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Abstract
I use a quasi-experiment in Norway to examine how households respond to capital taxation.

The introduction of a new wealth assessment methodology in 2010 led to geographic discontinuities
in household exposure to wealth taxes, along both the extensive and intensive margins. I exploit
this novel variation using a Boundary Discontinuity approach. I find that exposure to wealth taxes
has a positive effect on both saving and labor earnings. These results imply that income effects may
dominate substitution effects in household responses to rate of return shocks, which has important
implications for both optimal capital taxation and macroeconomic modeling.
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1 Introduction

How households respond to changes in the net-of-tax rate-of-return is crucial to both optimal
capital taxation and macroeconomic modeling. In optimal capital taxation, it determines the extent
of distortionary effects on saving behavior and labor supply. Quantifying these distortions is necessary
for determining the optimal tax policy (Atkinson and Sandmo 1980, Straub and Werning 2019, Saez
and Stantcheva 2018). In macroeconomics, it determines the ability of standard representative agent
models to explain the aggregate effects of monetary policy (Kaplan, Moll, and Violante, 2018) and
informs the importance of new transmission channels (Auclert 2019, Wong 2019). More generally,
empirical responses to rate-of-return shocks inform the Elasticity of Intertemporal Substitution (EIS).
The EIS is a key parameter in virtually all economic models that involve intertemporal decision-
making, but there is no consensus on what it should be.

Despite this broad importance, there is a dearth of applicable empirical evidence. This reflects
challenges related to both identification and measurement. Exogenous shocks to the interest rate may
have general equilibrium effects that inhibit the identification of the pure rate-of-return effect needed
to inform micro-founded models. A potential solution is to exploit variation in capital taxation caused
by peculiarities in the tax code to identify partial-equilibrium effects. However, this strategy typically
presents two problems. First, one must often compare households who differ on tax-relevant charac-
teristics, such as wealth or gross income, that are also determinants of saving behavior. Second, even
if capital taxation were randomly assigned, data limitations may preclude researchers from distin-
guishing between real saving responses and tax evasion. This is problematic, since evasion responses
are uninformative of responses to other rate-of-return shocks, such as interest rate changes or capital
taxation when evasion opportunities are restrained.

These empirical challenges are complemented by a long-standing theoretical ambiguity about even
the sign of saving responses to rate-of-return shocks.1 This ambiguity is due to countering income and
substitution effects from increasing both the absolute and relative price of future consumption. Which
effect dominates depends crucially on the EIS, for which the existing range of empirical estimates
spans 0 to 2.2 This is an “enormous range in terms of its implications for intertemporal behavior and
policy” (Best, Cloyne, Ilzetzki, and Kleven, 2020) and includes strikingly different household responses
to economic news (Schmidt and Toda, 2019).

In this paper, I use a quasi-experimental setting in Norway that allows me to address the identifica-
tion and measurement challenges described above. The source of identifying variation in the net-of-tax
rate-of-return comes from capital taxation in the form of a wealth tax. While wealth taxation and
capital income taxation are equivalent in standard models, wealth taxation differs from capital in-
1Boskin (1978) indirectly refers to the theoretical ambiguity in his seminal empirical paper: “In brief summary, there
is very little empirical evidence upon which to infer a positive relationship (substitution effect outweighing income
effect) between saving and the real net rate-of-return to capital. Surprisingly little attention has been paid to this
issue—particularly in light of its key role in answering many important policy questions—and those studies which do
attempt to deal with it can be improved substantially.”

2In a standard life-cycle model without (non-capital) incomes, the income effect dominates whenever the EIS < 1.
Including (endogenous) labor income lowers this cutoff to around 0.3 in the model in Section 7, which is calibrated to
the empirical setting of this paper.
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come taxation by requiring regular assessments of the stock of capital.3 The steps the Norwegian
government has taken to make such assessments provides promising quasi-experimental variation in
the net-of-tax rate-of-return.

In Norway, wealth taxes are levied annually as a 1 percent tax on taxable wealth that exceeds
a given threshold. The relatively low threshold subjects 12 to 15 percent of taxpayers to the wealth
tax.4 The main components of the tax base are financial wealth and housing wealth. While financial
wealth may be assessed at third-party reported market values (which limits the scope for evasion
through misreporting), housing wealth must be determined by the tax authorities. In 2010, the tax
authorities implemented a new model to assess the housing wealth component. This hedonic pricing
model contained municipal fixed effects, which imposed geographic discontinuities in assessed housing
wealth even in the absence of any true discontinuities in house prices. These discontinuities provide
substantial identifying variation in taxable wealth, and thereby (i) whether households pay a wealth
tax and (ii) the amount of wealth taxes they pay. This provides variation in both the marginal and
average net-of-tax rate-of-return. I use data on structure-level ownership and location as well as
the exact parameters of the hedonic pricing model to implement this novel identifying variation in a
Boundary Discontinuity Design (BDD) approach.

I first consider the effect on yearly financial saving. My estimates imply that for each additional
NOK pushed above the tax threshold, and thereby subject to the wealth tax, households increase
their yearly financial saving by NOK 0.04. These estimates adjust for the mechanical wealth-reducing
effects of increased taxation and constitute evidence of behavioral responses to capital taxation that
go in the opposite direction of what is typically assumed.5 This adjusted saving propensity is four
times larger than what is necessary to maintain the same level of wealth after taxes are collected,
consistent with households increasing their savings to offset future wealth tax payments.

I find that a majority of the increase in saving is financed by increased labor income. For each
additional NOK subject to the wealth tax, households increase total taxable labor income by NOK
0.01. I further find that the effect on labor income is driven entirely by households initially above
the wealth tax threshold. These are the households positioned to experience larger income effects. To
obtain a better proxy for concurrent labor supply, I isolate salary and self-employment earnings from
other sources of labor income, such as pensions. This yields a starker response: For each additional
NOK subject to a wealth tax, households increase labor earnings by NOK 0.017. These findings
constitute novel evidence of a nontrivial cross-elasticity between the return on capital and the supply
of labor. By cumulating the saving and labor income responses over a 5-year treatment period, I find
that 50% to 84% of the cumulative saving effect is financed by increased labor incomes.

I continue by presenting new evidence on the effect of capital taxation on portfolio allocation. I
first consider the effect on the share of financial wealth invested in the stock market. The perhaps
3This includes Chamley (1986) and Judd (1985). The equivalence comes from assuming homogeneous returns. As an
example, a tax on capital income of τCI of a fixed rate-of-return, r, is equivalent to a wealth tax of τCI · r/(1 + r). For
further discussion of this equivalence, see, e.g., Bastani and Waldenström (2018) and Guvenen, Kambourov, Kuruscu,
Ocampo, and Chen (2019).

4This refers to the years 2010–2015, which is the time period I study.
5References in the popular press to the potential disincentive effects of wealth or capital taxation are abundant. In
economic modeling, the typical assumption is that capital taxation reduces saving; see, e.g., Saez and Stantcheva (2018)
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dominant hypothesis is that risk-averse agents will respond to a wealth-tax-induced drop in life time
consumption by allocating less of their wealth to risky assets. I find no evidence of any effect on the
risky share and can rule out any economically large effects. I then present the hypothesis that that
the adverse income effect of increased taxation may induce households to enjoy less financial leisure,
in the sense that they exert greater effort toward financially optimizing the returns they receive or pay
on their deposits or debt. I test this using itemized data on capital incomes that allow me to calculate
realized interest rates. I firmly reject the above hypothesis and can rule out any economically large
effects.

Given the nonlinear nature of rate-of-return shocks caused by taxing only wealth in excess of
a threshold, it is useful to consider the underlying structural parameters governing these responses.
Hence, in the last part of this paper, I use a simple multi-period life-cycle model to explore which
values of the EIS are consistent with my estimates. I find that in order to replicate treatment effects
on savings and labor income growth within the 95% (90%) confidence interval around my empirical
results, an EIS below 0.5 (0.3) is needed. This illustrates how my empirical findings can provide a
new upper bound for the EIS, which is in the lower range of existing estimates. This finding is robust
in the sense that (i) it can be derived from either my savings or labor earnings results, and (ii) it is
largely insensitive to the value of the Frisch elasticity that governs the elasticity of labor supply.

I use these bounds to simulate savings and labor supply responses to linear rate-of-return shocks to
infer the implied uncompensated elasticities. At the 10% level, my empirical findings are inconsistent
with parameterizations of a life-cycle model that would produce positive elasticities of saving and labor
supply to the rate-of-return.

This paper contributes to three literatures. First, I contribute to the new literature that provides
a rich picture of behavioral responses to wealth taxation. A central finding is that wealth taxation
reduces the amount of taxable wealth that households report (Seim 2017, Londoño-Vélez and Ávila-
Mahecha 2018, Zoutman 2018, Jakobsen, Jakobsen, Kleven, and Zucman 2020, Maŕıa Durán-Cabré,
Esteller-Moré, and Mas-Montserrat 2019, Brülhart, Gruber, Krapf, and Schmidheiny 2019). However,
these findings do not necessarily imply that wealth taxes cause households to save less, as evasion
responses may dominate (real) saving responses.6 Consistent with this ambiguity, I find strikingly
different effects when limiting the role for evasion. I limit the role for evasion by (i) focusing on
savings in the form of financial wealth, which in Norway is primarily third-party reported and (ii)
obtaining identifying variation in wealth tax exposure from below the top 1%, where evasion is less
prominent.7

6Jakobsen, Jakobsen, Kleven, and Zucman (2020) note that their estimated elasticities may be a combination of real,
avoidance, and evasion responses. Zoutman (2018) writes that the immediate responses he observes are unlikely to
indicate real adjustments to savings. Seim (2017) complements his reporting (bunching) analysis with a differences-in-
differences design that exploits shifts in the wealth tax threshold. He finds no evidence of real responses, but does not
provide (confidence intervals on the) implied savings elasticities comparable to my results. Using supplemental survey
data, Brülhart, Gruber, Krapf, and Schmidheiny (2019) find no indication that the effect on reported wealth is driven
by saving responses, with the caveat the survey data covers only a small subset of their sample.

7Wealth taxes are levied at a relatively low threshold in Norway, and the treatment at hand, namely, increased tax
assessment of housing, is particularly well-suited for identifying responses for the moderately wealthy, where housing
wealth accounts for a large share of taxable net wealth (Fagereng, Guiso, Malacrino, and Pistaferri, 2018). Alstadsæter,
Johannesen, and Zucman (2019a) show that wealth tax evasion primarily occurs above the 99th percentile of the wealth
distribution.

3



By examining real saving responses to (net-of-tax) rate-of-return shocks, I also contribute to the
empirical literature aimed at estimating the Interest Elasticity of Saving (see, e.g., Boskin 1978 and
Beznoska and Ochmann 2013). This literature has seen few recent contributions, and thereby offers a
“paucity of empirical estimates” (Saez and Stantcheva, 2018). Finally, since the outcomes I consider are
tightly connected to the Elasticity of Intertemporal Substitution, I contribute to the large empirical
literature aimed at estimating it (see, e.g., Best, Cloyne, Ilzetzki, and Kleven 2020, Gruber 2013,
Vissing-Jørgensen 2002, Bonaparte and Fabozzi 2017).

Relative to this combined body of work, I make three main contributions. My first contribution is to
provide micro-level evidence while comparing households who are similar on socioeconomic observables.
While assessed tax assessments change discontinuously at geographic boundaries, these changes are
not predictive of changes in other pre-period observables, such as housing transaction prices, wealth,
labor income, or education in my preferred BDD specifications. This contrasts with micro-econometric
studies that obtain identifying variation in net-of-tax returns by using differential tax treatment that
arises from differences in characteristics such as wealth, income, and asset shares.

My second contribution is to also study how (net-of-tax) rate-of-return shocks affect labor earn-
ings. This elasticity is crucial to optimal taxation (see, e.g., Atkinson and Sandmo 1980 and Saez
and Stantcheva 2018) and provides an additional moment for parameterizing life-cycle models with
endogenous labor supply.

My third contribution is to provide evidence on how shocks to the net-of-tax rate-of-return affect
portfolio decisions. This has received little empirical attention, despite its importance for economic
modeling. By showing that (i) the risky share of financial wealth and (ii) the realized returns on risk-
free assets are unaffected by rate-of-return shocks, I provide justification for treating rates-of-return
as exogenous in partial equilibrium.

This paper also provides new evidence of limited evasion responses to wealth taxes. I examine this
by considering the amount of excess bunching near the wealth tax threshold. The visual evidence does
not favor bunching, which greatly contrasts with previous findings from Denmark, Sweden, Colombia,
and Switzerland.8 The findings of Seim (2017) and Londoño-Vélez and Ávila-Mahecha (2018) suggest
that evasion may be greatly restricted if self-reporting is limited. My findings are consistent with this,
suggesting that evasion is addressable by limiting the extent of self-reporting, as Saez and Zucman
(2019) argue.

This paper has implications for the growing literature on the effects of household heterogeneity
on monetary policy transmission. The importance of this literature relies partially on the premise
that standard intertemporal substitution effects are unable to explain the aggregate effects of mone-
tary policy. This premise is validated by my finding that income effects dominate substitution effects
in household responses to rate-of-return shocks and that a low EIS is necessary to explain my re-
sults.

Finally, this paper contributes to the literature that employs BDD frameworks.9 My empirical
8See Jakobsen et al. (2020); Seim (2017); Londoño-Vélez and Ávila-Mahecha (2018); and Brülhart et al. (2019), respec-
tively.

9See, e.g., Black (1999) and Bayer et al. (2007), who also employ BDD designs to incorporate treatment discontinuities
that vary across boundary areas.
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setting features heterogeneous border areas that differ significantly in terms of residential density and
treatment discontinuities, which presents some interesting empirical challenges that I explore in detail.
My key contribution is to design a simple semiparametric approach that is successful at explaining
observable geographic variation in house prices and household characteristics and facilitates graphical
presentation of regression estimates.

The paper proceeds as follows. Section 2 discusses the institutional features and assessment model
for housing wealth. Section 3 presents a simple two-period theoretical framework that relates tax
assessment shocks to rate-of-return shocks, and highlights the theoretical ambiguity of the effects
on saving. Section 4 introduces the data, the identification strategy, and the empirical specifications.
Section 5 the presents the empirical findings. Section 6 explores bunching behavior. Section 7 considers
the implied structural parameters in light of a life-cycle model. Section 8 concludes.

2 Institutional Details

2.1 Wealth Taxation in Norway

In Norway, wealth taxes are assessed according to the following formula:10

wtaxi,t = τt(TNWi,t − Thresholdt)1[TNWi,t > Thresholdt], (1)

where wtaxi,t is the amount of wealth taxes incurred during year t and is due the following year. τt is
the tax rate applied to any Taxable Net Wealth (TNW ) in excess of a time-varying threshold. The
tax rate, τ , was 1.1% during 2009–2013, 1% in 2014, and 0.85% in 2015.11 TNW is the sum of taxable
assets minus liabilities, where housing wealth is assessed at a discounted fraction of estimated market
value (25% for owner-occupied housing).12 The tax is assessed on individuals, but married couples are
free to shuffle assets and liabilities between them, which effectively taxes married households on the
sum of their taxable net wealth in excess of two times the wealth tax threshold.

The market value of all financial assets (debt) held through (borrowed from) domestically regis-
tered financial institutions are third-party reported each year. Private-equity wealth, i.e., the value of
unlisted stocks, is reported by the stock issuer as part of their financial reporting to the tax authori-
ties.

In this paper, I identify effects from quasi-random variation in TNWi,t that arises due to the
implementation of a new methodology to assess the housing wealth component. This identifying
variation in TNWi,t affects the marginal rate-of-return households face to the extent that it switches
on 1[TNWi,t > Thresholdt] in equation 1, and thereby lowers the marginal net-of-tax return by τt.
10See Subsection A.1 for how this formula is implemented in the data.
11Prior to 2009, there were two thresholds. All wealth above the highest threshold was taxed at 1.1%, while the

intermediate levels of wealth were taxed at 0.9%. During 2009–2015, the single threshold was gradually increased from
NOK 470,000 to 1,250,000 (USD 78,000 to 208,000, using the 2010 USD/NOK exchange rate of around 6.)

12Prior to 2008, some other assets were taxable at a discount as well. For example, stocks only entered with 85% of
their market value in 2007. During 2008–2015, the only asset class taxed at a discount was real estate. While primary
housing (owner-occupied) was taxed at 25%, secondary housing was assessed a tax value of 40%–60% of the estimated
market value.
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The presence of a wealth tax threshold is a crucial ingredient in this empirical setting. It allows quasi-
random variation in the assessment of housing wealth to provide variation in the marginal return on
financial wealth. The identifying variation in TNWi,t also affects the average rate-of-return to the
extent that it lowers the ratio of net-of-tax capital incomes (Pre-Tax Capital Incomes - wtaxi,t) to
TNWi,t by increasing wtaxi,t. This effect on the average return is a combination of intensive and
extensive margin effects, while the effect on the marginal return is driven only by extensive margin
variation in wealth tax exposure.

In the next section, I describe the model used to assess the housing wealth component in more
detail.

2.1.1 Introduction of a Hedonic House Price model

In 2010, the Norwegian tax authorities implemented a major change to how they assess the housing
wealth component of Taxable Net Wealth (TNW). Prior to 2010, assessed housing wealth was set to
an inflated multiple of the initial tax assessment, which typically corresponded to 30% of construction
cost.13 This approach grew unpopular, because some regions experienced larger house price growth
than others. This produced regional disparities in the ratio of assessed housing wealth to observed
transaction prices. To rectify this, the tax authorities began assessing housing wealth using a hedonic
real estate pricing model that included geographic fixed effects. The implementation of a new assess-
ment methodology was communicated to homeowners in a letter sent out in August 2010. I describe
this communication in more detail in Section B.6.

Using a large national dataset on property transactions during 2004–2009, the hedonic pricing
model was estimated according to equation 2 below.14

log(Pricei/Sizei) = αR,s + γZ,s + ζsizeR,s log(Sizei) + ζDenseR,s DenseAreai (2)

+ ζAge1,R,s1{Agei ∈ [10, 19]}+ ζAge2,R,s1{Agei ∈ [20, 34]}

+ ζAge3,R,s1{Agei ≥ 35}+ εi.

P rice is the recorded transaction price. Size is the size of the house in square meters. The
size of the property/lot is not accounted for. DenseArea is a dummy for whether the dwelling was
located in a cluster of at least 50 housing units. Age is number of years since initial construction.
The estimation took place separately for each of the three structure types, s ∈ {Detached housing,
non-detached housing, condominiums}, and for each region, R. The regions were mainly defined as one
13The tax value of a house would first enter as its construction cost. Then each year the tax

value is changed by some percentage; e.g., -5%, 0%, 10%. The practice of using initial con-
struction cost is described in the government budget of 2010: https://www.statsbudsjettet.no/
Statsbudsjettet-2010/Dokumenter/html/Prop-1-L-Skatte--og-avgiftsopplegget-2010-mv---lovendringer/
3-Nytt-system-for-formuesverdsetting-av-bolig. These yearly changes provide Berzins, Bøhren, and Stacescu
(2020) with a novel source of identifying variation in shareholder liquidity that they use to examine the effects of
wealth-tax induced adverse liquidity shocks on firm financing and real outcomes.

14The housing price model used to assess house values at year t would include transactions during t− 5, ..., t− 1. When
households were given preliminary estimates of their assessed values during 2010, only 2004–2008 data were used.
When actual tax values were assigned, 2009 data was included.
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of the 20 Norwegian counties or one of the four largest cities (Oslo, Bergen, Stavanger, Trondheim).15

Municipalities, or within-city districts for the largest four cities, were assigned to within-region price
zones, Z, separately for each structure type-region.16 These price zone fixed effects, γZ,s, make up a
key component of the pricing model.

All of the estimated coefficients for a total of 44 regressions are provided in regression output form
(see Figure A.5 for an example). These coefficients were then provided to the tax authorities, who
applied the estimated coefficients to data from real estate registers and homeowner-verified data on
housing characteristics. These assessments were done largely out of sample, as most houses present in
2010 were not transacted during 2004–2009. The following formula was used to assess the tax value
of housing:

̂TaxV ali = 0.25Sizei · exp(log(Pricei/Sizei)
∧

) · exp(0.5σ̂2
R,s), (3)

where exp(0.5σ̂2
R) is the concavity adjustment term, with σ̂2

R,s being the mean squared error (MSE)
of the regression for structure type s in region R.

We can use equations 2 and 3 to write log( ̂TaxV ali) as

log(TaxV al
∧

i) = log(0.25) + α̂R,s + γ̂R,Z,s + (1 + ζ̂sizeR,s ) log(Sizei) + ζ̂DenseR,s DenseAreai (4)

+ ζ̂Age1,R,s1{Agei ∈ [10, 19]}+ ζ̂Age2,R,s1{Agei ∈ [20, 34]}+ ζ̂Age3,R,s1{Agei ≥ 35}

+ 0.5σ̂R,s.

From this, we see that that tax assessments will be geographically discontinuous even if past
transaction prices are truly smooth. This implies that two identical houses, on different sides of a
geographic boundary, may have very different assessments due only to cross-price zone differences
in average past transaction prices. For a given structure type, s, the geographic variation within a
region, R, comes from γ̂R,Z,s. Across regions, all of the estimated coefficients change. This provides
identifying variation that depends on structure characteristics, such as Size and Age. In Section 4.2,
I discuss how I exploit (and isolate) all of this geographic variation.

I collect all the data necessary to replicate the assessed house values from Statistics Norway’s
reports. In Subsection A.3 in the Appendix, I show how using these coefficients and the real estate
registers allows me to accurately predict assessed tax values observable in household tax returns.

[Figure 1 about here.]
15For non-detached housing and condominiums, for which there were fewer transactions, some counties were combined,

presumably to increase sample size in each regression.
16While I can observe the assignments of Z and R in the appendices of the reports, the underlying process is only briefly

described: Municipalities were assigned to price zones depending on “analyses of past price levels” (my translation of
a comment in the 2009 report), and non-transacting municipalities were grouped in with low price level municipalities.
Consistent with this, I observe that members of the same price zone tend to have similar past-price levels, and smaller
municipalities are more likely to be grouped in with multiple other municipalities within that region, regardless of
geographic proximity. (This essentially precludes the use of border areas contained within one price zone to be used for
placebo testing. The most intuitive definition of a placebo treatment variable would be the differences in past average
transaction prices, but given the assignment rule, there would be very little identifying variation.)
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3 Conceptual framework

The purpose of this section is to present a simple two-period life-cycle model of consumption to
relate saving responses to tax-assessment shocks to responses to changes in the net-of-tax rate-of-
return, and show how these responses relate to structural parameters.17 I then show how comparing
the effects of assessment shocks on the marginal versus average net-of-tax rates-of-return can help us
assess whether tax assessment shocks can be used as instruments for (linear) rate-of-return shocks.
Later, in Subsection 5.2.1, I combine the main insights from this model with empirical data to discuss
expected heterogeneous responses.

Consider the following simple two-period model, in which households choose how much to consume
in each period, Ct and may save S in period 1. I focus on saving responses and assume perfect foresight
to keep the model simple. Households have an initial endowment of Y1, which can be thought of as
initial wealth plus first-period exogenous income, and face exogenous income of Y2 in period 2. At the
end of this section, I discuss the impact of introducing endogenous labor supply. The tax authorities
impose a tax τ on taxable net wealth, W = SR+A, in excess of a threshold, W̄ . A is some premium
the tax authorities add to a household’s wealth, analogous to the empirical variation in tax assessments
for the housing component of net wealth.

Baseline optimization problem.

max
C1,C2,S

U(C1, C2, S) = 1
1− γC

1−γ
1 + β

1
1− γC

1−γ
2 , (5)

s.t. C1 + S = Y1 (6)

and C2 = Y2 +RS − τ1[SR+A− W̄ > 0](SR+A− W̄ ). (7)

We can rewrite the constraint for period 2 as:

C2 = Y2 + SR(1− τ1[SR+A− W̄ > 0]) + τ1[SR+A− W̄ > 0](W̄ −A),

where the last term is virtual income (in period 2), which compensates for the fact that τ is not
applied to all savings due to the tax threshold.

Wealth taxes offer a slightly complicated optimization problem, with agents potentially bunching
such that SR+A−W̄ = 0. Since bunching is not an empirically important phenomenon in my setting,
and a few key insights are obtainable with a few simplifying approximations, I take the following simpler
route. First define R̃ = R(1 − τ1[SR + A − W̄ > 0]) and Ṽ = τ1[SR + A − W̄ > 0](W̄ − A). We
can then rewrite the budget constraint for period 2 as C2 = Y2 + R̃S + Ṽ . Then I assume that agents
take R̃ and Ṽ as given when they optimize, which can be thought of as a linearization of the budget
constraint around the empirical means. The problem then becomes:

17In the last section, in which I calibrate a life-cycle model to infer which EIS my results can rule out, I use a multi-period
model with endogenous labor supply. However, the key intuition can be found in this simpler two-period model.
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Simplified optimization problem.

max
C1,C2,S

U(C1, C2, S) = 1
1− γC

1−γ
1 + β

1
1− γC

1−γ
2 , (8)

s.t. C1 + S = Y1 (9)

and C2 = Y2 + R̃S + Ṽ . (10)

Assuming that constraints bind, imposing the first-order condition on S and reorganizing then
leads to the following expression for S:

S = [βR̃]
1
γ Y1

R̃+ [βR̃]
1
γ

− Y2 + Ṽ

R̃+ [βR̃]
1
γ

. (11)

Suppose R̃ and Ṽ are differentiable with respect to the tax-assessment variable, A. Now I assume
that agents optimally change their behavior when A affects R̃ and Ṽ . Their response can be decom-
posed, using the chain rule, as the sum of a rate-of-return effect and a virtual income effect:

dS

dA
= dS

dR̃

dR̃

dA︸ ︷︷ ︸
Rate-of-return Effect

+ dS

dṼ

dṼ

dA︸ ︷︷ ︸
Virtual Income Effect

. (12)

Rate-of-return effect. By reducing the marginal rate-of-return, R̃, increases in tax assessment,
A, cause a “traditional” rate-of-return effect, which I write out below.

dS

dR̃
= Y1

(1
γ
− 1

) [βR̃]
1
γ

(R̃+ [βR̃]
1
γ )2

+ (Y2 + Ṽ )
1 + β

γ [βR̃]
1
γ
−1

(R̃+ [βR̃]
1
γ )2

. (13)

The first term in equation 13 gives rise to the theoretical ambiguity in household responses to
rate-of-return shocks. Its sign depends on the Elasticity of Intertemporal Substitution, 1

γ . The second
term is the “human wealth effect”, whereby an increase in R̃ lowers the net present value of future
incomes, Y2 + Ṽ , which induces more saving.

We can rewrite the expression for dS
dR above, using the formula for S, to see the overall ambiguity

more clearly in the presence of a human wealth effect.

dS

dR̃
= 1
γ

[βR]
1
γ

(R̃+ [βR̃]
1
γ )2

(
Y1 + Y2 + Ṽ

R̃

)
− S

R̃+ [βR̃]
1
γ

. (14)

We see now that if savings are sufficiently positive, S > 0, and the EIS, 1
γ , is sufficiently small,

then this expression is negative.18

18As an example, consider the case in which βR̃ = 1. Further assume that R̃ = 1.5, and, without loss of generality
(since it will be divided through), that Y2 + Ṽ = 1. S > 0 then implies Y1 > 1. In this case, dS/dR̃ ≤ 0 whenever
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Virtual Income Effect. By affecting Ṽ , shocks to tax assessment cause an additional (virtual)
income effect:

dS

dṼ
= − 1

R̃+ [βR̃]
1
γ

. (15)

The magnitude and sign of this channel depends critically on how A affects Ṽ . If we define the
average rate of return as R̃avg, such that SR̃avg = SR̃+ Ṽ , then we can rewrite Ṽ as Ṽ = S(R̃avg−R̃),
which is simply savings multiplied by the difference between the average and marginal rates-of-return.
We may therefore write the effect of tax-assessment shocks on virtual income as the following:19

dṼ

dA
= S

(
dR̃avg

dA
− dR̃

dA

)
. (16)

While these derivatives are not well defined analytically due to the presence of indicator func-
tions, their empirical counterparts can be estimated empirically by considering differential effects of
tax-assessment shocks on the marginal versus average net-of-tax rates-of-return. This will be a use-
ful exercise, because the differential effects dictate how my tax-assessment shocks yield a treatment
comparable to linear rate-of-return shocks.

Relative importance of income and virtual income effects. To understand the relative
importance of these two effects, I rewrite the (decomposed) effect of tax assessment shocks on saving
from equation 12 when the EIS is zero to isolate income effects. I use the expression for dS/dR̃ from
equation 14, substitute in for dṼ /dA, and reorganize to get:

dS

dA
= − S

R̃+ 1


(

dR̃

dA

)
︸ ︷︷ ︸
Income Effect

−
(
dR̃

dA
− dR̃avg

dA

)
︸ ︷︷ ︸
Virtual Income Effect

 . (17)

The term denoted “Income Effect” represents the effect of tax assessment on saving through
changing a linear rate-of-return. The second term indicates the effect through changing virtual income.
This equation suggests that we can evaluate the relative impact of these two channels by comparing
the effects of tax-assessment shocks on the marginal versus average rates-of-return. If I find E[dR̃/dA]
to be twice as large as E[dR̃avg/dA], which suggests that half the income effects are offset by opposing
virtual income effects. If I find Ed[R̃/dA] to be only half that of E[dR̃avg/dA], this suggests that

1
γ
≤ 2.5− 2.5+1/1.5

Y1
. Setting Y1 = 1.5, in other words, that current income and wealth exceeds future (nominal) income

and wealth by R̃− 1 = 50%, yields 1/γ ≤ 0.38.
19This assumes that S is not also affected by A in any way that affects V . This is related to the assumption that agents

take R̃ and Ṽ as given when choosing the optimal amount of S.
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income effects are amplified by a factor of two.

Endogenous labor supply. In Section B.7 in the Appendix, I modify the existing optimization
problem by introducing endogenous labor supply in period 1. The preferences feature a constant
Frisch elasticity and additive separability in the (dis)preferences for consumption and labor supply.
This added complexity has no effect on the qualitative conclusions in the previous section, but shows
that the labor earnings response will be of the same sign as, but smaller in magnitude than, the
savings response. The savings response takes the same form, but is scaled up in magnitude. This
added responsiveness will depend on the parameters governing labor supply.

4 Empirical

4.1 Identification

I identify household responses to an increased exposure to wealth taxation caused by higher tax
assessments on housing. Since this tax assessment is the result of a model that aims to predict housing
wealth, more treated households will, by construction, own more expensive homes on average. This
may be an important violation of the exclusion restriction, given that housing wealth is known to
be an important determinant of household saving behavior, and is likely highly correlated with other
important determinants such as income or wealth.

To address this issue, I employ a Boundary Discontinuity Design (BDD) approach. The purpose
of this empirical design is to exploit the fact that treatment varies discontinuously at geographic
boundaries, which allows me to remove the effects of potential confounders that vary smoothly.

The success of the BDD approach in isolating treatment effects from tax assessment hinges on
the following: Potential confounders must vary smoothly at the geographic treatment boundaries. In
addition, my parameterization of the BDD regression equations must not confuse smooth variation
with geographic discontinuities. This is not straightforward in a setting with treatment discontinuities
that vary across boundaries. In the next Subsection, I describe my parameterization in more detail.
Throughout the results section, I show that a correctly specified BDD framework does not pick up
any discontinuities in potential confounders such as housing wealth, pre-period income, or financial
wealth. The fact that the identifying variation in my BDD framework is essentially orthogonal to
household observables allows me to include a wide range of controls without reducing the amount of
residual identifying variation.

Another attractive feature of my empirical setting is that the treatment discontinuities were only
recently introduced. This offers two key advantages relative to a setting that identifies effects from
a non-time-varying treatment discontinuity. First, it allows me to focus on households who made
their residential location choices prior to having any knowledge of the impending wealth-assessment
discontinuities.20 This addresses the concern that households may have self-selected into lower or
20(1) Per my investigations, the fact that geographic assessment discontinuities exist is still a little-known fact, even at

the time of writing. (2) This wouldn’t be a benefit in researching house price capitalization, since a key driver would
be selection.
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higher tax assessment. In addition, it allows me to investigate to the parallel-trends assumption by
examining the effect of higher tax assessment on pre-period outcome variables.

Another concern when studying the effects of geographically confined increases in taxation is that
households may be affected through the effect on local government finances. In Section B.4 in the
Appendix, I argue that this is unlikely to play a meaningful role in my empirical setting, since wealth
taxes are primarily paid by the very wealthiest households, who were not disproportionately affected
by this reform. The impact on municipal finances would thus be too small to trigger a meaningful
response. Relatedly, some Norwegian municipalities also levy a property tax on residential homes.
Since these taxes may vary discontinuously across borders, I include controls for the property tax
rates as a robustness in Table B.8. This robustness check reveals very similar findings. Since property
taxation was in place prior to 2010, the fact that I find no effect on pre-period behavior strengthens
the claim that property taxation is unlikely to be a confounding factor. Another concern is that the
exclusion restriction (TaxV al

∧

only affects saving behavior through wealth taxation) may be violated
to the extent that municipalities use TaxV al

∧

for property-tax purposes. Fortunately for my analysis,
municipalities were not allowed to use the tax authorities’ assessment values until the end of the sample
period, and only a small subset opted to do so. I discuss this issue in Section B.5.

Finally, it is worth noting that this setting will identify partial-equilibrium effects. Since bordering
municipalities are typically tightly economically linked, there is little scope for geographic discontinu-
ities in terms of general equilibrium treatment effects. For example, there is little reason to suspect
that wages are affected by this treatment, since employers face no frictions in choosing employees from
either side of one of the treatment boundaries.

4.2 Empirical Specification

Distance and Boundary Areas. I define the key geographic measure, di, as the signed distance,
in kilometers, to the closest municipal boundary, where households on the low-assessment side of the
borders receive a negative distance, and households on the high-assessment side receive a positive
distance.21

I will refer to boundary areas, b, as sets of households assigned to the same municipal boundary.
Within a boundary area, b, households are defined as being on the high-assessment side if the aver-
age household within that boundary would see a higher tax assessment on that side.22 Geographic
variables, such as di, b, and geographic location, ci, are all measured in 2009.

Identifying variation. I define ∆i as the log increase in tax assessment that arises for house-
hold i if it were assessed on the high- instead of the low-assessment side of the border. This vari-
able is a border-area and structure-type-specific (linear) function of Hi = {log(Size)i, DenseAreai,
21I calculate di by minimizing the distance to the nearest residence in a different municipality (or within-city district).

This has the benefit of not assigning households as being close to a border that is vacant on the other side.
22Within a boundary area, a municipality is defined as being on the high-assessment side if the average detached house

(by far the largest group in my sample) in the border area would receive a higher assessment in that area. If there
are no differences for single family homes, i.e., they are in the same price region and price zone, I conduct the same
exercise for non-detached houses, and if necessary for condominiums.
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{1[Agei ≥ a], a = 0, 10, 20, 35}} and isolates the identifying variation in model-implied tax assess-
ment, log(TaxV al
∧

i,t), to come from cross-border (but within border area) differences in pricing model
coefficients, and allows this effect to vary with Hi, measured as of 2009.

∆i ≡ log(TaxV al
∧

i)
∣∣∣
di>0
− log(TaxV al
∧

i)
∣∣∣
di<0

(18)

Main reduced-form regression specification. The following regression equation yields the
estimator, β̂, for the reduced-form effect of increased tax assessment on some outcome variable, yi,t,
measured at year t.

yi,t = β log(TaxV al
∧

i) + gb(ci)∆i + δ′b,sHi + γ′tXi + εi,t. (19)

The inclusion of border-area and structure-type-specific linear controls in housing characteristics,
Hi, isolates the identifying variation in log(TaxV al

∧

i,t) to 1[di > 0]∆i. β thus identifies the effect
on households on the high assessment side of the boundary (1[di > 0]) of seeing a ∆i log-point
increase

While the estimator for β identifies the effect of a discontinuous loading on ∆i, the estimated
coefficient on gb(ci)∆i is meant to capture the effect of anything that loads continuously on ∆i. I
describe the parameterization of gb() in more detail below.

To increase precision, and to alleviate concerns that relevant observed heterogeneity is not ap-
propriately controlled for, I include a number of household-level controls, denoted by Xi, which is a
vector of 2009-valued household characteristics: a single dummy, a single dummy interacted with a
male dummy, a third-order polynomial in the average age of household adults, log(Labor Income),
log(Gross Financial Wealth [GFW]) College [Dummy for whether any of the adults have a college
degree], a debt dummy, log(Debt), the share of GFW invested in the stock market [SMW], the log
of the tax-return-observed assessed tax value of housing, a dummy for whether the tax returns indi-
cate ownership of other real estate, the log of the assessed value, and finally a dummy for whether
the household is reported to own non-listed stocks [PE Dummy]. Xi is not included as a vector of
controls when I examine whether the identifying variation is correlated with pre-treatment household
characteristics.

I note that while my specification allows the effect of geographic discontinuities in the estimated
coefficients to covary with Hi (per the definition of ∆i), estimating border-area-specific coefficients on
Hi accounts for the fact that those with larger houses in more high-priced (border-) areas may have
have different (unobservable) characteristics.

In most specifications, observations are pooled by treatment period, where the pre-period is 2004–
2009 and the post-period is 2010–2015. Equation 19 is then estimated separately for these periods,
allowing the slopes without a t subscript to vary by treatment period. While the initial hypothesis
is that the assessment discontinuities are not predictive of differences in pre-period characteristics,
outcome variables, yi,t, are generally differenced to accommodate this possibility. The main outcome
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variable that captures saving responses is log-differenced financial wealth. This differencing effectively
takes out household fixed effects in the amount of (financial) wealth they hold. This growth rate
in financial wealth is not itself (double-) differenced, which is inline with previous papers using the
(nondifferenced) log of wealth as the outcome variable while estimating household fixed effects (see,
e.g., Jakobsen et al. (2020)).

My main specification imposes equal weights on all observations and clusters at the census-tract
level (grunnkrets). I provide results using triangular (distance-based) weights for my main results in
Table B.1 in the Appendix. Results using different levels of clustering (household and municipality) are
reported in Table B.2. Neither standard errors nor estimates are sensitive to these specifications.

Addressing continuous geographic loading on ∆i. My method for capturing potential con-
founding heterogeneity is to introduce the term gb(ci)∆i. gb(ci) is a border-area-specific function of
household i’s location, and is meant to capture geographically heterogeneous loading on ∆i. Similar
to Dell (2010), I test multiple such specifications. The baseline specification involves controlling for
(signed) border distance in kilometers:

gb(ci) = γ−1[di < 0]di + γ+1[di > 0]di, (20)

where γ− and γ+ are to be estimated. However, there is considerable heterogeneity in residential
density across the border areas in my sample. The extent to which confounding variables change more
rapidly, in a geographic sense, in denser urban areas is problematic. I provide a fuller discussion of
this issue, and the approaches to addressing it, in Section A.2 in the Appendix. I highlight the main
aspects of the approaches below.

My preferred specifications address this issue by allowing the slope on border distance to vary para-
metrically with measures of residential density. The main preferred measure, Scaled Border Distance,
simply scales border distance (in kilometers) by a measure of average distances in a border area.23

The second preferred measure, Relative Location, maps all households onto [-1,1], where households
at 0 are equidistant to the low- and high-side centers.24 As a robustness test, I also allow the slope on
border distance to vary by border area. Since this involves the estimation of many slopes, this limits
precision and inhibits visual verification.

Two-Stage Least Squares Specification. I implement a fuzzy BDD approach to provide IV
estimates of how changes in tax assessment affect a given outcome, yi,t. The expectation is that the
first-stage coefficient, β̂FS , is close to one. The coefficient of interest is βIV . Given inclusion of the
term δFS

′
b,s Hi, the identifying variation in log(TaxV al

∧

i) is equal to 1[di > 0]∆i; i.e., the discontinuous
loading on the high-side assessment premium.
23This measure is the distance between the two centroids of the two municipalities (or within-city districts) whose

residents occupy a given border area, b. Centroids are municipality (or within-city district)-specific, and do not vary
for households within a municipality. The centroid distance measure is b-specific, and thus depends on which border
is the closest.

24Households at RelLoc ∈ [−1, 1] must travel (as the crow flies) RelLoc ·X km farther to get to the high side than they
would to get to the low side, where X is the distance between the centroids of the low and high sides.
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log(TaxV ali,t) = βFS log(TaxV al
∧

i) +gFSb (ci)∆i + δFS
′

b,s Hi + γFS
′

t Xi + εFSi,t (21)

yi,t = βIV log(TaxV ali,t) +gIVb (ci)∆i + δIV
′

b,s Hi + γIV
′

t Xi + εIVi,t (22)

Specification to test differences on observables. When testing whether my identifying
variation is correlated with pre-treatment observables, I estimate the following equation, which removes
socioeconomic controls from the main specification in equation 19. The coefficient of interest is β.

yi = β log(TaxV al
∧

i) + gb(ci)∆i + δ′b,sHi + εi (23)

4.2.1 Empirical specification relative to the BDD literature

The similarity between my empirical specification and that of the existing BDD literature (e.g.,
Black (1999) and Bayer et al. (2007)) that incorporates cross-boundary area variation in treatment
intensity can be seen by acknowledging that 1[di > 0]∆i in equation 19 could be replaced with
log(TaxV al
∧

) and I would obtain the exact same estimator β̂. However, writing out the identifying
variation as a discontinuous loading, 1[di > 0]∆i, facilitates a standard Regression Discontinuity
Design representation of estimates.25

Beyond this graphical contribution, my approach differs from the existing approach in how it
deals with potentially confounding geographic heterogeneity. First, my approach, as highlighted by
the main reduced-form specification in equation 19, differs by addressing the fact that the relevant
confounders covary with 1[di > 0]∆i and not just 1[di > 0]. The traditional approach is to use a spec-
ification similar to the baseline regression specification in equation 19 without directly controlling for
geographically smooth heterogeneity, but rather uniformly reduce the cutoffs (bands) that determine
which observations, i, would be included, based on di alone.

Applying the traditional approach to my empirical setting would entail comparing households
whose di’s were similar in order to limit the potential influence of confounders that covary with di. To
preserve identifying variation one would then consider households whose dis are close to the treatment
cutoff of 0. This approach would be unsatisfactory, to the extent that confounders vary more rapidly
in areas where treatment discontinuities are larger. If this is the case, then imposing uniform cutoffs
implies that the boundary areas that offer the most identifying variation will also have the worst
control group. My approach directly addresses this concern.

Second, my approach differs from the traditional approach by addressing rather than discarding
geographic heterogeneity in residential density. Addressing heterogeneity in density is important
25Prior papers, e.g., Black (1999) and Bayer et al. (2007), do not provide RDD-style figures to illustrate their main

empirical findings. Bayer et al. (2007) provide graphical evidence only when using a binary treatment cutoff, but their
main estimation strategy leverages the full identifying variation, which allows treatment discontinuities to vary across
border areas. Jakobsen and Søgaard (2020) make a similar contribution by providing a clever yet simple graphical
framework to analyze the effects of threshold-related variation in marginal income tax rates.
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whenever potential confounders may change more rapidly, in a geographic sense, in denser areas.
My solution to address this is a useful contribution, since it may be applied to settings where there are
many boundary areas that differ significantly, without having to reduce the sample size by dropping
boundary areas in order to achieve homogeneity. In Appendix A, I provide examples of how geographic
heterogeneity in residential density may invite the false detection of discontinuities in observable
characteristics.

4.3 Data

I combine a wide range of administrative registers maintained by Statistics Norway. These contain
primarily third-party reported data, and are all linkable through unique de-identified person and
property identification numbers. A detailed description of the financial data sources can be found in
Fagereng et al. (2018).

Financial data. Data on household financials come from household tax returns. These include
breakdowns of household assets, such as housing wealth, deposits, bonds, mutual funds, listed stocks,
and private equity holdings. They also include the sum of household liabilities. I can further distinguish
between third-party reported domestic wealth holdings (e.g., domestic deposits) and self-reported
foreign holdings of real estate, deposits, and other securities, separately. The tax data include a
breakdown of household income, such as self-employment income, wage earnings, pensions, UI income,
and the sum of government transfers. They also contain a detailed breakdown of capital income, such
as interest income from domestic or foreign deposits, and realized gains or realized losses. These data
span 1993 to 2015.

Real estate data. Real estate ownership registers provide end-of-year data on the ownership of
each plot of land in Norway. Using de-identified property ID numbers, I can populate each property
with the buildings it contains. Then, using structure ID numbers, I can populate each structure with
the housing units it contains (e.g., multiple apartments, attached homes, or a single detached house).
I can combine this with data on housing unit characteristics, such as size. An attractive feature of the
administrative data is that it facilitates the calculation of distances to geographic boundaries at the
structure level instead of district or census block-level (for examples, see Dell (2010) and Bayer et al.
(2007), respectively). These data sources cover 2004 to 2016.

Real estate transaction data. I also use data on real estate transactions to examine past and
future transaction prices. This dataset is comparable to the CoreLogic dataset often used in real estate
research in the U.S., but can be linked to the other data sources through de-identified property and
buyer/seller identification numbers. I collapse the dataset at the property-ID level, keeping information
on most recent transaction prior to 2009 and earliest transaction during or after 2010. I restrict the
data to transactions noted as being conducted on the open market and thus exclude other events such
as bequests or expropriations. This dataset spans 1993 to 2016.

Other data sources. I also use data on demographics from the National Population Regis-
ter. This contains data on birth year, gender, and marital links. I also obtain data on educational
attainment as of 2010 from the National Education Database.
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4.3.1 Variable definitions

Gross Financial Wealth (GFW) is the sum of domestic deposits, foreign deposits, bonds held
domestically, listed domestic stocks, domestically held mutual funds, non-listed domestic stocks (e.g.,
private equity holdings), foreign financial assets (stocks, bonds, and other securities), and outstanding
claims.26. For a detailed description of wealth variables see Subsection A.1 in the Appendix.

Labor Earnings (LE) is the sum of salaries, wages, and max(self-employment income,0). Total
Taxable Labor Income (TTLI) is the sum of LE, unemployment benefits and other transfers, and
pension income.

I measure saving as 1-year log-differences of financial savings (GFW). Log-differencing wealth
variables is standard in the wealth tax literature.27 I further follow Jakobsen et al. (2020) in adjusting
for the “mechanical effects” of increased wealth tax exposure. Absent any behavioral responses, higher
wealth tax exposure mechanically reduces wealth by lowering the net-of-tax rate-of-return. To address
this, I add wealth taxes incurred during t− 1, and thus payable during period t, to savings at time t
for all households:

Adjusted ∆ log(GFWi,t) ≡ log(GFWi,t + wtaxi,t−1)− log(GFWi,t−1) (24)

≈ ∆GFWi,t

GFWi,t−1
+ wtaxi,t−1
GFWi,t−1

.

The definition of saving above is important to consider for anyone who uses the estimated effects
for calibration or inputs into optimal taxation models. Specifically, the implied elasticities arising
from regressions that define saving as in 24 must be adjusted in order to serve as a target to calibrate
measures of savings growth that include mechanical effects. Alternatively, implied elasticities that
incorporate such mechanical effects by not making this adjustment will be provided in the results
section.

The majority of my variables will be measured in natural log-points. To accommodate zeros within
specific components of financial wealth (e.g., self-reported) or for debt, and to limit the influence of
large log-changes caused by small level differences, I shift levels by an inflation-adjusted NOK 10,000
(USD 1,700).28

26Foreign deposits and foreign financial assets are self-reported. Outstanding claims are primarily self-reported. Third-
party reported components include unpaid wages.

27Zoutman (2018) considers 1- to 3-year log differences; Brülhart et al. (2019) consider 3-year log differences; Jakobsen
et al. (2020) consider log-values, but incorporate household fixed effects to produce estimated effects on 1- to 8-year
log-differenced wealth.

28This implies that a reduction in debt from NOK 138,000 (the 50th percentile) to 0 (the 25th percentile) appears as a
log-difference of -2.695 rather than -11.835 when using a log(1+x) specification, which is considerably closer to the true
percentage change of -100%. A similarly large magnitude would appear when using the asymptotic sine transformation
(asinh), which is employed by Londoño-Vélez and Ávila-Mahecha (2018). There are only negligible differences for
similar changes in the main outcome variables. For example, a change in GFW from the 50th to the 25th percentile
yields a log-difference of -0.925 compared to a log-difference of -0.951 when using the log(1 + x) specification.

17



4.3.2 Sample selection

I only keep households who lived in the same building during 2007–2009, owned at least 90% of
their primary residence and had a positive assessed tax value of their house in 2009. In addition, I
require that their residence be registered as larger than 50 square meters (approx. 540 square feet).
This is to limit the possibility that the size is mismeasured, or that this is not their intended long-term
residence. I drop households whose tax records indicate ownership in building co-ops in 2009, due to
the lack of data on housing unit assignment within co-ops. I further restrict the sample to only include
households with an income above NOK 150,000 (approx. USD 25,000) in 2009, which is well below
the poverty limit in Norway. Such households are thus unlikely to be relevant for this study. I further
exclude households in which the average age of adults is less than 25 years. I then only keep households
with a taxable net wealth (per adult) in 2009 strictly above NOK 0 and below NOK 6,000,000. NOK
6,000,000 corresponds to the 99th percentile of taxable net wealth per adult among the remaining
households in 2009. Restricting to positive TNW households is standard in the wealth tax literature,
and in my setting implies that the sample is fairly balanced with respect to whether households paid
wealth taxes. This restriction leads to 66% of the sample having paid wealth taxes in 2009, and 60%
end up paying wealth taxes during 2010–2015. I further trim the sample by removing households with
labor incomes above NOK 4,300,000, which corresponds to the 99.95th percentile of the labor income
distribution in 2009.

The primary reason for incorporating these upper bounds is to aid precision by limiting the extent
of outliers in control and outcome variables. This is not problematic for the analysis. Treatment
effects for ultra-wealthy or very high income individuals will be very small relative to existing wealth
or incomes for such households, since housing wealth makes up a rather small proportion of total
wealth for very wealthy households. This means that I can remove these households without elimi-
nating any meaningful identifying variation. Excluding such households has an important additional
benefit: Excluding the ultra-wealthy allows sample means to provide more relevant benchmarks for
approximating level changes as the product of sample means and estimated log-differences. Additional
arguments for their removal include that they may have more complicated balance sheets and better
access to evasion or avoidance opportunities.

An immediate consequence of selecting only households with initial positive taxable net wealth is
that the resulting sample has a fairly high average age of 62, and is thus fairly close to retirement.
This is close to the average age of 61 in Jakobsen et al. (2020).29 From a theoretical perspective, this
suggests that these households are not highly influenced by the human wealth effect in their saving
responses to rate-of-return shocks, which is consistent with my empirical results. I would argue that
this is not necessarily a concern from an external validity point of view, since savings tend to be
concentrated in older households.30 A recent report from Statistics Norway shows that the average
age of wealth tax payers was 63 years in 2015, and that individuals above 65 years of age account for
29Given population aging, my sample is likely younger. Their sample statistics are based on average pre-period (1982–

1985) ages, while my statistics are based on 2009. This is 24 years later on average.
30See for example the Federal Reserve Bulletin 09/2017 Vol 103, No. 3, which shows that median net worth is the highest

for household whose head is 65-74 years of age. Their median net worth is 5 times larger than households aged 35-44.
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48% of wealth tax payers.31

I also impose some geographic cutoffs. When considering border distance in kilometers, I only
consider households within 10 km of the border, which accounts for around 80% of my sample. When
using scaled border distance, I consider households within [−0.6, 0.6] (the distance to the border
is at most 60% of the distance between the two municipal centroids). This cutoff similarly retains
approximately 80% of the sample. The main purpose of this is to allow for the estimation of lower-order
polynomials in these distance measures, without giving too much weight to geographic outliers. In
Figure A.4 in the Appendix, I show how households are distributed according to the different distance
measures. In Tables B.4, B.5 and B.6, I provide results when varying these cutoffs.

5 Results

5.1 A Graphical Overview

In this section, I show graphically how tax values are discontinuous at municipal borders, while
past transaction prices and labor incomes appear to behave continuously. These results are presented
in Figure 2 below.

[Figure 2 about here.]
Panel A shows that for a given model-implied treatment discontinuity, ∆i, assessed housing wealth

does indeed rise by close to ∆i log-points. As expected, the coefficient does not vary significantly other
than at the discontinuity, given that only observable characteristics are used for tax assessment.32

Formal tests of the presence of any discontinuities are performed in Subsection 5.2.
Panels B and C show how past transaction prices (using transactions during 2000-2009) vary geo-

graphically. Regardless of which geographic measure is used, these variables do not appear to behave
discontinuously at the treatment boundary. I perform formal tests of the presence of discontinuities
in Tables 10 and 11 in Subsection 5.9. From Table 10 column (2), we see that if all within-boundary
variation in observed transaction prices were attributable to the treatment discontinuities, rather than
smooth geographic variation, the jump should be approximately 0.8. However, these plots reveal that
we are closer to the ideal scenario of a true jump of 0. Similarly for labor incomes, in Table 11, column
(2), we see that if the entire correlation between model-implied tax assessments and incomes were
driven by a discontinuity, the observed jump should be approximately 0.15.

In terms of the BDD methodology, an important take-away from these plots is that past transaction
prices and labor income change nonlinearly relative to border distance measured in kilometers, but
linearly relative to scaled border distance. While visual inspection does not suggest a discontinuity
in labor incomes, a formal test in Table 11, column 3, where slopes on border distance (in km) are
estimated with side-specific second-order polynomials, shows a discontinuity of 0.1, significant at the
1% level. Thus in order for regression-estimates to agree with our visual inspection, we either need use
31https://www.ssb.no/inntekt-og-forbruk/artikler-og-publikasjoner/naer-hver-tredje-over-65-ar-betaler-formuesskatt
32The slight positive coefficient may be explained by the fact that tax-return observed TaxV al also includes the value

of secondary homes. Some fraction of households will thus have TaxV al = TaxV al
∧

+ Value of Secondary Home. The
propensity to own a secondary home is higher for wealthier households, and as we move toward the right on the
geographic axis, households get richer.
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polynomials of an even higher order or to further limit the sample, both of which would have adverse
effects on precision.

The non-linear relationships between observable characteristics and distance in km (first column,
rows two and three in Figure 2) appear to be driven by a steeper gradient near the boundary. I find
that this is likely driven by the fact that households drawn from near the boundary tend to live in
much denser areas. In Figure A.3 in the Appendix, I plot how residential density (log of the number of
households residing within 1 km) varies with border distance. Panel A shows that households who live
within 1 km of the border have 0.8 log-points (120%) more neighbors than those who live 5 to 10 km
away from the border. When instead using scaled border distance as the geographic running variable,
this hump-shaped relationship between density and border distance nearly vanishes. This essentially
induces more homogeneity in socioeconomic characteristics with respect to the running variable, and
thereby (i) makes it possible to account for geographic heterogeneity with a more parsimonious RDD
specification and (ii) reduces the external-validity concern that results are only applicable to households
in densely populated areas.

Formal tests of a discontinuity using scaled border distance (linear slope on each side) in Table 11,
column 4, finds no evidence of a discontinuity, and a point estimate of 0.002. Comparisons of formal
tests of discontinuities on past transaction prices provide similar results. My parametric approach for
accounting for cross-border heterogeneity in density thus appears to be an attractive way to avoid
the detection of nonexistent discontinuities without estimating higher-order polynomials in border
distance or losing power by focusing on narrow bands around the borders.

5.2 First-Stage Effects on Wealth Tax Outcomes

In this subsection, I provide reduced-form estimates of how changes in (model-implied) tax assess-
ment affects wealth tax outcomes, such as the extensive margin propensity to pay a wealth tax and the
amount subject to a wealth tax. These results are necessary to understand the exact treatment that is
driving the effects on household saving behavior and labor supply. I show these results graphically in
Figure 3. This figure shows clear evidence of a discontinuous treatment effect in terms of the amount
subject to a wealth tax (Panel A, rows 1 and 2) and the probability of facing a positive marginal
wealth tax rate (Panel B, rows 1 and 2). A 1-log point increase in model-implied tax assessment, i.e.,
∆i = 1, increases the amount of taxed wealth by between 0.5 and 0.9 million NOK (MNOK), and
increases the propensity to pay a wealth tax by about 25 percentage points, or roughly 42% relative
to a mean of 60%. Since this number arises from a comparison of otherwise similar individuals, this
effect accounts for the fact that some households might accumulate more wealth and therefore find
themselves above the wealth tax threshold even absent any change in TaxV al. This fairly large ex-
tensive margin effect is in part due to the fairly low wealth tax threshold as well as populating the
sample with only households who had positive TNW in 2009. This implies that the sample fairly
densely populates the area of the TNW distribution around the wealth tax threshold.

The pre-period (placebo) version of these plots can be found in Figure B.1 in the Appendix.
Row 1 uses distance in kilometers as the running variable, and shows larger effects in terms of

the amount subject to a wealth tax in Panel A. The reason is likely that households located near
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the boundary (in terms of kilometers) tend to be drawn from more urban areas (see Figure A.3 in
the Appendix). House prices in more urban areas are higher, which implies that a given percent
increase leads to larger level shifts and thereby larger effects on the total amount subject to the wealth
tax.

[Figure 3 about here.]
In Table 1, column (1), I also include the first-stage effect of increasing model-implied tax assess-

ment on actual (as observed in tax returns) tax assessment, log(TaxV al). This coefficient is 0.8194 in
the full sample, and thus fairly close to 1. This coefficient corresponds to the discontinuity at zero in
row 2 of Panel B after including the full set of control variables. A coefficient of 1 would be expected in
the absence of moving and ownership of secondary homes (see end of Section 2.1.1 for a discussion of
why the coefficient will be less than one). In column (2), I consider the propensity to be located above
the wealth tax threshold. The estimated coefficient for the full sample corresponds to the estimated
discontinuity in Panel B, row 2, in Figure 3.

Column (3) shows the effect on the marginal rate-of-return: A ∆i log-point increase in tax as-
sessment decreases the marginal rate-of-return by 0.2675∆i percentage points. This is roughly the
coefficient in column (2) multiplied by the average wealth tax rate of 1.04%. Column (4) shows the
effect on the amount of wealth above the threshold, corresponding to Panel A, row 2, in Figure 3.
Column (5) considers the wealth-tax induced effect on the average rate-of-return. Column (5) provides
the effect on the average net-of-tax rate-of-return on TNW. Table B.7 in the Appendix provides the
version of 1 that uses the unscaled border distance (in km) specification.

The estimates on the marginal and average rates-of-return isolate the effect coming through wealth
taxation, thereby excluding a range of potential behavioral responses that might affect the rate-of-
return these households achieve on their savings.I provide the methodologies are in Table 1, which
uses the scaled border distance specification.

[Table 1 about here.]
Column (5) provides the effect on the average rate-of-return. We see that the effect on the marginal

rate-of-return in column (3) is larger than the effect on the average rate-of-return in column (5). In light
of my conceptual framework introduced in Section 3, this suggests that the income effects associated
with changing a linear rate-of-return are generally muted. This implies that any finding that saving
increases due to higher tax assessment would be indicative of a low (intertemporal) substitution effect,
and in general that my reduced-form findings provide a lower bound of the saving effect of changing
a linear rate-of-return (where average and marginal rates are affected equally).33

In general, quasi-first-stage estimates, such as those in Table 1, should be interpreted with some
caution, since they may be affected by behavioral saving responses. For example, if household savings,
and thereby TNW, is extremely elastic with respect to wealth taxation, increased tax assessment may
cause households to lower TNW sufficiently to avoid having to pay a wealth tax. Such behavior would
33This assumes that Taxable Net Wealth is the relevant definition of savings, which is done by Jakobsen et al. (2020).

Given the definition of TNW in my setting, this is akin to assuming that 25% of housing wealth counts as consumption-
planning relevant savings. In the calibration exercise at the end of this paper, I instead define Gross Financial Wealth
(GFW) as the main measure of savings. The effect on the average rate-of-return is then scaled up by the ratio of the
average TNW to the average GFW (1.741) to 0.27 pp., which is close to the effect on the marginal rate-of-return.
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push the first-stage estimates toward zero. However, as I will show, behavioral responses are modest.
I therefore do not believe that this is a first-order concern, and that this framework thus provides
useful quantities with which to compare the subsequent estimates of how increases in tax assessment
affect household behavior.

5.2.1 Heterogeneous Responses

The conceptual framework in Section 3 suggests that income effects are amplified (muted) to
the extent that the effect on the average rate-of-return is larger (smaller) than the effect on the
marginal rate-of-return. Table 1 above suggests that income effects are muted in the full sample of
households, as the effect on the marginal rate-of-return is 0.2675/0.1544-1=73% larger. This underlies
some significant heterogeneity: In the sample of households initially above the tax threshold, the effect
on the marginal rate-of-return is only 19.5% larger than the effect on the average rate-of-return, while
in the sample of households initially below, it is 125% larger. I would therefore expect to see more
(positive) saving responses in the above-threshold sample.34

The conceptual framework also suggests that income effects are smaller when future incomes, Y2,
are large relative to initial income and wealth, Y1, i.e., when the human wealth effect is larger. In my
empirical setting, households whose initial taxable wealth was above the threshold differ from those
initially below the threshold in three characteristics, as shown in the summary statistics in Table A.1:
(1) They are slightly older (2 years at the mean), but have similar current levels of labor incomes
and thus likely face lower future incomes due to retirement. (2) They have more initial wealth as of
2009. These two elements suggest that households with initial taxable wealth above the threshold
will save more or dissave less when subjected to increased tax assessment. If both income effects and
substitution effects are large, this may offer differential effects (in terms of the sign of the savings
response) based on initial taxable wealth.

5.3 Financial Saving

[Figure 4 about here.]
In this section, I provide the results on household financial saving. Figure 4 shows the reduced-form

results graphically for two of the main specifications. In Table 2, I provide the corresponding results,
using an Instrumental Variables (IV) specification, for the full set of geographic running variables.
Both Figure 4 and Table 2 consider the effect on wealth-tax adjusted financial saving. The wealth
tax adjustment (discussed in Subsection 4.3.1) removes the mechanical effects of increased taxation on
savings, essentially by treating tax payments as saving. Table 3 shows results absent this adjustment,
and also considers different components of financial wealth.

[Table 2 about here.]
34These qualitative differences hold if we consider returns on Gross Financial Wealth (GFW). The marginal returns are

the same, but the average returns must be adjusted, since TNW is typically larger than GFW. The effect on the average
rate-of-return on GFW is thus larger. By scaling up the average rate-of-return effect by the ratio of the means of TNW
and GFW in the respective samples, we get ratios of the effect on the marginal versus the average rates-of-return of
1.00 (=0.2675/((1741/1000)*0.1544)) in the full sample, 0.71 (=0.2169/((2541/1432)*0.1713)) in the above-threshold
sample, and 1.45 (=0.3103/((758/466)*0.1312)) in the below-threshold sample.
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Figure 4, Panel A, rows 1 and 2 both show the estimated effect of increased model-implied tax
assessment on pre-period financial saving for the full analysis sample. The first row uses (unscaled)
border distance in kilometers as the running variable and the second uses scaled border distance.
Neither specification can reject the null hypothesis of no pre-trends. The visual evidence is consistent
with this conclusion. Panel B, rows 1 and 2 show the effect on financial saving. Both specifications
find that a 1-log-point increase in model-implied tax assessment increases saving by approximately
2%. Both discontinuities are significant at the 1% level.

Table 2 provides the regression estimates using the IV specification, where tax-return observed
tax assessment (TaxV al) is instrumented for by model-implied tax assessment (TaxV al

∧

). The first
row of results shows the estimated effects of the full sample. The estimates in columns (3) and (4) are
the IV analogues to the reduced-form estimates in rows 1 and 2, respectively, in Panel B of Figure 4.
Since the first-stage coefficients of model-implied log( ̂TaxV al) on observed log(TaxV al) are smaller
than 1, the IV coefficients are somewhat larger than the reduced-form coefficients.

The effects are consistent across specifications, and significantly different from zero at the 1% level
for all but the specification that estimates slopes on border distance separately for each border area
(column 5). Some of the specifications suggest that effects are weaker for households initially below
the wealth tax threshold. This is consistent with the finding from Table 1 that these households see
relatively smaller income effects, since their marginal rate-of-returns is affected considerably more than
the average rate-of-return.

To infer the implied saving propensity, namely, how many NOK saving increases by for each
additional NOK subject to a wealth tax, I perform the following calculation. Table 1 shows that
the effect of a 1-log-point increase in TaxV al increases the amount subject to a wealth tax by NOK
489,959, NOK 740,511 and NOK 237,618, for the full, above, and below samples, respectively. To
relate these effects to the IV estimates, we must divide these amounts by the first-stage coefficients
of 0.8194, 0.8450, and 0.7994, respectively. This addresses the fact that the IV estimates provide
estimated effects of increases in log(TaxV al), while the estimates in Table 1 provides the estimated
effects of increases in model-implied log(TaxV al

∧

). While the resulting NOK effect on the amount
subject to a wealth tax goes into the denominator, the following numbers enter the numerator. I take
the estimated effects on the saving rate, 0.0238, 0.0239, and 0.0216, and multiply by the respective
sample means of GFW of NOK 1,000,000, NOK 1,432,000, and NOK 466,000, respectively. This
provides propensities (SEs) to increase saving out of increased wealth tax exposure of 0.0398 (0.0149),
0.0391 (0.0198), and 0.0339 (0.0202), respectively, for the three samples.

For the full sample, these numbers suggest that households save approximately 4 NOK per addi-
tional NOK of wealth taxes, when dividing through by the average wealth tax rate of 1.04%. That
includes approximately 1 NOK that goes toward paying the wealth taxes for that year. The residual
3 NOK may be interpreted as additional saving to offset future wealth tax payments. This seems
reasonable from a life-cycle perspective, given that the average household is 62 years and thus not
far from retirement. Households may therefore want to pay more of the wealth tax (essentially by
saving for it) while they have higher incomes and lower costs of labor supply adjustments prior to
retirement.
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I perform similar calculations to obtain the implied semi-elasticities of saving to the marginal
rate-of-return. I divide the estimated coefficients by the (reduced-form) effect on the marginal rate of
return, rmarginal, which itself is divided by the first-stage coefficients in column (1) of Table 1. This
provides semi-elasticities of saving with respect to the marginal rate-of-return of -7.2904 (2.2762),
-9.3541 (4.7357), and -5.5646 (3.3233), for the full, above, and below samples, respectively. This
first estimate may read as follows: A 0.1 percentage-point decrease in the marginal rate-of-return
increases the saving rate out of financial wealth by 0.73 percentage points. It is worth noting, that
these elasticities are neither compensated nor uncompensated elasticities, as the effect of the average
and marginal rates-of-return differ. In Section 7, I infer (bounds on) the underlying uncompensated
savings elasticities through the lense of a simple life-cycle model.

I perform a number of robustness tests. In Table B.1, I provide results when using triangular
(distance-based) weights. All standard errors provided in the main text are clustered at the census-
tract level. Depending on the geographic cutoffs applied to the different distance measures, this
provides around 9,000–10,000 clusters. In B.2, I provide standard errors when clustering at the house-
hold or municipality level. Standard errors are slightly smaller when accounting for correlation in
the error term across larger geographic areas (municipalities). In Tables B.4, B.5, and B.6, I provide
estimated IV effects when varying the location measure cutoffs for the scaled border distance measure,
border distance in KM, and the relative location measure, respectively. Effects are qualitatively similar
when varying the bandwidths, but tend to be larger (and more noisily estimated) the narrower the
bandwidth.

5.3.1 Decompositions of Financial Saving Effect

In Table 3 below, I consider the effects on saving when not adjusting for wealth tax payments in
column (2). In column (3), I further isolate responses to changes in third-party reported domestic
deposits. In column (4), I only consider items that include self-reported items, such as foreign wealth
and outstanding claims. Column (1) provides results from the baseline definition for reference. I
report results using scaled border distance as the geographic running variable.

[Table 3 about here.]
Comparing columns (1) and (2) suggests that around 0.149/0.0238=63% of the effect on saving

comes from increased accumulation of financial wealth, and 37% comes from increased wealth tax
payments. I perform the same exercise as in the previous section to calculate the implied propensities
to save out of increased wealth tax exposure. I find that households in the full, above, and below
samples increase their savings (SE) by NOK 0.0249 (0.0152), 0.0235 (0.0208), and 0.0205 (0.0202) for
each additional NOK subject to a wealth tax, respectively. The implied semi-elasticities are -4.5641
(2.7875), -5.6359 (4.9706), and -3.3748 (3.3233), respectively.

In column (3), I focus on changes in domestic holdings of deposits, which is the primary (financial)
saving vehicle for Norwegian households. Deposits are broadly defined, and include various forms of
low-risk savings vehicles offered through banks. From the summary statistics in Table A.1, we see that
deposits make up 98% (80%) of financial wealth for the median (mean) household in the full sample,

24



and 94% (77%) for the median (mean) household in the above sample.35

While the estimated effect on deposit growth is not statistically significant, it is important to note
that this specification does not account for the mechanical effects of increased wealth taxation. The
relevant null hypothesis is therefore not that the effect is zero, but rather the implied mechanical effect
on deposits, which is negative. Under the reasonable assumption that wealth taxes are paid out of
deposits, the standard no-behavioral-response null hypothesis implies a point estimate of -0.0045.36

This would imply a t-statistic (column 3, full sample) of (0.0154+0.0045)/0.0099=2.01.
In column (4), I only consider self-reported items, and find qualitatively similar results. This

suggests that even though there is some scope for misreporting responses along asset classes such as
foreign wealth, this does not seem to materialize as less reported wealth.

5.4 Debt

In this section, I explore the effects on household debt. Figure 5 shows reduced-form results for
the full sample. The first row uses the (unscaled) border distance specification, while the second
row uses scaled border distance as the geographic running variable. Panel A finds no evidence of
pre-trends in debt accumulation, and Panel B finds no evidence for any effect during the post-period,
2010–2015.

[Figure 5 about here.]
In Table 4, I show the results from the IV specifications using the full set of specifications, and

provide results separately for the different subsamples. All of the specifications that control for un-
observed geographic heterogeneity (columns 3–6) find no evidence that debt increases as a result of
higher tax assessment. The coefficients in column (5) suggest that households reduce debt. How-
ever, this result cannot be inferred from the other specifications. The finding of little to no effect on
debt suggests that marginal savings go toward increasing financial wealth rather than reducing debt.
This seems reasonable, since the sample consists of older and wealthier households with fairly little
debt.37

[Table 4 about here.]
35This is higher than in the U.S. Fagereng et al. (2018) provide a comparison of the financial balance sheets of U.S.

consumers present in the Survey of Consumer Finances (SCF) and Norwegian households by percentiles of financial
wealth. This comparison accounts for the fact that pensions are largely provided by the government and therefore
do not appear on household balance sheets. From their Table OA.1, I see that SCF households in the 90th to 95th
percentile hold 47% of their (non-private equity) financial wealth in deposits and bonds. The comparable share for
Norwegian households found in Table 1A is 78%.

36In Table 1, we see that a 1-log-point increase in TaxVal reduces the average rate-of-return by 0.1544/0.8194=0.1884
pp. If I assume that wealth taxes are paid out of deposits (rather than out of all of TNW), the reduction in deposits
would be 0.1884% * 1741/722=0.4543%, where 1741 is the mean amount of TNW and 722 is the mean amount of
deposits, in thousands of NOK, obtained from Table A.1.

37The median household only has NOK 138,000 (USD 23,000) in debt (see Table A.1).
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5.5 Portfolio Allocation

5.5.1 Risky Share of Financial Wealth

In this section, I examine the effect of increased tax assessment on the share of financial wealth
invested in the stock market. A potential hypothesis is that households take on more risk in order
to increase their capital gains (in expectation) and thereby offset the effects of increased taxation.
Another hypothesis is that the adverse effect of increased taxation on life-time consumption decreases
risk-averse agents’, e.g., those with Constant Relative Risk Aversion preferences, willingness to allocate
wealth to the stock market. However, I find no evidence of a response in either direction. Figure 6
shows no discontinuities in the (differenced) stock market share.

Focusing on the full sample, I multiply the estimated effect (and the SEs) by the average amount
of financial wealth in the sample and divide by the estimated effect on the amount subject to the
wealth tax to obtain a propensity to save in stocks out of wealth tax exposure. Given that this effect
arises through changes in the stock market share, this would be a propensity to save in stocks, above-
and-beyond what would be implied by maintaining a constant risky share. This exercise yields a 95%
confidence interval of ±1.96*0.0014*1000000/489959=[-0.0056,0.0056]. If we assume a risk premium of
5%, then the confidence interval on the effect on expected capital gains is [-0.0003,0.0003]. This does
not come close to offsetting the effect on yearly wealth tax payments of around 0.0104 per additional
NOK subject to the wealth tax.

I perform a similar calculation as in the previous sections to calculate implied (semi-semi) elastic-
ities. A 1-percentage-point decrease in the net-of-tax rate-of-return changes the stock market share
by 0 (0.4288), -0.2348 (0.7828), and 0.2834 (0.5410) percentage points, for the full, above, and below
samples, respectively, where standard errors are provided in parentheses. In the full sample, I can thus
rule out (at the 95% level) that a 1 percentage point reduction in the net-of-tax return reduces the
stock market share by more than 0.84 percentage points and I can rule out an elasticity (dividing the
effect by the mean share of financial wealth, and 1 percentage point by an average rate-of-return of 2%)
larger than 0.17 in absolute value. Of course, the previous caveat still stands: Given differences in the
effects on the marginal and average net-of-tax rate-of-return, these elasticities may differ somewhat
from the uncompensated elasticities that would arise from changing a linear tax on wealth or capital
income tax.

[Figure 6 about here.]
In Table B.3 in the Appendix, I provide results when instead considering a broader measure of the

risky share of financial wealth. This measure also includes holdings of non-listed stocks, i.e., private
equity. With this definition, the effects suggest a (n almost statistically significant) reduction in risk-
taking. For the full sample, a 1 percentage point reduction in the net-of-tax rate-of-return reduces the
risky share of financial wealth by 0.8577 (SE=0.5514) percentage points.

[Table 5 about here.]
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5.5.2 Interest Rates

Below I present the results for realized interest rates on deposits and debt. The hypothesis is
that increases in wealth tax payments induces higher effort toward obtaining higher interest rates on
deposits or lower interest rates on debt. Figure 7 shows the results graphically, focusing on the scaled
border distance specification.

I find no statistically significant effects on the interest rates on either deposits or debt. To examine
which effects I can rule out, I focus on the estimated effect on interest rates on deposits for the full
sample, using the scaled border distance specification in column (2). This specification yields an (semi-
semi) elasticity of -0.000101/(-0.002675/0.8194)=0.0309 (SE=0.0380). In other words, the effect of a
1-percentage-point decrease in the marginal net-of-tax rate-of-return on realized returns has a 95%
confidence interval of [-0.0437, 0.1053] percentage points.

[Figure 7 about here.]
To calculate back-of-the-envelope bounds on the portion of increased wealth tax payments that

is offset by realizing better returns on deposits, I perform the following exercise. Multiplying the
coefficient in column (2) of -0.000101 (SE=0.000124) by the mean amount of deposits of 0.722 MNOK
yields a NOK effect of 73 (89). At the same time, a 1-log-point increase in TaxVal will increase the
amount of wealth subject to a wealth tax by 0.49MNOK/0.8194 ≈ 0.6 MNOK. The propensity to earn
more interest out of increased wealth tax exposure is thus 0.000121 (SE=0.000148), which is small
relative to the impact on the yearly wealth tax bill of around 0.0104. The upper bound on the 95%
confidence interval implies that at most 4%=(0.000121+1.96*0.000148)/0.0104 of the increase in the
wealth tax bill is offset by higher interest earnings.

[Table 6 about here.]

5.6 Labor Income

5.6.1 Total Taxable Labor Income

This section shows the results on household Total Taxable Labor Income (TTLI). This definition
of labor income includes transfers, such as UI benefits, labor-related pension payments, and sickness
and parental leave benefits. Figure B.3 shows the reduced-form effects for the full sample.

[Figure 8 about here.]
Table 7 shows estimated coefficients using different specifications and an IV setup. There is mean-

ingful within-sample variation in the point estimates across the specifications that address geographic
heterogeneity (columns 3–6). To calculate implied elasticities and propensities, I take the average
coefficient (and standard errors) across these specifications. Performing the same exercises as in the
previous sections, I find an implied semi-elasticity (SE) of labor income to the marginal net-of-tax
rate-of-return of -2.6190 (1.6388), -7.2798 (3.1996), and 0.0966 (1.6552) for the full, above, and below
samples, respectively. A similar exercise yields propensities to earn (pre-tax) of 0.0099 (0.0062), 0.0147
(0.0065), and -0.0009 (0.0150), respectively. Below, In Subsection 5.6.3, I show how these estimates
may be used to infer what fraction of the saving effect is financed by increases in labor income.

[Table 7 about here.]
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5.6.2 Labor Earnings

In this subsection, I focus on pre-tax labor income in the form of salary, wages, and self-employment
income. This will prove quite important in my setting, since many of the households in my empirical
setting are past retirement age. This means that a large part of their Total Taxable Labor Income
(TTLI) is in the form of pensions that are the result of previous (and thereby unaffected) labor supply.
The summary statistics in Table A.1 show that for the full sample, the mean of LE is 62% that of the
more comprehensively defined TTLI.

Figure 9 shows the results for the full sample using both the unscaled (km) and scaled border
distance specification. The plots reveal a clear level shift in the post-period. While there is no stark
evidence of a pre-trend, the plots suggest slightly higher earnings growth in the pre-period. To explore
this further, I provide the same plots, restricting the sample to those initially above the tax threshold,
in Figure B.4. It is reassuring that this sample displays no indication of pre-trends, since this is the
subsample driving the overall effect, which we can see in Table 8.

[Figure 9 about here.]
This change of definition reveals considerably stronger income responses than what we saw in the

previous subsection. For the full sample, the coefficients from the IV regressions in Table 8 are two
to four times larger than those using the more comprehensive definition in Table 7. For the above
sample, estimated coefficients are around three times larger. This implies that estimated elasticities are
correspondingly larger in magnitude. Consistent with results that use the previous definition, there is
a noticeable difference in the responses between households initially above versus those initially below
the wealth tax threshold.

[Table 8 about here.]
Repeating the calculations in the previous subsection yields semielasticities (SEs) of -7.0453 (3.5533),

-13.1505 (6.3013), and -2.6535 (4.2765), for the full, above, and below samples, respectively. The im-
plied propensities (SEs) to increase yearly pre-tax earnings out of increased wealth tax exposure are
0.0165 (0.0083), 0.0155 (0.0074), and 0.0159 (0.0257), for the full, above, and below samples, respec-
tively.

Both Tables 9 and 8 reveal much stronger (71% and 65%, respectively) labor earnings responses
when using border distance in kilometers versus scaled border distance as the geographic running
variable. This is consistent with the finding in Figure 3, that estimated discontinuity in wealth tax
exposure (measured in NOK) is 77% larger when using border distance in kilometers. In other words,
while the assessment effects are different, the propensities to earn out of wealth tax exposure are
similar across specifications.

5.6.3 Labor-financed Savings

This subsection provides some back-of-the-envelope calculations regarding the extent to which
saving responses are financed by increased labor earnings.

In Subsection 5.3.1 I found that the propensity to accumulate more financial wealth out of increased
wealth tax exposure was 0.0249. If we also account for increased tax payments, this leads to a
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cumulative saving propensity over 5 years of 0.0249*5 + 5*1.04% = 0.1765. The yearly propensity
to increase total taxable labor income of 0.0099 implies a cumulative earnings propensity of 0.0099 +
2*0.0099 + ... + 5*0.0099=0.1485. Over the course of 5 years, households will have earned 0.1485
NOK for each additional NOK subject to the wealth tax. If I assume an average marginal tax rate of
40%, this implies increased earnings over a 5-year period of 0.1485*(1-40%)=0.0891. Together, these
numbers imply that around 0.0891/0.1765≈ 50% of the increase in saving was financed by increased
labor earnings. If I instead use the implied propensity to earn (only salary, wages, and self-employment
income) of 0.0150, this labor-financed share is (5+...+1)*0.0165*(1-40%)/(0.1765)=84%.

5.7 Year-by-year Effects

In this section, I decompose the pooled post-period (2010–2015) results by estimating coefficients
separately for each year. I plot these results separately for the four main outcome variables in Figure
10 below, using the scaled border distance specification. This is a useful exercise to inform the mech-
anism behind the observed saving responses. For example, Zoutman (2018) finds that his estimated
elasticities are driven by immediate responses. He therefore attributes the high elasticity to changes
in reporting behavior, since real responses arising from changes in consumption and labor supply will
likely occur gradually. Below, I show that the main estimates are not driven by a single year, which
is consistent with real responses caused by gradual consumption and labor supply adjustments.

Panel A considers the effects on financial savings. As a reference, the estimated pooled coefficients
from the corresponding Table 2 column (4) are plotted as horizontal lines. We see that the savings
effect is persistent across the years, and that the yearly coefficients hover around the pooled coefficient.
Panel B similarly shows the yearly estimated effects for the unadjusted saving measure.

Panel C considers the effects on debt. This reveals a somewhat more interesting pattern. The
immediate response appears to be to increase debt (or reduce it less), while the opposite seems to be
the case toward 2014–2015. This could be consistent with the presence of some constrained households
who initially lower their debt payments to pay for their taxes, but eventually respond to the income
effect through increasing their savings by paying off their debts.

[Figure 10 about here.]
Panel D considers the share of wealth allocated to the stock market. I see no dynamic effects, and

all coefficients are close to zero, as are the pooled estimates.
Panel E considers Total Taxable Labor Income (TTLI). The point estimates suggest (although

this suggestion may be far from statistically significant) that initial responses are somewhat larger,
and that the effects eventually dissipate. This seems highly reasonable, given that the average age of
households is 62 (measured in 2009), and the modal age of retirement in Norway is 67; thus I expect
the median household to retire during 2014–2015. We see a similar pattern in Panel F, which considers
Labor Earnings (LE).
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5.8 Subsequent Transaction Prices

In this section, I investigate the effects on subsequent transaction outcomes in terms of the likeli-
hood of selling and the conditional subsequent sales price. I report these results in Table 9.

In columns (4)-(6), I consider extensive margin effects. The treatment in my setting is specific
to the house the households own. Households may therefore undo the treatment by selling their
house and moving to an area with lower assessments. I do not believe that this is likely, given my
impression of limited awareness of the geographic aspects of the pricing model, as well as the likely
presence of sizable costs associated with moving. Consistent with this, I find statistically small effects
on the propensity to sell. The estimates in column (4) show that a 1-log-point increase in TaxV al

∧

increases the likelihood of selling by 0.2 percentage points. I can rule out any effects larger than
0.002+1.96*0.003=0.8 percentage points at the 5% level.

In columns (1)-(3), I consider conditional sales prices. The effect of increased tax assessment (which
follows the house) on tax prices likely depends on the propensity of potential buyers to be subject to
a wealth tax. Since most new homeowners finance their purchases with debt, the net effect of a house
purchase on their TNW is highly negative. This is because debt is deducted from TNW in its entirety,
while the tax value of the house, on average, corresponds to around 25% of its market value. This
causes new home buyers to generally have very low (negative) TNW. Any tax assessment premiums
are therefore unlikely to affect these households’ immediate wealth tax liabilities. I therefore do not
expect the demand side to be highly sensitive to the tax assessments. Consistent with this, I find no
effects on subsequent sales prices. The estimated point estimates from the preferred specifications in
columns 1 and 3 are rather small, at 0.035 and 0.016.

Since the confidence intervals in columns (1) through (3) are somewhat large, it makes sense
to inquire whether the associated confidence intervals include a full capitalization effect. I evaluate
this with a back-of-the-envelope calculation. If all potential buyers were well above the wealth tax
threshold, then a 10% increase in the tax assessment would increase yearly housing-induced wealth
tax liabilities by around 10% times the average wealth tax rate of 0.0104. The NPV effect of this
(over 30 years, discounted at 2%) would be 10%*0.0104*(1/0.02-1.02−30/0.02)=2.33%, which would
be the upper bound for the magnitude of the potential capitalization effect. Using the estimates from
column (1), I can rule out an effect outside of 10%*(0.035 ± 1.96*0.085)=[-1.32%, 2.02%]. Thus, the
confidence interval contains 1.32/2.33=57% of the (back-of-the-envelope) potential full capitalization
effect.

In Table 9, I also report estimated coefficients on the geographic trend controls. The purpose of
this is to check whether the estimated coefficients on these variables correspond to initial expectations,
which were based on the motivating examples in the empirical specification section. My expectation
was that the coefficients on the scaled border distance variable in column (1) would be 1, and the
coefficient on the relative location variable in column (3) would be 0.5. The point estimates are indeed
very close to this, and statistically indistinguishable at the 5% level.

[Table 9 about here.]
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5.9 Regression-based Analysis of Pre-treatment Differences

5.9.1 Past Transaction Prices

In this subsection, I examine whether my empirical specifications are identifying discontinuities in
past transaction prices. I show that my preferred specifications cannot reject the null of no disconti-
nuity, while more naive approaches do identify such discontinuities. I also perform robustness tests by
considering different subsets of past transactions.

Column (1) shows that model-implied tax assessment is highly correlated with past transaction
prices when only baseline housing characteristics (size, age, dummy for dense area, but not geographic
trends) are controlled for. This specification uses both within-boundary and across-boundary-area
variation in tax assessment. This correlation remains strong when controlling for these characteristics
at the border-area level in column (2), which only uses within-boundary-area variation, but does not
address geographic trends.

When addressing geographic heterogeneity by controlling for (unscaled) border distance in KM in
column (3), these correlations are reduced considerably, but remain (largely) positive across subsam-
ples. This is consistent with the visual evidence in Figure 2, in which house prices change nonlinearly,
which invites the detection of a discontinuity in a linear specification.

Column (4) uses my main preferred geographic running variable, scaled border distance. This
removes any statistically significant correlation between tax assessment and past transaction prices
across subsamples. Column (5) estimates geographic slopes on border distance at the border-area
level. In three out of four subsamples, I cannot reject the null of no correlation, but point estimates
are consistently positive and somewhat large. Column (6) corresponds to my second preferred spec-
ification, and also consistently retains the null of no correlation between tax assessment and past
transaction prices.

This exercise shows that scaled border distance and relative location perform well in keeping the
null of no discontinuities, consistent with the visual evidence presented in Figure 2. The fact that
estimates are slightly positive—at least in the first two samples—may reflect the fact that many of
these transactions would have been present in the sample used to estimate the house price model
coefficients. This is especially the case for the second sample, which restricts to transactions during
2004–2009.

[Table 10 about here.]

5.9.2 Pre-period Income, Wealth, Debt, and Educational Attainment

In this section, I examine whether tax assessment discontinuities correlate with other pre-period
household observables under my different specifications. The specifications in columns (1)-(2) do not
address geographic heterogeneity and find a strong correlation between model-implied tax assessment
and household observables. These correlations are reduced significantly in column (3), which uses
border distance in kilometers as the running variable, but most correlations are still statistically
different from zero. This occurs despite allowing the continuous loading on the assessment premium
to be nonlinear by including second-order polynomial terms in dKMi interacted with ∆i.
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My preferred specifications (4) and (6) show very small correlations. They are also fairly precise,
in the sense that the standard errors are an order of magnitude smaller than the point estimates in
the baseline specifications (columns (1)–(2)). Column (5), which estimates border-specific slopes on
border distance, also performs reasonably well, except for a marginally significant (at the 10% level)
correlation with having a college degree.

To illustrate the success of my approach in removing the correlation between tax treatment and
household characteristics, consider the correlation between log(TaxV al

∧

) and log(Labor Income). Col-
umn (1) shows that when not addressing geographic heterogeneity at all, a 1-log-point increase in tax
assessment is associated with 28.8% higher labor incomes. Addressing geographical confounders using
my main preferred specification in column (4), I find that this correlation is reduced to 0, and I can
rule out a correlation larger (in magnitude) than 5.5 percentage points at the 5% level.

[Table 11 about here.]

6 Bunching

In this section, I examine the extent to which households bunch around the wealth tax threshold.
The primary reason for this is to investigate the likely extent of evasion or avoidance opportuni-
ties.

There is clear evidence of Norwegian households avoiding capital taxation (see, e.g., Alstadsæter
and Fjærli 2009, Alstadsæter, Kopczuk, and Telle 2019b). What is less clear, is the extent to which,
on average, moderately wealthy households can easily avoid wealth taxes. In the spirit of Seim (2017),
I examine this by examining the extent to which households bunch around the wealth tax threshold.
This is a useful exercise, because it allows us to gauge the potential for avoidance or evasion responses
to affect my implied saving elasticities. While households may not underreport the amount of deposits
they hold in domestic banks, they may, for example, be induced by wealth taxation to shift savings
into harder-to-tax asset classes, such as art. This would imply that my saving measure, based on
changes in largely third-party reported financial wealth, would understate the true effect on saving.
While such responses are hard to gauge empirically, considering excess bunching is a useful exercise: If
evasion or avoidance is easy and low cost, we would also expect to find an excess amount of households
with TNW right below the wealth tax threshold. There are reasons to expect that such evasion or
avoidance opportunities are limited for the moderately wealthy households near the tax threshold.
For example, shifting wealth from deposits to art implies more risk and less liquidity. Shifting wealth
from deposits to cash halts the flow of interest income from these assets, likely causing a net loss even
after reducing the wealth tax bill.

I show my results in Figure 11 below. Panel A shows the results for my full analysis sample, and
Panel B shows results for the full sample of Norwegian taxpayers. We see that the wealth tax threshold
is located at a fairly dense place in the wealth distribution. In Panel A, each NOK 5,000 bin (≈ USD
833, using the 2010 USD/NOK exchange rate of around 6.) contains about 625 households on average
in a given year (2500/4 years).

The visual evidence is quite clear, in that there is no sizable bunching around the wealth tax
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threshold in either sample. I perform more formal bunching analyses using the the approach of
Chetty, Friedman, Olsen, and Pistaferri (2011). Panel B estimates a statistically significant excess
mass around the threshold, but the visual evidence is not very supportive. In Panel B, the excess
mass, b = 0.097, means that there is 9.7% extra mass in the NOK 5,000 bin to the left of the kink.
This number is calculated using the methodology of Chetty et al. (2011), and the assumptions closely
resemble those made by Seim (2017). First, a counterfactual distribution is calculated by fitting a 7th
order polynomial to all points bins outside [−40k, 15k]. Then the relative number of bunchers, N(%),
is calculated as the relative difference between the number of agents in the empirical and counterfactual
distributions within [−40k, 15k]. Then all of the bunchers are assumed to be bunching one bin to the
left of the threshold. Multiplying N(%) by the number of NOK 5,000 bins in [−40k, 15k] then yields
b.

Multiplying b by NOK 5,000 tells us that 5, 000b less TNW is being reported due to the wealth
tax threshold. In relative terms, given an average threshold during this period of NOK 830,000, and
b = 0.097, this implies that 0.05843% of TNW is being misreported. Since the average wealth tax rate
during this sample period (2011–2014) was 1.075%, this yields a net-of-tax rate elasticity of taxable
wealth (following the definition in Seim (2017)) of 0.05853%/(0.01075/(1− 0.01075)) = 0.054. When
translated to an elasticity with respect to a net-of-tax rate-of-return of 2%, the elasticity becomes
0.05853%/(0.01075/(2%)) = 0.0010.

[Figure 11 about here.]
These findings suggest that evasion or avoidance responses are unlikely to lead my estimated effects

on financial saving to greatly understate the effect on over-all saving behavior. This is in large part
because I am estimating treatment effects among (only) moderately wealthy households. Wealthier
households likely have access to more low cost evasion or avoidance technologies, which is consistent
with the findings of Alstadsæter, Johannesen, and Zucman (2019a). One example is the ease of
placing wealth in foreign financial assets. Alstadsæter, Johannesen, and Zucman (2018) find that
only 0.03% of households in the bottom 99% of the wealth distribution (covering almost my entire
sample) reported foreign wealth holdings under the protection of a tax amnesty. In the top 0.1% of the
wealth distribution, on the other hand, a more substantial 6% of households reported foreign wealth
holdings.

7 Implied Structural Parameters

In this section, I use a simple life-cycle model to examine which value of the Elasticity of Intertem-
poral Substitution (EIS) is most consistent with my empirical findings. The model environment is
simple; It only contains the core elements necessary to replicate my empirical results and the shock
to wealth tax exposure. Agents choose both how much to save and how much to work, and they’re
shocked by more aggressive wealth taxation in such a way that the effect on the marginal and average
net-of-tax rates-of-return may differ. Importantly, it accounts for the fact that the average household
in my sample is close to retirement and thus faces lower incomes in the near future. This feature is
crucial in producing strong enough income effects to create a positive saving response.
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Since I am modeling the behavior of older and fairly wealthy households who hold, at the median,
NOK 408,000 (USD 68,000), in highly liquid deposits, I abstract from credit constraints. These
households generally face downward-sloping income paths, due to retirement, and well-functioning
mortgage markets should allow these households to access home equity if needed. It is therefore
unlikely that financial frictions play an important role or that taxation induces financial hardship as
in Wong (2020).

7.1 A simple life-cycle model

Consider the following life-cycle model with perfect foresight. The model features a constant EIS,
1
γ , and a constant Frisch elasticity of labor supply, 1

ν .

max
{ct,st+1}Tt=0

∑T
t=0 βt

(
1

1− γ c
1−γ
t − ψ l1+ν

t

1 + ν

)
(25)

s.t. ct + st+1 = yt + ltwt (26)

+ stR(1− τ1[stR+A− w̄ > 0]) + (A− w̄)τ1[stR+A− w̄ > 0].

ψ is the (dis)utility weight on labor supply, and β is the discount factor. The endogenous variables
are ct, lt, st+1 for t ≥ 0. Unearned income (pensions), yt and initial wealth, s0, are exogenous. w̄ is the
threshold applicable to all taxable wealth, savings with returns (stR) plus assessed housing wealth,
A.

Define R̃t = R(1− τ1[stR+A− w̄ > 0]) and Ṽt = s∗τ1[stR+A− w̄ > 0]. The budget constraint
can be written as

ct = yt + ltwt + stR̃t + Ṽt − st+1. (27)

I assume that households respond to changes in R̃t and Ṽt. I shut off the feedback mechanism of how
changes in st can affect R̃t and Ṽt. This eliminates bunching around the tax threshold, and allows me
to solve the model using the (binding) first-order conditions and the lifetime budget constraint.

I do not model precautionary savings motives or bequests directly. Instead, I assume that house-
holds live until they are 100 years old. This ensures that households do not dissave too quickly, and
therefore still hold meaningful savings around the average (empirical) age of death in Norway, which
is around 85 years.38

7.2 Simulation and Calibration

I assume that households act according to the model in the previous section, and simulate their
responses to shocks to R̃t and Ṽt, for t ≥ 1, from a baseline R̃t = 1.02 and Ṽt = 0. I simulate the
38Absent any mortality risk, this corresponds to (1) assuming that the bequest elasticity equals the EIS, and (2) that

the strength of the (warm-glow) bequest motive ensures that households wish to bequeath an amount large enough to
finance their own planned consumption for 15 years, given a continued flow of exogenous income.
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responses in terms of their saving behavior and labor supply for EIS-Frisch combinations, ( 1
γ ,

1
ν ). The

(dis)utility weight on labor supply, ψ, is calibrated to ensure that simulated labor earnings at t = 0
equal observed after-tax labor earnings in 2009 and the consumption share of total incomes (labor
earnings plus exogenous income) equals 80%.39 I set β = 0.98.

Similar to Jakobsen et al. (2020), I model the responses of a representative agent. This agent
sees shocks to R̃t and Ṽt corresponding to those found for the full sample in Table 1, assuming a
shock to log( ̂TaxV al) = 0.5. This implies ∆R̃t = 0.13375 pp. and ∆Ṽt = st(∆R̃avgt − ∆R̃t) =
st(−0.001544 ∗ (1741/1000) ∗ 0.5 − (−0.002675 ∗ 0.5)) for t ≥ 1,40 where the st used to determine ∆Ṽt
is the st chosen absent the shock.

Savings, st, in my model corresponds to Gross Financial Wealth (GFW). Labor earnings corre-
sponds to salary and self-employment income. I set exogenous income, yt, equal to the difference
between total taxable income and labor earnings in 2009 whenever the agent’s age is strictly below
retirement age. This difference corresponds approximately to the average amount of pension income.
Starting at retirement age, exogenous income (pension income) increases by 50% of the after-tax 2009
average of labor earnings. I induce retirement by making wages drop to zero over a 5-year period that
starts at retirement age.

7.3 Simulated Treatment Effects

The benchmark empirical treatment effect on savings corresponds to a 0.5 log-point increase in
tax assessment. My empirical estimates on savings growth (GFW) imply a yearly effect of 0.5*0.0149
percentage points each year, when not adjusting for the mechanical effects of increased taxation
in Table 3. When cumulated over a 5-year period, this implies an effect of 5*0.5*0.0149= 0.0373
(SE=5*0.5*0.0091=0.0228). The lower bound of the 95% confidence interval is -0.0074.

[Figure 12 about here.]
The benchmark empirical treatment effect for labor earnings is the following. I find that a 0.5

log-point increase in labor earnings increases labor earnings (salaries and self-employment income) by
0.5*0.0230 percentage points each year. The cumulative effect of this in terms of total earnings is
0.5*0.0230* (5+4+3+2+1), since the first-year effect cumulates over 5 years, and so on. This gives
a cumulative effect of 0.1725 (SE=0.5*0.0116* (5+4+3+2+1)=0.087). In other words, over 5 years,
treated households earned 17.25% more than untreated households. The lower bound of the 95%
confidence interval is 0.002.

In Figure 12, I plot the Frisch-EIS combinations (with the disutility weight on labor supply being
calibrated) that provide treatment effects corresponding to the lower bound of the 95% confidence
intervals of the cumulative treatment effects in green. The orange line similarly represents the lower
part of the 90% confidence intervals. Any EIS-Frisch combinations above these lines yield simulated
39Choosing a consumption share of 80% ensures that agents choose labor supply close to the empirical average in the

sample. Setting it to 100%, for example, leads to very large (unshocked) labor supply in order to save enough to finance
a higher level of consumption.

40The effect on R̃avg is scaled up by the ratio of the sample means of TNW and GFW (1741/1000), since the first-stage
estimate of -0.001544 is based on using TNW as the wealth base, but the model defines wealth as GFW. This accounts
for the fact that the relative (return) effect is larger when GFW (which is smaller than TNW) is defined to be the
stock of savings.

35



treatment effects below the respective confidence intervals. In this figure, we see that either the labor
earnings effect or the savings effect can be used to pin down similar bounds for the EIS, which only
weakly depend on the Frisch elasticity.

[Figure 13 about here.]
In Figure 13, I plot the simulated cumulative treatment effects as a function of the EIS, assuming

a Frisch elasticity of 0.5. We see that an EIS below 0.53 (averaging the cutoffs in Panels A and B) is
needed to produce treatment effects inside the 95% confidence intervals of my empirical findings. It’s
clear from the figure that it is difficult to parameterize the simple life-cycle model I use in a way that
exactly replicates my point estimates. This feature is not particularly robust to the assumptions of the
model. For example, if we force the agent to pay a large bequest at death, increase β, or make other
adjustments that increase the income effect, then the blue line will shift slightly upward. Similarly,
we can make the blue line shift downward by lowering the income effect, for example, by shortening
the life-span of the agent.

Frictions to adjusting consumption. This section shows that in a simple life-cycle model, we
need a fairly small value of the EIS to rationalize the empirical findings. We could also replicate low-EIS
behavior by exogenously imposing harsh consumption adjustment frictions, e.g., that ct ≥ c0 for t ≥ 1.
In such an environment, the responses to wealth taxation become uninformative of the EIS. The fact
that I cannot statistically rule out that increases in savings are fully paid for by increased labor earnings
(rather than downward adjustments to consumption) lends support to such an economic environment.
However, perhaps more reasonably, the strength of consumption frictions are reduced over time. In
this scenario, the presence of consumption frictions would still allow me to detect responses consistent
with a high EIS: If the EIS is high (and the substitution effect is strong), households would want to
shift more consumption from the future. If consumption frictions don’t bind in the future, households
would optimally shift consumption towards the present by dissaving. My finding of a positive effect
on saving behavior is inconsistent with this.

7.4 Implied Uncompensated Elasticity of savings to the Net-of-tax Rate-of-return

In Figure 14, I simulate the effects of a reduction in the (net-of-tax) rate-of-return for different
values of the EIS. In this (partial-equilibrium) model, it does not matter whether the rate-of-return is
reduced by capital taxation or monetary policy. The blue and green lines correspond to the EIS that
produced simulated treatment effects in Figure 13 corresponding to the lower bound of the confidence
intervals of my empirical findings at the 90% and 95% levels, respectively.41

[Figure 14 about here.]
I also plot the treatment effects for two other values of the EIS. The solid line assumes an EIS of

1, corresponding to log-utility in consumption. The dashed line corresponds to one of the lower values
of the EIS needed to calibrate the model in Jakobsen et al. (2020) to their empirical estimates. Given
an average gross rate-of-return of 1.02 (assumed in the model and consistent with summary statistics),
we can find the implied uncompensated elasticities to the net-of-tax rate-of-return by reading off (the
41The EIS cutoffs are slightly different based on whether we look at the savings results or labor earnings results. I

therefore take the average EIS for a given confidence level.
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negative of) the value on the y-axis for a given line when the x-axis takes a value of 0.02. From Panel A,
we see that the implicit uncompensated 5-year savings elasticity consistent with our empirical findings
are below 0.10 and -0.02 at the 95% and 90% level, which can be read off of the green and blue lines,
respectively. The implied savings elasticity when the EIS equals zero, which is the EIS that comes
closest to explaining my results, is −0.42.

When also considering panel B, this shows that, at the 10% level, my empirical findings are
inconsistent with parameterizations of a life-cycle model that would produce positive elasticities of
saving and labor supply to the rate-of-return.

Finally, Figure 14 also highlights the strikingly different responses to, for example, tax-induced,
rate-of-return shocks contained within the set of commonly used values of the EIS. A 2-percentage-
point reduction in the rate-of-return leads to a dissaving of 59% (=exp(-0.9)-1) if the EIS is 2, but
an increase in savings of almost 50% (=exp(0.4)-1) if the EIS is zero. In the middle, we have an
EIS of around 0.3 that gives barely any response at all. Research into the saving responses to capital
taxation and the underlying parameters that drive these responses therefore seems particularly prudent
to inform tax policy, even in the short to medium term.

8 Discussion

In this paper, I address an important and long-standing question in economics, namely, how
household savings and labor income respond to capital taxation. Despite the importance of this
question in terms of how it may inform a range of economic models, and in particular tax policy, there
exists very little empirical evidence that is applicable to these models. This is in part due to a lack
of exogenous identifying variation in the rate-of-return and capital taxation, but also to the difficulty
of isolating real responses from evasion and avoidance effects. By using a novel source of identifying
variation in wealth tax exposure in an empirical setting in which observed responses are unlikely to
be driven by evasion, I make an important contribution to this literature. An additional contribution
lies in the novel examination of theoretically important margins of adjustment, such as labor earnings
and portfolio allocation.

My results indicate that the distortionary effects of capital taxation may go in the opposite direction
of what is typically assumed.42 In addition, capital taxation may encourage households to supply
more labor. This is important for policymakers to consider when considering the optimal mix of
capital and labor income taxation. My findings suggest that capital taxation may offset some of the
distortionary (tax-revenue-reducing) effects of labor income taxation on labor income. However, it is
important to note that my findings focus on distortionary effects that arise in partial equilibrium in
the household sector. Wealth taxation, and capital taxation in general, may have potentially adverse
general equilibrium effects or effects that operate through the corporate sector that are not considered
in this paper. To account for these and other effects, researchers may need to employ a macroeconomic
model as in Guvenen, Kambourov, Kuruscu, Ocampo, and Chen (2019), or estimate effects at a less-
42Saez and Stantcheva (2018) consider feasible elasticities of capital to the net-of-tax rate-of-return to be 0.25, 0.5, and

1.

37



disaggregated (e.g., state) level as Agersnap and Zidar (2020) do.43 When wealth taxation depends
on the tax payers residence, one would also need to consider the effects on migration as in Agrawal,
Foremny, and Mart́ınez-Toledano (2020).

My results on the savings effects of wealth taxation are qualitative different (and even of a different
sign) from main findings in the existing empirical literature. The likely explanation is that my empirical
setting, with largely third-party reported measures of savings, comes closer to estimating savings effects
rather than strategic tax responses. Taxable wealth elasticities estimated elsewhere in the literature
likely include evasion or avoidance responses, and will thus be larger (and may even be of a different
sign) than pure savings elasticities. In Denmark, for example, only households in the top 1% to 2%
of the wealth distribution paid a wealth tax. Around half of these households are business owners
with potentially sizable evasion opportunities, since business wealth is self-reported. In Switzerland,
financial wealth is completely self-reported by taxpayers.

I know of no obvious reason why the finding of a positive as opposed to a negative effect of wealth
taxes on saving is would be driven by characteristics specific to Norway. If anything, the presence of
more generous pension and social insurance programs should create an economic environment in which
savings motives, and thus income effects, would be weaker in Norway and more easily dominated by
the substitution effects associated with rate-of-return shocks.

At face value, the finding of a positive effect on savings is somewhat surprising. However, as I
showed in the previous section, nonnegative saving responses to a negative rate-of-return shock can be
generated by plausible parameterizations of a life-cycle model. For example, the estimate of 0.1 in Best,
Cloyne, Ilzetzki, and Kleven (2020) would, in the model calibrated to my empirical setting, produce
simulated saving responses that take a positive sign. A value for the EIS of 0.1 is also contained in
the confidence bounds around the empirical estimates of the EIS for stockholders in Vissing-Jørgensen
(2002). This further highlights the possibility of positively signed responses to adverse rate-of-return
shocks.

Finally, as discussed in the introduction, my findings strengthen the premise upon which the
recent macro-heterogeneity literature is built. In particular, my findings point to a larger role for the
partial-equilibrium mechanism of Auclert (2019) and the general-equilibrium mechanisms of Kaplan,
Moll, and Violante (2018) in explaining aggregate responses to monetary policy. In addition, my
results are driven by older, wealthier households, which suggests that these households may respond
in the opposite way to that of a representative agent, highlighting the need to study the behavior
of younger, constrained households, as in Wong (2019), in which the mortgage refinancing channel is
important.
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Figure 1: Model-Implied Geographic Variation in Tax Assessment for a
Standard House

This figure shows the logarithm of the 2010 assessed tax value of an identical single-family home assessed as if it were
located inside one of the municipalities below, predicted using the coefficients in the tax authorities’ hedonic pricing
model. Each distinct (shade of) color corresponds to a bin of TaxV al

∧

with a width of 0.3 log-points. I assume a house
size of 130 m2, an age of 25–34 years, and a location in an area defined as densely populated. The assessed log tax
value has a mean of 13.30 and a standard deviation of 0.37, across (equal-weighted) municipalities. For municipalities
with within-city districts making up separate price zones, I assign the unweighted average tax assessments for the
purpose of this illustration.

42



Figure 2: Assessed Tax Values and Observable Characteristics

The graphs below show how actual tax assessment (as observed in tax returns), past transaction prices, and pre-treatment incomes
vary with border distance in a boundary region where the hedonic pricing model coefficients imply a 1-log-point assessment premium
on the high-assessment side. Specifically, the scatter points stem from estimating coefficients on ∆i in equation 23 separately
for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. Panel A considers log tax assessment in 2010 to
verify the treatment discontinuity. Panel B considers the smoothness of observed past log transaction prices (2000–2009). Panel
C considers log labor incomes (TTLI) in 2009. The effects are estimated separately for geographic bins, according to the different
location measures. The top row uses distance in kilometers, where households on the low-assessment side are given a negative
distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal centroids. Bins with
less than 1% of observations are not plotted. The size of the circles corresponds approximately to the relative size of that bin in the
estimation sample. This specification includes a vector of housing controls, but no household characteristics. Panel B includes all
homeowners present during 2009 who purchased their home during 2000-2009, and is not subject to the main sample restrictions.
A robustness exercise is performed in Table 10.
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Figure 3: Graphical Presentation of the Reduced-Form Effects on Wealth Tax
Exposure

The graphs below show how observed wealth tax outcomes vary geographically in in a boundary region where households face a
1-log-point tax assessment premium on the high-assessment side. The fitted lines and discontinuities correspond to reduced-form
regressions using the regression specification in equation 19. Scatter-points stem from estimating coefficients on ∆i using equation
19 separately for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The discontinuities at zero represent the
estimated reduced-form causal effect of a 1-log-point increase in (model-implied) tax assessment on the amount of savings subject
to a wealth tax (Panel A) and whether the household is above the wealth tax threshold (Panel B) during 2010–2015. The first
row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The second row uses
(similarly signed) distance scaled by the distance between the two municipal centroids. One negative-distance bin is normalized
to be zero. The size of each circle corresponds approximately to the relative number of observations in that bin. 95% confidence
bands are represented by dashed lines. All panels consider the full sample of households with initial positive taxable net wealth in
2009.
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Figure 4: Graphical Presentation of the Effects of
Increased Tax Assessment on Financial Saving

The graphs below show the reduced-form effect on savings of living in a boundary region where households face a 1-log-point
tax assessment premium on the high-assessment side. This effect is estimated separately for geographic bins, according to the
different location measures. The discontinuities at zero represent the estimated reduced-form causal effect of a 1-log-point increase
in (model-implied) tax assessment on household savings, measured as yearly log-differences of Gross Financial Wealth, adjusted
for wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-period outcomes (2010–
2015). The first row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The
second row uses (similarly signed) distance scaled by the distance between the two municipal centroids. The fitted lines and
discontinuities correspond to reduced-form regressions using the regression specification in equation 19. 95% confidence bands
are represented by dashed lines. All panels consider the full sample of households with initial positive taxable net wealth in
2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating
coefficients on log(TaxV al

∧

i) and gb(ci)∆i. One negative-distance bin is normalized to be zero. The size of each circle corresponds
approximately to the relative number of observations in that bin.
The graphs below show how observed wealth tax outcomes vary geographically in in a boundary region where households face a
1-log-point tax assessment premium on the high-assessment side. The fitted lines and discontinuities correspond to reduced-form
regressions using the regression specification in equation 19. Scatter-points stem from estimating coefficients on ∆i using equation
19 separately for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The discontinuities at zero represent
the estimated reduced-form causal effect of a 1-log-point increase in (model-implied) tax assessment on the amount of savings
subject to a wealth tax (Panel A) and whether the household is above the wealth tax threshold (Panel B) during 2010–2015. The
first row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The second row
uses (similarly signed) distance scaled by the distance between the two municipal centroids. The size of each circle corresponds
approximately to the relative number of observations in that bin. 95% confidence bands are represented by dashed lines. All
panels consider the full sample of households with initial positive taxable net wealth in 2009.
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Figure 5: Debt

The graphs below show the effect on log-differenced debt of living in a boundary region where households face a 1-log-point tax
assessment premium on the high-assessment side. This effect is estimated separately for geographic bins, according to the different
location measures. The discontinuities at zero represent the estimated reduced-form causal effect of a 1-log-point increase in
(model-implied) tax assessment on household debt. Panel A considers pre-period outcomes (2004–2009), and Panel B considers
post-period outcomes (2010–2015). The first row uses distance in kilometers, where households on the low-assessment side are
given a negative distance. The second row uses (similarly signed) distance scaled by the distance between the two municipal
centroids. The fitted lines and discontinuities correspond to reduced-form regressions using the regression specification in equation
19. 95% confidence bands are represented by dashed lines. All panels consider the full sample of households with initial positive
taxable net wealth in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather
than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. One negative-distance bin is normalized to be zero. The size of each
circle corresponds approximately to the relative number of observations in that bin.
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Figure 6: Stock Market Share

The graphs below show the effect on the 1-year differenced stock market share of living in a boundary region where households
face a 1-log-point tax assessment premium on the high-assessment side. The stock market share is the ratio of mutual funds and
listed domestic stocks (SMW) to GFW. This effect is estimated separately for geographic bins, according to the different location
measures. The discontinuities at zero represent the estimated reduced-form causal effect of a 1-log-point increase in (model-
implied) tax assessment on household savings, measured as yearly log-differences of Gross Financial Wealth, adjusted for wealth
tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-period outcomes (2010–2015). The
first row uses distance in kilometers, where households on the low-assessment side are given a negative distance. The second row
uses (similarly signed) distance scaled by the distance between the two municipal centroids. The fitted lines and discontinuities
correspond to reduced-form regressions using the regression specification in equation 19. 95% confidence bands are represented
by dashed lines. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than
estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. One negative-distance bin is normalized to be zero. One negative-distance
bin is normalized to be zero. All panels the full sample of households with initial positive taxable net wealth in 2009. The size of
each circle corresponds approximately to the number of observations in that bin.
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Figure 7: Interest Rates on Deposits and Debt

The dependent variable is 1-year differenced realized interest rates on deposits (left) and debt (right). This graph
considers households with taxable net wealth above the wealth tax threshold in 2009 (full sample). The discontinuities
at zero represent the estimated causal effect of a 1-log-point increase in tax assessment, and correspond to the estimated
coefficients in Table 6, columns (1) and (3) for the left- and right-hand side figures, respectively. Both graphs use scaled
border distance as the geographic running variable. The fitted lines and discontinuities correspond to reduced-form
regressions using the regression specification in equation 19. 95% confidence bands are represented by dashed lines.
Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating
coefficients on log(TaxV al

∧

i) and gb(ci)∆i. One negative-distance bin is normalized to be zero.
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Figure 8: Total Taxable Labor Income

The graphs below show the effect on 1-year log-differenced Total Taxable Labor Income (TTLI) of living in a boundary region
where households face a 1-log-point tax assessment premium on the high-assessment side. This effect is estimated separately for
geographic bins, according to the different location measures. The discontinuities at zero represent the estimated reduced-form
causal effect of a 1-log-point increase in (model-implied) tax assessment on household savings, measured as yearly log-differences of
Gross Financial Wealth (GFW), adjusted for wealth tax payments. Panel A considers pre-period outcomes (2004–2009), and Panel
B considers post-period outcomes (2010–2015). The first row uses distance in kilometers, where households on the low-assessment
side are given a negative distance. The second row uses (similarly signed) distance scaled by the distance between the two
municipal centroids. The fitted lines and discontinuities correspond to reduced-form regressions using the regression specification
in equation 19. 95% confidence bands are represented by dashed lines. All panels consider the full sample of households with
initial positive taxable net wealth in 2009. Scatter-points stem from estimating a coefficient on ∆i using equation 19 separately
for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and gb(ci)∆i. The size of each circle corresponds approximately
to the relative number of observations in that bin.
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Figure 9: Labor Earnings

The graphs below show the effect on 1-year log-differenced Labor Earnings (LE) of living in a boundary region where households
face a 1-log-point tax-assessment premium on the high-assessment side. LE is the sum of wage earnings, salaries, and max(self
employment income,0). This effect is estimated separately for geographic bins, according to the different location measures.
The discontinuities at zero represent the estimated reduced-form causal effect of a 1-log-point increase in (model-implied) tax
assessment on household savings, measured as yearly log-differences of Gross Financial Wealth, adjusted for wealth tax payments.
Panel A considers pre-period outcomes (2004–2009), and Panel B considers post-period outcomes (2010–2015). The first row uses
distance in kilometers, where households on the low-assessment side are given a negative distance. The second row uses (similarly
signed) distance scaled by the distance between the two municipal centroids. The fitted lines and discontinuities correspond
to reduced-form regressions using the regression specification in equation 19. 95% confidence bands are represented by dashed
lines. All panels consider the full sample of households with initial positive taxable net wealth in 2009. Scatter-points stem from
estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating coefficients on log(TaxV al

∧

i) and
gb(ci)∆i. The size of each circle corresponds approximately to the relative number of observations in that bin.
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Figure 10: Yearly Decomposition of Estimated (Reduced-form) Effects

In this graph, I allow the estimated discontinuities, β̂, to vary by year. Otherwise, the specifications are identical to those in column
(4) of the respective tables, which includes the scaled border distance control. Standard errors are clustered at the census-tract
level, and plots indicate 95% confidence intervals for the point estimates. Coefficients are estimated in two different samples: Full
sample corresponds to all households in the analysis sample, and the Above sample is the sample of households with Taxable Net
Wealth above the wealth tax threshold in 2009. The blue solid (green dashed) line corresponds to the pooled regression estimates
for the Full (Above) sample.
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Figure 11: Distribution of Households around the Wealth Tax Threshold

These figures show the distribution of taxable net wealth around the wealth tax threshold. Households are divided into NOK
5,000 bins, and households at zero have [0, 5000) NOK in excess of the threshold. Panel A considers the full analysis sample,
where thresholds are multiplied by two for married couples, and only couples with a non-changed marital status are included.
Panel B considers the full sample of Norwegian taxpayers, where the analysis is done at the individual level. Plots and
estimates are produced using the .ado file provided by Chetty, Friedman, Olsen, and Pistaferri (2011). The counterfactual
distribution (green line) is constructed by fitting a 7th degree polynomial on all bins outside [-40,000, 15,000]. b is the
estimated excess mass inside [-40,000, 15,000], normalized to be in the bin directly to the left of the threshold. Bootstrapped
standard errors are in parenthesis. The analyses use pooled data for 2011–2014. The sample period is restricted due to limited
sample years in which the relevant net wealth variable, nto form, is not bottom-coded at the level of the tax threshold.

Figure 12: The Frisch-EIS combinations that provide simulated treatment effects
inside the empirical confidence intervals

This figure shows the EIS and Frisch elasticity combinations that yield simulated cumulative treatment effects on savings (or
labor earnings) over a 5-year period that correspond to the lower bound of the 95 percent confidence interval of my empirical
findings. The baseline shock corresponds to a 0.5 log-point increase in tax assessment. EIS–Frisch combinations above the lines
yield simulated treatment effects below the confidence intervals of my empirical findings.
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Figure 13: Simulated Treatment Effects as a function of the EIS

This figure shows the simulated cumulative treatment effect (blue line) as a function of the EIS, assuming a Frisch elasticity of 0.5.
The baseline shock corresponds to a 0.5 log-point increase in tax assessment. The green dashed line corresponds to the empirical
point estimate, while the green shaded area constitutes the 95% confidence interval. The first column considers the effect on savings
growth, while the second column considers the effect on earnings growth.
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Figure 14: Simulated Saving Responses to Reducing the Net-of-tax Rate-of-return

This figure shows the simulated 5-year effect (in log points) of reducing the net-of-tax rate-of-return for different values of the
EIS, assuming a Frisch elasticity of 0.5. Given a gross rate-of-return of 1.02 (assumed in the model), we can find the implied
uncompensated savings elasticities to the net-of-tax rate-of-return by reading off (the negative of) the value on the y-axis for a given
line when the x-axis takes a value of 0.02. In Panel A (Panel B), these values are 0.42, 0.01, -0.11, -0.31, and -0.90 (2.74, 0.31,
-0.13, -0.40, and -0.51) for an EIS of 0.01, 0.29, 0.53, 1.00, 2.00, respectively.
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Table 1: First Stage Effects on Wealth Tax Outcomes

This table provides reduced-form effects using scaled border distance as the geographic measure in equation 19. Column (1)
considers the tax value of housing, as observed in tax returns. Column (2) considers the effect on being above the wealth tax
threshold. Column (3) considers the effect on the marginal rate-of-return, by isolating extensive margin effects from wealth
taxation. This is done by defining the dependent variable as −τt1[TNWi,t > Thresholdt]. Column (4) examines the effect on
the amount above the wealth tax threshold, 1[TNWi,t > Thresholdt](TNWi,t − Threshold). Column (5) isolates the effect of
increased wealth taxation on the average rate-of-return. This is done by defining the dependent variable as −τt1[TNWi,t >
Thresholdt](TNWi,t − Threshold)/TNWi,t, which is evaluated as 0 if TNWi,t ≤ 0. pp is short for percentage points, and
indicates that coefficients (SEs) are multiplied by 100. Sample size is in brackets. Standard errors, provided in parentheses, are
clustered at the census-tract level.

Extensive margin Extensive and intensive margin

log(TaxV al) 1[TNW > Threshold] rmarginal AmountAbove raverage

(pp.) (pp.)

(1) (2) (3) (4) (5)

Full sample

log(TaxV al
∧

) 0.8194*** 0.2544*** -0.2675*** 489959*** -0.1544***
(0.0316) (0.0130) (0.0136) (75376) (0.0083)

N [1475162] [1468994] [1468994] [1468994] [1468994]
F(β̂ = 0) 672 383 388 42 347

Households above tax threshold in 2009

log(TaxV al
∧

) 0.8450*** 0.2047*** -0.2159*** 740511*** -0.1713***
(0.0440) (0.015926) (0.0166) (120820) (0.0111)

N [819461] [815615] [815615] [815615] [815615]
F(β̂ = 0) 369 165 168 38 239

Households below tax threshold in 2009

log(TaxV al
∧

) 0.7994*** 0.2957*** -0.3103*** 237618*** -0.1312***
(0.0414) (0.0196) (0.0205) (48691) (0.0103)

N [655648] [653288] [653288] [653288] [653288]
F(β̂ = 0) 373 227 230 24 162

Scaled Border Distance Yes Yes Yes Yes Yes
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Table 2: The (IV) Effect of Increased Tax Assessment
on Household Financial Saving Behavior

This table shows the effect of changing tax assessment on financial saving during 2010–2015. log(TaxV al) is instrumented
with the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity, and does not allow
slopes on housing characteristics, Hi, to vary at the border-area level. Column (2) allows slopes to vary at the border-area
level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address geographic heterogeneity
according to the main IV specification in equation 21. Column (4) corresponds to the preferred (scaled) border distance
measure. Census-tract-level clustered standard errors are in parentheses. Sample size is in brackets. F is the Kleinbergen-
Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are statistically different
from zero at the 10, 5, and 1 percent level, respectively.

log(GFWt + wtaxt−1)− log(GFWt−1) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0229*** 0.0252*** 0.0231*** 0.0238*** 0.0270** 0.0232***
(0.0011) (0.0038) (0.0083) (0.0089) (0.0127) (0.0080)

N [1842603] [1842508] [1459917] [1472113] [1472113] [1649409]
F 40411 2960 845 683 326 837

Households Initially Above Threshold

log(TaxV al) 0.0176*** 0.0235*** 0.0183* 0.0239** 0.0535*** 0.0291***
(0.0014) (0.0050) (0.0109) (0.0121) (0.0185) (0.0113)

N [1013476] [1013369] [817054] [817214] [817214] [912464]
F 27576 1770 496 376 163 420

Households Initially Below Threshold

log(TaxV al) 0.0291*** 0.0265*** 0.0234* 0.0216* -0.0003 0.0166
(0.0016) (0.0057) (0.0129) (0.0129) (0.0169) (0.0111)

N [829127] [829022] [642762] [654804] [654804] [736853]
F 24703 1940 430 374 189 463

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 3: Decomposition of Financial Saving Response

In this table, I provide the IV effects using different measures of financial savings. Column (1) uses the baseline definition,
which adjusts for wealth tax payments. Column (2) does not account for wealth tax payments. (3) Only considers domestically
held (and thus third-party reported) holdings of deposits. (4) Only considers self-reported wealth items: foreign financial assets
and outstanding claims. Reduced-form standard errors are provided in parentheses, and are clustered at the census-tract level.

Adj. ∆ log(GFW ) Unadj. ∆ log(GFW ) ∆ log(Dom. Deposits) ∆ log(Self-Rep. GFW)

(1) (2) (3) (4)

Full sample

log(TaxV al) 0.0238*** 0.0149 0.0154 0.0254***
(0.0089) (0.0091) (0.0099) (0.0096)

Households Initially Above Threshold

log(TaxV al) 0.0239** 0.0144 0.0093 0.0254
(0.0121) (0.0127) (0.0141) (0.0160)

Households Initially Below Threshold

log(TaxV al) 0.0216* 0.0131 0.0201 0.0229**
(0.0129) (0.0129) (0.0139) (0.0097)

Controls

Household Characteristics Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes
– Border specific Yes Yes Yes Yes

Border Distance Controls
– Scaled Yes Yes Yes Yes
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Table 4: Debt

This table shows the effect of tax assessment on log-differenced debt during 2010–2015. log(TaxV al) is instrumented with the
model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity, and does not allow slopes
on housing characteristics, Hi, to vary at the border-area level. Column (2) allows slopes to vary at the border-area level, but
does not address within-border area geographic heterogeneity. Columns (3)-(6) address geographic heterogeneity according to
the main IV specification in equation 21. Column (4) corresponds to the preferred (scaled) border distance measure. Census-
tract-level clustered standard errors are in parentheses. Sample size is in brackets. F is the Kleinbergen-Paap rk-F statistic of
the first-stage regression. One, two, and three stars indicate that estimates are statistically different from zero at the 10, 5,
and 1 percent level, respectively.

∆ log(Debt) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0300*** 0.0265*** 0.0057 0.0022 -0.0356* -0.0060
(0.0016) (0.0058) (0.0128) (0.0135) (0.0189) (0.0119)

N [1842624] [1842529] [1459935] [1472130] [1472130] [1649429]
F 40414 2960 845 683 326 836

Households Initially Above Threshold

log(TaxV al) 0.0296*** 0.0249*** 0.0153 -0.0019 -0.0408 -0.0025
(0.0022) (0.0080) (0.0170) (0.0186) (0.0276) (0.0168)

N [1013495] [1013388] [817070] [817229] [817229] [912482]
F 27580 1770 496 375 162 419

Households Initially Below Threshold

log(TaxV al) 0.0307*** 0.0286*** -0.0040 0.0098 -0.0162 -0.0024
(0.0024) (0.0082) (0.0189) (0.0194) (0.0246) (0.0164)

N [829129] [829024] [642764] [654806] [654806] [736855]
F 24704 1940 430 374 189 463

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 5: Stock Market Share

This table shows the effect of tax assessment on the (one-year differenced) Stock Market Share (SMS) during 2010–2015.
log(TaxV al) is instrumented with the model-implied variation in tax assessment. Column (1) does not address geographic
heterogeneity, and does not allow slopes on housing characteristics, Hi, to vary at the border-area level. Column (2) allows
slopes to vary at the border-area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6)
address geographic heterogeneity according to the main IV specification in equation 21. Column (4) corresponds to the
preferred (scaled) border distance measure. Census-tract-level clustered standard errors are in parentheses. Sample size is
in brackets. F is the Kleinbergen-Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that
estimates are statistically different from zero at the 10, 5, and 1 percent level, respectively.

∆SMS (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0004** 0.0004 -0.0001 0.0000 -0.0012 0.0001
(0.0002) (0.0006) (0.0014) (0.0014) (0.0020) (0.0012)

N [1835781] [1835687] [1454510] [1466682] [1466682] [1643325]
F 41089 3022 857 698 332 850

Households Initially Above Threshold

log(TaxV al) 0.0008*** 0.0010 0.0004 0.0006 -0.0010 0.0007
(0.0002) (0.0008) (0.0018) (0.0020) (0.0029) (0.0017)

N [1008692] [1008586] [813160] [813335] [813335] [908140]
F 28321 1818 509 387 166 430

Households Initially Below Threshold

log(TaxV al) -0.0004 -0.0004 -0.0011 -0.0011 -0.0015 -0.0009
(0.0003) (0.0009) (0.0022) (0.0021) (0.0028) (0.0017)

N [827089] [826985] [641250] [653253] [653253] [735094]
F 24962 1952 431 378 192 466

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 6: Effects of Increased Tax Assessment on
Interest Rates on Deposits and Debt

This table shows the IV effects on realized interest rates on deposits and debt. Realized interest rates for X ∈ {Deposits,
Debt} are calculated as Interest(X)i,t/(0.5Xi,t + 0.5Xi,t−1) Only households with debt in excess of NOK 10,000 are included
when examining the interest rate on debt. Standard errors are provided in parentheses, and are clustered at the census-tract
level. Sample sizes are provided in brackets.

Interest Rates on Deposits Interest Rates on Debt

(1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) -0.000145 -0.000101 -0.000131 0.000156 0.000023 0.000046
(0.000119) (0.000124) (0.000107) (0.000216) (0.000228) (0.000197)

N [1230385] [1240695] [1390122] [725506] [726694] [812642]
F 983 798 976 670 540 628

Households Initially Above Threshold

log(TaxV al) -0.000032 -0.000023 -0.000074 0.000379 -0.000053 -0.000262
(0.000154) (0.000167) (0.000147) (0.000393) (0.000439) (0.000409)

N [689009] [689150] [769440] [291170] [286855] [318960]
F 566 428 483 271 197 204

Households Initially Below Threshold

log(TaxV al) -0.000390** -0.000218 -0.000224 0.000057 0.000137 0.000224
(0.000193) (0.000181) (0.000159) (0.000255) (0.000262) (0.000212)

N [541270] [551446] [620587] [434182] [439676] [493528]
F 504 438 535 455 378 464

Controls

Household Controls Yes Yes Yes Yes Yes Yes
Housing Controls Yes Yes Yes Yes Yes Yes
– Border specific Yes Yes Yes Yes Yes Yes

Border Distance (KM) Yes – – Yes – –
Border Distance (Scaled) – Yes – – Yes –
Relative Location Control – – Yes – – Yes
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Table 7: Total Taxable Labor Income

This table shows the effect of tax assessment on log-differenced Total Taxable Labor Income (TTLI) during 2010–2015. TTLI
is defined as the sum of wage earnings, self-employment earnings, pensions, and unemployment income. log(TaxV al) is
instrumented with the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity,
and does not allow slopes on housing characteristics, Hi, to vary at the border-area level. Column (2) allows slopes to
vary at the border-area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address
geographic heterogeneity according to the main IV specification in equation 21. Column (4) corresponds to the preferred
(scaled) border distance measure. Census-tract-level clustered standard errors are in parentheses. Sample size is in brackets.
F is the Kleinbergen-Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are
statistically different from zero at the 10, 5, and 1 percent level, respectively.

∆ log(Labor Income) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0049*** 0.0032 0.0094** 0.0053 0.0132* 0.0063
(0.0006) (0.0021) (0.0045) (0.0050) (0.0074) (0.0045)

N [1844488] [1844392] [1461364] [1473585] [1473585] [1651083]
F 40163 2968 839 681 327 837

Households Initially Above Threshold

log(TaxV al) 0.0053*** 0.0026 0.0161** 0.0139* 0.0325*** 0.0119*
(0.0009) (0.0033) (0.0065) (0.0075) (0.0115) (0.0072)

N [1014776] [1014669] [818080] [818244] [818244] [913625]
F 27346 1754 494 375 164 420

Households Initially Below Threshold

log(TaxV al) 0.0039*** 0.0037 -0.0015 -0.0036 -0.0041 0.0005
(0.0008) (0.0026) (0.0059) (0.0063) (0.0082) (0.0053)

N [829712] [829607] [643184] [655247] [655247] [737367]
F 24628 1961 427 374 188 465

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 8: The Effects of Increased Tax Assessment
On Labor Earnings

This table shows the effect of tax assessment on log-differenced Labor Earnings (LE) (which excludes pensions and transfers),
during 2010–2015. Labor Earnings is defined as the sum of wage earnings and max(self-employment earnings,0). log(TaxV al)
is instrumented with the model-implied variation in tax assessment. Column (1) does not address geographic heterogeneity,
and does not allow slopes on housing characteristics, Hi, to vary at the border-area level. Column (2) allows slopes to
vary at the border-area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6) address
geographic heterogeneity according to the main IV specification in equation 21. Column (4) corresponds to the preferred
(scaled) border distance measure. Census-tract-level clustered standard errors are in parentheses. Sample size is in brackets.
F is the Kleinbergen-Paap rk-F statistic of the first-stage regression. One, two, and three stars indicate that estimates are
statistically different from zero at the 10, 5, and 1 percent level, respectively.

∆ log(Salary and Self-E. Income) (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) 0.0162*** 0.0159*** 0.0379*** 0.0230** 0.0233 0.0263***
(0.0013) (0.0049) (0.0108) (0.0116) (0.0158) (0.0099)

N [1844488] [1844392] [1461364] [1473585] [1473585] [1651083]
F 40163 2968 839 681 327 837

Households Initially Above Threshold

log(TaxV al) 0.0166*** 0.0194*** 0.0528*** 0.0336** 0.0290 0.0386***
(0.0017) (0.0069) (0.0149) (0.0161) (0.0225) (0.0142)

N [1014776] [1014669] [818080] [818244] [818244] [913625]
F 27346 1754 494 375 164 420

Households Initially Below Threshold

log(TaxV al) 0.0149*** 0.0112* 0.0133 0.0103 0.0094 0.0134
(0.0019) (0.0064) (0.0154) (0.0166) (0.0215) (0.0137)

N [829712] [829607] [643184] [655247] [655247] [737367]
F 24628 1961 427 374 188 465

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 9: Subsequent Transaction Outcomes

This table provides the effects of a 1-log-point increase in TaxV al
∧

on transaction outcomes during 2010–2016. Columns (1)-(3)
consider log transaction prices, and columns (4)-(6) examine extensive margin effects, in terms of a dummy that takes the
value 1 if the house the household lived in during 2009 was transacted during 2010–2016. Standard errors are provided in
parentheses, and are clustered at the census-tract level.

log(Transaction Price) Sales Dummy

(1) (2) (3) (4) (5) (6)

log( ̂TaxV al) 0.035 0.239*** 0.016 0.002 0.004 0.002
(0.085) (0.084) (0.072) (0.003) (0.003) (0.002)

1[di < 0] ∗ dscaledi ∗∆i 0.955*** 0.005
(0.167) (0.006)

1[di > 0] ∗ dscaledi ∗∆i 1.096*** 0.004
(0.215) (0.006)

1[di < 0] ∗ dKMi ∗∆i 0.050*** 0.0003
(0.015) (0.0004)

1[di > 0] ∗ dKMi ∗∆i 0.042*** -0.0002
(0.015) (0.0004)

RelativeLocationi * ∆i 0.592*** 0.003*
(0.060) (0.002)

N 44666 45422 50203 1553563 1540201 1740546
R2 0.5381 0.5337 0.5257 0.1931 0.1972 0.1943

Household controls Yes Yes Yes Yes Yes Yes
Housing controls (Border spec.) Yes Yes Yes Yes Yes Yes
Geo-Controls

– Scaled Border Distance Yes – – Yes – –
– KM Border Distance – Yes – – Yes –
– Relative Location – – Yes – – Yes
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Table 10: The Correlation Between Treatment and
Observed Transaction Prices After Including Geographic Controls

This table reports estimated coefficients from a regressing log housing transaction prices on the log of model-implied tax
assessment. Past transaction prices are obtained from the real estate transaction register, covering all real estate transactions
during 1993–2017. The sample is limited to households who, in 2009, lived in a house that was transacted during 1993–
2009. Panels (A)-(B) consider all households who owned a house during 2009; Panels (A) and (C) restrict the sample to
households in the main analysis sample. Panels (B) and (D) restricts the sample to transactions occurring during 2004–2009,
the same sample period during the estimation of the house price model coefficients. Column (1) does not address geographic
heterogeneity, and does not allow slopes on housing characteristics, Hi, to vary at the border-area level. Column (2) allows
slopes to vary at the border-area level, but does not address within-border area geographic heterogeneity. Columns (3)-(6)
address geographic heterogeneity according to the main reduced-form specification in equation 19. Column (4) corresponds
to the preferred (scaled) border distance measure. Standard errors are provided in parentheses, and are clustered at the
census-tract level. Sample sizes are provided in brackets.

log(Transaction Price) (1) (2) (3) (4) (5) (6)

(A) All homeowners, 2000–2009

log(TaxV al
∧

) 1.273*** 0.769*** 0.293*** 0.086 0.148 0.148
(0.017) (0.051) (0.108) (0.102) (0.091) (0.094)
[206712] [206280] [206280] [199841] [199841] [199841]

(B) All homeowners, 2004–2009

log(TaxV al
∧

) 1.258*** 0.800*** 0.422*** 0.115 0.171* 0.144
(0.020) (0.062) (0.121) (0.121) (0.102) (0.110)
[134304] [133843] [133843] [129608] [129608] [129608]

(C) Analysis sample, 2000–2009

log(TaxV al
∧

) 1.457*** 0.773*** -0.067 -0.061 0.252 -0.109
(0.040) (0.110) (0.244) (0.224) (0.202) (0.211)
[40211] [39649] [39649] [38639] [38639] [38639]

(D) Analysis sample, 2004–2009

log(TaxV al
∧

) 1.490*** 0.946*** 0.265 -0.086 0.332 -0.420
(0.071) (0.172) (0.332) (0.333) (0.322) (0.322)
[18021] [17429] [17429] [17035] [17035] [17035]

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM, KM2 – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table 11: The Correlation Between Treatment and Household Characteristics
after Including Geographic Controls

This table reports the correlation between model-implied tax assessment, log(TaxV al
∧

), and 2009 socioeconomic characteristics:
Income, GFW, debt, and education. College is a dummy equal to one if one of the household members (excluding children)
has a college degree. Columns (1)-(4) add different sets of controls. Column (1) includes the baseline controls: structure-
type-specific slopes on log(size), the dense population dummy, and age bracket indicators. Column (2) interacts the baseline
controls with border area fixed effects. Column (3) further includes a control for the distance to border within a border area,
estimated separately for each side, and interacted with ∆i (border area and structure-type-specific log(difference) in average
assessed house prices between the sides of the border). Column (4) includes the relative location control, also interacted with
∆i. These two variables are defined in detail in the text. Standard errors are provided in parentheses, and are clustered at
the census-tract level.

(1) (2) (3) (4) (5) (6)

log(Labor Income)

log(TaxV al
∧

) 0.288*** 0.153*** 0.067* -0.000 -0.039 0.002
(0.005) (0.013) (0.040) (0.028) (0.034) (0.023)

log(Gross Financial Wealth)

log(TaxV al
∧

) 0.629*** 0.409*** 0.255*** -0.030 0.110 0.002
(0.012) (0.035) (0.095) (0.070) (0.086) (0.064)

Stock Market Share

log(TaxV al
∧

) 0.045*** 0.028*** 0.053*** 0.000 0.010 0.002
(0.002) (0.005) (0.014) (0.010) (0.013) (0.009)

log(Debt)

log(TaxV al
∧

) 0.502*** 0.350*** 0.180 0.092 -0.009 0.097
(0.015) (0.046) (0.143) (0.099) (0.125) (0.082)

College

log(TaxV al
∧

) 0.239*** 0.194*** 0.159*** 0.019 0.056* 0.028
(0.005) (0.015) (0.040) (0.028) (0.033) (0.024)

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM, KM2 – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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A Data and Empirical Appendix

A.1 Wealth Variables

• Deposits is the sum of deposits in norwegian banks (TR 4.1.1). This includes savings and
checking accounts, and accounts with higher interest and limitations on the timing/number
of withdrawals. Information on deposit holdings are reported directly from banks to the tax
authorities.
• Stock Market Wealth (SMW) is the sum of listed domestic stocks (4.1.7.1), mutual fund (equity)

holdings (4.1.4), other taxable capital abroad (TR 4.6.2). The first two items are third-party
reported. The third is largely self-reported and includes foreign financial securities (excl. deposits
in foreign banks).
• Private Equity (PE) is the value of directly held unlisted stocks (TR 4.1.8). The PE share of

GFW is 5.6% at the mean and 0% at the 75th percentile for the full sample during 2010–2015.
The value of unlisted stocks are reported by the stock issuer as part of their annual tax returns.
If the stock issuer owns domestic financial securities (e.g., listed stocks, deposits), then this is
reported directly to the tax authorities the same way as it would be reported for individuals.
• GFW is the sum of SMW, deposits, deposits in foreign banks (TR 4.1.9), PE, bonds (TR 4.1.5

and TR 4.1.7.2), and outstanding claims (TR 4.1.6). Outstanding claims contain unpaid wages
(reported by the firm) and loans to friends and family (self-reported).
• TaxVal is the tax value of housing wealth (TR 4.3.2).

– This is the sum of the tax value of primary housing (which is what I instrument for) and
the tax value of secondary housing.

– If TaxVal is missing, but GFW or Total Taxable Labor Income (TTLI) is not (2.7% of
observations), it is first replaced with the average of the lag and lead. If the lead is missing,
it is replaced with the lag, if the lag is missing, it is replaced with zero. This addresses the
concern that housing transactions may render TaxVal missing, but that repeated missing
values most likely indicates non-ownership.

– When taking logs, the base is shifted (for all wealth variables, by NOK 10,000 or ap-
proximately USD 1,667), which retains households who sold their house in the sample (by
avoiding log(0) returning missing values). For the other variables, it ensures that small
level changes do not lead to extreme log-differences (e.g., an increase in GFW from NOK 1
to NOK 100 (≈ $17) would otherwise lead to a log-difference of 4.7).

– This process thus ensures that households who might sell their house in response to the
treatment remain in the sample.

• TGW is the sum of GFW, TaxVal, holiday homes, forest property and other property (TR 4.3.3,
TR 4.3.4, TR 4.3.5), real estate held abroad (TR 4.6.1), capital in housing coops (TR 4.5.3),
home contents/moveable property (TR 4.2).
• TNW is TGW minus debt (TR 4.8).

– the taxable net wealth definition used by the tax authorities to calculate wealth taxes
also include less-frequently used posts TR 4.4 and TR 4.5, which are not in my data. To
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calculate wealth tax payments, the net wealth variable “netto formue” (nto form) from the
FD-Trygd database is used instead, as it includes all such posts. I also use this to create
dummy variables indicating whether a household is above the wealth tax threshold. The
nto form variable is not available for 2015. I then use the previous definition of TNW to
calculate wtax.

– The variable nto form is also bottom-coded for many years (displaying zeros if no wealth
taxes are paid), which is not an issue for the first-stage analyses since those only need
taxable wealth in excess of the tax threshold. However, when this variable is used for the
bunching analysis, I must limit the analyses to years in which it is not bottom-coded.

– The median relative difference (TNW - nto form)/(0.5*TNW + 0.5*nto form) for 2014
(when there is no bottom-coding) is 0, and the 10th and 90th percentiles are -0.0386 and
0.0543, respectively.

• wtax is τt(nto form−Thresholdt) for all years except 2015, when it equals τt(TNW−Thresholdt).
• Stock Market Share (SMS) is the ratio of SMW to GFW. Risky Share is (SMW + PE)/GFW.
• The foreign share (Foreign/GFW) is defined as (deposits in foreign banks plus other taxable

capital abroad)/GFW.
• The deposit share (Deposits/GFW) is the ratio of deposits (in norwegian banks) to GFW.

A.2 Defining the geographic running variable

My setting includes many border areas that differ significantly in terms of residential density.
While neighbors may be kilometers away in the arctic northern parts of Norway, they may only be
meters away in rural Oslo. This is problematic when pooling boundary areas in order to obtain
precision, because for a fixed differential, ∆i, house prices must change more rapidly whenever the
border area is smaller. When pooling boundary-areas, by construction, households closer to the border
(in kilometers) will be drawn from smaller (denser) areas,44 where the slope of house prices will be
steeper. I provide a graphical example of the issue in Figure A.6 in the Appendix. This example shows
that despite geographically smooth–even linear–house prices within a border area, a pooled regression
may easily detect discontinuities due to strong nonlinearities arising.

Below, I describe a simple motivating example in which house prices move linearly within border
areas, and the geographic slope varies only with two key characteristics: the difference in average
house prices (∆) and residential density.

Fix a boundary area, b, populated by households, i. Assume that true house prices, p, move
linearly along some geographic measure, k: pi = p(k(ci)) = ξbki = ξbk(ci). We can think of k as border
distance in kilometers. There are two sides, S = L,H. Assume that E[k(ci)|i ∈ S] = k(E[ci|i ∈ S])
(a linearity assumption)45. Then the mean price in S equals the price at k() valued at the centroid
of S: E[pi|i ∈ S] = p

(
k
(
E[ci|i ∈ S]

)
), since p is linear in k. Define the coordinate centroid of side S

as cS = E[ci|i ∈ S]. Applying the formula for a line, given two points, we get that the slope of p on
44In Panel A of Figure A.3, I show that households located near the boundary (in terms of kilometers) live in much

denser areas than those farther away.
45In reality, this is more of an approximation, as coordinates generally will not map linearly into border distance.
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k(ci) is (p(k(cH))− p(k(cL)))/(k(cH)− k(cL)).
Define ∆b as the difference in mean house prices: ∆b = E[pi|i ∈ H]−E[pi|i ∈ L], and the centroid

distance, CDb = k(cH) − k(cL), and we can write the slope of prices, p, on our geographic measure,
k, as ∆b/CDb.

pi = ki
CDb

∆b

This example contains the two key elements: (1) house prices have larger geographic gradients
when the differences in averages are higher and (2) more dense (less scattered) areas have larger
geographic gradients. I illustrate this in Figure A.1. The boundary regions in (A) and (B) differ only
in that the average prices in (A) are 1 price unit higher in (A). Boundary regions (B) and (C) differ
only in that (C) is spread out geographically (all gis in C are twice that in B). In all three cases, the
slope of prices, p, on our geographic measure, k, is simply ∆b/CDb. Below, I outline four approaches
based on this example.

Figure A.1: Border Area Heterogeneity: Motivating Example

This figure provides some simple examples to motivate my empirical specifications. I plot house prices (dotted
lines) against a geographic measure (e.g., border distance) for three hypothetical border areas. The geographic
slope of house prices is linear within each border area. Panels A and (B) differ only in that the difference in
average house prices between each side of the boundary is higher in (A) than in (B). Panels B and (C) differ
only in that (C) is more spread out, while the differences in averages is still the same. The commonality between
all border areas, b, is that the slope of house prices on the geographic measure is ∆b/CDb, where CDb is the
distance between the centroids of the two sides of a given boundary area, b.

Approach 1 (Benchmark: Border Distance in km). This approach uses signed border distance,
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di, as the relevant within-boundary area geographic measure: k(ci) = di. di is the distance to the
nearest household on the opposite side of a municipal (or within-city district) boundary. It ignores
heterogeneity in residential density by assuming a (normalized) centroid distance, CDb = 1. This
invites the problem of nonlinear slopes on di, which are potentially very steep near boundaries in a
pooled regression. This can be visualized by envisioning the slope of house prices on g when pooling
border areas (B) and (C). I provide an example of what this might look like when pooling multiple
border areas in Figure A.6. This issue also becomes apparent in the results section. Despite this, it
serves as a useful benchmark for the other approaches.

(Unscaled) Border Distance term: gb(ci) = γ · di (28)

Approach 2 (Scaled Border Distance). This approach also uses signed border distance, di, but
incorporates the heterogeneity in density by scaling the measure by the centroid distance in b, CDb.
Households are assigned to a b based on the municipality (within-city district) of the geographically
closest residence on the opposite side of a municipal or (within-city district) boundary. This measure
provides the distance between the centroids of the two municipalities (or within-city districts) that
constitute the border area b. All individuals in a given municipality share the same centroid vector,
but may face different CDbs to the extent that they differ in which neighboring municipality they are
closest to. For the purposes of this analyses, we can define CDb = Dist(cb,H , cb,L). The subscripts
(b, L) indicate that we are concerned with the centroid of the municipality on the low (L) assessment
side of the boundary b. The following term then captures the within-border area geographic variation
in house prices, where the expectation is that γ̂ = 1.

Scaled Border Distance term: gb(ci) = γ · di
CDb

(29)

Approach 3 (Relative Location). I set k() equal to the differential distance to the centroids of the
L versus H side of the boundary. This provides, in meters, how much closer ci is to cb,H than cb,L:
k(ci) = Dist(ci, cb,L)− Dist(ci, cb,H). In this setting, k(cH)− k(cL) = 2 · Dist(cb,H , cb,L). I omit this
scaling by 2, which leads to the expectation that γ̂ = 1

2 .

Relative Location term: gb(ci) = γ · Dist(ci, cb,L)−Dist(ci, cb,H)
Dist(cb,H , cb,L) ∈ [−γ, γ] (30)

The Relative Location variable is novel in the BDD setting. It is based on the hypothesis that the
true house price for some sampled house within a boundary area is a weighted average of estimated
average house prices on each side of a boundary, where weights are assigned based on how much
closer (or less far away) a house is located to the centroids of the estimation samples on the two
sides.46

Approach 4 (Border-specific slopes). Finally, I set k() equal to signed border distance, d(ci) = di

where households on the low-assessment side receive k < 0. I estimate slopes separately for each
border area, and thus do not scale by CDb, since this does not vary within a border area.
46I use the centroids of all residences to proxy for the centroid of the actual estimation sample. Some areas see very few

or no housing transactions; thus using all residences provides a more widely applicable measure.
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Border-specific Border Distance: gb(ci) = γb · di (31)

While the motivating example does not contain side-specific slopes, I follow the standard approach
in the RDD literature and allow slopes γ to be estimated separately for di < 0 and di > 0 in approaches
1, 2, and 4.

In the specifications using border distance, there is a concern that treated units on one side of the
border may indeed be very far away from any control units on the other side. This may be caused
by housing clusters near a border, where the other side of the border is vacant due to the presence
of a forest or mountain. If this happens frequently enough, observable characteristics may seem
discontinuous, even if they truly are smooth (and even linear) along other dimensions of proximity,
such as (unobservable) travel distance. I partially address this concern by measuring border distance
as the distance to the nearest owner-occupied residences on the other side of the border. This nearest-
neighbor approach also avoids some computational issues in calculating border distance when borders
take complicated forms, since I can calculate border distance by minimizing the distance to residences
in neighboring municipalities.47

A.3 Model-implied v. Actual Tax Value of Housing Wealth

In Figure A.2 below, I show the mapping in a scatter-plot format from model-implied tax assess-
ments to the actual tax assessments of housing wealth observed in the tax returns.

The actual tax values may differ from predicted tax values for a few reasons. First, the coefficients I
use are based on estimating equation 2 on 2004–2008 data. These are, to the best of my knowledge, the
same coefficients that were used to inform households of their new tax assessments during 2010. When
assessing tax values after the end of the tax year, the coefficients were re-estimated on a dataset that
also included 2009 data. Thus the inclusion of more data would slightly impact the coefficients and
the assessed tax values. Second, the amount of housing wealth observed in the tax returns, TaxV al
(no hat), also includes the value of secondary homes, while I estimate model-predicted tax values,
TaxV al
∧

, only considering primary residences. This leads to a few cases in which TaxV al > TaxV al
∧

.
Third, households may have moved during 2010. Finally, they may have filed a complaint regarding
the tax assessment. While assessed tax values are meant to equal 0.25× market value, households who
can document that their assessment exceeds 0.30× market value may have the assessment lowered to
0.30× market value, but not to 0.25×. In other words, even if the assessment is 20% too high, there
are no incentives to complain. This ensures that the possibility of households’ complaining does not
materially lower the explanatory effect of the model coefficients on actual tax assessments.
47Complex borders may require linearization or division of the border into a finite set of points. This could lead to sizable

approximation errors, in relative terms, for households very close to the border.
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Figure A.2: Verifying The House Price Model Coefficients

This figure plots actual assessed tax values against tax values predicted using the real estate data and
coefficients from the hedonic pricing model. The Y-axis has the actual tax values that are retrieved from
individuals’ tax returns for 2010, presumably based on the coefficients from the model estimated with
2004–2009 data. The X-axis has predicted tax values based on 2009 real estate data and coefficients
estimated with 2004–2008 data, which are the same coefficients used in providing preliminary tax values
to households in during 2010. Predicted and actual values may differ for the following main reasons:
(1) coefficients changed due to the inclusion of 2009 data in the estimation sample; (2) households can
move or have a complaint approved that assessed tax values are too high; or (3) households may own a
second home.
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A.4 Descriptive Figures and Tables

Figure A.3: Residential Density Around Borders

This graph shows how residential density varies with border distance. Density is defined at the household level as the log of the
number of households living within 1 km. The figures plot estimated coefficients of living in a given distance bin. The regressions
include the baseline housing controls Hi,2009, but these are not allowed to vary at the border-area level. Panel A uses distance in
kilometers, and Panel B uses scaled distance. All households in the analysis sample (with Taxable Net Wealth ≥ 0 in 2009) are
included.

Figure A.4: Geographic Distribution of Households

This figures provides histograms illustrating the distribution of households in the analysis sample according to the different distance
measures. All households in the analysis sample (with taxable net wealth ≥ 0 in 2009) are included, except those with distance
measures outside the visible range of the graphs. Panel A uses (signed) distance in kilometers, Panel B uses scaled distance, and
Panel C uses relative location, where the darker shade indicates membership in the high-assessment side of the boundary.
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Figure A.5: Example of Data Source for House Price Model Coefficients

The regression output below is for s=detached homes, in the price region, R, corresponding to Aust-Agder county.
Estimated coefficients are: αR = 11.83711, γ1 = 0, γ2 = −0.15054,..., γ7 = −0.72255, ζsizeR = −0.38555, ζDenseR =
0.06373, ζAge1,R = 0, ζAge2,R = −0.09434,..., ζAge4,R = −0.21287, and σR = 0.28800.
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Figure A.6: Example of nonlinearities in a pooled boundary
region

I create this example as followings. First create 100 border areas, indexed by b. Each border
area has a length of 200*b, and thus a centroid distance in thousands, e.g., kilometers, (CD) of
100b/1000. Each b has 100 households, equidistantly populated in G=[-100b, 100b]. Within each
b, house prices move linearly according to their location, g ∈ G: p = ∆

100 . By construction,
the mean difference between houses with g < 0 (low side) and g > 0 (high side) is constant
across bs, and is ∆. I set ∆ to 1. In the first plot, I provide a binscatter of ps against g,
separately for b = 10, 25, 50, 75, 100. In the second plot, I perform a pooled binscatter of p, for
b ∈ {10, 25, 50, 75, 100}. The red line is a second-order RD polynomial, estimated separately for
each side, allowing for a discontinuity at zero. Point estimates correspond to the within-bin means
for 20 equal-sized bins.

75



T
ab

le
A

.1
:

Su
m

m
ar

y
St

at
is

ti
cs

by
In

it
ia

l
W

ea
lt

h

Su
m

m
ar

y
st

at
is

ti
cs

ar
e

pr
ov

id
ed

fo
r

ho
us

eh
ol

ds
in

th
e

sa
m

pl
e.

O
nl

y
ho

us
eh

ol
ds

w
ho

ar
e

as
si

gn
ed

a
si

gn
ed

bo
rd

er
di

st
an

ce
va

ri
ab

le
ar

e
in

cl
ud

ed
.
G
F
W

is
G

ro
ss

F
in

an
ci

al
W

ea
lt

h.
G
F
W

,c
en
so
r
ed

in
di

ca
te

s
th

at
G

F
W

is
w

in
so

ri
ze

d
(c

en
so

re
d)

at
th

e
95

th
pe

rc
en

ti
le

.
T
G
W

is
Ta

xa
bl

e
G

ro
ss

W
ea

lt
h.

T
N
W

is
T

G
W

m
in

us
D

eb
t.

La
bo

r
E

ar
ni

ng
s

(L
E

)
is

th
e

su
m

of
w

ag
e

an
d

sa
la

ry
ea

rn
in

gs
an

d
m

ax
(s

el
fe

m
pl

oy
m

en
t

in
co

m
e,

0)
.

To
ta

lT
ax

ab
le

La
bo

r
In

co
m

e
(T

T
LI

)
is

th
e

su
m

of
LE

,U
I

be
ne

fit
s

an
d

ot
he

r
tr

an
sf

er
s,

an
d

la
bo

r-
re

la
te

d
pe

ns
io

n
in

co
m

e.
S
M
W

is
th

e
su

m
of

m
ut

ua
l-f

un
d

ho
ld

in
gs

,d
ir

ec
t

ho
ld

in
gs

of
lis

te
d

do
m

es
ti

c
st

oc
ks

an
d

fin
an

ci
al

se
cu

ri
ti

es
(e

xc
l.

de
po

si
ts

)
he

ld
ab

ro
ad

.
T
a
x
V
a
l

is
th

e
as

se
ss

ed
ta

x
va

lu
e

(h
ou

si
ng

w
ea

lt
h)

ob
se

rv
ed

in
th

e
ta

x
re

tu
rn

s.
w
ta
x

is
th

e
am

ou
nt

of
w

ea
lt

h
ta

xe
s

pa
id

.
w
ta
x
/
G
F
W

is
se

t
to

be
th

e
m

in
(w

ta
x/

G
F

W
,1

).
R

is
ky

Sh
ar

e
is

th
e

ra
ti

o
of

SM
W

pl
us

no
n-

lis
te

d
st

oc
ks

(e
.g

.,
pr

iv
at

e
eq

ui
ty

)
to

G
F

W
.F

o
r
ei
g
n
/
G
F
W

is
th

e
sh

ar
e

of
G
F
W

th
at

is
he

ld
ab

ro
ad

.
S
el
f

-r
ep
/
G
F
W

is
th

e
sh

ar
e

of
G

F
W

th
at

be
lo

ng
s

to
se

lf-
re

po
rt

ed
as

se
t

cl
as

se
s,

su
ch

as
ou

ts
ta

nd
in

g
cl

ai
m

s
an

d
fo

re
ig

n
as

se
ts

.
w
ta
x
>

0
is

a
du

m
m

y
fo

r
w

he
th

er
a

ho
us

eh
ol

d
pa

id
w

ea
lt

h
ta

xe
s.
r,
D
ep
o
si
ts

is
th

e
re

al
iz

ed
(s

ym
m

et
ri

c)
re

tu
rn

on
de

po
si

ts
.
r,
D
eb
t

is
si

m
ila

rl
y

de
fin

ed
,

bu
t

ex
cl

ud
es

ho
us

eh
ol

ds
w

ho
in

ei
th

er
th

e
cu

rr
en

t
or

su
bs

eq
ue

nt
pe

ri
od

ha
d
D
eb
t
<

10
,0

00
.

Fu
rt

he
r

in
fo

rm
at

io
n

on
th

e
w

ea
lt

h
va

ri
ab

le
s

ca
n

be
fo

un
d

in
Su

bs
ec

ti
on

A
.1

in
th

e
A

pp
en

di
x.

F
ul

l
sa

m
pl

e
H

ou
se

ho
ld

s
ab

ov
e

w
ea

lt
h

ta
x

th
re

sh
ol

d
in

20
09

H
ou

se
ho

ld
s

b
el

ow
w

ea
lt

h
ta

x
th

re
sh

ol
d

in
20

09

N
m

ea
n

sd
p2

5
p5

0
p7

5
N

m
ea

n
sd

p2
5

p5
0

p7
5

N
m

ea
n

sd
p2

5
p5

0
p7

5
20

10
–2

01
5

G
F

W
18

20
89

2
11

77
23

00
22

4
58

0
13

21
10

05
09

6
17

39
28

59
49

1
10

26
20

14
81

57
96

48
4

93
3

11
7

28
4

57
9

G
F

W
,

ce
ns

or
ed

18
20

89
2

10
00

11
09

10
05

09
6

14
32

12
35

81
57

96
46

6
58

9
D

eb
t

18
20

89
2

51
0

10
35

0
13

8
61

7
10

05
09

6
41

7
11

44
0

6
33

2
81

57
96

62
5

86
9

71
38

5
81

3
T

G
W

17
72

72
4

22
61

27
65

97
0

15
50

26
00

97
73

74
29

67
33

69
13

53
21

00
34

37
79

53
50

13
94

13
14

75
0

10
97

16
48

T
N

W
17

72
72

4
17

41
25

59
58

6
11

81
21

57
97

73
74

25
41

30
61

11
39

18
37

30
22

79
53

50
75

8
11

54
28

5
63

8
10

81
T

T
L

I
18

24
46

6
69

2
48

3
37

8
57

9
89

1
10

07
25

2
69

8
52

6
36

5
56

7
88

7
81

72
14

68
5

42
4

39
2

59
5

89
5

L
E

18
24

46
6

42
9

56
6

0
20

3
74

1
10

07
25

2
40

5
60

2
0

60
67

6
81

72
14

45
9

51
5

0
35

5
79

3
SM

W
18

20
89

2
15

1
55

9
0

0
82

10
05

09
6

22
5

71
7

0
8

15
3

81
57

96
59

22
3

0
0

31
D

ep
os

it
s

18
20

89
2

72
2

97
0

15
3

40
8

91
6

10
05

09
6

10
29

11
54

30
8

70
0

13
37

81
57

96
34

3
44

8
87

21
5

44
5

T
ax

V
al

17
80

15
4

82
8

70
6

46
6

65
9

96
9

98
16

70
90

8
80

5
49

5
70

7
10

62
79

84
84

73
0

54
5

43
6

60
9

86
5

w
ta

x
18

19
62

2
11

25
0

2
13

10
04

80
1

18
30

2
10

22
81

48
21

2
9

0
0

1

20
04

–2
00

9
T

ax
V

al
18

73
87

2
40

6
22

2
25

7
36

7
51

1
10

38
59

8
43

4
23

7
27

7
39

1
54

4
83

52
74

37
1

19
6

23
6

34
0

47
1

20
10

–2
01

5
SM

W
/G

F
W

18
05

54
8

0.
10

8
0.

20
2

0.
00

0
0.

00
0

0.
11

8
99

51
32

0.
11

5
0.

20
3

0.
00

0
0.

00
8

0.
13

5
81

04
16

0.
09

9
0.

19
9

0.
00

0
0.

00
0

0.
09

2
R

is
ky

Sh
ar

e
18

05
54

8
0.

16
4

0.
26

6
0.

00
0

0.
00

6
0.

22
4

99
51

32
0.

18
9

0.
28

2
0.

00
0

0.
03

2
0.

28
2

81
04

16
0.

13
3

0.
24

2
0.

00
0

0.
00

0
0.

15
2

D
ep

os
it

s/
G

F
W

18
05

54
8

0.
80

3
0.

29
1

0.
69

0
0.

97
7

1.
00

0
99

51
32

0.
77

2
0.

30
8

0.
61

5
0.

94
4

1.
00

0
81

04
16

0.
84

1
0.

26
4

0.
78

0
1.

00
0

1.
00

0
F
or

ei
gn

/G
F

W
18

05
54

8
0.

00
8

0.
05

4
0.

00
0

0.
00

0
0.

00
0

99
51

32
0.

00
9

0.
05

8
0.

00
0

0.
00

0
0.

00
0

81
04

16
0.

00
6

0.
04

9
0.

00
0

0.
00

0
0.

00
0

Se
lf

-r
ep

/G
F

W
18

05
54

8
0.

02
5

0.
10

6
0.

00
0

0.
00

0
0.

00
0

99
51

32
0.

03
0

0.
11

3
0.

00
0

0.
00

0
0.

00
0

81
04

16
0.

01
9

0.
09

6
0.

00
0

0.
00

0
0.

00
0

w
ta

x/
G

F
W

17
97

24
9

0.
00

9
0.

03
6

0.
00

0
0.

00
5

0.
01

1
99

05
09

0.
01

2
0.

03
7

0.
00

4
0.

00
9

0.
01

3
80

67
40

0.
00

6
0.

03
5

0.
00

0
0.

00
0

0.
00

4
w

ta
x>

0
18

19
62

2
0.

60
0

0.
49

0
0.

00
0

1.
00

0
1.

00
0

10
04

80
1

0.
81

7
0.

38
7

1.
00

0
1.

00
0

1.
00

0
81

48
21

0.
33

2
0.

47
1

0.
00

0
0.

00
0

1.
00

0

20
09

r,
D

ep
os

it
s

31
52

08
0.

02
02

0.
01

16
0.

01
17

0.
02

03
0.

02
74

17
47

86
0.

02
37

0.
01

08
0.

01
74

0.
02

44
0.

02
99

14
04

22
0.

01
58

0.
01

11
0.

00
75

0.
01

48
0.

02
18

r,
D

eb
t

19
64

73
0.

04
41

0.
01

44
0.

03
84

0.
04

33
0.

04
99

79
30

5
0.

04
08

0.
01

69
0.

03
61

0.
04

16
0.

04
85

11
71

68
0.

04
64

0.
01

18
0.

03
97

0.
04

41
0.

05
08

A
ge

(h
h.

av
g)

31
53

28
61

.9
3

13
53

.0
62

.0
71

.0
17

48
14

64
.0

8
13

55
.0

64
.0

73
.0

14
05

14
59

.2
5

13
50

.0
59

.0
68

.0

76



B General Appendix

B.1 Additional figures

Figure B.1: Graphical Presentation of the Reduced-Form Effects on
Pre-Period Wealth Tax Exposure

This graph shows the reduced-form effects of increased tax assessment on the following pre-period (before 2010) outcomes:
(A) How much of household savings is subject to a wealth tax, i.e., the amount of wealth above the tax threshold; (B)
Whether or not a household pays a wealth tax. The first row uses distance in kilometers, where households on the low-
assessment side are given a negative distance. The second row uses (similarly signed) distance scaled by the distance
between the two municipal centroids. The fitted lines and discontinuities correspond to reduced-form regressions using the
regression specification in equation 19. 95% confidence bands are represented by dashed lines. All panels consider post-
period saving outcomes for the full sample of households with initial positive taxable net wealth in 2009. Scatter-points
stem from estimating a coefficient on ∆i using equation 19 separately for di bins, rather than estimating coefficients on
log(TaxV al
∧

i) and gb(ci)∆i. The size of each circle corresponds approximately to the relative number of observations in
that bin.
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Figure B.2: Graphical Presentation of the Effects of
Increased Tax Assessment on Financial Saving

Above Sample
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B.2 Additional results figures

Figure B.3: Total Taxable Labor Income
Subsample: Households initially above tax threshold

The dependent variable is 1-year log-differenced TTLI. This figure provides results for the sample of households above the tax
threshold in 2009. See description in Figure 8.
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Figure B.4: Labor Earnings
Subsample: Households initially above tax threshold

The dependent variable is 1-year log-differenced Labor Earnings (LE), which is the sum of salaries, wages, and max(self employment
income,0). This figure provides results for the sample of households above the wealth tax threshold in 2009. See description in
Figure 9.
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B.3 Additional Results Tables

Table B.3: Effect on the Risky Share of Gross Financial Wealth
that includes non-listed stocks and foreign-held

financial assets (excl. foreign deposits)

This table shows the (IV) effect of tax assessment on the (one-year differenced) share of wealth allocated to “risky assets” (Risky
Share) during 2010–2015. Risky Assets is defined as the sum of listed and non-listed stocks. This implies RiskyShare ≥ SMS.

∆RiskyAssets/GFW (1) (2) (3) (4) (5) (6)

Full sample

log(TaxV al) -0.0003 -0.0005 -0.0006 -0.0028 -0.0035 -0.0019
(0.0002) (0.0008) (0.0017) (0.0018) (0.0026) (0.0016)

N [1835781] [1835687] [1454510] [1466682] [1466682] [1643325]
F 41012 3021 857 697 331 849

Households Initially Above Threshold

log(TaxV al) -0.0001 0.0009 -0.0014 -0.0024 -0.0030 -0.0019
(0.0003) (0.0011) (0.0023) (0.0026) (0.0039) (0.0023)

N [1008692] [1008586] [813160] [813335] [813335] [908140]
F 28269 1819 509 386 165 430

Households Initially Below Threshold

log(TaxV al) -0.0009*** -0.0020* -0.0006 -0.0035 -0.0035 -0.0021
(0.0003) (0.0011) (0.0027) (0.0026) (0.0035) (0.0021)

N [827089] [826985] [641250] [653253] [653253] [735094]
F 24918 1955 432 379 193 466

Controls

Household Characteristics Yes Yes Yes Yes Yes Yes
Housing Characteristics Yes Yes Yes Yes Yes Yes
– Border specific – Yes Yes Yes Yes Yes

Border Distance Controls
– KM – – Yes – – –
– Scaled – – – Yes – –
– Border specific – – – – Yes –
Relative Location Controls – – – – – Yes
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Table B.4: Bandwidth Robustness, Scaled Border Distance.

This table shows the results from the main IV specification, using different cutoffs for scaled border distance. bw=0.9 implies
retaining all households with a scaled border distance inside [-0.9,0.9]. The main specification uses bw=0.6. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(TTLI) ∆ log(LE)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = .9 0.0199** 0.0110 -0.0032 0.0002 0.0044 0.0311***
(0.0078) (0.0080) (0.0119) (0.0012) (0.0044) (0.0100)

bw = .8 0.0208*** 0.0118 -0.0020 0.0000 0.0027 0.0305***
(0.0079) (0.0081) (0.0121) (0.0012) (0.0044) (0.0102)

bw = .7 0.0212*** 0.0123 -0.0027 0.0003 0.0027 0.0295***
(0.0080) (0.0082) (0.0124) (0.0013) (0.0045) (0.0105)

bw = .5 0.0204** 0.0110 0.0067 0.0007 0.0054 0.0293**
(0.0100) (0.0102) (0.0153) (0.0016) (0.0056) (0.0125)

bw = .4 0.0247** 0.0147 0.0081 0.0003 0.0043 0.0200
(0.0119) (0.0122) (0.0179) (0.0019) (0.0066) (0.0146)

bw = .3 0.0390** 0.0282* -0.0081 -0.0010 0.0121 0.0353*
(0.0156) (0.0159) (0.0236) (0.0025) (0.0086) (0.0193)

bw = .2 0.0647** 0.0526** 0.0015 -0.0013 0.0121 0.0647**
(0.0253) (0.0256) (0.0365) (0.0037) (0.0135) (0.0275)

Households above tax threshold in 2009

bw = .9 0.0201* 0.0114 -0.0004 0.0015 0.0094 0.0412***
(0.0104) (0.0109) (0.0160) (0.0016) (0.0066) (0.0136)

bw = .8 0.0201* 0.0111 -0.0018 0.0014 0.0060 0.0375***
(0.0106) (0.0111) (0.0164) (0.0017) (0.0066) (0.0138)

bw = .7 0.0178* 0.0085 -0.0086 0.0014 0.0058 0.0347**
(0.0107) (0.0113) (0.0168) (0.0017) (0.0067) (0.0143)

bw = .5 0.0263* 0.0168 0.0088 0.0008 0.0147* 0.0350**
(0.0135) (0.0142) (0.0210) (0.0023) (0.0085) (0.0177)

bw = .4 0.0395** 0.0292* 0.0036 -0.0008 0.0137 0.0161
(0.0161) (0.0169) (0.0251) (0.0027) (0.0102) (0.0205)

bw = .3 0.0526** 0.0415* -0.0118 -0.0045 0.0270** 0.0474*
(0.0214) (0.0223) (0.0340) (0.0036) (0.0134) (0.0281)

bw = .2 0.0875** 0.0733* 0.0148 -0.0052 0.0204 0.1084**
(0.0376) (0.0387) (0.0585) (0.0060) (0.0227) (0.0481)

Households below tax threshold in 2009

bw = .9 0.0194* 0.0102 -0.0048 -0.0018 -0.0010 0.0195
(0.0114) (0.0113) (0.0174) (0.0019) (0.0055) (0.0148)

bw = .8 0.0214* 0.0122 -0.0006 -0.0023 -0.0006 0.0218
(0.0115) (0.0114) (0.0176) (0.0019) (0.0056) (0.0149)

bw = .7 0.0235** 0.0146 0.0057 -0.0016 -0.0015 0.0235
(0.0119) (0.0119) (0.0182) (0.0019) (0.0058) (0.0153)

bw = .5 0.0149 0.0055 0.0005 0.0002 -0.0045 0.0215
(0.0142) (0.0142) (0.0215) (0.0023) (0.0070) (0.0180)

bw = .4 0.0074 -0.0021 0.0151 0.0008 -0.0049 0.0290
(0.0176) (0.0175) (0.0260) (0.0028) (0.0084) (0.0215)

bw = .3 0.0146 0.0043 0.0016 0.0017 -0.0036 0.0222
(0.0225) (0.0223) (0.0319) (0.0037) (0.0106) (0.0285)

bw = .2 0.0423 0.0328 0.0141 0.0026 0.0104 0.0296
(0.0331) (0.0329) (0.0440) (0.0049) (0.0149) (0.0373)
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Table B.5: Bandwidth Robustness, Border Distance (km)

This table shows the results from the main IV specification, using different cutoffs for scaled border distance. bw=10 implies
retaining all households with a border distance, in km, inside [-10,10]. The main specification uses bw=10. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(TTLI) ∆ log(LE)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = 14 0.0228*** 0.0111 0.0022 0.0012 0.0057 0.0322***
(0.0070) (0.0072) (0.0109) (0.0012) (0.0039) (0.0091)

bw = 12 0.0226*** 0.0102 0.0059 0.0005 0.0055 0.0367***
(0.0077) (0.0079) (0.0118) (0.0013) (0.0042) (0.0101)

bw = 8 0.0252*** 0.0119 0.0101 0.0001 0.0110** 0.0379***
(0.0094) (0.0097) (0.0145) (0.0016) (0.0050) (0.0120)

bw = 6 0.0327*** 0.0179 0.0025 -0.0005 0.0102* 0.0290**
(0.0109) (0.0113) (0.0176) (0.0019) (0.0059) (0.0143)

bw = 4 0.0436*** 0.0285** 0.0156 -0.0023 0.0109 0.0319*
(0.0139) (0.0143) (0.0216) (0.0023) (0.0075) (0.0174)

bw = 2 0.0361 0.0184 -0.0276 -0.0055 -0.0002 0.0650**
(0.0251) (0.0258) (0.0396) (0.0041) (0.0132) (0.0307)

bw = 1 -0.0238 -0.0504 0.0132 -0.0170* -0.0239 0.0278
(0.0549) (0.0573) (0.0860) (0.0099) (0.0283) (0.0684)

Households above tax threshold in 2009

bw = 14 0.0184** 0.0073 0.0017 0.0014 0.0126** 0.0437***
(0.0093) (0.0098) (0.0147) (0.0015) (0.0057) (0.0124)

bw = 12 0.0183* 0.0071 0.0058 0.0009 0.0127** 0.0482***
(0.0101) (0.0106) (0.0159) (0.0017) (0.0060) (0.0136)

bw = 8 0.0218* 0.0101 0.0194 0.0003 0.0164** 0.0489***
(0.0123) (0.0130) (0.0195) (0.0020) (0.0073) (0.0165)

bw = 6 0.0381*** 0.0245 0.0051 -0.0017 0.0187** 0.0324*
(0.0142) (0.0150) (0.0226) (0.0024) (0.0085) (0.0190)

bw = 4 0.0460** 0.0329* -0.0115 -0.0031 0.0166 0.0288
(0.0179) (0.0190) (0.0279) (0.0030) (0.0109) (0.0231)

bw = 2 0.0302 0.0190 -0.0476 -0.0044 -0.0050 0.0231
(0.0301) (0.0321) (0.0479) (0.0048) (0.0180) (0.0356)

bw = 1 0.0005 -0.0184 0.0195 -0.0091 -0.0057 0.0414
(0.0595) (0.0636) (0.0853) (0.0090) (0.0317) (0.0634)

Households below tax threshold in 2009

bw = 14 0.0245** 0.0119 0.0045 0.0007 -0.0035 0.0126
(0.0109) (0.0109) (0.0163) (0.0019) (0.0053) (0.0135)

bw = 12 0.0243** 0.0107 0.0080 0.0000 -0.0040 0.0197
(0.0118) (0.0118) (0.0174) (0.0020) (0.0059) (0.0145)

bw = 8 0.0246* 0.0091 0.0010 -0.0004 0.0009 0.0148
(0.0144) (0.0144) (0.0211) (0.0025) (0.0064) (0.0174)

bw = 6 0.0190 0.0025 0.0050 0.0012 -0.0034 0.0148
(0.0174) (0.0174) (0.0255) (0.0030) (0.0077) (0.0217)

bw = 4 0.0376* 0.0197 0.0529* -0.0019 0.0043 0.0251
(0.0221) (0.0220) (0.0311) (0.0038) (0.0098) (0.0267)

bw = 2 0.0422 0.0169 0.0316 -0.0057 0.0036 0.1192**
(0.0405) (0.0398) (0.0579) (0.0070) (0.0185) (0.0530)

bw = 1 -0.0978 -0.1517 0.0493 -0.0276 -0.0623 -0.0352
(0.1304) (0.1346) (0.1747) (0.0232) (0.0601) (0.1548)
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Table B.6: Bandwidth Robustness, Relative Location

This table shows the results from the main IV specification, using different cutoffs for scaled border distance. bw=0.5 implies
retaining all households with Relative Location in inside [-0.5,0.5]. The main specification uses bw=1.0. All specifications
consider outcomes during the post-period of 2010–2015.

Adj. ∆ log(GFW ∆ log(GFW ) ∆ log(Debt) ∆SMS ∆ log(TTLI) ∆ log(LE)
Bandwidth (1) (2) (3) (4) (5) (5)

Full sample

bw = .9 0.0223*** 0.0129 -0.0090 -0.0002 0.0059 0.0230**
(0.0082) (0.0084) (0.0128) (0.0013) (0.0046) (0.0103)

bw = .8 0.0217** 0.0121 -0.0034 0.0003 0.0040 0.0206*
(0.0088) (0.0091) (0.0140) (0.0014) (0.0051) (0.0109)

bw = .7 0.0250*** 0.0152 -0.0038 -0.0000 0.0058 0.0182
(0.0095) (0.0098) (0.0149) (0.0015) (0.0054) (0.0113)

bw = .6 0.0312*** 0.0201* 0.0047 -0.0012 0.0094 0.0188
(0.0104) (0.0107) (0.0164) (0.0017) (0.0060) (0.0127)

bw = .5 0.0326*** 0.0221* -0.0090 -0.0010 0.0127* 0.0280**
(0.0117) (0.0120) (0.0180) (0.0018) (0.0066) (0.0134)

bw = .4 0.0321** 0.0196 -0.0154 -0.0002 0.0134* 0.0181
(0.0130) (0.0133) (0.0193) (0.0020) (0.0072) (0.0149)

bw = .3 0.0352** 0.0205 -0.0283 -0.0000 0.0086 0.0213
(0.0146) (0.0150) (0.0235) (0.0022) (0.0083) (0.0171)

Households above tax threshold in 2009

bw = .9 0.0259** 0.0157 -0.0071 -0.0000 0.0110 0.0383**
(0.0118) (0.0124) (0.0185) (0.0019) (0.0074) (0.0152)

bw = .8 0.0218* 0.0115 -0.0018 -0.0000 0.0068 0.0349**
(0.0127) (0.0134) (0.0202) (0.0021) (0.0080) (0.0164)

bw = .7 0.0234* 0.0126 0.0004 -0.0003 0.0045 0.0281
(0.0137) (0.0145) (0.0218) (0.0022) (0.0085) (0.0174)

bw = .6 0.0292** 0.0174 0.0074 -0.0018 0.0088 0.0195
(0.0148) (0.0158) (0.0234) (0.0024) (0.0092) (0.0189)

bw = .5 0.0367** 0.0252 -0.0057 -0.0027 0.0138 0.0217
(0.0169) (0.0179) (0.0268) (0.0026) (0.0100) (0.0208)

bw = .4 0.0256 0.0116 0.0033 -0.0025 0.0228** 0.0240
(0.0182) (0.0192) (0.0288) (0.0030) (0.0105) (0.0225)

bw = .3 0.0326 0.0152 -0.0225 -0.0026 0.0167 0.0251
(0.0211) (0.0225) (0.0381) (0.0034) (0.0126) (0.0283)

Households below tax threshold in 2009

bw = .9 0.0197* 0.0109 -0.0051 -0.0006 0.0009 0.0079
(0.0116) (0.0115) (0.0170) (0.0018) (0.0056) (0.0143)

bw = .8 0.0215* 0.0127 0.0005 -0.0001 0.0006 0.0082
(0.0124) (0.0124) (0.0187) (0.0020) (0.0061) (0.0152)

bw = .7 0.0174 0.0084 0.0030 -0.0005 0.0057 0.0109
(0.0131) (0.0130) (0.0194) (0.0021) (0.0065) (0.0155)

bw = .6 0.0182 0.0081 0.0120 -0.0008 0.0083 0.0232
(0.0144) (0.0143) (0.0219) (0.0023) (0.0074) (0.0174)

bw = .5 0.0111 0.0012 -0.0006 0.0005 0.0103 0.0400**
(0.0156) (0.0155) (0.0228) (0.0024) (0.0081) (0.0180)

bw = .4 0.0192 0.0072 -0.0159 0.0026 0.0012 0.0208
(0.0171) (0.0169) (0.0247) (0.0027) (0.0089) (0.0202)

bw = .3 0.0194 0.0057 -0.0098 0.0028 -0.0002 0.0232
(0.0187) (0.0186) (0.0278) (0.0030) (0.0094) (0.0215)
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Table B.7: First-Stage Effects on Wealth Tax Outcomes: Using Distance in KM

This table provides the reduced-form estimates that uses border distance in km (as opposed to scaled border distance) as the
geographic measure. Column (1) considers the tax value of housing, as observed in tax returns. Column (2) considers the effect
on being above the wealth tax threshold. Column (3) considers the effect on the marginal rate-of-return, by isolating extensive
margin effects from wealth taxation. This is done by defining the dependent variable to be −τt1[TNWi,t > Thresholdt].
Column (4) examines the effect on the amount above the wealth tax threshold, 1[TNWi,t > Thresholdt](TNWi,t−Threshold).
Column (4) considers isolates the effect of increased wealth taxation on the average rate-of-return. This is done by defining the
dependent variable as −τt1[TNWi,t > Thresholdt](TNWi,t − Threshold)/TNWi,t, which is evaluated as 0 if TNWi,t ≤ 0.
pp is short for percentage points, and indicates that coefficients (SEs) are multiplied by 100. Standard errors, provided in
parentheses, are clustered at the census-tract level.

Extensive margin Extensive and intensive margin

log(TaxV al) 1[TNW > Threshold] rmarginal AmountAbove raverage

(1) (2) (3) (4) (5)

Full sample

log(TaxV al
∧

) 0.872693*** 0.259342*** -0.002724*** 865278*** -0.001898***
(0.030300) (0.012781) (0.000133) (87379) (0.000082)

F(β̂ = 0) 830 412 419 98 539

Households above tax threshold in 2009

log(TaxV al
∧

) 0.906123*** 0.157144*** -0.001654*** 1158019*** -0.001737***
(0.041042) (0.014319) (0.000149) (135316) (0.000103)

F(β̂ = 0) 487 120 123 73 284

Households below tax threshold in 2009

log(TaxV al
∧

) 0.827092*** 0.386843*** -0.004059*** 375749*** -0.002017***
(0.040108) (0.020063) (0.000209) (58352) (0.000115)

F(β̂ = 0) 425 372 378 41 309

Border Distance Controls
– KM Yes Yes Yes Yes Yes

B.4 Effect on municipal finances

Households in high-taxation municipalities may see the negative income effect partially offset by a
higher provision of public goods or a lowering of municipal fees. While this may generally be a cause for
concern, I argue that this effect is likely negligible in my empirical setting for the following key reasons:
First, wealth taxes are disproportionately paid by the very wealthy, who were not disproportionately
affected by this reform given that housing wealth accounts for a very small fraction of net worth for the
very wealthy (see Fagereng, Guiso, Malacrino, and Pistaferri (2018)). Thus, changes in tax assessments
are not likely to lead to meaningful changes in the aggregate amount of wealth tax revenues in a given
municipality. In addition, wealth taxes account for only 10% of aggregate municipal tax revenues,
and drops to only 4% of when considered relative to aggregate municipal total incomes. Finally,
due to the government’s revenue equalization scheme, increasing per capita tax revenues by 1 NOK
lowers transfers from the central government by 0.6 NOK. Therefore, even if wealth tax revenues do
change, the effect on local public services would be likely muted, due to a limited effect on municipality
finances. Calculations that I present below, suggest that a municipality where assessed tax values of
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housing are 0.5 log points higher will have 0.26% more revenue.48 Thus any reasonable bounds on
household sensitivity to municipal finances suggest that the effect will be negligible.

B.5 Property Taxation

In 2015, 242 out 428 municipalities levied property taxes on residential homes.49 Starting in
2015, a subset (49) of municipalities began using the tax authorities’ assessments (TaxV al

∧

) to assess
property taxes. Prior to 2014, municipalities were not allowed to access or use these assessments. In
order to allow municipalities to reduce costs by limiting the need to perform independent assessments,
the tax authorities allowed municipalities to use their assessments as of 2014. Initially, municipalities
were discouraged from using the measure, by only being allowed to assess property taxes based on a
downward-adjusted (by 33%) version of TaxV al

∧

, which would limit municipal property tax revenues.
This disincentive was partially reduced in 2015, when TaxV al

∧

only needed to be reduced by 20%.
A continuing disincentive is that the tax authorities do not allow muncipalities to use their own
information to adjust or fine tune TaxV al

∧

. This may be problematic, as municipalities may want to
extract higher taxes from houses with better locations within an area (e.g., a view of the ocean or
larger property size). Neither of these two factors are accounted for in TaxV al

∧

.
The potential use of TaxV al

∧

for property-tax purposes implies some scope for the exclusion re-
striction to be violated: Border discontinuities in TaxV al

∧

may affect property taxes for a subset of
households as of 2015, thereby amplifying (over-stating) the income effects associated with a pure
wealth tax treatment. To ensure that this is not driving my results, I exclude 2015 in Table B.8. Re-
assuringly, these yield quantitatively similar effects on my main outcome variables. Furthermore, when
decomposing the effects on saving and labor earnings into yearly responses in Figure 10, I find similar
effects for all years, including the early years where there was no opportunity for municipalities to base
their property taxes on TaxV al

∧

. While I would expect households to respond to increased property
taxation, this response (in terms of e.g., increased saving) is likely to occur after my sample ends in
2015, when this subset of households realized they would face higher future property taxes.
48I use the distribution of wealth tax payers from SSB (https://www.ssb.no/statbank/table/08231/tableViewLayout1/),

and assume that this distribution holds for all municipalities. In my empirical setting, a 0.5 log point increase in
TaxV al increases the amount subject to a wealth tax by 478,000 for households initially above the wealth tax threshold.
This increases wealth tax payments by approximately 5,000. Using the distribution of wealth taxpayers, I increase
everyone’s tax payments by 5,000, and find an increase in total tax payments of 25%. Assume that this occurred in one
municipality, but not its neighbor. Since the municipal share of the wealth tax is only 64%, the high-side municipality
now has 0.64*0.25=16% more wealth tax revenue. The wealth tax’s share of tax revenue is 10%. Thus the high-side
will have 1.6% more tax revenue, but only 1.6% * 40% = 0.64% more total revenue, since tax revenues account for
40% of total incomes on average. Only 40% of this difference will pass through after applying the government revenue
equalization scheme, leaving only 0.26% more revenue for the high-assessment side municipality.

49Source: Statistikkbanken at Statistics Norway, series 12503: Eiendomskatt (K) 2007–2019. 180 is the number of
municipalities that report collecting strictly positive property taxes on a standard house (Enebolig, 120kvm).
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Table B.8: Robustness: Excluding 2015 and Controlling for Property Tax Rate

This table provides the main (reduced-form) results when controlling for municipal property tax rates and excluding 2015.

Adj. ∆ log(GFW ) ∆log(Debt) ∆SMS ∆log(TTLI) ∆ log(LE)

(1) (2) (3) (4) (5)

Full sample

log( ̂TaxV al) 0.0211*** 0.0004 0.0003 0.0044 0.0191
(0.0077) (0.0123) (0.0014) (0.0045) (0.0119)

Prop. Tax (%) -0.0062* -0.0009 -0.0009 0.0024* 0.0086***
(0.0032) (0.0051) (0.0006) (0.0014) (0.0028)

N [1232832] [1232845] [1229001] [1234293] [1234293]

Households Initially Above Threshold

log( ̂TaxV al) 0.0219** -0.0131 0.0017 0.0135** 0.0344***
(0.0107) (0.0180) (0.0018) (0.0066) (0.0127)

Prop. Tax (%) -0.0056 0.0025 -0.0003 0.0008 0.0122***
(0.0041) (0.0067) (0.0008) (0.0020) (0.0043)

N [685156] [685168] [682439] [686177] [686177]

Households Initially Below Threshold

log( ̂TaxV al) 0.0192* 0.0173 -0.0013 -0.0042 0.0038
(0.0107) (0.0182) (0.0021) (0.0057) (0.0168)

Prop. Tax (%) -0.0064 -0.0029 -0.0015** 0.0054*** 0.0055
(0.0046) (0.0063) (0.0007) (0.0018) (0.0042)

N [547581] [547582] [546467] [548022] [548022]

Geo-Controls

Scaled Border Distance Yes Yes Yes Yes Yes

B.6 Communication of policy change

The implementation of a new methodology to assess housing wealth was primarily communicated in
a letter sent to all homeowners in August of 2010. The letter was titled “Information for the calculation
of new tax values for residential properties,”50 and provided registered information about the house,
namely structure type, construction year and size. Home-owners were asked to verify and possibly
correct this information, either by postal service or online. At the same time, “tax calculators” were
made available online on the tax authorities’ website, where households could enter the characteristics
of their home and see their estimated new tax value. This tax value differed somewhat from the actual
assessed values, since the online calculators used pricing coefficients based on 2004–2008 transaction
data, while the final assessment for 2010 used coefficients based on 2004–2009 data. The fact that a new
assessment methodology was introduced was therefore salient, and the effect on a household’s wealth
tax base (TNW) was already available in the early fall of 2010. On December 15 2010, preliminary
tax information (“tax cards”) was sent out to all tax payers, containing estimated taxes to be paid
for that year, which included the new housing assessment and TNW. Households should thus have
been aware of the financial impact of the new assessment methodology before Christmas of 2010 at
the latest.

The tax authorities’ website states that tax values are assessed as the size of the home multiplied
with a price-per-square meter coefficient, which is based on Statistics Norway’s real estate trans-
50My own translation.
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action statistics:“Boligens boligverdi er lik boligens areal multiplisert med kvadratmeterpris basert
p̊astatistikk over omsatte boliger.” (March 2019). See the tax authorities’ website. No details pro-
vided on the exact methodology.

B.7 Two-period model with endogenous labor supply

Consider the modified household optimization problem. L ≥ 0 is hours worked in period 1, W is
the exogenous hourly wage, 1

ν > 0 is the Frisch elasticity, and ψ > 0 is the (dis)utility weight on labor
supply. Y1, and Y2 are the exogenous incomes in periods 1 and 2, respectively.

max
C1,C2,S,L

U(C1, C2, S, L) = 1
1− γC

1−γ
1 − ψ L

1+ν

1 + ν
+ β

1
1− γC

1−γ
2 (32)

s.t. C1 + S = Y1 + LW

and C2 = Y2 + R̃+ Ṽ

The first-order conditions with respect to S, together with the budget constraints, imply that:

S = [βR̃]
1
γ (Y1 + LW )

R̃+ [βR̃]
1
γ

− Y2 + Ṽ

R̃+ [βR̃]
1
γ

. (33)

The first-order conditions with respect to L, together with the budget constraints, imply that:

dL ·W = γ[Y1 + LW − S]−γ−1W 2

(ψνLν−1 + γ[Y1 + LW − S]−γ−1W 2)dS ≡ fdS. (34)

Since ψνLν−1 > 0, and C1 = Y1 + LW − S > 0, this implies that the labor earnings response is a
fraction, f ∈ (0, 1), of the savings response to rate-of-return shocks.

I now totally differentiate equation 33 with respect to R̃ and substitute dL ·W for the expression
in equation 34, and solve for dS/dR̃ to get:

dS

dR̃
=

1− f [βR̃]
1
γ

R̃+ [βR̃]
1
γ

−1(Y1 + LW )1− γ
γ

[βR̃]
1
γ

(R̃+ [βR̃]
1
γ )2

+ (Y2 + Ṽ )
1 + β

γ [βR̃]
1
γ
−1

(R̃+ [βR̃]
1
γ )2

 .(35)

I then totally differentiate 33 with respect to Ṽ , and substitute dL · W with the expression in
equation 34, and solve for dS/dṼ to get:

dS

dṼ
=

1− f [βR̃]
1
γ

R̃+ [βR̃]
1
γ

−1− 1
R̃+ [βR̃]

1
γ

 . (36)
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The expressions for dS/dR̃ and dS/dṼ are qualitatively similar to the case without endogenous
labor supply, but are scaled up (in magnitude), since (1−f [βR̃]

1
γ /(R̃+[βR̃]

1
γ ))−1 > 1. The expression

for the rate-of-return sensitivity in equation 35 now also contains labor earnings as period 1 income.
There is therefore no change in the qualitative conclusions drawn in the case with only exogenous
(labor) income. The new insight is that the effect on labor earnings should be of a same sign as, but
smaller in magnitude than, the effect on savings.
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