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Abstract

A popular validation procedure for DSGE models consists in comparing the structural
shocks and impulse-response functions obtained by estimation-calibration of the DSGE
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augmented with measurement errors. The paper argues that this practice can be seriously
misleading. For generic values of the parameters of the DSGE, the shocks estimated in
the VAR are not “made of” the corresponding structural shocks plus measurement error.
Rather, each of the VAR shocks is contaminated by non-corresponding structural shocks.
We argue that Large-Dimensional Dynamic Factor Models are free from this drawback
and are the natural model to use in validation procedures for DSGEs.
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1 Introduction

The present paper argues against the use of SVARs for validation of Dynamic Stochastic
General Equilibrium (DSGE) models. We show that this practice can be seriously misleading.
For generic values of the parameters of the DSGE, the shocks estimated in the SVAR are not
“made of” the corresponding structural shocks plus measurement error. Rather, each of the
VAR shocks is contaminated by non-corresponding structural shocks. We argue that Large-
Dimensional Dynamic Factor Models (DFM) are free from this drawback and are the natural
model to use in validation procedures for DSGEs.

Our negative argument, regarding VAR models, can be illustrated as follows. Let the
DSGE consist of only one variable yt, one unit-variance shock ut and the equation

yt = (2.5 + 1.2L)vt, (1)

and suppose that yt is measured with an error ηt, which is a white noise process with σ2η = 2.31,
orthogonal to the white noise vt at all leads and lags, so that we observe

xt = (2.5 + 1.2L)vt + ηt. (2)

Elementary time-series theory shows that

xt = (3 + L)Vt, (3)

where Vt is a unit-variance white noise. Now, what is Vt ? For example, if yt is the rate of
change of productivity and vt the technology shock, can we say that Vt is just vt+eηt for some
e , so that we can can claim that, after all, Vt is the technology shock with a measurement
error? The answer is an emphatic no. From (2) and (3) we obtain

Vt =
2.5 + 1.2L

3 + L
vt +

1

3 + L
ηt. (4)

Thus Vt is a moving average including all past values of vt and ηt, not a combination of their
current values only.

The situation is much worse in multivariate DSGEs. For example, suppose that the DSGE
contains m ≥ 2 variables and two shocks, a demand shock v1t and a supply shock v2t, and
that the variables are observed with measurement errors. Then the shock V1t, the one that
has been indentified in the VAR as the “demand shock”, the identification restriction being
one of those holding in the DSGE model, is dynamically contaminated, like in (4), not only
by the measurement errors, but by the supply shock also.

Our positive argument is that none of these phenomena occur in a Large-Dimensional
Dynamic Factor Model (DFM). We argue that (i) the variables of a DSGE model (free of
the measurement error) can be estimated by a DFM, (ii) the DSGE structural shocks and
impulse-response functions can be identified in the DFM using some of the DSGE restrictions.
Thus the DFM shocks and impulse-response functions are a natural tool for validation of
DSGEs. Moreover, the vector of the common components is singular, like the vector of the
variables in a DSGE, so that neither model has to tackle the fundamentalness problem.

In Section 2 we briefly review DSGE models and their VARMA representation, singularity
(more variables than shocks) as a general feature of DSGE models, measurement errors as the
natural way to reconcile singularity of the model with observed variables, validation by means
of VARs.
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In Section 3 we study in detail the contamination effects outlined above. We show that con-
tamination occurs for generic values of the parameters of the the DSGE model. We also show
that non-fundamentalness in a block of the DSGE variables can be a source of contamination.

In Section 4 we give a short presentation of DFMs and develop our thesis that VAR models
should be replaced by DFMs in DSGE validation. Section 5 concludes.

Although our topic here is quite far from Benedikt Pötscher’s works on the consequences of
data-driven model selection on subsequent inference, the present contribution is very close in
spirit to his insistence on rigorous analysis in order to distinguish between “facts and fiction”.

2 DSGE models

Let us start with the log-linearized solution of a DSGE model. The variables of interest are
gathered in an m-dimensional vector

yt = (y1t y2t · · · ymt).

Well-known facts about yt are the following:
(1) The vector yt evolves according to a VARMA equation (see e.g. Hannan and Deistler
(1988), Fernández-Villaverde et al. (2007), Morris (2016)):

C(L)yt = D(L)vt, (5)

where C(L) is a stable m × m polynomial matrix in the lag operator L, D(L) is a m × p
polynomial matrix, vt is a p-dimensional orthonormal white noise, the shocks driving the
system. The underlying economic theory implies restrictions on the polynomials C(L) and
D(L) and therefore on the impulse-response functions C(L)−1D(L).
(2) The parameters of a DSGE model, i.e. the coefficients of the entries of C(L) and D(L),
are determined by calibration, ML estimation or a mixture of the two techniques.
(3) It is also well known that DSGE models are “misspecified in the sense that they are, in
general, too simple to capture the complex probabilistic nature of the data”, Canova (2007),
p. 160. Nevertheless, the impulse-response functions and the shocks resulting from their
estimation-calibration can be compared with those obtained from a Structural VAR (SVAR),
which uses the covariance-structure of the actual data and is identified by some of the DSGE
restrictions. This comparison, validation by VARs, can be used to modify the DSGE if a mild
difference emerges between the SVAR impulse-response functions and those predicted by the
theory, or to reject the DSGE model if such difference is dramatic.
(4) Lastly, a general feature of DSGE models is that p < m, i.e. the vector yt is dynamically
singular, see e.g. Sargent (1989), Canova (2007), pp. 230-2. Assuming stationarity for yt, this
is equivalent to the singularity of the spectral density of yt at all the frequencies θ ∈ [−π, π].
Of course the actual data for the variables yt do not exhibit dynamic singularity. However, if
it is assumed that observed data contain measurement errors, the singularity in the model is
no longer inconsistent with the observed data (see e.g. Sargent (1989)).

Let us denote by ηηηt the m-dimensional vector representing the measurement errors. We
assume that the measurement errors are additive, so that the observed variables, denoted by
xt, are obtained as follows:

xt = yt + ηηηt =
D(L)

C(L)
vt + ηηηt = B(L)ut + ηηηt, (6)
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that is
C(L)xt = D(L)vt + C(L)ηηηt. (7)

Standard assumptions are:
Assumption 1. The variables vht and ηkτ are orthogonal for all h = 1, 2, . . . , p, k =
1, 2, . . . ,m, t ∈ Z, τ ∈ Z.
Assumption 2. The vector ηηηt is white noise with a non-singular variance-covariance matrix.

Note that vt is orthonormal white noise, the usual assumption on the structural shocks,
whereas we only assume that the second moments of the variables ηht are positive.

3 Validation by means of a VAR model

We discuss validation of a DSGE model by means of a VAR by using a very simple specification
for C(L) and D(L), namely that C(L) = I and that D(L) = B(L) is a moving average of
order one:

B(L) = B0 + B1L ,

so that the DSGE model is yt = B(L)vt and

xt = B(L)vt + ηηηt = (B0 + B1L)vt + ηηηt. (8)

Under Assumptions 1 and 2, xt has an MA(1) representation

xt = A(L)Vt = (A0 + A1L)Vt, (9)

where (i) Vt is an orthonormal m-dimensional white noise, (ii) det [A(L)] has no roots inside
the unit circle. Under (i) and (ii), the orthonormal white noise Vt and the matrix A(L) are
identified up to multiplication by an orthogonal matrix. For these statements see Appendix
(III), (a) and (b).

Condition (ii) implies that representation (9) fulfills the definition of fundamentalness,
namely that Vt lies in the space spanned by current and past values of xt. We also say that
Vt is fundamental for xt. Also, it will be useful to observe that for m = 2, under (i) and (ii),
assuming that a12(0) = 0, where a12(L) is the (1, 2) entry of A(L), identifies A(L) up to a
change of sign in the first column, the second column or both.

Non-singularity of ηηηt and orthogonality of ηηηt to vτ for all t and τ imply more that (ii),
namely that detA(L) has no roots inside or on the unit circle, see again Appendix (III), (a).
As a consequence, xt has the (infinite) VAR representation

A(L)−1(L)xt = Vt.

Equating the right hand sides of (8) and (9), and denoting by Aad(L) the adjoint matrix
of A(L), we have

det[A(L)]Vt = Aad(L)B(L)vt + A(L)adηηηt. (10)

We assume that some of the theory-based restrictions of the DSGE take the form of zeros
in the matrix B0. Such restrictions are used to identify the VAR model in the validation
procedure, so that a correspondence is established between the structural shocks and the
VAR shocks. For example, if the shock v2t is the supply shock and the entry (1, 2) in B0 is
zero, the “supply shock” in the VAR is identified by imposing that the same entry in A0 is
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zero. We might expect that the VAR supply shock is “made of” the structural supply shock
and the measurement error. We show that things are worse. The VAR supply shock is also
contaminated by the other structural shocks.

The contamination problem is discussed using only population entities and their moving
average representations. Note that in this context the VAR equation for xt is not really needed.
Representations (8) and (9), and the resulting (10) are sufficient to study the relationship
between Vt, vt and ηηηt. Of course in empirical situations an approximation of the matrix A(L)
will be obtained by inverting the estimated VAR.

Lastly, the examples of shock contamination given below are sufficient to make the main
point of the present paper. Contamination of the impulse-response functions can be studied
by the same methods, with the same results, see part (II) of the Appendix.

3.1 VAR dimension and number of structural shocks are equal

Assume that m = p = 2, so that the vector (y1t y2t)
′ in the DSGE is not singular. This case is

not very interesting per se but its results are used in the sequel, see part (I) in the Appendix,
which is used in Section 3.2, and Section 3.3.

To fix ideas, the shocks v1t and v2t are a demand and a supply shock respectively. Moreover,
the supply shock v2t has no contemporaneous effect of the first variable, so that we write
b12(L) = f12L. Equating the right-hand sides of (8) and (9), we have in this case:(

x1t
x2t

)
=

(
b11(L) f12L
b21(L) b22(L)

)(
v1t
v2t

)
+

(
η1t
η2t

)
=

(
a11(L) g12L
a21(L) a22(L)

)(
V1t
V2t

)
, (11)

where the matrix A(L) has been identified such that V2t can be labeled as the VAR supply
shock. Equation (10) takes the form:

det[A(L)]

(
V1t
V2t

)
=

(
a22(L) −g12L
−a21(L) a11(L)

)(
b11(L) f12L
b21(L) b22(L)

)(
v1t
v2t

)
+

(
ε1t
ε2t

)
,

where εεεt = Aad(L)ηηηt.
The conditions for non-contamination of V1t by v2t and of V2t by v1t are

a22(L)f12L− b22(L)g12L = 0

a21(L)b11(L)− a11(L)b21(L) = 0,

that is
a21(L)

b21(L)
=
a11(L)

b11(L)
= α(L),

g12
f12

=
a22(L)

b22(L)
= β(L). (12)

Note that β(L) is a constant. Thus:(
a11(L) Lg12
a21(L) a22(L)

)
=

(
α(L)b11(L) β(L)f12L
α(L)b21(L) β(L)b22(L)

)
. (13)

From (11) and (13) we obtain(
b11(L) f12L
b21(L) b22(L)

)(
v1t
v2t

)
+

(
η1t
η2t

)
=

(
α(L)b11(L) β(L)f12L
α(L)b21(L) β(L)b22(L)

)(
V1t
V2t

)
.
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Equating the spectral densities,(
|b11(z)|2 + |f12|2 b11(z)b21(z̄) + zf12b22(z̄)

b11(z̄)b21(z) + z̄f12b22(z) |b21(z)|2 + |b22(z)|2
)

+

(
σ21 0
0 σ22

)
=

(
|α(z)|2|b11(z)|2 + |β(z)|2|f12|2 |α(z)|2b11(z)b21(z̄) + z|β(z)|2f12b22(z̄)

|α(z)|2b11(z̄)b21(z) + z̄|β(z)|2f12b22(z) |α(z)|2|b21(z)|2 + |β(z)|2b22(z)|2
)
,

where z = e−iθ, θ ∈ [−π, π], α̃(z) = |α(z)|2 − 1, β̃(z) = |β(z)|2 − 1, σ2h is the second moment
of ηht. Equating entries: |b11(z)|2 |f12|2

|b21(z)|2 |b22(z)|2
b11(z)b21(z̄) zf12b22(z̄)

(α̃(x)

β̃(z)

)
=

σ21σ22
0

 (14)

(the fourth equation is just the conjugate of the third and is therefore omitted). The linear
system (14), in the unknowns α̃(z) and β̃(z) has a solution only if the 3×2 matrix on the-right
hand side of (14), call it M(z), has the same rank as the matrix

N(z) =

 |b11(z)|2 |f12|2 σ21
|b21(z)|2 |b22(z)|2 σ22

b11(z)b21(z̄) zf12b22(z̄) 0

 .

Now, our DSGE model has nine parameters, the seven coefficients of B(L) plus the two
second moments of ηηηt. Assume that the parameter vector belongs to an open set Π ⊂ R9.
Adding z, which varies on the unit circle C, the matrices M(z) and N(z) are parameterized
on the set Π×C, which is the closure of an open subset of R10. It is very easy to see that the
subset of Π× C where the rank of M(z) equals the rank of N(z) is nowhere dense in Π× C.
Thus generically the system (14) has no solution, that is, generically the supply (demand)
shock of the VAR is contaminated by the demand (supply) shock of the DSGE.

3.2 VAR dimension is greater than number of structural shocks

This is the standard case, in which the vector yt is singular. We have again the demand shock
v1t and the supply shock v2t and augment model (11) with a third variable which loads both
shocks with one period lag:x1tx2t

x3t

 =

 b11(L) f12L
b21(L) b22(L)
f31L f32L

(v1t
v2t

)
+

η1tη2t
η3t


=

 a11(L) g12L a13(L)
a21(L) a22(L) a23(L)
g31L g32L a33(L)

V1tV2t
V3t

 ,

(15)

Again, the restrictions of the DSGE have been reproduced in the VAR model. With three zero
restrictions, the latter is just identified. The DGSE has eighteen parameters: 18 − 3 for the
matrix B(L) plus the 3 second moments of ηηηt. We assume that the parameter vector belongs
to an open subset of R18.
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Define K(L) = Aad(L). Using equation (10), if the shock V1t does not load v2t and the
shock V2t does not load the shock v1t, i.e if there is no contamination, then:

Lk11(L)f12 + k12(L)b22(L) + Lk13(L)f13 = 0

k21(L)b11(L) + k22(L)b21(L) + Lk23(L)f31 = 0.
(16)

In the Appendix, part (I), we sketch a proof that generically equations (16) are not fulfilled
in Π.

3.3 No measurement errors, blocks of variables, non-fundamentalness

An alternative to measurement errors to reconcile the singularity of the DSGE with observed
data consists in selecting blocks of variables so that the number of shocks and the number of
variables are equal, see Canova (2007), p. 232-3.

Assume that ηηηt = 0, so that xt = yt, and that from a DSGE with p = 2 we have selected
the variables y1t and y2t. Assuming that they are modeled like in (11),(

y1t
y2t

)
=

(
b11(L) f12L
b21(L) b22(L)

)(
v1t
v2t

)
=

(
a11(L) g12L
a21(L) a22(L)

)(
V1t
V2t

)
.

Because Vt is fundamental by definition, if vt is fundamental the matrices B(L) and
A(L) are equal up to a change of sign in the first column, the second column or both (see
the observations following the definition of fundamentalness in Section 2). Thus of course
equation (12) is fulfilled and no contamination occurs.

Suppose that vt is non-fundamental, i.e. det[B(L)] has a root of modulus less than unity,
call it z∗, and that equation (12) is fulfilled. Because (i) det[A(L)] has no roots inside the
unit circle, (ii) det[A(L)] = α(L)β(L) det[B(L)], (iii) β(L) is a constant, then α(L) has a pole
at z∗. On the other hand the entries of A(L) have no poles of modulus less than unity so that
both b11(L) and b21(L) have a root at z∗. In conclusion, non-fundamentaleness is allowed for
vt but only in a special form, namely the entries of the first column of B(L) must share a root
of modulus less than unity. From (12) we obtain

α(L) = γ
L− z∗

1− z∗L
.

We have, setting δ = β(L):

yt = A(L)Vt =

γ 1− z∗L
L− z∗ b11(L) δf12L

γ 1− z∗L
L− z∗ b21(L) δb22(L)

(V1t
V2t

)

= B(L)

(
γ 1− z∗L
L− z∗ 0

0 δ

)(
V1t
V2t

)
= B(L)vt.

It easily seen that (
V1t
V2t

)
=

(
γ−1 L− z

∗

1− z∗L 0

0 1

)(
v1t
v2t

)
.

Thus, although no contamination occur in this case, the shock Vt is an infinite moving
average of v1t. On the other hand, if B(L) is non-fundamental and (12) is not fulfilled then
contamination occurs.
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The non-fundamentalness issue for DSGE linearized solutions can be easily described in
general. Let us go back to model (5):

C(L)yt = D(L)vt.

As recalled in Section 2, the vector yt is dynamically singular, i.e. m, the dimension of yt, is
greater than p, the dimension of vt. Singularity of yt implies that generically vt is fundamental
for yt. This important result has been proved in Anderson and Deistler (2008a) and Anderson
and Deistler (2008b). An elementary illustration is the following:

y1t = b1,0vt + b1,1vt−1

y2t = b2,0ut + b2,1vt−1.

Here m = 2 and p = 1. If b1,0b2,1 − b1,1b2,0 6= 0, we obtain

vt =
1

b1,0b2,1 − b1,1b2,0
(b2,1y1t − b1,1y2t),

so that vt lies in the space spanned by current and past values of yt. Thus, apart from he
lower-dimensional subset of R4 where b1,0b2,1 − b1,1b2,0 = 0, the shock vt is fundamental for
the vector yt.

However, fundamentalness of vt for yt does not imply that vt is fundamental for a p-
dimensional block. In the example above, if y1t = vt − 4vt−1 and y2t = vt − 0.5vt−1, vt is
fundamental for yt and for the block containing only y2t, but non-fundamental for the block
containing only y1t.

In conclusion, fundamentalness is not an issue for the whole DSGE model. However,
assuming no measurement errors, if a block of p variables is selected to be used for validation
by means of a VAR, then the block should be carefully analyzed to ascertain if fundamentalness
of the shocks for the block is warranted by the theory.

3.4 No measurement errors, more structural shocks than VAR dimension

As in the previous section, there are no measurement errors: xt = yt. Suppose that the VAR
is misspecified in that its dimension is less than the number of structural shocks. For example,
assume that there are two different demand shocks in the DSGE, v1t and v2t, and one supply
shock v3t, but the block selected for VAR estimation includes only the two variables y1t and
y2t. Thus(

y1t
y2t

)
=

(
b11(L) b12(L) f13L
b21(L) b22(L) b23(L)

)v1tv2t
v3t

 =

(
a11(L) g12L
a21(L) a22(L)

)(
V1t
V2t

)
,

so that:

det[A(L)]

(
V1t
V2t

)
=

(
a22(L) −g12L
−a21(L) a11(L)

)(
b11(L) b12(L) f13L
b21(L) b22(L) b23(L)

)v1tv2t
v3t

 .

The conditions for non-contamination of the supply shock by the demand shocks are:

a21(L)b11(L)− a11(L)b21(L) = 0

a21(L)b12(L)− a11(L)b22(L) = 0,
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that is
b21(L) = γ(L)b11(L), b22(L) = γ(L)b12(L). (17)

Now observe that b11(L)v1t+b12(L)v2t can be represented as b̃(L)ṽt where ṽt is a unit-variance
white noise, so that, if (17) holds,

b11(L)v1t + b12(L)v2t = b̃(L)ṽt

b21(L)v1t + b22(L)v2t = γ(L)b̃(L)ṽt

and the DSGE model has the representation(
y1t
y2t

)(
b̃(L) b13(L)

γ(L)b̃(L) b23(L)

)(
ṽt
v3t

)
,

with only one demand shock and the original supply shock. Thus, if there is a genuine couple
of demand shocks, i.e. condition (17) does not hold, the supply shock V2t gets contaminated
by the demand shocks v1t and v2t.

Lastly, even when (17) is satisfied, the aggregate demand shock ṽt, defined by b̃(L)ṽt =
b11(L)v1t + b12(L)v2t, though depending only on the demand shocks, is a linear combination
of current and past values of them, not only of their current values (see the same observation
for the simple example in the Introduction).

4 Large-Dimensional Dynamic Factor Models

4.1 General definitions

An argument to dismiss the results of the previous section might be that the coefficients of
the matrix A(L) and the shocks Vt are continuous functions of the parameters of the DSGE,
including the second moments of ηηηt. As a consequence, if the measurement errors are small,
then after all the representation xt = A(L)Vt is close to yt = B(L)vt and therefore validation
of the DSGE by means of a VAR is acceptable. This is fairly reasonable.

However, we claim that a DFM is an alternative tool that can be used to clean the vari-
ables xt from the error ηηηt, so obtaining an estimate of yt and that such an estimation is fairly
simple.

To fix ideas let us consider a dataset of macroeconomic time series, call it Xt, which
includes those that are typical of DSGEs, aggregate income, prices, industrial production,
rate of interest, etc. plus sectoral and regional economic indicators. We assume that the
dataset contains a number of variables, call it n, which is large as compared to T , the number
of observations for each time series, so that estimating a VAR is unfeasible. This feature, an
n comparable in size to T , is embodied in definitions and the asymptotic analysis, in which
both T and n tend to infinity (thus Large-Dimensional DFMs). The general form of the DFM
is the following:

xit = χit + ξit

χit = µi1(L)u1t + µi2(L)u2t + · · ·+ µiq(L)uqt,
(18)

for t ∈ Z and n ∈ N, where:
(i) The vector ut = (u1t u2t · · · uqt)′ is an orthonormal white noise, the vector of the common
shocks, also called the dynamic factors.
(ii) The polynomials µij(L) are rational functions of L with no poles inside the unit circle.
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(iii) The variables ξit, called the idiosyncratic components, are zero-mean stationary. Moreover,
they are orthogonal to the common shocks at all leads and lags, i.e. ξit ⊥ ujτ for all t, τ ∈ Z,
i ∈ N. As a consequence they are orthogonal to the variables χit, which are called the common
components.
(iv) Idiosyncratic components for different i’s are weakly correlated. This is an asymptotic
definition whose details are not needed here. It requires, for example, that the mean of the
ξ’s tends to zero as n tends to infinity:

lim
n→∞

E

[
1

n

n∑
i=1

ξit

]2
= 0.

This is obviously true if the ξ’s are mutually orthogonal with an upper bound for the variance,
but is also true if some “local” non-zero covariance among the ξ’s is allowed.
(v) The common shocks are pervasive, i.e. they affect all the variables xit, with possibly a
finite number of exceptions.

For a statement of the assumptions, representation and estimation results, see Forni and
Reichlin (1998), Forni et al. (2000), Forni and Lippi (2001), Stock and Watson (2002b), Stock
and Watson (2002a). In these papers, and in the many others in this literature, it is proved
that the shocks ut and the common components χit can be estimated by taking some averages
over the x’s and letting n and T tend to infinity. The weak correlation property of the ξ’s,
see (iv) above, ensures that in such averages only the common components survive as n tends
to infinity.

The idiosyncratic components are interpreted as a cause of variation of the x’s that are
specific to one or just a few variables, like regional or sectoral shocks, plus measurement errors.
In particular, for the big aggregates like income, consumption, investment, in which all local or
sectoral shocks have been averaged out, the variable ξit can be interpreted as only containing
measurement error.

On the other hand, the common shocks ut, as they are pervasive, see (v) above, are
interpreted as macroeconomic causes of variation.

A common additional assumption in the literature on DFMs is that the space spanned by
the common components χit, for a given t, call it St, has finite dimension r. As a consequence,
St has a finite stationary basis Ft = (F1t F2t · · · Frt)′ such that

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit. (19)

The variables Fjt are called the static factors and (19) the static representation of the DFM.
For example, if q = 1 and

xit = µi,0ut + µi,1ut−1 + ξit,

we set F1t = ut, F2t = ut−1, and the static representation is

xit = λi1F1t + λi2F2t + ξit,

with λi1 = µi,0, λi2 = µi,1. We see that the static representation is obtained by replacing the
dynamics with “artificial” static factors, so that the dynamics of the common components has
been moved into the static factors:(

F1t

F2t

)
=

(
1
L

)
ut, or

(
1 0
−L 1

)(
F1t

F2t

)
=

(
1
0

)
ut. (20)
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The example above is sufficient to motivate the assumption that

r > q, i.e. the number of static factors is greater than the number of dynamic factors,

and therefore that the vector Ft is singular. The moving average representation on the left in
(20) has the generalization

Ft = G(L)ut, (21)

where G(L) is an r× q matrix of rational functions of L, thus a non-square matrix. Anderson
and Deistler, in the papers cited in Section 3.3, show that, for generic values of the coefficients
of the rational functions in G(L), the singular vector Ft has an autoregressive representation

H(L)Ft = G(0)ut, (22)

where H(L) is an r × r stable polynomial matrix of finite degree. This implies of course the
result mentioned in Section 3.3, that representation (21) is generically fundamental.

In conclusion, under the assumption that St has finite dimension r, the DFM can be
represented in the form:

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

H(L)Ft = Rut,
(23)

where H(L) is an r × r stable polynomial matrix of finite degree R is an r × q matrix.
Let us insist that, under the assumptions of singularity for Ft and rationality for the

functions µij(L), Anderson and Deistler results imply fundamentalness of vt and the finite
degree of H(L), so that representation (23) is quite general.

Estimation of model (23) requires three steps.
(I) Firstly the dimensions q and r must be determined. From the vast literature on the topic
we only mention here Bai and Ng (2002), the first paper to provide a criterion for r, consistent
for n and T tending to infinity, and Hallin and Liška (2007) for q.
(II) Once r and q have been specified, the factors Ft and the loadings λij can be estimated
consistently by taking the first r principal components of the observations xit, i = 1, 2, . . . , n,
t = 1, 2, . . . , T .
(III) The estimated factors are used to estimate the non-standard VAR in (23), and therefore
H(L), R and the dynamic factors ut. Estimates of µij(L) are easily obtained. Defining
G(L) = H(L)−1R,

χit = (λi1 λi2 · · · λir)Ft = (λi1 λi2 · · · λir)G(L)ut = (µi1(L) µi2(L) · · · µiq(L))ut,

so that, under the assumption of finite dimension for St, we have obtained an estimate of
model (18).

Lastly, let us point out an important difference beween Large-Dimensional DFMs and
standard Factor Models in which the number of variables is given, the model is estimated by
maximum likelihood and the asymptotic analysis is conducted for T tending to infinity. The
latter require for identification that the idiosyncratic components are mutually orthogonal
whereas in the Large-Dimensional DFM we only need weak correlation, see (iv) above. But
measurement errors in variables belonging to the same group, real variables like income and
consumption for example, might well be correlated in macroeconomic datasets. Thus the
assumption of weak correlations seems more realistic. Estimation by maximum likelihood of a
model of the form (7) has been suggested in Sargent (1989). Giannone et al. (2006) apply this
idea to estimate a simple DSGE under the assumption of orthogonal idiosyncratic components.

11



4.2 Comparing DSGE and DFM

The static representation (19) and the static factors Ft are useful for the estimation of the
DFM. However, if we are interested in structural analysis we must revert to the original
representation (18) and the dynamic factors ut.

Our claim is, as stated above, that if xit is a macroeconomic variable like aggregate income,
investment, consumption, the idiosyncratic component ξit can be interpreted as the measure-
ment error, so that the common component χit is the cleaned version of xit, the variable that
should be considered in structural analysis.

On the other hand, as argued in Stock and Watson (2005) and Forni et al. (2009), iden-
tification techniques applied in SVAR or DSGE analysis can be easily used for identifying
DFMs.

Let us concentrate on the DSGE model. We assume that the common components of
the first m variables of the DFM are the variables of the DSGE: χχχt = yt, where χχχt =
(χ1t χ2t · · · χmt)′. Moreover, to fix ideas, let us assume that p = 2, a demand and a supply
shock, and that the number of shocks in the DFM has been correctly determined, that is
q = 2. Then we have two rational moving average representations for yt:

yt = B(L)vt = µµµ(L)ut,

where µµµ(L) has µij(L) in the (i, j) entry. Both representations are singular, so that generically
both are fundamental. As a consequence, the white noise vectors ut and vt differ for an
orthogonal matrix:

vt = Sut,

where S is a q× q orthogonal matrix (2× 2 in our case), see Appendix (III), (b). If the DSGE
assumes that the shock v2t has no contemporaneous impact on the variable y1t = χ1t, the
matrix S is identified by the condition

µ11(0)s21 + µ12(0)s22 = 0,

see again Section 2. We believe that this elementary example is sufficient to make the point
that no modification is required to apply an identifying restriction from DSGE or SVAR
analysis within a DFM.

Thus DFMs can be used to validate both SVAR and DSGE models:
(i) The criteria for determining the number of shocks in the DFM can be used as a data-driven
evaluation for the dynamic dimension (number of shocks) of SVAR and DSGE models.
(ii) Regarding SVARs, one can be interested in the shape of the impulse-response functions
estimated using the error-free macroeconomic variables χit. Important papers adopting this
approach are Bernanke and Boivin (2003), Bernanke et al. (2005), Boivin et al. (2009). Forni
and Gambetti (2010) use a DFM to study the effect of monetary policy shocks on real exchange
rate and stock prices. They find that in the DFM neither the delayed overshooting puzzle nor
the price puzzle occur.
(iii) The use of DFMs for validation of DSGE models is obvious. The variables yt in equa-
tion (5) are estimated in the DFM. The shocks of the DFM can be identified using some of
the theoretical restrictions of the DSGE. The corresponding impulse-response functions can be
compared with those of the DSGE. None of the contamination problems outlined in Section 3
arises.
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5 Conclusions

The example in the Introduction, equations (2), (3), and (4), warning against the common
misconception that measurement errors have no dramatic effect on the processes governing
observable variables, goes back as far as Granger and Morris (1976). The dynamic contam-
ination effects of measurement errors studied in Section 3 are special cases of the dynamic
contamination effects of aggregation, as analyzed in Forni and Lippi (1997) (incidentally, the
interest of the present writer for DFMs was spurred by the negative results obtained in that
book).

DFMs have been applied extensively for forecasting. However, as we have seen, under
reasonable assumptions they can be used for validation of DSGEs. For this purpose, provided
that the number of dynamic factors is correctly determined, their advantages with respect
to VARs are that neither non-fundamentalness nor contamination of shocks can occur. Al-
though little explored as yet, the application of DFMs to macroeconomic analysis has a sound
theoretical basis and is therefore very promising.
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Appendix

(I) Consider the first of equations (16):

Lk11(L)f12 + k12(L)b22(L) + Lk13(L)f13 = L[a22(L)a33(L)− La23(L)g32]f12

− [a11(L)a33(L)− La13(L)g31]b22(L) + L[La21(L)g32 − La22(L)g31]f13

= ζ0 + ζ1L+ ζ2L
2 + ζ3L

3 = 0.

This condition is equivalent to

ζs = 0, for s = 0, 1, 2, 3. (24)

It is easily seen that ζs is a polynomial function of (i) the coefficients of the entries of B(L),
(ii) the coefficients of the entries of A(L). The method employed in Forni and Lippi (1997),
Chapters 6 and 10, can be easily adapted to show that the coefficients of the entries of A(L)
are analytic functions of the coefficients of the entries of B(L) and the three second moments
of ηηηt (see Forni and Lippi (1997), Section 10.1). Therefore ζs is an analytic function of p ∈ Π.
As a consequence, assuming that Π is open and connected, ζs = 0, for s = 0, 1, 2, 3, holds
either on the whole Π or on a nowhere dense subset (see Forni and Lippi (1997), Section 10.2).
Thus, it is sufficient to find a point in p∗ ∈ Π such that ζs 6= 0, for some s, to obtain that
generically (24) does not hold in Π.

Finding a point p∗ is fairly easy. Let Π̃ be the subset of Π which contains all parameter
vectors such that the third row of B(L) vanishes and assume that Π̃ is not empty. For p ∈ Π̃,
we firstly obtain the fundamental representation for (x1t x2t)

′:(
b11(L) L b12(L)
b21(L) b22(L)

)(
v1t
v2t

)
+

(
η1t
η2t

)
=

(
a11(L) La12(L)
a21(L) a22(L)

)(
V1t
V2t

)
, (25)

then the fundamental representation for the whole vector:x1tx2t
x3t

 =

b11(L) L b12(L)
b21(L) b22(L)

0 0

(v1t
v2t

)
+

η1tη2t
η3t

 =

a11(L) La12(L) 0
a21(L) a22(L) 0

0 0 1

V1tV2t
V3t

 ,

where V3t = η3t/σ
2
3. As Π̃ is non-empty, the parameters of the model on the left-hand side of

(25) lie in an open connected non-empty subset of R9. Thus the results of Section 3.1 apply
and generically in Π̃ contamination occurs, so that ζs 6= 0 for some s.

(II) We give here a very simple example to illustrate the contamination occurring in the
impulse-response functions. Consider the model(

x1t
x2t

)
=

(
b11 f12L
0 b22

)(
u1t
u2t

)
+

(
η1t
η2t

)
, (26)

which is a special case of model (11). Both x1t and x2t are white noise and their covariance is
zero. However, as the covariance between x1t and x2,t−1 is f12b22, the vector xt is not a white
noise in general. As a candidate for the representation xt = A(L)Vt, consider(

x1t
x2t

)
=

(
a11 g12L
0 a22

)(
V1t
V2t

)
. (27)
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As Vt is assumed to be orthonormal, equating covariances between (26) and (27) we obtain
the following three equations for the entries of A(L):

a211 + g212 = b211 + f212 + σ21

a222 = b222 + σ22

g12a22 = f12b22.

The system is easily solved:

a211 = b211 + f212 + σ21 − f212
b222

b222 + σ22
a222 = b222 + σ22

g212 = f212
b222

b222 + σ22
sign(g12a22) = sign(f12b22).

(28)

Thus, representation (27), with its coefficients determined in (28), produces the same co-
variance matrices as (26). Moreover, det[A(L)] has no roots. Therefore (27) is the unique
fundamental representation for xt with an orthonormal white noise and fulfilling the condition
that the polynomial in entry (1, 2) vanishes for L = 0 (up to a change of sign for V1t, for V2t
or for both, this corresponding to the multiple solutions of (28)).

We see that a22 depends on b22 and the size of the measurement error η2t. However,
unless σ22 = 0, both a11 and g12 are contaminated by b22. Using the technique briefly illustrated
in part (I), example (26) could be used to show that contamination occurs generically in
model (11).

(III) (a) The spectral density of xt, as defined in (8), is

ΣΣΣx(θ) = (B0 + B1e
−iθ)(B0 + B1e

iθ)′ + ΣΣΣη,

where ΣΣΣη is the covariance matrix of ηηηt. Assumption 2 implies that ΣΣΣx(z) is non singular for
all z ∈ C. Moreover, the covariance function of xt, that is E(xtx

′
t−k), vanishes for |k| > 1.

Therefore xt has a Wold representation xt = A(L)Vt, where (i) Vt is orthonormal white
noise, (ii) A(L) is an MA(1), (iii) A(z) has no roots inside or on the unit circle (see Rozanov
(1967), pp. 43-50; see also Lütkepohl (1984)).
(b) Let wt be an r-dimensional stochastic vector and suppose that

wt = ααα(L)vt = βββ(L)ut,

where vt and ut are q-dimensional and orthonormal white noises and q ≤ r. Suppose that
both vt and ut are fundamental for wt. Then vt = Sut, where S is a q× q orthogonal matrix
(see Rozanov (1967), pp. 56-7; see also Forni et al. (2009), Section 3.2).
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