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Relationship Trading in OTC Markets

Abstract

Relations are known to matter in banking, but not in trading. We examine the network
of trading relations between insurers and dealers in the over-the-counter corporate bond
market. Comprehensive regulatory data show that every third insurer uses a single dealer
while a small fraction of insurers has networks of up to 40 dealers. Execution prices are non-
monotone in network size, strongly declining for non-exclusive relations with more dealers
but then increasing once networks exceed 20 dealers. To understand these facts we build a
model of decentralized trade in which insurers trade off the benefits of repeat business against
dealer competition. The model quantitatively fits the distribution of insurers’ network sizes
and how prices depend on insurers’ trading frequency. Counterfactual analysis shows that
proposed regulations to unbundle or abolish client-dealer relations may decrease welfare.

JEL Classification: G12, G14, G24

Key words: Over-the-counter market, corporate bond, trading relationship, trading cost,
liquidity, financial network, unbundling



Insurance companies are vital for a well-functioning society. They provide coverage in the

form of compensation resulting from loss, damage, injury, treatment or hardship in exchange

for premium payments. To minimize costs, insurance companies invest in a variety of finan-

cial assets. Corporate bonds comprise almost 70% of their investments with a total value

close to $3.8 trillion. To facilitate all types of on-demand compensations, including the very

large ones, insurance companies need to be able to liquidate their holdings fast and without

incurring large transaction costs (Koijen and Yogo, 2015). However, corporate bonds are

traded on over-the-counter decentralized markets with more than 400 active broker dealers

where insurance companies have to search for best execution. These markets are considered

to be poorly functioning due to lack of transparency and fragmentation imposing search fric-

tions (Duffie, Garleanu, and Pedersen, 2005, 2007; Weill, 2007; Vayanos and Wang, 2007).

Little empirical evidence exists on whether insurers shop around randomly or build long-term

relations with dealers to cope with the market frictions and how the heterogeneity in trading

needs across insurers impacts their dealer choices and the execution terms they receive.

We study insurers’ choice of trading networks and the corresponding execution prices in

the corporate bond market. Regulatory data provide information on the trading relations

between more than 4,300 insurers and their dealers for all transactions from 2001 to 2014.

We first empirically examine insurers’ choice of trading networks and how these relate to

transaction prices. Insurers form small, but persistent dealer networks. Figure 1 provides

two examples of insurer-dealer trading relations over time. Panel A shows buys and sells

for an insurer repeatedly trading exclusively with a single dealer. Panel B shows an insurer

trading with multiple dealers over time. Roughly 30% of insurers trade with a single dealer

annually. A small fraction of insurers trades with up to 40 dealers in a year. The overall

degree distribution follows a power law with exponential tail starting at about 10 dealers.

We estimate trading costs as a function of network size N . Costs are non-monotone in N ;

costs decline with N for small networks and then increase once N exceeds 20 dealers.

Our evidence provides important insights into which models of trade in OTC markets

better describe the empirical evidence on client-dealer relations and trading costs. In random

search models clients repeatedly search for best execution without forming a finite network

of dealers (Duffie et al. 2005, 2007; Lagos and Rocheteau, 2007, 2009; Gavazza, 2016). The

empirical fact that insurers form finite dealer networks suggests that adding dealers must be

costly for insurers. Traditional models of strategic search, e.g., Stigler (1961), assume each

additional dealer imposes a fixed cost on insurers. Insurers add dealers to improve prices up

to the point where the marginal benefit equal the fixed cost. This leads to prices improving

monotonically in network size, which is inconsistent with the empirical non-monotonicity of

trading costs as a function of network size.
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Figure 1: Example of dealer-client trading relations
The figure shows the buy (blue squares) and sell (red circles) trades of two insurance companies with different

dealers. We sort the dealers on the vertical axis by the first time they trade with the corresponding insurance

company.

To rationalize the empirical evidence we build a model of decentralized trade in which

insurers establish relationships with multiple dealers and trade off the benefits of repeat

business against inter-dealer competition. We model the full relationship between insurers

and dealers as having two components. The first component is the repeat trading interactions

between each insurer and the dealers. The insurer repeatedly buys and sells bonds from

dealers in her network. This future repeat trading is taken into account by the insurer

and the dealers when negotiating terms of each transaction. The second component of

the relationship captures all other business between insurers and dealers unrelated to bond

trading. It includes transacting in other securities, the ability to purchase newly issued

securities, as well as other soft dollar and non-monetary transfers such as investment research.

In our model a single console bond trades on an inter-dealer market which clients can

only access through dealers. Dealers have search intensity λ and upon trading with a client

transact at the competitive inter-dealer bid and ask prices. Clients initially start without a

bond but stochastically receive trading shocks with intensity η which cause them to simulta-

neously contact N dealers to buy; η and, hence, N vary across clients. The client’s effective

search intensity is Λ = Nλ. The first dealer to find the bond captures all benefits from

the transaction. Thus, our trading mechanism is identical to repeated winner-takes-all races

(Harris and Vickers (1985)). The bond’s purchase price is set by Nash bargaining. Once

an owner, the client stochastically receives a liquidity shock forcing her to sell the bond.

The mechanics of the sell transaction are the same as the buy transaction. Both dealers and

clients derive value from repeat transactions, leading to price improvement for more frequent
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clients in Nash bargaining.

Existing OTC models provide predictions about network size or prices, but not both.

Random search models assume investors may contact every other counterparty. Other models

allow investors to choose specific networks or markets, but exogenously fix the structure of

those networks. For instance, in Vayanos and Wang (2007) investors chose to search for a

counterparty between two markets for the same asset: a large market with faster execution

but higher transaction costs, and a small market with slower execution but lower transaction

costs. Neklyudov and Sambalaibat (2016) use a similar setup as in Vayanos and Wang

(2007) but with investors choosing between dealers with either large or small interdealer

networks instead of asset markets. By contrast, both network sizes and transaction prices

are endogenously determined in the equilibrium of our model.

Our analysis delineates the trade-offs leading to optimal network size and prices. Clients

trade off the value of repeat relations with dealers against the benefits of competition among

dealers. The benefits of intertemporal dealer competition lead to better prices and faster

execution. However, the value of repeat relations declines in the number of dealers. Dealers

compensate for losses from repeat business by charging higher spreads. Eventually the costs

of having larger network outweigh the benefits and the dealers’ spread starts to increase

with the network size. This corresponds to the empirical non-monotonicity in trading costs

with respect to the network size. The value of repeat relations diminishes more slowly with

the addition of dealers for clients with larger trading intensity as dealers compete for larger

repeat business. Therefore, these larger clients use more dealers and get better execution as

benefits from having larger repeat business outweigh the costs of having larger network.

The model can quantitatively match the cross-section of insurers’ observed network sizes

and transaction prices. Doing so requires structural estimation of the model parameters not

directly observable in the data, Θ. The clients’ trading intensity, η, is the one parameter for

which we observe its cross-sectional distribution, p(η), in the data. Insurer n’s trading shock

intensity ηn can be estimated by the average number of bond purchases per year over the

sample period. We estimate ηn separately for each insurer using multiple years of trade data,

which enables us to construct p(η). The model provides the optimal network size, N∗(Θ, ηn),

for each client n as a function of its trading intensity ηn. The model predictions allow us

estimate the unobservable model parameters Θ by matching the model-implied distribution

of N∗n’s, p(N∗), to their empirical counterparts.

Using the structurally estimated parameters along with the distribution of trading in-

tensities quantitatively reproduces both the empirical distribution of network sizes and the

dependence of trading costs on network size found in the data. The model estimates reason-

able unobserved parameters: Dealers can find the bond within a day or two, and insurers’
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average holding period ranges from two to four weeks. The sunk cost of obtaining quotes

from a dealer is small, but investors’ estimated willingness to pay for immediacy is high.

Allowing dealers’ bargaining power to decrease with insurers’ trading intensity improves the

model’s fit. Dealers’ bargaining power when investors are forced to sell is high and relatively

insensitive to the insurers’ trading frequency. In contrast, dealers’ bargaining power when

buying declines significantly with the insurers’ trading frequency.

The regulatory authorities in the U.S. and Europe have put different emphasis on how to

address the frictions and improve the functioning of OTC markets. Regulatory initiatives in

the U.S., including the Dodd-Frank Act, encourage dealer competition through fostering of

multilateral electronic trading platforms, with which client-dealer long-term relations would

become obsolete. In Europe, the Markets in Financial Instruments Directive (MiFID) II

introduces fundamental changes to the market structure by requiring the unbundling of

trading and non-trading dealer services, which are supposed to be priced and sold separately.

Little evidence exists either empirically or theoretically on the welfare implications of the

proposed regulations on dealers and their clients.

Our model provides a convenient setting to quantify the effects of the proposed regulatory

changes on trading costs and the value of repeat relations. We perform counterfactual

analysis in which we either reduce the probability of repeat trading with the same dealer or we

eliminate the non-trade value of relationships. Our results indicate that all types of insurers

will incur higher transaction costs when the probability of repeat trading with the same

dealer is reduced—all else equal—through, e.g., anonymous electronic trading facilities.1

The impact on various types of insurance companies, including life, health, and property

and casualty insurers, is different. Insurers that trade more frequently and, therefore, have

larger networks will see a smaller increase in transaction costs than insurers who trade less

frequently and tend to trade repeatedly with 1 to 5 dealers.

Decoupling trade and non-trade insurer-dealer business, as stipulated by MiFID II regu-

lations, will reduce the optimal network sizes and decrease transaction costs for all insurers

except for the least active ones. This is due to the fact that trading networks are currently

in excess of what is required to minimize trading costs. More importantly, the proposed

regulations can potentially reduce trading activity and decrease insurers’ welfare, especially

for those that trade infrequently. In addition, the regulations may increase the disparities

between dealers and foster a “dog-eat-dog” selection among the dealers.

1Our counterfactual analysis takes the current decentralized market structure as given. It cannot be used
to answer what would happen if, say, the trading mechanism was centralized. The latter is an interesting
and important topic left for future research.
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Relation to literature: Our paper complements the empirical literature on the mi-

crostructure of OTC markets and its implications for trading, price formation, and liquidity.

Edwards, et al. (2005), Bessembinder et al. (2006), Harris and Piwowar (2007), Green et

al. (2007) document the magnitude and determinants of transaction costs for investors in

OTC markets. Our paper deepens the understanding of OTC trading costs by using the

identities of all insurers along with their trading networks and execution costs. These help

explain the substantial heterogeneity in execution costs observed in these studies. O’Hara

et al. (2015) and Harris (2015) examine best execution in OTC markets without formally

studying investors’ optimal network choice.

There exists an empirical literature on the value of relationships in financial markets.

Similar to our findings, Bernhardt et al. (2004) show that on the London Stock Exchange

broker-dealers offer greater price improvements to more regular customers.2 Bernhardt et

al. (2004) do not examine the client-dealer networks and in their centralized exchange setting

quoted prices are observable. Afonso et al. (2013) study the overnight interbank lending OTC

market and find that a majority of banks in the interbank market form long-term, stable

and concentrated lending relationships. These have a significant impact on how liquidity

shocks are transmitted across the market. Afonso et al. (2013) do not formally model the

network and do not observe transaction prices. DiMaggio et al. (2015) study inter-dealer

relationships on the OTC market for corporate bonds while our focus is on the client-dealer

relations.3

The role of the interdealer market in price formation and liquidity provision are the

focus in Hollifield et al. (2015) and Li and Schürhoff (2015). These studies explore the

heterogeneity across dealers in their network centrality and how they provide liquidity and

what prices they charge. By contrast, we focus on the heterogeneity across clients and how

trading intensity affects their networks and transaction prices.

The search-and-matching literature is vast. Duffie et al. (2005, 2007) provide a promi-

nent treatment of search frictions in OTC financial markets, while Weill (2007), Lagos and

Rocheteau (2007, 2009), Feldhütter (2011), Neklyudov (2014), Hugonnier et al. (2015), Üslü

(2015) generalize the economic setting. These papers do not focus on repeat relations and do

not provide incentives to investors to have a finite size network. Gavazza (2016) structurally

estimates a model of trading in decentralized markets with two-sided one-to-one search and

2For a comprehensive theoretical model of loyalty see Board (2011).
3Our paper also relates to a growing literature studying trading in a network, e.g., Gale and Kariv (2007),

Gofman (2011), Condorelli and Galeotti (2012), Colliard and Demange (2014), Glode and Opp (2014), Chang
and Zhang (2015), Atkeson et al. (2015), Babus (2016), Babus and Hu (2016), and Babus and Kondor (2016).
These papers allow persistent one-to-one dealer-client relationships, while the main focus of our model is on
clients’ networks.
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bilateral bargaining using aircraft transaction data. At the market-wide level Gavazza (2016)

quantifies the effects of market frictions on prices and allocations. We use the structural es-

timation of our one-to-many search-and-match model to quantify the effects of client-dealer

relations on execution quality in the OTC market for corporate bonds.

Directed search models allow for heterogeneous dealers and investors, as well as arbitrary

trade quantities. These typically rely on a concept of competitive search equilibrium pro-

posed by Moen (1997) for labor market. Examples include Guerrieri, Shimer, and Wright

(2010), Guerrieri and Shimer (2014), and Lester et al. (2015). These papers explain assor-

tative matching between clients and dealers and show how heterogeneity affects prices and

liquidity. However the matching technology employed by these papers is one-to-one, thus

limiting the network size to a single dealer.

The remainder is organized as follows. Section 1 describes the data. Sections 2 and 3

document our findings on insurer trading activity, dealer networks, and trading costs. In

Section 4 we develop an OTC model with repeat trade and execution competition. We test

its predictions and provide counterfactuals in Section 5. Section 6 concludes.

1 Data

Insurance companies file quarterly reports of trades of long-term bonds and stocks to the

National Association of Insurance Commissioners (NAIC). For each trade the NAIC data

include the dollar amount of transactions, par value of the transaction, insurer code, date of

the transaction, the counterparty dealer name, and the direction of the trade for both parties,

e.g., whether the trade was an insurance company buying from a dealer or an insurance

company selling to a dealer. The NAIC data preclude intraday analysis as the trades do not

include time stamps of the trades. To focus on secondary trading we only include trades

more than 60 days after issuance and trades more than 90 days to maturity.

Our final sample covers all corporate bond transactions between insurance companies and

dealers reported in NAIC from January 2001 to June 2014. We supplement the NAIC data

with a number of additional sources. Bond and issuer characteristics come from the Mergent

Fixed Income Security Database (FISD) and Lipper eMAXX. Insurer financial characteristics

come from A.M. Best and SNL Financial. The final sample contains 506 thousand insurer

buys and 497 thousand insurer sells.

Table 1 reports descriptive statistics for the corporate bond trades (Panel A) and insurers

(Panel B) in our 2001-2014 sample. There are 4,324 insurance companies in our sample.

Insurance companies fall into three groups based on their product types: (i) Health, 617

companies (14% of the sample); (ii) Life, 1,023 companies (24% of the sample); (iii) P&C
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2,684 companies (62% of the sample). Health insurance companies account for 16.3% of

trades and 4.4% of yearly trading volume. They trade on average with 6.59 dealers each

year. Life insurance companies account for the majority 46.9% of trades and 70.4% of

yearly trading volume. They trade on average with 8.06 dealers each year. P&C insurance

companies comprise 36.8% of trades and 25.2% of yearly trading volume. They trade on

average with 4.81 dealers each year.

The distribution of trading activity is skewed with the top ten insurance companies

accounting for 6.3% of trades and 14.3% of trading volume. They use almost 30 dealers

which is much higher than the sample average of 5.83 dealers per insurer. The top 100

insurers account for 27.8% of trades as well as for 45.3% of trading volume. The 3,000

smallest insurers use on average 3.76 dealers.

Order splitting is not very common. Larger transactions are cheaper to execute, thus

eliminating incentives for order splitting. On just 1.2% of all insurer-days (13K out of 1.1M

trades) an insurer trades the same bond multiple times.

Insurers trade in a variety of corporate bonds. The average issue size is quite large at $917

million and is similar across insurer’s buys and sells. The average maturity is nine years for

insurer buys and eight years for insurer sells. Bonds are on average 2.88 years old with sold

bonds being a little older at 3.09 years. Finally, 75% of all bonds trades are in investment

grade while only 1% are in unrated with the remainder being high yield. Privately placed

bond trades form a small minority of our sample at 8%.

The risk-based-capital (RBC) ratio measures an insurer’s capital relative to the riskiness

of its business. The higher the RBC ratio, the better capitalized the firm. Insurer size is

reported assets. The cash-to-asset ratio is cash flow from the insurance business operations

divided by assets.

Overall, there exists a large degree of heterogeneity on the client side. Insurance compa-

nies buy and sell large quantities of different corporate bonds and execute these transactions

with the number of dealers ranging on average from one to as many as 40.

2 Empirical Evidence on Insurer Trading Networks

This section empirically characterizes insurers’ trading intensity and the size of their trading

networks. We investigate the determinants of both the extensive margin, i.e., the number

of trades, and intensive margin, i.e., the total dollar volume traded, of insurer trading in a

given year. Both margins reveal that insurers have heterogeneous trading needs.
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Table 1: Descriptive statistics

The table reports descriptive statistics for trades (Panel A) and insurers (Panel B) in our sample from 2001
to 2014. Panel A reports the average across all trades over the sample period. Panel B reports the yearly
average across insurers.

Panel A: Trades
All trades Insurer buys Insurer sells

No. of trades (k) 1,003 506 497
Trade par size ($mn) 1.80 1.73 1.87
Bond issue size ($mn) 916.66 921.37 911.87
Bond age (years) 2.88 2.67 3.09
Bond remaining life (years) 8.54 8.94 8.13
Private placement (%/100) 0.08 0.08 0.07
Rating (%/100)

IG 0.74 0.76 0.72
HY 0.25 0.23 0.28
Unrated 0.01 0.01 0.01

Panel B: Insurers (N= 4,324)
Volume ($mn) No. of trades No. of dealers

All insurers 17.32 9.52 5.83
Insurer type

Health (617, 14%) 10.66 21.74 6.59
Life (1,023, 24%) 103.00 37.71 8.06
P&C (2,684, 62%) 14.08 11.29 4.81

Insurer activity
Top 10 2,111.88 517.92 29.89
11-100 509.49 233.04 22.07
101-1000 75.66 46.22 11.56
1001+ 3.80 4.24 3.76

Insurer characteristics: Mean (SD)
Insurer size 4.97 (0.90)
Insurer RBC ratio 3.36 (0.35)
Insurer cash-to-assets 3.49 (10.79)
Life insurer 0.24 (0.42)
P&C insurer 0.62 (0.48)
Insurer rated A-B 0.37 (0.38)
Insurer rated C-F 0.01 (0.07)
Insurer unrated 0.53 (0.39)

2.1 Insurer trading activity

We start with univariate analysis. The majority of insurers do not trade often at the annual

frequency. About 30% of insurers trade just once per year while 1% of the insurers make at

least 25 trades per year. This is consistent with the evidence from Table 1 that while the

top 100 insurers constitute just 0.23% of the total sample, they account for as much as 32%

of all trades in our sample. The mean number of trades per year is 19, with a median of 14,

with several insurers making more than 1,000 trades in some years and up to the maximum

of 2,200 trades in a year.

Figure 2 shows the distribution in the average number of trades per year across insurers.

A large fraction of insurers do not trade in a given month and we therefore report an annual

figure. The annual distributions follow a power law with p(X) ∝ .27×X−1.21 for all insurer
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Figure 2: Insurer trading activity
The figure shows the distribution in the number of insurer buys per year (left) and insurer sales (right). We

use a log-log scale.

trades combined. The power law is .34×X−1.31 for insurer buys (depicted in Panel A) and

.40 × X−1.58 insurer sales (Panel B). Visually the two power law distributions for insurer

buys and sales in Figure 2 look similar. This suggests insurers buy and sell at similar rates,

even though these rates vary significantly across insurers.

We next examine what characteristics explain the heterogeneity in trading intensities.

Table 2 documents the determinants of the intensive margins (trading volume in $bn, column

(1)) and extensive margins (number of trades, column (2)) of the annual trading by insurance

companies using pooled regressions with time fixed effects. The specification consists of the

trade par size, insurer and bond characteristics, as well as the variation in the trade size and

bond characteristics across all trades of the insurer during the year. The variables capturing

the variation in characteristics capture complexity in insurers’ portfolios and their need for

more frequent rebalancing and for dealer specialization. Insurer characteristics include its

size, cash-to-assets ratio, type, RBC ratio, and rating. Bond and trade characteristics include

size, age, maturity, rating, a private placement dummy, and trade size. Insurer size, RBC

ratio, and the dependent variables are log-transformed. All regressors are averaged across

all trades of the insurer during the period and lagged by one year.

Our evidence is consistent with insurance companies having persistent portfolio rebal-

ancing needs. Logarithms of both measures of trade intensity are persistent; the coefficient

on the lagged log-volume is 0.67 and the coefficient on the lagged log-number-of-trades is

0.76. Both coefficients are statistically significant at 1% levels.

Insurer trading strongly correlates with insurer size, type, and quality, with bond types

and bond varieties as these variables explain 79% of the variation in annual trading volume
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Table 2: Insurers’ trading activity

The determinants of insurance company trading activity are reported. We measure trading activity by the
total dollar volume traded in a given year and, alternatively, by the number of trades over the same time
horizon. All dependent variables are log-transformed by 100*log(1+x). All regressors are averaged across all
trades of the insurer during the period and lagged by one time period. Estimates are from pooled regressions
with time fixed effects. Standard errors are adjusted for heteroskedasticity and clustering at the insurer and
time level. Significance levels are indicated by * (10%), ** (5%), *** (1%).

(1) (2)
Determinant Volume ($mn) No. of trades

Insurer size 21.95*** 14.51***
Insurer RBC ratio -1.53 -4.68***
Insurer cash-to-assets 0.27*** 0.26***
Life insurer 4.96*** 0.27
P&C insurer -1.06 -3.89**
Insurer rated A-B 5.13** 5.80***
Insurer rated C-F 1.97 -0.43
Insurer unrated 6.39*** 5.79**

Trade par size -3.62*** -3.22***
Bond issue size -0.00 0.00
Bond age -0.79*** -1.25***
Bond remaining life -0.04 -0.05
Bond high-yield rated 4.62*** 4.65***
Bond unrated -6.67 -12.81*
Bond privately placed -5.37 -3.56

Variation in trade size 4.50*** 1.52***
Variation in issue size 0.00 0.00
Variation in bond age 0.37 0.39
Variation in bond life 0.52*** 0.65***
Variation in bond rating -0.35 0.04
Variation in rated-unrated 39.60* 6.16
Variation in private-public 1.62 -1.60
No varieties traded 9.23*** 13.64***

Lagged volume 0.67***
Lagged no. of trades 0.76***

Year fixed effects Yes Yes
R2 0.789 0.646
N 30,029 30,029

and 65% variation in annual number of trades. A ten-fold increase in insurer’s size increases

trading volume by $2.2 billion. Larger insurance companies and insurers with higher cash-to-

assets ratio also trade more often and submit larger orders. Insurers with higher RBC ratios

trade less often than insurers with low RBC ratios. Both margins of trading increase with

the insurer’s rating, i.e., insurers with the lowest rating (C-F) trade less than higher-rated

insurers. Life insurers tend to submit larger orders.

Both margins of bond turnover increase as bond ratings decline; lower rated bonds are

traded more often and in larger quantities. Insurers tend to trade privately placed bonds

less since potentially they just own fewer of them than publicly placed bonds. Both margins

of bond turnover decline with par size and bond age indicating that the majority of insurers

are long-term investors. Neither measure of trade intensity depends on bond issue size and
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remaining life as their coefficients are not statistically significant.

Finally, both trading volume and the number of trades decline if an insurer trades more

bond varieties. However, a specific variety can have an opposite effect on the trading inten-

sity. For instance, both measures of trading intensity increase with variation in bond rating

and bond life. This is consistent with insurers increasing trading intensity when rebalancing

their portfolios, i.e. shifting from high-yield to investment-grade bonds or from younger to

older bonds.

Overall, the analysis reveals large heterogeneity in trading intensities across different

insurers. Trading intensity depend on the variety of bonds traded, bond specific character-

istics, and the insurer type and quality. We now turn to how these characteristics affect the

insurers’ choice of dealer network.

2.2 Properties of insurer networks

The previous section’s results demonstrate how insurer characteristics explain the intensity

of their trading. There is large degree of heterogeneity in the insurers’ trading intensity,

with some insurers trading twice per day while others trade just once per year. This section

studies how many dealers they trade with over time and how persistent are these networks.

While insurers should have heterogeneous demands for their dealer network depending on

their trading intensity, how concentrated and persistent their trading is reveals basic network

formation mechanisms.

We start with the examples of the insurer-dealer relationship depicted in Figure 1. These

show that insurers do not trade with a dealer randomly picked from a large pool of corporate

bonds dealers. Instead, insurers buy from the same dealers that they sell bonds to and they

engage in long-term repeat, but non-exclusive, relations. We analyze how representative are

the examples in Figure 1 and how insurer characteristics determine their network size.

Figure 3 plots the degree distribution across insurers by year, i.e., the fraction of insurers

trading on average across all years with the given number of dealers, using a log-log scale.

The figure shows insurers trade with up to 31 dealers every year, with some trading with

as many as 40 but these represent less than 1/10,000 of the sample. Exclusive relations are

dominant with almost 30% of insurers trading with a single dealer in a given year.4 The

degree distributions in Figure 3 follow a power law with exponential tail starting at about

4Because of the number of insurers that do not trade in a year Figures 2 and 3 are not directly comparable.
Figure 2 plots the average number of trades per year, rounded to the next integer and winsorized from below
at 1. For about half of the insurer-years there is no trade by an insurer. Figure 3 does not impute a zero for
a given year if the insurer does not trade. Hence, 27.7% of insurers use a single dealer in a year when they
trade, while 14.8% of insurers trade just once in a year. Thus, many insurers who trade more than once in
a year use a single dealer.
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Figure 3: Size of insurer-dealer trading networks
The figure shows the degree distribution for insurer-dealer relations by year for insurer buys (left) and insurer

sales (right). We use a log-log scale.

10 dealers. This is consistent with insurers building networks that they search randomly

within. Fitting the degree distribution to a Gamma distribution by regressing the log of

the probabilities of each N on a constant, the logarithm of N , and N yields the following

coefficients:

For all insurer trades combined: p(N) ∝ N .15e−.20N ,

For insurer buys: p(N) ∝ N−.12e−.22N , (1)

For insurer sales: p(N) ∝ N .01e−.24N .

Table 3 reports the determinants of insurer dealer network sizes using pooled regressions

with time fixed effects. We measure the size of the trading network by the number of dealers

that an insurance company trades with in a given year. We log-transform all dependent

variables by 100 ∗ log(1 + x) and average all regressors across all trades by the same insurer

during the year and lag them by one time period. We perform the estimation on the whole

sample (Column (1)) and, in order to examine how these vary with insurer’s size, on sub-

samples of small and large insurers based on asset size. We classify an insurer as small if it

falls in the bottom three size quartiles and, respectively, as large if it falls in the top quartile

of the size distribution.

Column (1) indicates that insurer size and type, bond characteristics, and bond varieties

matter for the size of the dealer network. Large insurers, which Table 2 shows have larger

trading intensity, trade with more dealers. Insurers with demand for larger bond variety have

larger networks even controlling for their size (column (2) and (3)). Higher quality insurers,
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Table 3: Size of insurers’ trading network

The table reports the determinants of the size of insurers’ trading network. We measure the size of the trading
network by the number of different dealers that an insurance company trades with in a given year. See caption
of Table 2 for additional details. Standard errors are adjusted for heteroskedasticity and clustering at the
insurer and time level.

(1) (2) (3)
Determinant All insurers Small insurers Large insurers

Insurer size 9.95*** 7.93*** 5.04***
Insurer RBC ratio -3.58*** -3.64*** 0.11
Insurer cash-to-assets 0.15*** 0.15*** 0.11**
Life insurer -0.13 0.75 -2.77**
P&C insurer -2.60*** -1.20 -3.59***
Insurer rated A-B 4.12*** 6.00*** 0.13
Insurer rated C-F -1.54 -0.18 -5.42***
Insurer unrated 3.05* 3.98* -2.86**

Trade par size -1.92*** -1.23*** -1.24***
Bond issue size -0.00 -0.00 0.00
Bond age -0.91*** -0.77*** -1.10***
Bond remaining life -0.08 -0.11* 0.10
Bond high-yield rated 1.23 -2.93* 2.56
Bond unrated -13.74*** -12.50*** -7.73
Bond privately placed -3.85 1.10 -10.22

Variation in trade size 0.51 -0.10 0.81*
Variation in issue size 0.00 0.00 0.00
Variation in bond age 0.50** 0.56** 0.16
Variation in bond life 0.50*** 0.41*** 0.11
Variation in bond rating 0.05 0.19 0.36*
Variation in rated-unrated 3.60 -11.38 -24.50
Variation in private-public 1.20 -4.33 3.17
No varieties traded 5.88*** 2.71*** 12.50**

Lagged no. of dealers 0.75*** 0.62*** 0.75***

Year fixed effects Yes Yes Yes
R2 0.614 0.350 0.593
N 30,029 18,033 11,996

i.e., insurers with higher cash-to-assets ratio and higher ratings, have larger networks, but

this matters only for smaller insurers as column (2) indicates. This is potentially due to it

being cheaper for a dealer to set up a credit account for higher quality insurers. These factors

matter more for small insurers because they face larger adverse selection problems in forming

permanent links with dealers. Insurers with greater variety in the bond they trade have

larger networks. Overall these findings suggest insurers’ network choice is endogenous and

dependent on multiple factors. Competition and specialization jointly determine investors’

trade choices.

Table 3 shows persistence in the size of the network with the coefficient on the lagged

network size being 0.75 (column (1)). This result is mostly due to large insurers, because

this coefficient equals only 0.62 for small insurers. Table 4 examines this in more detail

by reporting statistics for the frequency with which insurers adjust their network size. We

compute the likelihood that an insurer uses a certain number of dealers in a given year and

13



Table 4: Persistence in insurers’ trading network

The table reports switching probabilities, p(No. of dealers in t + 1|No. of dealers in t), for using a network
size conditional on the insurer’s past behavior for each year.

No. of dealers next year

No. of dealers this year 1 2-5 6-10 >10

1 0.61 0.30 0.06 0.03
2-5 0.20 0.54 0.20 0.06
6-10 0.06 0.31 0.40 0.24
>10 0.01 0.07 0.17 0.75

compare it to the corresponding number in the following year. The transition probabilities

are reported in Table 4. Trading relations are persistent from year to year. This is especially

true for exclusive relations as the probability of staying with a single dealer each year is

equal to 0.61. Insurers with more than one dealer are unlikely to switch to a single dealer as

the annual switching probabilities are equal to 0.20 for insurers with 2 to 5 dealers and 0.06

for insurers with 6 to 10 dealers. Insurers with the largest networks (> 10 dealers) tend to

maintain large networks over time, with a 75% probability of staying with a large network.

The distribution of insurers shown in Figure 3 together with the stable network sizes are

difficult to reconcile with a “pure” random search model à la Duffie et al. (2005, 2007).

One potential concern is that the relationship between the size of the insurer and the

size of its network arises mechanically. Small insurers trade once or twice per year and thus

need only a single dealer, while large insurers need to execute many trades and, therefore,

use many dealers. As a consequence, small exclusive networks are pervasive simply because

they are used by small insurers. To alleviate this concern we plot in Figure 4 the number

of insurer buys (left) and sales (right) per dealer and year as a function of the network size.

The red line is a fitted non-linear lowess model between log(# of trades per dealer) and

log(N). The relationship has an inverse hump-shape. Insurers executing four trades per

year are equally likely to use a single dealer or split them between two dealers. In addition,

a large number of insurers execute between 10 and 100 trades with a single dealer. A dealer

can facilitate repeated trading with the same insurer by offering other business unrelated to

bond trading. This can include trading in other securities, access to new issues, investment

research, and others. Since our data does not allow to control for these non-trade benefits

from repeat relations, we use a structural model to quantify them.

The next section studies the relation between client-dealer networks and execution costs.
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Figure 4: Insurer trading activity and network size
The figure shows the number of insurer buys per year per dealer (left) and insurer sales per year per dealer

(right). The red line is a fitted non-linear model. We use a log-log scale.

3 Insurer trading costs and networks

Tables 2 and 3 suggest that bond characteristics impact insurers’ trading intensity. To control

for bond, time, and bond-time variation, we compare transaction prices to daily bond-specific

Bank of America-Merrill Lynch (BAML) bid (sell) quotes. BAML is the largest corporate

bond dealer, transacting with more than half of all insurers for almost 10% of both the

trades and volume. The BAML (bid) quotes can be viewed as representative quotes for

insurer sales and enable us to measure prices relative to a transparent benchmark price. The

BAML quotes essentially provide bond-time fixed effects, which would be too numerous to

estimate in our sample. Our relative execution cost measure in basis points is defined as

Execution cost (bp) =
BAML Quote− Trade Price

BAML Quote
∗ (1− 2 ∗ 1Buy) ∗ 104, (2)

where 1Buy is an indicator for whether the insurer is buying or selling. Because some quotes

may be stale or trades misreported, leading to extreme costs estimates, we winsorize the

distribution at 1% and 99%.

Execution costs depend on the bond being traded, time, whether the insurers buys or

sells, the insurer’s characteristics, dealer identity and characteristics, and the insurer network

size. To examine the relationship-specific effects on execution costs we control for bond and

timefixed effects. In principle if the BAML perfectly controls for bond-time effects, the

additional bond and time fixed effects are unnecessary.

The relationship component of transaction costs depends on the properties of the insurers’
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networks. Figure 3 and equation (1) indicate that the degree distribution for insurer-dealer

relations follows a Gamma distribution. Therefore, we include both the size of the network,

N , and its natural logarithm, ln(N), as explanatory variables. We control for seasonality

using time fixed effects, αt, and for unobserved heterogeneity using either bond characteristics

or bond fixed effects, αi. The other explanatory variables consist of either insurers’ or dealers’

characteristics, or both. We estimate the following panel regression for execution costs in

bond i at time t:

Execution costit = αi + αt + βN + γlnN + θXit + εit. (3)

The set of explanatory variables X includes characteristics of the bond, as well as features

of the insurer and dealer.

Table 5 provides trading cost estimates from panel regressions. We adjust standard errors

for heteroskedasticity and cluster them at the insurer, dealer, bond, and day level. The

coefficient on insurer buy captures the average bid-ask spread of roughly 40 basis points.

Column (1) of Table 5 shows that execution costs decline with insurer network size. An

insurer with an additional dealer has trading cost 0.22 basis point lower. Large insurers pay

on average lower execution costs. An insurer with 10 times as many assets has trading cost

3.72 basis points lower. Better capitalized insurers (higher RBC ratio) get better prices.

Column (2) adds the logarithm of N to the specification reported in Column (1). The

coefficient on N switches from −0.22 reported in Column (1) to 0.32, while the coefficient on

the logarithm of N is −6.29. Both coefficients are statistically significant at 1%. This result

indicates that the execution costs are non-monotone in the network size. Improvements

in execution quality from having a larger dealer network are exhausted at N = 6.29
0.22
≈

20. Clients with networks of 40 dealers and 10 dealers pay, on average, the same bid-ask

spread of 40 basis points. This finding goes against the traditional wisdom that inter-dealer

competition improves prices. It is also inconsistent with classic static strategic network

formation models (e.g., Jackson and Wolinsky (1996)). In these models a client trades

off fixed costs of adding an extra dealer against better execution due to increased dealer

competition thus making price a monotonically decreasing function of the network size. In

the next section we use this and other network-related empirical evidence to motivate an

alternative strategic model of finite network formation in which clients and dealer share the

benefits of repeated interactions.

Columns (3) and (4) replace bond and dealer fixed effects with bond and dealer charac-

teristics. NYC-located dealers offer better prices to all insurers and more diversified dealers

charge, on average, higher prices. Bond characteristics matter for execution costs as insur-

16



Table 5: Execution costs and investor-dealer relations

The table reports the determinants of execution costs. Execution costs are expressed in basis points relative
to the Merrill Lynch quote at the time of the trade. Standard errors are adjusted for heteroskedasticity and
clustered at the insurer, dealer, bond, and day level. See caption of Table 2 for additional details.

Determinant (1) (2) (3) (4)

Insurer no. of dealers -0.22*** 0.32*** 0.32*** 0.32***
ln(Insurer no. of dealers) -6.29*** -6.51*** -6.55***

Insurer size -3.72*** -3.59*** -3.52*** -3.95***
Insurer RBC ratio -3.51*** -4.19*** -4.68*** -5.40***
Insurer cash-to-assets -0.04** -0.04** -0.04** -0.03*
Life insurer 4.43*** 4.47*** 5.73*** 7.21***
P&C insurer 1.72** 1.73** 1.99** 2.82***
Insurer rated A-B -0.47 0.01 -0.18 -0.50
Insurer rated C-F 11.29* 11.13* 10.90* 12.18*
Insurer unrated 0.74 0.62 0.55 0.14

Insurer buy 39.56*** 39.27*** 39.71*** 40.17***
Trade size × Buy -0.26*** -0.25*** -0.20** -0.18*
Trade size × Sell 0.53*** 0.50*** 0.48*** 0.52***

Bond issue size -0.00*** -0.00***
Bond age 0.58*** 0.63***
Bond remaining life 0.81*** 0.82***
Bond HY rated 4.54*** 4.16***
Bond unrated -5.96*** -6.53***
Bond privately placed 3.38*** 3.26***

Dealer size -5.37***
NYC dealer -6.66***
Primary dealer 2.43
Dealer leverage -5.68**
Dealer diversity 0.41***
Dealer dispersion 0.07
Local dealer 0.23
Dealer distance -0.20
Dealer leverage missing -6.41**
Dealer dispersion missing 6.09

Bond fixed effects (16,823) Yes Yes No No
Dealer fixed effects (401) Yes Yes Yes No
Day fixed effects (3,375) Yes Yes Yes Yes
R2 0.154 0.155 0.103 0.098
N 918,279 918,279 918,987 891,875

ers receive worse prices for special bonds and better prices for bonds with larger issue size.

Insurers get better prices on unrated bonds.

The next section uses our evidence on networks and execution costs to motivate our

model of the OTC markets.

4 Model

The model is stylized but still rich enough to allow for the structural estimation of its

primitives from the NAIC data. We view the full relationship between insurers and dealers

as having two components. The first component is the repeat trading interactions between
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each insurer and the dealers. The insurer repeatedly buys and sells bonds from dealers in

her network. This future repeat trading is taken into account by the insurer and the dealers

when negotiating terms of each transaction. Since our data can speak directly about it,

we model this component explicitly. The second component of the relationship captures

all other business between insurers and dealers unrelated to bond trading. In practice it

includes transacting in other securities, the ability to purchase newly issued securities, as

well as other soft dollar and non-monetary transfers such as investment research. Since

we do not directly observe these non-trade relations in our data, we utilize a reduced form

approach to model them. We quantify both components of the insurer-dealer relationship

when structually estimating the model from the NAIC data.

4.1 Setup and Solution

The economy has a single risk-free perpetual bond paying a coupon flow C. The risk-free

discount rate is constant and equal to r, so that the present value of the bond is C
r

. To

model client-dealer repeat trade interactions, we keep several attractive features of Duffie

et al. (2005) type models such as liquidity supply/demand shocks on the client side and

random search with constant intensity. Following Lester et al. (2015), the bond trades

on a competitive market accessible only to dealers.5 Unlike the frictionless inter-dealer

market in Lester et al. (2015), in our model dealers face search frictions as in Duffie et

al. (2005). We implicitly assume that the structure of insurer-dealer networks does not

affect the interdealer market. Dealers, therefore, buy bonds at an exogenously given price

Mask from other dealers and sell it to other dealers at an exogenously given price M bid. A

bid-ask spread Mask −M bid ≥ 0 reflects trading costs or cost of carry.

In the model we use a more generic term “client” instead of insurer. Clients act com-

petitively with respect to other clients by not internalizing other clients’ trades in their own

decisions.6 Each client chooses a network of dealers, N , without knowledge of other clients’

decisions. When a client wants to buy/sell a bond, she simultaneously contacts all N dealers

in her network. Upon being contacted each dealer starts searching the competitive dealer

market for a seller/buyer with a search intensity λ.7 All dealers in the client’s network search

independently of each other. Therefore, the effective rate at which a client with N dealers in

5The interdealer market obviates the need to track where the entire stock of the asset is held at every
moment in time.

6While we do not have a direct evidence on the information flows across the insurers and between the
insurers and dealers regarding trades, it is unlikely that such information is shared even voluntary.

7Bessembinder et al. (2016) show that corporate bond dealers increasingly hold less inventory and facilitate
trade via effectively acting as brokers by simultaneously buying and selling the same quantity of the same
bond.
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her network finds a counterparty equals λN . When the client receives a subsequent trading

shock all dealers in the network are contacted to reverse the initial transaction.

Each client pays a sunk cost K per transaction.8 The cost K is any cost of a client

contacting dealers, e.g., the time required to make each phone call and any fixed costs

required to hire more in-house traders. Clients trading more frequently incur K more often.

While K does not depend directly on network size, clients who choose a larger network

trade faster, thus, incurring K more often. The cost K enter clients’ value functions thus

affecting their reservation values in bargaining. Clients’ search mechanism can be viewed as

a winner-takes-all race with the dealer first to find the bond winning the race. The prize is

the spread P b −Mask when the client buys and M bid − P s when the client sells, where P b

(P s) is the price at which the client buys (sells) the bond from (to) the dealer.

Clients transition through ownership and non-ownership based on liquidity shocks. At

these transitions clients act as buyers and sellers. The discounted transition probabilities

and transaction prices link valuations across the owner, non-owner, buyer, and seller states.

A client i starting as a non-owner with valuation V̂ no is hit by stochastic trading shocks

to buy with intensity ηi. ηi varies across clients and its distribution can be directly inferred

from the data. Section 2.1 characterizes the compound distribution of trading activity. For

the sake of clarity we are going to drop the subscript i throughout our theoretical analysis.

The client contacts her network of N dealers leading to her transiting to a buyer state

with valuation V̂ b. In steady state valuations in these two states are related by

V̂ no = V̂ b η

r + η︸ ︷︷ ︸
Value from Trading

+ V r r

r + η︸ ︷︷ ︸
Non-Trade Value

. (4)

Here V r(η,N) captures exogenously given relation-specific non-trade flows to the client from

her dealers. We are largely agnostic regarding V r(η,N) as a function of the trading intensity

and network size, η and N , and let the functional form be determined by the data-driven

estimation. We assume, however, that V r(η,N) is a monotonic function of N and satisfies

the following Inada condition lim
N→∞

V r(η,N)
N

= 0, which guarantees that the optimal network

size is always finite. Below we will show that V r(η,N) does not directly affect transaction

prices, but does impact clients’ choice of network size.

The buyer purchases the bond from her network at the expected price E[P b] and tran-

sitions into being an owner with valuation V̂ o. In steady state V̂ b satisfies the Bellman

8The costs of additional dealers could alternatively be modeled as per dealer or per dealer per transaction.
Per dealer costs consist of costs of forming a credit relationship and any other costs of maintaining the
relationship independent of the number of trades. Such per dealer costs will immediately lead to clients with
larger trading intensity using more dealers.
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equation linking it to V̂ o:

V̂ b =
1

1 + rdt
[λNdt(V̂ o − E[P b]−K) + (1− λNdt)V̂ b + rV rdt] (5)

yields

V̂ b = (V̂ o − E[P b]−K)
λN

r + λN
+ V r r

r + λN
. (6)

While clients are owners, they receive a coupon flow C and have valuation V̂ o. Non-owners

do not receive the coupon flow. With intensity κ an owner receives a liquidity shock forcing

her to become a seller with valuation V̂ s. In steady state valuations in these two states are

linked according to the Bellman equation

V̂ o =
1

1 + rdt
[dtC + κdtV s + (1− κdt)V̂ o + rV rdt], (7)

yielding the expression for V̂ o:

V̂ o =
C

r + κ
+ V̂ s κ

r + κ︸ ︷︷ ︸
Value From Future Sale

+ V r r

r + κ
, (8)

where the second term captures the value from future sales. The liquidity shock received

by the owner reduces the value of the coupon to C(1 − L) until she sells the bond. After

receiving the liquidity shock she contacts her dealer network expecting to sell the bond for

E[P s]. Upon selling she becomes a non-owner, completing the valuation cycle. Valuations

V̂ s and V̂ no are related by

V̂ s =
1

1 + rdt
[dtC(1− L) + λNdt(E[P s] + V̂ no −K) + (1− λNdt)V̂ s + rV rdt], (9)

which can be solved for V̂ s as

V̂ s =
C(1− L)

r + λN
+ (E[P s] + V̂ no −K)

λN

r + λN
+ V r r

r + λN
. (10)

This sequence of events continues in perpetuity and, therefore, we focus on the steady state

of the model.

The above valuation equations depend upon the expected transaction prices. The realized

transaction prices are determined by bilateral Nash bargaining. The clients’ reservation

values are determined by the differences in values between being an owner and non-owner

and a buyer and seller. Similarly, the dealers’ reservation values arise from their transaction
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cycle. Each dealer acts competitively, i.e., without taking into account the effect of her

actions on the actions of other dealers. In addition, we assume that each dealer internalizes

only trade-specific value of her relation with each client.9 When a client contacts her dealer

network, each dealer simultaneously starts looking for the bond at rate λ and expects to pay

the inter-dealer ask price Mask for the bond. The value to the dealer searching for the bond

satisfies

U b =
1

1 + rdt
[λdt(P b −Mask) + λNdtU o + (1− λNdt)U b], (11)

thus yielding

U b = (P b −Mask)
λ

r + λN︸ ︷︷ ︸
Transaction Profit/Loss

+ U o λN

r + λN︸ ︷︷ ︸
Value of Future Business

. (12)

The last term in the expression for U b captures the expected value of the future business

with the same client which happens with frequency λN . This client, who is now the owner

of the bond, becomes a seller with intensity κ and contacts dealers in her network to sell the

bond. This generates a value U o = U s κ
r+κ

per dealer, where U s represents the valuation of

the dealer searching to sell the bond. The dealer expects to resell the bond at rate λ for the

inter-dealer bid price M bid and earn a markup of M bid − P s. She also anticipates that with

intensity λN the same client will approach her in the future to buy back the bond. Future

business from the same client generates Uno = U b η
r+η

in value to the dealer, thus leading to

the following Bellman equation for U s:

U s =
1

1 + rdt
[λdt(M bid − P s) + λNdtUno + (1− λNdt)U s], (13)

which can be solved to obtain

U s = (M bid − P s)
λ

r + λN︸ ︷︷ ︸
Transaction Profit/Loss

+ Uno λN

r + λN︸ ︷︷ ︸
Value of Future Business

. (14)

Valuations Uno and U o lead to price improvement for repeat business.

As in most OTC models, prices are set by Nash bargaining resulting in prices that are

the bargaining-power (w) weighted average of the reservation values of client and dealer:

P b = (V̂ o − V̂ b)w + (Mask − U o)(1− w), (15)

P s = (V̂ s − V̂ no)w + (M bid + Uno)(1− w). (16)

9We do not require the dealer to internalize the client’s non-trade value V r of the relationship and omit
it. This could happen, for instance, if the dealer is compensated to maximize trading profits and is not
incentivized to maximize enterprise value. We also do not need it to fit the data.
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The above equations assume that the dealer loses all future business from the client if the

bilateral negotiations fail. Upon dropping a dealer the client maintains her optimal network

size by forming a new link with another randomly picked identical dealer. Thus, by agreeing

rather than not, the dealer receives U o. As a consequence, dealers face intertemporal com-

petition for future clients. This is a novel assumption missing from the existing models of

OTC markets.

Each client’s valuation, V̂ k, k ∈ {b, o, s, no}, can be written as a sum of its trade-specific,

V k, and the relation-specific, V r, values

V̂ k = V k + V r. (17)

Substituting (17) into relations (4), (6), (20), and (10) yields the following relations for

trade-specific client valuations:

V no = V b η

r + η
, (18)

V b = (V o − E[P b]−K)
λN

r + λN
,

V o =
C

r + κ
+ V s κ

r + κ
,

V s =
C(1− L)

r + λN
+ (E[P s] + V no −K)

λN

r + λN
.

Correspondingly, transaction prices depend only on clients’ trade-specific valuations:

P b = (V o − V b)w + (Mask − U o)(1− w), (19)

P s = (V s − V no)w + (M bid + Uno)(1− w). (20)

The valuations and prices provide ten equations and ten unknowns. Proposition 1 in the

Appendix provides the closed-form solutions (35) and (36) for transaction buy prices P b and,

respectively, sell prices P s.

Bargaining power could differ for buys and sells. For ease of exposition, we equate them

here. In the subsequent structural estimation we allow for different bargaining powers when

the insurer is looking to buy a bond, wb, and when the insurer is selling a bond, ws.

4.2 Discussion

Expressions (35) and (36) are nonlinear functions of the model primitives and N , which

renders the analysis difficult. However, we can verify that prices are well-behaved functions
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of the network size, N , in the large network limit, N → ∞. N → ∞ implies λN
r+λN

→
1 and clients’ search friction in terms of time is zero. Dealers’ valuations, in this case

denoted with subscript N → ∞, satisfy the system of equations U b
N→∞ = U s

N→∞
κ
r+κ

and

U s
N→∞ = U b

N→∞
η
r+η

. These only have a trivial solution U s
N→∞ = U b

N→∞ = 0, implying that

dealers compete away all rents from future relations with clients. Clients have valuations

V o
N→∞ − V b

N→∞ = P b
N→∞ + K and V s

N→∞ − V no
N→∞ = P s

N→∞ − K yielding the following

expressions for transaction prices:

P b
N→∞ = Mask +

w

1− w
K, (21)

P s
N→∞ = M bid − w

1− w
K. (22)

Dealers receive no relationship-based rents, but they charge clients a spread w
1−w2K per

roundtrip transaction over the inter-dealer spread. The coefficient w
1−w indicates that the

non-zero bargaining power enables dealers to extract some value from a client. This is because

every dealer charges the same price thus making clients’ threat of ending the relationship

and forming a new link not credible (Diamond’s (1971) paradox). Equations (21) and (22)

illustrate the importance of making K > 0 in the model. If K is equal to zero a client can

choose an infinitely large network. This increases dealer competition such that the client

trades at the inter-dealer prices, effectively becoming a dealer herself. Therefore, the finite

network is never optimal if K is equal to zero.

Overall, dealers’ surplus comes from both the immediate value of trade (the spread) and

the value of future transactions. As the probability of transacting with the same client in

the future declines with the size of the client’s network, dealers may charge higher spreads,

P b −Mask and M bid − P s, when the network size becomes larger. This result is similar to

Vayanos and Wang (2007) where an asset with more buyers and sellers has lower search times

and worse prices relative to its identical-payoff counterpart with fewer buyers and sellers.

We verify that the model yields a finite network size by considering a limiting case of

large search intensity, λ→∞. In this case a single dealer can instantaneously find the bond

and the optimal size of the network is one. Taking limits in equations (12) and (14) yields

Uno
λ→∞ =

1

N

η
r+η

1− κ
r+κ

η
r+η

[
P b
λ→∞ −Mask +

η

r + η
(M bid − P s

λ→∞)

]
, (23)

U o
λ→∞ =

1

N

κ
r+κ

1− κ
r+κ

η
r+η

[
M bid − P s

λ→∞ +
κ

r + κ
(P b

λ→∞ −Mask)

]
.

Solving for transaction prices from (15-16) and using that (V o − V b)λ→∞ = P b
λ→∞ + K,
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(V s − V no)λ→∞ = P s
λ→∞ −K we obtain

P b
λ→∞ = Mask +

w

1− w
K − U o

λ→∞, (24)

P s
λ→∞ = M bid − w

1− w
K + Uno

λ→∞.

Expressions (24) show that U o
λ→∞ and Uno

λ→∞ represent the repeat relation buy discount

and sell premium, respectively. Equations (23) show that both U o
λ→∞ and Uno

λ→∞ are strictly

decreasing with the size of the network N . Thus, the client optimally chooses a single dealer.

In order to find the optimal network size N∗ in the general case, we maximize the total

valuation of the “first-time” owner, i.e., the client buying the asset, V̂ b. This is because the

client has to take possession of the asset in the first place. Maximizing V̂ b accounts for all

trade and relation benefits the client receives from a larger network. Proposition 2 given in

the Appendix demonstrates that, for a given client type described by the model primitives

{L,K,w, κ, λ, η}, there may exist an optimal network size N∗ = N(L,K,w, κ, λ, η).

Next we provide intuition for why the model yields finite size networks greater than one.

Without loss of generality we assume that V r is a monotonically increasing function of the

network size N .10 Because equation (40) is nonlinear in N the existence of the solution

is not guaranteed for an arbitrary parameter set {L,K,w, κ, λ, η}. Given the complexity

of the problem it is convenient to consider the optimal network resulting solely from the

repeated trading, i.e., N∗∗ maximizing V b from dV b

dN
= 0. At this point we do not take a

stand on whether V r is increasing or decreasing function of N . dV r

dN
> (<)0 implies that

N∗∗ < (>)N∗ thus making N∗∗ the lower(upper) bound of N∗. As a result a sufficient

condition for existence of a finite N∗∗ also applies to N∗. In addition, our analysis helps to

separate the trade-specific and the relation-specific network formation mechanisms.

The derivative dV b

dN
= λN

r+λN
( rV

b

λN2 + dV o

dN
− dP b

dN
) must be positive on [1, N∗∗) and equal

to zero at N = N∗∗. dV b

dN
has three terms. The first one is due to the direct effect of the

larger network on the speed of execution as faster execution improves buyer’s valuation. The

second term reflects the marginal effect of the network size on the owner’s value, while the

third term represents the effect of the network size on the transaction buy price. We will

focus on the case of a buy transaction price, P b, improving with the network size, dP b

dN
< 0.

As both the speed of execution and P b improve with N , the value of being the owner and,

consequently, the seller of the bond must decline with N , dV o

dN
= κ

r+κ
dV s

dN
< 0, but not faster

10It is straightforward to derive the corresponding results when V r monotonically decreases with N .
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than the combined value improvement from increasing N∣∣∣∣dV o

dN

∣∣∣∣ ≤ rV b

λN2
− dP b

dN
, N ∈ [1, N∗∗]. (25)

Using relation (10) the sufficient condition for dV s

dN
< 0 can be written as

V s +
λN2

r

(
dP s

dN
+

η

r + η

dV b

dN

)
≤ C(1− L)

r
. (26)

Inequality (26) implies that in order for the seller’s value to be decreasing with N , V s plus

the present value of all future marginal increases in V b with N is no greater than the value of

holding the discounted asset net of the present value of all marginal sale price declines from

increasing the size of the network. Finally, by differentiating equation (15) with respect to

N we obtain the necessary condition for P b to be improving with N∣∣∣∣dU o

dN

∣∣∣∣ < w

1− w

(
dV b

dN
− dV o

dN

)
, (27)

where we have used that dUo

dN
< 0. We conjecture that there exists an interval of network

sizes belonging to [1, N∗], on which dV o

dN
< 0 and the inequality (27) is satisfied for a range

of values of model’s primitives. While this conjecture cannot be proven analytically, it is

clear that when dealers have high bargaining power, w is close but not equal to 1, the right

hand side of (27) can be made larger than its left hand side. Therefore, the optimal network

size N∗∗ > 1, and consequently N∗ ≥ N∗∗, exists and P b improves with N ∈ [1, N∗∗] if

inequalities (25-27) are simultaneously satisfied.

It then follows from the expression (16) that the sell price must decline with the network

size, dP s

dN
= (dV

s

dN
− η

r+η
dV b

dN
)w + dUno

dN
(1 − w) < 0, as Uno is monotonically decreasing with

N and V b is monotonically increasing with N on [1, N∗∗). As a result the buyer’s value is

maximized by trading off more frequent buys at a discounted buy price against more frequent

sells at dealer marked up sell price. The effect of N on buy and sell transaction prices is not,

however, symmetric due to the time lag between each buy and sell as well as the different

effect of relations on P b and P s. Therefore, instead of focusing on the individual transaction

prices, we investigate the sign of the marginal effect of increasing the network size on the

bid-ask spread SP ≡ P b − P s

dSP

dN
= −w

(
r

r + κ

dV s

dN
+

r

r + η

dV b

dN

)
−(1− w)

(
dU o

dN
+
dUno

dN

)
. (28)

For the network sizes below the trade-specific optimal network size N ∗∗ we must have
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that dV b

dN
> 0 while the sign of dV s

dN
can be either positive (when dP s

dN
> 0) or negative (when

dP s

dN
< 0). Both values dealers derive from long-term relations with clients monotonically

decline with the size of the network, dUo,no

dN
< 0. Therefore the bid-ask spread improves with

the size of the network as long as the following inequality is satisfied

r

r + η

dV b

dN
> − r

r + κ

dV s

dN
− 1− w

w

(
dU o

dN
+
dUno

dN

)
. (29)

At N =N∗ we have that dV b

dN
|N=N∗ < 0 thus implying that dSP

dN
|N=N∗ > 0 as long as

dV s

dN
|N=N∗ ≤ 0. This implies that dSP

dN
switches its sign from negative to positive, i.e., the in-

equality (29) is violated, at some Ñ < N∗. Likewise, at N =N∗∗ we have that dV b

dN
|N=N∗∗ = 0

thus leading to dSP
dN
|N=N∗∗ > 0 as long as dV s

dN
|N=N∗∗ ≤ 0, thus implying that the sign of dSP

dN

switches from negative to positive at at some Ñ < N∗∗ < N∗.

A finite optimal size of the trade-specific network follows from several important trade-

offs. When a client adds another dealer to her network the speed of execution, measured by
λN
r+λN

, improves. The additional dealer also improves the bid-ask spread but the improve-

ment declines with the size of the network. As the size of the network becomes large, the

value of the relationship, shared by more dealers, declines by so much that dealers have to

compensate by charging higher markups and the bid-ask spread starts to widen. There-

fore, the spread incorporates the indirect effects additional dealers have on both client and

dealer reservation values. At this point the client starts trading off the benefit due to in-

creased execution speed against the cost due to wider bid-ask spread when deciding to add

another dealer to the network. The optimal size of the network is set when the benefits from

transacting with the larger number of dealers equal the costs. When the relation-specific

non-traded value, V r(η,N), is added the client is willing to accept even wider bid-ask spreads

in exchange for greater non-trade-relation-specific benefits. However, as marginal non-traded

value improvement from a larger network declines with the size of the network, the overall

optimal network size N∗ is reached when relation specific benefits together with benefits

from transacting faster are balanced by the wider bid-ask spread.

4.3 Empirical predictions and identification

While there is no client heterogeneity in the model, each client creates her own access to

the interdealer market and the interdealer market can link clients together. Therefore, the

model’s empirical predictions can be considered via comparative statics with respect to the

client’s trading intensity, η. Section2.1 has shown that η follows a power law with expoential

tail in the cross-section of insurers. Based on these empirical findings, we examine how
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larger trading intensity impacts clients’ choice of network size and the prices they receive.

The predictions are complex as network size and transaction prices are interrelated.

Transaction prices: There exist several competing channels through which active insurers

receive better prices than inactive insurers, as documented in Table 5. The first channel for

price improvement is that active insurers have more repeat trade business with the dealers

who internalize the benefits from future business and grant price improvements. A second,

complementary explanation is that large insurers have higher bargaining power than small

insurers vis-a-vis the dealers. A third explanation is that the trading activity in corporate

bonds is correlated with the value of other businesses they conduct with the dealers.

The intuition for the price improvement channel from future business is as follows. It is

best to discuss the effect of η on prices while keeping the size of the network fixed. When

η = 0 a client owning the bond will never be an owner again after she sells. Therefore, all

of the dealers’ surplus comes from the price at which the sale occurs and none from future

trades. In this case, a dealer’s buy reservation value is lower, resulting in a wider bid-ask

spread. When η is large, dealers derive significant value from repeated trades, leading to

smaller bid-ask spreads. This implies that, conditional on network size, clients with greater

trading intensity (higher η) get better execution than clients with smaller trading intensity

(lower η). This is consistent with the empirical findings in Table 2 that insurers’ trading

activity increases in insurer size and that trading costs decline in insurer size in Table 5.

Network size: Increasing the network size increases buyers’ valuation, V̂ b, through im-

proved speed of execution,11 greater inter-temporal dealer competition,12 and increased

relation-specific non-trade value. The optimal network size, N∗, as a function of η balances

these gains against a lower buyer valuation due to the intra-temporal dealer competition

leading to the loss of repeat trading business.

The optimal network size is increasing in η for a non-empty parameter range over which

the gains from a larger network increase faster in η than the losses ( ∂
2V̂ b

∂N∂η
|N=N∗ < 0). In-

tuitively, dealers’ profit from repeated trade improves with the increasing trading intensity

and dealers offer better execution. Clients with greater trading intensity benefit from a

larger network which improves the speed of execution and may generate larger non-trading

relation-specific value. Therefore, consistent with Table 3, the model can generate larger

insurers with more frequent trading needs having larger dealer networks.

11Speed is proportional to V̂ b which is increasing with η.
12The buy transaction price may or may not be improving with N , dP

b

dN ≷ 0. However, the cross derivative
∂2P b

∂N∂η is positive.
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Network sizes and prices in the cross-section: Figure 5 illustrates for different values

of η—when network sizes and prices are jointly determined—how sensitive to the model

parameters are the model-implied network sizes (Panel A) and trading costs (Panel B). We

implement the sensitivity analysis for each parameter in (32) using the following procedure.

The model is fitted to the data by minimizing the distance between data and model prediction

for each η and the parameter set θ = (θL, θK , θ
j
wi
, θκ, θλ, θV ) is estimated that delivers the

best fit.13 We then take a parameter from θ, reduce it by 10% while keeping the other

parameters fixed, resolve the model, and then plot the solution (solid line) against the best

fit (dahed line).

Figure 5 clearly demonstrates that there exists a lot of variability in how each structural

parameter affects the size distribution and transaction costs—thus allowing the identification.

Some parameters, such as K, have strong impact on both network size and trading costs. By

contrast, L has a very similar impact on trading costs as do the non-trade value parameters

θV , but they have different impact on the insurers’ networks. Similarly, κ and λ impact

networks in the same way but transaction costs in different ways.

Ultimately, the model must be structurally estimated to test its ability to fit the cross-

sectional distribution of network sizes from Figure 3 as well as the cross-sectional distribution

of execution costs as a function of the network size from Table 5.

5 Model Estimation and Policy Analysis

The empirical findings in equation (1) and Table 5 suggest that in the cross-section trading

networks follow a power law with exponential tail and that trading costs are non-monotone

in network size. While the model can produce such non-monotonicity, it is unclear if it can

quantitatively match the empirical relationship between network size and trading costs.

Settings such as labor markets and marriages markets involve one-to-one matching. These

literatures structurally estimate models to examine their quantitative fit to the data (for

example, Poste-Vinay and Robin (2002) and Eckstein and Van den Berg (2007) for labor

search and Hitsch et al. (2010) and Choo (2015) for marriage search). Gavazza (2016)

estimates a one-to-one search-and-bargaining model of a decentralized market using aircraft

transaction data. We follow this approach for our one-to-many network formation model.14

Figures 2 and 3 present insurers’ heterogeneous trading intensities and network sizes.

13Details of the estimation are reported in the next subsection.
14The identification of the model shares several similarities with Gavazza (2016). As in Gavazza (2016) the

identification of unobserved parameters relies on key moments in the data. Unlike the aggregate moments
in Gavazza (2016), we utilize heterogeneity in insurers’ trading intensities and networks to facilitate our
estimation.
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Figure 5: Sensitivity to model parameters and identification
The figure illustrates the sensitivity of the model-implied network size distribution (Panel A) and trading

costs (Panel B) to model parameters. The top panel in each plot shows the network sizes N/trading costs

c(N) at the estimated parameters (dashed line) compared parameters that are shifted down by 10% (solid

line). The bottom panel in each plot shows the difference in network sizes ∆N/trading costs ∆c(N) between

estimated and shifted parameters, illustrating the sensitivity of network sizes/trading costs to each parameter

(across plots) for different values of trading frequency η on the horizontal axis.
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To estimate the model’s distribution of network sizes we infer the distribution of trading

intensities, ηn, n = 1, ...,N , across insurance companies n. Section 2.1 characterizes the

compound distribution of trading activity. If trading shocks occur at Poisson times, the

intensity ηn of the shocks can be estimated by the expected number of buy trades per year.

This yields the maximum likelihood estimator η̂n = 1
T

∑T
t=1 Xnt, where Xnt is the number of

bond purchases by insurer n in year t. To utilize the multiple years of trade data, we perform

the estimation separately for each insurer. This yields a cross-sectional distribution of trading

intensities, which we index by p(η). Section 2.1 and Figure 2 show the distribution of the

insurer trades per year follows approximately a power law. For insurer buys, this distribution

is best described by p(η) = 0.34× η−1.31.

The other model parameters Θ = (L,K, κ, λ, ws, wb) are not directly observable in the

data, so they are estimated structurally. Section 2.2 and Figure 3 show the degree distribu-

tion of client-dealer relations follows a mixed power-exponential law. The distance between

the empirical distribution and the model-generated network sizes N∗ depends on the param-

eters Θ. We fit this by minimizing the probability-weighted distance between the data and

model:
max(N)∑
N=1

p(N)[N −N∗(Θ, η(p(N)))]2, (30)

where p(N) is the empirical network-size distribution and N∗(Θ, η) is the model-implied

network size for the set of parameters Θ given η. Inverting the power law distribution for

trading intensities from Panel A of Figure 2 yields η(p) = ( p
.34

)−
1

1.31 . It then follows from

equation (1) that for insurer buys p(N) = .28e−.22NN−0.12. Therefore, by substituting p(N)

into the expression for η(p) we obtain the mapping of trading intensities into the network

sizes, η(p(N)) = ( .28
.34

)−
1

1.31 e
.22
1.31

NN
0.12
1.31 . We use this relation in (30).

The model also predicts how percentage trading costs, (P b − P s)/.5(P b + P s), depend

on the parameters Θ and η. Empirically, the estimated relation between trading costs and

network size is in column (4) of Table 5 as c(N) = 51 + 0.32N − 6.29 lnN . The probability-

weighted distance between the empirical and the model-generated trading costs c∗ depends

on the parameters Θ and is:

max(N)∑
N=1

p(N)[c(N)− c∗(Θ, η(p(N)))]2. (31)

A minimum-distance estimator chooses the model parameters to minimize the sum of

the distances (30) and (31). To fit the data the model’s optimal N∗ is constrained to be an

integer. This makes the the objective functions (30) and (31) non-smooth. To accommodate
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this we optimize using simulated annealing with fast decay and fast reannealing.

To ensure that the estimated parameters remain in their natural domains, i.e., positive

or between zero and one, in the estimation we transform model parameters as follows:

L = Φ(θL) ∈ (0, 1), K = eθK ≥ 0, κ = eθκ ≥ 0, λ = eθλ ≥ 0, (32)

ws = Φ(θ0
ws + θ1

wsln η) ∈ (0, 1), wb = Φ(θ0
wb + θ1

wbln η) ∈ (0, 1),

where Φ ∈ (0, 1) is the normal cdf. Our results are robust to alternative transformations in

place of Φ and e.

As discussed above, insurers’ trading shocks are heterogeneous and directly observable

in the data. In the model κ measures clients’ selling intensity after having bought. Because

the empirical number of buys and sells are equal, and buys and sells follow a similar power

law, there is no evidence of heterogeneity in κ. Therefore, κ does not vary across insurers.

Because we fit the model to the two observable outcomes of network size and trading costs

we limit the number of model parameters that vary across insurers by assuming L and K

are constant. The competitive interdealer spread is set to match the average execution costs

of insurers by choosing C = 1, r = .1, Mask = (1 + 0.0018) C
2r

, and M bid = (1 − 0.0018) C
2r

.

Because insurers can potentially access all dealers λ is constant across insurers.

We set the functional form of the non-trade value to be Cobb-Douglas

V r = eθ
0
V ηθ

1
VN θ2

V , θ1
V + θ2

V < 1, (33)

with a constant “technology” eθ
0
V and elasticities to trading intensity and network size given

by θ1
V and θ2

V respectively. The Cobb-Douglas functional form captures the complementarity

between trading intensity, measured by η, and network size, while precluding infinitely large

non-trade value.

Finally, the evidence in Table 5 shows trading costs depend on insurer size even after

controlling for network size. The most straightforward way to accommodate this is to al-

low dealer bargaining power to vary across insurers, e.g., large active insurers have higher

effective bargaining power than small inactive insurers. We report the model fit under both

constant (specification 1) and variable (specification 2) bargaining power by holding wb and

ws constant and allowing wb and ws to be functions of η, respectively.

5.1 Estimated model parameters, discussion, and model fit

The model can be solved assuming the client maximizes her value as a buyer or as a seller.

To simplify exposition we use her value as a buyer. Panel A of Table 6 reports the estimates
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for the transformed model parameters from (32). Panel B provides the original model pa-

rameters Θ = (L,K, κ, λ, ws, wb). All parameters are significantly different from zero and

appear well identified as the standard deviations of the residuals are small. Specification 2

allows bargaining power to vary across insurers and generates a substantially lower minimum

distance between the model and empirical distributions than does the uniform bargaining

power in specification 1.

The estimated liquidity shock parameter L in both specifications is 100% of the flow

income from the bond, suggesting a high willingness to pay for immediacy. The cost K of

obtaining quotes for each transaction is small, 0.01 (specification 1) and 1.56 (specification 2)

basis points per trade, respectively. The estimated selling shock intensity κ is between 13.51

(specification 1) and 19.95 (specification 2), a holding period from two and a half to four

weeks. Longer holding periods, smaller κ, reduce the value of repeat relations and increase

network size. Without heterogeneity in κ the model needs relatively short holding periods

to reproduce the large fraction of insurers using a single dealer.

The dealers’ search efficiency λ is estimated to be 385 in specification 1, corresponding to

dealers taking two-thirds of a day (250/λ) to locate a bond. The dealers’ search efficiency λ

is estimated to be 166 (1.5 days) in specification 2, which allows bargaining power to depend

on η. Given overall corporate bond trading frequencies, these estimates seem reasonable.

Dealers’ bargaining power on the buy and the sell sides in specification 1 is large, 98%

and 96%, suggesting that dealers capture most of the trade surplus in this specification. In

specification 2, when bargaining power depends on insurers’ type, dealers’ average bargain-

ing power remains large and fairly symmetric across buys, 85%, and sells, 89%. Dealers

bargaining power on sales is relatively insensitive to insurer trading frequency. In contrast,

θ1
wb

= −1.09 indicates that dealers’ bargaining power when buying declines significantly with

insurers trading intensity η.15 Dealers’ bargaining power with insurers with trading intensity

η = 1 is close to one. As insurer trading intensity increase to five, dealers’ bargaining power

falls to about one half. Dealers have almost zero bargaining power when the largest insurers

are buying. This could arise from insurers being buy-and-hold investors whereby a dealer

can more easily locate a seller than a buyer. The heterogeneity in bargaining across insurers

and across buy and sell transactions suggests richer modeling of the price setting process

may enable deeper understanding of OTC trading.

The estimated non-trade value, V r, is quite small in specification 1. The estimated non-

trade value, V r, is fifteen times larger in specification 2 and it is monotonically increasing

with the size of the network and trading intensity. The decreasing returns to scale parameter

15The asymmetry in buy-sell bargaining power’s sensitivity to η arises from our choice to maximum the
clients’ valuation as a buyer.
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Table 6: Estimated model parameters

The table reports the estimated model parameters θ = (θL, θK , θ
j
wi , θκ, θλ, θV ) in Panel A. Estimates are

from the minimum-distance estimation. Standard errors are reported in parenthesis and scaled by 100. Panel
B reports the implied values for the model parameters K = e10∗θK , L = Φ(θL), κ = e10∗θκ , λ = e10∗θλ ,

wi = Φ(θ0wi +θ1wi ln η) for i = s, b, where Φ ∈ (0, 1) is the normal cdf, and non-trade value V r = eθ
0
V ηθ

1
VNθ2V .

(1) (2)
wb, ws constant wb(η), ws(η)

Panel A: Parameter estimates
θK -1.23 (0.50) -0.65 (0.04)
θL 5.02 (43.48) 4.18 (0.98)
θκ 0.26 (0.01) 0.30 (0.15)
θλ 0.60 (0.38) 0.51 (0.10)
θ0
wb

2.99 (0.68) 2.55 (0.18)

θ1
wb

-1.09 (0.24)

θ0
ws 1.93 (0.94) 1.32 (0.23)
θ1
ws 0.02 (0.11)
θ0
V -3.61 (0.80) -1.75 (0.19)
θ1
V 0.09 (0.76) 0.30 (0.20)
θ2
V -0.51 (0.93) 0.15 (0.19)

Minimum distance 1,729.80 27.03
S.D. residuals 4.68 0.58
S.D. residuals network 1.35 0.40
S.D. residuals prices 4.48 0.42

Panel B: Implied model parameters
K*1,000 0.01 1.56
L 1.00 1.00
κ 13.51 19.95
λ 384.99 165.88
wb (S.D.) 0.98 (0.00) 0.85 (0.05)
ws (S.D.) 0.96 (0.00) 0.89 (0.01)
Non-trade value V r (S.D.) 0.02 (0.00) 0.30 (0.02)

restriction is satisfied. The trade intensity elasticity is twice the network size elasticity.

Figures 6 and 7 visually examine the quality of the model’s fit. They each provide four

plots illustrating the fits for their respective specification. The top left graph plots the

number of dealers as a function of their trading intensity both in the data (circles) and in

the model (dashed line). Similar to Figure 3, the top right graph plots the degree distribution

for insurer-dealer relations in the data (circles) compared to the model-implied distribution

under the estimated parameters (dashed line). In both cases the distance between the two

lines captures the model fit. To further visualize the goodness of model’s fit, the bottom

left graph plots the degree distribution for insurer-dealer relations in the data against the

model-implied distribution under the estimated parameters. Each circle is labeled with the

corresponding network size. The deviation from the 45-degree line measures model fit.

The specification with uniform dealer bargaining power fits the network distribution up

to 16 dealers. In the bottom left graph in Figure 6 the blue circles are on the 45-degree

line for all values of N less than 16. However, the goodness of its fit deteriorates for larger
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Figure 6: Model fit with constant bargaining power wb, ws

The figure shows the model fit for the base specification of constant dealers’ bargaining power w. The top left

plot shows the network size of insurer-dealer relations for insurer buys as a function of the insurers’ trading

frequency in the data (circles) compared to the model-implied distribution under the estimated parameters

(solid line). The top right plot shows the degree distribution for network size in the data (circles) compared

to the model-implied distribution under the estimated parameters (solid line). The bottom left plot compares

the empirical probability of a given network size to the model-implied probability. The bottom right plot

shows the bid-ask spread in the data as a function of the insurers’ network size in the data (circles) compared

to the model-implied bid-ask spread under the estimated parameters (solid line).

networks and the model does not generate networks larger than 22 dealers.

The bottom right corner graph in Figure 6 plots the empirical relation between trading

costs and network size from column (4) of Table 5 (circles), c(N∗) = 51+0.32N∗−6.29 lnN∗,

against its model-implied counterpart (dashed line).16 The distance between the two lines

is a measure for model fit, showing the parameter estimates from specification 1 do not well

16Because values reported in Table 5 are estimated on individual transactions and contains many control
variables, it is simpler to plot the functional relationship rather than some other transformation of the
underlying data.
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describe the relationship between network sizes and trading costs in the data. The model’s

relation is too weak as the line is too flat. In addition, the non-monotonicity in the relation

is barely visible. This suggests that uniform bargaining power limits the variation in the

benefits and costs of having a larger network.

In the model network size impacts trading costs, insurers with different η choose different

N∗(η), and η impacts trading costs independent of the network size. Understanding how

these interact in the model provides insight into why the model with uniform bargaining

power weakly fits the relationship between network sizes and trading costs. The spread can

be written as SP (η(N∗), N∗). Its full derivative with respect of N∗ is

dSP

dN∗
=
∂SP

∂N∗
+
∂SP

∂η

dη

dN∗
. (34)

The top left graph in Figure 6 is the inverse of dη
dN∗ . The top right graph in Figure 6

weighs this by the observed empirical distribution of trading intensities. Therefore, fitting

the model requires fitting dη
dN∗ and dSP

dN∗ , and dSP
dN∗ depends on dη

dN∗ . The model determines
∂SP
∂N∗ and ∂SP

∂η
.

The first term in (34) corresponds to the derivative of spread with respect to optimal

network size in the model. As discussed earlier, at the optimum this derivative is positive.

The second term in (34) corresponds to the effect of insurers with different η choosing

different N∗ and η impacting trading costs independent of the network size. The value of

future business causes the bid-ask spread to improve with η, ∂SP
∂η

< 0, and the optimal

network size is a non-decreasing function of η, dη
dN∗ ≥ 0, the second term in (34) is always

negative. The opposing signs of the two terms explain how the model can produce the

non-monotonic relationship between network size and trading costs in the data. To fit the

trading cost-network size relationship in Table 5 the full derivative in (34) must be initially

negative and then become positive at 22 dealers. The slope of the line for the model with

uniform bargaining power in neither initially negative enough nor does it increase noticeably

enough at 22.

The log-log plot in the top left of Figure 6 shows that fitting dη
dN∗ requires that N∗ = 1

for a large range of η. If dealers place a high value on repeat business then spreads are very

sensitive to increasing the number of dealers. In the model high dealer bargaining power, w,

increases the value of repeat business. Therefore, the fit in specification 1 matches the large

fraction of insurers with less than five dealers by setting the dealers’ bargaining power close

to one. Unfortunately, this same mechanism makes it costly to have larger dealer networks,

so the model produces too few insurers with dealer networks larger than 16 and no networks

larger than 22. Finally, high dealer bargaining power makes the relationship weak between
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spreads and network size. If dealer bargaining power declines with insurer trading intensity

then larger networks may be optimal and the relationship between network size and trading

costs may be larger. Specification 2 allows for bargaining power to vary with η.

The model fit improves drastically when dealers’ bargaining power depends on η. All

four plots in Figure 7 show a close correspondence between the model and data. The graphs

show network sizes greater than 22 and the U-shape in the bid-ask spread starting at 20

dealers. In this specification dealers’ bargaining power is greater than 0.8 for insurers with

trading intensity less than five.17 Dealer bargaining power for insurer buys is about 0.5 when

trading intensity approaches 10. When η exceeds 30 dealer bargaining power for insurer buys

is small. This enables the model to produce large network sizes for insurers with large η as

the value dealers place on repeat business increases with η. In addition, bargaining power

varying with η has a direct effect on trading costs. Larger insurers have larger bargaining

power, lowering their trading costs. This strengthens the relationship between trading costs

and network sizes.

To summarize, the theoretical model with the dealers’ bargaining power declining with

a trading intensity η fits the data well. In particular, it is important to have the dealer’s

bargaining power on the ask side to depend on η. That is, small inactive insurers have very

weak outside options both when they buy and sell. By contrast, large active insurers have

strong outside options when they buy and weak bargaining power when they sell.

5.2 Impact of policy changes

The parameter estimates can help quantify the value of both the repeat client-dealer trading

and non-trade value V r. We use the model and estimated parameters to construct coun-

terfactuals that capture the impact of repeat trade business on client-dealer networks and

prices. We compute counterfactual networks and bid-ask prices under the assumption that

the dealers give only partial price improvement for the future repeat trading from the same

insurer. In this case, the search and bargaining proceeds in the same way, but the dealers

in the network are implicitly re-chosen with probability 1
2

after every trade. This is coun-

terfactual scenario 1. In this counterfactual scenario, the bid and ask price equations in the

model are adjusted by dividing both U o and Uno in (15) and (16) by two. To capture the

impact of V r on networks and transaction prices we compute counterfactual networks and

bid-ask prices under the assumption that clients fully benefit from the repeat trading but

receive no relation-specific value from dealers, V r = 0. This is counterfactual scenario 2.

The upper left plot in Figure 8 corresponds to the top left plot in Figure 7 and shows

17Figure 2 shows that the majority of insurers have trading intensity less than five.
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Figure 7: Model fit with client-specific bargaining power wb(η), ws(η)
The figure shows the model fit when dealers’ bargaining power is a function of trading intensity, wb(η) and

ws(η). Please see caption of Figure 6 for further details.

the optimal network sizes, N∗. Because the network sizes change under the counterfactuals,

the upper right plot in Figure 8 shows the bid-ask spread as a function of trading intensity,

η. All four graphs in Figure 8 use the estimated parameters from specification 2 in Table 6.

Each graph shows the results from specification 2 (solid line), counterfactual 1 (crosses), and

counterfactual 2 (circles).

Figure 8 highlights the fundamental trade-offs the insurer faces in our model. When

dealers’ repeat trade benefits are reduced (counterfactual 1) dealers charge wider bid-ask

spreads. Dealers in smaller networks lose more repeat trade surplus than dealers in large

networks because each dealer’s per-trade loss is scaled by the network size. Smaller insurers

with lower trading intensities have smaller networks. Consequently, the widening in bid-

ask spread is slightly larger for insurers with lower trading intensities than for insurers who

trade very frequently. Both large (high η) and small (low η) insurers respond to wider bid-ask

spread by reducing the size of their networks. The magnitude of this effect is much smaller
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Figure 8: Counterfactual analysis
The left plot shows the insurer-dealer network size as a function of the insurers’ trading frequency, η. The

right plot shows the bid-ask spread as a function of η. The bottom left plot shows the insurers’ value from

trading, V b, as a function of the insurers’ trading frequency, η. The bottom right plot shows the dealers’ value

from trading, U b, as a function of the insurers’ trading frequency, η. Each plot shows the corresponding

variable in under the estimated parameters from specification 2 in Table 6 (solid line) compared to the

counterfactuals that would arise if: (i) dealers have suffered a permanent loss of 50% of the repeat trade

business (crosses); (ii) the non-trade relationship value is zero (circles). We use log-log scale.

for insurers with low η as they already have small networks.

When the non-trade value V r is set to zero in counterfactual 2 insurers reduce their

network sizes. Because V r is larger for insurers with larger trading intensities, they reduce

the size of their networks more than insurers with low η. Dealers respond to the network size

reduction by charging better transaction prices thus leading to narrower bid-ask spreads for

insurers of all η-types. The magnitude of the bid-ask spread improvement is larger(smaller)

for insurers with high(low) η since they reduce the size their network by more(less).

The U-shape in the bid-ask spread is not present without the non-trade relationship value

V r. This highlights the role V r increasing in N∗ plays in the non-monotonicity of relationship
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between network size and the bid-ask spread. As V r increases with N∗, insurers have an

incentive to choose larger networks than in the absence of the non-trade value because larger

transaction costs are offset by the non-trade value. Because V r increases with η as well,

this incentive is especially strong for insurers with very large trading intensities and large

networks, thus leading to the U-shape in the bid-ask spread for large networks.

MiFID II attempts to unbundle various aspects of relationship between clients and deal-

ers. Trading and non-trading services are supposed to be priced and sold separately. In

addition, there exists a large push by the U.S. and European regulators to improve trans-

parency and liquidity in the corporate bond market by shifting trading to limit order book-

type electronic platforms like MarketAxess, TrueMid, and others, easily accessible by both

institutional and retail investors. All these initiatives will impact the transaction costs in-

curred by insurers but very little empirical and/or theoretical evidence exists to quantify

these effects. Our counterfactuals provides useful insights about quantitative implications

of both moving the bond trading from the OTC markets to the electronic limit order book

where the probability of the repeat trading with the same dealer is reduced (counterfactual

1) and unbundling trading and non-trading dealer services (counterfactual 2).

The upper right panel of Figure 8 shows that when the probability of repeat trading

with the same dealer is reduced (green crosses), all insurers will incur higher transaction

costs. Insurers who trade more frequently and, therefore, have larger networks will see much

smaller increase in the transaction costs than insurers who trade less frequently and tend

to trade repeatedly with 1 to 5 dealers. For instance, insurers with 100 annual trades have

on average 11 dealers in their network and will see less than 1 bps increase in transaction

costs per bond per transaction. These insurers tend to be larger with more market power.

In contrast, insurers with less than 10 trades annually have networks with up to 5 dealers

and will on average pay 3 to 7 bps more per bond per transaction. These insurers also tend

to be smaller and more vulnerable to bond market conditions.

When the non-trade value is set to zero (red circles), the transaction costs are improved for

all insurers with the largest insurers trading most frequently getting the largest improvement.

This is because these insurers getting the largest non-trade benefits from dealers at the

expense of the bond transaction prices. Overall, our results indicate that decoupling trade

and non-trade insurer-dealer business will decrease transaction costs for all but a few insurers.

The bottom left plot of Figure 8 shows that the proposed regulations would decrease

the value from trading, V b, for all types of insurers. Larger, more active insurers would be

affectede differently than smaller, less active insurers. In the model, higher-η insurers incur

the largest drop in V b. These insurers would also reduce the size of their trading networks

the most. However, insurers with lower-η already extract a small value from trading. As a

39



consequence, under the new regulations the value they generate from trading may become

negative, causing them to exit the market. The proposed regulations can potentially reduce

trading activity and decrease insurers’ welfare.

As for the dealers, the bottom right plot of Figure 8 shows that the reduction in network

sizes by insurers diminishes inter-dealer competition thus raising the value of trading for

the dealers still reamining in the network. The profits from trading, U b, would rise for

the remaining dealers across all types of investors. Profits would rise the most for low-η

insurers for which U b is already the highest. The proposed regulations may thus increase the

disparities between different dealers and foster a “dog-eat-dog” selection among the dealers.

6 Conclusion

Over-the-counter markets are pervasive across asset classes and often considered poorly func-

tioning due to lack of transparency and fragmented trading imposing search frictions. Reg-

ulators have attempted to address these concerns through increased transparency, fostering

of anonymous electronic trading platforms, and unbundling of trade and non-trade services.

Changes in regulations and market structure will impact heterogeneous investors differently.

However, there is limited theory closely linked to empirical work to guide these decisions.

We use comprehensive regulatory corporate bond trading data for all U.S. insurance

companies to study how investors choose the size of their trading networks and how this

impacts the transaction prices they receive in the current decentralized OTC market setting.

We document that 30% of insurers trade only with a single dealer and up to 100 times

each year. There exist few insurers with networks of up to 40 dealers. The cross-sectional

distribution in trading activity is a power law, while the network sizes follow a hybrid of a

power law with an exponential tail. Trading costs decline with network size up to 20 dealers

and increase for larger networks.

A parsimonious model of OTC trading in which insurers build one-to-many dealer rela-

tions can match the empirical regularities. Insurers trade off the value of repeat relations

with dealers against the benefits of intra-temporal competition among dealers. The value of

repeat relations declines in the number of dealers as the increased competition erodes the

chance to transact. Dealers compensate for losses from repeat business by charging higher

spreads. The value of repeat relations diminishes more slowly with the addition of dealers for

clients with larger trading intensity as dealers compete for larger repeat business. Therefore,

larger clients use more dealers and get better execution as benefits from having larger repeat

business swamp the costs of having larger network. Dealers provide better prices to these

larger clients because their repeat business is more valuable. Eventually the costs of having
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larger network outweigh the benefits and the spread starts to increase with the network size.

Using the structurally estimated model parameters we assess to impact of proposed regu-

lations to unbundle and abolish client-dealer relations. We find that clients will incur higher

transaction costs when repeat trading is reduced through, e.g., anonymous electronic trad-

ing facilities. Unbundling trade and non-trade services will decrease transaction costs for

all insurers except for the least active ones and reduce optimal network sizes—fostering a

“dog-eat-dog” selection among the dealers. More importantly, the proposed regulations may

reduce trading activity and decrease welfare, especially for clients that trade infrequently.
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Appendix

Data Filters

Table 7: Data filters

Full Corp.
Filter sample bonds

1. All trades from original filings (includes all markets, all trades since 2001) 19.1 4.5
2. Remove all trades that do not involve a dealer (e.g., paydown, redemption, mature, correction) 6.6 3.1
3. Remove duplicates, aggregate all trades of the same insurance company in the same CUSIP on the
same day with the same dealer

6.5 3.1

4. Map dealer names to SEC CRD number, drop trades without a name match, drop trades with a dealer
that trades less than 10 times in total over the sample period

6.1 2.9

5. Drop if not fixed coupon (based on eMaxx data), drop if outstanding amount information is in neither
eMaxx nor FISD

5.3 2.5

6. Drop if trade is on a holiday or weekend 5.2 2.5
7. Drop if counterparty is “various” 4.1 2.1
8. Drop trades less than 90 days to maturity or less than 60 days since issuance (i.e., primary market
trade)

2.8 1.5

9. Merge with FISD data, keep only securities that are not exchangeable, preferred, convertible, issued
by domestic issuer, taxable muni, missing the offering date, offering amount, or maturity, and offering
amount is not less than 100K

1.0 1.0

Parts 3 and 4 of Schedule D filed with the NAIC contains purchases and sales made

during the quarter, except for the last quarter. In the last quarter of each year, insurers file

an annual report, in which all transactions during the year are reported. Part 3 of Schedule

D reports all long-term bonds and stocks acquired during the year, but not disposed of,

while Part 4 of Schedule D reports all long-term bonds and stocks disposed of. In addition,

all long-term bonds and stocks acquired during the year and fully disposed of during the

current year are reported in the special Part 5 of Schedule D. NAIC’s counterparty field

reports names in text, which can sometimes be mistakenly typed. The bank with the most

variation in spelling is DEUTSCHE BANK. We manually clean the field to account for

different spellings of broker-dealer names.

We compile the information in Parts 3, 4, and 5 of Schedule D to obtain a comprehensive

set of corporate bond transactions by all insurance companies regulated by NAIC.

We apply various FISD-based data filters based on Ellul et al. (2011) to eliminate outliers

and establish a corporate bond universe with complete data. The data filters are in Table 7

which summarizes the number of observations that is affected by each step. We exclude

a bond if it is exchangeable, preferred, convertible, MTN, foreign currency denominated,

puttable or has a sinking fund. We also exclude CDEB (US Corporate Debentures) bonds,

CZ (Corporate Zero) bonds, and all government bond (including municipal bonds) based

on the reported industry group. Finally, we also drop a bond if any of the following fields

is missing: offering date, offering amount, and maturity. We restrict our sample to bonds
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with the offering amount greater than $10 million, as issues smaller than this amount are

very illiquid and hence are rarely traded. Ellul et al. (2011) have used $50,000 which we find

restrictive for our purpose. We windsorize the cash-to-asset ratio at 80 percent to remove

extreme values.

Proofs

PROPOSITION 1: Bid and ask prices are

P b =

[
C(1− L)

λN
Ψ1 +

C

r + κ
Ψ2 +KΠ1(κ, η)

]
w (35)

+

[
MaskΠ2 +MbidΠ3

κ

r + κ

]
(1− w),

P s =

[
C(1− L)

λN
Ψ3 −

C

r + κ
Ψ4 −KΠ1(η, κ)

]
w (36)

+

[
MbidΠ2 +MaskΠ3

η

r + η

]
(1− w).

where the coefficients Ψ1, Ψ2, Ψ3, Ψ4, Π1(x, y), Π2, and Π3 are given below in the proof.

Proof : Define Λ = λN , λ̃ = λ
r+Λ

, Λ̃ = λN
r+λN

, η̃ = η
r+η

, and κ̃ = κ
r+κ

. We can rewrite both the client’s and the dealer’s

valuations as

V b =
C

r + κ
Λ̃− (P b + k)Λ̃ + V sκ̃Λ̃ =

Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)
r + Λ

κ̃+
C

r + κ
− (P b +K) + (P s − k)κ̃Λ̃

]
,

V s =
C(1− l)
r + Λ

+ (P s − k)Λ̃ + V bη̃Λ̃ =
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
+

C

r + κ
η̃Λ̃ + (P s −K)− (P b +K)η̃Λ̃

]
,

and

Us = (Mbid − P s)λ̃+ Ubη̃Λ̃ =
λ̃

1− κ̃η̃(Λ̃)2

[
(Mbid − P s) + (P b −Mask)η̃Λ̃

]
,

Ub = (P b −Mask)λ̃+ Usκ̃Λ̃ =
λ̃

1− κ̃η̃(Λ̃)2

[
(P b −Mask) + (Mbid − P s)κ̃Λ̃

]
.

After some algebra one obtains

V o − V b =
C

r + κ
+ V sκ̃− V b

=
C

r + κ
+

Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
κ̃−

C(1− l)
r + Λ

κ̃−
C

r + κ
(1− κ̃η̃Λ̃)+

+(P b +K)(1− κ̃η̃Λ̃) + (P s −K)κ̃(1− Λ̃)
]
,

V s − V no = V s − V bη̃

=
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃)+

+(P b +K)η̃(1− Λ̃) + (P s −K)(1− κ̃η̃Λ̃)
]
.
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Substituting these expressions into (15) and (16) yields

P b =
C

r + κ
w

+
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
κ̃−

C(1− l)
r + Λ

κ̃−
C

r + κ
(1− κ̃η̃Λ̃) + (P b +K)(1− κ̃η̃Λ̃) + (P s −K)κ̃(1− Λ̃)

]
w

+Mask(1− w)−
λ̃

1− κ̃η̃(Λ̃)2

[
(Mbid − P s) + (P b −Mask)η̃Λ̃

]
κ̃(1− w),

P s =
Λ̃

1− κ̃η̃(Λ̃)2

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃) + (P b +K)η̃(1− Λ̃) + (P s −K)(1− κ̃η̃Λ̃)

]
w

+Mbid(1− w) +
λ̃

1− κ̃η̃(Λ̃)2

[
(P b −Mask) + (Mbid − P s)κ̃Λ̃

]
η̃(1− w).

These expressions can be rewritten as

P bA1(w) =

[
C(1− l)

Λ
κ̃Λ̃ +

C

r + κ

]
(1− Λ̃)w +KA2(κ̃, w) (37)

+MaskA3(w)−Mbidκ̃λ̃(1− w) + P sκ̃A4(w)

P sA1(w) =

[
C(1− l)

Λ
(1− κ̃η̃Λ̃)−

C

r + κ
η̃(1− Λ̃)

]
Λ̃w −KA2(η̃, w)

−Maskη̃λ̃(1− w) +MbidA3(w) + P bη̃A4(w),

where we have defined

A1(w) ≡ 1− Λ̃w − κ̃η̃(Λ̃)2(1− w) + κ̃η̃Λ̃λ̃(1− w), (38)

A2(x,w) ≡ [1− κ̃η̃Λ̃− x(1− Λ̃)]Λ̃w,

A3(w) ≡ [1− κ̃η̃(Λ̃)2 + κ̃η̃Λ̃λ̃](1− w),

A4(w) ≡ (1− Λ̃)Λ̃w + λ̃(1− w),

A5(w) ≡ A1(w)− κ̃η̃
A4(w)2

A1(w)
.

The system of equations (37) can be solved to yield expressions (35) and (36), where we have defined

Ψ1 ≡
κ̃Λ̃

A5(w)

[
1− Λ̃ + (1− κ̃η̃Λ̃)

A4(w)

A1(w)

]
, (39)

Ψ2 ≡
(1− Λ̃)

A5(w)

[
1− κ̃η̃

A4(w)

A1(w)
Λ̃

]
,

Ψ3 ≡
Λ̃

A5(w)

[
1− κ̃η̃Λ̃ + κ̃η̃(1− Λ̃)

A4(w)

A1(w)

]
,

Ψ4 ≡
η̃(1− Λ̃)

A5(w)

[
Λ̃−

A4(w)

A1(w)

]
,

Π1(x, y) ≡
1

A5(w)

[
A2(x)− xA2(y)

A4(w)

A1(w)

]
,

Π2 ≡
1

A5(w)

[
A3 − κ̃η̃

A4(w)

A1(w)
λ̃

]
,

Π3 ≡
1

A5(w)

[
A3

A4(w)

A1(w)
− λ̃
]
.
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PROPOSITION 2: The optimal size of the insurer’s dealer network N∗ is given by the following condition

rV b

(λN∗)2

(
1 +

κ

r + κ

η

r + η

(
λN∗

r + λN∗

)2
)

= −
(
r + λN∗

λN∗ −
η

r + η

κ

r + κ

λN∗

r + λN∗

)
dV r

dλN∗ + (40)

+
κ

r + κ

r

(r + λN∗)2

(
C(1− L)

r
− P s +K

)
+

dP s

dλN∗
κ

r + κ

λN∗

r + λN∗ −
dP b

dλN∗ .

Proof : Since dV̂
dN

b
= dV b

dN
+ dV r

dN
we need to calculate the derivative of V b with respect to N . We start by rewriting the

expression (6) as

V b =

(
C

r + κ
+
C(1− L)

r + λN

κ

r + κ
+

(
E[P s] + V b

η

r + η
−K

)
κ

r + κ

λN

r + λN
− P b −K

)
λN

r + λN
, (41)

and solve it for V b to obtain

V b =

λN
r+λN

1− κ
r+κ

η
r+η

( λN
r+λN

)2

[
C

r + κ
+
C(1− L)

r + λN

κ

r + κ
+ (P s −K)

κ

r + κ

λN

r + λN
− (P b +K)

]
. (42)

Taking into account that

d
(

λN
r+λN

)
dλN

=
r

(r + λN)2
, (43)

we obtain the following expression for the derivative in question

dV b

dλN
=

(
r + λN

λN
−

η

r + η

κ

r + κ

λN

r + λN

)−1
[
rV b

(λN)2

(
1 +

κ

r + κ

η

r + η

(
λN

r + λN

)2
)
− (44)

−
κ

r + κ

r

(r + λN)2

(
C(1− L)

r
− P s +K

)
+
dP s

dλN

κ

r + κ

λN

r + λN
−
dP b

dλN

]
, (45)

which after setting dV̂
dN

b
= 0 leads to 40 after some algebra.
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