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Abstract

This paper studies sequential persuasion games with multiple senders. We transform a

problem where senders have infinite action spaces to a finite action model. This way we prove

the existence of equilibria by backward induction, show that equilibrium outcomes are gener-

ically unique, obtain an easy to implement algorithm for finding equilibrium outcomes, and a

simple condition for when full revelation is the unique equilibrium outcome. Adding a sender

who moves first cannot reduce informativeness in equilibrium, and will result in a more infor-

mative equilibrium in the case with two states. Sequential persuasion cannot generate a more

informative equilibrium than simultaneous persuasion and is always less informative when

there are only two states.
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1 Introduction

A lobbyist trying to influence legislators can use at least two different instruments. One can

pay for votes, try to persuade the legislators that the policy advocated by the lobbyist is the right

thing to do, or use a combination of money and persuasion to influence legislative outcomes. Ac-

cordingly, when there are different lobbyists representing different interests there is both price

competition and competition in persuasion shaping eventual outcomes. There is an extensive lit-

erature studying how price competition influences outcomes of the political process, much of it

based on contest theory. In contrast, competition in persuasion is not as well understood.

There are numerous real world examples of competition in terms of information structures

beyond lobbying. Clinical trials by pharmaceutical companies, software companies competing by

releasing free beta versions of their products, doctors and laboratories providing second medical

opinions, home sellers using multiple realtors etc. Businesses specializing in selling second opin-

ion services are common in medicine, finance, marketing, and law (see Sarvary (2002) and the

references therein).

A few recent papers, such as Gentzkow and Kamenica (2017a,b) and Board and Lu (2017), have

studied competition in persuasion using multi-sender extensions of Bayesian persuasion games.

However, no paper in the existing literature provides a general treatment of how to analyze persua-

sion games in which the agents that seek to influence the decision move sequentially. The purpose

of this paper is to close this gap.

Many real world examples with competing experts are sequential in nature. The provider of

the second opinion usually knows that the initial opinion triggered a second opinion, and often

also the exact nature of the initial advice. Medical second opinions tend to be sequential when

triggered by an internal rule or by an insurance provider. A realtor that is providing a secondary

appraisal is at least aware of the existence of another appraisal. In competition between different

news organizations, players do respond to information provided by other outlets.

Ultimately, we are interested in the effects of competition on information transmission. Specif-

ically, does adding more senders increase the information revealed? Additionally, we like to under-

stand how simultaneous move persuasion compares with sequential persuasion for many of the

same reasons that we like to understand the difference between the Cournot and Stackelberg mod-

els: this touches on central issues such as the value of commitment and is also a necessary first

step to understand how to design games with competing experts. In a scenario where a receiver

sequentially consults multiple experts, the comparison also helps the receiver to understand the
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benefit and cost to share existing advice with subsequent experts.

We consider a sequential model of information disclosure building on the recent advances in

multi-sender Bayesian persuasion games in Gentzkow and Kamenica (2017a,b). An uninformed

decision maker seeks to maximize her state dependent payoff. There is also a number of senders

who move in sequence, each constructing an experiment or signal with a precision ranging from

no information to full revelation of the state. Each sender observes the experiments designed by

previous senders before constructing a new experiment.

Our analysis differs from most of the Bayesian persuasion literature in that we do not rely on

the concavification approach popularized by Aumann and Maschler (1995) and Kamenica and

Gentzkow (2011). Instead we make the problem tractable by demonstrating that it is without loss

of generality to consider one step strategies, and that we may restrict attention to a finite set of

vertex beliefs. All results in the paper build on these two facts, which permit us to employ linear

algebra techniques with a similar flavor as in Bergemann and Morris (2017) and many other papers

in the information design literature.

Our first result is that every subgame perfect equilibrium outcome can be supported using

one step equilibrium strategies. In a one step equilibrium, the first sender is the only player who

provides any non-redundant information. If we consider an arbitrary equilibrium and change

it so that sender 1 plays the joint signal implied by the original equilibrium, no sender provides

any additional information on the path, and every sender plays in accordance with the original

equilibrium for any other history, this is also an equilibrium. This follows because every sender

can unilaterally deviate and generate any joint signal that is more informative in Blackwell’s order.

As all senders earn the same payoff as in the initial equilibrium, and since any deviation feasible

under the one step profile is feasible in the original equilibrium, this must be an equilibrium too.

This logic applies on and off the equilibrium path, so any subgame perfect equilibrium can be

replicated by strategies that are one step after any history of play.

Our second simplifying result is that any subgame perfect equilibrium outcome can be sup-

ported by equilibrium strategies with support on a finite set of beliefs, and that there is a finite set

of deviations that need to be checked. Because her expected utility is linear in probabilities, the op-

timal choice rule for the decision maker can be characterized as intersections of upper half spaces,

or convex polytopes, in belief space. Each polytope defining an optimal decision rule is spanned

by a finite set of vertices and each non-vertex belief can be represented as a convex combination

of the vertices. It is feasible for each sender to refine the information so that any non-vertex belief
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is replaced by a mean preserving spread with support on the vertices only and if ties are broken so

that the action is unchanged (which is consistent with optimality) there is no change in the joint

distribution over states and actions. Hence, any equilibrium outcome with support on non-vertex

beliefs can be replicated by equilibrium strategies with support on the vertices of the “decision

areas” only.

The model is a finite horizon game of perfect information, but off-the-shelf existence results

don’t apply because senders have infinite action spaces. In a single-sender model, Kamenica and

Gentzkow (2011) prove existence of equilibria by having the decision maker break ties in favor

of the sender, making the latter’s payoff upper semi-continuous. In the multi-sender framework,

there is no reason for different senders to agree on how to break ties, so extending the proof strategy

from Kamenica and Gentzkow (2011) to the case with multiple senders does not seem possible.

However, upper semi-continuity is sufficient but not necessary for equilibrium existence. We

instead use the vertex beliefs to turn the best response problem for each sender into a finite prob-

lem. The first step is to note that for any non-vertex belief, the final sender is weakly better off

from a mean preserving spread onto the vertices of the polytope corresponding to the action of

the non-vertex belief. Ties are broken in favor of the final sender to avoid making the best re-

sponse problem ill-defined, so on the vertices the action taken is either the original action or an

action that is better for the final sender. Hence, the problem for the final sender is equivalent to

a problem in which beliefs are restricted to belong to vertices of the polytopes, a finite problem.1

After imposing an appropriate selection rule in case there are multiple solutions to the problem

over vertices only, existence of subgame perfect equilibria is established by backward induction,

where in each step senders without loss restrict attention to beliefs that are vertices of the convex

polytopes that define the optimal actions for the decision maker.

The existence question does not arise in the simultaneous move models considered in Gentzkow

and Kamenica (2017a,b). If at least two senders play fully revealing signals, the information struc-

ture available for the decision maker is fully revealing regardless of any unilateral deviation by any

player. Hence, no player is pivotal, so a fully revealing equilibrium exists even if this would be

the worst possible outcome for every sender. In the sequential move case, all senders understand

that they have influence unless a fully revealing signal has already been played. It follows that full

revelation is not always an equilibrium, so equilibrium existence is not automatic.

1Lipnowski and Mathevet (2017b) use this insight to simplify the concavification in a single-sender Bayesian per-

suasion game.
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Converting the game to a problem over a finite set of vertices is also helpful for applications.

Combined with the fact that we only need to consider one step equilibrium strategies we obtain

a simple algorithm to find equilibria, which only checks deviations to vertex beliefs from vertex

beliefs. To illustrate this we consider a simple criminal trial example with three states and three

actions where, because we can restrict attention to equilibria on a few vertices, it is very easy to find

the equilibrium. The example is also of interest because the unique equilibrium is fully revealing

despite senders being collectively better off providing no information at all, so there is a flavor of

a prisoner’s dilemma. We also provide a general sufficient condition for when full revelation is

the unique equilibrium that is local, order invariant, easy to check, and weaker than “zero sum

conditions" suggested by the previous literature.

Surprisingly, it is irrelevant whether senders observe the outcomes of the existing experiments.

This is a consequence of signals being arbitrarily correlated, so that each sender can refine the pre-

existing information structure realization by realization. Moreover, if realizations are observed, it

doesn’t matter whether signals are independent or coordinated. Hence, in a sequential framework

we may reinterpret the convenient technical assumption of arbitrarily correlated signals as an as-

sumption of publicly observable experimental results.

Combining the one step equilibrium characterization with the fact that we without loss may

restrict attention to signals with support on the finite set of vertex beliefs we also obtain a generic

essential uniqueness result. The qualifier essential is needed because it is possible that all players

are indifferent across every distribution over of a polytope that defines optimality for the decision

maker. In particular, if every point in a polytope generates the same action this is necessarily the

case, and this clearly allows for a continuum of equilibria. However, such multiplicity is irrelevant

as the joint distribution over states and actions is the same for all such equilibria. Hence, we focus

on equilibria in which beliefs are on the (finite set of) vertices of the decision maker’s choice areas.

Equilibria are essentially unique for a set of payoff profiles with full measure.

The generic uniqueness result is another consequence of the convexity of the model, com-

bined with the fact that any equilibrium outcome can be replicated by a one step equilibrium. In

a one step equilibrium, the equilibrium path is a distribution of beliefs such that no sender has an

incentive to refine any belief in the support of this distribution. That is, any belief in the support of

the equilibrium must be stable. We also know that the distribution has finite support without loss

of generality, and, since the state space is finite, the convex hull of the beliefs in the equilibrium

distribution is finite dimensional. A failure of uniqueness would imply that there are multiple con-
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vex combinations over the finite support of stable beliefs that give some sender the same utility.

But, by Carathéodory’s theorem, every point in the convex hull can be spanned by M +1 vertices

of the convex hull, where M is the dimensionality of the set. Hence, if there are more than M +1

vertices of the convex hull at least one can be spanned by the others. Indifference requires that

a sender gets the same utility if moving for sure to the vector that is spanned by the others as if

getting a lottery with probabilities defined by the spanning weights over the spanning vector. Such

indifference holds for utility functions of measure zero. Repeating the argument for all possible

combinations of vertices and all senders we have a finite set of possibilities for indifference, and it

follows that equilibria are essentially unique for almost all sender payoff functions.

With equilibrium existence and essential uniqueness in hand, we are finally in position to dis-

cuss the effect of competition on information revealed. First, we study the comparative statics by

increasing the number of senders. We know from Li and Norman (2018) that this can result in a

loss of information if an extra sender is added at the end or in the middle of the order. In contrast, if

an additional sender is added at the root of the game we show that such loss is impossible. Either,

the new (essentially unique) equilibrium is more informative in Blackwell’s order or the equilibria

cannot be compared. While it is unfortunate that one may not always be able to rank equilibria by

informativeness, this is a consequence of the incompleteness of the Blackwell ordering that sim-

ply cannot be avoided in general. However, when we focus on models with two states, we have

stronger results: after adding new senders at the root of the game, the new equilibrium is always

more informative.

Next we compare Cournot and Stackelberg competition in persuasion. We demonstrate that

sequential persuasion results in equilibria that are no more informative than simultaneous per-

suasion. That is, either the equilibria cannot be compared or simultaneous persuasion is more

informative in Blackwell’s order. With two states sequential persuasion is always less informative.

This implies that if a receiver has the choice to share information from experts she has already

conslulted when approaching a new expert, she is better off keeping it secret.

Our paper relates to a large body of work on information disclosure, but is most directly con-

nected with the growing literature on Bayesian persuasion started by Kamenica and Gentzkow

(2011) and Rayo and Segal (2010). This literature has recently been extended to incorporate multi-

ple senders (see Gentzkow and Kamenica (2017a,b), Boleslavsky and Cotton (2016), Au and Kawai

(2017a,b), and Hoffmann, Inderst, and Ottaviani (2014)), but none of these papers deal with se-

quential moves by the senders. There is also a growing body of work that embeds persuasion into
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dynamic models (see Ely, Frankel, and Kamenica (2015) and Ely (2017)), but the paper that is clos-

est in spirit to ours is Board and Lu (2017), who incorporate Bayesian persuasion into a search

model.2 However, Board and Lu (2017) consider payoff functions that are more restrictive than in

this paper, and the decision maker faces an optimal stopping problem. In contrast, the decision

maker has no influence on the precision of her information in our model. Finally, our equilibrium

characterization crucially depends on the finiteness of the game. See Wu (2017) for a discussion

of infinite action spaces. Our formal analysis has some similarities with Lipnowski and Mathevet

(2017a,b) who focus on single-sender persuasion games.

The remainder of the paper is organized as follows. In Section 2, we describe the model, and

Section 3 uses an example to illustrate the main technical challenges. Section 4 characterizes the

set of equilibria. We show every equilibrium outcome is supported as a one step equilibrium with

finite support, that equilibria exist, and that the equilibrium outcome is generically unique. We

also derive an algorithm for finding equilibria, illustrate the procedure with a simple example, and

provide a condition for when full revelation is the only equilibrium outcome. In Section 5, we

perform some comparative statics. Appendix A contains an example where a non-Markov equilib-

rium supports a qualitatively different outcome than any Markov equilibrium. Omitted proofs are

collected in Appendix B.

2 Model

Consider an environment with n ≥ 1 senders and one decision maker. Sender i ∈ {1, ...,n} has a

payoff function ui : A ×Ω→ R where A is a finite set of actions andΩ is the finite state space. The

decision maker has a payoff function uD : A×Ω→R and there is a common prior belief µ0 ∈∆ (Ω) .

Payoff functions are common knowledge and players evaluate lotteries using expected utilities. Fix

a belief µ and an action a, define player i ’s expected payoff as

vi (a,µ) ≡ ∑
ω∈Ω

ui (a,ω)µ(ω), (1)

for i = 1, ...,n,D . We make a regularity assumption that guarantees that for every pair of actions

there is a state that makes the decision maker strictly better off from taking the first action than

2Glazer and Rubinstein (2001) studies a finite horizon sequential persuasion model, but they consider a very differ-

ent information structure. There are also papers in the cheap talk and disclosure literature that asks what the implica-

tions of multiple senders are. See Ambrus and Takahashi (2008), Battaglini (2002), Kawai (2015), Krishna and Morgan

(2001), Kartik, Lee, and Suen (2017, 2016), Bhattacharya and Mukherjee (2013) and Milgrom and Roberts (1986).
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the second and another state that reverses the rank of the payoffs. This assumption implies that

the set of beliefs making the decision maker indifferent between any two actions, the set {µ ∈
∆(Ω)|vD (a,µ) = vD (a′,µ)}, is the intersection between ∆ (Ω) and a hyperplane.

Assumption 1. For each ordered pair of actions
(
a, a′) there exists a stateω ∈Ω such that uD (a,ω) >

uD
(
a′,ω

)
.

Players are uninformed about the state of the world, but the senders may provide information

to the decision maker by creating signals. As in Gentzkow and Kamenica (2017a) we model sig-

nals using the partition representation introduced by McGuire (1959) and Marschak and Miyasawa

(1968). A generic signal thus is a finite Lebesgue measurable partition ofΩ× [0,1].

Given signal π we assign probabilities as if a sunspot variable Z is drawn uniformly from [0,1]:

the probability of signal s ∈ π conditional on ω is p (s|ω) = ∫
z∈Iω(s) d z where a generic signal real-

ization is on form s = ∪ω [ω× Iω (s)] and for each state ω the collection {Iω (s)}s∈π are disjoint sets

such that ∪s∈πIω (s) = [0,1]. The posterior probability of state ω ∈Ω is thus

µ (ω|s) = p (s|ω)µ0 (ω)∑
ω′∈Ωp (s|ω′)µ0 (ω′)

=
[∫

z∈Iω(s) d z
]
µ0 (ω)∑

ω′∈Ω
[∫

z∈Iω′ (s) d z
]
µ0 (ω′)

. (2)

Denoting the unconditional probability of s by p (s) =∑
ω′∈Ωp

(
s|ω′)µ0

(
ω′) and noting that

∑
s∈πp (s|ω) =

1 for each ω ∈Ω we note that every signal induces a distribution of posterior beliefs that satisfies

the Bayes plausibility constraint ∑
s∈π

µ (ω|s) p (s) =µ0 (ω) . (3)

We let Π denote the set of signals. Signals are partially ordered as one can partition each set in the

partition:

Definition 1. π is a finer partition than π′, denoted πº π′, if for every s ∈ π there exists s′ ∈ π′ such

that s ⊂ s′.

The space (Π,º) is a lattice and for any two signals π,π′, the joinπ∨π′ is the signal that consists

of realization s∩s′ for each s ∈π and s′ ∈π′. Notice thatπ∨π′ is finer than bothπ andπ′ for any pair

of signals
(
π,π′), so combining two signals by taking intersections generates a more informative

new signal. See Figure 1 for an illustration.

Senders move sequentially with sender 1, ...,n posting signals π1....,πn , and each sender ob-

serving previous senders’ signals. Then nature drawsω and the sunspot variable. Finally, the deci-

sion maker observes (π1, ....,πn) and a joint realization ∩n
i=1si with si ∈ πi for each i ∈ {1, ...,n} and
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Z
0 1 0 10.3 0.7 0.1 0.3

ω0 ω1

π1 s′1 s′′1 s′1 s′′1

π2 s′2 s′′2 ...... s′2 s′′2 ......

Figure 1: There are two states: ω0 and ω1. Consider two signals: π1 = {s′1, s′′1 } and π2 = {s′2.s′′2 , s′′1 }. Signal π1 has

two possible realizations: s′1 = {(ω0, [0,0.7]), (ω1, [0,0.3])} and s′′1 = {(ω0, (0.7,1]), (ω1, (0.3,1]), and signal π2 has three

possible realizations {s′2, s′′2 , s′′1 }. Suppose that the prior belief is µ0 = 0.5. If s′1 is realized, (ω, Z ) ∈ (ω0, [0,0.7]) or (ω, Z ) ∈
(ω1, [0,0.3]) with equal probability; and thus µ(s′1) = 0.3 by (2). Since s′1 = s′2 ∪ s′′2 , π2 is a finer partition than π1.

takes an action a ∈ A.3 Allowing senders to move once only is without loss of generality because

a sender moving multiple times can be replaced with multiple senders sharing the same payoff

function.

A pure strategy for sender i is a map σi :Πi−1 →ΠwhereΠ0 is the trivial null history. A generic

history for the decision maker is a vector (π1, ..,πn , s) with s =∩n
i=1si and si ∈πi for each i . Let HD

be the set of all histories for the decision maker, and σD : HD → A denote his strategy. There is

uncertainty about the state, but information is symmetric, and there is therefore never any point

in the game where any player needs to update the beliefs about the type of other players. Hence,

subgame perfection is applicable.

3 An Illustrative Example

To illustrate some of the challenges to be overcome we now discuss an example.4 The example

relies on a payoff function for one of the players which is non-generic in the sense that the set

of payoff functions that can create the difficulties to be detailed below have Lebesgue measure

zero. However, it highlights how our approach to establishing existence and (generic) essential

3While drawing the state at the end or at the beginning doesn’t affect equilibrium outcomes, we need to draw it at

the end for subgame perfection to formally apply.
4We are grateful to an anonymous referee for suggesting this example.
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uniqueness of equilibria differs from more standard continuity arguments.

We consider a persuasion game with two senders, two states, ω0 and ω1, and action space

A = {a0, a1, a2}. The decision maker has expected utility preferences with payoffs over states and

actions given by.

a0 a1 a2

ω0 1 0 -1

ω1 -2 0 1/2,

(4)

and the senders have state independent payoffs given by

u1(a,ω) =
{

1 if a = a1

0 if a 6= a1

,u2(a,ω) =


0 if a = a0

1 if a = a1

2 if a = a2

(5)

for ω ∈ {ω0,ω1}.

First, sender 1 posts a signal π1 ∈ Π. Sender 2 observes π1 and chooses π2 ∈ Π, and then the

decision maker observes the signals (π1,π2) and a realization s of the joint signal π1 ∨π2. We let µ

denote a generic posterior probability that the state is ω0.

In Section 4.1, we argue that the posterior belief µ is the only payoff relevant variable for the

decision maker. It is easy to check that a0 is the unique optimal action for the decision maker for

µ< 1/3, that a1 is the unique optimal action on (1/3,2/3), and that a2 is the unique optimal action

given µ > 2/3. At µ = 1/3 the decision maker is indifferent between a0 and a1, and at µ = 2/3,

there is indifference between a1 and a2. To ensure that sender 2 has a well defined best response

problem we break these ties in favor of sender 2, and assume that the decision maker follows

σD
(
µ
)=


a0 if 0 ≤µ< 1

3

a1 if 1
3 ≤µ< 2

3

a2 if 2
3 ≤µ≤ 1

. (6)

We next consider subgames when sender 2 moves. Sender 2 then observes π1, a signal played

by sender 1, and each potential realization s1 ∈ π1 corresponds to an “interim belief” µ (s1) . Be-

cause payoffs are linear in probabilities, we may separate the best response problem for sender 2

into |π1| distinct problems, one for each signal realization/interim belief generated by π1.5 Each

such problem is equivalent to a single sender persuasion game in the framework of Kamenica and

Gentzkow (2011). One approach to the best response problem for sender 2 is therefore to work

5See the discussion on how to solve (16) by solving several problems on form (17) in Section 4.1
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v2(µ|σD )

µ

0 1/3 2/3 1

Figure 2: The solid line represents sender 2’s payoff in the absence of providing further information, and the dashed

line represents its concave closure.

in belief space and find an optimal mean preserving spread of any possible interim belief. This is

how we will proceed from here.

The reason that this example is pathological is that if sender 2 faces interim belief µ= 1/3 then

a feasible mean preserving spread is sending the posterior to 0 with probability 1/2 and to 2/3 with

probability 1/2, and since

u2(a1;ω) = 1

2
u2(a0;ω)+ 1

2
u2(a2;ω). (7)

this implies that any mean preserving spread over {0,1/3,2/3} is optimal when 0 < µ < 2/3, so

sender 2 has a continuum of best responses. To understand this geometrically, see Figure 2 which

plots sender 2’s payoff as a function of the interim belief of the decision maker.

One best response for sender 2 is

τ2
(
µ
)=


the unique mean preserving spread onto

{
0, 1

3

}
if µ≤ 1

3

the unique mean preserving spread onto
{1

3 , 2
3

}
if 1

3 <µ≤ 2
3

the unique mean preserving spread onto
{2

3 ,1
}

if µ> 2
3

. (8)

Given that sender 2 uses the best response in (8) we may plot the payoff of sender 1 as a function

of the interim belief for sender 2 as the solid lines in in the upper panel of Figure 3. When the

prior belief µ0 ∈ [0,1/3] sender 1 may therefore create any mean preserving spread with all beliefs

in the support being in the interval [0,1/3]. Given the response in (8) any such mean preserving

spread lead to the same ultimate outcome. In contrast, when µ0 > 1/3 sender 1 will respond by
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generating the unique mean preserving spread with support {1/3,1} . Hence, we have constructed

an equilibrium.

Another best response is

τ′2
(
µ
)={

the unique mean preserving spread onto
{
0, 2

3

}
if 0 ≤µ≤ 2

3

the unique mean preserving spread onto
{2

3 ,1
}

if µ> 2
3

. (9)

Given the continuation play generated by σD and τ′2 there is nothing sender 1 can do to make the

decision maker take action a1 in equilibrium. Hence, anything is a best response for player 1 and

we have constructed a family of subgame perfect equilibria with an outcome corresponding to

belief distributions with support on {0,2/3} or {0,2/3,1} depending on whether the prior is below

or above 2/3.

Both the equilibrium with sender 2 response (8) and the one with sender 2 response (9) led to

multiplicity in what actions sender 1 takes. This kind of multiplicity is generic, but also irrelevant

for the distribution over actions and states. However, the equilibria with sender 2 response (8)

generate a different distribution over actions and states than and the ones with sender 2 response

(9), and this type of multiplicity matters, so we call it essential.

We relied on a payoff function satisfying the equality in (7) to generate this multiplicity, and

the set of payoff functions satisfying this equality defines a plane in R3, which is measure zero. In

our general analysis we allow for richer action and state spaces and state dependent payoffs, but

we nevertheless establish essential uniqueness for almost all payoff functions by ruling out more

general versions of linear dependencies.

Finally, consider the best response

τ′′2
(
µ
)=


the unique mean preserving spread onto

{
0, 1

3

}
if µ< 1

3

the unique mean preserving spread onto
{
0, 2

3

}
if µ= 1

3

the unique mean preserving spread onto
{1

3 , 2
3

}
if 1

3 <µ≤ 2
3

the unique mean preserving spread onto
{2

3 ,1
}

if µ> 2
3

. (10)

Sender 1’s payoff as a function of sender 2 beliefs corresponding to the best response (10) is plotted

in the lower panel of Figure 3. Clearly, the best reply to σD and τ′′2 is ill-defined because of the

discontinuity at µ = 1/3, which illustrates that to establish existence of equilibrium we must be

careful about which best replies to select when there is multiplicity.

To summarize, the main points of the example are as follows. Firstly, it is without loss of gen-

erality to focus on equilibria with support on a finite set of decision maker beliefs. In the example,

11



v1(µ|σ2,σD )

µ

0 1/3 2/3 1

v1(µ|σ′
2,σD )

µ

0 1/3 2/3 1

v1(µ|σ′′
2 ,σD )

µ

0 1/3 2/3 1

Figure 3: Sender 1’s payoff as a function of the prior belief given three distinct best responses by sender 2.
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the appropriate set are points of indifference for the decision maker. This generalizes to points

spanning the convex hull of beliefs that make a certain action optimal in the general model.

Secondly, the example illustrates that we need to be careful about how to select best responses

for a sender in case there is essential multiplicity in the sense that the distribution over states and

actions is affected by the selection. In the example this problem occurs when the second sender is

indifferent between a point of indifference for the decision maker and a mean preserving spread

over two other points of indifference. This implies that there are best responses for the second

sender that makes the first senders problem ill defined. In the example, this problem is avoided by

selecting a best response so that any belief in an interval is refined into the unique mean preserving

spread to the same two points. We use convex analysis to demonstrate that this idea generalizes

to the case with arbitrary finite state and action spaces. This allows us to avoid using any explicit

references to continuity arguments because we construct best responses that transform the best

response problems for previous senders into finite action optimization problems.

Finally, with a preference profile that is very special, we could generate multiplicity of equilibria

in terms of the distribution over states and actions. It is not hard to see that if the preferences of

sender 2 are perturbed in any direction, then best responses over points of indifference for the

decision maker are unique. This also generalizes. For the general model we demonstrate that

multiplicity of equilibria can only happen for a zero Lebesgue measure set of payoff functions.

4 Analysis

We begin the analysis by considering the problem for the decision maker, who observes a his-

tory of individual signals h = {
π j

}n
j=1 , which induces a joint signal πn =∨n

j=1π j , as well as a joint

signal realization s ∈ πn . Using πn and s the decision maker then simply computes the posterior

belief in accordance with (2), and this posterior summarizes all payoff relevant aspects of the his-

tory.

To characterize the optimal actions for the decision maker given a generic posterior µ we note

that, under Assumption 1, for any distinct pair a, a′ ∈ A the set

H
(
a º a′)≡ {µ ∈∆(Ω)| ∑

ω∈Ω
µ(ω)[uD (a,ω)−uD (a′,ω)] ≥ 0}, (11)

defines an upper half-space of posterior beliefs such that the decision maker weakly prefers a to
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Figure 4: Ω= {ω1,ω2,ω3} and A = {a1, a2, a3, a4}.

a′. It follows that the set of beliefs such that a ∈ A is optimal is given by

M (a) =∩a′∈A H
(
a º a′) . (12)

We note that ∪a∈A M (a) =∆ (Ω) and that for any µ in the interior of some M (a) there is no M
(
a′)

such that µ ∈ M
(
a′) . However, the boundary points of M (a) are points where there exists some

a′ 6= a such that µ ∈ M (a)∩ M
(
a′) . By construction, M (a) is a finite convex polytope for each

a ∈ A. Such a convex polytope has a finite set of J (a) vertices
{
µa

j

}J (a)

j=1
and these vertices span

M (a) so that every µ ∈ M (a) can be represented as a convex combination of the vectors
{
µa

j

}J (a)

j=1
.6

Denote

X =∪a∈A
{
µ j

}J (a)
j=1 (13)

as the set of all vertices that defines the optimal actions for the decision maker, which is finite

because bothΩ and A are finite. See Figure 4 for a simple example.

Our next step is to prove that it is without loss of generality to consider certain simple strategies

by the senders. Players ultimately only care about the distribution over actions and states, which

motivates the following definition:

6See Grünbaum, Klee, and Ziegler (1967).
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Definition 2. Two strategy profiles are outcome equivalent if they generate an identical joint distri-

butions overΩ× A.

This is in important concept because there may exist many equilibrium information structures,

but where, because all players only care about distributions over Ω× A, everyone is indifferent

across all equilibria. These equilibria can be Blackwell comparable, but players don’t care directly

about informativeness, so we consider them equivalent.

Next, we define strategy profiles in which only the first sender provides any information:

Definition 3. Consider a strategy profile σ′ and let h′
i denote the implied outcome path before the

move by sender i . We say that σ′ is one step if ∨n
j=1σ

′
i (h′

i ) =σ′
1.

We show that:

Proposition 1. For any subgame perfect equilibrium there exists an outcome equivalent subgame

perfect equilibrium in which senders play a one step continuation strategy profile after any history

of play.

The idea behind Proposition 1 is similar to the revelation principle. Consider an arbitrary sub-

game perfect equilibrium σ∗ and let h∗
i = {π∗

1 , ...,π∗
i−1} be the equilibrium path history when it is

sender i ’s turn to move. This equilibrium generates a joint signal π∗ =∨n
i=1π

∗
i . To construct a one

step equilibrium we let sender 1 playπ∗ and assume that on the equilibrium path players i = 2, ...,n

provide only redundant information. It then follows that the decision maker may as well generate

the same distribution over A ×Ω as in the initial equilibrium after observing the one step equi-

librium path history. Moreover, because π∗ is finer than π∗
i for each i < n, any deviation that is

feasible from the one step equilibrium path is feasible also in the original equilibrium, so it is pos-

sible to replicate continuation play following deviations from the one step equilibrium from the

original equilibrium just like in the proof of the revelation principle. Finally, off the equilibrium

path, we can just follow the original equilibrium strategies.

The paragraph above contains the key idea in proving that one step equilibria are sufficient,

but ignores a subtle issue. We need to make sure that the consequences from a deviation by i on

the one step equilibrium path replicates the consequences of an equivalent deviation from the

original path, which requires us to keep track of “equivalent” histories for the two equilibria. See

the proof of Proposition 1 in Appendix B for details.

We use one step equilibria because they are convenient for characterizing equilibrium out-

comes. It is possible that the first sender would be better off at some strictly less informative
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signal, in which case it may be more reasonable to assume that the first sender would add less

information in the hope that the senders that follow make mistakes and don’t further refine the

signal. However, this is irrelevant for the set of equilibrium outcomes.7

For the one step equilibrium characterization to be a significant simplification, it is important

that it applies not only on the equilibrium path, but also following arbitrary histories of play. The

logic generalizes immediately to any continuation equilibrium following an arbitrary history of

play, but notation gets heavy.

We next show that if we only care about the distribution over A ×Ω, we may as well focus on

equilibria with support on the vertices spanning the optimal decisions for the decision maker.

Proposition 2. For every subgame perfect equilibrium there exists an outcome equivalent subgame

perfect equilibrium in which senders play one step strategies with implied beliefs with support on X

after every history of play.

In the same spirit we note that when checking for subgame perfection it is without loss to

consider one step deviations onto the set of vertices X . This is more or less a direct consequence

of Proposition 2, but a proof is provided for completeness.

Proposition 3. Let σ be a strategy profile that is one step after any history of play and suppose that

there is no history hi and no deviation πi with beliefs having support on X only with πi being the

signal in a one step continuation equilibrium (possibly different from σ|hi ). Then, σ is subgame

perfect.

In what follows we will show that Propositions 1, 2, and 3 vastly simplify the task of finding

equilibria. However, there are two difficulties to be overcome before turning these results into a

concrete algorithm. Firstly, we need to establish that equilibria exist. Secondly, we need to do

some more work to be able to use backward induction in a practical way. This is accomplished by

using a particular “consistent” selection rule in case there are multiple best responses.

4.1 Existence of Equilibria

In this section we demonstrate:
7Notice that the one step result critically relies on the fact that each sender is able to provide the information pro-

vided by others. In some settings, this assumption may not be plausible and information will be gradually reveled as

in Celik (2015).
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Theorem 1. There exists a subgame perfect equilibrium.

We establish existence by showing that a separable Markov equilibrium exists. We say that the

decision maker’s strategy is Markov if the action only depends on the posterior belief induced by

the signals and the realization, so, abusing notation, we write σD : ∆(Ω) → A for a Markov strat-

egy for the decision maker. This is in general restrictive, and there is an example in Appendix A

where the decision maker uses a non-Markov decision rule as carrots and sticks, which supports a

qualitatively different outcome than any Markov equilibrium.8

Any history of individual signals hi =
{
π j

}i−1
j=1 induces a joint signal πi−1 = ∨i−1

j=1π j , which is

what would be available for the decision maker if senders i , ...,n do not add any further informa-

tion. For each s ∈πi−1, one can calculate a posterior belief µ(s) by (3). This is the decision maker’s

posterior belief if no sender adds any signal in the continuation game and s is realized. We call

such belief an interim belief. Each joint signal πi−1 ∈Π generates a distribution of interim poste-

rior beliefs τi−1 and we let ∆ (∆ (Ω)) denote the set of distributions of (interim or posterior) beliefs.

Given a joint signal πi−1 that induces a belief distribution τi−1, sender i can refine the informa-

tion into any partition that is finer thanπi−1. Using Theorem 1 in Green and Stokey (1978) together

with the characterization in Gentzkow and Kamenica (2017a), we know that for any mean preserv-

ing spread of τi−1 there exists a refinement of πi−1 that induces the mean preserving spread. The

set of feasible joint signals available to sender i thus corresponds to the set of mean preserving

spreads of the interim belief distribution. Hence, if sender i would be moving after a history that

generates belief µ for sure (which then would have to be the prior), a belief distribution τwould be

feasible for sender i if and only if ∑
µ′∈supp(τ′)

µ′τ
(
µ′)=µ, (14)

which is just the condition (3) expressed in terms of distributions of beliefs. Given a non-degenerate

distribution τi−1 ∈∆ (∆ (Ω)), this generalizes by summing over each µ in the support of τi−1 so that

τ is feasible for i if and only if∑
µ∈supp(τι−1)

∑
µ′∈supp(τ)

µ′τ
(
µ′)τi−1 (

µ
)= ∑

µ∈supp(τi−1)
µτi−1 (

µ
)

. (15)

One way to satisfy (15) is if for each belief µ ∈ ∆ (Ω) and every τ with µ in its support there ex-

ists a distribution τi
(·|µ)

in ∆ (∆ (Ω)) with finite support such that the probability of any µ′ is∑
τn

(
µ′|µ)

τ
(
µ
)

. We call such a strategy a separable Markov strategy:

8However, we show that subgame perfect equilibria are essentially unique and when it is unique, it is Markov, so

such examples are pathological.

17



Definition 4. Sender i plays a (separable) Markov strategy if for every µ ∈∆ (Ω) there exists a distri-

bution τi
(·|µ)

in ∆(∆(Ω)) such for any µ′ ∈ ∆(Ω) and any history hi that generate an interim belief

distribution τi−1 ∈∆ (∆ (Ω)) the probability of belief µ′ is
∑
τi

(
µ′|µ)

τi−1
(
µ
)

.

Next, we consider the last sender’s best response. To ensure that this is well defined, we as-

sume that the decision maker always break ties in favor of sender n so that σD
(
µ
)= a if µ ∈ M (a)

and vn(a,µ) ≥ vn
(
a′,µ

)
for each a′ 6= a such that µ ∈ M(a′). If there are multiple such rules, we

arbitrarily pick one of them.

Following a history that generates belief distribution τn−1 and decision rule σD , sender n plays

a best response (using a separable Markov strategy) if generating belief distribution τ∗ where

τ∗
(
µ′)=∑

τn
(
µ′|µ)

τn−1
(
µ
)

for some
{
τn

(·|µ)}
µ∈supp(τn−1) that solves the linear program

max
τ∈∆(∆(Ω))

∑
µ∈Supp(τn−1)

[ ∑
µ′∈supp(τ(·|µ))

vn(σD (µ′),µ′)τ(µ′|µ)

]
τn−1(µ) (16)

s.t.
∑
µ′
µ′τ(µ′|µ) =µ for each µ ∈ Supp(τn−1),

Program (16) is separable and can be solved by solving one linear program for each belief in the

support of τn−1. Each such program is on form,

Vn
(
µ
) = max

τ∈∆(∆(Ω))

∑
µ′

vn(σD
(
µ′) ,µ′)τ

(
µ′) (17)

s.t.
∑
µ′
µ′τ

(
µ′) = µ,

which shows that there are always best replies that are separable Markov strategies. For each pro-

gram on form (17), we consider a restricted finite linear program

Ṽn
(
µ
) = max

τ∈∆(X )

∑
µ′∈X

vn(σD
(
µ′) ,µ′)τ

(
µ′) (18)

s.t.
∑
µ′
µ′τ

(
µ′) = µ,

Hence, (18) is well defined as it is a finite dimensional bounded linear program.

Lemma 1. For each µ ∈∆ (Ω) the linear program (17) is well defined. Moreover:

1. Vn
(
µ
)= Ṽn

(
µ
)

for each µ ∈∆ (Ω) ;

2. Every solution to (18) given belief µ also solves (17);
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3. For every solution τn ∈∆ (∆ (Ω)) to (17) there exists some τ̃n ∈∆ (X ) that solves (18) that gener-

ates the same probability distribution over A×Ω.

A proof is in Appendix B. The idea is that each M (a) is spanned by its vertices. Hence it is pos-

sible for the sender to replace any beliefµ that is not one of the vertices with a convex combination

over the vertices. There are then two possibilities. The first is that the action σD
(
µ
)

is taken on all

the vertices in the convex combination. In this case, the sender is indifferent between µ for sure

and the convex combination over the vertices of M (a) . The second possibility is that a different

action is taken on one or more of the vertices. Then, the sender may be strictly better off by using

the convex combination. Hence, problem (18) generates a utility at least as great as (17). But, the

feasible set in (18) is a subset of the feasible set in (17), so the two problems must have the same

value. The idea is illustrated in the example if Figure where µ is in the interior of M(a2) and is

induced by one of the solution to problem (17) with probability τ. There must be another solution

in which {µa2
j } j=1,2,.3 is induced with probability τ1,τ2,τ3 s.t.

∑
j µ

a2
j τ j =µ.

Lemma 1 suggests that we may characterize the best reply of every sender in terms of a fi-

nite optimization problem. The general idea is that if the last sender always uses a best response

with support on the vertex beliefs X , then previous senders may as well use strategies limited to

the same set of vertices since the final sender will undo any attempt to generate any other be-

liefs by splitting them onto X . However, for this to always work we have to be careful in selecting

the optimal response when sender n is indifferent between staying on a vertex belief and a mean

preserving spread onto a set of different vertex beliefs.

The issue is illustrated in the example with the best response (10) in Section 3.1. In that case,

the problem could be avoided by using the “consistent” best responses (eg. (8) or (9)). These best

replies have the property that all beliefs in a given convex hull are split uniquely onto the spanning

beliefs. Indeed, the same idea works in the general case: it is always possible to find at least one

optimal solution which is “consistent” in the sense that every belief in a polytope is split onto a

minimal set of vertices, and selecting best responses with this property is crucial for our existence

proof.

Definition 5. A set of beliefs {µ j } is minimal if there is a unique τ ∈ ∆(
{µ j }

)
such that µ = ∑

j τ jµ j

for any µ in the convex hull of {µ j } which is denoted by Co({µ j }).

When the set of beliefs are not minimal, one can always split them into multiple minimal sets.

See Figure 5 for an example.
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Figure 5: In the example, |Ω| = 3. The set Y = {µ1,µ2,µ3,µ4} is not minimal because there are multiple ways to split

µ0 on Y . Both {µ1,µ2,µ3} (left panel) and {µ1,µ2,µ4} (right panel) are minimal.

Lemma 2. There exists an optimal solution to (18) such that:

1. For each belief µ ∈∆ (Ω) the solution has a support X
(
µ
)

which is minimal.9

2. If X
(
µ
)

is the solution selected for µ and µ̃ is in the convex hull of X
(
µ
)

then the solution

selected for µ̃ is the unique distribution with support on X
(
µ
)

.

Proof. The first part of the Lemma is part of Theorem 1 in Lipnowski and Mathevet (2017b), but

we provide a simple proof in Appendix B for convenience of the reader, and we present the proof

of the second part here. Let µ̃ ∈ Co
(
X

(
µ
))

and let X
(
µ̃
) 6= X

(
µ
)

be the support for some solution τ̃

to the problem given belief µ̃. We thus have that

µ = ∑
µ′∈X (µ)

µ′τ
(
µ′) (19)

µ̃ = ∑
µ′∈X (µ̃)

µ′τ̃
(
µ′)

since τ solves (18) given belief µ and τ̃ solves (18) given belief µ̃. Also, µ̃ ∈ Co
(
X

(
µ
))

implies that

there exists λ such that

µ̃= ∑
µ′∈X (µ)

µ′λ
(
µ′) . (20)

9If the convex hull of X
(
µ
)

has interior points a minimal set consists of |Ω| spanning vectors. However, the convex

hull could belong to a subspace of ∆ (Ω) in which the number of vectors would correspond to the dimensionality of

the subspace.
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Combining the first equality in (19) with (20) and then using (19) we have that

µ= ∑
µ′∈X (µ)

µ′ (τ(
µ′)−βλ(

µ′))+βµ̃= ∑
µ′∈X (µ)

µ′ (τ(
µ′)−βλ(

µ′))+ ∑
µ′∈X (µ̃)

µ′βτ̃
(
µ′) (21)

where since τ
(
µ′)> 0 for everyµ′ ∈ X

(
µ
)

we have that τ
(
µ′)−βt̃

(
µ′)> 0 forβ small enough. Hence,

it is feasible to split µ over X
(
µ
)∪X

(
µ̃
)

using coefficients

{
τ
(
µ′)−βλ(

µ′)+βτ̃(
µ′)}

µ′∈X (µ)∪X (µ̃) . (22)

But, τ is optimal given belief µ so

∑
µ′∈X (µ)

vn
(
σD

(
µ′) ,µ′)τ(

µ′) ≥ ∑
µ′∈X (µ)∪X (µ̃)

vn
(
σD

(
µ′) ,µ′)(τ(

µ′)−βλ(
µ′)+βτ̃(

µ′)) (23)

= ∑
µ′∈X (µ)

vn
(
σD

(
µ′) ,µ′)τ(

µ′)
−β

[ ∑
µ′∈X (µ)

vn
(
σD

(
µ′) ,µ′)λ(

µ′)− ∑
µ′∈X (µ̃)

vn
(
σD

(
µ′) ,µ′) τ̃(

µ′)]

This implies that λ is weakly better than τ̃, which is an optimal solution to (18) given belief µ̃.

Hence, λ is also optimal.

Before completing the proof is useful to introduce the notion of a stable belief :

Definition 6. A belief µ ∈∆ (Ω) is stable if it is in the support of a one step equilibrium.

No player has an incentive to refine a stable belief, but the construction of the set of stable

beliefs is still recursive and the order of moves matter for which beliefs are stable. In a one step

equilibrium, beliefs must be immune to any Bayes plausible deviation by sender n. This restriction

defines a subset of ∆ (Ω) of candidate stable beliefs Sn , which would be the stable beliefs in the

game in which n is the only sender. Next, if Si are the stable beliefs in the continuation game

where sender i , i +1, ....,n move sequentially in the same order as in the full game, then stability

requires that every µ ∈ Si is in the support of a one step equilibrium of this continuation game. By

induction, we obtain a sequence of belief sets that gets (weakly) smaller in every step and the set

of stable beliefs is given by the final set in the sequence, S1. By construction, this recursive process

corresponds with beliefs consistent with a one step equilibrium.

We can now complete the proof of Theorem 1:
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Proof of Theorem 1. Pick some decision area M (a) spanned by vertices
{
µa

j

}J (a)

j=1
and let µ ∈ M (a)

be arbitrarily chosen. By Lemma 1, there exists an optimal solution to program (17) with belief µ

where sender n puts positive probability on µ′ only if µ′ ∈
{
µa

j

}J (a)

j=1
. Moreover, we may break ties

so that vn(σD (h) ,µa
j ) ≥ vn(a′,µa

j ) for every a′ ∈ A. Let τ∗n(·|µ) ∈ ∆(X ) be a separable Markov best

reply for sender n which is defined as the solution to problem (18) for a given µ. By Lemma 2 we

may pick solution τ∗n such that each interim belief µ̃ is split onto a minimal set of beliefs and where

t∗n
(·|µ̃)

has support on X
(
µ
)

for every µ̃ ∈ Co
(
X

(
µ
))

given that X
(
µ
)

is the minimal set of beliefs

that is in the support of the solution for prior µ. Define

Xn =∪µ∈∆(Ω)Supp(τ∗n(·|µ)), (24)

which is a finite subset of X . For each µ 6∈ Xn , sender n finds it (weakly) optimal to generate a mean

preserving spread with support Xn . Also let
{
µl

}L
l=1 be distinct vectors that each correspond with

a distinct set of minimal vectors corresponding with solution τ∗n so that
{

X
(
µl

)}L
l=1 is the set of all

sets of minimal support vectors defining the solution τ∗n . We also note that Lemma 2 implies that

for any µ ∈ Xn we select a solution τ∗n such that

τ∗n
(
µ′|µ)={

1 for µ′ =µ
0 for µ′ 6=µ.

(25)

Hence, Xn is a set of stable vertex beliefs in the game where n is the single sender.

Fix a (separable Markov) strategy τ∗n for sender n, we first note that we can use the same separa-

bility arguments as when breaking up (16) into a problem on form (17) for each interim belief that

is implied by the signals posted by senders 1, ...,n −2. Hence, for each µ we can find a (separable

Markov) best reply for sender n −1 by solving the linear program

Vn−1(µ) = max
τ∈∆(∆(Ω))

∑
µ′

[∑
µ′′

vn−1(σD (µ′′),µ′′)τ∗n(µ′′|µ′)

]
τ(µ′) (26)

s.t.
∑
µ′
µ′τ

(
µ′) = µ,

where
{
τ∗n(µ′′|µ′)

}
µ′′∈Xn

is the conditional probability measure defined by the best response of

sender n. Assume for contradiction that sender n − 1 has a strict incentive to use some belief

µ′ ∉ Xn . But, τ∗n is constructed so that the response to µ′ is the unique mean preserving spread

onto a minimal set of vectors X
(
µ′) . Moreover, for any other µ ∈ Co

(
X

(
µ′)) sender n will split be-

liefs uniquely onto X
(
µ′) . Hence, any belief in the support of the strategy of sender n −1 that is
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contained in Co
(
X

(
µ′)) will be split uniquely onto X

(
µ′) implying that sender n−1 may replace all

beliefs in Co
(
X

(
µ′)) with a single distribution over X

(
µ′)⊂ Xn . It therefore follows that n −1 may

as well optimize by considering τ ∈∆ (Xn) and since τ∗n
(
µ|µ)= 1 for each µ ∈ Xn we can replace the

problem 26 with

Vn−1(µ) = max
τ∈∆(Xn )

∑
µ′

[∑
µ′′

vn−1(σD (µ′),µ′)

]
τ(µ′) (27)

s.t.
∑
µ′
µ′τ

(
µ′) = µ,

This problem is on exactly the same form as (18). The only difference is that the set of vertices

X is replaced with Xn ⊂ X . Since Lemma 2 applies for an arbitrary set of vertices, we can use it

again to conclude that there is a Markov separable best response τ∗n−1 for n−1 such that such that

each interim belief µ̃ is split onto a minimal set of beliefs and where τ∗n−1

(·|µ̃)
has support on X

(
µ
)

for every µ̃ ∈ Co
(
X

(
µ
))

given that X
(
µ
)

is the minimal set of beliefs that is in the support of the

solution for prior µ. Moreover, let

Xn−1 =∪µ∈∆(Ω)Supp(τ∗n−1(·|µ)) ⊂ Xn ⊂ X

and note that

1 = τ∗n−1

(
µ|µ)= τ∗n (

µ|µ)
for any µ ∈ Xn−1. Hence, n −1 has a best reply in which each belief is split onto a minimal vector,

implying that we can make the same argument for senders n−2, ...,1. Existence of subgame perfect

equilibria (in separable Markov strategies) follows by induction.

4.2 An Algorithm to Find Subgame Perfect Equilibria

While existence of equilibria is important in itself, the proof of Theorem 1 is constructive. In-

deed, together with the characterization results in Propositions 1, 2, and 3 it generates a simple

algorithm for finding equilibria.

Algorithm 1. One can find a subgame perfect equilibrium by using the following algorithm.

Step 1 Use the payoff functions of the decision maker to find beliefs M(a) such that a is optimal for

each∈ A.
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Step 2 Identify the (finite) set of vertex beliefs X corresponding to {M(a)}a∈A.

Step 3 Assume that the decision maker breaks ties in favor of sender n find all µ ∈ X such that there

exists no mean preserving spread τ of µ with support on X that n strictly prefers to µ. The set

of all such µ, which we denote Xn , is a set of stable vertex beliefs in the game with n being the

only sender.

Step j +2 For j = 2, ...,n given let Xn− j+1 be the set of stable beliefs in the game with senders n −
j +1, ....,n (moving in order with the lowest index moving first). Find all µ ∈ Xn− j+1 such that

there exists no mean preserving spread τ of µwith support on Xn− j+1 that n− j strictly prefers

to µ. The set of all such µ, which we denote Xn− j , is a set of stable vertex beliefs in the game

with senders n − j , ....,n .

Step n +2 Let X2 be the set of stable beliefs in the game with senders 2, ....,n . Find all µ ∈ X2 such

that there exists no mean preserving spread τ of µ with support on X2 that sender 1 strictly

prefers to µ. The set of all such µ, which we denote X1, is a set of stable vertex beliefs in the

full game. A one step equilibrium is then finally found by having sender 1 picking an optimal

distribution over X1 given prior µ0.

The first three steps should be obvious. For the induction step we note that Lemma 1 and as-

suming a selection rule for all senders in accordance with Lemma 2 it is without loss of generality

to assume that sender n − j solves a problem on form (27) (with 1 replaced by j ) given any µ. So-

lutions to that problem are fully characterized by the set of beliefs in Xn− j+1 such that no mean

preserving spread with support in Xn− j+1 is strictly preferred by n − j . By induction, these are sta-

ble vertex beliefs in subgames when n − j is moving. Notice that the algorithm always generates

one step vertex equilibria and also is implicitly supported by continuation strategies that are one

step (on beliefs that are stable in the continuation game) after any history of play. In light of Propo-

sitions 1, 2, and 3 it may therefore be tempting to jump to the conclusion that the algorithm fully

characterizes all equilibrium outcomes. This is not generally true, as non-Markovian strategies

can be used to enlarge the set of stable beliefs. However, as we show below, equilibrium outcomes

are usually unique and then the unique solution to the algorithm corresponds with the unique

equilibrium outcome.
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4.3 An Application: A Criminal Trial

In this section, we study a criminal trial model. This application illustrates (i) that to find an

equilibrium one only needs to check the stability of a few vertices, and (ii) how, in practice, essen-

tial uniqueness falls out from our algorithm.

A prosecutor (sender 1) and a defense attorney (sender 2) move sequentially to persuade the

judge (decision maker). There are three states, the defendant being innocent (ω0), guilty of a mis-

demeanor (ω1), and guilty of a felony (ω2). The judge can choose one of the three actions, a0, a1, a2,

which represent ideal sentences in accordance to the true state respectively.

We assume that the judge’s payoff is

a0 a1 a2

ω0 1 0 -1

ω1 0 1 0

ω2 -1 0 1

(28)

Assume that senders only care about “winning”, so that their preferences are state indepen-

dent. Specifically, for α> 0 and β> 0, the payoffs of the prosecutor and the defense attorney are

u1 (a) =


−1 if a = a0

0 if a = a1

β if a = a2

,u2 (a) =


α if a = a0

0 if a = a1

−1 if a = a2

, (29)

implying that the prosecutor prefers a guilty conviction to a misdemeanor to acquittal and that the

defense attorney has the opposite preferences.

The beliefs that make each action optimal for the decision maker are depicted in Figure 6.

That is, a0 is optimal for the decision in the convex hull of (1,0,0) , (1/2,1/2,0) , (1/2,0,1/2) , a1 is

optimal in the convex hull of (0,1,0) , (1/2,1/2,0) , (0,1/2,1/2) , and a2 is optimal in the convex hull

of (0,0,1) , (1/2,0,1/2) , (0,1/2,1/2) . Hence, the set of vertices spanning M (a0) , M (a1) , and M (a2)

consists of the vertices of the simplex together with (1/2,1/2,0), (1/2,0,1/2), and (0,1/2,1/2). Now

apply Algorithm 1 to find equilibria:

1. If (1/2,1/2,0) is a stable belief then the decision maker must break the tie in favor of the

defense. Hence, the decision is a0. But, then the prosecutor has an incentive to split the

beliefs to (1,0,0) and (0,1,0) .
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(0,0,1)

(1,0,0) (0,1,0)(1/2,1/2,0)

(1/2,0,1/2) (0,1/2,1/2)

M(a2)

M(a0)

M(a1)

Figure 6: In the application, X = {(0,0,1), (1,0,0), (0,1,0), (1/2,0,1/2), (0,1/2,1/2), (1/2,1/2,0)}. The vertices of the

simplex, (1,0,0), (0,1,0), (0,0,1) represent the degenerated beliefs that the state being ω0,ω1,ω2 respectively.

2. Symmetrically, if (1/2,0,1/2) is a stable belief the decision maker breaks the tie in favor of

the defense, meaning that the decision again is a0. But, then splitting beliefs to (1,0,0) and

(0,0,1) is a profitable deviation for the prosecutor.

3. If (0,1/2,1/2) is a stable belief the decision maker again breaks the tie in favor of the defense,

which in this case results in decision a1. The prosecutor is better off splitting beliefs to (0,1,0)

and (0,0,1) .

The conclusion is that full revelation is the unique equilibrium outcome for any prior belief µ0

(confirming the sufficient condition for full revelation in Proposition 4). Also, if µ0 = (1/3,1/3,1/3),

the expected payoffs are
(
β−1

)
/3 and (α−1)/3 for the prosecution and the defense. It is notewor-

thy that, when α < 1 and β < 1, both senders strictly prefer providing no information (results in

misdemeanor conviction for sure) to the equilibrium outcome. Thus there is a flavor of a prison-

ers dilemma in the model even if both senders are purely “career motivated”.

26



4.4 On Fully-Revealing Equilibria

As discussed by Sobel (2010), in most multi-sender strategic communication models, a fully

revealing equilibrium exists under very weak conditions. The key reason is that when others fully

reveal the state, a sender has no way to further affect the outcome. Full revelation can therefore be

supported as an equilibrium outcome even if it is Pareto dominated in a simultaneous move game.

In contrast, the sequential model cannot support full revelation as a coordination failure, so it is

arguably more meaningful to establish conditions for fully revealing equilibria in our model.

Thanks to the one step equilibrium characterization, we are able to identify an easy-to-check

sufficient condition for when the unique equilibrium is fully revealing. One can rule out non-fully

revealing equilibria as long as at each non-degenerate vertex belief of the convex polytope, there

exists at least one sender who prefers full revelation to the current belief being observed by the

decision maker.

Proposition 4. Denote X̂ as the set of vertices of ∆|Ω|−1. All equilibria are fully revealing if for each

µ ∈ X \ X̂ , there exists a sender i and a τ ∈∆(X̂ ) such that

vi (σD (µ),µ) < ∑
µ j∈X̂

vi (σD (µ j ),µ j )τ(µ j ). (30)

Proof. Suppose there is a non-fully revealing equilibrium. By Proposition 2, there is an outcome

equivalent one step equilibrium with support on X . If τ(µ) = 0,∀µ 6∈ X̂ , then the proof is complete.

Otherwise, take such a vertex belief µ∗ 6∈ X̂ . In the one step equilibrium, sender 1 will split the be-

lief and µ∗ will be realized with positive probability. There exists a sender i who has the incentive

to unilateral split µ∗ on X̂ . Since the sequential model cannot support full revelation as a coordi-

nation failure among the senders, If i = 1, then it is not optimal to endow µ∗ positive probability

in a one step separating Markov equilibrium. If i > 1, sender i has the incentive to deviate at his

turn. Therefore, any equilibrium must be fully revealing.

It is easy to check condition (30) as it only depends on the decision maker’s strategy and the

current sender’s payoff at a small number of vertices. Although persuasion is sequential, the one

step characterization makes it unnecessary to take subsequent senders’ action into account, which

explains why the condition is order invariant. An example in Section 5.1 shows that (30) is not nec-

essary and that the order of moves in general matters for when there is full revelation. However, the

condition (30) is weaker than a zero-sum game condition suggested by Gentzkow and Kamenica
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(2017a), which imposes restrictions on preferences for every belief and every mean preserving

spread.

Proposition 4 also contributes to the discussion on advocacy. As noted by Dewatripont and

Tirole (1999), many organizations deliberately turn their (prior unbiased) members to advocates

with goals differing from the one of the organization. The organization then benefits from the

competition among advocates who defend their specific “causes". A leading example can be found

in courts. Although the legal system is meant to “find the truth”, the defense attorney is expected

to stand for the defendant rather than revealing information that may potentially hurt the defen-

dant’s case to the judge. In our model, it is the decision maker’s best interest to fully learn the

state. An obvious way to do so is to recruit one sender who share the preference with the deci-

sion maker. However, such a goal may be too difficult or too costly to achieve for several reasons.

First, a sender may have some intrinsic bias. It is time-consuming to find a sender agreeing with

the decision maker in “every dimension”. Second, acquiring information is typically costly. It may

be too expensive to incentivize the sender to acquire perfect information. However, Proposition

4 suggests that competition among multiple carefully selected senders may be ideal. Although it

is difficult to make one sender always agree with the decision maker, it may be easier to make a

sender dislike a particular non-degenerate vertex belief. To learn the true state, the decision maker

only needs to find or incentivize a set of senders so that each of the non-degenerate vertex beliefs

will be opposed by one sender. This intuition is relevant also in settings where some senders move

simultaneously, but discussing generalizations of condition (30) is beyond the scope of this paper.

4.5 Reinterpreting Rich Signal Spaces in Sequential Persuasion

Another by-product of our construction used to prove existence is that, if we focus on separable

Markov strategies, it is irrelevant whether sender i can observe a joint realization si−1 ∈ πi−1 or

not. As Theorem 2 proves unique distributions over actions and states for generic preferences this

is typically the relevant case.

Corollary 1. Let (σ1, ...,σn ,σD ) be a separable Markov perfect equilibrium. Then it is also a perfect

Bayesian equilibrium of the game where nature draws the state ω and the sunspot variable Z at the

root of the game and where each sender observes all predecessors’ signal realizations in addition to

the signals.

This follows since every best response problem can be separated into one problem for each
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belief in the support of the distribution generated by the joint signals of previous senders. This is

how we justified using (17) instead of (16), (26) instead of the analogue to (16) for sender n−1 and

so on. This, came from using a signal structure where a joint signal realization is an intersection of

individual realizations, which is why for each si−1 ∈ πi−1 we may let πi
(
si−1

)
define a contingent

partition of si−1 and note that the state dependent probability of signal si ∈πi
(
si−1

)
conditional on

si−1 is p(si |si−1,ω) ≡ p(si |ω)
p(si−1|ω)

. Hence, the only difference between observing the realized outcome

of πi−1 and not is that player i conditions on si−1 when it is observed and takes expectations over

si−1 when it is not observed. But, this is irrelevant as the expected payoff is to maximized when

each component in the sum is maximal.

We further note that if senders observe the signal and the realization before adding more infor-

mation it is irrelevant whether signals are represented as partitions ofΩ×[0,1] or as “plain vanilla”

independent noisy signals. This implies that, if all senders move in sequence, we can interpret

the assumption that signals can be arbitrarily correlated as saying that experiments are conducted

sequentially with experimental results revealed in each stage.

In Board and Lu (2017) results depend critically on whether signal realizations are observable

to competitors and they refer to this as a distinction between public and private persuasion. In this

language, our sequential model with coordinated signals can thus be thought as a representation

of a public persuasion model.

4.6 Essential Uniqueness

In this section, we prove that all subgame perfect equilibria are outcome equivalent for generic

preferences.

Definition 7. An equilibrium is essentially unique if all equilibria are outcome equivalent.

Theorem 2. Fix any µ0. Then there is an essentially unique subgame perfect equilibrium that in-

duces distribution τ over a minimal set of vectors X
(
µ0

)
for a set of (bounded) Bernoulli payoff

function profiles with full Lebesgue measure.

The proof of Theorem 2 combines two ideas. The first is that we may consider “one step vertex

equilibria”. The second is that it is rare that players have preferences that make them indifferent

between a belief and a “relevant" mean preserving spread.

By Proposition 2 it is without loss to consider subgame perfect equilibria in which, after any

history of play, continuation strategies are one step strategies inducing beliefs with support on
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vertices in the finite set X . Moreover, Proposition 3 establishes that we only need to check for

deviations generating beliefs on X . By separability, we may check this belief by belief. Hence, if

there are multiple continuation equilibria for some history there is a belief such that some sender

is indifferent between staying at this belief and some mean preserving spread over X .

There are two cases to consider. The first is that each belief in the mean preserving spread

induces the same action as providing no additional information which does not violate essential

uniqueness because the distribution over A×Ω is unchanged. The second is that there are distinct

actions induced by the mean preserving spread, but then indifference is only possible for a lower

dimensional subset of preferences. This is because indifference means indifference between no

additional information and a mean preserving spread over a minimal set of vectors. Each minimal

set of vectors defines a unique mean preserving spread and for each of these there is a lower di-

mensional set of preferences consistent with indifference. There is a finite set of possible minimal

vectors, so by adding a finite set of measure zero possibilities we get a measure zero possibility.

4.6.1 Proof of Theorem 2

We now provide a detailed proof of Theorem 2. First, we need a few intermediate results. non-

Markov

Lemma 3. The decision maker must follow a Markov strategy for a set of bounded Bernoulli payoff

functions for the decision maker and sender n with full Lebesgue measure.

There are two pathological cases that needs to be addressed. Firstly. it may be that there is some

state ω ∈ Ω in which the decision maker is indifferent between two actions. In that case payoff

irrelevant aspects of the history, such as which sender revealed state ω, can be used to construct

non-Markov strategies for the decision maker. See Appendix A for detail. The second case is that

there is some interior vertex associated with some decision area M (a) where both sender n and

the decision maker are indifferent. Both these cases are rare in the sense that the associated payoff

functions is a measure zero subset of all conceivable payoff functions.

By Lemma 3 we may for generic preference profiles assume that the decision maker uses a

Markov strategy. We abuse previous notation and write σD : ∆ (Ω) → A. By substituting the equi-

librium decision rule σD into (1) we define

v̂i (µ) ≡ vi (σD (µ),µ). (31)
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That is, given that the decision maker plays a Markov strategy we may work with the a reduced

form payoff function directly over beliefs for each sender i .

Next, we show that for most stable beliefs, no sender has a weak incentive to add information.

To state this result, let XSi be the intersection between the stable beliefs and X in the truncated

game starting with sender i :

Lemma 4. Suppose that the decision maker plays a Markov strategy. Then, for any µ ∈ XSi , any

i = 1,2, ...,n, and any non-empty set Y ⊂ XSi \
{
µ
}

either:

1. σD
(
µ′)=σD

(
µ
)

for every µ′ ∈ Y , or,

2. there exists µ′ ∈ Y such that σD
(
µ′) 6=σD

(
µ
)

. In this case

v̂i
(
µ
)> ∑

µ′∈Y

v̂i
(
µ′)τ(

µ′) (32)

for every τ such that
∑
µ′∈Y \{µ}µ

′τ
(
µ′) = µ and a set of (bounded) sender i Bernoulli utility

functions over A×Ωwith full Lebesgue measure.

The idea is that if some sender i has a weak incentive to split a stable belief µ into a distribution

over XSi \
{
µ
}

then it must be that

v̂i
(
µ
)= ∑

µ′∈XSi \{µ}
v̂i

(
µ′)τ(

µ′) (33)

for some sender i and some τ that satisfies Bayes plausibility. If the action is the same for each

µ′ ∈ XSi equality (33) always holds, but then moving probability from µ to XSi \{µ} is irrelevant for

the joint distribution over actions and states, so the multiplicity is not essential.

The interesting case is when XSi contains beliefs that result in at least two distinct actions.

Since XSi contains the vertices of ∆ (Ω) the dimensionality of Co(XSi \{µ}) is the same as the di-

mensionality of Ω. It follows from Carathéodory’s theorem that µ can be spanned by |Ω| vectors

in XSi \{µ}. Depending on whether µ is in the interior of Co
(
XSi \

{
µ
})

or on a face, a set of |Ω|
spanning vectors may not be minimal. However, if there are redundant vectors, we can eliminate

vectors until µ is spanned by a minimal set of vectors in XSi \
{
µ
}

.

If sender i is indifferent between µ and some distribution over XSi \
{
µ
}

there is some minimal

set of vectors that creates indifference. But, provided that there are at least two distinct actions, the

indifference condition for any particular minimal set of vectors is satisfied with probability zero

as the indifference condition defines a lower dimensional subset of (bounded) utility functions.
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Since the number of possible minimal set of vectors and senders are both finite, the result follows

by induction. See Appendix B for details.

In a similar spirit we establish that indifferences over distinct distributions over stable contin-

uation beliefs are rare.

Lemma 5. Fix any i ∈ {1, ...,n}, µ ∈ X \XSi and any distinct pair (X
(
µ
)

, X̃
(
µ
)
) ∈ XSi of minimal

spanning vectors of µ such that at least two distinct actions a, a′ are taken for beliefs in X
(
µ
)∪ X̃

(
µ
)

.

Then ∑
µ′∈X (µ)

v̂i
(
µ′)τ(

µ′) 6= ∑
µ′∈X̃ (µ)

v̂i
(
µ′) τ̃(

µ′) (34)

for a set of (bounded) sender i Bernoulli utility functions over A×Ωwith full Lebesgue measure.

Using Lemmas 4 and 5, we are now in position to prove our second main result.

Proof of Theorem 2. Using Proposition 2, every subgame perfect equilibrium is outcome equiva-

lent to an equilibrium in which senders play one step strategies with beliefs on X after every history

of play. Hence, it is without loss to assume that every sender i generates a signal with correspond-

ing beliefs with support on XSi after any history of play. By Lemma 3 it is without loss to assume

that the decision maker follows a Markov decision rule given preferences for the decision maker

and sender n chosen from a set with full Lebesgue measure. We also know from the separability

of the problem facing each sender i that if essential uniqueness fails there exists some sender i

and some µ ∈ X such that sender i has multiple best responses to this belief that generate distinct

distributions over A ×Ω. Suppose such a belief exists and suppose first that µ ∈ XSi . Since µ is

stable, equation (33) holds for some mean preserving spread of µ onto XSi \
{
µ
}

with at least two

actions taken by the decision maker. Given that preferences for the decision maker and sender n

are generic, Lemma 4 rules this possibility out for full Lebesgue measure set of payoff functions.

The other possibility is thatµ ∈ X \XSi and that the sender is indifferent between two distinct mean

preserving spreads that do not always generate the same action, which for generic preferences is

ruled out by Lemma 5. Since the possibility is non-generic for each player i it is also non-generic

in the space of payoff profiles.

Our final characterization result says that if prior µ0 generates an essentially unique equilib-

rium with minimal support X
(
µ0

)
(which is generically true), then the essentially unique equilib-

rium given a prior µ̃0 in the convex hull of X
(
µ0

)
is the unique Bayes plausible distribution over

X
(
µ0

)
given prior µ̃0. Equilibrium outcomes are robust with respect to perturbations of prior be-

liefs that are in the interior of X
(
µ0

)
.
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Proposition 5. Suppose that the essentially unique equilibrium given prior µ0 is distribution τ over

(minimal) support X
(
µ0

)
. Then, for every µ̃0 ∈ Co

(
X

(
µ0

))
every equilibrium outcome is outcome

equivalent with the unique Bayesian plausible belief distribution λ over X
(
µ0

)
for prior µ̃0.

5 Competition in Sequential Persuasion

A natural approach to evaluate the effect of competition is to examine the comparative statics

with respect to parameters measuring the degree of competition such as the number of senders. In

simultaneous move persuasion games, the only possibility to have unique equilibria is when full

revelation is the unique equilibrium. This makes comparative statics awkward as one is forced to

deal with setwise comparisons. In contrast, the generic essential uniqueness result in the sequen-

tial model makes comparative statics more straightforward and transparent.

There may be multiple equilibrium belief systems that can be ranked according to the Black-

well order, but where the difference in informativeness is irrelevant because all equilibria induce

the same joint distribution over A ×Ω. We therefore treat π and π′ as equivalent in terms of the

information content provided that they are outcome equivalent:

Definition 8 (Essential Blackwell Order). π is essentially less informative thanπ′ if the finest signal

that is outcome equivalent to π is less informative than the finest signal that is outcome equivalent

to π′ in the Blackwell order

In the rest of this section, we adopt the essential Blackwell order to study two comparative

statics exercises. Notice that the finest signal among a class of outcome equivalent signals must

put probability one on being on the vertices defining the optimality areas for the decision maker.

5.1 Adding Experts

Intuition suggests that the added competition from an increase in the number of experts should

increase the amount of information revealed in the market. This view may even be seen as an intel-

lectual foundation for freedom of speech, a free press, the English common law system, and many

other institutions. While the literature provides a somewhat mixed support for this view, Gentzkow

and Kamenica (2017a,b) provide sufficient conditions under which additional senders does not

reduce the amount of information revealed in equilibrium in a simultaneous move Bayesian per-

suasion game.
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The support for competition being beneficial becomes even weaker in our sequential frame-

work. To start with, the implications of adding additional experts depend on the ordering of the

players as shown in the following simple example. Let the state space be {ω0,ω1} and the available

actions be {a0, a1, a2} and assume that

M (a) =


[
0, 1

3

]
for a = a0[1

3 , 2
3

]
for a = a1[2

3 ,1
]

for a = a2

. (35)

Assume the senders have state independent preferences with sender 1 having strict preference

order a1 Â1 a2 Â1 a0 and sender to ranking the actions in accordance with a2 Â2 a0 Â2 a1. Let the

prior probability that the state is ω0 be some µ0 > 1/3.

In the single sender persuasion game with the players being sender 1 and the decision maker,

sender 1 may without loss optimally choose the unique mean preserving spread with support on

{1/3,2/3} if µ0 ∈ [1/3,2/3] , and the unique mean preserving spread with support {2/3,1} when µ0 >
2/3.

Now, suppose sender 2 moves before sender 1. Then any interim belief µ such that 0 < µ< 1/3

will be split by 1 onto {0,1/3} which implies that action a0 is chosen with some probability and

a1 is chosen with some probability. Any belief on [1/3,2/3] ultimately leads to action a1 for sure

and a belief on (2/3,1) implies that action a1 is taken with some probability and a2 with some

probability. It follows that the unique best response by 2 is to play the unique mean preserving

spread onto {0,1} , so the state is fully revealed. As the payoffs are generic and do not satisfy the

condition in Proposition 4 this illustrates that we cannot obtain a simple necessary and sufficient

condition for full revelation.

In contrast, if 1 moves before 2 we note that 2 will split any 0 < µ < 1/3 onto {0,2/3}, implying

that a best response for 1 is to split the prior to {0,2/3} if µ0 < 2/3 and to {2/3,1} if µ0 ≥ 2/3. Hence,

we see that the informativeness and equilibrium payoffs depend on the order of moves, and also

that the equilibrium in the model with 1 moving before 2 is strictly less informative in the Blackwell

order than when 1 is the only sender, provided that µ0 ∈ [2/3,1) .

Hence it is hopeless to search for general results unless we make restrictions on when a new

sender moves. However, in the example, the equilibrium is more informative with the new sender

when added as a first mover. This is not quite general due to the incompleteness of the Blackwell

ordering, but we are able to establish an analogue of the comparative statics result in simultaneous

persuasion games:
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Proposition 6. Suppose that there is an essentially unique equilibrium with n senders. Then, if a

sender is added who moves before all other senders, there is no equilibrium with n +1 senders that

is essentially less informative than the equilibrium in the original game.

Proof. Suppose not. Let Xn
(
µ0

)
be the set of spanning vectors of an essentially unique equilib-

rium with n senders that cannot be refined further into a Blackwell dominant outcome equivalent

equilibrium. For contradiction suppose that a coarser equilibrium exists in the game with n + 1

senders. Then there exist at least one belief µ′ in the support of the equilibrium with n +1 senders

that can be split into Xn
(
µ0

)
. For µ′ to be in the convex hull of Xn

(
µ0

)
but not part of the (unique)

equilibrium at least one sender i ∈ {1, ...,n} strictly prefers a mean preserving spread onto Xn
(
µ0

)
to µ′ and for µ′ to be part of the unique equilibrium with n + 1 senders every i ∈ {1, ...,n +1} is

weakly better off at µ′ than at any mean preserving spread to Xn
(
µ0

)
, contradiction.

In the special case when there are only two states we have a stronger result:

Proposition 7. Suppose that Ω = {ω0,ω1} and that the equilibrium with n senders is essentially

unique. Then, if a sender is added who moves before all other senders, every equilibrium with n +1

senders is weakly essentially more informative in the Blackwell ordering.

Proof. Without loss of generality, consider a one step equilibrium with support on X , which now

are beliefs where the decision maker is indifferent between two actions together with 0 and 1. Sup-

pose that
{
µL ,µH

}
are stable vertex beliefs in the equilibrium with n senders, that µL < µ0 < µH ,

and that µM with µL < µM < µH is a stable vertex belief in some equilibrium with n + 1 senders.

Without loss we can assume that there at least two distinct actions that are taken at beliefs
{
µL ,µM ,µH

}
as otherwise µM would not be on the set of vertices X . But, for µM to be stable with n +1 players

every i ∈ {1, ...,n +1} must be weakly better off at µM than at the unique mean preserving spread

onto
{
µL ,µH

}
. This implies that transferring probability from

{
µL ,µH

}
to µM is consistent with

equilibrium in the model with n senders, contradicting uniqueness with n senders.

5.2 Simultaneous vs Sequential Persuasion

Finally, we compare the information revealed in the sequential persuasion model with the one

in Gentzkow and Kamenica (2017a) where senders choose their signals simultaneously. They show

that:
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Lemma 6 (Gentzkow and Kamenica, 2017a). Consider a persuasion game with the same structure

as our model except that all senders move simultaneously. Assume that τ is the distribution of beliefs

in a pure strategy Markov perfect equilibrium. Then, τ is Bayes plausible given the prior belief µ0

and for each µ in the support of τ there exists no τ′ that is Bayes plausible given µ that is preferred to

µ by any sender.

Hence, the difference between the sequential model and the simultaneous model boils down

to a comparison that can be done belief by belief. A belief in the support of an equilibrium of the

sequential model must be unimprovable with respect to Bayes plausible deviations over the set of

stable beliefs, that is, beliefs that no player would like to further refine. In contrast, a belief in the

support of an equilibrium in the simultaneous move game must be unimprovable with respect to

any Bayes plausible deviation.

It thus follows that for both the simultaneous and the sequential game we need to make sure

that there is no belief such that an admissible mean preserving spread is preferred to a sender. The

difference between the models is that we have to check stability against arbitrary mean preserving

spreads in the simultaneous model, whereas some mean preserving spreads can be ruled out in

the sequential model because they would be undone by future senders. It therefore follows.10

Proposition 8. Consider the generic case in which the sequential game has an essentially unique

equilibrium. Then, there exists no pure strategy Markov perfect equilibrium in the simultaneous

game that is essentially less informative than the equilibrium in the sequential game.

Just like in the case with comparative statics with respect to adding senders, a weakness of

the result is the incompleteness of Blackwell’s ordering, which implies that signals may be non-

comparable. However, we can again obtain a sharp characterization for the case with two states.

Note, however, that the qualifier “pure strategy" is important. Li and Norman (2018) contains an

example where a mixed strategy equilibrium in the simultaneous game with two states is strictly

less informative than the unique equilibrium in the sequential game.

Proposition 9. Suppose that Ω= {ω0,ω1}and that there is an essentially unique equilibrium in the

sequential game. Then, any pure strategy equilibrium in the simultaneous move game is weakly

essentially more informative.

10A similar comparison is made in the multi-sender cheap talk literature. The conditions under which a fully reveal-

ing equilibrium exists is weaker in a simultaneous-move cheap talk model than a sequential-move one. See Ambrus

and Takahashi (2008), Battaglini (2002), Kawai (2015), and Krishna and Morgan (2001).
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The proof is similar to the proof of Proposition 7 and relegated to the appendix. While there are

non-Blackwell comparable distributions also with two states, it is immediate that if the result fails,

there is some belief µ in the support of an equilibrium with simultaneous moves that is strictly

in between the smallest and the largest belief in the support of the equilibrium with sequential

moves. But then, at least one sender must have an incentive to split the beliefs onto the smallest

and the largest sequential move beliefs. Otherwise there must be an indifference, which is ruled

out in the generic case.

The last sender can always deviate to an equilibrium of the simultaneous move game when the

equilibrium signals are comparable (as they are in the case with two states). Therefore an impli-

cation of Proposition 9 is that the last sender prefers the sequential move game to the simultane-

ous move game. The same is true for the general model whenever equilibria can be ranked using

the Blackwell order. Hence, the persuasion framework generates the opposite result compared to

duopoly quantity competition. An intuition for this is that the reason why the Stackelberg leader

is better off and the follower is worse off than under Cournot competition is that there is commit-

ment value to overproduction, which allows the leader to grab a larger share of the pie. In contrast,

in the persuasion model the follower can always refine whatever the leader does. For this reason it

is the follower that is made better off than in the simultaneous move game. Whether senders that

move earlier are made worse or better off than in the simultaneous game is ambiguous.

6 Concluding Remarks

We consider a sequential Bayesian persuasion model with multiple senders. Because it is with-

out loss of generality to focus on equilibria corresponding to a finite set of beliefs we can show

that Markov equilibria exist and generate a unique joint distribution over states and outcomes

for generic preferences. The fact that a finite set of stable beliefs characterizes the equilibrium is

also very convenient computationally. We suggest an algorithm to compute the essentially unique

equilibrium. We also provide a simple condition under which full revelation is the only equilibrium

outcome. In Section 4.3, we apply these insights on a simple criminal trial example, where we can

easily show that there is a unique equilibrium that is fully revealing despite both senders being

better off providing no information at all. Some comparative statics results are derived. Adding a

sender who moves first cannot reduce informativeness in equilibrium, and will result in a more in-

formative equilibrium in the case with two states. Sequential persuasion cannot generate a more
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informative equilibrium than simultaneous persuasion, and is less informative in the case with

two states.

A Appendix: Non-Markov Equilibrium

Suppose thatΩ= {ω0,ω1} and the optimal choice correspondence for the decision maker is

σ
(
µ
)=


{a1, a2} if µ≤ 1/10

a3 if 0.1 ≤µ≤ 9/10

{a4, a5} if µ≥ 9/10

(A.1)

Also suppose that two senders have state independent preferences

u1(a,ω) =


3 if a ∈ {a1, a4}

1 if a = a3

0 if a ∈ {a2, a5}

and,

u2 (a,ω) =


3 if a ∈ {a2, a5}

1 if a = a3

0 if a ∈ {a1, a4}

Consider a Markov equilibrium. Allowing for mixed strategies let σ1 (0) be the probability for a1

given belief µ = 0 and σ4 (1) be the probability of a4 given belief µ = 1. Suppose that the deci-

sion maker has full information. Then, the payoffs of sender 1 and 2 are 3[σ1(0)+σ4(1)]/2 and

3[2 −σ1(0) −σ4(1)]/2 respectively, so the payoff is greater than or equal to 3/2 for at least one

sender. Hence, beliefs in [1/10,9/10] can be ruled out in any Markov equilibrium. In contrast,

if the decision maker always breaks the tie against the sender who first split the belief into [0,1/10]

or [9/10,1] each sender may as well not provide any information and qualitatively different equi-

libria with action a3 can be supported by such non-Markov strategies.
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B Appendix: Omitted Proofs

Proof of Proposition 1. To proceed, we extend the definition of one step equilibrium to off-the-

path of play:

Definition 9. Consider strategy σ′ and let hi be an arbitrary history when sender i ∈ {1, ...,n −1}

moves. Also for j ≥ i let h′
j |hi be the implied continuation outcome path induced if each player j ≥ i

follows σ′
j after history hi and let σ′|hi denote the continuation strategy profile.11 We say that σ′|hi

is one step if ∨n
j=iσ

′
j (h′

j |hi ) =σ′
i (hi ).

Now, we are ready to proceed the proof. Fix a subgame perfect equilibriumσ∗ and hi = (π1, ...,πi−1)

be an arbitrary history when i moves. Let
(
π∗

i |hi , ...,π∗
n |hi

)
be the continuation equilibrium path

following hi . Let

π∗|hi =
(
∨i−1

i=i πi

)
∨ (∨n

i=iπ
∗
i |hi

)
(B.1)

be the joint signal generated by the continuation equilibrium path. Replace the continuation equi-

librium strategies following hi by
(
σ′

i , ....,σ′
n ,σD

)
where on the continuation outcome path

σ′
i (hi ) = π∗|hi (B.2)

σ′
j

(
hi ,π∗|hi , ...,π∗|hi

) = π∗|hi for j ∈ {i +1, ..,n}

σ′
D

(
hi ,π∗|hi , ...,π∗|hi , s

) = σD
(
hi ,

(
π∗

i |hi , ...,π∗
n |hi

)
, s

)
,

For a history in which i plays π∗|hi but some j ∈ {i +1, ...,n} deviates let

σ′
k

(
hi ,π∗|hi , ...,π∗|hi ,π j , ....,πk

) = σ∗
k

(
hi ,π∗

i |hi , ...,π∗
j |hi ,π j , ....,πk

)
(B.3)

σ′
D

(
hi ,π∗|hi , ...,π∗|hi ,π j , ....,πn

) = σ∗
D

(
hi ,π∗

i |hi , ...,π∗
j |hi ,π j , ....,πn

)
,

and for any other history let

σ′
j

(
hi ,πi , ..,π j−1

) = σ∗
j

(
hi ,πi , ..,π j−1

)
for j ∈ {i +2, ..,n} (B.4)

σ′
D

(
hi ,πi , ..,π j−1, s

) = σ∗
D

(
hi ,πi , ..,π j−1, s

)
The decision maker plays an optimal response following any path of play after hi as after each

continuation path the response is selected as some response for an identical joint signal. Moreover,

if each j ≥ i plays in accordance with σ′
j it follows from (B.2) that the implied distribution over

Ω× A is identical to if each j ≥ i plays in accordance with the original equilibrium σ∗. Also, the

11That is, h′
i |hi = hi , h′

i=1|hi =
(
hi ,σ′

i (hi )
)

, h′
i+2|hi =

(
hi ,σ′

i (hi ) ,σ′
i+1

(
hi ,σ′

i (hi )
))

and so on.

39



strategies in (B.4) imply that continuation play after a deviation by i is the same under σ′ as under

σ∗, so i has no incentive to deviate. As σ∗ is subgame perfect, the continuation play in (B.4) is

trivially subgame perfect. Finally, (B.3) implies that play after if j > i is the first player after i to

deviate from π∗|hi to π j replicates continuation play in the σ∗ equilibrium if j deviates from π∗
j |hi

to π j following history
(
hi ,π∗

i |hi , ...,π∗
j−1|hi

)
in the original equilibrium, so j ∈ {i +1, ...,n} have no

incentives to deviate. Clearly, σ′ is not one step after any history, but i and hi were arbitrary, so

adjusting σ∗ in accordance with (B.2), (B.3) and (B.4) following any history i and hi we obtain a

subgame perfect strategy profile which is one-step after every history h with the same equilibrium

outcome.

Proof of Proposition 2. Proposition 1 implies that for every subgame perfect equilibrium there is

an outcome equivalent equilibrium in which strategies are one step for every history, so we assume

that σ∗ is such a strategy profile. Suppose that there is a sender i and history hi with associated

continuation signal π∗|hi such that there exists some realization s′ ∈ π∗|hi that induces a decision

maker posterior belief µ′ ∉ X with positive probability. Let a′ =σD
(
hi ,π∗|hi , ....,π∗|hi

)
be the equi-

librium action induced by s′. Furthermore, let M
(
a′) be the belief polytope where a′ is optimal and

X
(
a′)= {

µ j
(
a′)}m

j=1 the set of vertices of M
(
a′). Since M

(
a′) is the convex hull spanned by X

(
a′)

there exists λ ∈ ∆(
X

(
a′)) such that µ′ = ∑m

j=1λ jµ j
(
a′). Consider an alternative one step strategy

with π∗|hi replaced by some π′ in which the realization s′ is replaced by the set {s1, ..., sm}, where

each s j generates posterior µ j
(
a′) and has unconditional probability p

(
s′

)
λ j , and everything else

in π′ is like the original equilibrium.12 We also assume that the decision maker follows a strategy

in which

σ′
D (h, s) =



a′ if h = (
hi ,π′, ...π′) and s ∈ {s1, ...., sm}

σ∗
D

(
π∗|hi , ..,π∗|hi , s

) if h = (
hi ,π′, ...π′)

and s corresponds to some s ∈π∗\s

σ∗
D

(
π∗|hi , ..,π∗|hi ,π j , ...,πn , s

) if h = (
hi ,π′, ...π′,π j , ...,πn

)
where j ≥ i is the first player playing π j 6=π′

σ∗
D (h, s) for any other h.

where σ∗
D is the strategy of the decision maker in the original equilibrium. Since each µ j

(
a′) ∈

M
(
a′) this must be a best response if σ∗

D is a best response. Also, assume the all senders with j < i

12It is possible that λ j = 0 for some j . Instead of eliminating these beliefs we may simple generate a probability zero

signal in order not to treat this case separately.
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follow the original equilibrium strategy σ∗
i and that sender j = {i , ..,n} play

σ′
j

(
h j

)=


π′ if h j =
(
hi ,π′, ...,π′)

σ∗
i

(
hi ,π∗, ..,π∗,πk , ...,π j−1

)
if h j =

(
hi ,π′, ..,π′,πk , ...,π j−1

)
σ∗

i

(
h j

)
if h j =

(
hi ,πi , ...,π j−1

)
is such that πi 6=π′

, (B.5)

and leave everything as in the original equilibrium is hi is not played by {1, ..., i −1} The continua-

tion outcome path is following hi is then
(
π′, ..,π′) and

vi (a,µ) =
m∑

j=1
λ j vn(a,µa

j ) =
m∑

j=1
λ j vn(σD

(
π′, ..,π′, s j

)
,µa

j ) (B.6)

while nothing is changed for signal realizations that are kept like in π∗, so the distribution over

states and outcomes is the same as in the original equilibrium if no player deviates after hi . More-

over, if j ≥ i is the first sender deviating from playing π′ to π j the path of play replicates what hap-

pens if j is the first sender to deviate fromπ∗ toπ j in the original continuation equilibrium. Hence,

there is no profitable deviation on the path. Finally, off-path play replicates off path continuation

play in the original equilibrium, so there is no profitable deviation off the path. Repeating the same

argument for each history hi , every continuation signal π∗|hi and every realization s′ ∈ π∗|hi with

corresponding belief µ′ ∉ X completes the proof. See Figure 7 for an intuitive illustration.

Proof of Proposition 3. It is immediate (see Lemma 1 below for details) that n has no profitable

deviation following any history unless there is a profitable deviation onto X , so consider sender

i < n and history hi with one step continuation signal π∗|hi . Consider a deviation πi with some

induced beliefµ′ ∉ X given all subsequent senders play sequentially rational which is profitable for

i . By Proposition 2 (applied to truncated game with i moving first and using one of the beliefs in the

interim belief distribution as the prior) there is a continuation one step equilibrium after (hi ,πi )

that generate the same distribution over Ω× A. Hence, there is a deviation over vertex beliefs and

a one step continuation equilibrium that is profitable.

Proof of Lemma 1. Pick any feasible solution τ to program (17). For each a ∈ A write τa
(
µ′) for µ′

such that σD
(
µ′)= a and τ=

{
{τa(µ′)}µ′∈Ŵ (a)

}
a∈A

where M̂(a) = {µ ∈Ω|σD (µ) = a} is the “decision

area” of action a defined by σD (·). Obviously, M̂(a) ⊂ M(a),∀a.

For each µ′ ∈ M(a) there exists λ′ ∈ ∆
({
µa

j

}J (α)

j=1

)
such that µ′ = ∑J (a)

j=1 λ
′
jµ

a
j . For every a ∈ A and
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µ

0 1/2 µ′ 1

vn(a,µ)

M(a′) M(a)

µ

0 1/2 µ′µ′′ 1

vn(a,µ)

M(a′) M(a)

Figure 7: Consider an example with two statesω0,ω1 and two actions a, a′. Suppose that M(a′) = [0,1/2] and M(a) =
[1/2,1]. Suppose there is an equilibrium where µ′ ∈ (1/2,1) is induced and therefore action a is played with positive

probability. Then (1) σD (1/2) = a or vn(a,1/2) > vn(a′,1/2), and (2) µ′′ ∈ (0,1/2) is not induced in the equilibrium.

Otherwise, sender n has a profitable deviation. On the left panel, we show that, if vn(a,1/2) < vn(a′,1/2), then at µ′,
sender n has the incentive to deviate by inducing posterior beliefs on 1/2 and a. Notice that we ignore the non-generic

case where vn(a,1/2) = vn(a′,1/2). On the right panel, we show that if µ′′ is induced in equilibrium, sender n has the

incentive to deviate by inducing 0 and 1/2.

µa
j spanning M(a) let τ̂

(
µa

j

)
=∑

µ′∈M̂(a)τ
(
µ′)λ′

j so that

J (a)∑
j=1

τ̂
(
µa

j

)
= ∑
µ′∈M̂(a)

τ
(
µ′) J (a)∑

j=1
λ′

j =
∑

µ′∈M̂(a)

τ
(
µ′) . (B.7)

Since it is possible that vn

(
a,µa

j

)
< vn

(
a′,µa

j

)
for some µa

j ∈ M(a) (and µa
j 6∈ M̂(a), because break-

ing the tie in favor of a′ may be better than a) it follows that the solution to (18) satisfies

Ṽn
(
µ
) ≥ ∑

a∈A

J (a)∑
j=1

vn(a,µa
j )τ̂

(
µa

j

)
= ∑

a∈A

J (a)∑
j=1

∑
ω∈Ω

un(a,ω)µa
j (ω) τ̂

(
µa

j

)
(B.8)

= ∑
a∈A

∑
ω∈Ω

un(a,ω)
J (a)∑
j=1

[
µa

j (ω)λ′
j

] ∑
µ′∈M̂(a)

τ
(
µ′)= ∑

a∈A

∑
ω∈Ω

un(a,ω)µ′
 ∑
µ′∈M̂(a)

τ
(
µ′)

= ∑
µ′

vn(σD
(
µ′) ,µ′)τ

(
µ′) .

This holds for any feasible solution to (17). Hence, Ṽn
(
µ
)≥Vn

(
µ
)

. Moreover, any optimal solution

to (18) is a feasible solution to (17), so Ṽn
(
µ
) ≤ Vn

(
µ
)

. This establishes that solutions to (17) exist

and that Ṽn
(
µ
) = Vn

(
µ
)

and that every τ̃n ∈ ∆ (X ) that solves (18) also solves (17). Finally, if τn
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solves (17) and µ′ is such that τn(µ′) > 0 there can be no µa
k ∈ M(a) such that vn

(
a,µa

k

)< vn
(
a′,µa

k

)
and λ′

k > 0 for the weight on vector µa
k in the convex combination such that µ′ =∑J (a)

j=1 λ
′
jµ

a
j . This is

seen from noting that this would generate a strict inequality in the first inequality of (B.8).

Proof of Part 1 of Lemma 2. Let X
(
µ
)

be the support of a solution τ to (18) given interim belief

µ. By linearity of payoffs in probabilities, any mean preserving spread over X
(
µ
)

solves (18). Write

Co(X ) for the convex hull of a set X , and, without loss, assume that Co
(
X

(
µ
))

has dimension |Ω|−1

(otherwise the same argument applies in the relevant subspace). Also suppose that X
(
µ
)

contains

at least |Ω|+1 points. Then, by Radon’s theorem (see Radon (1921)), X
(
µ
)

can be partitioned into

sets I and J such that Co(I ) and Co(J ) has at least one point in common. Label the sets so that

I contains at least as many points as J . Suppose first that J = {
µ j

}
is a singleton set. Then the

only way for Co(I ) and Co(J ) to intersect is for µ j ∈ Co(I ) . Hence, there is an optimal solution to

(18) in X
(
µ
)

\µ j . Suppose instead that J contains two or more points. Then, for Co(I ) and Co(J )

to intersect there must exist some pair
(
µ1

j ,µ2
j

)
∈ J such that either one of these points belongs

to Co(I ) or µ1
j and µ2

j are in opposite half spaces relative the hyperplane defined by Co(I ) . If µ1
j

or µ2
j belongs to Co(I ) one can pick an optimal solution with support in X

(
µ
)

\µ1
j or X

(
µ
)

\µ2
j .

If µ1
j and µ2

j are in opposite half spaces we note that Co
(

X
(
µ
)

\µ1
j

)
∪Co

(
X

(
µ
)

\µ2
j

)
= Co

(
X

(
µ
))

so µ ∈ Co
(

X
(
µ
)

\µ1
j

)
or µ ∈ Co

(
X

(
µ
)

\µ2
j

)
. Hence, again one can pick an optimal solution with

support in X
(
µ
)

\µ1
j or X

(
µ
)

\µ2
j . By induction there is thus a solution with support on exactly |Ω|

vectors. Therefore, we can without loss to assume |X (µ)| = |Ω|. Because Co(X (µ)) and ∆|Ω|−1 are

isomorphic, X (µ) is minimal

Proof of Lemma 3. Consider some action a that is taken in equilibrium and some vertex µ j (a) ∈
X (a) and assume that there exists an equilibria σ∗ and σ∗∗ and histories h∗,h∗∗ that generate

joint signals π∗,π∗∗ with realizations s∗ ∈ π∗ and s∗∗ ∈ π∗∗ such that µ (s∗) = µ (s∗∗) = µ j (a) but

that

σ∗
D

(
h∗, s∗

)= a 6= a′ =σ∗
D

(
h∗, s∗

)
(B.9)

Suppose first that µ j (a) is a vertex of the simplex ∆ (Ω) then there must be some ω such that

vD (a,ω) = vD
(
a′,ω

)
. (B.10)

A decision maker’s Bernoulli payoff function is an element in |Ω× A| dimensional Euclidean space

and the payoff functions that satisfy (B.10) defines a |Ω× A|−1 dimensional subspace. As there is

a finite number of triples
(
a, a′,ω

) ∈ A2×Ω the set of bounded Bernoulli payoff functions in which
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(B.10) holds for some triple
(
a, a′,ω

)
is of Lebesgue measure zero. Next, consider the case with

(B.9) holding at some µ j (a) that is not a vertex of the simplex ∆ (Ω) . Then sender n can deviate in

a way so that either a or a′ is chosen with probability arbitrarily close to one, implying that∑
ω∈Ω

vn (a,ω)µ j (a) =
∑
ω∈Ω

vn
(
a′,ω

)
µ j (a) , (B.11)

which again defines a |Ω× A| −1 dimensional subspace. Again, this implies that (B.11) can hold

only for a set of sender n payoff functions with Lebesgue measure 0. For beliefs in the interior of

some M (a) the action a is the unique optimal action for the decision maker and the tie breaking

rule on the faces of some M (a) is irrelevant in an equilibrium in which continuation play is always

on the vertices. Hence, we may without loss assume that the decision maker follows a Markov

strategy.

Proof of Lemma 4. If σD
(
µ′) = σD

(
µ
)

for each µ ∈ XSn there is nothing to prove. Suppose instead

that there exists µ ∈ XSn and Y ⊂ XSn and τ ∈ ∆ (Y ) such that µ = ∑
µ′∈Y µ

′τ
(
µ′) and that (32) is

violated for sender n. Then

v̂n
(
µ
)= ∑

µ′∈Y

v̂n
(
µ′)τ(

µ′) (B.12)

because staying at µ must be weakly preferred to any feasible split of beliefs as otherwise sender n

has a strict incentive to split the beliefs, which contradicts that µ ∈ XSn .

Let Co(Y ) be the convex hull of Y and M ≤ |Ω|−1 be the dimensionality of Co(Y ) . By Carathéodory’s

theorem it follows that there is a set of M +1 points
(
µ1, ....,µM+1

)
from Y such that µ=∑M+1

i=1 µiτi

for some τ ∈ ∆M+1. Moreover, suppose that the M vectors
(
µ2 −µ1, ....,µM+1 −µ1

)
are linearly de-

pendent. Then there are scalars (α2, ...,αM+1) 6= (0, ...,0) such that
∑M+1

i=2 αi
(
µi −µ1

)= 0. So(
−

M+1∑
i=2

αi

)
µ1 +

M+1∑
i=2

αiµi =
M+1∑
i=1

αiµi = 0 (B.13)

given that α1 = −∑M+1
i=2 αi , which also implies that

∑M+1
i=1 αi = 0, where we also know that there

exists j such that a j 6= 0. Hence, α j > 0 for some j and we thus have that for every β

µ=
M+1∑
i=1

µiτi =
M+1∑
i=1

µiτi −β
M+1∑
i=1

αiµi =
M+1∑
i=1

(
τi −βαi

)
µi (B.14)

Let I+ = {
i ∈ {1, ...., M +1} |µi > 0

}
and let j∗ ∈ argmin j∈I+

τ j

α j
and consider β∗ = τ j∗

α∗
j

. Then, let

τ∗i = τi −
τ j∗

α∗
j

αi . (B.15)

44



It follows that τ∗i ≥ 0 for all i ,that
∑M+1

i=1 τ∗i = 1 and τ j∗ = 0. Hence, we can remove one belief vec-

tor from
(
µ1, ....,µM+1

)
and still find a convex combination that generates µ. By induction, it is

without loss of generality to assume that we have M +1 ≤ |Ω| +1 vectors
(
µ1, ....,µM+1

)
such that(

µ2 −µ1, ....,µM+1 −µ1
)

are linearly independent. Then we seek to solve

µ=
M+1∑
i=1

µiτi ⇔µ−µ1 =
M+1∑
i=2

(
µi −µ1

)
τi , (B.16)

which is M equations in M unknowns with vectors being linearly independent, so it has a unique

solution τ∗2 , ...,τ∗M+1 where each τ∗1 is positive and
∑M+1

i=2 τ∗i ≤ 1 because mu is in the convex hull of

the other vectors. By letting τ∗1 = 1−∑M+1
i=2 τ∗i we then have that if

v̂n
(
µ
)= M+1∑

i=1
v̂n

(
µi

)
τ∗i (B.17)

and if there are at least two distinct actions, then a utility function satisfying (B.17) belongs to a

measure zero set of utility functions.13 If there is another set of belief vectors
(
µ̃1, ...., µ̃M̃+1

)
that

span µ as a convex combination and
(
µ̃2 − µ̃1, ...., µ̃M̃+1 − µ̃1

)
are linearly dependent we again find

that there is a measure zero set of presences that can make sender n indifferent. Since there is a fi-

nite set of possibilities to span µ using
(
µ̃1, ...., µ̃M̃+1

)
such that µ̃i ∈ XSn and

(
µ̃2 − µ̃1, ...., µ̃M̃+1 − µ̃1

)
are linearly dependent and since indifference for a mixture of

(
µ̃1, ...., µ̃M̃+1

)
and

(
µ1, ....,µM+1

)
is

only possible if the sender is indifferent between µ and the convex combination of
(
µ̃1, ...., µ̃M̃+1

)
and µ and the convex combination of

(
µ1, ....,µM+1

)
we conclude that

v̂n
(
µ
)> ∑

µ′∈Y

v̂n
(
µ′)τ(

µ′) (B.18)

for every Y ⊂ XSn and almost all utility functions of the sender given that at least two distinct

actions are taken. Since XSn is finite, the set of utility functions for n that can result in a failure of

essential uniqueness is measure zero. Next, consider sender i < n and assume that the conclusion

holds for each j > i . It is immediate that XSi ⊂ XSi+1 ⊂ .... ⊂ XSn . We can thus repeat exactly the

same argument as for sender n to conclude that any failure can occur only for a non-generic set of

sender i preferences. The result follows.

Proof of Lemma 5. Suppose there are two distinct minimal sets of vectors X
(
µ
)⊂ XSi and X̃

(
µ
)⊂

XSi such that ∑
µ′∈X (µ)

v̂i
(
µ′)τ(

µ′)= ∑
µ′∈X̃ (µ)

v̂i
(
µ′) τ̃(

µ′) . (B.19)

13Repeating the steps in (B.19), (B.20), we can show that the reduced form payoff functions in “vertex belief space”

are non-generic if and only if the Bernoulli payoff functions in over A×Ω.
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where τ is the unique mean preserving spread of µ onto X
(
µ
)

and τ̃ is the unique mean preserving

of µ onto X̃
(
µ
)

. Also assume there are at least two distinct actions chosen by the decision maker.

In terms of the primitive preferences over A×Ω (B.19) can be rewritten as

∑
µ′∈X (µ)

∑
ω∈Ω

[
ui

(
σD

(
µ′) ,ω

)
µ′ (ω)

]
τ
(
µ′)= ∑

µ′∈X̃ (µ)

∑
ω∈Ω

[
ui

(
σD

(
µ′) ,ω

)
µ′ (ω)

]
τ̃
(
µ′) (B.20)

Notice that if for each a ∈ A we let X
(
µ, a

) = {
µ′ ∈ X

(
µ
)

s.t σD
(
µ′)= a

}
then we may rewrite the

equality further as

∑
a∈A

 ∑
ω∈Ω

ui (a,ω)

 ∑
µ′∈X (µ,a)

µ′ (ω)τ
(
µ′)− ∑

µ′∈X̃ (µ,a)
µ′ (ω) τ̃

(
µ′)= 0 (B.21)

Since τ and τ̃ are unique defined this defines a lower dimensional subspace of |A×Ω|−dimensional

Euclidean space, so the set of sender n payoff functions such that (B.19) holds is measure zero.

Since X \XSi is finite and the set of possible minimal spanning vectors in XSi is finite for every

µ ∈ X \XSi .

Proof of Proposition 5. Let X
(
µ0

)
be the support for the unique equilibrium given prior µ0 and

let τ be the associated equilibrium distribution. For contradiction, assume that there exists µ̃0 ∈
Co

(
X

(
µ0

))
such that an equilibrium distribution τ̃ exists with support X

(
µ̃0

) 6= X
(
µ0

)
. The argu-

ment is identical if µ̃0 is a boundary point (it would just be restricted to a subspace) so we assume

without loss of generality that µ̃0 is an interior point in Co
(
X

(
µ0

))
. We note that τ andλ are unique

vectors so that

µ0 = ∑
µ∈X (µ0)

µτ
(
µ
)

(B.22)

µ̃0 = ∑
µ∈X (µ0)

µλ
(
µ
)

. (B.23)

Hence, for any β

µ0 =
∑

µ∈X (µ0)
µ

(
τ
(
µ
)−βλ(

µ
))+βµ̃0, (B.24)

and all coefficients are positive ifβ is small enough. Also, we assume that τ̃ has support on X
(
µ̃0

) 6=
X

(
µ0

)
so that

µ̃0 =
∑

µ∈X (µ̃0)
µτ̃

(
µ
)

. (B.25)
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This implies that when the prior is µ0 it is feasible to split beliefs over X
(
µ0

)∪X
(
µ̃0

)
in accordance

to {
τ
(
µ
)−βλ(

µ
)+βτ̃(

µ
)}
µ∈X (µ0)∪X (µ̃0) (B.26)

provided that β small enough. But, since τ is the generically unique equilibrium given µ0, this is

suboptimal so∑
µ∈X (µ0)

v̂1
(
µ
)
τ
(
µ
) > ∑

µ∈X (µ0)∪X (µ̃0)
v̂1

(
µ
)[
τ
(
µ
)−βλ(

µ
)+βτ̃(

µ
)]

= ∑
µ∈X (µ0)

v̂1
(
µ
)
τ
(
µ
)+β[ ∑

µ∈X (µ̃0)
v̂1

(
µ
)
τ̃
(
µ
)− ∑

µ∈X (µ0)
v̂1(µ)λ

(
µ
)]

Hence, ∑
µ∈X (µ̃0)

v̂1
(
µ
)
τ̃
(
µ
)< ∑

µ∈X (µ0)
v̂1(µ)λ

(
µ
)

, (B.27)

which contradicts that τ̃ is better than λ for prior belief µ̃0.

Proof of Proposition 8. Consider the generic case and suppose that an equilibrium exists in the

simultaneous game that is less informative than an equilibrium in the sequential game that can-

not be refined further into a Blackwell dominant outcome equivalent equilibrium. Pick some µ in

the support of the simultaneous move equilibrium that is in the interior of Co
(
µ1, ..,µM

)
, where(

µ1, ..,µM
)

are beliefs in XS in support of the essentially unique equilibrium in the sequential move

model. Refining µ to the unique Bayes plausible distribution over
(
µ1, ..,µM

)
creates a Blackwell

dominating information structure and either the decisions on each vector in
(
µ1, ..,µM

)
is the same

as in µ. Then, splitting beliefs onto
(
µ1, ..,µM

)
gives the same distribution over A ×Ω as µ, so re-

fining µ to the unique Bayes plausible distribution over
(
µ1, ..,µM

)
is also an equilibrium in the

simultaneous case. If there are distinct actions then (Lemma 5) generically some sender has a

strict incentive to split the beliefs onto
(
µ1, ..,µM

)
which by appeal to Proposition 6 implies that

that sender has a profitable deviation in the simultaneous move game.

Proof of Proposition 9. Fix the prior µ0 and begin by noting that for the result to fail some informa-

tion must be provided in the sequential model. Hence, without loss there must be a pairµL ,µH ∈ X

such that µL < µ0 < µH where µL and µH are in the support of the equilibrium in the sequential

model and some µ with µL < µ < µH that is in the support of an equilibrium in the simultaneous

move model. Suppose first that the action is the same at µL and µH . Then putting positive prob-

ability on µ or the unique mean preserving spread onto {µL ,µH } has no effect on the distribution

47



over actions and states, so putting positive probability on µ doesn’t affect the essential informa-

tiveness. Suppose that µL and µH generates distinct actions. Then, for µ to be part of an equilib-

rium in the simultaneous game all senders must weakly prefer µ to the unique mean preserving

spread to {µL ,µH }. But then µ must be an equilibrium (not necessarily on a vertex) in the sequen-

tial game, which sinceµ and the mean preserving spread to {µL ,µH } generate different distribution

over states and action contradicts essential uniqueness.
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