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Abstract

In a dynamic principal-agent model, the principal, financing the project, cannot observe

project failure and the agent, developing the project, can hide or fake failure. Punishments for

completion delays, excessive rewards for success, and time-decreasing rewards for failure provide

incentives for truthful disclosure of failure. The optimal contract does not always incentivize

disclosure of failure and consists of distinct financing stages, whereby financing becomes more

performance sensitive over time. Incentives are backloaded and the agent is rewarded for late

but not for early failure. The optimal contract can be implemented by financing the project

with a mixture of (convertible) debt and equity in multiple financing rounds.

∗I especially thank Sebastian Gryglewicz and Erwan Morellec for their helpful comments. Parts of this paper
were written during a research visit at the Kellogg School of Management. I am particularly grateful to Konstantin
Milbradt for hosting and advising me. I also would like to thank Ron Kaniel (the editor), an anonymous referee,
Andres Almazan, Philip Bond, Simon Board, Barney Hartman-Glaser, Florian Hoffmann, Mike Fishman, Sivan
Frenkel, William Fuchs, Lukas Kremens, Thomas Geelen (EFA Discussant), Sebastian Pfeil, Semyon Malamud,
Andrey Malenko, William Mann, Ramana Nanda, Tomasz Sadzik, Amiyatosh Purnarandam, Yingjie Qi, Zara Sharif,
Kathy Yuan, Vladimir Vladimirov, Felipe Varas, and Brian Waters for useful discussions and valuable comments. I
also thank the seminar participants at the Erasmus University Rotterdam, the FTG European Summer Meeting 2019,
the EFA Doctoral Tutorial 2019, the Econometric Society European Winter Meeting 2019, University of Washington
(Foster), National University of Singapore, Hong Kong University, City University of Hong Kong, and the Tinbergen
Institute Jamboree for their comments and questions.
†Erasmus University Rotterdam. E-mail: mayer@ese.eur.nl.



After its founding in 2003, the US startup Theranos raised funds from venture capitalists and

private investors, building on the promise of a novel method of blood testing. This resulted in a

10 billion dollar valuation at its peak in 2014. Between 2014 and 2018, the blood test technology

developed by Theranos turned out to be inaccurate. However, instead of disclosing the technology’s

failure, the company issued false statements regarding the project’s progress and continued to raise

funds, until the pyramid of lies eventually collapsed in 2018.

The example of Theranos highlights key difficulties inherent to financing innovative projects.

Such projects typically i) exhibit substantial failure risk, ii) require a high level of expertise from

insiders developing the project, and iii) require capital from investors with limited expertise. To

resolve agency conflicts between the insiders, developing the project, and investors, financing the

project, the provision of financing must be contingent on project outcomes. However, when it is hard

for investors to track project progress, insiders can hide bad outcomes, such as project failure. This

paper studies dynamic contracting in light of this tension and characterizes the optimal incentive

provision for truthful disclosure of bad outcomes.

In the model, a principal finances a project developed by an agent with limited liability. Project

development requires funds from the principal and, absent frictions, it is efficient to finance the

project until completion. The timing of completion is uncertain and for simplicity not affected

by the agent. Completion results in either success or failure, whereby the agent’s hidden effort

during project development determines the likelihood of success. Moral hazard arises because the

agent derives private benefits from shirking. Incentives are provided by paying the agent more

for success than for failure. If both potential project outcomes, success and failure, are publicly

observable and contractible, the principal pays the agent only for success and finances the project

until completion. Because the timing of completion is uninformative about the agent’s effort, the

agent is not punished for completion delays and not fired before completion.

This paper studies incentive provision when it is hard for the principal to observe and verify

project failure (whereas success is perfectly observable and contractible). Project failure is observed

by the agent but possibly — that is, with some probability — not observed by the principal. Because

it is efficient to terminate financing once the project fails, the principal would like the agent to

disclose failure. However, the agent can hide or fake failure. Hiding failure averts termination

and, therefore, allows the agent to continue enjoying private benefits from running the project. In

addition, as failure and reports thereof are not verifiable by the principal, the agent can mis-report

failure before it occurs, which is akin to faking failure or causing failure on purpose.
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To incentivize disclosure of failure at the time it occurs, the contract stipulates rewards for

failure. These rewards for failure must be time-decreasing, as otherwise the agent would delay

disclosure and report failure at a later time than at which it occurred. Since both rewards for

failure and success decrease over time, the agent is punished for completion delays beyond her

influence. However, rewards for failure incentivize the agent to fake or cause (i.e., mis-report)

failure. To prevent that the agent fakes or causes failure, it becomes necessary to increase the

agent’s stake in the project by raising rewards for success beyond what is needed to motivate

effort, leading to excessive rewards for success and agency rents. That is, a tension arises between

providing incentives to disclose and not to fake or cause failure.

As a result, the principal faces the following trade-off when designing the contract. On the one

hand, financing a failed project is inefficient, so the principal ideally would like the agent to disclose

failure and terminate financing upon failure. On the other hand, incentivizing disclosure of failure is

costly, as it leads to excessive agency rents. In light of this trade-off, the optimal contract does not

always incentivize disclosure of failure and consists of two distinct stages: an unconditional financing

stage followed by a disclosure stage. During the unconditional financing stage, the principal does

not incentivize disclosure of failure, which limits agency rents but comes at the cost that the project

is potentially financed and inefficiently continued after failure. Moreover, the agent i) is not paid

for failure, ii) receives low rewards for success, and iii) incurs mild punishments for delays. The

unconditional financing stage ends with a soft deadline at which the principal elicits a truthful

progress report from the agent on whether the project has failed so far. The principal finances the

project over the next stage, i.e., the disclosure stage, if and only if the progress report reveals that

the project is still profitable to pursue (and has not failed yet).

During the disclosure stage, the principal incentivizes disclosure of failure and finances the

project until either completion is reported or a hard deadline is reached. Thus, financing is termi-

nated upon failure and therefore performance-sensitive. During this stage, the agent receives high

and time-decreasing rewards for failure and success and incurs harsh punishments for delays that

include the threat of contract termination. The disclosure stage ends with a hard deadline at which

the principal terminates financing regardless of whether the project is still profitable to pursue. In

summary, within the optimal contract, financing is staged for pure incentive purposes, even though

there is only a single milestone to complete the project. The provision of financing becomes more

performance-sensitive over time and across stages. Likewise, the agent’s incentives are backloaded,

in that they become stronger over time and across stages.
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The analysis of the optimal contract has implications for the design of venture capital and

R&D financing contracts. The model predicts that optimal venture capital contracts involve distinct

financing stages and that insiders’ dollar rewards for success decrease during a given financing stage

yet increase once a new financing stage begins. That is, insiders are effectively rewarded for reaching

the next financing stage. In addition, the valuation of the project (i.e., startup valuation) jumps up

at the beginning of a new financing stage, as new information is released and uncertainty is resolved

through insiders’ progress reports. Our findings also imply that within venture capital contracts,

insiders’ compensation and, generally, the provision of financing should become more performance

sensitive over time and in each subsequent stage. Importantly, the provision of unconditional

financing early on limits agency rents. As a result, optimal financing contracts for projects that

are subject to severe agency conflicts involve a relatively long unconditional financing stage (and

soft deadline) that is followed by a relatively short disclosure stage (and hard deadline).

Moreover, our results suggest that optimal financing of R&D projects involves several stages,

whereby the continuation of financing is contingent on reported progress by insiders. Progress

reports are less (more) frequent in early (later) stages of R&D financing. In addition, as progress

reports are subject to moral hazard, it becomes optimal to elicit progress reports less frequently

when moral hazard is severe. Compensation contracts for R&D workers (insiders) stipulate back-

loaded incentive schemes, so that incentives increase once a new financing stage begins. It is optimal

to reward failure that occurs at a later stage, but not failure that occurs at an early stage.

We show how to implement the optimal contract by financing the project with a mixture of

debt and equity in two financing rounds. During the first financing round at the beginning of

the unconditional financing stage, the principal injects funds and receives in exchange both debt

and equity claims in the project, while the agent retains the remaining equity. During the second

financing round at the beginning of the disclosure stage, the principal injects additional funds

and receives additional equity, reducing (diluting) the agent’s equity stake. During the disclosure

stage (but not during the unconditional financing stage), funds allocated to the project exceed the

face value of debt, so termination of financing due to failure leads to full repayment of debt and

dividend payouts to equity holders generating rewards for failure for the agent. Note that during

the first financing round, funds are raised by issuing both debt and equity, whereas during the

second financing round, funds are raised only by issuing equity. The implementation of the optimal

contract therefore rationalizes the widespread use of venture debt (see, e.g., González-Uribe and

Mann (2020)) and suggests that venture debt and equity financing are complementary, consistent
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with the findings of Davis, Morse, and Wang (2020). Interestingly, our results imply that startup

firms (should) rely on venture debt in early financing stages, while they (should) rely more on equity

financing in later stages. Alternatively, the optimal contract can be implemented using convertible

equity or convertible debt, as is common in venture capital financing. Note that even though the

implementation of the optimal contract is generally not unique, under any implementation the

principal’s stake in the project becomes less debt-like and more equity-like over time and across

stages. At the same time, the agent’s equity stake is gradually diluted.

Next, we show that agency conflicts can induce over- or under-provision of financing (i.e., over-

or under-investment) relative to the net present value (NPV) criterion. Here, the under-provision

of financing (under-investment) refers to a situation, wherein agency conflicts hamper financing

of a project with positive net present value, and the over-provision of financing (over-investment)

refers to financing of projects with negative net present value. During the contract’s unconditional

financing stage, the principal may inefficiently continue and finance a failed project with negative

NPV, leading to over-provision of financing. In contrast, during the contract’s disclosure stage,

punishments for delays may trigger premature termination of a project with positive NPV, leading

to under-provision of financing. Over-provision of financing occurs when the project development

phase is short or moral hazard is mild, and under-provision of financing occurs when the project

development phase is long or moral hazard is severe. In the context of venture capital financing,

the model predicts venture capital over-investment in projects that generate (preliminary) results

quickly and under-investment in projects that do not generate (preliminary) results quickly.

In a model extension, we study how moral hazard affects investors’ (i.e., the principal’s) en-

dogenous project choice at inception at time zero. Interestingly, we find that under certain cir-

cumstances, riskier projects are subject to less severe agency problems and thus are preferred by

investors. The reason is that for less risky projects, it is more difficult to incentivize the agent to

truthfully disclose bad outcomes (i.e., failure), which exacerbates moral hazard. Thus, our model

offers an explanation why venture capitalists seek to finance high risk start ups, i.e., potential

unicorns, even if this choice is not supported by the net present value criterion.1

Last, we analyze the role of monitoring in incentive provision. For this purpose, we assume

that the principal can inspect the project’s progress at a cost. Upon inspection, the principal

learns whether the project has failed so far. That is, an inspection enables the principal to detect

1A unicorn is a privately held startup company with a valuation that exceeds one billion dollars. The most recent
and largest unicorns include Airbnb, Uber and Pinterest.
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whether the agent hides (or fakes) bad outcomes and allows punishment of that misbehavior with

termination. As a result, the optimal contract (with monitoring) features several financing stages

and periodic inspections at deterministic dates. During each financing stage, rewards for failure

and success decrease over time until the project is completed or a deterministic (soft) deadline

is reached. At this deadline, the principal inspects the project and grants financing for the next

stage if the inspection reveals that the project is still profitable to pursue (i.e., has not failed so

far). Once a new financing stage starts, stipulated pay for success and failure increase, in that

the agent is rewarded for positive inspection outcomes. Optimal dynamic monitoring i) precludes

premature termination of financing, ii) reduces rewards for failure and success, and iii) makes

financing more performance sensitive and efficient. In the context of venture capital financing,

our results imply that optimal inspections complement reports by insiders in determining project

progress and whether to grant financing over the next stage.

This paper builds on the literature that studies dynamic contracting in continuous time, start-

ing with DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet (2007), and Sannikov

(2008). Recent contributions include He (2009, 2011, 2012), Hoffmann and Pfeil (2010), Biais,

Mariotti, Rochet, and Villeneuve (2010), DeMarzo, Fishman, He, and Wang (2012), Hartman-

Glaser, Piskorski, and Tchistyi (2012), Zhu (2012), DeMarzo and Sannikov (2016), Marinovic and

Varas (2019), Gryglewicz, Mayer, and Morellec (2019), and Hoffmann, Inderst, and Opp (2019).

Relatedly, DeMarzo and Fishman (2007b,a) study dynamic financial contracting in a discrete time

setting. Piskorski and Westerfield (2016), Orlov (2018), and Malenko (2019) analyze incentive pro-

vision with optimal dynamic contracts and monitoring. Likewise, Halac and Prat (2016), Varas,

Marinovic, and Skrzypacz (2020), and Marinovic and Szydlowski (2019) characterize optimal mon-

itoring in dynamic settings but do not focus on optimal contracts. None of these papers studies

optimal incentive provision for disclosure of bad outcomes. The innovation in our model is that it

considers the risk of project failure when the agent can hide or fake failure.

Our framework is similar to Green and Taylor (2016) and Varas (2017). Green and Taylor (2016)

study contracting for a multistage project when intermediate progress is privately observed. They

derive an optimal contract that involves a period during which financing is guaranteed whereby

the agent is rewarded for good but never for bad outcomes. Varas (2017) studies managerial short-

termism in a dynamic model and finds that the threat of termination and deferred payouts for

success provide efficient incentives. Our analysis differs from these papers along several dimensions.

First, in our model project development may lead to two types of adverse outcomes, failure and
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completion delays, whereas in Green and Taylor (2016) and Varas (2017) only completion delays

may arise. Second, our paper studies incentives to truthfully disclose, i.e., not to hide or to fake,

bad outcomes. In Green and Taylor (2016) and Varas (2017) the moral hazard problem is different

in that the agent is tempted to fake but never tempted to hide good outcomes.

Our paper builds on the literature on optimal incentive schemes for venture capital, such as

Bergemann and Hege (1998, 2005), or for financing innovation in a broader sense, such as Holmstrom

(1989), Aghion and Tirole (1994), and Nanda and Rhodes-Kropf (2017). Hall and Lerner (2010),

Kerr, Nanda, and Rhodes-Kropf (2014), and Kerr and Nanda (2015) provide excellent reviews of

the academic literature on financing entrepreneurship and innovation, and Lerner and Nanda (2020)

discuss the role of venture capitalists in financing innovation. Conceptually, our paper is related to

Manso (2011), who studies incentive provision in a static multi-armed bandit setting in which the

agent can either exploit existing technologies or explore new technologies through experimentation.

Our model is dynamic and differs from Manso (2011) mainly in the following aspects. First, we

study incentive provision for information disclosure rather than for experimentation. Second, we

demonstrate that to provide incentives it can be sometimes optimal to reward failure but it is always

necessary to penalize delays; delays do not arise in Manso (2011). Third, our dynamic model yields

the prediction that it is optimal to reward failure that occurs at a later stage, but not failure that

occurs at an early stage.

Lastly, our paper is related to the literature on dynamic adverse selection — see e.g. Daley

and Green (2012, 2016, 2019), Morellec and Schürhoff (2011), and Grenadier and Malenko (2011)

— and to the literature on dynamic information disclosure (without optimal contracts) — see

e.g. Jovanovic (1982), Acharya, DeMarzo, and Kremer (2011), Guttman, Kremer, and Skrzypacz

(2014), Marinovic and Varas (2016), Bertomeu, Marinovic, Terry, and Varas (2019), and Halac and

Kremer (2019).2

The paper is structured as follows. Section 1 presents the model and discusses the contracting

problem. Section 2 solves the model and derives the optimal contract. We discuss the implications

of our analysis in Sections 3 and 4. Section 5 studies incentive provision with optimal dynamic

monitoring. Section 6 discusses the robustness of our model and provides several extensions. Section

7 concludes the paper. All technical developments are gathered in the Appendix.

2Papers on optimal information disclosure in static settings include Fishman and Hagerty (1989, 1990), Diamond
and Verrecchia (1991) and, more recently, Szydlowski (2019). For a literature review on this topic, we refer to Beyer,
Cohen, Lys, and Walther (2010).
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1 Model setup

Time t is continuous and defined over [0,∞). A principal (she) finances a project that is developed

by an agent (he) with limited liability and zero wealth. The principal has deep pockets, can fully

commit to any long term contract, and possesses all bargaining power when signing a contract with

the agent. Both the principal and the agent are risk neutral, do not discount payoffs, and have an

outside option equal to zero. Per unit of time, project development requires funds κ > 0 from the

principal. The principal can always terminate financing and project development and does so at

an endogenous time T0 ∈ [0,∞].

The project completion time τ is uncertain and arrives according to a Poisson process Nt,

in that τ = inf{t ≥ 0 : dNt = 1}. The intensity of Nt equals Λ > 0 for t ≤ T0 and zero for

t > T0, meaning that the project cannot be completed anymore after financing is terminated. This

specification implies that the expected time to completion equals 1
Λ provided the project receives

sufficient financing. Project completion results in one of two possible outcomes, called success

and failure. Upon completion at time τ , with probability aτp, the project is successful and yields

terminal payoff µ > 2κ
Λp to the principal. Otherwise, with probability 1− aτp, the project fails and

yields no terminal payoff. Here, aτ ∈ {0, 1} is the agent’s effort (just before time τ), and p ∈ (0, 1) is

exogenous.3 Notably, without frictions and costless effort, the project has net present value (NPV)

pµ− κ
Λ > 0 and it is efficient to finance the project until time τ .

Over a short period of time [t, t + dt], the project succeeds with probability atpΛdt, fails with

probability (1 − atp)Λdt, and does not complete with probability 1 − Λdt. Similar to Board and

Meyer-ter Vehn (2013) and Hoffmann and Pfeil (2019), the agent chooses effort at ∈ {0, 1} before

the random event dNt ∈ {0, 1} realizes over [t, t+ dt). Figure 1 illustrates the heuristic timing over

[t, t+ dt).

Project development is subject to the following frictions. First, project failure is hard for the

principal to observe or verify. When the project fails, failure is publicly observed (i.e., observed

by both principal and agent) with probability π ∈ [0, 1]. Publicly observed failure is contractible.

Otherwise, with probability 1−π, failure is privately observed by the agent but not observed by the

principal, who also cannot verify failure. For instance, π ∈ (0, 1) captures the fact that the insiders

developing the project can hide certain bad outcomes from outside investors, while it is difficult or

3The terminal payoff can be interpreted broadly and, for instance, can represent immediate monetary payoffs,
future expected cash flows, or the principal’s private value of a technological achievement.
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Time t Time t+ dt

Λdt atp Success

1− atp

Failure

Effort: at

τ > t+ dt and dNt = 0

τ = t+ dt and dNt = 1

τ = t+ dt and dNt = 1

1− Λdt

Continuation

Figure 1: Heuristic Timing over [t, t+dt). The branches of the tree contain the probabilities of the
respective random event over [t, t+ dt).

even impossible to hide all types of bad outcomes.4 The agent may report (i.e., disclose) failure,

but the principal cannot verify the reported failure. As a result, the agent can hide or fake failure.

However, because it is efficient to terminate financing after failure at time τ , the principal would

ideally like the agent to disclose failure truthfully. Unlike failure, success is publicly observable,

verifiable, and contractible. This assumption reflects that the agent is tempted to hide bad rather

than good outcomes and that it is harder to fake good rather than bad outcomes.

Second, effort at is not observed by the principal and the agent derives private benefits from

shirking (1 − at)φ for t ≤ T0, giving rise to moral hazard. After financing is terminated, private

benefits are zero. Even though not explicitly modeled here, private benefits (from shirking) may

arise from the inefficient diversion of funds, as e.g. in DeMarzo and Sannikov (2006), and, therefore,

pertain as long as the principal allocates funds to the project (i.e., only for t ≤ T0). Crucially, effort

after time τ is redundant so that the agent optimally chooses at = 0 for t ∈ (τ, T0]. This leads to

private benefits φ from operating the project after time τ , which only pertain if the agent hides

project failure and averts termination after time τ . We assume 0 ≤ φ ≤ κ, implying that shirking

is inefficient.

Last, certain modeling assumptions — e.g., observable success and exogenous completion —

and the robustness of our findings are discussed in Section 6.2.

4In the context of venture capital financing, π > 0 may capture that the principal, representing the venture
capitalist, has some ability to detect bad outcomes in project development, e.g., due to expertise or oversight arising
from the VC’s representation on the board of the startup firm (compare Lerner (1995)).
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Contracting problem

At time zero, the principal offers the agent a contract C = (c, T ) specifying cumulative payments

(i.e., wages) c and a deadline T . At the deadline, project development and financing are terminated.

For notational convenience, payments c do not include project development costs κ, which are paid

by the principal up to time T0. Facing the contract C, the agent chooses effort a and time τA when

he reports completion. This implies that the principal finances the project until either completion

is reported or the deadline is reached. That is: T0 = T ∧ τA. We focus on contracts C that induce

full effort at = 1 at all times t ∈ [0, T ∧ τ ]. To solve the model, we conjecture that the (optimal)

deadline T is deterministic. Proposition 7 in Appendix B.4.5 verifies that the (optimal) deadline is

indeed deterministic, so random termination does not improve the principal’s payoff.5

We characterize the agent’s strategy using the time at which he reports completion (rather than

using the time at which he reports failure). Because success is publicly observable, this notation

implies for the case of success τA = τ . Likewise, we adopt the notation τA = τ when failure is

publicly observed. Conversely, τA 6= τ means that the agent mis-reports failure. In particular, the

agent can mis-report failure in two ways. First, he can hide failure (i.e., bad outcomes), in which

case τA > τ . Second, because reported failure is not verifiable, the agent can fake failure and

report failure even if it has not occurred, in which case τA < τ . Alternatively, one can interpret

“faking bad outcomes” also as “generating bad outcomes (on purpose).”6

As the principal and the agent do not discount, it is optimal to pay the agent only at time τA,

when reported success or failure is informative about the agent’s effort. Because the completion

timing as such is not informative about effort, payments before time τA do not help to incentivize

effort. In fact, they even render it attractive to hide failure and so generate dis-incentives. Thus

dct = αt1{Success at time t} + βt1{Failure report at time t} + γt1{Failure observed at time t} (1)

where αt is the payment to the agent if the project succeeds at time t (in which case τ = τA = t).

The agent’s payment for failure depends on whether the principal observes failure. Specifically,

βt is the agent’s pay when he reports failure at time t, while γt is the agent’s pay when failure

is publicly observed at time t. As will become clear later, payments for privately observed and

reported failure βt > 0 are necessary to incentivize disclosure of failure. In contrast, payments for

5I would like to thank an anonymous referee for encouraging me to add Proposition 7 and its formal proof.
6This is akin to assuming that the agent can destroy payoff, which is a frequent assumption in the financial

contracting literature (see e.g. Innes (1990)).
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publicly observed failure are not necessary to incentivize disclosure of failure and, in addition, do

not motivate effort. Hence, we conjecture and verify that it is optimal not to pay the agent for

observed failure, in that γt = 0.

The agent maximizes his payoff, stemming from wage payments and private benefits:

W0 := max
a,τA

EA
[∫ T∧τA

0
(dct + φ(1− at)dt)

]
. (2)

Here, superscript A indicates that the expectation is taken to be conditional on the agent’s in-

formation, which may differ from the principal’s information. The principal chooses contract C to

maximize expected project payoff net of the cost of financing project development and compensating

the agent:

F0 := max
C

E

[∫ T∧τA

0
(µdSt − κdt− dct)

]
. (3)

where the expectation is conditional on the principal’s information. Here, dSt = 1 indicates project

success at time t. Because the agent is protected by limited liability, it follows that dct ≥ 0, i.e.,

αt, βt, γt ≥ 0, for all t ≥ 0.

2 Model solution

We solve the model in several steps. First, to provide a starting point for our analysis, we analyze

the benchmark, in which project failure is publicly observable (i.e., π = 1) and contractible, yet the

moral hazard problem with respect to hidden effort remains. Second, we focus on full disclosure

contracts that always incentivize the agent to disclose failure truthfully. Third, we argue why full

disclosure contracts are in general not optimal and show how they can be improved through the

provision of unconditional financing.

2.1 Second-best benchmark

We start by analyzing the second-best benchmark, in which project failure is observable and con-

tractible in that π = 1. With observable failure, the optimal contract takes a simple form: there is no

deadline (i.e., T =∞) and the agent is only paid for success. That is, αSB = φ
Λp > βSB = γSB = 0.

The intuition behind this result is as follows. First, note that the agent controls the project’s

propensity to succeed at time τ but not the completion timing τ . Therefore, the completion timing

τ as such is not informative about the agent’s effort, implying that the agent’s compensation should
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not be contingent on τ . Thus, the agent is not punished for completion delays and not fired before

project completion.

Second, to motivate effort, it is necessary to pay the agent more for success than for failure,

leading to the incentive constraint

αt − γt ≥
φ

Λp
. (4)

To derive (4), suppose the agent shirks over a short period of time [t, t + dt). Then, the agent

derives private benefits φdt and the project completes with probability Λdt, resulting in failure and

pay γt. In contrast, if the agent exerts effort at = 1 over [t, t + dt), the agent does not derive any

private benefits and the project completes with probability Λdt, resulting in failure and pay γt with

probability 1− p and in success and pay αt with probability p. Thus, exerting effort over [t, t+ dt)

is optimal if and only if

((1− p)γt + pαt)Λdt︸ ︷︷ ︸
Payoff with at=1

≥ φdt+ γtΛdt︸ ︷︷ ︸
Payoff with at=0

,

which simplifies to (4).

Note that because of π = 1, the choice of β becomes redundant. Incentives are captured by

(net) rewards for success αt − γt. Payments for observed failure motivate shirking and hence are

optimally set to γt = 0. In addition, (4) is tight to minimize agency costs. Incentives αt − γt must

be stronger, if moral hazard is more severe. Moral hazard is severe when private benefits from

shirking φ or the expected duration of the project development phase 1/Λ are large.

Proposition 1. Suppose that failure is publicly observable and contractible, in that π = 1. Then,

the optimal contract CSB is stationary with TSB = ∞ and αSB = φ
Λp > βSB = γSB = 0. The

principal’s payoff equals FSB = pµ− φ+κ
Λ . The agent’s payoff equals WSB = φ

Λ .

With this clean benchmark in hand, we now analyze the problem with π ∈ [0, 1).

2.2 Full disclosure contracts

Because it is efficient to terminate financing at time τ , it is natural to study full disclosure contracts

that incentivize truthful disclosure of failure. That is, a full disclosure contract induces τA = τ .

2.2.1 Truth telling incentives

We start by characterizing the agent’s incentives to disclose failure truthfully. Note that βt(1− π)

is the agent’s expected payment upon failure at time t, which is proportional to βt. We thus refer
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to βt simply as “rewards for failure” rather than “rewards for reported failure.” Define the agent’s

continuation payoff under truthful reporting (i.e., τA = τ) and full effort as

Wt = Et
[∫ T∧τ

t
dcs

]
=

∫ T

t
e−Λ(s−t)Λ((1− p)(1− π)βs + pαs)ds, (5)

where the (second) equality uses integration by parts, and recall that γs = 0. Hence:

Ẇt = ΛWt − Λ((1− p)(1− π)βt + pαt), (6)

where “dot” denotes the time derivative (i.e., Ẇt = dWt
dt ). Hence, Ẇt < 0 means that the agent is

punished for delays (beyond his influence).

First, note that the agent can always fake bad outcomes and mis-report failure before it actually

occurs. This leads to a loss of the continuation value under truth telling Wt and a reward for failure

βt and, therefore, is sub-optimal if and only if

Wt ≥ βt. (7)

That is, to provide incentives not to fake bad outcomes, it is necessary to grant the agent a

sufficiently large stake Wt in the project. Note that the optimal contract always incentivizes the

agent not to fake failure. If the agent finds it optimal to fake failure at some time t with βt > 0, the

agent reports failure and hence precipitates termination at time t, while being paid βt > 0. Then,

the principal could improve her payoff by stipulating termination with zero severance pay for the

agent at time t.

Second, let us analyze the agent’s incentives to hide failure. To obtain some intuition, suppose

the project fails at time t and failure is privately observed by the agent. Reporting failure at time

t yields pay βt. In contrast, reporting failure at time t + dt not only yields pay βt+dt but also

benefits from operating the project over [t, t + dt], φdt. Hence, the agent is better off disclosing

failure truthfully at time t if and only if

βt ≥ βt+dt + φdt.

Letting dt→ 0 yields

β̇t ≤ −φ. (8)
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Because failure can potentially occur at any time t ∈ [0, T ], a full disclosure contract must satisfy

(8) for all t ∈ [0, T ]. Thus, we can integrate (8) to obtain

βt ≥ βs + (s− t)φ for all s ∈ [t, T ]. (9)

Indeed, it follows that the agent prefers to report failure at time t rather than at any time s > t.

Importantly, the agent’s limited liability requires βt ≥ 0. Once βt = 0, the contract cannot

provide truth telling incentives anymore by decreasing βt. Under these circumstances, the only

way to ensure truth telling is contract termination, in that T = inf{t ≥ 0 : βt = 0}. Contract

termination also implies that the agent never profits from hiding failure completely. Hiding failure

(that occurs at time t) completely allows the agent to derive private benefits up to time T , i.e.,

φ(T − t), which by (9) is smaller than the reward for failure βt.

In the following, it is convenient to keep track of the agent’s (off-equilibrium) continuation

payoff wt, in case he has privately observed failure at some time t′ with t′ ≤ t but not reported it

yet:

wt := max
τA∈[t,T ]

[φ(τA − t) + βτA ]. (10)

Note that a full disclosure contract implies for any t ∈ [0, T ] that wt is maximized for τA = t, leading

to βt = wt and ẇt = β̇t for all t ∈ [0, T ]. With the agent’s expected pay for failure (1 − π)wt, we

obtain the incentive condition w.r.t. effort at:

αt ≥ (1− π)wt +
φ

Λp
. (11)

The derivation of condition (11) is analogous to the derivation of condition (4) upon replacing γt

with (1− π)wt.

2.2.2 Solving for the optimal full disclosure contract

Using integration by parts and τA = τ , we can rewrite the principal’s continuation payoff for any

t ∈ [0, T ∧ τA] as

Ft = E

[∫ T∧τA

t
(µdSs − κds− dcs)

]
=

∫ T

t
e−Λ(s−t)

(
Λpµ−κ−Λ((1−p)(1−π)ws+pαs)

)
ds. (12)
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The optimal full disclosure contract maximizes (12) subject to the incentive constraint w.r.t. effort

(11) and the incentive constraints w.r.t. truthful information disclosure (7) and (8) for all t ∈ [0, T ].

The incentive condition (8) constrains the control of the level of β (or equivalently w) and thus

β (or equivalently w) enters the principal’s dynamic optimization problem as state variable, while

the change in β or w (i.e., β̇ or ẇ) is a control variable.

To minimize agency rents, the incentive condition (7) is tight, in that Wt = wt = βt for all

t ∈ [0, T ] and hence the principal’s optimization features a single state variable w. This implies

that one can express the principal’s payoff as function of w, F (w). Differentiating (12) with respect

to time t and using dFt
dt = dF (wt)

dwt
dwt
dt = F ′(wt)ẇt, we obtain that the principal’s value function

solves the following HJB equation on the endogenous state space [0, w0]:

ΛF (w) = max
ẇ,α

{
Λpµ− κ− Λ((1− p)(1− π)w + pα) + F ′(w)ẇ

}
s.t. (7), (8), and (11). (13)

Some observations are in order. First, because it always possible to reduce the agent’s pay

for reported failure from w to some level ŵ < w, it must be that F (ŵ) ≤ F (w), implying that

F ′(w) ≥ 0. Then, the maximization w.r.t. ẇ yields ẇ = −φ < 0 so that condition (8) is binding.

Second, because of the agent’s limited liability, the contract is terminated once w = β = 0, yielding

f(0) = W (0) = 0. Third, the value function is strictly concave, reflecting that termination is

inefficient. The concavity of the value function also implies that randomized termination of a full

disclosure contract is not optimal (for details and a more general statement see Proposition 7).

Importantly, rewards for success {αt} determine the size of the agent’s stake in the project Wt

and hence his incentives to fake bad outcomes (see (7)). To minimize agency costs, (7) is tight and

Wt = wt = βt for all t ∈ [0, T ], leading to7

αt = (1− π)wt +
φ

Λp
+
π

p
wt =

(
1− π +

π

p

)
wt +

φ

Λp
. (14)

Thus, the incentive condition for effort (11) is slack, when π > 0.8 The reason is that the agent

requires rewards β > 0 to disclose failure. Because rewards for failure provide the agent with

incentives to fake failure, it becomes necessary to increase his stake in the project by raising

7For a derivation, note that Wt = wt = βt for all t ∈ [0, T ] implies that Ẇt = ẇt for all t ∈ [0, T ]. Hence, by (6)
with wt = βt: Ẇt − ẇt = Λ(Wt − (1− π)wt − p(αt − (1− π)wt)) + φ = φ− Λp(αt − (1− π)wt) + Λπwt = 0. Thus,
α− (1− π)wt = φ/(Λp) + πwt/p.

8Expected rewards for failure βt(1− π) increase in 1− π and higher (expected) rewards for failure require higher
rewards for success to motivate effort. When π = 0, incentives for effort require particularly high rewards for success
that are at the same time sufficient to incentivize the agent not to fake failure.
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rewards for success beyond what is needed to motivate effort. Also observe that both rewards for

success and failure decrease over time, inducing punishment for delays Ẇt = −φ < 0.

Plugging (14) and ẇ = −φ back into the HJB equation (13), one obtains a linear first order

ODE that admits the closed form solution

F (w) =
(
µp− κ

Λ

)(
1− exp

(
−wΛ

φ

))
− w. (15)

The starting value w0 is chosen to maximize payoff at time zero, F (w0). Thus, w0 solves the

first-order optimality condition F ′(w0) = 0 so that

w0 = φT =
φ

Λ
ln

(
Λµp− κ

φ

)
. (16)

We summarize our findings in the following proposition.

Proposition 2. Under the optimal full disclosure contract C, at time t with wt = w, the principal’s

value F (w) solves (13). The contract C stipulates ẇt = −φ and termination at time T = inf{t ≥

0 : wt = 0}. Payments satisfy (14), βt = wt = Wt, and γt = 0. The value w0 solves F ′(w0) = 0.

The optimal full disclosure contract differs from the second-best contract mainly in three aspects:

i) rewards for failure, ii) excessive rewards for success beyond what is needed to motivate effort,

and iii) punishments for delays, including the threat of contract termination. Rewards for failure

and punishments for delays incentivize the agent not to hide bad outcomes, whereas sufficiently

high rewards for success incentivize the agent not to fake bad outcomes.

The optimal full disclosure contract is not unique. The reason is that rewards for observed failure

boost the agent’s stake in the project and hence generate incentives not to fake bad outcomes. As

a result, there exists an optimal full disclosure contract that pays the agent for observed failure

and pays the agent less for success. This contract maintains incentive compatibility but stipulates

weaker incentives to exert effort. We focus without loss of generality on the optimal (full disclosure)

contract that maximizes incentives. Notably, all optimal (full disclosure) contracts share the same

key characteristics and stipulate punishments for delays, rewards for failure, and excess pay for

success (i.e., αt > wt(1−π) + φ
Λp). We present the generalization of Proposition 2 in the Appendix

in Proposition 5.

Notably, the value function F (w) does not depend on π. The reason is that within a full

disclosure contract, agency costs are independent of π. An increase in π makes it easier to incentivize
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the agent not to hide failure, leading to lower rewards for failure βt(1− π). This, however, reduces

agency rents Wt, which generates incentives to fake failure and so requires higher rewards for

success αt. That is, a tension arises between incentivizing the agent not to hide and not to fake

bad outcomes. In light of this tension, a full disclosure contract is not optimal and, therefore, the

optimal contract does not always incentivize disclosure of failure.

2.3 The optimal contract

Suppose that the contract stipulates no rewards for failure over [t0, t1), in that βt = γt = 0 for

t ∈ [t0, t1). Consequently, the agent never reports and never fakes failure over [t0, t1). As the

contract does not incentivize disclosure of failure over [t0, t1), it is also not terminated over [t0, t1)

due to disclosure of failure. In other words, the principal provides unconditional financing over

[t0, t1). Crucially, the provision of unconditional financing generates incentives not to fake failure

(i.e., relaxes incentive constraint (7)) and hence limits agency rents but comes at the expense that

the project may be continued and financed after failure, which is inefficient. Although a contract

could stipulate unconditional financing over several distinct time intervals, we focus in the following

discussion on the latest interval in time denoted by [t0, t1). Thereafter, we verify that under the

optimal contract there is only one (connected) time interval with unconditional financing.

2.3.1 Incentives

Consider that βt = 0 for t ∈ [t0, t1) and that the contract incentivizes truthful information disclosure

from time t1 onwards up to a deadline T > t1. If the project fails at some time t ∈ [t0, t1) and

failure is privately observed by the agent, the agent does not report failure up to time t1, when he

receives pay βt1 > 0. Thus, the agent’s continuation payoff after failure at time t is:

wt := (t1 − t)φ+ βt1 for t ∈ [t0, t1],

so that ẇt = −φ < 0. To incentivize effort, the agent’s payoff after success must sufficiently exceed

his payoff after failure in that (11) holds, that is, αt ≥ (1− π)wt + φ
Λp .

2.3.2 Unconditional financing

Next, we heuristically determine when it is optimal to provide unconditional financing. First,

consider t0 = 0. Over the time interval [0, t1), the agent merely requires incentives for effort and it
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is optimal to provide minimal incentives, in that

αt = (1− π)wt +
φ

Λp
for all t ∈ [0, t1). (17)

That is, the provision of unconditional financing facilitates the stipulation of low rewards for success.

Low rewards for success in turn reduce both punishments for delays and the agent’s stake in the

project, thereby reducing incentives and agency costs relative to a full disclosure contract. Formally,

Wt < wt and 0 > Ẇt > ẇt = −φ for t < t1. Overall, unconditional financing limits agency rents

Wt but may lead to inefficient financing of a failed project.9

Second, we argue that unconditional financing starting from t0 > 0 is sub-optimal. If t0 > 0,

the contract incentivizes truthful disclosure of failure just before time t0 and just after time t1,

which by (7) requires that Wti ≥ wti for i = 0, 1. That is, the principal cannot reduce the agent’s

stake Wt0 (i.e., agency costs) by providing unconditional financing after time t0, while incentivizing

truth telling before time t0. More intuitively, unconditional financing after time t0 dilutes truth

telling incentives before time t0. To avoid this inefficient dilution of incentives, it must be that

t0 = 0. Formally, at any time t with Wt ≥ wt, the optimal continuation contract is a full disclosure

contract, as characterized in Proposition 2. It readily follows that there is maximally one connected

time interval, during which the optimal contract stipulates unconditional financing.

As a result, the optimal contract stipulates unconditional financing over some time period [0, t1).

After time t1, the optimal contract incentivizes truthful disclosure of failure and hence becomes a

full disclosure (continuation) contract with deadline T ≥ t1, yielding payoff F (wt1) to the principal

and payoff wL := wt1 = Wt1 to the agent. Also note that wt = βt = Wt for all t ≥ t1.

2.3.3 Solving for the optimal contract

The principal incentivizes disclosure of failure at time t1 and forms a belief, qt, of whether the

project has failed so far, for times t < t1. One can derive that:10

qt = q(wt) = 1− e−Λ(1−p)(1−π)t = 1− e−
Λ(1−p)(1−π)(w0−wt)

φ . (18)

9Note that Wt =
∫ T
t
e−Λ(s−t)Λ((1− p)(1− π)ws + pαs)ds. Hence: Ẇt = ΛWt −Λ(wt(1− π) + p(αt −wt(1− π)))

and Ẇt − ẇt = ΛWt − Λ(wt(1 − π) + p(αt − wt(1 − π))) − ẇt = Λ(Wt − wt) + Λπwt, where we plugged in αt =
wt(1 − π) + φ/(Λp) and ẇt = −φ for t < t1. Integrating this ODE for t < t1 subject to Wt1 = wt1 yields
Wt − wt = −

∫ t1
t
e−Λ(s−t)Λπwsds < 0 and hence also 0 > Ẇt > ẇt = −φ.

10For a derivation, note that Bayes’ rule implies qt+dt = qt + (1− qt)(1− p)(1−π)Λdt, which simplifies in the limit
dt→ 0 to q̇t = (1− qt)(1− p)(1− π)Λ. This linear first order ODE is solved subject to q0 = 0, yielding solution (18).
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Figure 2: Numerical Example in both the “w-space” and “time space”. The parameters are µ = 50,
κ = 10, Λ = 1, p = 0.5, π = 0.5, and φ = 1.

Intuitively, the principal faces in addition to the moral hazard problem also an adverse selection

problem when providing unconditional financing over [0, t1). In particular, the principal may inef-

ficiently extend financing to a failed project (which is the case with probability qt).

Given the (previously derived) optimal controls βt = 0 and αt = wt(1−π)+ φ
Λp for t ∈ [0, t1) and

the fact that wt co-moves with time t via ẇt = −φ, one can express the agent’s continuation value

over the time interval [0, t1) (i.e., for w > wt1 = wL) as function of w, W (w).11 As the principal’s

belief q(w), the agent’s continuation value W (w), and rewards for success (failure) α(w) (β(w))

are along the optimal path functions of w, the state variable w summarizes all contract relevant

information. Thus, it is possible to also express the principal’s value function over the time interval

[0, t1) (i.e., for w > wt1 = wL) as function of w, f(w).

During the unconditional financing stage, over a short period of time [t, t + dt), the principal

incurs funding costs κdt, and the following two observable outcomes that trigger termination are

possible: i) (with probability (1 − q(w))Λpdt) the project has not failed so far and succeeds over

11Conjecture that W is a function of w, in that Wt = W (wt). Recall that Ẇt = ΛWt − Λ(pαt + (1− p)(1− π)βt).
Using βt = β(wt) = 0 and αt = α(wt) = wt(1 − π) + φ

Λp
, it follows that Ẇt = Λ(Wt − wt) + Λπwt − φ. Using

Ẇt = dWt
dwt

dwt
dt

= W ′(wt)ẇt, one obtains that the agent’s continuation value solves W ′(w)ẇ = Λ(W (w)−w)+Λπw−φ
for w > wt1 = wL subject to W (wL) = wL. This confirms that W can be expressed as function of w.
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[t, t+dt) yielding payoff µp−α(w), or ii) (with probability (1− q(w))Λ(1−p)(1−π)dt) the project

has not failed so far but fails over [t, t + dt) and failure is observed which yields payoff zero. This

leads to the HJB equation:

(1− q(w))Λ(p+ (1− p)(1− π))f(w) = (1− q(w))Λp(µ− α(w))− κ+ f ′(w)ẇ, (19)

with ẇ = −φ < 0. At the end of the unconditional financing stage at time t1 when wt = wL, the

principal asks the agent whether the project has already failed. With probability q(wL), the project

has failed and the principal must compensate the agent for failure βt1 = wL. With probability

1− q(wL), the project has not failed yet and the principal realizes the continuation payoff F (wL),

leading to the value matching condition

f(wL) = (1− q(wL))F (wL)− q(wL)wL. (20)

In addition, optimal wL is pinned down by the smooth pasting condition:

f ′(wL) =
∂

∂wL
((1− q(wL))F (wL)− q(wL)wL) . (21)

Taking stock, on the state interval [0, wL] (i.e., the time interval [t1, T ]), the value function is

characterized by (15). On the state interval (wL, w0] (i.e., the time interval [0, t1)), the value

function is characterized by function f(w), solving (19). That is:

F ∗(w) =


F (w) for w ∈ [0, wL],

f(w) for w ∈ (wL, w0].

(22)

The optimization of the initial payoff F (w0) with respect to w0 determines the optimal deadline

T = inf{t ≥ 0 : wt = 0}. Lemma 4 in Appendix A presents a closed-form expression for f(w)

and Figure 2 provides a numerical example of the optimal contract. The upper two panels display

the value function under the optimal contract (solid black line) and the value function under the

optimal full disclosure contract (dotted red line) both in dependence of w and time, t. Note that

the value function exhibits a jump at time t1 (i.e., at w = wL), when the agent makes a progress

report and uncertainty is resolved. The lower two panels display the agent’s rewards for success

and failure both in dependence of w and time, t. Rewards for success (and failure) decrease during
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a given financing stage but increase once a new financing stage begins at time t1.

Proposition 3. The optimal contract does not incentivize disclosure of failure over some time

period [0, t1) and becomes a full disclosure contract, characterized in Proposition 2, after time t1.

1. With wt1 = wL, the optimal time t1 is characterized by (20) and (21), while the value function

F ∗ is characterized by (22). In addition, t1 → 0 as π → 0 and t1 → T as π → 1.

2. The contract is terminated at time T = inf{t ≥ 0 : wt = 0} and w0 (and equivalently T )

maximizes the principal’s initial payoff F (w0).

3. αt = wt(1− π) + φ/(Λp) ≥ βt = γt = 0, ẇt = −φ < Ẇt < 0, and Wt < wt for all t ∈ [0, t1).

4. αt = wt(1− π + π/p) + φ/(Λp), wt = βt = Wt, and γt = 0 for all t ∈ [t1, T ).

The optimal contract is not unique, as the optimal full disclosure contract is not unique. Propo-

sition 3 describes the optimal contract that maximizes incentives, and its generalization is presented

in Proposition 6 in the Appendix. In addition, because the principal does not ask the agent to

disclose failure over [0, t1), the exact value of βt for any t ∈ [0, t1) is not payoff relevant.12 It is

therefore without loss of generality to set βt = 0 for all t ∈ [0, t1).

In summary, the optimal contract involves two stages: an unconditional financing stage [0, t1)

and a disclosure stage [t1, T ]. During the unconditional financing stage, the contract does not

incentivize disclosure of failure and financing is guaranteed. During that stage, the agent i) is not

paid for failure, ii) receives relatively low rewards for success, and iii) incurs mild punishments

for delays. The unconditional financing stage ends with the soft deadline t1 at which the principal

incentivizes a truthful progress report of whether the project has failed yet. The principal continues

financing for the next stage if and only if the progress report reveals that the project is still profitable

to pursue (i.e., has not failed yet).

After time t1, during the disclosure stage, the principal incentivizes truthful disclosure of failure

and finances the project until either completion is reported or the hard deadline T is reached. Note

that at the hard deadline T financing is terminated regardless of whether the project has failed yet.

During the disclosure stage, the contract stipulates high but time-decreasing rewards for success

and failure, inducing harsh punishments for delays. That is, the agent’s incentives and performance

pay — captured by (net) rewards for success αt−wt(1−π) and punishments for delays −Ẇt — are

12That is, one could stipulate another value for βt at times t < t1 as long as βt ≤ min{Wt, wt}. When βt ≤
min{Wt, wt}, the agent never prefers to disclose failure or to fake failure for t < t1, as is desired durng the unconditional
financing stage [0, t1).

20



stronger during the disclosure stage and hence increase following completion delays (i.e., following

poor performance).

In summary, within the optimal contract, financing is staged for pure incentive purposes, even

though there is only a single milestone to reach to complete the project. The provision of financing

becomes more performance-sensitive over time and across stages. Likewise, the agent’s incentives

are backloaded, in that they become stronger over time and across stages.

3 Analysis

3.1 Applications

Venture capital financing. In this context, the principal represents the venture capitalist and

the agent represents the enterpreneur or founder (insider) of the startup financed by the venture

capitalist. Consistent with the empirical findings of Kaplan and Strömberg (2003, 2004), the model

implies that optimal venture capital contracts involve distinct financing stages and that insiders’

dollar rewards for success decrease during a given financing stage yet increase whenever a new

financing stage begins.13 That is, insiders are effectively rewarded for reaching a new financing

stage. Any financing stage concludes with a deadline, but depending on the financing stage a

different type of deadline is optimal. At a soft deadline, insiders make a progress report and

receive financing for the next stage if and only if the progress report reveals that the project is still

profitable to pursue. At a hard deadline, financing is terminated regardless of whether the project

is still profitable to pursue. Soft deadlines are optimal early on (in the unconditional financing

stage) and hard deadlines are optimal in later stages.

Moreover, the model predicts an upward jump in startup valuation (i.e., project valuation) at

the beginning of a new financing stage, as new information is released and uncertainty is resolved

through insiders’ progress reports. Figure 2 illustrates that the principal’s value function F ∗t ,

representing the valuation of the project (startup firm), jumps at time t1 either up, if the agent

discloses no failure up to time t1, or jumps down to zero, if the agent discloses prior failure.

We also show that within venture capital contracts, insiders’ compensation and the provision of

financing should become more performance sensitive over time and in each subsequent stage. The

provision of unconditional (i.e., not performance sensitive) financing at the early stages of project

development limits agency rents. Finally, Section 3.2 below demonstrates that the optimal contract

13A review of the academic literature on venture capital financing can also be found in Gompers and Lerner (2001).

21



can be implemented by financing the project with debt and equity in multiple financing rounds.

This implementation has implications for the use of venture debt (González-Uribe and Mann (2020)

and Davis et al. (2020)). Alternatively, the optimal contract can be implemented using convertible

equity and convertible debt, as is common in venture capital financing. Note that even though

the implementation of the optimal contract is generally not unique, under any implementation the

principal’s stake in the project becomes less debt-like and more equity-like over time and across

stages. At the same time, the agent’s equity stake is gradually diluted.

R&D financing. Our model also has implications for optimal R&D financing within more general

types of firms as well as for the design of R&D projects and compensation contracts of R&D workers

(insiders). In particular, optimal financing of R&D projects involves several stages, whereby insiders

make occasional progress report and the continuation of financing is contingent on the outcomes

of these reports. Crucially, it is optimal for the financier to elicit less frequent progress reports at

the early stages of project development and more frequent progress reports at later stages.

Over time, the provision of financing becomes more sensitive to reported progress and per-

formance. Specifically, optimal financing of R&D projects involves an initial soft deadline before

which no progress report is made and funding is not terminated after poor outcomes. Thereafter,

financing is subject to a hard deadline at which financing is terminated with certainty. Also note

that as self-reported progress is subject to moral hazard, it is optimal to elicit progress reports

less frequently when moral hazard is severe. The compensation of R&D workers should involve

tolerance for failure, high rewards for success, and penalties for delays in project completion. R&D

workers’ incentives should be backloaded (across stages), which is achieved by increasing rewards

for success and failure upon entering a new stage. Importantly, R&D workers should be rewarded

for failure at later stages, but not for failure at early stages.

Executive compensation contracts. Alternatively, one can interpret the agent as the manager

(i.e., CEO) of a more general type of firm while the principal represents the firm’s investors or

outside shareholders. Golden parachutes, golden handshakes, and severance pay are instruments

that induce tolerance for failure in executive compensation contracts (Edmans and Gabaix (2016)).

Our model highlights that such instruments incentivize executives to fake or generate bad outcomes.

As a consequence, golden parachutes and severance pay should not be in place in early stages of

the contract (i.e., CEO tenure) and should decrease in size over time and in contract duration. In
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addition, our model implies that incentive pay (e.g., through stock based compensation) and the

threat of termination should be stronger in the presence of golden parachutes. Broadly interpreted,

stock based compensation and golden parachutes are complements for incentive provision.

3.2 Implementation

We demonstrate how to implement the optimal contract by financing the project with a mixture

of debt and equity. For the implementation, we consider a slightly different version of the optimal

contract that differs from the contract in Proposition 3 only in the values of (αt, γt) during the

disclosure stage (but this contract features the same deadlines (t1, T ) and the same unconditional

financing stage). In this contract, βt = γt = wt during the disclosure stage and αt = wt + φ/(Λp).

Proposition 6 in the Appendix demonstrates that this alternative contract is optimal and yields the

same payoffs for principal and agent as the contract from Proposition 3.14 Appendix D.1 presents

the details of our implementation. We give some intuition and the main findings below.

In our implementation, there are two financing rounds, at time t = 0 at the beginning of the

unconditional financing stage and at time t = t1 at the beginning of the disclosure stage. During

the first financing round at t = 0, the principal injects funds to facilitate project development over

the next stage until time t1. In exchange, the principal receives both debt and equity claims in the

project, while the agent retains the remaining equity. That is, the project is financed by issuing

debt and equity. During the unconditional financing stage, equity pays dividends only upon project

success. Debt including its interest is paid back during the unconditional financing stage only if the

project succeeds at time t ∈ [0, t1). On the other hand, if the project fails during the unconditional

financing stage, debt defaults.

Provided the project does not fail before time t1, there is a second financing round that is held

at the beginning of the disclosure stage at time t1. During the second financing round, the principal

contributes additional funds to continue project development. In exchange, the principal receives

additional equity in the project (from the agent), reducing (i.e., diluting) the agent’s equity stake.

That is, funds are raised by issuing equity. Existing debt (including interest) is not paid back during

the second financing round. Instead, debt including interest is paid back during the disclosure stage

upon project completion or at the deadline T (from the remaining funds that were not used in

project development). Any funds that are left after paying back debt are distributed as dividends

14The only difference between the alternative contract and the contract from Proposition 3 is that to incentivize
the agent not to fake failure during the disclosure stage, the principal boosts the agent’s rents by stipulating rewards
for publicly observed failure γt = βt rather than by stipulating excessive rewards for success.
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to equity holders. During the disclosure stage (but not during the unconditional financing stage),

funds allocated to the project exceed the face value of debt (plus accrued interest), so termination

of financing due to failure leads to full repayment of debt and dividend payouts to equity holders

generating rewards for failure for the agent. Note that in the above implementation, the project is

financed with debt and equity. Remarkably, during the first financing round, funds are raised by

issuing both debt and equity. In contrast, during the second financing round, funds are raised by

only issuing (selling) equity. Interestingly, in our implementation, debt resembles a credit line with

time-increasing interest rate that the principal grants to the project.

In the context of venture capital financing, our findings suggest that financing with both equity

and debt is optimal, which rationales the use of venture debt (González-Uribe and Mann (2020),

and Davis et al. (2020)) and credit lines granted by venture capitalists.15 That is, the use of

venture debt and equity financing are complementary, consistent with Davis et al. (2020) who find

that venture debt is often a complement to equity financing, with over 40% of all financing rounds

including some amount of debt. The implementation of the optimal contract also predicts that the

use of venture debt is more prevalent in early financing stages. Specifically, startup firms (should)

rely on venture debt mostly in early financing stages, while they (should) rely more on equity

financing in later stages.

Finally, as discussed in Appendix D.1, we emphasize that the implementation of the optimal

contract is generally not unique. Therefore, the optimal contract can be implemented in an al-

ternative way, also using convertible debt and convertible equity, as is common in venture capital

financing. Although the implementation of the optimal contract is generally not unique, it holds

that under any implementation of the optimal contract, the principal’s stake in the project becomes

less debt-like and more equity-like over time and across stages. At the same time, the agent’s equity

stake is gradually diluted.

3.3 Project characteristics and financing contracts

We study how project characteristics shape the design of optimal financing contracts. Figure 3

plots the financing deadline T , the reward for failure at the beginning of the disclosure stage βt1 ,

and the relative length of the unconditional financing stage t1/T against 1/Λ (upper three panels)

and φ (lower three panels). Observe that βt1 is the highest reward for failure attainable and proxies

15Relatedly, Robb and Robinson (2014) and Hochberg, Serrano, and Ziedonis (2018) document that young firms
and startup firms heavily rely on debt financing.
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Figure 3: Comparative statics w.r.t. length of project development phase 1/Λ and the agency
parameter φ. The baseline parameters are µ = 50, κ = 10, p = 0.5, π = 0.5, and φ = 1.

overall/average rewards for failure within the optimal contract.16

Notably, the financing deadline T is hump-shaped in the (average) duration of the project

development phase 1/Λ, as shown in Corollary 1 and illustrated in Figure 3. The intuition is as

follows. Projects with a long development phase naturally require financing over a longer horizon.

However, projects with a long development phase are at the same time subject to more severe moral

hazard, which makes financing such projects less profitable.

Figure 3 also illustrates that projects with a sufficiently short development phase are more

suitable (or likely) to receive unconditional financing early on. The reason is that projects with a

short development phase are financed with a short deadline, which curbs the temptation to hide

bad outcomes and hence facilitates the provision of unconditional financing. As a result, the model

implies that for short term projects the provision of financing is less sensitive to reported progress

yet subject to a strict deadline.

In addition, rewards for failure tend to be higher for moderate values of 1/Λ. Hence, opti-

mal financing contracts for projects with a sufficiently short or long development phase stipulate

low rewards for failure yet exhibit tolerance towards failure through the provision of uncondi-

tional financing. These findings imply for executive compensation contracts that the use of golden

16The reason for this is that βt = βt1 − φ(t1 − t) for t > t1.
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parachutes should be contingent on the horizon of corporate policies (i.e., the project horizon). In

particular, golden parachutes are less valuable for incentive provision when the horizon of corporate

policies is either sufficiently long or sufficiently short.

Last, the financing deadline T decreases in φ, while rewards for failure βt1 and the relative

length of the unconditional financing stage t1/T increase in φ. As a result, optimal financing con-

tracts for projects that are subject to severe agency conflicts involve a relatively long unconditional

financing stage (and soft deadline) that is followed by a relatively short disclosure stage (and hard

deadline). This finding also implies that the provision financing is less performance sensitive, when

moral hazard is more severe. The intuition is that because the provision of unconditional (not

performance-sensitive) financing limits agency rents, it is especially valuable when agency conflicts

are severe and φ is high. That is, because self-reported progress is subject to moral hazard, it

becomes optimal not to ask the agent to disclose failure when moral hazard is severe.

We conclude this section with the following corollary that provides analytical results regarding

the effects discussed above.

Corollary 1. Let π > 0 be sufficiently small. Then, the following holds:

1. T and βt1 increase in 1/Λ for 1/Λ sufficiently small and decrease in 1/Λ for 1/Λ sufficiently

large.

2. T decreases in φ and βt1 decreases in φ for φ sufficiently large.

3.4 Over- and under-provision of financing

In our model, moral hazard can lead to under-provision of financing (i.e., under-investment), when

contract termination before time τ precludes financing of a project with positive NPV. Moral

hazard can also lead to over-provision of financing (i.e., over-investment), which refers to financing

a project with negative NPV. Over-provision of financing may arise when the principal inefficiently

extends financing to a failed project (with negative NPV) during the unconditional financing stage.

To assess financing efficiency, we calculate the ex-ante probability of under-investment

PU := P(T < τ) = e−ΛT ,

i.e., the likelihood that the project is terminated before completion. Likewise, we calculate the
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Figure 4: Over- vs. under-investment. The baseline parameters are µ = 50, κ = 10, p = π = 0.5,
and φ = 1.

ex-ante probability of over-investment

PO = P(Unobserved Failure during [0, t1)) = (1− e−Λt1)(1− p)(1− π).

Another measure of financing efficiency is the expected length of the financing period E := E[T∧τA],

which captures the principal’s investment horizon. This quantity equals 1/Λ in the second-best case

and without frictions. Hence, E < 1/Λ indicates under-provision of financing and E > 1/Λ indicates

over-provision of financing. Appendix D.4 shows how to calculate E . Note that we have optimal

financing (i.e., PO = PU = E − 1/Λ = 0) in the second-best environment (when π = 1) but under-

investment (i.e., 0 = PO < PU and E < 1/Λ) under a full disclosure contract. Conversely, the

optimal contract with distinct financing stages or, broadly interpreted, stage financing as such is

more likely to cause over-investment (i.e., PO > 0 and E > 1/Λ).

Figure 4 displays the ex-ante probabilities of under- and over-investment PU and PO, the

probability of over-investment conditional on under- or over-investment PO/(PO + PU ), and the

average length of the financing period E in dependence of both 1/Λ (upper three panels) and φ

(lower three panels). Figure 4 shows that, on average, there is under-provision of financing for

projects with a long development phase, whereas there is over-provision of financing for projects
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with a short development phase. That is, investors tend to terminate financing for long-term (short-

term) projects inefficiently early (late). In other words, moral hazard increases the principal’s

investment horizon (i.e., financing deadline) for short term projects but decreases the investment

horizon for long-term projects, relative to the benchmark without frictions. Likewise, Figure 4 also

illustrates that mild agency conflicts induce over-provision of financing (i.e., over-investment) but

severe agency conflicts induce under-provision of financing (i.e., under-investment).

Note that over-investment in our model is an extreme case in that it corresponds to financing

a project that does not produce a payoff at all. The reason is that we have normalized payoffs

after failure to zero. Section 4 considers a model variant in which the project may generate payoff,

when it receives financing despite failure (which might be inefficient). Under these circumstances,

over-investment implies that the project generates more payoffs than is efficient according to the

NPV criterion.

Finally, in the context of venture capital financing, the model predicts venture capital over-

investment in projects that generate (preliminary) results relatively quickly and allow to capitalize

on these results — such as pharmaceutical or biotech projects — and under-investment in projects

that do not generate (preliminary) results quickly — such as clean energy projects — which is

consistent with the findings of Nanda, Younge, and Fleming (2014).17

4 Financing unicorns

We relax the assumption that a failed project does not generate payoff. Consider that a failed

project may also generate (terminal) payoff µ. However, unlike a successful project, which generates

payoff µ immediately at time τ , a failed project generates payoff µ with delay at time τλ > τ .

Terminal payoff µ is observable and contractible. As in the baseline model, failure at time τ is

observed by the agent but observed by the principal only with probability π ∈ [0, 1]. Thus, the

principal may not be able to distinguish between whether it is immediate success at time τ or

“failure” and later “success” at time τλ that has led to the terminal payoff. In addition, the

principal cannot verify failure or reports thereof. This setting is relevant when the terminal payoff

represents a certain goal or milestone in project development, whereby failure captures interim

bad outcomes that are hard for the principal to observe or verify. Thus, this setting can also be

interpreted as a multi-stage project.

17Pharmaceutical or biotech projects can generate intermittent results through experiments and/or have to adhere
to certain milestones set by the FDA. For a discussion, see, e.g., Kerr and Nanda (2015).
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The time τλ arrives at exogeneous rate λ > 0. Notably, over [τ, τv) the principal still incurs

financing costs κ so that delay is costly and the payoff of a failed project is lower than the payoff of

a successful project.18 On average, a failed project takes 1/λ units of time to generate payoff and,

therefore, possesses at time τ after completion value (i.e., NPV):

µf := µ− κ

λ

while the value of a successful project equals µ. The NPV of the project before completion is then

NPV λ := pµ+ (1− p) max{µf , 0} − κ

Λ
,

where financing is optimally terminated after failure, if µf < 0.

To characterize the agent’s incentives to disclose failure, suppose the project has failed at time

t. Reporting failure immediately yields payoff βt. Delaying disclosure for dt units of time not only

yields benefits from running the project φdt but also entails the chance, i.e., λdt, that the failed

project generates payoff µ, leading to a reward αt. Hence, the agent is better off disclosing failure

at time t if and only if

βt ≥ (βt+dt + φdt)(1− λdt) + αtλdt,

which becomes for dt→ 0:

β̇t ≤ −(φ+ λ(αt − βt)) (23)

Notably, the incentive condition w.r.t. effort (11) implies αt > βt and hence an increase in λ tightens

the incentive condition (23). Intuitively, the prospect of a future breakthrough despite (interim)

failure provides the agent with incentives to hide failure and to continue project development under

the motto “Fake it till you make it.” The remainder of the solution is similar to the solution of the

baseline model and is thus relegated to Appendix C.

A measure of project risk is given by the variance of potential project outcomes, i.e., the

difference in project value after success and failure µ − µf = κ/λ. This measure of project risk

clearly decreases in λ (and does not depend on µ). An implication is that riskier projects are easier

to incentivize and hence easier for the principal to finance. Formally:

Corollary 2. Suppose that µf > 0 and λ is sufficiently small so that full effort at = 1 is optimal for

18The cost of delay may alternatively arise due to displacement risk from other technologies or due to investors’
time preference.
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all t ≥ 0. A mean preserving spread, which increases µ but decreases λ while holding the project’s

net present value NPV λ fixed, increases the principal’s payoff.

The underlying reason is that higher risk 1/λ relaxes the incentive constraint (23). When the

project is sufficiently risky, the agent is less inclined to continue operating the project in the hope

of reaching a breakthrough in the future, which generates incentives to disclose failure.

As a result, our model offers an explanation why venture capitalists seek to finance high risk start

ups, i.e., potential unicorns, even if this choice is not necessarily supported by the NPV criterion.

Interestingly, Gornall and Strebulaev (2020) and Gompers, Gornall, Kaplan, and Strebulaev (2020)

find evidence that unicorn startups are frequently over-valued. This is broadly consistent with the

notion that venture capital investors seek investments with high potential but high risk, thereby

boosting the valuation for such startup firms (possibly above the fundamental value).

In other words, our model predicts that risk-taking and risky investments reduce agency costs

and therefore might be optimal for venture capitalists. This implication is broadly consistent with

the findings of Nanda and Rhodes-Kropf (2013) who document venture capitalists’ risk-taking in

“hot markets.”

5 Optimal contracts with monitoring

In this section, we introduce the possibility that the principal can inspect (i.e., monitor) project

progress at a cost K > 0. Upon an inspection at time t, the principal learns whether the project

has failed up to time t. In contrast, an inspection does not generate information about the agent’s

effort up to and including time t.19 Also note that monitoring takes the form of a costly state

verification in the spirit of Townsend (1979).

As in Piskorski and Westerfield (2016) and Varas et al. (2020), we assume that the principal can

fully commit (at time zero) to an inspection policy. In addition, we assume that the cost K is not

prohibitively high which is formalized in Assumption 1, presented in Appendix B. In the following,

dMt = 1 indicates that the principal inspects the project at time t, whereby dMt ∈ {0, 1}.
19Similar to Piskorski and Westerfield (2016), it is possible to accommodate the possibility that an inspection at

time t allows the principal to also observe effort at.
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5.1 Monitoring and incentives

We start by discussing how inspections generate incentives to disclose failure truthfully, i.e., truth

telling incentives. For this sake, let us consider that the contract incentivizes disclosure of failure.

When the principal inspects the firm and learns that the agent is hiding failure, she can punish the

agent. The threat of punishment generates truth telling incentives. Because of the agent’s limited

liability, these truth telling incentives are maximized, when the principal terminates financing and

fires the agent upon detecting misbehavior.

Suppose that the project has failed at time t and that failure is privately observed by the agent.

The agent can hide failure maximally up to the next inspection date τMt = inf{s ≥ t : dMs = 1}

after time t. Notably, we conjecture and verify that the principal inspects the project periodically

at deterministic dates. The reason is that the principal’s value function is concave, which renders

randomization sub-optimal. Anticipating the next inspection at the (deterministic) date τMt , the

agent prefers to disclose failure truthfully at time t if and only if βt ≥ βs+(s−t)φ for all s ∈ (t, τMt ).

Taking the limit s→ t yields β̇t ≤ −φ, that is (8).

As failure can potentially occur at any time t, the incentive condition (8) must hold for all

times t at which there is no inspection (i.e., dMt = 0). That is, the principal provides incentives to

disclose failure both through inspections at deterministic dates and through punishments for delays

at all other dates. Also note that contract terms after time τMt do not affect the agent’s incentives

to disclose failure before time τMt .

As in the baseline version of the model, the incentive condition w.r.t. effort at is given by

αt ≥ wt(1−π)+ φ
Λp (that is, (11)), whereby wt = βt in optimum. Last, the principal can incentivize

the agent not to fake failure by verifying reported failure (i.e., inspecting the project upon disclosure

of failure). However, it turns out that within the optimal contract this is not necessary.20

5.2 Solving for optimal contract with monitoring

Let us consider a full disclosure contract with deadline T , and conjecture that the agent is never

paid for observed failure (i.e., γt = 0). The contract incentivizes truthful disclosure of failure for all

times t ∈ [0, T ∧ τ ] so that βt = wt and βt satisfies (8) whenever there is no inspection. Condition

(8) constrains the choice of the level of w (i.e., β) and thus w (i.e., β) enters the principal’s dynamic

20If the principal checks reported failure with probability Θ̂t ∈ [0, 1], the agent is detected faking failure with
probability Θ̂t, in which case her payoff is zero. As a result, the incentive constraint (7) is modified to Wt ≥ (1−Θ̂t)βt.
Within the optimal contract, Wt > βt for t > 0 so that the principal optimally chooses Θ̂t = 0.
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optimization as state variable, while the change in w (i.e., β) is a control variable. Along the optimal

path the agent’s continuation value W can be expressed as function of w (that is, Wt = W (wt)),

so that w summarizes all contract relevant information and hence is the only state variable for the

principal’s dynamic optimization.

As a result, the principal’s payoff at any time t with wt = w equals F (w), where F (·) is the

principal’s value function. The starting value w0 is chosen without constraints to maximize the

principal’s payoff at time zero F (w0), so that F ′(w0) = 0. Because rewards for failure after an

inspection do not affect truth telling incentives before an inspection, the principal can choose w at

(i.e., just after) an inspection without constraints to maximize her continuation payoff. Therefore,

the principal optimally sets w = w0 and realizes continuation payoff F (w0), whenever an inspection

indicates that the project is still profitable to pursue (i.e., has not failed so far).

Once w = 0, the principal cannot provide truth telling incentives anymore by decreasing rewards

for failure β and punishing the agent for delays. To maintain sufficient incentives, the principal

must therefore either terminate financing or inspect the project. Because in optimum the agent

does not hide failure, the inspection yields positive outcomes and the rewards for failure are set to

w = w0, leading to

F (0) = max{F (w0)−K, 0}. (24)

We assume that monitoring is optimal, i.e., F (w0) > K. Hence, the principal inspects the project

at all times t with wt = 0.

The principal’s value function F (w) solves the HJB equation

ΛF (w) = max
ẇ,α

{
Λpµ− κ− Λ((1− p)(1− π)w + pα) + F ′(w)ẇ

}
s.t. (7), (8), and (11). (25)

The value function satisfies the boundary conditions (24) and F ′(w0) = 0. Since F (w) increases

for w ∈ [0, w0], it follows that ẇ = −φ, so that condition (8) is tight. The HJB equations (13) and

(25) only differ in their boundary conditions and hence can be derived using similar arguments.

Notably, there is no financing deadline, and project development is not terminated before com-

pletion. The lack of early termination increases the value of the agent’s stake in the project so that

Wt > wt for all t. This in turn generates incentives not to fake bad outcomes and hence makes

it possible to reduce the agent’s rewards for success, subject to motivating effort. As a result,

αt = wt(1− π) + φ
Λp and, unlike in the baseline model without monitoring, the incentive condition

w.r.t. effort (11) is tight. That is, monitoring reduces the cost of truth telling incentives. Therefore,
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the optimal contract with monitoring always incentivizes disclosure of failure and, in particular,

does not feature an unconditional financing stage.

Lemmata 2 and 3 in Appendix A derive

w0 =

(
2Kφ

Λ(1− π)

)1/2

− χ with 0 < χ ∈ o
(
K

3
2

)
,

F (w) = µp− κ+ φ

Λ
− w(1− π)− (K + w0(1− π))

(
e
−Λw

φ

1− e
−Λw0
φ

)
, (26)

W (w) =
(1− π)w0e

−Λw
φ

1− e−
Λw0
φ

+
πφ

Λ
+ (1− π)w.

The following Proposition summarizes the findings of this section.

Proposition 4. The optimal contract features no deadline (i.e., T = ∞), always incentivizes

truthful disclosure of failure, and inspections occur at all times t with wt = 0. For all t ≥ 0,

αt = wt(1 − π) + φ
Λp , βt = wt, dwt = −φdt + w0dMt. The principal’s value function F (w) solves

(25) subject to (24) and F ′(w0) = 0.

In summary, the optimal contract features several identical financing stages and periodic inspec-

tions at deterministic dates. During each financing stage, the contract stipulates time-decreasing

rewards for success and failure, effectively punishing the agent for delays. If the project is not

completed by the end of the financing stage, the principal inspects the project and grants financing

for the next stage if and only if an inspection reveals that the project is still profitable to pursue.

Whenever a new financing stage begins, stipulated pay for success and failure increase so that the

agent is effectively rewarded for positive inspection outcomes.21

5.3 Results and implications

The form of the optimal contract with monitoring has interesting implications. First, recall that

the principal inspects the project whenever w = 0, in which case w is set to w = w0 after the

inspection. As w decreases with ẇt = −φ at all other dates, the time between two inspection

dates equals w0
φ (provided the project is not completed in the meantime). For K sufficiently small,

w0 '
(

2Kφ
Λ(1−π)

)1/2
increases in 1/Λ, implying that monitoring is less frequent for projects with a

21If monitoring produced false-negative results (i.e., wrongly indicates failure) with some probability π′ > 0, the
agent’s continuation value Wt would indeed jump up after a positive inspection outcome. With perfect monitoring
technology (i.e., π′ = 0), continuation value Wt is smooth. Thus, the agent is rewarded by an increase in pay for
success and failure (αt, βt) but not by an increase in continuation value.
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long development phase. Conversely, incentives by means of punishments for delays and rewards

for failure are stronger for such projects. The reason is that long term projects not only have a long

development phase but also are less likely to produce bad outcomes early, which renders it optimal

to monitor later and less frequently. In addition, the frequency of monitoring — captured by the

inverse of w0
φ — increases in the severity of moral hazard φ and 1−π.22 That is, more severe moral

hazard φ requires both more frequent monitoring and harsher punishments for delays in incentive

provision.

Second, punishments for delays — such as contract termination — and monitoring are substi-

tutes for the provision of truth telling incentives. In addition, monitoring leads to lower rewards for

success and failure. Overall, monitoring substitutes for performance pay and rewards for failure in

incentive provision. In the context of executive compensation, the model predicts that monitoring

by shareholders and the board of directors or shareholder activism is negatively related to the use

of golden parachutes.

Third, (the possibility of) monitoring induces more performance sensitive and hence more ef-

ficient financing. In particular, financing is terminated at the time of project completion and

therefore not subject to under- or over-investment. As Figure 3 highlights that short-term (long-

term) projects are prone to over-provision (under-provision) of financing, the model implies that

monitoring curbs the provision of financing (i.e., the principal’s investment horizon) for short-term

projects while boosting the provision of financing (i.e., the principal’s investment horizon) for long-

term projects. Likewise, as Figure 3 also shows that projects with mild (severe) moral hazard are

prone to over-provision (under-provision) of financing, monitoring curbs (boosts) the provision of

financing when moral hazard is mild (severe).

6 Further results and robustness

6.1 Moral hazard versus adverse selection

In our model, moral hazard arises because effort is hidden and costly. The severity of moral hazard

is captured by the agent’s private benefits from shirking φ. In addition, failure is hard for the

principal to observe or verify. Imperfectly observable failure induces another agency problem that

can be interpreted as an adverse selection problem and its severity is captured by 1−π. The reason

is that the principal provides truth telling incentives to the agent under the assumption that the

22Note that for w0 '
(

2Kφ
Λ(1−π)

)1/2

, it follows that w0
φ
'
(

2K
Λ(1−π)φ

)1/2

decreases in φ.
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Figure 5: Over- vs. under-investment. The baseline parameters are µ = 50, κ = 10, p = 0.5, and
φ = 1.

agent (already) has privately observed project failure.

Proposition 3 shows that t1 → 0 as π → 0 and t1 → T as π → 1 and Figure 3 shows that t1/T

increases in φ. That is, the provision of unconditional financing is valuable when moral hazard is

severe (i.e., when φ is large) but adverse selection concerns are mild (i.e., when 1 − π is low). In

other words, the provision of unconditional financing is suitable for dealing with moral hazard but

less suitable for dealing with adverse selection. As a result, the provision of financing is more (less)

performance sensitive when adverse selection (moral hazard) is more severe.

The lower three panels of Figure 4 plot the (scaled) probabilities of over- and under-investment

and the average length of the financing period against φ, capturing the severity of moral hazard,

while Figure 5 plots the same quantities against 1− π, capturing the severity of adverse selection.

Figures 4 and 5 demonstrate that mild adverse selection concerns (moral hazard problems) induce

over-provision of financing (i.e., over-investment) whereas severe adverse selection concerns (moral

hazard problems) induce under-provision of financing (i.e., under-investment).

6.2 Robustness

Our model entails a number of assumptions that are mainly designed to enhance simplicity and

to facilitate a clear analysis of the main forces in a tractable model. Below, we discuss these

assumptions and the robustness of the results.

Exogenous project completion. Existing dynamic contracting papers — such as Mason and

Välimäki (2015), Green and Taylor (2016), and Varas (2017) — study how to motivate the agent

to complete a project. In these papers, completion always corresponds to “success” and the only

bad outcomes that can arise are completion delays. Notably, the agent is never tempted to hide
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project completion/success, but — in Green and Taylor (2016) and Varas (2017) — the agent is

tempted to fake success (i.e., good outcomes). The innovation in our paper is that it considers the

risk of project failure when the agent can hide or fake project failure (i.e., bad outcomes).

In our model, the assumption of an exogenous completion rate is made for simplicity and

theoretical clarity and is not consequential. It offers the advantage that we obtain a clean second-

best benchmark when failure is observable and contractible. Departing from this benchmark, we are

able to clearly identify how imperfect observability of failure affects incentive provision. Appendix

D.2 shows that we obtain the same results employing an alternative framework, in which the agent

controls project completion while the project is subject to failure risk. Likewise, one could extend

our baseline model to a model of multi-tasking in which the agent controls both project completion

and the project’s propensity to succeed or fail.

Unobservable success. Throughout this paper, we have assumed that success is perfectly ob-

servable and contractible. This assumption intuitively reflects that the agent is tempted to conceal

bad outcomes rather than good outcomes. Even though not modelled explicitly, disclosure of good

outcomes could yield private benefits to the agent, e.g., related to the agent’s reputation or career

concerns, whereas disclosure of bad outcomes could yield private dis-utility.

We show that our findings do not change substantially when success is imperfectly observable

but verifiable. Consider that both failure and success are (publicly) observed by the principal only

with probability π and privately observed by the agent otherwise. To obtain a non-trivial solution,

at least one of the two possible outcomes, success and failure, must be verifiable. We assume that

success is verifiable, as it is likely to be more difficult to fake good outcomes rather than bad

outcomes.

To characterize the agent’s incentives to disclose success, note that the agent can always delay

disclosure for a unit of time and derive private benefits φdt. By the same arguments leading to

(8), we obtain that the agent prefers to disclose success truthfully if and only if α̇t ≤ −φ. This

condition is obviously not satisfied in the optimal contract from Proposition 3 because αt exhibits

a jump at time t1 when the unconditional financing stage ends. However, during the disclosure

stage and within an (optimal) full disclosure contract, it follows that α̇t ≤ −φ. This implies that

the disclosure stage of the optimal contract is unaffected by whether success is observable.23

Appendix D.3 extends this intuition and demonstrates that the optimal contract does not change

23Recall that — by Propositions 2 and 3 — for t ≥ t1: αt = (1− π + π/p)wt + φ/(Λp), so that α̇t ≤ ẇt = −φ.
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much when success is imperfectly observable: it features i) an unconditional financing stage [0, t1)

during which the agent discloses neither success nor failure (yet is rewarded if success is observed),

and ii) a disclosure stage that looks similar to the disclosure stage of Proposition 3.

7 Conclusion

We study a dynamic contracting model in which a principal hires an agent to develop an innovative

project. Crucially, project failure is hard for the principal to observe or verify and the agent can

hide or fake failure, leading to a tension in incentive provision. The optimal contract consists

of two distinct stages: i) an unconditional financing stage and ii) a disclosure stage. During

the unconditional financing stage, financing is guaranteed and the contract does not incentivize

disclosure of failure. During the disclosure stage, the contract incentivizes disclosure of failure and

the principal finances the project until either a deadline is reached or the project is completed. Then,

the agent receives time decreasing rewards for success and failure and incurs harsh punishments

for delays. In the optimal contract, the provision of financing becomes more performance sensitive

following completion delays, i.e., following poor performance. Our results also imply that moral

hazard may lead to over- or under-provision of financing relative to the net present value criterion.

Last, we characterize optimal dynamic monitoring and study the role of monitoring in incentive

provision. The paper generates a set of implications for venture capital financing and the design of

executive compensation contracts.

We employ a tractable framework that features a single project development stage and only two

possible outcomes upon project completion. While this allows us to derive the optimal contract

analytically, it would be interesting to analyze more involved settings. A natural extension is to

study incentive provision for information disclosure in multistage settings, as in Green and Taylor

(2016), or when project outcomes are drawn from a continuum rather than from a binary set.

However, we note that the analysis is technically challenging if outcomes that can take values from

a continuum are unobservable to one player (i.e., the principal) in a dynamic game, as is illustrated

in a different context by Duffie and Lando (2001). Another avenue for future research is to study

the agent’s incentives to hide and fake positive rather than negative outcomes.
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Appendix

A Closed form expressions

Lemma 1. The ODE (13) subject to F (0) = F ′(w0) = 0 has the closed form solution (15).

Proof. We just verify that the proposed function indeed is the desired solution to the ODE (13)
subject to the stipulated boundary conditions F (0) = F ′(w0) = 0.

Take (15):

F (w) =
(
µp− κ

Λ

)(
1− exp

(
−wΛ

φ

))
− w

and differentiate to obtain

F ′(w) =
(
µp− κ

Λ

) Λ

φ
exp

(
−wΛ

φ

)
− 1.

Define for any function F (w) the operator

DF (w) = ΛF (w) + F ′(w)φ− (Λpµ− κ− Λw − φ),

and note that DF (w) = 0 if and only if F (w) solves (13) (under the optimal controls). We use
above expressions for F (w) and F ′(w) and obtain

DF (w) =Λ

[(
µp− κ

Λ

)(
1− exp

(
−wΛ

φ

))
− w

]
−(Λpµ− κ− Λw − φ)− φ

[(
µp− κ

Λ

) Λ

φ
exp

(
−wΛ

φ

)
− 1

]
= 0.

Next, we verify that F (0) = 0 and F ′(w0) = 0 with w0 from (16). It is immediate to see that
F (0) = 0. Next recall that

w0 =
φ

Λ
ln

(
Λµp− κ

φ

)
,

so that

F ′(w0) =
(
µp− κ

Λ

) Λ

φ

φ

Λµp− κ
− 1 = 0.

The proof is complete by virtue of the Picard-Lindeloef theorem, ensuring uniqueness of the solution.

Lemma 2. The ODE (25) subject to F ′(w0) = F (w0)−K − w0 = 0 has the closed form solution

as stipulated in (26). In addition, w0 < w =
(

2Kφ
Λ

)1/2
.

Proof. We just verify that the proposed function indeed is the desired solution to the ODE (25)
subject to the stipulated boundary conditions F (w0)− F (0)−K = F ′(w0) = 0.

Take

F (w) = µp− κ+ φ

Λ
− w(1− π)− (K + w0(1− π))

(
e
−Λw

φ

1− e
−Λw0
φ

)
.
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and differentiate w.r.t. w to obtain

F ′(w) = −(1− π) +
(K + w0(1− π))Λ

φ

(
e
−Λw

φ

1− e
−Λw0
φ

)

Use ẇ = −φ and α(w) = w(1− π) + φ/(Λp) and define for any function F (w) and w∗ the operator

DF (w) = ΛF (w)− F ′(w)ẇ − (Λpµ− κ− Λ(w(1− π) + p(α− w(1− π))))

= ΛF (w) + F ′(w)φ− (Λpµ− κ− Λw(1− π)− φ),

and note that DF (w) = 0 if and only if F solves (25) under the optimal controls. We use the above
expressions for F (w) and F ′(w) and obtain

DF (w) =Λ

[
µp− κ+ φ

Λ
− w(1− π)− (K + w0(1− π))

(
e
−Λw

φ

1− e
−Λw0
φ

)]

−(Λpµ− κ− Λw(1− π)− φ)− φ

[
(1− π)− (K + w0(1− π))Λ

φ

(
e
−Λw

φ

1− e
−Λw0
φ

)]

Simple algebra yields indeed DF (w) = 0.

The proof is complete after w0 from (26) and verifying that

F (w0)− F (0)−K = 0

F ′(w0) = 0.

holds. This can be done by straightforward algebra. The first condition can be verified calculating

F (w0)− F (0) = −w0(1− π)− (K + w0(1− π))
e
−Λw0

φ

1− e
−Λw0
φ

+ (K + w0(1− π))
1

1− e
−Λw0
φ

= K,

as desired.

For the second condition take the first order condition F ′(w0) = 0. Note that

F ′(w0) ∝ Λ(K + w0(1− π))e
−Λw0

φ −
(

1− e
−Λw0
φ

)
φ(1− π)

∝ Λ(K + w0(1− π))−
(
e

Λw0
φ − 1

)
φ(1− π)

A unique solution to F ′(w0) = 0 exists because F ′(0) > 0, limw0→∞ F
′(w0) < 0 and F ′′(w) < 0.

A Taylor expansion (i.e., ex = 1 + x+ x2/2 + o(x3)) and simplifications yield

Λ(K + w0(1− π))−
(
e

Λw0
φ − 1

)
φ(1− π) = ΛK − Λ2w2

0(1− π)

2φ
− ξ,

where 0 < ξ ∈ o(K3). It follows that

w0 =

(
2Kφ

Λ(1− π)

)1/2

− χ,
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where χ ∈ o(K3/2), implying that

w0 < w =

(
2Kφ

Λ(1− π)

)1/2

.

The proof is complete by virtue of the Picard-Lindeloef theorem, ensuring uniqueness of the solution.

Lemma 3. Let ∆W (w) = W (w)− w under the optimal contract with monitoring. The ODE

(∆W )′(w)ẇ = Λ∆W (w) + Λπw (27)

with ẇ = −φ and ∆W (0) = ∆W (w0) + w0 has the unique solution on [0, w0].

∆W (w) =
(1− π)w0e

−Λw
φ

1− e−
Λw0
φ

+ π

(
φ

Λ
− w

)
.

Hence:

W (w) =
(1− π)w0e

−Λw
φ

1− e−
Λw0
φ

+ π

(
φ

Λ
− w

)
+ w.

Proof. We just verify that the proposed function indeed is the desired solution to the ODE subject
to the stipulated boundary conditions.

We differentiate the candidate solution:

(∆W )′(w) = −φ
Λ

(1− π)w0e
−Λw

φ

1− e−
Λw0
φ

− π.

Define
D∆W (w) = Λ∆W (w)− (∆W )′(w)ẇ + Λπw,

and note that DF (w) = 0 if and only if F (w) solves (27) with ẇ = −φ. Then use (∆W )′(w) and
∆W (w) to evaluate D∆W (w):

D∆W (w) = Λ

[
(1− π)w0e

−Λw
φ

1− e−
Λw0
φ

+ π

(
φ

Λ
− w

)]
− φ

[
φ

Λ

(1− π)w0e
−Λw

φ

1− e−
Λw0
φ

− π

]
+ Λπw = 0.

In addition, note that

∆W (0)−∆W (w0) = πw0 +
(1− π)w0(1− e−

Λw0
φ )

1− e−
Λw0
φ

= w0,

as desired. This concludes the proof by virtue of the Picard-Lindeloef Theorem, ensuring uniqueness
of the solution.

Lemma 4. Fix w0 > wL > 0. The ODE (19) with ẇ = −φ, α − w(1 − π) = φ/Λp, and (20) has
the following closed form solution on (wL, w0]:

f(w) =
(
e−B(wL)(F (wL)(1− q(wL))− wL)

)
eB(w) + eB(w)

∫ w

wL

e−B(x)a(x)dx.
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with

F (w) =
(
µp− κ

Λ

)(
1− exp

(
−wΛ

φ

))
− w and B(w) =

−(p+ (1− π)(1− p))
(1− p)(1− π)

e
−Λ(1−p)(w0−w)

φ

a(w) =
(1− q(w))Λp(µ− w(1− π))− (1− q(w))φ− κ

φ
and q(w) =

(
1− e−

Λ(1−p)(1−π)(w0−w)
φ

)
Proof. After substituting the optimal controls α = w(1 − π) + φ/(Λp) and ẇ = −φ, the ODE to
solve becomes

f ′(w) =
1

φ

(
(1− q(w))Λp(µ− α(w))− κ− (Λ(p+ (1− p)(1− π)(1− q(w))f(w)

)
.

This is a first order linear ODE of the general form

f ′(w) = a(w) + b(w)f(w)

with

a(w) =
(1− q(w))Λp(µ− α(w))− κ

φ
=

(1− q(w))Λp(µ− w(1− π))− (1− q(w))φ− κ
φ

and

b(w) =
−Λ(1− q(w))(p+ (1− p)(1− π)

φ
=
−Λ(p+ (1− p)(1− π))e

−Λ(1−p)(1−π)(w0−w)
φ

φ

Note that

B(w) =
−(p+ (1− π)(1− p))

(1− p)(1− π)
e
−Λ(1−p)(w0−w)

φ

is anti-derivative of b(w) in that B′(w) = b(w). The fundamental theorem of calculus implies that

A(w) =

∫ w

wL

e−B(x)a(x)dx

is anti-derivative of e−B(w)a(w).

It is well known that the first order linear differential equation of form f ′(w) = a(w)+b(w)f(w)
admits the general solution

f(w) = CeB(w) + eB(w)

∫ w

wL

e−B(x)a(x)dx

with constant C. We solve for C, using the boundary condition

f(wL) = F (wL)(1− q(wL))− q(wL)wL,

which yields
C = e−B(wL)(F (wL)(1− q(wL))− wL),

as desired.

41



B Omitted Proofs

To start with, note that, because dct = 0 for t > τA, wage payments c (i.e., (28)) can be rewritten
as

dct =
(
αt1{Success at time t} + βt1{Failure report at time t} + γt1{Failure observed at time t}

)
1{t≤τA}. (28)

That is, because the project yields maximally once failure or success, the values of αt, βt, and
γt after time τA (i.e., for t > τA) are irrelevant. This observation is convenient since we do
not (always) have to explicitly distinguish between the two scenarios τA < t and τA > t, when
describing αt, βt, γt.

Throughout, we define the agent’s expected reward for failure at time t as

rt := (1− π)wt + πγt, (29)

where w is defined as in (10). To ease the exposition, we refer to “the project fails at time t but
failure is not observed by the principal” as “hidden failure”. Likewise, “the project fails at time t
and failure is observed by the principal” is called “public failure”.

Last, as is standard in the literature on optimal contracts, we call a contract C incentive com-
patible if C induces full effort (i.e., at = 1 for t ≤ T ∧ τ) and truthful disclosure of failure, whenever
the principal asks the agent to disclose failure.

B.1 Agent’s incentive compatibility

Lemma 5. A contract C induces truthful disclosure of failure (i.e., τA = τ with certainty) from
time t′ onwards if and only if (7), (8) hold for all t ∈ [t′, T ] and T < ∞. It induces full effort
at = 1 for all t ∈ [0, T ∧ τ ] if and only if αt ≥ rt + φ/(Λp) for all t ∈ [0, T ∧ τ ].

Proof. Without loss of generality, consider for the proof t′ = 0. First, consider any time t ≥ τ and
that the project has failed already at time τ and failure has been privately observed by the agent.
Then, if the agent has not reported failure yet up to time t, his (continuation) payoff becomes

wt := max
τA∈[t,T ]

[φ(τA − t) + βτA ], (30)

given a contract with deadline T ≥ t. The above expression for wt is maximized for τA = t, only
if ∂wt

∂τA
= β̇τA + φ ≤ 0 for τA = t, which is equivalent to (8) and a necessary condition for truthful

disclosure of failure. Also note that since the project may complete at any time t ∈ [0, T ], truthful
disclosure of failure requires ∂wt

∂τA
|τA=t≤ 0 for all t ∈ [0, T ]. That is, β̇t = ẇt ≤ −φ must hold for

all t ∈ [0, T ]. After integrating, we obtain βs ≤ βt − (s− t)φ for all s ∈ [t, T ]. Because the agent’s
limited liability requires βs ≥ 0 at any time s and because it is clear that βt < ∞, it follows that
T <∞.

On the other hand, if (8) holds for any t ∈ [0, T ] with β0 < ∞ and T < ∞, it follows that
βt ≥ βs + (s − t)φ for any s ≤ T , so that wt is maximized for τA = t for any t ∈ [0, T ] and the
contract induces τA ≤ τ . Hence, wt = βt for any t ∈ [0, T ∧ τ ].

Third, take now t < τ , let rt = (1 − π)wt + πγt and note that the agent’s continuation payoff
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reads

Wt :=

∫ T

t
e−

∫ s
t Λ(s−t)

(
Λ((1− pas)rs + pasαs) + φ(1− as)

)
ds (31)

=

∫ T

t
e−

∫ s
t Λ(s−t)

(
Λ(rs + pas(αs − rs)) + φ(1− as)

)
ds, (32)

if he chooses τA ≥ τ > t. On the other hand, deviating and reporting τA = t < τ yields payoff βt,
so that truthful disclosure of failure, i.e., τA = τ with certainty, requires (7) (i.e., Wt ≥ βt) to hold
for any t, with Wt defined in (31).

Fourth, note that at any time t < τ , effort {as}{s∈[t,T∧τ ]} maximizes Wt (see (31)) if and only
if it maximizes pointwise (i.e., for all s ≥ t) the (scaled) integrand of the expression for Wt:

Λ(rs + pas(αs − rs)) + φ(1− as)

for all s ∈ [t, T ]. As a result, as = 1 for all s ≥ t and therefore at = 1 for all t ∈ [0, T ∧ τ ] if and
only if αt ≥ rt +φ/(Λp), i.e., with βt = wt, if and only if (11) holds for all t ∈ [0, T ∧ τ ]. This holds
for any T ≥ 0, even for T =∞. The proof is now complete.

B.2 Proof of Proposition 1

Proof. Throughout, due to the observability of failure it follows that wt = βt. The previous Lemma
tells us that incentive compatibility requires αt ≥ γt + φ/(Λp), where γt = rt.

For any t < τ , the principal’s payoff can be written as

Ft =

∫ T

t
e−Λ(s−t)

(
Λp(µ− αs)− Λ(1− p)γs − κ

)
ds.

Given a deadline T , the payoff Ft is maximized if {αs, γs}s≥t maximize pointwise the integrand,
while respecting incentive compatibility and limited liability. Subject to these constraints, the
integrand is maximized pointwise for γs = 0 < αs = φ/(Λp), so that the principal’s payoff becomes

Ft =
∫ T
t e−Λ(s−t)(Λpµ−φ− κ)ds. Because parameters satisfy φ ≤ κ and µp > 2κ/Λ, the integrand

is positive for any s ≥ t, so that the principal’s payoff is maximized by setting T = ∞. Hence,
the principal’s payoff becomes µp− φ+κ

Λ , while the agent’s payoff equals Wt = φ
Λ . As a result, the

proposed contract is optimal and incentive compatible (i.e., induces full effort).

B.3 Proof of Proposition 2

We prove a more general version of Proposition 2.

Proposition 5. Under the optimal full disclosure contract C, at time t with wt = w, the principal’s
value is given by (13). The contract C stipulates ẇt = −φ and termination at time T = inf{t ≥ 0 :
wt = 0}. Payments satisfy

αt − rt =
φ

Λp
+
π

p
(wt − γt) with γt ∈ [0, wt], (33)

and βt = wt = Wt. The value w0 solves F ′(w0) = 0.

The claim of Proposition 2 is attained by setting γt = 0.
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Proof. A full disclosure contract C = (c, T ) — by definition — induces βt = wt for all t ∈ [0, T ].
Denote the overall (expected) surplus by S, which is given at time t by

St = S(wt) =

∫ T

t
e−Λ(s−t)(Λpµ− κ+ φ(1− as))ds =

∫ T

t
e−Λ(s−t)(Λpµ− κ)ds,

with T = inf{t ≥ 0 : wt = 0} and full effort as = 1 for s ≥ t in optimum (as shirking is inefficient).
The surplus is split between the agent and the principal, so that the principal’s payoff F̂t (at any
time t) is given by:

F̂t = St −Wt ≤ St − wt =: Ft = F (wt),

where we used the incentive compatibility condition (7), Wt ≥ wt = βt. As a result, a contract is
optimal in the class of full disclosure contracts, if it maximizes for any time t ≥ 0 the continuation
surplus St subject to the incentive constraints (11), (8), subject to the agent’s limited liability, i.e.,
T = inf{t ≥ 0 : wt = βt = 0}, and achieves Wt = wt.

Notably, for any t ≤ T , St does not depend αt and monotonically increases in T . Incentive
compatibility requires ẇs ≤ −φ. Limited liability requires ws ≥ 0, which yields combined with
ẇs ≤ −φ that T−t ≤ wt/φ with equality if and only ẇs = −φ for all s ≥ t. That is, setting ẇs = −φ
for all s ≥ t and hence binding the constraint (8) maximizes the deadline and continuation surplus
St at time t. Note that the proposed contract from Proposition 2 sets ẇs = −φ for all s ≥ t and
therefore maximizes for any t with given value wt the (time to) deadline T and hence continuation
surplus St.

Next, for any wt, the proposed contract from Proposition 5 stipulates payments according to
(33); that is:

αt − rt =
φ

Λp
+
π

p
(wt − γt) and γt ∈ [0, wt]

and, therefore, the incentive constraint w.r.t. effort (11) is met for all t ∈ [0, T ]. Differentiate (31)
to obtain

Ẇt = ΛWt − Λ(rs + p(αt − rt)) = −φ,

whereby the second equality follows from plugging in (33) and rt = (1 − π)wt + πγt. Thus,
Ẇt = ẇt = −φ and, therefore, due to WT = wT = 0 it follows that Wt = wt for all t ∈ [0, T ] (so
that (7) is met). The starting value w0 is determined to maximize the principal’s ex-ante value
(and so must solve F ′(w0) = 0). As a result, the proposed contract must be optimal in the class of
full disclosure contracts.

The principal’s value can be written as

Ft = Et

[∫ T∧τA

t
(µdSt − κdt− dct)

]
=

∫ T

t
e−Λ(s−t)

(
Λ[p(µ− αs)− (1− p)rs]− κ

)
ds

=

∫ T

t
e−Λ(s−t)

(
Λ[p(µ− (αs − rs))− rs]− κ

)
ds

=

∫ T

t
e−Λ(s−t)

(
Λ(pµ− ws)− φ− κ

)
ds,

where the first equality uses integration by parts and the second equality plugs in αt − rt =
φ

Λp + π
p (wt − γt). Hence, the value function Ft indeed does not depend on the exact values of αt, γt

as long as (14) and γt ∈ [0, wt] hold.
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Differentiating for t ∈ [0, T ) yields

Ḟt = ΛFt − Λp(µ− wt) + φ+ κ.

One arrives at the ODE (13) (under the optimal controls) using

Ḟt =
dFt
dt

=
dFt
dwt

dwt
dt

= F ′(wt)ẇt. (34)

The closed-form solution is provided in Lemma 1 in Appendix A. Clearly, F is concave, so that
the first order condition F ′(w0) = 0 is sufficient in determining optimal w0. The proof is now
complete.

B.4 Proof of Proposition 3

We prove a more general version of Proposition 3.

Proposition 6. The optimal contract does not incentive disclosure of failure over some time period
[0, t1) and becomes a full disclosure contract with deadline T , as characterized in Proposition 2, after
time t1.

1. With wt1 = wL, the optimal time t1 is characterized by (20) and (21), while the value function
F ∗ is characterized by (22). In addition, t1 → 0 as π → 0 and t1 → T as π → 1.

2. The contract is terminated at time T = inf{t ≥ 0 : wt = 0} and w0 (and equivalently T )
maximizes the principal’s initial payoff F (w0).

3. αt = wt(1− π) + φ/(Λp) ≥ βt = γt = 0, ẇt = −φ < Ẇt < 0, and Wt < wt for all t ∈ [0, t1).

4. wt = βt = Wt and αt − rt = φ/(Λp) + π/p(wt − γt), and γt ∈ [0, wt] for all t ∈ [t1, T ).

The claim of Proposition 3 is attained by setting γt = 0.

The proof of Proposition 6 involves several steps, that are — for a better overview — separately
presented in the following Lemmata in this Section. Importantly, in Steps I through IV of the proof,
we conjecture that the optimal contract termination time (i.e., financing deadline) T is determinis-
tic. Then, Proposition 7 in Step V of the proof verifies that the optimal contract termination time
(i.e., financing deadline) T is indeed deterministic in that random termination does not improve
the principal’s payoff.

We give a brief overview on how we proceed. Step I demonstrates that whenever Wt ≥ wt, the
optimal contract incentivizes disclosure of failure from time t onward (until termination at time
T ). Step II shows that a full disclosure contract is not optimal when π > 0. Step III characterizes
the agent’s incentives, and her pay for success and failure. In addition, Step III shows that when
π > 0, then the optimal contract involves exactly two stages: i) an unconditional financing stage,
in which the agent is not incentivized to disclose failure, followed by a ii) disclosure stage, in which
the agent is incentivized to disclose failure. Step IV characterizes the principal’s value function.
Step V verifies that the optimal financing deadline T is deterministic, so that random termination
does not improve the principal’s payoff.

B.4.1 Step I

Lemma 6. At any time t < τ with Wt ≥ wt > 0, the optimal continuation contract is a full
disclosure contract with T − t = wt/φ, βs = ws = Ws, αs − rs = φ

Λp + π
p (ws − γs), and γs ∈ [0, ws]

for T ∧ τ > s ≥ t. In addition, there does not exist a time t with Wt > wt.
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Proof. Take any time t < T ∧ τ with Wt ≥ wt > 0. Given a deadline T , the continuation surplus is
clearly maximized only if i) the agent does not shirk (i.e., as = 1 for s ∈ [t, T ∧ τ ]) and ii) financing
is terminated once the project completes, in that τ = τA and T0 = T ∧ τ . This is because shirking
is inefficient, i.e., φ < κ.

Note that ẇs ≤ −φ and limited liability, ws ≥ 0, imply that T − t ≤ wt/φ, whereby the
continuation surplus increases in T − t. As a result, the maximum continuation surplus attainable
at time t is given by

St = S(wt) =

∫ T

t
e−Λ(s−t)(Λpµ− κ)ds with T − t =

wt
φ
.

The continuation surplus at time t is split between the agent and the principal so that

Ft +Wt ≤ St =⇒ Ft ≤ St −Wt. (35)

A full disclosure continuation contract from t onwards achieves the continuation surplus St, since
it i) precludes shirking, ii) induces τA = τ and T0 = T ∧ τ , and iii) optimally sets ẇs = −φ for
all s ≥ t and hence maximizes the time to deadline T − t. That is, (35) holds in equality, in that
Ft = St −Wt.

Note that the principal’s payoff Ft only depends on {αs, βs, γs}s≥t via

Wt =

∫ T

t
e−Λ(s−t)Λ(pαs + (1− p)rs))ds.

Because Wt ≥ wt, one way to deliver continuation payoff to the agent is by setting αs − rs ≥
φ

Λp + π
p (ws − γs), βs = ws, and γs ∈ [0, ws] for s ∈ [t, T ], where the inequality holds in equality for

all times s with Ws = ws. This is because Proposition 2 shows that within a full disclosure contract,
one way to deliver continuation payoff Wt = wt to the agent is to set αs − rs = φ

Λp + π
p (ws − γs),

βs = ws, and γs ∈ [0, ws] for s ∈ [t, T ]. Hence, higher pay for success is needed to deliver a higher
value Wt ≥ wt to the agent within a full disclosure contract.

This choice of payments satisfies incentive compatibility w.r.t. effort (4). In addition, this
choice of payments implies that Ws cannot drift below ws, so that Ws ≥ ws = βs for all s ∈ [t, T ]
and the incentive condition (7) is satisfied for all s ∈ [t, T ]. Moreover, due to βs = ws for all
s ∈ [t, T ], it follows that ẇs = β̇s = −φ, so that (8) is met for all s ∈ [t, T ]. Thus, the requirement
to deliver value Wt to the agent implies all incentive constraints that are relevant to incentivize
truthful disclosure of failure.

As a result, a full disclosure continuation contract from t onwards maximizes St and — because
it achieves (35) to hold in equality — the principal’s continuation payoff Ft subject to all relevant
incentive constraints, limited liability, and the requirement to deliver payoff Wt to the agent.

Let t = inf{s ≥ 0 : Ws = ws}. Because the optimal full disclosure continuation contract from t
onwards induces Ws = ws (when Wt = wt) for s ≥ t (see Proposition 5 and its proof) and because
a full disclosure continuation contract becomes optimal at time t once Wt = wt, it cannot be that
Ws > wt at any time s within the optimal contract. It follows that a full disclosure continuation
contract becomes optimal the first time t with Wt = wt, in which case αs − rs = φ

Λp + π
p (ws − γs),

γs ∈ [0, ws], ẇs = Ẇs = −φ and Ws = ws = βs for s ≥ t.
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B.4.2 Step II

Lemma 7. Let π ∈ [0, 1). A full disclosure contract is not optimal if and only if π > 0. Put
differently, if and only if π > 0, there exists time t1 > 0 such that the optimal contract does not
incentivize disclosure of failure over [0, t1).

Proof. Let π > 0 and suppose to the contrary that a (optimal) full disclosure contract C0 with
payoff F 0 is optimal. By Proposition 2 and its proof, this full disclosure contract (optimally) sets
wt = Wt = βt, β̇t = −φ, T = inf{t ≥ 0 : βt = 0} and αt = βt(1− π + π/p) + φ/(Λp) and γt = 0 for
all t ∈ [0, T ∧ τ ]. This particular choice of {αt, γt}t≥0 simplifies the notation.

Take some T > ∆ > 0 and define a contract C̃ as follows. C̃ sets αt = wt(1 − π) + φ/(Λp),
βt = γt = 0 for t < ∆ and, if the project is not completed by time ∆, it switches at time ∆ to
the (optimal) full disclosure contract in state w∆ = w0 −∆φ, with deadline T = w∆/φ, βt = wt,
ẇt = −φ, γt = 0 and αt = wt(1 − π + π/p) + φ/(Λp) for all t ∈ [∆, T ∧ τ ]. Note that the
agent optimally reports failure at time ∆, if the project fails before time ∆ and failure is privately
observed, implying that wt = (∆− t)φ+ β∆ for t ≤ ∆. We refer to “the project fails at time t but
failure is not observed by the principal” as “hidden failure”. Likewise, “the project fails at time t
and failure is observed by the principal” is called “public failure”.

We calculate for any t ∈ [0,∆] the likelihood of hidden failure up to time t, given by (18):

qt =
(

1− e−Λ(1−p)(1−π)t
)

= q0 + q̇0t+ o(t2) = Λ(1− p)(1− π)t+ o(∆2),

where we used a Taylor expansion around t = 0 and that o(t2) = o(∆2). Hence, the likelihood
of hidden failure over [0,∆] equals Λ(1− p)(1− π)∆ + o(∆2), the likelihood of public failure over
[0,∆] equals Λ(1 − p)π∆ + o(∆2), and the likelihood that the project succeeds over [0,∆] equals
Λp∆ + o(∆2). In addition, for all t ∈ [0,∆]

αt = αs + α̇s(t− s) + o(∆2) = αs + o(∆) for any s ∈ [0,∆),

as |s− t|= o(∆).

It follows that

ᾱ∆ := E[ατ |Success over [0,∆]] = αs + o(∆) for any s ∈ [0,∆),

which is the expected compensation in case of success over [0,∆]. Likewise, one calculates that the
expected financing costs over [0,∆] equal

κ̄∆ = κ(∆− P(Success or public failure over [0,∆])E[∆− τ |Success or public failure over [0,∆]]).

Hence, κ̄∆ = κ∆− o(∆2). Also note that

β̄∆ := E[βτ |Hidden failure over [0,∆]] = βs + o(∆) for any s ∈ [0,∆).

Here, β̄∆ is the expected compensation for hidden failure under the full disclosure contract.

Take arbitrary s ∈ [0,∆). The contract C̃ implements the same deadline T as C0 and yields
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payoff at time zero

F 1 = (1− e−Λ∆) (p(µ− ᾱ∆)− (1− p)(1− π)w∆)− κ̄∆ + e−Λ∆F (w∆) + o(∆2)

= Λ∆(p(µ− αs)− (1− p)(1− π)w∆)− κ∆ + (1− Λ∆)F (w∆) + o(∆2)

= Λ∆

(
pµ− w∆(1− π)− φ

Λ

)
− κ∆ + (1− Λ∆)F (w∆) + o(∆2),

where it was used in the last inequality that αs = φ/(Λp) +w∆(1− π) + o(∆) for s ∈ [0,∆) under
the contract C̃.

Next, we can write the payoff under the full disclosure contract as

F 0 = (1− e−Λ∆)
(
p(µ− ᾱ∆)− (1− p)(1− π)β̄∆

)
− κ̄∆ + e−Λ∆F (w∆) + o(∆2)

= Λ∆(p(µ− αs)− (1− p)(1− π)ws)− κ∆ + (1− Λ∆)F (w∆) + o(∆2)

= Λ∆

(
pµ− w∆ −

φ

Λ

)
− κ∆ + (1− Λ∆)F (w∆) + o(∆2),

where it was used in the last inequality that αs = φ/(Λp) + w∆(1− π + π/p) + o(∆) and βs = ws
for s ∈ [0,∆) under the full disclosure contract.

Hence:
F 1 − F 0 = Λ∆w∆π + o(∆2),

which exceeds zero for ∆ sufficiently small, contradicting the optimality of C0. Note that w∆ > 0
as T > ∆.

On the other hand, if π = 0, it follows, due to the incentive condition αt ≥ wt + φ/(Λp), that

Ẇt = Λ(Wt − wt − p(αt − wt)) ≥ Λ(Wt − wt)− φ ≥ ẇt = −φ

and, therefore, due to WT = wT = 0 that Wt ≥ wt. Hence, a full disclosure contract is optimal by
virtue of Lemma 6.

B.4.3 Step III

Lemma 8. Define t1 = inf{t ≥ 0 : Wt ≥ wt}. Then, within the optimal contract, t1 > 0 if π > 0,
and αt = wt(1− π) + φ/(Λp), βt = γt = 0 for t < t1. And, αt − rt = φ

Λp + π
p (wt − γt), γt ∈ [0, wt],

and βt = wt for t ≥ t1. In addition, Wt < wt and 0 > Ẇt > ẇt for t < t1 and Wt = wt and Ẇt = ẇt
for t ≥ t1

Proof. Note that Wt1 = wt1 by continuity. Lemma 6 implies that the continuation contract from
time t1 up to the deadline T is a full disclosure contract, which — by Proposition 5 — yields the
second claim of the Lemma. In addition, recall that by Lemma 7 a full disclosure contract is not
optimal if and only if π > 0. As a full disclosure contract is optimal from time t1 onward (see
Lemma 6), it follows that t1 > 0 if and only if π > 0.

To prove the first claim, fix a time t1 after which the contract implements a full disclosure
contract, while the contract does not incentivize disclosure of failure over [0, t1) and accordingly
sets βt = 0 for t < t1. Define

κ̄t1 = κ(t1 − P(Success or public failure over [0, t1])E[t1 − τ |Success or public failure over [0, t1)]).

48



It is clear that — in optimum — the contract implements full effort at = 1 for all t ∈ [0, T ∧ τ ].
The surplus at time zero generated by such a contract equals

S0 = e−Λt1(F (wt1) + wt1)− κ̄t1 + (1− e−Λt1)
(
pµ+ φ(1− p)(1− π)E(t1 − τ |τ < t1)

)
,

which does not depend on {αt, γt}t≤t1 . Also note that the continuation surplus at time t1 is split
between the principal and the agent and — due to wt1 = Wt1 — equals F (wt1)+wt1 . The principal’s
payoff equals:

F ∗0 = S0 −W0,

and, therefore, is maximized by the choice of {αt, γt}t≤t1 , that minimizes W0 subject to Wt1 = wt1
and incentive compatibility αt ≥ φ/(Λp) + wt(1− π) + πγt. It is clear that W0 is minimized upon
promising zero rewards for failure and the lowest rewards for success possible that induce effort.
That is, for t < t1 setting αt = φ/(Λp) + wt(1− π) and βt = γt = 0 is optimal.

Hence, for t < t1

Wt =

∫ T

t
e−Λ(s−t)Λ

(
(1− p)(1− π)ws + pαs

)
ds.

Differentiating yields

Ẇt = ΛWt − Λ((1− p)(1− π)wt + pαt)

= ΛWt − Λ(wt(1− π) + p(αt − wt(1− π)))

and therefore

Ẇt − ẇt = ΛWt − Λ(wt(1− π) + p(αt − wt(1− π)))− ẇt = Λ(Wt − wt) + Λπwt,

where we plugged in αt = wt(1 − π) + φ/(Λp) and ẇt = −φ for t < t1. Integrating this ODE
for t < t1 subject to Wt1 = wt1 yields Wt − wt = −

∫ t1
t e−Λ(s−t)Λπwsds < 0 and hence also

0 > Ẇt > ẇt = −φ.

B.4.4 Step IV

Lemma 9. The value function is characterized by (22) and solved subject to (20) and (21).

Proof. Given the previous Lemmata, all that remains is to determine the optimal deadline T and
the first time at which the contract incentivizes truthful disclosure of failure, t1 = inf{t ≥ 0 : βt > 0}
or equivalently t1 = inf{t ≥ 0 : Wt ≥ wt}. These two quantities are determined to maximize the
principal’s ex-ante payoff F ∗0 .

Note that wt — in optimum — perfectly co-moves with time t (before completion) and therefore
can be taken as state variable. Hence, we can equivalently maximize F ∗0 over wt1 = wL and w0,
which uniquely pins down T and t1 due to

ẇt = −φ ∀ t ∈ [0, T ∧ τA] =⇒ wt = w0 − φt.

We solve the maximization problem sequentially: we first fix T > 0, which is equivalent to fixing
w0 = inf{t ≥ 0 : wt = 0} due to ẇt = −φ for all t ∈ [0, T ∧ τA], and maximize over t1 (or
equivalently wL). We then obtain t1 in dependence of T and thereafter maximize over T .

Let now
qt = Pt({Hidden failure before t}) = 1− e−Λ(1−p)(1−π)t, (36)
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the principal’s belief, formed over [0, t1) that the project has hiddenly failed. For t < t1 ∧ τA, we
can rewrite the principal’s payoff F ∗t (under the optimal contract) as

F ∗t = Et

[∫ T∧τA

t
(µdSs − κds− dcs)

]

= Et

[∫ t1∧τA

t
(µdSs − κds− dcs)

]
+ Pt(τA ≥ t1)

(
Pt({No Failure before t1})F ∗t1 − Pt({Failure before t1})βt1

)
=

∫ t1

t
e−Λ(p+(1−p)(1−π))

∫ s
t (1−qu)du(Λ(1− qs)p(µ− αs)− κ)ds

+ e−Λ(p+(1−p)(1−π))
∫ t1
t (1−qu)du

(
Pt({No Failure before t1})F ∗t1 − Pt({Failure before t1})βt1

)
=

∫ t1

t
e−Λ(p+(1−p)(1−π))

∫ s
t (1−qu)du(Λ(1− qs)p(µ− αs)− κ)ds (37)

+ e−Λ(p+(1−p)(1−π))
∫ t1
t (1−qu)du

(
(1− lim

t↑t1
qt)F

∗
t1 − lim

t↑t1
qtβt1

)
.

Differentiating (37) on t ∈ [0, t1) yields

Ḟ ∗t = Λ(p+ (1− p)(1− π))(1− qt)F ∗t − Λp(1− qt)(µ− αt)− κ.

Utilizing

Ḟ ∗t =
dF ∗t
dt

=
dF ∗t
dwt

dwt
dt

,

one arrives at the ODE (19), whereby F ∗t = f(wt) for t ∈ [0, t1). The closed form solution — given
w0 > wL ≥ 0 — is derived in Lemma 4 in Appendix A.

Taking the limit t ↑ t1 in (37) yields

lim
t↑t1

F ∗t = (1− lim
t↑t1

qt)F
∗
t1 − lim

t↑t1
qtβt1 , (38)

which leads after substituting βt1 = wt1 = wL, limt↑t1 qt = q(wL), limt↑t1 F
∗
t = f(wL), and F ∗t1 =

F (wL) to the value matching condition (20).

As is standard for dynamic optimization problems, a necessary optimality condition is the
smooth pasting condition

∂

∂t1
lim
t↑t1

F ∗t =
∂

∂t1

(
(1− lim

t↑t1
qt)F

∗
t1 − lim

t↑t1
qtβt1

)
. (39)

If (39) did not hold, the principal could improve her payoff by increasing or decreasing t1, implying
that optimal t1 must adhere to (39).

Condition (39) is equivalent to condition (21), which is obtained after substituting βt1 = wt1 =
wL, limt↑t1 qt = q(wL), limt↑t1 F

∗
t = f(wL), and F ∗t1 = F (wL).

We have solved for optimal t1 or equivalently optimal wL, given w0 or equivalently T , which
results in a value F ∗0 . That is, wL is a function of w0. The optimization is complete after maximizing
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F ∗0 over w0, leading to the first order condition

dF ∗0
dw0

=
∂F ∗0
∂w0

+
∂F ∗0
∂wL

∂wL
∂w0

= 0,

and the second order condition
d2F ∗0
dw2

0
< 0.

Lemma 10. t1 → 0 as π → 0 and t1 → T as π → 1.

Proof. If π = 0, by Lemma 7, a full disclosure contract is optimal, leading to t1 = 0. This yields
the first claim by virtue of continuity.

By Proposition 1 and continuity, it must be that T →∞ and, therefore, wt →∞ for any t < τ
as π → 1. Incentivizing the agent not to fake failure and to truthfully disclose failure at some time
t <∞ requires Wt →∞, which cannot be optimal. This proves the second claim.

B.4.5 Step V

Proposition 7. Random termination does not improve the principal’s payoff derived under the
contract from Proposition 3.

Proof. To begin with, consider that the principal randomly terminates the agent’s contract at time
t < τ at endogenous rate δt ≥ 0 or with some atom of probability Θt, in that the termination time
T is stochastic. Recall that upon termination at time T , the agent receives zero payoff. As a result,
the agent’s payoff after the project has failed at time t < T (and failure is not publicly observed) is

wt := max
τA≥t

EAt [(τA ∧ T − t)φ+ P(τA < T )βτA ]

= max
τA∈[t,T ]

∫ τA

t
e−

∫ s
t δudu

∏
t≤u≤s

(1−Θu)φds+ e−
∫ τA
t δudu

∏
t≤u≤τA

(1−Θu)βτA , (40)

where the second equality integrates out the random termination event. We can differentiate (40)
with respect to time, t, and obtain

dwt = (δtwt − φ)dt+ Θtwt. (41)

Thus, if the principal terminates the project with some atom of probability Θt > 0, then wt increases

by Θtwt (i.e., wt =
lims↑t ws

1−Θt
), if the project is not terminated (which happens with probability

1−Θt), and wt drops to zero (i.e., wt = 0), if the project is terminated at time t (which happens
with probability Θt). In the following, we consider that random termination with some atom of
probability is not optimal whenever wt > 0, in that Θt = 0 and ẇt = δtwt − φ (for wt > 0). At the
end of the proof, we verify that this is indeed the case.

In principle, there are two state variables: the reward for failure wt = w, evolving according to
(41), and the belief q = qt, which is given by (18) so that q̇t = (1− qt)(1− p)(1− π)Λ > 0. In turn,
we can express the principal’s value function at time t, denoted ft, and the agent’s continuation
value (before failure), denoted Wt, as functions of (w, q), in that ft = f(wt, qt) and Wt = W (wt, qt).
To simplify notation, we omit time subscript whenever no confusion is likely to arise. Note that
by (18), there exists a one-to-one mapping from the belief qt to time t. Likewise, without random
termination, it follows that δt = 0 and ẇt < 0, so there exists a one-to-one mapping from time t
to wt. The one-to-one mapping between time t and wt need not exist if there is the possibility of
random termination (i.e., δt > 0).
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In what follows, we verify that random termination at rate δ does not improve the principal’s
payoff derived under the contract from Proposition 3. In the general formulation with random
termination, the principal’s value function at time t, denoted ft, is a function of (w, q), in that
ft = f(wt, qt). By the dynamic programming principle, the HJB equation becomes

(1− q)Λ(p+ (1− p)(1− π))f(w, q) = max
δ≥0

{
(1− q)Λp(µ− α(w))− κ (42)

+ fw(w, q)φ+ δ(fw(w, q)w − f(w, q)) + fq(w, q)q̇

}
where α(w) is described in Proposition 3 (so that α′(w) > 0). When δ = 0 in all states (w, q), then
(42) is equivalent to (19), after expressing q as function of w (i.e., qt = q(wt)). In (42), a subscript

denotes the partial derivative, in that fx(w, q) = ∂f(w,q)
∂x for x ∈ {w, q}.

We study the principal’s incentives to terminate the contract at rate δ. As the contract is
terminated (with certainty) once w = 0, it suffices to consider w > 0. Taking the partial derivative
with respect to δ in (42) yields

∂f(w, q)

∂δ
∝ fw(w, q)w − f(w, q),

where ∝ denotes proportionality. Hence, the principal’s objective in (42) is linear in δ. Note that if
it were fw(w, q)w > f(w, q), then — by the HJB equation (42) — setting δ →∞ would be optimal
and would yield unbounded payoff for the principal, which cannot be. Thus, it holds that

fw(w, q)w − f(w, q) ≤ 0,

with equality if δ > 0 is optimal. That is, when δ > 0 is optimal, the smooth pasting condition

f(w, q) = fw(w, q)w (43)

holds for (wt, qt) = (w, q). In addition, the super contact condition

fww(w, q) = 0 (44)

must hold for (wt, qt) = (w, q) when δt > 0 is optimal. The smooth pasting condition (43) can be
interpreted as local optimality condition and the super contact condition (44) can be interpreted
as global optimality condition; for a more detailed discussion, see Dumas (1991).24 We study the
unconditional financing stage and the disclosure stage separately.

First, we consider the disclosure stage with t ≥ t1, so that q̇t = q̇ = 0 and qt = q = 0. Thus, the
principal’s value function is given by F (w) = f(w, 0) where the closed-form expression for F (w) is
(16). As F (w) is strictly concave, it follows that F (w) < F ′(w)w for all w > 0 and (43) cannot hold
during the full disclosure stage (except at w = 0 at termination). As a result, during the disclosure
stage, random termination is indeed strictly sub-optimal, in that δt = 0 is optimal for all t ≥ t1.

Second, we consider the unconditional financing stage (i.e., t < t1) so that q̇t > 0. Suppose to
the contrary that during the unconditional financing stage, setting δt > 0 is optimal and improves

24To see that the super contact condition must hold, assume to the contrary that (43) holds (i.e., f(w, q) = fw(w, q)),
but (44) does not hold (i.e., fww(w, q) 6= 0). Then, there exists w′ 6= w with w′ > 0 such that fw(w′, q)w−f(w′, q) > 0.
Note that by the HJB equation (42), the condition fw(w′, q)w − f(w′, q) > 0 implies that the principal derives
unbounded payoff in state (w′, q), which cannot be.
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the principal’s payoff on a non-empty interval of times t ∈ [s1, s2]. Then, (43) and (44) hold for a
non-empty interval of times t ∈ [s1, s2]. Note that (43) implies fw(w, q) ≥ 0 for times t ∈ [s1, s2]
with (w, q) = (wt, qt). On [s1, s2], we can differentiate (43) with respect to time, t, to get

fw(w, q)ẇ + fq(w, q)q̇ = fw(w, q)ẇ + (fww(w, q)ẇ + fwq(w, q)q̇)w.

Using the super-contact condition, fww(w, q) = 0, and simplifying yields

fq(w, q) = fwqw. (45)

The left-hand-side of (45) is negative, as the value function decreases in the belief q of whether the
project has failed so far. Thus, fwq ≤ 0.

Using the envelope theorem, we differentiate both sides of (42) with respect to w (under the
optimal control δ = δ(w) to obtain

fww(w, q)φ = (1− q)Λ(p+ (1− p)(1− π))fw(w, q) + (1− q)Λpα′(w)− fwq q̇. (46)

When δt > 0, (45) and the super-contact condition fww(w, q) = 0 must hold for (wt, qt) = (w, q),
so that (46) simplifies to

fwq(w, q)q̇ = (1− q)Λ(p+ (1− p)(1− π))fw(w, q) + (1− q)Λpα′(w). (47)

As fw(w, q) ≥ 0 and α′(w) > 0, the right-hand-side of (47) is positive so that fwq > 0, a contradic-
tion. Thus, δt = 0 at all times during the unconditional financing stage.

Finally, we verify that random termination with some atom of probability Θ ∈ [0, 1) is not
optimal in any state (w, q) with w > 0. By (41), the principal’s payoff upon termination with an
atom of probability Θ is

L(Θ) := f (w̃, q) (1−Θ),

with w̃ = w
1−Θ . That is, if the project is not terminated, w increases times 1

1−Θ . Note that

L′(Θ) = fw(w̃, q)w̃ − f(w̃, q).

If termination with probability Θ is optimal, the first order condition L′(Θ) = 0 and the second
order condition

L′′(Θ) = fww(w̃, q)w̃ < 0 ⇐⇒ fww(w̃, q) < 0

must hold. However, L′(Θ) = 0 > L′′(Θ) implies that there exists w′ 6= w̃ with fw(w′, q)w̃−f(w′, q).
As a result, by the HJB equation (42), the principal would obtain unbounded payoff in state (w′, q),
which cannot be. Thus, termination with some atom of probability cannot be optimal.

Overall, we conclude that random termination does not improve the principal’s payoff and is
not optimal, which was to show.

B.5 Proof of Proposition 4

B.5.1 Preliminaries

We first solve the relaxed problem, in which the agent cannot fake bad outcomes and mis-report
failure before it occurs, leading to the constraint in the strategy space τA ≥ τ . We show that the
optimal contract is a full disclosure contract, when the constraint τA ≥ τ is in place. We also
show that under certain parameter conditions, the solution to the relaxed problem also solves the
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full problem (without constraint τA ≥ τ). Whenever we refer to the relaxed problem, we implicitly
assume that the constraint τA ≥ τ is in place.

The proof is split in three separate parts. The first part characterizes the agent’s incentives.
The second part provides the principal’s solution to the relaxed problem. The third part shows that
the solution to the relaxed problem also solves the full problem. It then follows that the proposed
contract from Proposition 4 is the optimal contract.

Throughout the following analysis, we make the Assumption that K is not prohibitively large:

Assumption 1. Parameters satisfy the following conditions

φ(1− π)

2Λ
≥ K ⇐⇒ w =

(
2Kφ

Λ(1− π)

)1/2

≤ φ

Λ
(48)

and

µp ≥ 3

2

φ(1− π)

Λ(1− e−1)
+
κ+ φ

Λ
(49)

Notably, condition (48) is met if π < 1 and K > 0 sufficiently small. In the limit π →
1, monitoring becomes redundant. Condition (49) ensures that F (0) > K, whereby F is the
(conjectured) value function, given in (26). That is, for given w0

F (0|w0) = F (0) = µp− κ+ φ

Λ
− (K + w0(1− π))

(
1

1− e
−Λw0
φ

)
.

Here, F (w|w0) denotes the principal’s value function conditional on a given (not necessarily optimal)
choice of w0, while F (w) denotes the value function under the optimal choice of w0. Lemma 2
implies that w0 < w < φ/Λ. Because w0 = φ/Λ is not (necessarily) optimal, it follows that
F (0) ≥ 0 ⇐= F (0|φ/Λ) ≥ 0 (with F (0) the value under the optimal contract). Note that

F (0|φ/Λ) ≥ 0 ⇐⇒ µp− κ+ φ

Λ
≥ K + φ(1− π)/Λ

1− e−1
.

Utilizing condition (48) to substitute K then leads to condition (49).

Last, we define the left limit of a process xt as xt− := lims↑t xt− .

B.5.2 Part I — Agent’s incentive compatibility

To characterize truth telling incentives, let dMt ∈ {0, 1} indicate whether the principal inspects
the project over a short period of time (t, t+ dt), whereby P(dMt = 1) = mt is the likelihood of an
inspection. In general, we can write

mt = θtdt+ Θt, (50)

with θt ≥ 0 and Θt ∈ [0, 1]. If Θt = 0, the principal inspects the firm with infinitesimal probability
θtdt, i.e., at rate θt. Otherwise, if Θt > 0, the principal inspects the firm with an atom of probability
and Θt = 1 implies a deterministic inspection at time t.

We characterize how monitoring provides incentives. The following Lemma derives for all times
t with dMt = 0 the truth telling incentive constraint

dβt ≤ mtβt − φdt. (51)
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Notably, with mt = θtdt+ Θt the constraint (51) is equivalent to

βt ≤
βt−

1−Θt
, for Θt > 0,

where dβt = βt − βt− , and

β̇t ≤ θtβt − φ = θtβt− − φ, for Θt = 0.

Note that the last equality uses that βt− = βt, when βt is continuous.

Lemma 11. A contract C induces truthful disclosure of failure (i.e., τA = τ with certainty) from
time t′ onwards if and only if (51) holds for all t ∈ [t′, T ] with dMt = 0 and T ∧ τM <∞ (almost
surely) for any t, where τM = inf{s > t : dMs = 1}. It induces full effort, at = 1 for all t ∈ [0, T∧τ ],
if and only if αt ≥ rt + φ/(Λp).

Proof. Without loss of generality, normalize for the proof t′ = 0. Note that we can rewrite (51) to

βt ≤
βt−

1−Θt
=

lims↑t βs
1−Θt

for Θt > 0

and
β̇t ≤ θtwt − φ for Θt = 0.

First, consider any t ≥ τ and that the project has failed. Define τM := inf{s ≥ t : dMs = 1}
as the next time the principal inspects the project, whereby — for convenience — the notation
does not make the dependence of τM on t explicit. We can without loss of generality assume that
it is optimal to terminate financing and to fire the agent (without any severance pay), once an
inspection yields that the agent has hidden failure.

Then, given a contract deadline T ≥ t the agent’s payoff becomes

wt := max
τA∈[t,T ]

EAt [(τA ∧ τM − t)φ+ P(τA < τM )βτA ]

= max
τA∈[t,T ]

∫ τA

t
e−

∫ s
t θudu

∏
t≤u≤s

(1−Θu)φds+ e−
∫ τA
t θudu

∏
t≤u≤τA

(1−Θu)βτA ,

where we have integrated out the random inspection event. The above expression is maximized for
τA = t only if ∂wt

∂τA
= β̇τA − θτAβτA + φ ≤ 0 for τA = t, in case Θt = 0, or if βt(1 − Θt) ≤ βt− , in

case Θt > 0. Notably, this is (51) and a necessary condition for truthful disclosure of failure. Since
the project may complete at any time during t ∈ [0, T ], τA = τ can be achieved with certainty only
if (51) holds for all t ∈ [0, T ]. Then, we can integrate to obtain

βt ≥
∫ τA

t
e−

∫ s
t θudu

∏
t≤u≤s

(1−Θu)φds+ e−
∫ τA
t θudu

∏
t≤u≤τA

(1−Θu)βτA , (52)

for all τA ∈ [t, T ]. Because clearly βt <∞ and because the agent’s limited liability requires βs ≥ 0
at any time it must be that

E[T ∧ τM ] = e−
∫ T
t θudu

∏
t≤u≤s

(1−Θu) <∞,
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implying T ∧ τM <∞ almost surely.

On the other hand, if (51) holds for any t ∈ [0, τM ∧T ] and E[T ∧ τM ] <∞, it follows that (52)
holds and hence that βt ≥ wt. As a result, wt is maximized for τA = t so that τA ≤ τ is optimal.
Due to the assumed constraint τA ≥ τ , this in fact already implies truthful disclosure of failure
τA = τ .

Given truthful disclosure of failure, the agent chooses effort {as}{s≥t} to maximize

Wt := Et
[∫ T∧τ

t
dcs

]
=

∫ T

t
e−

∫ s
t Λ(s−t)

(
Λ(rs + pas(αs − rs)) + φt(1− as)

)
ds,

which boils down to maximize the integrand point-wise. This implies that the incentive condition

αt ≥ rt + φ/(Λp)

must hold for any t < T ∧ τ so as to induce full effort.

B.5.3 Part II — The principal’s solution to relaxed problem

Lemma 12. Restrict the agent’s strategy to τA ≥ τ . Then, the optimal contract is a full disclosure
contract, i.e., induces τA = τ with certainty.

Proof. Recall that the only reason why the optimal contract does not incentivize truthful disclosure
of failure is to provide incentives not to fake failure, i.e., to relax the incentive constraint (7), that
is, Wt ≥ βt. However, with the constraint τA ≥ τ the agent cannot fake failure anymore so that
the optimal contract need not respect (7) anymore. More formal arguments follow below.

Take any time t < τ and fix a deadline T . Take a contract C0 that does not incentivize truthful
disclosure of failure over [t, t1) with t1 ≤ T but is a full disclosure continuation contract with
deadline T after time t1, yielding continuation payoff F (wt1) with wt1 ≥ 0. The contract follows a
monitoring strategy {ms}s∈[t,T∧τA] and sets rewards for public failure {γs}s∈[0,T∧τA].

Then, for s ∈ [t, t1) with dMs = 0:

dws ≤ msws − φdt s.t. wt1 = w̄

and incentive compatibility
αs ≥ rs + φ/(Λp).

Because {αs, γs} (i.e., {rs}) does not affect the law of motion of w, it is clear that in optimum
αs = rs + φ/Λp. The agent’s continuation payoff at time t reads

Wt =

∫ T

t
e−Λ(s−t)Λ(rs + p(αs − rs))ds.

Also note that conditional on the project failing at time t′ ∈ [t, t1), the project is terminated at
time t̄ := min{t1, τMt′ }, whereby τMt′ = inf{s ≥ t′ : dMs = 1} ≥ t′ is the next inspection date after
time t′. Thus, conditional on hidden project failure at time t′ ∈ [t, t1), the principal’s payoff at
time t equals

F0(t′) = −E

κ(t̄− t) + wt̄ +

∫ t̄

t
θsKds+

∑
t≤s≤t̄

ΘsK

 .
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Take now a full disclosure contract C1 that coincides with the above contract C0 after time t1
but sets over [t, t1), βs = ws and αs = rs + φ/(Λp), thereby inducing full effort as = 1 and τA = τ ,
as this contract satisfies the incentive constraint (51). The full disclosure contract stipulates the
same rewards for public failure {γs}s∈[t,T∧τA] as C0. Also assume the full disclosure contract C1

employs the same monitoring strategy {ms}s∈[t,T∧τA] as C0, meaning that at any time s < T ∧ τA

the contract C1 monitors with the same probability/intensity ms as the contract C0. Note that
both contracts C0 and C1 induce the same law of motion for w; thus, they have the same deadline
but induce potentially different τA.

In addition, both contracts C0 and C1 deliver the same payoff Wt to the agent at time t and
stipulate the same payments to the agent in case of success. Also note that conditional on the
project failing at time t′ ∈ [t, t1), the project is terminated at time t′. Thus, the principal’s payoff
at time t then equals, conditional on hidden project failure at time t′ ∈ [t, t1):

F1(t′) = −

κ(t′ − t) + (wt′ − wt̄) + wt̄ +

∫ t′

t
θsKds+

∑
t≤s≤t′

ΘsK


Because of φ ≤ κ, t̄ ≥ t′, it follows that κ(t′ − t) + (wt′ − wt̄) < κ(t̄ − t) for any t̄ > t′. Hence, it
follows that F1(t′) ≥ F0(t′) for any t′ ∈ [t, t1) (with strict inequality if t′ > t).

Thus, if the project does not complete over [t, t1) both contracts C1 and C0 yield the same
payoff to the principal. Likewise, if there is project success or public project failure over [t, t1),
both contracts C1 and C0 yield the same payoff to the principal. But, if the project hiddenly fails
over [t, t1), contract C1 always yields strictly higher payoff to the principal than contract C0 (in
expectation), because of F0(t′) ≤ F1(t′) for all t′ ∈ [t, t1). Because of the arbitrariness of t, t1, the
deadline T , rewards for public failure {γs}s∈[t,T∧τA], and the monitoring strategy {ms}s∈[t,T∧τA], it

follows that any contract C0, that does not always incentivize truthful disclosure of failure, cannot
be optimal. This concludes the proof.

Lemma 13. Under the optimal contract, the principal’s value function solves (25) with the proposed
controls.

Proof. We provide a verification argument in the spirit of Sannikov (2008) and recall the left limit
of a process xt as xt− := lims↑t xt− . Let F (w) the value function under the contract, proposed by
the Proposition 4:

F (w) = µp− κ+ φ

Λ
− w(1− π)− (K + w0(1− π))

(
e
−Λw

φ

1− e
−Λw0
φ

)
.

solving (25) by Lemma 2. It is easy to see that F ′′(w) < 0.

Suppose the principal follows another strategy up to time t < T ∧ τ and then switches to
the strategy proposed by the optimal contract at time t, whereby the alternative strategy induces
truthful disclosure of failure. Her payoff then equals

Gt =

∫ t

0
e−Λs(Λp(µ− αs)− Λ(1− p)rs− − κ− θsK)ds−

∑
s≤t

e−ΛsΘsK + e−ΛtF (wt−).
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subject to (11) and (51) for wt = βt:

dwt = (Θt + θtdt)wt − φdt+ (w∗t − wt−)dMt + d`t,

whereby d`t ≤ 0 almost surely and w∗t endogeneous. Note that whenever there is no inspection,
i.e., for times t with dMt = 0, this reduces to

dwt = (Θt + θtdt)wt − φdt+ d`t,

while at an inspection (i.e., for dMt = 1), wt is set to an endogeneous value w∗t , that can be freely
chosen without affecting local incentive compatibility.

Differentiating Gt with respect to t yields

eΛtdGt =

{
− ΛFwt−dt+ (Λpµ− κ)dt− Λ(rt− + p(αt − rt−))dt+ F ′(wt−)(θtwt− − φ)dt

+ (Θt + θtdt)(F (w∗t )− F (wt−)−K) + (1−Θt)

(
F

(
wt−

1−Θt

)
− F (wt−)

)
+ F (wt− + d`t)− F (wt−)

}
+ (F (w∗t )− F (wt−)−K)(dMt −Θt − θtdt) (53)

= dUt + (F (w∗t )− F (wt−)−K)(dMt −Θt − θtdt),

where the term in curly brackets equals dUt and the second term has zero expectation in that

E [(F (w∗t )− F (wt−)−K)(dMt −Θt − θtdt)] = 0.

First, note that because of F ′(wt) > 0 > F ′′(wt) with F ′(w0) = 0, it follows that dUt is maximized
only if d`t = max{wt− − w0, 0} and w∗t = w0.

Second, taking the derivative w.r.t. Θt yields

dUt
dΘt

=: L(wt− ,Θt) := F (w0)−K − F
(

min

{
wt−

1−Θ
, w0

})
+ F ′

(
min

{
wt−

1−Θ
, w0

})
wt−

1−Θt
.

Note that if wt− > (1 − Θt)w0, then d`t = w0 − wt−/(1 − Θt) so that wt− is never set above w0.
This implies that wt = min{wt−/(1−Θt), w0} at any time t with Θt > 0.

Strict concavity implies that

L1(wt− ,Θt) = F ′
(

min

{
wt−

1−Θt
, w0

})
wt−

1−Θt
− F

(
min

{
wt−

1−Θt
, w0

})
< 0 for wt > 0,

and that L1(wt− ,Θt) decreases in both of its arguments, i.e., in wt− and Θt. Hence:

L(wt− ,Θt) = F (w0)−K + L1(wt− ,Θt) ≤ F (w0)−K + L1(wt− , 0)

= F (w0)− F (wt−)−K ≤ F (w0)− F (0)−K = 0,

where the last inequality is strict for wt− > 0. Hence, dUt is maximized only if Θt = 0, whenever
wt− > 0.

Third, taking the derivative w.r.t. to θt yields

dUt
dθt

= F (w0)−K + F ′(wt−)wt− − F (wt−) ≤ F (w0)−K − F (0) = 0
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where the inequality follows from strict concavity and is strict for wt− > 0. Hence, dUt is maximized
only if θt = 0, whenever wt− > 0.

Fourth, note that dUt is maximized only if αt = rt− + φ/(Λp) and rt− = wt−(1 − π), i.e.,
αt = (1− π)wt− + φ/(Λp)

On the other hand, setting Θt = 1{wt−=0}, θt = γt = 0, rt− = wt−(1 − π), and αt = rt− +
φ/(Λp) = (1−π)wt−+φ/(Λp) implies dUt = 0, since dUt reduces to the HJB equation (25) (holding
in equality). It follows that dUt ≤ 0 for all t < T ∧ τ . Hence, Gt is a super-martingale, implying
that

F (w0) = G0 ≥ EGt.

That is, the contract, that is proposed by the Proposition 4 and yields payoff F (w0), is indeed
optimal among all incentive compatible, full disclosure contracts.

B.5.4 Part III — Relaxed problem solves full problem

The following Lemma completes the proof of Proposition 4.

Lemma 14. The solution to the relaxed problem solves the full problem in which the agent can fake
failure through reporting τA < τ . In addition, φ < Ẇt and Wt ≥ wt for all t ≤ τ .

Proof. Let the agent’s continuation utility under truthful reporting before time t be Wt, given in
(53). We must show that under the proposed solution Wt ≥ wt for all t or equivalently W (w) ≥ w
in the state space [0, w0], in which case the agent is not tempted to fake failure, i.e., is not tempted
to set τA < τ . Define ∆W (w) = W (w)− w, i.e., ∆W

t = Wt − wt.
Let τM = inf{t ≥ 0 : dMt = 1} the first inspection time. Given the shape of the derived

contract and given that stages repeat, it suffices to show that Wt ≥ wt for all t < τM . Note that
for t < τM the agent’s continuation value is given by

Wt =

∫ T

t
e−Λ(s−t)(Λ(rs + p(αs − rs))ds,

so that

∆̇W
t = Ẇt − ẇt = ΛWt − Λ(rt − p(αt − rt)) + φ = Λ∆W

t + Λπ(wt − γt) = Λ∆W
t + Λπwt, (54)

where it was used that γt = 0 and αt = (1− π)wt + φ/(Λp). That is, ∆̇W
t > 0 if ∆W

t > 0. Hence,
it follows that ∆W

t ≥ 0 for all t ≥ 0 if and only if ∆W
0 ≥ 0. The proof is therefore complete, if we

can show that ∆W
0 ≥ 0.

To do so, we transform (54) into a ODE of w rather than of time t, using
d∆W

t
dt =

d∆W
t

dwt
dwt
dt :

(∆W )′(w)ẇ = Λ∆W (w) + Λπw.

This ODE is solved subject to ∆W (w0)+w0 = ∆W (0) and admits the unique solution (see Appendix
A and Lemma 3 for details):

∆W (w) =
(1− π)w0e

−Λw
φ

1− e−
Λw0
φ

+ π

(
φ

Λ
− w

)
.

The first term is always positive. The second term is positive for w ≤ φ/Λ. Because of w =(
2Kφ

Λ(1−π)

)1/2
> w0, it follows then that ∆W (w0) ≥ 0 if ∆W (w) ≥ 0. A sufficient condition is given
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by
φ

Λ
≥ w ⇐⇒ φ(1− π)

2Λ
≥ K,

which — by Assumption (1) — is met. Hence, ∆W
0 ≥ 0. To conclude the proof, note that for all

t < τM , it follows that ∆̇t > 0 so that Ẇt > ẇt = −φ.

C Solution details for Section 4

We sketch how to solve the model under the specification presented in Section 4 under the assump-
tion that full effort is efficient (i.e., µ− µf is sufficiently large). Without loss of generality, we can
assume that parameters satisfy µf < 0, in that a failed project is inefficient to continue. Otherwise,
equations are merely shifted by a constant. Notably, the proof of Corollary 2 does not make use
of the heuristic solution presented in this Section. We also assume already that the agent is only
paid at time τA, in that (28) holds.25

Incentives. Like in the baseline version of the model, it is optimal to not pay the agent for
observed failure. The incentive compatibility condition w.r.t. effort is simply

αt ≥ wt(1− π) +
φ

Λp
. (55)

To incentivize the agent not to fake bad outcomes, it must be that Wt ≥ βt, in that (7) is met like
in the baseline version of the model.

As is already derived in Section 4, the agent prefers to disclose failure if and only if

β̇t ≤ −φ− λ(αt − βt),

which implies in optimum
ẇt = −φ− λ(αt − wt). (56)

Specifically, one can write

wt := max
τA∈[t,T ]

[∫ T∧τA

t
e−λ(s−t)(φ+ λ(αs − ws))ds+ βτA

]
,

whereby τA = t = τ under a full disclosure contract, i.e., whenever the principal incentivizes
disclosure of failure. By contrast, if the contract features an unconditional financing phase [0, t1),
then τA = t1 for any τ = t < t1. Also note that T = inf{t ≥ 0 : wt = 0}.

Solution: full disclosure contract. A full disclosure contract with deadline T implies that
βt = wt, wT = βT = 0, and, optimally, Wt = wt for all t. Hence, Ẇt = ẇt = 0 for all t, which

25In fact, delaying payments payments for failure βt up to time τλ could be optimal to provide incentives to the
agent not to fake failure. However, so as not to complicate the analysis, we assume that this is not done, e.g., because
it is too costly due to high κ.
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becomes

0 = Ẇt − ẇt = Λ(Wt − wt(1− π)− p(αt − wt(1− π)))− ẇt
= −Λp(αt − wt(1− π)) + Λπwt + φ+ λ(αt − wt)
= −(Λp− λ)(αt − wt(1− π)) + π(Λ− λ)wt − φ.

Hence:

αt = wt(1− π) +
φ+ π(Λ− λ)wt

Λp− λ
, (57)

implying that the incentive condition w.r.t. effort (55) is slack if λ > 0 or π > 0.

Optimal contract. In order to reduce rewards for success αt and hence the agent’s stake Wt and
agency costs, the optimal contract features an unconditional financing stage [0, t1), during which
αt = wt(1 − π) + φ/Λ and βt = 0. During that stage, the contract does not incentivize disclosure
of failure. Thereafter, the optimal contract is a full disclosure contract with some deadline T ,
stipulating βt = wt and αt = wt(1 − π) + φ+π(Λ−λ)wt

Λp−λ . The further solution steps look like those
presented in Section 2 and are therefore omitted.

C.1 Proof of Corollary 2

Proof. Let T the endogeneous set of times, during which the principal incentivizes truthfull disclo-
sure of failure. That is, τ ∈ T =⇒ τA = τ . A contract C = (c, T ) induces the set T .

Let the time of failure τF and define a jump process F such that t = τF ⇔ dFt = 1 with F0 = 0.
Likewise, let the time of success τS and define a jump process S such that t = τS ⇔ dSt = 1 with
S0 = 0.

We already impose that the agent is optimally not paid for observed failure. The principal’s
problem can be written as

F0 := max
C

E

[∫ T∧τA

0

(
µdSt + µfdFt − κdt− dct

)]
. (58)

subject to

dct =
(
αt1{t=τS} + βt1{t=τF }

)
1{t≤τA} ≥ 0 for all t ∈ [0, T ]

αt ≥ wt(1− π) + φ/Λp for all t ∈ [0, T ]
(59)

βt ≥ 0 for all t ∈ [0, T ]

Wt =

∫ T

t
e−Λ(s−t)(ws(1− π) + p(αs − ws(1− π)))ds ≥ βt for all t ∈ [0, T ]

wt = max
τA∈[t,T ]

[∫ T∧τA

t
e−λ(s−t)(φ+ λ(αs − ws))ds+ βτA

]
= βt for all t ∈ T .

It can be seen that — all else equal, i.e., holding the deadline T and pay schedules {dcs}s≥t fixed
— wt increases in λ. This tightens incentive compatibility. Formally, denote the set of contracts C
satisfying (59) by Cλ. Then:

Cλ1 ⊂ Cλ2 for λ1 > λ2.

61



This is because an increase in λ increases wt (i.e., ∂wt/∂λ > 0), which tightens incentive compati-
bility w.r.t. effort (i.e., ∂αt/∂wt > 0) and incentive compatibility w.r.t. reporting (i.e., ∂βt/∂wt > 0
for t ∈ T ). Because in addition ∂wt/∂αs > 0 and ∂wt/∂βs ≥ 0 for s ≥ t, it necessarily must be
that Cλ is an increasing set in λ.

The principal’s problem can be written as

F0 := max
C∈Cλ

(
e−ΛT (pµ+ (1− p)µF )− E

[∫ T∧τA

0
(κdt+ dct)

])
. (60)

Notably, by definition a mean preserving spread in (λ, µ) leaves pµ+(1−p)µF unaffected/constant.
As a result, a mean preserving spread in (λ, µ) affects the principal’s payoff only via the optimization
constraint C ∈ Cλ. As the set Cλ decreases in λ, it follows that the principal’s payoff increases,
when a mean preserving spread increases µ but decreases λ and µf .

D Additional results

D.1 Implementation with debt and equity

We provide the details for the implementation of the optimal contract with debt and equity. For
the implementation, we consider a slightly different version of the optimal contract that differs
from the contract in Proposition 3 only in the values of (αt, γt) during the disclosure stage (but
this contract features the same deadlines (t1, T ) and the same unconditional financing stage). In
this contract, βt = γt = wt during the disclosure stage and αt = wt + φ/(Λp). Proposition 6
demonstrates that this alternative contract is optimal and yields the same payoffs for principal and
agent as the contract from Proposition 3. The only difference between the alternative contract
and the contract from Proposition 3 is that to incentivize the agent not to fake failure during the
disclosure stage, the principal boosts the agent’s rents by stipulating rewards for publicly observed
failure γt = βt rather than by stipulating excessive rewards for success.

D.1.1 Unconditional financing stage

We start by characterizing the implementation of the unconditional financing stage, [0, t1). At the
beginning at time t = 0, the principal allocates κt1 dollars to the project, which is sufficient for
project development until time t1. Thus, at time t > 0, there are κ(t− t1) dollars left (within the
firm).

We consider that during the unconditional financing stage, the project is financed with a mixture
of debt and equity. There is one unit of debt outstanding that has face value D := κt1 and accrues
non-compounding interest at rate R. Thus, at time t ≥ 0, the face value of debt including interest
is D(1 + Rt). Interest is paid only when the face value (principal) is paid back. Debt including
interest is paid back during the unconditional financing stage only when the project succeeds at
time t ∈ [0, t1). Otherwise, if the project fails at some time t ∈ [0, t1), debt defaults and there are
zero repayments. If neither failure nor success occurs over [0, t1), debt remains outstanding until
the next financing stage. As a result, note that the form of debt we consider in this implementation
resembles a credit line the principal grants to the agent.

There is one unit of equity outstanding. During the unconditional financing stage, the agent
holds e units of equity and the principal holds the remainder. If the project succeeds at time
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t ∈ [0, t1), equity pays dividends

µ+ κ(t1 − t)−D(1 +Rt),

which is the sum of the project payoff µ and the remaining project development funds κ(t1− t) net
debt repayments Dt(1 + Rt). Equity does not pay dividends if the agent discloses failure at time
t1.

During the unconditional financing stage, the agent must receive

e[µ+ κ(t1 − t)−D(1 +Rt)] = αt ⇐⇒ e =
αt

µ+ κ(t1 − t)−D(1 +Rt)
, (61)

dollars for success upon time t. In addition, we know that α̇t = −φ(1− π) (see Propositions 3 and
6), so we can differentiate (61) with respect to time, t, and obtain the interest rate

R =
φ(1− π)− eκ

eD
(62)

We can solve (61) and (62) to get closed-form expressions for e and R. Specifically, evaluate (61)
at time t = 0 and use D = κt1 to get

e =
α0

µ
(63)

and

R =
φ(1− π)µ/α0 − κ

D
. (64)

Also note that if the agent reports failure at some time t ∈ [0, t1), debt holders enjoy seniority and
seize all funds κ(t1 − t) that are left within the firm. Thus, the agent finds it never optimal to
disclose failure during [0, t1).

D.1.2 Disclosure stage

Next, we look at the implementation of the disclosure stage, [t1, T ]. At the beginning of the
disclosure stage at time t1, the principal allocates κ(T − t1) + ξ dollars to the project. Thus, there
are κ(T − t) + ξ dollars left within the firm at any time t ∈ [t1, T ]. In exchange for the funds she
contributes, the principal receives additional equity, but no new debt is issued at the beginning of
the disclosure stage. Thus, the face value of outstanding debt including interest is D∗ := D(1+Rt1)
at the beginning of the disclosure stage. During the disclosure stage, debt accrues non-compounding
interest at rate R∗, so the face value of outstanding debt including interest is D∗(1 + R∗(t − t1)).
Interest is paid only when the face value (principal) is paid back. Debt (including interest) is paid
back upon project completion or at the deadline T . If the project fails, the agent optimally reports
failure and financing is terminated. Then, debt has seniority over equity and debt holders are paid
first from the remaining funds κ(T − t) + ξ. What is left after repaying debt is distributed as
dividends to equity holders.

During the disclosure stage, the agent owns e∗ units of equity and there is one unit of equity
outstanding. Equity pays

µ+ κ(T − t) + ξ −D∗[1 +R∗(t− t1)]

dollars as dividends in case of success at time t ∈ [t1, T ] and

max{0, κ(T − t) + ξ −D∗[1 +R∗(t− t1)]}
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in case of failure at time t ∈ [t1, T ]. We implement the contract such that κ(T − t) + ξ −D∗[1 +
R∗(t − t1)] ≥ 0, so there is always cash left within the project after failure and after paying back
debt including interest. Thus, equity pays a dividend in the event of failure. That is, during the
disclosure stage (but not during the unconditional financing stage), funds allocated to the project
exceed the face value of debt (plus accrued interest), so termination of financing due to failure leads
to repayment of debt and dividend payouts to equity generating rewards for failure for the agent.

According to the optimal contract, the agent must receive

e∗ [µ+ κ(T − t) + ξ −D∗[1 +R∗(t− t1)]] = αt (65)

dollars in case of success at time t ∈ [t1, T ] and

e∗ [κ(T − t) + ξ −D∗[1 +R∗(t− t1)]] = βt (66)

in case of failure at time t ∈ [t1, T ].

We subtract (66) from (65) to get

e∗µ = αt − βt =
φ

Λp
⇐⇒ e∗ =

φ

Λpµ
. (67)

Next, we evaluate (66) at t = t1 to solve

D∗ = ξ + κ(T − t1)− βt1
e∗
. (68)

Next, we choose ξ to achieve D∗ = D(1 + Rt1). In summary, debt (raised at inception at time
t = 0) is paid back either i) when the project succeeds during the unconditional financing stag, ii)
when the project is completed during the disclosure stage, or iii) at the deadline T . Otherwise, if
the project fails during the unconditional financing stage, debt defaults.

Next, we differentiate (66) with respect to time t and note that β̇t = α̇t = −φ, leading to

R∗ =
φ− e∗κ
e∗D∗

. (69)

Note that

e =
α0

µ
>
α0 − (1− π)w0

µ
=

φ

Λpµ
> e∗,

so the agent’s equity stake is lower during the disclosure stage than during the unconditional
financing stage. Using that D∗ = D, it follows that

R∗ =
φ− e∗κ
e∗D∗

>
φ(1− π)− eκ

eD
= R. (70)

Finally, note that the form of debt we consider in this type of implementation resembles credit line
debt. Our implementation therefore rationalizes the use of credit lines in venture capital financing.

D.1.3 Implementation with convertible debt and convertible equity

Generally, the implementation of the optimal contract is not unique. Note that the optimal con-
tract can alternatively be implemented, also using convertible debt and convertible equity. In what
follows, we demonstrate how to integrate convertible debt and convertible equity into the financ-
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ing of the project, as convertible debt and convertible equity are widely used in venture capital
financing.

First, to integrate convertible equity, note that it is always possible to grant the principal
additional convertible equity at time t = 0 that converts into equity at time t1, as long as the
pre-specified terms and conversion rate ensure that the agent holds fraction e of project equity
before time t1 and fraction e∗ after time t1.

Second, to integrate convertible debt, it is possible to stipulate that some of the debt raised at
time t = 0 converts at time t1 into equity, as long as the pre-specified terms and conversion rate
ensure that the agent holds fraction e of equity before time t1 and fraction e∗ after time t1. To see
this, observe that the implementation of the optimal contract requires (68) to hold, but the actual
values of D∗ and ξ in (68) do not matter. Recall that the implementation with debt and equity
sets D∗ = D(1 +Rt1), so that at time t1, no debt is paid back or is converted into equity. However,
by stipulating that D∗ < D(1 +Rt1), one could implement the decrease in debt outstanding from
D(1 + Rt1) to D∗ at time t1 as part of the debt being converted into equity, i.e., debt is partially
convertible debt. That is, by stipulating D∗ < D(1 + Rt1), one finances the project, (partially)
using convertible debt.

D.2 Solution when agent affects completion timing

We present an alternative formulation of the moral hazard problem similar to Mason and Välimäki
(2015), Green and Taylor (2016), or Varas (2017). In this alternative model, the agent controls
project completion, while the project is subject to failure risk during its development phase. The
agent affects the project completion timing τ = inf{t ≥ 0 : dNt = 1} with his effort at ∈ {0, 1},
whereas project failure at time τ δ := inf{t ≥ 0 : dN δ

t = 1} occurs at for simplicity exogenous rate
δ > 0. Specifically, assume that N and N δ are jump processes with EdNt = Λatdt · 1{t<τδ} and

EdN δ
t = δdt.

The agent derives private benefits φ(1− at) as long as the project receives sufficient financing,
i.e., before time T0 = T ∧ τA. Completion at time τ always results into success and yields terminal
payoff µ to the principal. Failure (during project development) occurs at time τ δ, in which case
the project becomes worthless and produces zero payoffs for all times t ≥ τ δ. In particular, due
to EdNt = Λatdt · 1{t<τδ}, the project cannot be (successfully) completed anymore after failure
has occurred during the project development phase. Also note that by exerting effort to complete
the project, the agent accelerates completion and hence reduces the risk of failure during project
development, in that the agent effectively controls project failure (risk) too. Like in the baseline
model, failure is publicly observed with probability π ∈ [0, 1]. Otherwise, failure is privately
observed by the agent and reported failure is not verifiable.

Incentive Compatibility. The agent is not paid for observed failure but obtains payoff wt upon
privately observed failure. We take the agent’s continuation value for t < T ∧ τ ∧ τ δ:

Wt =

∫ T

t
e−(Λ+δ)(s−t)(Λαs + δ(1− π)ws)ds,

so that
Ẇt = (Λ + δ)Wt − δ(1− π)wt − Λαt.
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Like in Green and Taylor (2016), the incentive condition w.r.t. effort at becomes

αt −Wt ≥
φ

Λ
. (71)

The intuition is as follows. If the agent exerts effort at, the project succeeds with probability Λdt
in which case the agent receives a reward for success αt but looses his continuation payoff Wt. On
the other hand, shirking over a time interval of length dt yields private benefits φdt but then the
project does not complete for sure.

Like in our baseline model, the incentive condition w.r.t. disclosure of failure is

β̇t ≤ −φ,

which in optimum leads to ẇt = −φ. In addition, the agent must not find it optimal to fake bad
outcomes, which requires

Wt ≥ βt.

Full disclosure contract. In a (optimal) full disclosure contract, it holds that Wt = wt = βt
and ẇt = β̇t = −φ for all t. Due to WT = wT = 0, this requires

0 = Ẇt − ẇt = Λ(Wt − αt) + δπwt + φ.

Hence:

αt = Wt +
φ+ δπwt

Λ
,

so that the incentive condition w.r.t. effort (71) is slack.

Optimal contract. In order to reduce rewards for success αt and hence the agent’s stake Wt and
agency costs, the optimal contract features an unconditional financing stage [0, t1), during which
αt = Wt + φ/Λ and βt = 0. During that stage, the optimal contract does not incentivize disclosure
of failure. Thereafter, the optimal contract is a full disclosure contract with some deadline T ,
stipulating βt = wt and αt −Wt = φ+δπwt

Λ . The further solution steps look like those presented in
Section 2 and are therefore omitted.

D.3 Solution when success is unobservable

Suppose the principal observes success — just like failure — only with probability π. Otherwise,
success is privately observed by the agent. Crucially, reported success is — unlike failure —
verifiable. Also note that to obtain a non-trivial solution, at least one of the two possible outcomes,
success and failure, must be verifiable. We consider that success is verifiable as it is arguably more
difficult to fake good outcomes rather than bad outcomes.

We start with some notation. Denote the pay for (publicly) observed success by ωt and denote
the pay for reported success by αt. Then, the agent discloses success truthfully if and only if
α̇t ≤ −φ. Likewise, the agent discloses failure truthfully if and only if β̇t ≤ −φ.

Full disclosure contract. Let us start by looking at the disclosure stage or — equivalently — at
a full disclosure contract (recall that the disclosure stage is a full disclosure continuation contract).
We illustrate that it is not consequential whether success is observable or not during the disclosure
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stage (i.e., during a full disclosure contract). To start with, note that the full disclosure contract
from Proposition 2 stipulates

αt = wt

(
1− π +

π

p

)
+

φ

Λp
=⇒ α̇t < ẇt = −φ.

Hence, within the optimal full disclosure contract from Proposition 2 the agent always strictly
prefers to disclose success truthfully. That is, for this contract the observability of success does not
matter (one can set αt = ωt).

In the following, we take the optimal full disclosure contract (see Proposition 5) that sets γt = wt
and αt = wt + φ

Λp , thereby “minimizing” rewards for success. In this contract, βt = wt and

β̇t = α̇t = −φ,

so that the agent possesses sufficient incentives to disclose failure and success truthfully. Rewards
for observed and reported success (failure) are equal, in that ωt = αt. In this full disclosure contract,
the agent’s stake, capturing agency costs, is given by Wt = wt.

Optimal contract. We construct the optimal contract using heuristic arguments. A formal
proof conjectures the shape of the contract — which is discussed here — and then provides a
(formal) verification argument — which is omitted here. The optimal contract features an uncon-
ditional financing stage [0, t1) during which it does not incentivize disclosure of failure and success.
Thereafter, after t1, the contract becomes a full disclosure contract with time to deadline T − t1,
stipulating βt = γt = wt and αt = ωt = wt + φ/(Λp). It therefore holds — by construction — that
Wt1 = wt1 .

If the project fails (succeeds) at time t < t1, the agent reports failure (success) at time t1. Hence,
privately observed project completion at time t yields payoff βt1 + φ(t1 − t), in case of failure, and
payoff αt1 + φ(t1 − t) = βt1 + φ(t1 − t) + φ/(Λp) in case of success. In addition, the agent is not
paid for observed failure, i.e., γt = 0 for t < t1, and receives pay ωt = φ/(Λp) for observed success,
when t < t1.

Let us look at the agent’s incentives to exert effort over [t, t+ dt) with t < t1. Shirking entails
benefits φdt and, if the project completes, the project fails. Failure is observable with probability
π, in which case the agent receives zero payoff, and otherwise with probability 1 − π the agent’s
payoff is βt1 + φ(t1 − t). If the agent works and the project succeeds, the agent receives pay
φ/(Λp), when success is observed (with probability π), and otherwise with probability 1 − π pay
αt1 + φ(t1 − t) = βt1 + φ(t1 − t) + φ/(Λp). Therefore, the agent prefers to work (i.e., to exert full
effort at = 1) if and only if

Λdt ·
(
p[(1− π)(αt1 + φ(t1 − t)) + πφ/(Λp)] + (1− p)(1− π)[βt1 + φ(t1 − t)]

)
≥φdt+ Λdt · (1− π)[βt1 + φ(t1 − t)].

The first line depicts the agent’s (expected) pay upon exerting effort and the second line depicts
the agent’s pay upon shirking. Using simple algebra, it can be verified that the above condition
is — by construction of the proposed contract — satisfied. More straightforwardly, the proposed
contract motivates effort because the agent’s pay for success in each state of the world exceeds his
pay for failure by φ/(Λp), which outweighs the disutility of effort.
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Note that the agent’s continuation utility during the unconditional financing stage is given by

Wt =

∫ T

t
e−Λ(s−t)

[
Λ
(

(1− p)(1− π)ws + p[πωs + (1− π)(ws + φ/(Λp))]
)]
ds,

so that

Ẇt = ΛWt − Λ
(

(1− p)(1− π)wt + p[πωt + (1− π)(wt + φ/(Λp))]
)

= Λ(Wt − wt)− φ+ πwt.

The second equality follows after plugging in the previously derived expressions for ωt and αt.
Hence, due to ẇt = −φ:

Ẇt − ẇt = Λ(Wt − wt) + πwt,

and because of Wt1 = wt1 it follows that Wt < wt and 0 > Ẇt > ẇt = −φ for t < t1. Hence, the
provision unconditional financing over some period [0, t1) reduces the agent’s stake Wt and hence
agency costs relative to a full disclosure contract. Thus, the provision of unconditional financing
over [0, t1) is optimal and the optimal contract (likely) takes the conjectured shape. A rigorous
proof can be constructed along the lines of the proof of Proposition 6.

D.4 Calculating the average financing horizon

Take E = E[T ∧ τA] the average length of the financing period. Define

Et := Et[T ∧ τA|t < T ∧ τA]

and note that E = E0 and ET = T , by definition.

On [t1, T ] for t < T ∧ τA, we can write

Et = Et[T ∧ τA] = Et[T ∧ τ ] = Et
[∫ T∧τ

t
sds+ 1{T≥τ}T

]
=

∫ T

t
e−ΛsΛsds+ e−Λ(T−t)T,

where the second equality uses truthful disclosure of failure, τ = τA and the third equality uses
integration by parts. Thus, differentiating the above expression w.r.t. t implies that Et solves on
[t1, T ] the time ODE

ΛEt − Ėt = Λt, (72)

subject to ET = T . We obtain the closed-form solution

Et = t+
1− e−Λ (T−t)

Λ
.

Taking this solution, we proceed and solve backwards in time.

Recall that
qt = 1− e−Λ(1−p)(1−π)t.

At t = t1, the contract elicits a progress report. If the project has failed already, which is with
probability limt↑t1 qt, the financing deadline is T ∧ τA = τA = t1, since the agent reports failure at
t1. Otherwise, with probability 1− limt↑t1 qt, the project is not complete at time t1, in which case
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the expected financing date is given by Et1 . This leads to the value matching condition

lim
t↑t1
Et = Et1(1− lim

t↑t1
qt) + t1 lim

t↑t1
qt. (73)

On [0, t1), the financing is only terminated if the project succeeds, which happens at rate Λ(1−qt)p.
Thus, for t < T ∧ τA we can write

Et = Et

[∫ T∧τA

t
sds+ 1{T≥τ}T

]

=

∫ t1

t
e−Λ(p+(1−p)(1−π))

∫ s
t (1−qu)duΛ(p+ (1− p)(1− π))sds

+ e−Λ(p+(1−p)(1−π))
∫ t1
t (1−qu)du lim

t↑t1
Et.

Differentiating w.r.t. t implies that Et solves the time ODE

Λ(p+ (1− p)(1− π))(1− qt)Et − Ėt = Λ(p+ (1− p)(1− π))(1− qt)t, (74)

subject to (73). This is a first order linear ODE and can be solved in closed form.

Take

Bt = −p+ (1− p)(1− π)

(1− p)(1− π)
e−Λ(1−p)(1−π)t,

which is the anti-derivative of Λ(p+(1−p)(1−π))(1−qt) and define at = −Λ(p+(1−p)(1−π))(1−qt)t.
The ODE (74) can be rewritten in the form Ėt = ḂtEt + at and it is well known that such an ODE
possesses general solution on [0, t1)

Et = CeBt + eBt
∫ t1

t
e−Bsasds.

The constant is determined using the boundary condition (73):

C = e−Bt1
(

(1− lim
t↑t1

qt) + t1 lim
t↑t1

qt

)
,

yielding the solution

Et = e−Bt1
(

(1− lim
t↑t1

qt) + t1 lim
t↑t1

qt

)
eBt + eBt −

∫ t1

t
e−Bsasds.
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