30-May-21 0 19-Dec-22
20 79.4 1.6158 6.50 24-Oct-21 0 15-May-23
25 79.39 1.6156 6.50 20-Mar-22 0 9-Oct-23
29 79.39 1.6158 6.44 16-Jul-22 0 3-Feb-24
30 79.40 1.6158 1.73 16-Feb-22 0 22-Oct-23
31 79.04 1.6085 1.72 22-Feb-22 0 26-Nov-23
32 78.49 1.5974 1.68 11-Mar-22 0 17-Jan-24
33 78.15 1.5904 1.66 19-Mar-22 0 20-Feb-24
34 78.15 1.5904 1.66 19-Mar-22 0 20-Feb-24
35 78.15 1.5904 1.66 19-Mar-22 0 20-Feb-24
36 78.15 1.5904 1.66 19-Mar-22 0 20-Feb-24
A Active-cases rule (% of P)

0.1 78.33 1.5942 1.67 - 17.10 30-Jun-22
0.2 79.39 1.6156 2.03 - 13.97 2-Jan-22
0.3 79.39 1.6157 3.04 - 9.22 3-Nov-21
0.4 79.39 1.6157 4.05 - 6.88 12-Oct-21
0.5 79.39 1.6156 5.06 - 5.53 3-Oct-21
0.6 79.39 1.6157 6.08 - 4.60 30-Sep-21

Table 2: Full set of results for the calibrated SIR model with participation. Peak date
corresponds to the date when the highest I/P is reached. End date corresponds to the
date when I < 1.
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R∗/P (%) Deaths (M) Max I/P (%) Peak date Max Sm/S (%) End date
Low k 72.51 1.4757 10.92 21-May 100 9-Feb-27
Mid k 73.87 1.5033 11.06 9-May 100 5-Oct-23
High k 74.90 1.5243 11.25 4-May 100 15-Nov-22

Table 3: Full set of results for the calibrated SIR model with mask-wearing. Peak date
corresponds to the date when the highest I/P is reached. End date corresponds to the
date when I < 1.

Appendix B - Alternative calibrations
Farboodi et al. (2020) and Bethune and Korinek (2020) Farboodi et al.
(2020), Bethune and Korinek (2020), and the present paper use different approaches
to calibrate the timeline of the model as well as ατ .

To match the timeline of the model to the real world, Farboodi et al. (2020) set
time t = 0 to March 13th, 2020. This corresponds to the date when the authors
first observe social distancing in the US, from which they infer that it corresponds
to the date when the population became aware of the virus. They then make use of
the fact that by then, 51 fatalities had been reported, in order to derive the implied
distribution of S, I and R at time 0. In comparison, the present paper’s timeline would
imply 51 fatalities by March 10th absent any reaction along the participation margin.
Therefore, under the assumption that the population did not react until March 13th,
the two calibrations are very close.

However, because being aware of the virus before reacting through social distancing
turns out to be consistent with equilibrium behavior in my model, the approach followed
by Farboodi et al. (2020) may not be the most appropriate. Additionally, there is
some evidence supporting that the US population may have gained awareness of the
virus earlier than March 13th. On January 20th, the Center for Disease Control and
Prevention (CDC) announced that three airports would start screening for COVID-19.
The next day, it confirmed the first case in Washington state. On January 31st, the
World Health Organization (WHO) declared a global public health emergency, and
the US declared a public health emergency on February 3rd. Correspondingly, the
Google Trend tools show that searches for the term “coronavirus” experienced a first
significant uptick during the last week of January.

As for Bethune et al. (2020), they calibrate their timeline by fitting time 0 to
mid-May, assuming that by that time, 0.3% of the population was infected. This is
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considerably different from the calibrations in this paper and in Farboodi et al. For
comparison, with my calibration and when agents coordinate on participating (x = 1),
0.3% of the population would be infected by March 24, implying a discrepancy of more
than one month at the minimum.

Table 4 shows the results obtained when using the timing from Farboodi et al.
(2020), denoted FSJ, compared to the timing used in this paper, denoted L. By con-
struction, outcomes with the benchmark model are exactly identical. Surprisingly,
outcomes for the participation model with x = 1 and for the mask model are also
identical (up to numerical errors). This is because in those two cases, there is actu-
ally no reaction from individuals, on either margin, before March 13th. Thus, even
if my calibration allows for agents to react, while Farboodi et al. (2020) do not, the
equilibrium paths remain identical. Results are a bit different for the case with x = 0,
where agents react from the very beginning (February 15th), if allowed to do so. Then,
the timeline of the epidemic differs noticeably. In particular, it is much shorter in the
Farboodi et al. setup, which is intuitive since a higher number of people is infected
earlier on.

Benchmark Participation Masks
x = 1 x = 0 Mid k

L FJS L FJS L FJS L FJS
R∗/P (%) 96.63 96.63 79.39 79.39 78.15 78.15 73.87 73.87
Deaths (M) 1.9665 1.9665 1.6157 1.6157 1.5903 1.5904 1.5033 1.5033
Max I/P (%) 35.73 35.73 6.53 6.52 1.66 1.66 11.06 11.05
Peak date 12-Apr-20 12-Apr-20 2-Apr-20 2-Apr-20 21-Feb-25 22-Sep-21 9-May-20 9-May-20
Min Sp/S (%) - - 30.40 30.40 0 0 100 100
End date 11-Sep-20 11-Sep-20 22-Oct-21 22-Oct-21 23-Jan-27 28-Aug-23 5-Oct-23 5-Oct-23

Table 4: Robustness of results to alternative timeline, used in Farboodi et al. (2020).
Peak date corresponds to the date when the highest I/P is reached. End date corre-
sponds to the date when I < 1.

Second, the present paper is, to the best of my knowledge, the first paper in the eco-
nomic literature related to COVID-19 to use a micro-founded approach to calibrating
the matching rate of individuals (αP ) and the transmissibility of the virus (τ). Most of
the literature estimates those two parameters jointly to match the contagion dynamics
observed at the beginning of the epidemic (under the assumption that at that time,
behavioral responses had not yet kicked in). Farboodi et al. (2020) target the growth
rate of infections by the beginning of the epidemic, which they estimate to 30%. Noting
that İ(0)/I(0) = ατS(0)− γ, we can then easily solve for ατ = [İ(0)/I(0) + γ]/S(0).
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In comparison, this paper’s calibration yields a growth rate of the measure of infected
agents of 35.7% by March 13th, assuming no behavioral response until then. Bethune
and Korinek (2020) target a basic reproduction number, σ, of 2.5. Since σ = αPτ/γ,
this again allows to easily solve for ατ = σγ/P . The calibration used in the present
paper implies a basic reproduction number of 3.5, while that used in Farboodi et al.
(2020) implies a basic reproduction number of 3.1. All of those numbers are consistent
with the range of reproduction number estimated by epidemiological studies, from 1.5
to 7 (see Liu et al., 2020, for example).

Baseline utility In the calibration presented in 4.3, it is assumed that social contacts
are the only source of income/utility, since αP ỹ is calibrated to match the median
yearly consumption in the US. This assumption may result in overstating the cost of
staying home and forgoing social activities if some amount of income/utility can be
gained without requiring to go out or to come into contact with other people. We now
relax this assumption.

Denote yh the baseline flow utility from consumption enjoyed by individuals regard-
less or whether they are at home or engaging in social interactions, and Y = αP ỹ+ yh

the total flow utility of an individual in a world with no virus (ensuring full partic-
ipation from all individuals). We can now normalize Y to 1 and vary the share of
consumption coming from social engagement, αP ỹ/Y , by varying ỹ.

The table below presents the results obtained when solving for the equilibrium path
with the participation margin active, imposing x = 1 (susceptible agents coordinate
on participating whenever possible), for ỹ ∈ {0.7, 0.8, 0.9, 1}. The specification with
ỹ = 1 corresponds to the specification assumed in the main text.

ỹ

0.7 0.8 0.9 1
R∗/P (%) 78.04 78.51 78.97 79.39
Deaths (M) 1.5882 1.5978 1.6070 1.6157
Max I/P (%) 4.28 5.01 5.75 6.52
Peak date 31-Mar-20 01-Apr-20 01-Apr-20 02-Apr-20
Min Sp/S (%) 29.99 29.99 30.40 30.40
End date 25-Mar-22 21-Jan-22 02-Dec-21 22-Oct-21
Welfare cost ($T) 8.3471 8.3404 8.3325 8.3241

Table 5: Robustness of results to varying the share of total utility requiring social
contacts. Peak date corresponds to the date when the highest I/P is reached. End
date corresponds to the date when I < 1.
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Varying the share of total consumption that requires interpersonal has little impact
on the cumulative measure of agents infected by the virus in the long run.

In the short run, it does impact participation: a lower ỹ makes the benefit of going
out smaller relative to the risk of infection. As a result, the lower ỹ, the bigger the
reaction of susceptible agents, the lower the peak of the infection curve, and the longer
the epidemic lasts.

The impact on welfare of varying the magnitude of ỹ results from two different
forces. A lower ỹ directly implies that a drop in social activities is not as costly. But
we saw that a lower ỹ encourages a comparatively larger reduction in activity, which
indirectly could increase the welfare cost. The last line of table 5 shows that the indirect
effect dominates—the welfare cost is slightly lower when ỹ is higher.

Appendix C - Numerical algorithm for the SIR model
with participation
In this section, I describe the algorithm used to solve the SIR model with participation.
First, the model was discretized. The laws of motion for the measure of infected and
recovered agents are given by

It+1 = [1− γ + ατ(P −Rt − It)] It (19)

and
Rt+1 = Rt + γIt. (20)

The difference between the lifetime discounted utility of a susceptible agent and that
of an infectious agent is given by

ωt = −α(Sp
t + It +Rt)min

{
ỹ, τ

It
Sp
t + It +Rt

βωt+1

}
+ (1− β)ω∗ + βωt+1, (21)
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where β ≡ 1/(1 + r) and ω∗ ≡ ψ/ (1− β + βγ). Finally, the decision for a susceptible
agent to participate or to stay home is governed by

aj,t


= 0 <

∈ [0, 1] if ỹ = τ It
Sp
t +It+Rt

βωt+1.

= 1 >

(22)

The model is then solved forward, following these steps:
(1) Set I0, R0 and S0 to their calibrated values, and pick a guess for ω0.
(2) Making use of (21), compute ω1(S

p
0) for Sp

0 = S0 and Sp
0 = 0, so as to determine

whether we are in the multiplicity region or one of the two dominance regions. If
ỹ < τ(I0/P )βω1(S

p
0 = S0), the unique Nash equilibrium is such that Sp

0 = 0. If
ỹ > τ [I0/(I0 + R0)]βω1(S

p
0 = 0), the unique Nash equilibrium is such that Sp

0 =

S0. Otherwise, we are in the multiplicity region, and Sp
0 is determined by one of the

following coordination rules, chosen ex-ante and used for the whole algorithm:

• Always participate: Sp
0 = S0

• Never participate: Sp
0 = 0

• Participation with probability x: draw d from a uniform distribution bounded by
0 and 1. If d ≤ x, Sp

0 = S0, otherwise Sp
0 = 0

• Fatigue rule: for a given T , if time 0 is less than T, Sp
0 = 0, otherwise Sp

0 = S0

• Active cases rule: for a given A, if I0 < A, then Sp
0 = S0, otherwise Sp

0 = 0

(3) Record the corresponding I1, R1, S1 and ω1.
(4) Iterate over steps (2) and (3) to obtain ω2, ω3, .... up to ωM , where M is set to a
very large number.
(5) Let ϵ be an arbitrarily small number. If |ωM−ω∗| < ϵ, the algorithm has converged.
If ωM − ω∗ > ϵ > 0, go back to step (1), with a lower initial guess for ω0. Otherwise,
go back to step (1), with a higher initial guess for ω0.
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